WorldWideScience

Sample records for matter dominated universe

  1. Recent heavy particle decay in a matter dominated universe

    Science.gov (United States)

    Olive, K. A.; Seckel, D.; Vishniac, E.

    1984-09-01

    The cold matter scenario for galaxy formation solves the dark matter problem very nicely on small scales corresponding to galaxies and clusters of galaxies. It is, however, difficult to reconcile with a Universe with an Einstein-deSitter value of (UC OMEGA) = 1. Cold matter and (UC OMEGA) = 1 can be made compatible while retaining the feature that the Universe is matter dominated today. This is done by means of heavy (cold) particles whose decay subsequently leads to the unbinding of a large fraction of lighter clustered matter.

  2. Recent heavy-particle decay in a matter-dominated universe

    Energy Technology Data Exchange (ETDEWEB)

    Olive, K.A.; Seckel, D.; Vishniac, E.

    1985-05-01

    The cold-matter scenario for galaxy formation solves the dark-matter problem very nicely on small scales corresponding to galaxies and clusters of galaxies. It is, however, difficult to reconcile with a universe with an Einstein-deSitter value of ..cap omega.. = 1. We will show here that cold matter and ..cap omega.. = 1 can be made compatible while retaining the feature that the universe is matter-dominated today. This is done by means of heavy (cold) particles whose decay subsequently leads to the unbinding of a large fraction of lighter clustered matter.

  3. Recent heavy particle decay in a matter dominated universe

    International Nuclear Information System (INIS)

    Olive, K.A.; Seckel, D.; Vishniac, E.

    1984-09-01

    The cold matter scenario for galaxy formation solves the dark matter problem very nicely on small scales corresponding to galaxies and clusters of galaxies. It is, however, difficult to reconcile with a Universe with an Einstein-deSitter value of Ω = 1. We will show here that cold matter and Ω = 1 can be made compatible while retaining the feature that the Universe is matter dominated today. This is done by means of heavy (cold) particles whose decay subsequently leads to the unbinding of a large fraction of lighter clustered matter. 33 references

  4. Recent heavy-particle decay in a matter-dominated universe

    International Nuclear Information System (INIS)

    Olive, K.A.; Seckel, D.; Vishniac, E.

    1985-01-01

    The cold-matter scenario for galaxy formation solves the dark-matter problem very nicely on small scales corresponding to galaxies and clusters of galaxies. It is, however, difficult to reconcile with a universe with an Einstein-deSitter value of Ω = 1. We will show here that cold matter and Ω = 1 can be made compatible while retaining the feature that the universe is matter-dominated today. This is done by means of heavy (cold) particles whose decay subsequently leads to the unbinding of a large fraction of lighter clustered matter

  5. Recent heavy-particle decay in a matter-dominated universe

    Science.gov (United States)

    Olive, K. A.; Seckel, D.; Vishniac, E.

    1985-05-01

    The cold-matter scenario for galaxy formation solves the dark-matter problem very nicely on small scales corresponding to galaxies and clusters of galaxies. It is, however, difficult to reconcile with a universe with an Einstein-deSitter value of Ω = 1. It is shown here that cold matter and Ω = 1 can be made compatible while retaining the feature that the universe is matter-dominated today. This is done by means of heavy (cold) particles whose decay subsequently leads to the unbinding of a large fraction of lighter clustered matter.

  6. Recent heavy particle decay in a matter dominated universe

    Energy Technology Data Exchange (ETDEWEB)

    Olive, K.A.; Seckel, D.; Vishniac, E.

    1984-09-01

    The cold matter scenario for galaxy formation solves the dark matter problem very nicely on small scales corresponding to galaxies and clusters of galaxies. It is, however, difficult to reconcile with a Universe with an Einstein-deSitter value of ..cap omega.. = 1. We will show here that cold matter and ..cap omega.. = 1 can be made compatible while retaining the feature that the Universe is matter dominated today. This is done by means of heavy (cold) particles whose decay subsequently leads to the unbinding of a large fraction of lighter clustered matter. 33 references.

  7. Bulk viscous matter-dominated Universes: asymptotic properties

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, Arturo [Departamento de Física, Campus León, Universidad de Guanajuato, León, Guanajuato (Mexico); García-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - Legaria del IPN, México D.F. (Mexico); Gonzalez, Tame [Departamento de Ingeniería Civil, División de Ingeniería, Universidad de Guanajuato, Guanajuato (Mexico); Nucamendi, Ulises [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040 Morelia, Michoacán (Mexico); Quiros, Israel, E-mail: avelino@fisica.ugto.mx, E-mail: rigarcias@ipn.mx, E-mail: tamegc72@gmail.com, E-mail: ulises@ifm.umich.mx, E-mail: iquiros6403@gmail.com [Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Corregidora 500 S.R., Universidad de Guadalajara, 44420 Guadalajara, Jalisco (Mexico)

    2013-08-01

    By means of a combined use of the type Ia supernovae and H(z) data tests, together with the study of the asymptotic properties in the equivalent phase space — through the use of the dynamical systems tools — we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i. e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around z < 1. For earlier epochs it is negative, been in tension with the local second law of thermodynamics.

  8. Filamentary superclustering in a universe dominated by cold dark matter

    International Nuclear Information System (INIS)

    West, M.J.; Villumsen, J.V.; Dekel, A.

    1991-01-01

    The relative orientations of neighboring clusters of galaxies in a universe dominated by cold dark matter (CDM) are examined using N-body simulations. A clear tendency is found for the major axes of neighboring clusters to be aligned for separations up to 10-15/sq h Mpc when all clusters pairs are included. When only those clusters which reside within superclusters are considered, alignments are found over even larger scales, up to about 30/sq h Mpc. The orientations of cluster minor axes also provide supporting evidence of the presence of filamentary rather than sheetlike features in the large-scale mass distributions. These findings agree well with observational results. The results indicate that a CDM-dominated universe can account for many of the observed features of the large-scale structure. 95 refs

  9. Do we live in the universe successively dominated by matter and antimatter?

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2011-01-01

    We wonder if a cyclic universe may be dominated alternatively by matter and antimatter. Such a scenario demands a mechanism for transformation of matter to antimatter (or antimatter to matter) during the final stage of a big crunch. By giving an example, we have shown that in principle such a mechanism is possible. Our mechanism is based on a hypothetical repulsion between matter and antimatter, existing at least deep inside the horizon of a black hole. When universe is reduced to a supermassive black hole of a small size, a very strong field of the conjectured force might create (through a Schwinger type mechanism) particle-antiparticle pairs from the quantum vacuum. The amount of antimatter created from the vacuum is equal to the decrease of mass of the black hole and violently repelled from it. When the size of the black hole is sufficiently small, the creation of antimatter may become so fast, that matter of our Universe might be transformed to antimatter in a fraction of second. Such a fast conversion of...

  10. Distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    International Nuclear Information System (INIS)

    Ryu, D.; Vishniac, E.T.; Chiang, W.H.

    1988-11-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code

  11. Distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, D.; Vishniac, E.T.; Chiang, W.H.

    1988-11-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  12. The distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    Science.gov (United States)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1988-01-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  13. The distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    Science.gov (United States)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1988-11-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega0 = 1 and h = 0.5 was considered (here h = H0 bar 100/kms/Mpc and H0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  14. Galaxy and cluster formation in a universe dominated by cold dark matter

    International Nuclear Information System (INIS)

    Primack, J.R.

    1984-07-01

    The dark matter (DM) that appears to be gravitationally dominant on all astronomical scales larger than the cores of galaxies can be classified, on the basis of its characteristic free-streaming damping mass M/sub D/, as hot (M/sub D/ approx. 10 15 M/sub mass/), warm (M/sub D/ approx. 10 11 M/sub mass/), or cold (M/sub D 8 M/sub mass/). For the case of cold DM, the shape of the DM fluctuation spectrum is determined by (a) the primordial spectrum (on scales larger than the horizon), and (b) stagspansion, the stagnation of the growth of DM fluctuations that enter the horizon while the universe is still radiation-dominated. An attractive feature of the cold dark matter hypothesis is its considerable predictive power: the post-recombination fluctuation spectrum is calculable, and it in turn governs the formation of galaxies and clusters. Good agreement with the data is obtained for a Zeldovich spectrum of primordial fluctuations

  15. Galaxy and cluster formation in a universe dominated by cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Primack, J.R.

    1984-07-01

    The dark matter (DM) that appears to be gravitationally dominant on all astronomical scales larger than the cores of galaxies can be classified, on the basis of its characteristic free-streaming damping mass M/sub D/, as hot (M/sub D/ approx. 10/sup 15/ M/sub mass/), warm (M/sub D/ approx. 10/sup 11/ M/sub mass/), or cold (M/sub D < 10/sup 8/ M/sub mass/). For the case of cold DM, the shape of the DM fluctuation spectrum is determined by (a) the primordial spectrum (on scales larger than the horizon), and (b) stagspansion, the stagnation of the growth of DM fluctuations that enter the horizon while the universe is still radiation-dominated. An attractive feature of the cold dark matter hypothesis is its considerable predictive power: the post-recombination fluctuation spectrum is calculable, and it in turn governs the formation of galaxies and clusters. Good agreement with the data is obtained for a Zeldovich spectrum of primordial fluctuations.

  16. Dark matter universe.

    Science.gov (United States)

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  17. Dark matter universe

    Science.gov (United States)

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  18. Generalized cardassian expansion: a model in which the universe is flat, matter dominated, and accelerating

    International Nuclear Information System (INIS)

    Freese, Katherine

    2003-01-01

    The Cardassian universe is a proposed modification to the Friedmann Robertson Walker equation (FRW) in which the universe is flat, matter dominated, and accelerating. In this presentation, we generalize the original Cardassian proposal to include additional variants on the FRW equation, specific examples are presented. In the ordinary FRW equation, the right hand side is a linear function of the energy density, H 2 ∼ ρ. Here, instead, the right hand side of the FRW equation is a different function of the energy density, H 2 ∼ g(ρ). This function returns to ordinary FRW at early times, but modifies the expansion at a late epoch of the universe. The only ingredients in this universe are matter and radiation: in particular, there is NO vacuum contribution. Currently the modification of the FRW equation is such that the universe accelerates; we call this period of acceleration the Cardassian era. The universe can be flat and yet consist of only matter and radiation, and still be compatible with observations. The energy density required to close the universe is much smaller than in a standard cosmology, so that matter can be sufficient to provide a flat geometry. The new term required may arise, e.g., as a consequence of our observable universe living as a 3-dimensional brane in a higher dimensional universe. The Cardassian model survives several observational tests, including the cosmic background radiation, the age of the universe, the Friedmann Robertson , and structure formation. As will be shown in future work, he predictions for observational tests of the generalized Cardassian models can be very different from generic quintessence models, whether the equation of state is constant or time dependent

  19. QCD axion dark matter from long-lived domain walls during matter domination

    OpenAIRE

    Harigaya, Keisuke; Kawasaki, Masahiro

    2018-01-01

    The domain wall problem of the Peccei–Quinn mechanism can be solved if the Peccei–Quinn symmetry is explicitly broken by a small amount. Domain walls decay into axions, which may account for dark matter of the universe. This scheme is however strongly constrained by overproduction of axions unless the phase of the explicit breaking term is tuned. We investigate the case where the universe is matter-dominated around the temperature of the MeV scale and domain walls decay during this matter dom...

  20. Cold dark matter dominated, inflationary universe with Omega(0) less than 1 and n less than 1

    International Nuclear Information System (INIS)

    Vittorio, N.; Matarrese, S.; Lucchin, F.

    1988-01-01

    The theoretical prejudice for a flat universe with an initially scale-invariant power spectrum has restricted the number of cosmological scenarios investigated for studying the formation of structure in the universe. A cold dark matter-dominated universe with a density parameter Omega(0) and a primordial spectral index n different from unity is considered, and its possible consistency with the inflationary model is discussed. It is shown that some of the difficulties of a flat cold dark matter scenario can be avoided by having Omega(0) less than 1 and n less than 1. For Omega(0) roughly 0.4 and n roughly 0.75 a good agreement is obtained with the large-scale drifts, the bounds on the cosmic microwave background smoothness, the Abell cluster abundance, and their correlation function. 85 references

  1. A model for the distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter-dominated universe

    Science.gov (United States)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1989-01-01

    The spatial distribution of the cold-dark-matter (CDM) and baryonic components of CDM-dominated cosmological models are characterized, summarizing the results of recent theoretical investigations. The evolution and distribution of matter in an Einstein-de Sitter universe on length scales small enough so that the Newtonian approximation is valid is followed chronologically, assuming (1) that the galaxies, CDM, and the intergalactic medium (IGM) are coupled by gravity, (2) that galaxies form by taking mass and momentum from the IGM, and (3) that the IGM responds to the energy input from the galaxies. The results of the numerical computations are presented in extensive graphs and discussed in detail.

  2. Was the Universe actually radiation dominated prior to nucleosynthesis?

    Science.gov (United States)

    Giblin, John T.; Kane, Gordon; Nesbit, Eva; Watson, Scott; Zhao, Yue

    2017-08-01

    Maybe not. String theory approaches to both beyond the Standard Model and inflationary model building generically predict the existence of scalars (moduli) that are light compared to the scale of quantum gravity. These moduli become displaced from their low energy minima in the early Universe and lead to a prolonged matter-dominated epoch prior to big bang nucleosynthesis (BBN). In this paper, we examine whether nonperturbative effects such as parametric resonance or tachyonic instabilities can shorten, or even eliminate, the moduli condensate and matter-dominated epoch. Such effects depend crucially on the strength of the couplings, and we find that unless the moduli become strongly coupled, the matter-dominated epoch is unavoidable. In particular, we find that in string and M-theory compactifications where the lightest moduli are near the TeV scale, a matter-dominated epoch will persist until the time of big bang nucleosynthesis.

  3. The size of clusters in a neutrino-dominated universe

    International Nuclear Information System (INIS)

    White, S.D.M.; Davis, M.; Frenk, C.S.

    1984-01-01

    Quite soon after the first collapse of structure almost half the matter in a neutrino-dominated universe is expected to reside in clusters. The masses and binding energies of these neutrino clusters are too large for them to be identified with observed galaxy clusters. Even if such objects were able to suppress all galaxy formation, their X-ray emission would, however, make them highly visible if more than 2.5 per cent of their mass was in ordinary matter. Such a low baryon density leads to insufficient cooling for galaxies to form in pancakes. A neutrino-dominated universe appears to conflict with observation irrespective of the details of the processes which govern galaxy formation. (author)

  4. Exploring a matter-dominated model with bulk viscosity to drive the accelerated expansion of the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, Arturo; Nucamendi, Ulises, E-mail: avelino@ifm.umich.mx, E-mail: ulises@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040, Morelia, Michoacán (Mexico)

    2010-08-01

    We explore the viability of a bulk viscous matter-dominated Universe to explain the present accelerated expansion of the Universe. The model is composed by a pressureless fluid with bulk viscosity of the form ζ = ζ{sub 0}+ζ{sub 1}H where ζ{sub 0} and ζ{sub 1} are constants and H is the Hubble parameter. The pressureless fluid characterizes both the baryon and dark matter components. We study the behavior of the Universe according to this model analyzing the scale factor as well as some curvature scalars and the matter density. On the other hand, we compute the best estimated values of ζ{sub 0} and ζ{sub 1} using the type Ia Supernovae (SNe Ia) probe. We find that from all the possible scenarios for the Universe, the preferred one by the best estimated values of (ζ{sub 0},ζ{sub 1}) is that of an expanding Universe beginning with a Big-Bang, followed by a decelerated expansion at early times, and with a smooth transition in recent times to an accelerated expansion epoch that is going to continue forever. The predicted age of the Universe is a little smaller than the mean value of the observational constraint coming from the oldest globular clusters but it is still inside of the confidence interval of this constraint. A drawback of the model is the violation of the local second law of thermodynamics in redshifts z∼>1. However, when we assume ζ{sub 1} = 0, the simple model ζ = ζ{sub 0} evaluated at the best estimated value for ζ{sub 0} satisfies the local second law of thermodynamics, the age of the Universe is in perfect agreement with the constraint of globular clusters, and it also has a Big-Bang, followed by a decelerated expansion with the smooth transition to an accelerated expansion epoch in late times, that is going to continue forever.

  5. Dark Matter Freeze-in Production in Fast-Expanding Universes

    Science.gov (United States)

    D'Eramo, Francesco; Fernandez, Nicolas; Profumo, Stefano

    2018-02-01

    If the dark matter is produced in the early universe prior to Big Bang nucleosynthesis, a modified cosmological history can drastically affect the abundance of relic dark matter particles. Here, we assume that an additional species to radiation dominates at early times, causing the expansion rate at a given temperature to be larger than in the standard radiation-dominated case. We demonstrate that, if this is the case, dark matter production via freeze-in (a scenario when dark matter interacts very weakly, and is dumped in the early universe out of equilibrium by decay or scattering processes involving particles in the thermal bath) is dramatically suppressed. We illustrate and quantitatively and analytically study this phenomenon for three different paradigmatic classes of freeze-in scenarios. For the frozen-in dark matter abundance to be as large as observations, couplings between the dark matter and visible-sector particles must be enhanced by several orders of magnitude. This sheds some optimistic prospects for the otherwise dire experimental and observational outlook of detecting dark matter produced by freeze-in.

  6. A model for the distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter-dominated universe

    International Nuclear Information System (INIS)

    Ryu, D.; Vishniac, E.T.; Chiang, W.H.

    1989-01-01

    Until now, most studies on the cold dark matter (CDM) universe have considered only the distribution of the dark matter and compared that with the observed distribution of galaxies. Even though the dark matter determines the overall dynamics of the large-scale structure, galaxies form out of the baryonic matter whose density and velocity distributions can be different from those of the dark matter, depending on the thermal history of the universe. In this paper, the authors study both the dark matter component and the baryonic component, that is, galaxies and the IGM, with several simplifying assumptions, by explicitly following the evolution. The dark matter, galaxies, and IGM are coupled through gravity; galaxies form out of the IGM by taking mass and momentum, whereas the IGM responds to the energy input from the galaxies

  7. A theory approach for creation of the matter of universe

    International Nuclear Information System (INIS)

    Duong Van Phi; Duong Anh Duc

    1993-08-01

    We shall represent an approach for the creation of the matter of Universe in the framework of a Quantum Theory, established in an 8-dimensional space. The primitive matter was being created from the Primary Vacuum and it consisted of the deuterons atoms, neutrinos and photons. From these neutral elements the attractive centres were formed and in the final stage an extremely high mass density Universe was built, and successively, the Big-Bang occurred. The problems of particle dominance, of excess of the deuterons and of magnitude of the numbers of neutrinos, etc. are discussed. (author). 19 refs, 2 tabs

  8. White matter microstructure damage in tremor-dominant Parkinson's disease patients

    International Nuclear Information System (INIS)

    Luo, ChunYan; Song, Wei; Chen, Qin; Yang, Jing; Shang, Hui-Fang; Gong, QiYong

    2017-01-01

    Resting tremor is one of the cardinal motor features of Parkinson's disease (PD). Several lines of evidence suggest resting tremor may have different underlying pathophysiological processes from those of bradykinesia and rigidity. The current study aims to identify white matter microstructural abnormalities associated with resting tremor in PD. We recruited 60 patients with PD (30 with tremor-dominant PD and 30 with nontremor-dominant PD) and 26 normal controls. All participants underwent clinical assessment and diffusion tensor MRI. We used tract-based spatial statistics to investigate white matter integrity across the entire white matter tract skeleton. Compared with both healthy controls and the nontremor-dominant PD patients, the tremor-dominant PD patients were characterized by increased mean diffusivity (MD) and axial diffusivity (AD) along multiple white matter tracts, mainly involving the cerebello-thalamo-cortical (CTC) pathway. The mean AD value in clusters with significant difference was correlated with resting tremor score in the tremor-dominant PD patients. There was no significant difference between the nontremor-dominant PD patients and controls. Our results support the notion that resting tremor in PD is a distinct condition in which significant microstructural white matter changes exist and provide evidence for the involvement of the CTC in tremor genesis of PD. (orig.)

  9. Cosmic-ray antiprotons as a probe of a photino-dominated universe

    Science.gov (United States)

    Silk, J.; Srednicki, M.

    1984-01-01

    Observational tests of the hypothesis that the universe is flat and dominated by dark matter in the form of massive photinos include the production of significant fluxes of cosmic rays and gamma rays in our galactic halo. Specification of the cosmological photino density and the masses of scalar quarks and leptons determines the present annihilation rate. The predicted number of low-energy cosmic-ray antiprotons is comparable to the observed flux.

  10. Dark Matter

    Directory of Open Access Journals (Sweden)

    Einasto J.

    2011-06-01

    Full Text Available I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Dark matter is the dominant matter component in the Universe, thus properties of dark matter particles determine the structure of the cosmic web.

  11. Testing Structure Formation in the Universe via Coupled Matter Fluids

    African Journals Online (AJOL)

    kagoyire

    the universe is dominated by two “dark” components- dark matter. (DM) and dark energy (DE)- that contribute about 26% and 69% respectively to the total cosmic energy budget, raises key questions about the nature of the “dark-sector” and large-scale structure formation (Planck Collaboration XVI, 2014). Motivated by a ...

  12. Gravitational Collapse of Charged Matter in Einstein-DeSitter Universe

    Science.gov (United States)

    Avinash, K.; Krishnan, V.

    1997-11-01

    Gravitational collapse of charged matter in expanding universe is studied. We consider a quasi neutral electron-ion-massive grain plasma in which all the three species are expanding at the same rate i.e., ni ∝ 1/R^3 [ ni is the number density of the i^ th species and R is the scale factor ]. In Einstein-DeSitter universe the scale factor R goes as ~ t^2/3. The electrons and ions follow Boltzmann's relation. The stability of this equilibrium is studied on Jeans times scale. Depending on the ratio a = fracq d^2Gmd^2 the growth of gravitational collapse is further moderated from t^2/3 growth. For a=1, the instability is completely quenched. In curvature and radiation dominated universe, there is no additional effect due to finite charge of the matter.

  13. White matter microstructure damage in tremor-dominant Parkinson's disease patients

    Energy Technology Data Exchange (ETDEWEB)

    Luo, ChunYan; Song, Wei; Chen, Qin; Yang, Jing; Shang, Hui-Fang [Sichuan University, Department of Neurology, West China Hospital, Chengdu, Sichuan (China); Gong, QiYong [Sichuan University, Huaxi MR Research Center, Department of Radiology, West China Hospital, Chengdu, Sichuan (China)

    2017-07-15

    Resting tremor is one of the cardinal motor features of Parkinson's disease (PD). Several lines of evidence suggest resting tremor may have different underlying pathophysiological processes from those of bradykinesia and rigidity. The current study aims to identify white matter microstructural abnormalities associated with resting tremor in PD. We recruited 60 patients with PD (30 with tremor-dominant PD and 30 with nontremor-dominant PD) and 26 normal controls. All participants underwent clinical assessment and diffusion tensor MRI. We used tract-based spatial statistics to investigate white matter integrity across the entire white matter tract skeleton. Compared with both healthy controls and the nontremor-dominant PD patients, the tremor-dominant PD patients were characterized by increased mean diffusivity (MD) and axial diffusivity (AD) along multiple white matter tracts, mainly involving the cerebello-thalamo-cortical (CTC) pathway. The mean AD value in clusters with significant difference was correlated with resting tremor score in the tremor-dominant PD patients. There was no significant difference between the nontremor-dominant PD patients and controls. Our results support the notion that resting tremor in PD is a distinct condition in which significant microstructural white matter changes exist and provide evidence for the involvement of the CTC in tremor genesis of PD. (orig.)

  14. Matter, dark matter, and anti-matter in search of the hidden universe

    CERN Document Server

    Mazure, Alain

    2012-01-01

    For over ten years, the dark side of the universe has been headline news. Detailed studies of the rotation of spiral galaxies, and 'mirages' created by clusters of galaxies bending the light from very remote objects, have convinced astronomers of the presence of large quantities of dark (unseen) matter in the cosmos. Moreover, in the 1990s, it was discovered that some four to five billion years ago the expansion of the universe entered a phase of acceleration. This implies the existence of dark energy. The nature of these 'dark; ingredients remains a mystery, but they seem to comprise about 95 percent of the matter/energy content of the universe. As for ordinary matter, although we are immersed in a sea of dark particles, including primordial neutrinos and photons from 'fossil' cosmological radiation, both we and our environment are made of ordinary, baryonic matter. Strangely, even if 15-20 percent of matter is baryonic matter, this represents only 4-5 percent of the total matter/energy content of the cosmos...

  15. Dark matter in the universe

    International Nuclear Information System (INIS)

    Turner, M.S.; Chicago Univ., IL

    1990-11-01

    What is the quantity and composition of material in the Universe? This is one of the most fundamental questions we can ask about the Universe, and its answer bears on a number of important issues including the formation of structure in the Universe, and the ultimate fate and the earliest history of the Universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand: Most of the material in the Universe does not give off detectable radiation, i.e., is ''dark;'' the dark matter associated with bright galaxies contributes somewhere between 10% and 30% of the critical density (by comparison luminous matter contributes less than 1%); baryonic matter contributes between 1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model is supported by three compelling theoretical arguments--structure formation, the temporal Copernican principle, and inflation--and by some observational data. If Ω is indeed unity--or even just significantly greater than 0.1--then there is a strong case for a Universe comprised of nonbaryonic matter. There are three well motivated particle dark-matter candidates: an axion of mass 10 -6 eV to 10 -4 eV; a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either being planned or are underway. 63 refs

  16. CP violation and the matter-antimatter asymmetry of the Universe

    International Nuclear Information System (INIS)

    Hambye, T.

    2012-01-01

    In our everyday environment one observes only matter. That is quite a fortunate situation... Any sizeable presence of antimatter on Earth, from the enormous energy it would release through annihilation with matter, would prevent us talking about it. For the physicist this fact, at first sight obvious, is nevertheless a kind of surprise: antimatter, which is observed in cosmic rays, in radioactive decays of nuclei, which has been copiously produced and extensively studied in accelerators and which is nowadays currently used in hospitals, turns out to have pretty much the same properties as matter. Moreover, the fact that matter dominates appears to be a general property of our Universe: no evidence of large quantities of antimatter has been observed at any distance from us. Why would matter have taken the advantage on antimatter? In this short review we explain how, through a limited number of basic elements, one can find answers to this question. Matter and antimatter have, in fact, not exactly the same properties: from laboratory experiments CP conservation is known not to be a fundamental law of nature. (author)

  17. Bars in dark-matter-dominated dwarf galaxy discs

    Science.gov (United States)

    Marasco, A.; Oman, K. A.; Navarro, J. F.; Frenk, C. S.; Oosterloo, T.

    2018-05-01

    We study the shape and kinematics of simulated dwarf galaxy discs in the APOSTLE suite of Λ cold dark matter (ΛCDM) cosmological hydrodynamical simulations. We find that a large fraction of these gas-rich, star-forming discs show weak bars in their stellar component, despite being dark-matter-dominated systems. The bar pattern shape and orientation reflect the ellipticity of the dark matter potential, and its rotation is locked to the slow figure rotation of the triaxial dark halo. The bar-like nature of the potential induces non-circular motions in the gas component, including strong bisymmetric flows that can be readily seen as m = 3 harmonic perturbations in the H I line-of-sight velocity fields. Similar bisymmetric flows are seen in many galaxies of The HI Nearby Galaxy Survey (THINGS) and Local Irregulars That Trace Luminosity Extremes THINGS (LITTLE THINGS), although on average their amplitudes are a factor of ˜2 weaker than in our simulated discs. Our results indicate that bar-like patterns may arise even when baryons are not dominant, and that they are common enough to warrant careful consideration when analysing the gas kinematics of dwarf galaxy discs.

  18. Dark matter in the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. (Fermi National Accelerator Lab., Batavia, IL (USA) Chicago Univ., IL (USA). Enrico Fermi Inst.)

    1991-03-01

    What is the quantity and composition of material in the universe This is one of the most fundamental questions we can ask about the universe, and its answer bears on a number of important issues including the formation of structure in the universe, and the ultimate fate and the earliest history of the universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand: most of the material in the universe does not give off detectable radiation, i.e., is dark;'' the dark matter associated with bright galaxies contributes somewhere between 10% and 30% of the critical density (by comparison luminous matter contributes less than 1%); baryonic matter contributes between 1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model is supported by three compelling theoretical arguments -- structure formation, the temporal Copernican principle, and inflation -- and by some observational data. If {Omega} is indeed unity--or even just significantly greater than 0.1--then there is a strong case for a universe comprised of nonbaryonic matter. There are three well motivated particle dark-matter candidates: an axion of mass 10{sup {minus}6} eV to 10{sup {minus}4} eV; a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either being planned or are underway. 71 refs., 6 figs.

  19. Dark matter in the universe

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. (Fermi National Accelerator Lab., Batavia, IL (USA) Chicago Univ., IL (USA). Enrico Fermi Inst.)

    1990-11-01

    What is the quantity and composition of material in the Universe This is one of the most fundamental questions we can ask about the Universe, and its answer bears on a number of important issues including the formation of structure in the Universe, and the ultimate fate and the earliest history of the Universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand: Most of the material in the Universe does not give off detectable radiation, i.e., is dark;'' the dark matter associated with bright galaxies contributes somewhere between 10% and 30% of the critical density (by comparison luminous matter contributes less than 1%); baryonic matter contributes between 1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model is supported by three compelling theoretical arguments--structure formation, the temporal Copernican principle, and inflation--and by some observational data. If {Omega} is indeed unity--or even just significantly greater than 0.1--then there is a strong case for a Universe comprised of nonbaryonic matter. There are three well motivated particle dark-matter candidates: an axion of mass 10{sup {minus}6} eV to 10{sup {minus}4} eV; a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either being planned or are underway. 63 refs.

  20. Gravitational waves from first order phase transitions as a probe of an early matter domination era and its inverse problem

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela, E-mail: Gabriela.Barenboim@uv.es; Park, Wan-Il, E-mail: Wanil.Park@uv.es

    2016-08-10

    We investigate the gravitational wave background from a first order phase transition in a matter-dominated universe, and show that it has a unique feature from which important information about the properties of the phase transition and thermal history of the universe can be easily extracted. Also, we discuss the inverse problem of such a gravitational wave background in view of the degeneracy among macroscopic parameters governing the signal.

  1. Dark matter in the universe

    Science.gov (United States)

    Turner, Michael S.

    1991-01-01

    What is the quantity and composition of material in the Universe? This is one of the most fundamental questions we can ask about the Universe, and its answer bears on a number of important issues including the formation of structure in the Universe, and the ultimate fate and the earliest history of the Universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand. Most of the radiation in the Universe does not give off detectable radiation; it is dark. The dark matter associated with bright galaxies contributes somewhere between 10 and 30 percent of the critical density; baryonic matter contributes between 1.1 and 12 percent of the critical. The case for the spatially flat, Einstein-de Sitter model is supported by three compelling theoretical arguments - structure formation, the temporal Copernican principle, and inflation - and by some observational data. If Omega is indeed unity, or even just significantly greater than 0.1, then there is a strong case for a Universe comprised of nonbaryonic matter. There are three well motivated particle dark matter candidates: an axion of mass 10 (exp -6) eV to 10 (exp -4) eV; a neutrino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either planned or are underway.

  2. Dark matter in the universe

    International Nuclear Information System (INIS)

    Bahcall, J.; Piran, T.; Weinberg, S.

    1988-01-01

    If standard gravitational theory is correct, then most of the matter in the universe is in an unidentified form which does not emit enough light to have been detected by current instrumentation. This proceedings was devoted to a discussion of the so-called ''missing matter'' problem in the universe. The goal of the School was to make current research work on unseen matter accessible to students or facilities without prior experience in this area. Due to the pedagogical nature of the School and the strong interactions between students and the lecturers, the written lectures included in this volume often contain techniques and explanations not found in more formal journal publications

  3. Concentrated dark matter: Enhanced small-scale structure from codecaying dark matter

    OpenAIRE

    Dror, Jeff A.; Kuflik, Eric; Melcher, Brandon; Watson, Scott

    2018-01-01

    We study the cosmological consequences of codecaying dark matter—a recently proposed mechanism for depleting the density of dark matter through the decay of nearly degenerate particles. A generic prediction of this framework is an early dark matter dominated phase in the history of the Universe, that results in the enhanced growth of dark matter perturbations on small scales. We compute the duration of the early matter dominated phase and show that the perturbations are robust against washout...

  4. Matter and antimatter in the universe

    International Nuclear Information System (INIS)

    Canetti, Laurent; Shaposhnikov, Mikhail; Drewes, Marco

    2012-01-01

    We review observational evidence for a matter–antimatter asymmetry in the early universe, which leads to the remnant matter density we observe today. We also discuss bounds on the presence of antimatter in the present-day universe, including the possibility of a large lepton asymmetry in the cosmic neutrino background. We briefly review the theoretical framework within which baryogenesis, the dynamical generation of a matter–antimatter asymmetry, can occur. As an example, we discuss a testable minimal particle physics model that simultaneously explains the baryon asymmetry of the universe, neutrino oscillations and dark matter. (paper)

  5. Towards understanding thermal history of the Universe through direct and indirect detection of dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Roszkowski, Leszek; Trojanowski, Sebastian [National Centre for Nuclear Research, Hoża 69, 00-681 Warsaw (Poland); Turzyński, Krzysztof, E-mail: leszek.roszkowski@ncbj.gov.pl, E-mail: sebastian.trojanowski@uci.edu, E-mail: Krzysztof-Jan.Turzynski@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland)

    2017-10-01

    We examine the question to what extent prospective detection of dark matter by direct and indirect- detection experiments could shed light on what fraction of dark matter was generated thermally via the freeze-out process in the early Universe. By simulating putative signals that could be seen in the near future and using them to reconstruct WIMP dark matter properties, we show that, in a model- independent approach this could only be achieved in a thin sliver of the parameter space. However, with additional theoretical input the hypothesis about the thermal freeze-out as the dominant mechanism for generating dark matter can potentially be verified. We illustrate this with two examples: an effective field theory of dark matter with a vector messenger and a higgsino or wino dark matter within the MSSM.

  6. Avatars of a Matter-Antimatter Universe

    CERN Document Server

    De Rújula, Alvaro

    1997-01-01

    An elegantly symmetric Universe, consisting of large islands of matter and antimatter, is by no means obviously out of the question. I review the observations that lead to the usual prejudice that the Universe contains only matter. I discuss recent work inferring that this prejudice can be converted into an inescapable conclusion. I argue that our theoretical conviction should not discourage direct searches for antimatter in cosmic rays.

  7. Can massless neutrinos dominate the universe

    International Nuclear Information System (INIS)

    Kolb, E.W.

    1980-01-01

    The restrictions from cosmological considerations on masses and lifetimes of neutral, weakly interacting fermions are reviewed. In particular, the possibility that the massless decay products of a heavy neutrino dominate the energy density of the present universe is discussed in detail. 4 figures

  8. When the universe expands too fast: relentless dark matter

    Science.gov (United States)

    D'Eramo, Francesco; Fernandez, Nicolas; Profumo, Stefano

    2017-05-01

    We consider a modification to the standard cosmological history consisting of introducing a new species phi whose energy density red-shifts with the scale factor a like ρphi propto a-(4+n). For 0n>, such a red-shift is faster than radiation, hence the new species dominates the energy budget of the universe at early times while it is completely negligible at late times. If equality with the radiation energy density is achieved at low enough temperatures, dark matter can be produced as a thermal relic during the new cosmological phase. Dark matter freeze-out then occurs at higher temperatures compared to the standard case, implying that reproducing the observed abundance requires significantly larger annihilation rates. Here, we point out a completely new phenomenon, which we refer to as relentless dark matter: for large enough n, unlike the standard case where annihilation ends shortly after the departure from thermal equilibrium, dark matter particles keep annihilating long after leaving chemical equilibrium, with a significant depletion of the final relic abundance. Relentless annihilation occurs for n >= 2 and n >= 4 for s-wave and p-wave annihilation, respectively, and it thus occurs in well motivated scenarios such as a quintessence with a kination phase. We discuss a few microscopic realizations for the new cosmological component and highlight the phenomenological consequences of our calculations for dark matter searches.

  9. When the universe expands too fast: relentless dark matter

    Energy Technology Data Exchange (ETDEWEB)

    D' Eramo, Francesco; Fernandez, Nicolas; Profumo, Stefano, E-mail: fderamo@ucsc.edu, E-mail: nfernan2@ucsc.edu, E-mail: profumo@ucsc.edu [Department of Physics, University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064 (United States)

    2017-05-01

    We consider a modification to the standard cosmological history consisting of introducing a new species φ whose energy density red-shifts with the scale factor a like ρ{sub φ} ∝ a {sup −(4+} {sup n} {sup )}. For 0 n >, such a red-shift is faster than radiation, hence the new species dominates the energy budget of the universe at early times while it is completely negligible at late times. If equality with the radiation energy density is achieved at low enough temperatures, dark matter can be produced as a thermal relic during the new cosmological phase. Dark matter freeze-out then occurs at higher temperatures compared to the standard case, implying that reproducing the observed abundance requires significantly larger annihilation rates. Here, we point out a completely new phenomenon, which we refer to as relentless dark matter: for large enough n , unlike the standard case where annihilation ends shortly after the departure from thermal equilibrium, dark matter particles keep annihilating long after leaving chemical equilibrium, with a significant depletion of the final relic abundance. Relentless annihilation occurs for n ≥ 2 and n ≥ 4 for s -wave and p -wave annihilation, respectively, and it thus occurs in well motivated scenarios such as a quintessence with a kination phase. We discuss a few microscopic realizations for the new cosmological component and highlight the phenomenological consequences of our calculations for dark matter searches.

  10. Neutralino Dark Matter in non-universal and non-minimal SUSY

    International Nuclear Information System (INIS)

    King, S.F.

    2010-01-01

    We discuss neutralino dark matter in non-universal SUSY including the NUHM, SU(5) with non-universal gauginos. In the MSSM we argue from naturalness that non-universal soft mass parameters are preferred, with non-universal gaugino masses enabling supernatural dark matter beyond the MSSM, we also discuss neutralino dark matter in the U SSM and E 6 SSM. In the E 6 SSM a light neutralino LSP coming from the inert Higgsino and singlino sector is unavoidable and makes an attractive dark matter candidate.

  11. Bulk viscous matter and recent acceleration of the universe based on causal viscous theory

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, N.D.J.; Sasidharan, Athira; Mathew, Titus K. [Cochin University of Science and Technology, Department of Physics, Kochi (India)

    2017-12-15

    The evolution of the bulk viscous matter dominated universe has been analysed using the full causal theory for the evolution of the viscous pressure in the context of the recent acceleration of the universe. The form of the viscosity is taken as ξ = αρ{sup 1/2}. We obtained analytical solutions for the Hubble parameter and scale factor of the universe. The model parameters have been computed using the observational data. The evolution of the prominent cosmological parameters was obtained. The age of the universe for the best estimated model parameters is found to be less than observational value. The viscous matter behaves like a stiff fluid in the early phase and evolves to a negative pressure fluid in the later phase. The equation of state is found to be stabilised with value ω > -1. The local as well as generalised second law of thermodynamics is satisfied. The statefinder diagnostic shows that this model is distinct from the standard ΛCDM. One of the marked deviations seen in this model to be compared with the corresponding model using the Eckart approach is that in this model the bulk viscosity decreases with the expansion of the universe, while in the Eckart formalism it increases from negative values in the early universe towards positive values. (orig.)

  12. Bulk viscous matter and recent acceleration of the universe based on causal viscous theory

    International Nuclear Information System (INIS)

    Mohan, N.D.J.; Sasidharan, Athira; Mathew, Titus K.

    2017-01-01

    The evolution of the bulk viscous matter dominated universe has been analysed using the full causal theory for the evolution of the viscous pressure in the context of the recent acceleration of the universe. The form of the viscosity is taken as ξ = αρ 1/2 . We obtained analytical solutions for the Hubble parameter and scale factor of the universe. The model parameters have been computed using the observational data. The evolution of the prominent cosmological parameters was obtained. The age of the universe for the best estimated model parameters is found to be less than observational value. The viscous matter behaves like a stiff fluid in the early phase and evolves to a negative pressure fluid in the later phase. The equation of state is found to be stabilised with value ω > -1. The local as well as generalised second law of thermodynamics is satisfied. The statefinder diagnostic shows that this model is distinct from the standard ΛCDM. One of the marked deviations seen in this model to be compared with the corresponding model using the Eckart approach is that in this model the bulk viscosity decreases with the expansion of the universe, while in the Eckart formalism it increases from negative values in the early universe towards positive values. (orig.)

  13. On Dark Energy and Matter of the Expanding Universe

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2009-04-01

    Full Text Available At present the expanding universe is observed to be dominated by the not fully under- stood concepts of dark energy and matter, in a conceived almost flat Euclidian geometry. As one of the possible efforts to understand the global behaviour of the expanding uni- verse, the present paper attempts to explain these concepts in terms of the pressure force and gravity of a spherical photon gas cloud of zero point energy, in a flat geometry. A difficult point of the conventional theory concerns the frequency distribution of the zero point energy oscillations which leads to the unacceptable result of an infinite total en- ergy per unit volume. A modification of this distribution is therefore proposed which results in finite energy density. A corresponding equilibrium state is investigated, as well as small dynamic deviations from it, to form a basis for a model of the expanding universe. Provided that the crucial points of the present approach hold true, the model satisfies the requirements of cosmic linear dimensions, results in an estimated accelera- tion of the expansion being of the order of the observed one, presents a possible solution of the coincidence problem of dark energy and matter, and provides one of the possible explanations of the observed excess of high-energy electrons and positrons in recent balloon and satellite experiments.

  14. Black holes in the Universe: Generalized Lemaitre-Tolman-Bondi solutions

    International Nuclear Information System (INIS)

    Gao Changjun; Chen Xuelei; Shen Yougen; Faraoni, Valerio

    2011-01-01

    We present new exact solutions which presumably describe black holes in the background of a spatially flat, pressureless dark-matter- or dark matter plus dark energy (DM+DE)- or quintom-dominated Universe. These solutions generalize Lemaitre-Tolman-Bondi metrics. For a dark-matter- or (DM+DE)-dominated universe, the area of the black hole apparent horizon (AH) decreases with the expansion of the Universe while that of the cosmic AH increases. However, for a quintom-dominated universe, the black hole AH first shrinks and then expands, while the cosmic AH first expands and then shrinks. A (DM+DE)-dominated universe containing a black hole will evolve to the Schwarzschild-de Sitter solution with both AHs approaching constant size. In a quintom-dominated universe, the black hole and cosmic AHs will coincide at a certain time, after which the singularity becomes naked, violating cosmic censorship.

  15. Search for Higgs Bosons in SUSY Cascades in CMS and Dark Matter with Non-universal Gaugino Masses

    CERN Document Server

    Huitu, Katri; Laamanen, Jari; Lehti, Sami; Roy, Sourov; Salminen, Tapio

    2008-01-01

    In grand unified theories (GUT), non-universal boundary conditions for the gaugino masses may arise at the unification scale, and affect the observability of the neutral MSSM Higgs bosons (h/H/A) at the LHC. The implications of such non-universal gaugino masses are investigated for the Higgs boson production in the SUSY cascade decay chain gluino --> squark quark, squark --> neutralino_2 quark, neutralino_2 --> neutralino_1 h/H/A, h/H/A --> b b-bar produced in pp interactions. In the singlet representation with universal gaugino masses only the light Higgs boson can be produced in this cascade with the parameter region of interest for us, while with non-universal gaugino masses heavy neutral MSSM Higgs boson production may dominate. The allowed parameter space in the light of the WMAP constraints on the cold dark matter relic density is investigated in the above scenarios for gaugino mass parameters. We also demonstrate that combination of representations can give the required amount of dark matter in any poi...

  16. Inflation in a shear-or curvature-dominated universe

    International Nuclear Information System (INIS)

    Steigman, G.; Turner, M.S.

    1983-01-01

    We show that new inflation occurs even if the universe is shear-or (negative) curvature-dominated when the phase transition begins. In such situations the size of a causally coherent region, after inflation, is only slightly smaller (by powers, but not by exponential factors) than the usual result. The creation and evolution of density perturbations is unaffected. This result is marked contrast to 'old' inflation, where shear- or curvature-domination could quench inflation. (orig.)

  17. Universe in the theoretical model «Evolving matter»

    Directory of Open Access Journals (Sweden)

    Bazaluk Oleg

    2013-04-01

    Full Text Available The article critically examines modern model of the Universe evolution constructed by efforts of a group of scientists (mathematicians, physicists and cosmologists from the world's leading universities (Oxford and Cambridge Universities, Yale, Columbia, New York, Rutgers and the UC Santa Cruz. The author notes its strengths, but also points to shortcomings. Author believes that this model does not take into account the most important achievements in the field of biochemistry and biology (molecular, physical, developmental, etc., as well as neuroscience and psychology. Author believes that in the construction of model of the Universe evolution, scientists must take into account (with great reservations the impact of living and intelligent matter on space processes. As an example, the author gives his theoretical model "Evolving matter". In this model, he shows not only the general dependence of the interaction of cosmic processes with inert, living and intelligent matter, but also he attempts to show the direct influence of systems of living and intelligent matter on the acceleration of the Universe's expansion.

  18. Oscillating universe with quintom matter

    International Nuclear Information System (INIS)

    Xiong Huahui; Cai Yifu; Qiu Taotao; Piao Yunsong; Zhang Xinmin

    2008-01-01

    In this Letter, we study the possibility of building a model of the oscillating universe with quintom matter in the framework of 4-dimensional Friedmann-Robertson-Walker background. Taking the two-scalar-field quintom model as an example, we find in the model parameter space there are five different types of solutions which correspond to: (I) a cyclic universe with the minimal and maximal values of the scale factor remaining the same in every cycle, (II) an oscillating universe with its minimal and maximal values of the scale factor increasing cycle by cycle, (III) an oscillating universe with its scale factor always increasing, (IV) an oscillating universe with its minimal and maximal values of the scale factor decreasing cycle by cycle, and (V) an oscillating universe with its scale factor always decreasing

  19. A unified universe

    DEFF Research Database (Denmark)

    Codello, Alessandro; Jain, Rajeev Kumar

    2018-01-01

    We present a unified evolution of the universe from very early times until the present epoch by including both the leading local correction R2 and the leading non-local term R1□2R to the classical gravitational action. We find that the inflationary phase driven by R2 term gracefully exits...... in a transitory regime characterized by coherent oscillations of the Hubble parameter. The universe then naturally enters into a radiation dominated epoch followed by a matter dominated era. At sufficiently late times after radiation–matter equality, the non-local term starts to dominate inducing an accelerated...... expansion of the universe at the present epoch. We further exhibit the fact that both the leading local and non-local terms can be obtained within the covariant effective field theory of gravity. This scenario thus provides a unified picture of inflation and dark energy in a single framework by means...

  20. Dark matter in the universe

    CERN Document Server

    Seigar, Marc S

    2015-01-01

    The study of dark matter, in both astrophysics and particle physics, has emerged as one of the most active and exciting topics of research in recent years. This book reviews the history behind the discovery of missing mass (or unseen mass) in the universe, and ties this into the proposed extensions to the Standard Model of Particle Physics (such as Supersymmetry), which were being proposed within the same time frame. This book is written as an introduction to these problems at the forefront of astrophysics and particle physics, with the goal of conveying the physics of dark matter to beginning undergraduate majors in scientific fields. The book goes on to describe existing and upcoming experiments and techniques, which will be used to detect dark matter either directly or indirectly.

  1. A Possible Interpretation of Dark Energy and Matter of the Expanding Universe

    International Nuclear Information System (INIS)

    Lehnert, B.

    2009-01-01

    At present the expanding universe is observed to be dominated by the not fully understood concepts of dark energy and matter, in a conceived almost flat Euclidian geometry. As one of the possible efforts to understand its global behaviour, the present paper attempts to explain these concepts in terms of the pressure force and gravity of a spherical photon gas cloud of zero point energy, in flat geometry. A difficult point concerns the frequency distribution of the zero point energy oscillations which leads to the unacceptable result of an infinite total energy. A modification of this distribution is therefore proposed which results in finite energy density. A corresponding equilibrium is investigated, as well as small dynamic deviations from it, to form a basis for a model of the expanding universe. Provided that the crucial points of the present approach hold true, the model satisfies the requirements of cosmic linear dimensions, results in an estimated acceleration of the expansion being of the order of the observed one, presents a possible solution of the coincidence problem of dark energy and matter, and provides one of the possible explanations of the observed excess of high-energy electrons and positrons in recent balloon and satellite experiments.

  2. Dark Matter in the Universe

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The question “What is the Universe made of?” is the longest outstanding problem in all of physics. Ordinary atoms only constitute 5% of the total, while the rest is of unknown composition. Already in 1933 Fritz Zwicky observed that the rapid motions of objects within clusters of galaxies were unexplained by the gravitation pull of luminous matter, and he postulated the existence of Dunkle Materie, or dark matter. A variety of dark matter candidates exist, including new fundamental particles already postulated in particle theories: axions and WIMPs (weakly interacting massive particles). Over the past 25 years, there has been a three pronged approach to WIMP detection: creating them at particle accelerators; searched for detection of astrophysical WIMPs scattering off of nuclei in underground detectors; and “indirect detection” of WIMP annihilation products (neutrinos, positrons, or photons). As yet the LHC has only placed bounds rather than finding discovery. For 13 years the DAMA experiment has proc...

  3. Looking for the invisible universe - Black matter, black energy, black holes

    International Nuclear Information System (INIS)

    Elbaz, David

    2016-01-01

    As the discovery of the expansion of the universe and of black holes put the study of cosmology into question again because it now refers to invisible things such as black holes, black energy and black matter, the author proposes an other view on the universe within such a context. He first discusses these three enigmas of black matter, black energy and black holes. In a second part, he addresses, discusses and comments five illusions: the Uranian illusion (questions of the existence of an anti-world, of black matter temperature), the Mercurian illusion (quantum gravity, the string theory), the Martian illusion (a patchwork universe, the illusion of the infinite), the cosmic Maya (the John Wheeler's cup, the holographic universe), and the narcissistic illusion

  4. Universality for quintessence

    Energy Technology Data Exchange (ETDEWEB)

    Cicciarella, F. [Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa (Italy); Pieroni, M., E-mail: f.cicciarella1@gmail.com, E-mail: mauro.pieroni@apc.in2p3.fr [AstroParticule et Cosmologie, Université Paris Diderot, CNRS, CEA, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France)

    2017-08-01

    Several recent works suggested the possibility of describing inflation by means of a renormalization group equation. In this paper we discuss the application of these methods to models of quintessence. In this framework a period of exponential expansion corresponds to the slow evolution of the scalar field in the neighborhood of a fixed point. A minimal set of universality classes for models of quintessence is defined and the transition from a matter dominated to quintessence dominated universe is studied. Models in which quintessence is non-minimally coupled with gravity are also discussed. We show that the formalism proves to be extremely convenient to describe quintessence and moreover we find that in most of the models discussed in this work quintessence naturally takes over ordinary matter.

  5. Baryogenesis, dark matter and the maximal temperature of the early universe

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, Wilfried

    2012-12-15

    Mechanisms for the generation of the matter-antimatter asymmetry and dark matter strongly depend on the reheating temperature T{sub R}, the maximal temperature reached in the early universe. Forthcoming results from the LHC, low energy experiments, astrophysical observations and the Planck satellite will significantly constrain baryogenesis and the nature of dark matter, and thereby provide valuable information about the very early hot universe. At present, a wide range of reheating temperatures is still consistent with observations. We illustrate possible origins of matter and dark matter with four examples: moduli decay, electroweak baryogenesis, leptogenesis in the {nu}MSM and thermal leptogenesis. Finally, we discuss the connection between baryogenesis, dark matter and inflation in the context of supersymmetric spontaneous B-L breaking.

  6. Baryogenesis, dark matter and the maximal temperature of the early universe

    International Nuclear Information System (INIS)

    Buchmueller, Wilfried

    2012-12-01

    Mechanisms for the generation of the matter-antimatter asymmetry and dark matter strongly depend on the reheating temperature T R , the maximal temperature reached in the early universe. Forthcoming results from the LHC, low energy experiments, astrophysical observations and the Planck satellite will significantly constrain baryogenesis and the nature of dark matter, and thereby provide valuable information about the very early hot universe. At present, a wide range of reheating temperatures is still consistent with observations. We illustrate possible origins of matter and dark matter with four examples: moduli decay, electroweak baryogenesis, leptogenesis in the νMSM and thermal leptogenesis. Finally, we discuss the connection between baryogenesis, dark matter and inflation in the context of supersymmetric spontaneous B-L breaking.

  7. The DiskMass Survey : IV. The Dark-matter-dominated Galaxy UGC 463

    NARCIS (Netherlands)

    Westfall, Kyle B.; Bershady, Matthew A.; Verheijen, Marc A. W.; Andersen, David R.; Martinsson, Thomas P. K.; Swaters, Robert A.; Schechtman-Rook, Andrew

    2011-01-01

    We present a detailed and unique mass budget for the high surface brightness galaxy UGC 463, showing it is dominated by dark matter (DM) at radii beyond one scale length (h(R)) and has a baryonic-to-DM mass ratio of approximately 1:3 within 4.2h(R). Assuming a constant scale height (h(z); calculated

  8. The DiskMass Survey. IV. The Dark-matter-dominated Galaxy UGC 463

    NARCIS (Netherlands)

    Westfall, Kyle B.; Bershady, Matthew A.; Verheijen, Marc A. W.; Andersen, David R.; Martinsson, Thomas P. K.; Swaters, Robert A.; Schechtman-Rook, Andrew

    We present a detailed and unique mass budget for the high surface brightness galaxy UGC 463, showing it is dominated by dark matter (DM) at radii beyond one scale length (hR ) and has a baryonic-to-DM mass ratio of approximately 1:3 within 4.2hR . Assuming a constant scale height (hz ; calculated

  9. Asymmetric creation of matter and antimatter in the expanding universe

    International Nuclear Information System (INIS)

    Papastamatiou, N.J.; Parker, L.

    1979-01-01

    We consider a simple model in which the matter-antimatter asymmetry of the universe is brought about by an effective two-particle interaction that violates baryon-number conservation as well as CP invariance. The particle fields participating in the interaction are quantized, and their time development in an isotropically expanding universe is found to all orders in the coupling constant. Pair production by the asymmetric interaction, as well as symmetric production by the gravitational field of the expanding universe, appear simultaneously in the solution. Taking an initial state in which no particles participating in the asymmetric interaction are present, we find the created baryon-number density. We consider in more detail the case when the matter-antimatter asymmetry is produced during a stage when the radius of the universe is small with respect to its present value. We make numerical estimates of the created matter-antimatter asymmetry, and put limits on possible values of the parameters of this model

  10. The Black Lives Matter Movement and Historically Black Colleges and Universities

    Science.gov (United States)

    Gasman, Marybeth

    2017-01-01

    This article looks at the Black Lives Matter Movement and Historically Black Colleges and Universities. Historically Black Colleges and Universities (HBCUs) continue to play an important role in society. However, what the Black Lives Matter movement shows consistently is that predominantly White institutions need to change, to step up and embrace…

  11. Matter-antimatter asymmetry - aspects at low energy

    NARCIS (Netherlands)

    Willmann, Lorenz; Jungmann, Klaus

    2015-01-01

    The apparent dominance of matter over antimatter in our universe is an obvious and puzzling fact which cannot be adequately explained in present physical frameworks that assume matter-antimatter symmetry at the big bang. However, our present knowledge of starting conditions and of known sources of

  12. Particulate organic matter predicts bacterial productivity in a river dominated estuary

    Science.gov (United States)

    Crump, B. C.

    2015-12-01

    Estuaries act as coastal filters for organic and inorganic fluvial materials in which microbial, biogeochemical, and ecological processes combine to transform organic matter and nutrients prior to export to the coastal ocean. The function of this estuarine 'bioreactor' is linked to the residence times of those materials and to rates of microbial heterotrophic activity. Our ability to forecast the impact of global change on estuarine bioreactor function requires an understanding of the basic controls on microbial community activity and diversity. In the Columbia River estuary, the microbial community undergoes a dramatic seasonal shift in species composition during which a spring bacterioplankton community, dominated by Flavobacteriaceae and Oceanospirillales, is replaced by a summer community, dominated by Rhodobacteraceae and several common marine taxa. This annual shift occurs in July, following the spring freshet, when river flow and river chlorophyll concentration decrease and when estuarine water residence time increases. Analysis of a large dataset from 17 research cruises (1990-2014) showed that the composition of particulate organic matter in the estuary changes after the freshet with decreasing organic carbon and nitrogen content, and increasing contribution of marine and autochthonous estuarine organic matter (based on PO13C and pigment ratios). Bacterial production rates (measured as leucine or thymidine incorporation rates) in the estuary respond to this change, and correlate strongly with labile particulate nitrogen concentration and temperature during individual sampling campaigns, and with the concentration of chlorophyll in the Columbia River across all seasons. Regression models suggest that the concentration of labile particulate nitrogen and the rate of bacterial production can be predicted from sensor measurements of turbidity, salinity, and temperature in the estuary and chlorophyll in the river. These results suggest that the quality of

  13. Cosmological implications of a dark matter self-interaction energy density

    International Nuclear Information System (INIS)

    Stiele, Rainer; Boeckel, Tillmann; Schaffner-Bielich, Juergen

    2010-01-01

    We investigate cosmological constraints on an energy density contribution of elastic dark matter self-interactions characterized by the mass of the exchange particle m SI and coupling constant α SI . Because of the expansion behavior in a Robertson-Walker metric we investigate self-interacting dark matter that is warm in the case of thermal relics. The scaling behavior of dark matter self-interaction energy density (ρ SI ∝a -6 ) shows that it can be the dominant contribution (only) in the very early universe. Thus its impact on primordial nucleosynthesis is used to restrict the interaction strength m SI /√(α SI ), which we find to be at least as strong as the strong interaction. Furthermore we explore dark matter decoupling in a self-interaction dominated universe, which is done for the self-interacting warm dark matter as well as for collisionless cold dark matter in a two component scenario. We find that strong dark matter self-interactions do not contradict superweak inelastic interactions between self-interacting dark matter and baryonic matter (σ A SIDM weak ) and that the natural scale of collisionless cold dark matter decoupling exceeds the weak scale (σ A CDM >σ weak ) and depends linearly on the particle mass. Finally structure formation analysis reveals a linear growing solution during self-interaction domination (δ∝a); however, only noncosmological scales are enhanced.

  14. The tunneling universe in scalar-tensor theory with matter

    International Nuclear Information System (INIS)

    Lee, Sunggeun

    2007-01-01

    In this paper, the wavefunction of the universe with a tunneling boundary condition is considered in the context of the Brans-Dicke-type scalar-tensor theory with matter. The matter may be interpreted as a D-particle (or D0-brane) in string theory when the Brans-Dicke parameter ω is -1. We study two simple examples. The first example, the γ=0 (matter) case, has a scale factor duality even if the low energy string action is coupled to matter. The universe undergoes quantum transition from super-inflationary (pre-big-bang) to deflationary (post-big-bang) phase. We calculate the transition rate by solving the Wheeler-DeWitt equation and find that it is non-vanishing. The two phases are disconnected classically. The second example is the γ=1/3(radiation) case. With the help of earlier work this matter can be identified with a D0-brane in string theory. In this case, due to the absence of the scale factor duality and the complicated relations between scale factor and dilaton, it is hard to interpret the wavefunction as a pre- and post-big-bang phase

  15. Ecogeomorphology of Spartina patens-dominated tidal marshes: Soil organic matter accumulation, marsh elevation dynamics, and disturbance

    Science.gov (United States)

    Cahoon, D.R.; Ford, M.A.; Hensel, P.F.; Fagherazzi, Sergio; Marani, Marco; Blum, Linda K.

    2004-01-01

    Marsh soil development and vertical accretion in Spartina patens (Aiton) Muhl.-dominated tidal marshes is largely dependent on soil organic matter accumulation from root-rhizome production and litter deposition. Yet there are few quantitative data sets on belowground production and the relationship between soil organic matter accumulation and soil elevation dynamics for this marsh type. Spartina patens marshes are subject to numerous stressors, including sea-level rise, water level manipulations (i.e., flooding and draining) by impoundments, and prescribed burning. These stressors could influence long-term marsh sustainability by their effect on root production, soil organic matter accumulation, and soil elevation dynamics. In this review, we summarize current knowledge on the interactions among vegetative production, soil organic matter accumulation and marsh elevation dynamics, or the ecogeomorphology, of Spartina patens-dominated tidal marshes. Additional studies are needed of belowground production/decomposition and soil elevation change (measured simultaneously) to better understand the links among soil organic matter accumulation, soil elevation change, and disturbance in this marsh type. From a management perspective, we need to better understand the impacts of disturbance stressors, both lethal and sub-lethal, and the interactive effect of multiple stressors on soil elevation dynamics in order to develop better management practices to safeguard marsh sustainability as sea level rises.

  16. A Closed Universe Expanding Forever

    Directory of Open Access Journals (Sweden)

    Silva N. P.

    2014-07-01

    Full Text Available In a recent paper, the expression a ( t = e H 0 T 0 [ ( t T 0 where = 0 : 5804, was proposed for the expansion factor of our Universe. According to it, gravity dominates the expan- sion ( matter era until the age of T ⋆ = 3 : 214 Gyr and, after that, dark energy dominates ( dark energy era leading to an eternal expansion, no matter if the Universe is closed, flat or open. In this paper we consider only the closed version and show that there is an upper limit for the size of the radial comoving coordinate, beyond which nothing is observed by our fundamental observer, on Earth. Our observable Universe may be only a tiny portion of a much bigger Universe most of it unobservable to us. This leads to the idea that an endless number of other fundamental observers may live on equal number of Universes similar to ours. Either we talk about many Universes — Multiverse — or about an unique Universe, only part of it observable to us.

  17. The dark universe dark matter and dark energy

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    According to the standard cosmological model, 95% of the present mass density of the universe is dark: roughly 70% of the total in the form of dark energy and 25% in the form of dark matter. In a series of four lectures, I will begin by presenting a brief review of cosmology, and then I will review the observational evidence for dark matter and dark energy. I will discuss some of the proposals for dark matter and dark energy, and connect them to high-energy physics. I will also present an overview of an observational program to quantify the properties of dark energy.

  18. Dynamics of Stars, Dark Matter and the Universe

    DEFF Research Database (Denmark)

    Samsing, Johan Georg Mulvad

    of these X-rays alone. This has implication for mass measurements which can be used for constraining the amount of matter and dark energy we have in our universe. On even smaller scales I did an interesting study on the interaction between stars and black holes. I especially looked into the interaction where...... a new model independent way of doing this which also seems promising for measuring modifications to the theory of gravity itself. On slightly smaller scales I looked into what happens when two dark matter structures merge. Numerical simulations show that a smaller fraction of the dark matter particles...

  19. Influence Of Collapsing Matter On The Enveloping Expanding Universe

    OpenAIRE

    Choudhury, A. Latif

    2005-01-01

    Using a collapsing matter model at the center of an expanding universe as described by Weinberg we assume a special type of generated pressure. This pressure transmits into the surrounding expanding universe. Under certain restriction the ensuing hubble parameter is positive. The deacceleration parameter fluctuates with time, indicating that the universe accelerates for certain time and decelerates for other time intervals.

  20. Proceedings of workshop on dark matter and the structure of the universe

    International Nuclear Information System (INIS)

    Sasaki, Misao

    1989-10-01

    The workshop on 'Dark matter and the structure of the universe' was held from January 29 to February 1, 1989 at the Research Institute for Theoretical Physics, Hiroshima University. It aimed at clarifying the basic theoretical problems of the dark matter and the structure of the universe, and gaining inspiration on the direction of future research. In the first half of the workshop, the observed data on the large scale structure were critically reviewed, and some new ideas and theoretical frameworks which relate the actual cosmological structure to the observable quantities were presented. In the second half of the workshop, the various possible matters being proposed for the dark matter were examined in the light of both observed (or experimental) data and theoretical predictions. The speakers in the workshop gave well prepared, stimulative talks, and made it possible for the participants to have fruitful and constructive discussions. The workshop was supported partially by the Grant in Aid for Scientific Research, Ministry of Education, and by the Research Institute for Theoretical Physics, Hiroshima University. In this report, eight presentations on observational and theoretical cosmology and ten on dark matter and galaxy formation are collected. (K.I.)

  1. Bulk viscous matter and recent acceleration of the universe

    Energy Technology Data Exchange (ETDEWEB)

    Sasidharan, Athira; Mathew, Titus K. [Cochin University of Science and Technology, Department of Physics, Kochi (India)

    2015-07-15

    We consider a cosmological model dominated by bulk viscous matter with a total bulk viscosity coefficient proportional to the velocity and acceleration of the expansion of the universe in such a way that ζ = ζ{sub 0} + ζ{sub 1}(a)/(a) + ζ{sub 2}(a)/(a). We show that there exist two limiting conditions in the bulk viscous coefficients (ζ{sub 0}, ζ{sub 1}, ζ{sub 2}) which correspond to a universe having a Big Bang at the origin, followed by an early decelerated epoch and then making a smooth transition into an accelerating epoch. We have constrained the model using the type Ia Supernovae data, evaluated the best estimated values of all the bulk viscous parameters and the Hubble parameter corresponding to the two limiting conditions. We found that even though the evolution of the cosmological parameters are in general different for the two limiting cases, they show identical behavior for the best estimated values of the parameters from both limiting conditions. A recent acceleration would occur if ζ{sub 0} + ζ{sub 1} > 1 for the first limiting conditions and if ζ{sub 0} + ζ{sub 1} < 1 for the second limiting conditions. The age of the universe predicted by this model is found to be less than that predicted from the oldest galactic globular clusters. The total bulk viscosity seems to be negative in the past and becomes positive when z ≤ 0.8. So the model violates the local second law of thermodynamics. However, the model satisfies the generalized second law of thermodynamics at the apparent horizon throughout the evolution of the universe. We also made a statefinder analysis of the model and found that it is distinguishably different from the standard ΛCDM model at present, but it shows a de Sitter type behavior in the far future of the evolution. (orig.)

  2. Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago.

    Science.gov (United States)

    Genzel, R; Schreiber, N M Förster; Übler, H; Lang, P; Naab, T; Bender, R; Tacconi, L J; Wisnioski, E; Wuyts, S; Alexander, T; Beifiori, A; Belli, S; Brammer, G; Burkert, A; Carollo, C M; Chan, J; Davies, R; Fossati, M; Galametz, A; Genel, S; Gerhard, O; Lutz, D; Mendel, J T; Momcheva, I; Nelson, E J; Renzini, A; Saglia, R; Sternberg, A; Tacchella, S; Tadaki, K; Wilman, D

    2017-03-15

    In the cold dark matter cosmology, the baryonic components of galaxies-stars and gas-are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark-matter halo. In the local (low-redshift) Universe, the mass of dark matter within a galactic disk increases with disk radius, becoming appreciable and then dominant in the outer, baryonic regions of the disks of star-forming galaxies. This results in rotation velocities of the visible matter within the disk that are constant or increasing with disk radius-a hallmark of the dark-matter model. Comparisons between the dynamical mass, inferred from these velocities in rotational equilibrium, and the sum of the stellar and cold-gas mass at the peak epoch of galaxy formation ten billion years ago, inferred from ancillary data, suggest high baryon fractions in the inner, star-forming regions of the disks. Although this implied baryon fraction may be larger than in the local Universe, the systematic uncertainties (owing to the chosen stellar initial-mass function and the calibration of gas masses) render such comparisons inconclusive in terms of the mass of dark matter. Here we report rotation curves (showing rotation velocity as a function of disk radius) for the outer disks of six massive star-forming galaxies, and find that the rotation velocities are not constant, but decrease with radius. We propose that this trend arises because of a combination of two main factors: first, a large fraction of the massive high-redshift galaxy population was strongly baryon-dominated, with dark matter playing a smaller part than in the local Universe; and second, the large velocity dispersion in high-redshift disks introduces a substantial pressure term that leads to a decrease in rotation velocity with increasing radius. The effect of both factors appears to increase with redshift. Qualitatively, the observations suggest that baryons in the early (high

  3. Prospects for detecting supersymmetric dark matter in the Galactic halo

    NARCIS (Netherlands)

    Springel, V.; White, S. D. M.; Frenk, C. S.; Navarro, J. F.; Jenkins, A.; Vogelsberger, M.; Wang, J.; Ludlow, A.; Helmi, A.

    2008-01-01

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species(1). In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at

  4. The matter-ekpyrotic bounce scenario in Loop Quantum Cosmology

    Science.gov (United States)

    Haro, Jaume; Amorós, Jaume; Aresté Saló, Llibert

    2017-09-01

    We will perform a detailed study of the matter-ekpyrotic bouncing scenario in Loop Quantum Cosmology using the methods of the dynamical systems theory. We will show that when the background is driven by a single scalar field, at very late times, in the contracting phase, all orbits depict a matter dominated Universe, which evolves to an ekpyrotic phase. After the bounce the Universe enters in the expanding phase, where the orbits leave the ekpyrotic regime going to a kination (also named deflationary) regime. Moreover, this scenario supports the production of heavy massive particles conformally coupled with gravity, which reheats the universe at temperatures compatible with the nucleosynthesis bounds and also the production of massless particles non-conformally coupled with gravity leading to very high reheating temperatures but ensuring the nucleosynthesis success. Dealing with cosmological perturbations, these background dynamics produce a nearly scale invariant power spectrum for the modes that leave the Hubble radius, in the contracting phase, when the Universe is quasi-matter dominated, whose spectral index and corresponding running is compatible with the recent experimental data obtained by PLANCK's team.

  5. Dynamics of Mixed Dark Energy Domination in Teleparallel Gravity and Phase-Space Analysis

    Directory of Open Access Journals (Sweden)

    Emre Dil

    2015-01-01

    Full Text Available We consider a novel dark energy model to investigate whether it will provide an expanding universe phase. Here we propose a mixed dark energy domination which is constituted by tachyon, quintessence, and phantom scalar fields nonminimally coupled to gravity, in the absence of background dark matter and baryonic matter, in the framework of teleparallel gravity. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions implying the acceleration phase of universe.

  6. Undulant Universe

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela; /Valencia U.; Mena, Olga; Quigg, Chris; /Fermilab

    2004-12-01

    If the equation of state for ''dark energy'' varies periodically, the expansion of the Universe may have undergone alternating eras of acceleration and deceleration. We examine a specific form that survives existing observational tests, does not single out the present state of the Universe as exceptional, and suggests a future much like the matter-dominated past: a smooth expansion without a final inflationary epoch.

  7. Astronomers Take the Measure of Dark Matter in the universe

    Science.gov (United States)

    2001-09-01

    Using NASA's Chandra X-ray Observatory, astronomers have obtained their most accurate determination to date of the amount of dark matter in galaxy clusters, the most massive objects in the universe. The results provide an important step towards a precise measurement of the total matter density of the universe. These results were presented today by Steven W. Allen of the Institute of Astronomy in Cambridge, UK at a press conference at the `Two Years of Science with Chandra' symposium in Washington, DC. Allen and his colleagues Robert W. Schmidt and Andrew C. Fabian at the Institute of Astronomy observed a carefully chosen sample of five of the largest clusters of galaxies known, whose distances range from 1.5 to 4 billion light years. The team made temperature maps of the hot multimillion-degree gas that fills the clusters. "The temperature maps can be used to determine the mass needed to prevent the hot gas from escaping the clusters" explained Allen. "We found that the stars in the galaxies and hot gas together contribute only about 13 percent of the mass. The rest must be in the form of dark matter." The nature of the dark matter is not known, but most astronomers think that it is in the form of an as yet unknown type of elementary particle that contributes to gravity through its mass but otherwise interacts weakly with normal matter. These dark matter particles are often called WIMPs, an acronym for `weakly interacting massive particles'. Clusters of galaxies are vast concentrations of galaxies, hot gas and dark matter spanning millions of light years, held together by gravity. Because of their size, clusters of galaxies are thought to provide a fair sample of the proportion of dark matter in the universe as a whole. "The implication of our results is that we live in a low-density universe" said Allen. "The total mass-density is only about thirty percent of that needed to stop the universe from expanding forever." The result reinforces recent findings from

  8. Hot hadronic matter in the early universe

    International Nuclear Information System (INIS)

    Bowers, R.L.; Dykema, P.G.; Gleeson, A.M.

    1977-04-01

    A fully relativistic equation of state for hot baryonic matter was used to investigate the strong interaction contribution to the equation of motion of the Friedmann universe. A pronounced softening of the equation of state is observed near nuclear density. The significance of the results is analyzed in terms of analytic solutions for the Friedmann cosmology

  9. The Matter-Antimatter Asymmetry of the Universe

    Science.gov (United States)

    Stecker, F. W.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    I will give here an overview of the present observational and theoretical situation regarding the question of the matter-antimatter asymmetry of the universe and the related question of the existence of antimatter on a cosmological scale. I will also give a simple discussion of the role of CP (charge conjugation parity) violation in this subject.

  10. Cosmological Constraints on Mirror Matter Parameters

    International Nuclear Information System (INIS)

    Wallemacq, Quentin; Ciarcelluti, Paolo

    2014-01-01

    Up-to-date estimates of the cosmological parameters are presented as a result of numerical simulations of cosmic microwave background and large scale structure, considering a flat Universe in which the dark matter is made entirely or partly of mirror matter, and the primordial perturbations are scalar adiabatic and in linear regime. A statistical analysis using the Markov Chain Monte Carlo method allows to obtain constraints of the cosmological parameters. As a result, we show that a Universe with pure mirror dark matter is statistically equivalent to the case of an admixture with cold dark matter. The upper limits for the ratio of the temperatures of ordinary and mirror sectors are around 0.3 for both the cosmological models, which show the presence of a dominant fraction of mirror matter, 0.06≲Ω_m_i_r_r_o_rh"2≲0.12.

  11. The matter-ekpyrotic bounce scenario in Loop Quantum Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Haro, Jaume; Amorós, Jaume; Saló, Llibert Aresté, E-mail: jaime.haro@upc.edu, E-mail: jaume.amoros@upc.edu, E-mail: llibert.areste@estudiant.upc.edu [Departament de Matemàtica Aplicada, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)

    2017-09-01

    We will perform a detailed study of the matter-ekpyrotic bouncing scenario in Loop Quantum Cosmology using the methods of the dynamical systems theory. We will show that when the background is driven by a single scalar field, at very late times, in the contracting phase, all orbits depict a matter dominated Universe, which evolves to an ekpyrotic phase. After the bounce the Universe enters in the expanding phase, where the orbits leave the ekpyrotic regime going to a kination (also named deflationary) regime. Moreover, this scenario supports the production of heavy massive particles conformally coupled with gravity, which reheats the universe at temperatures compatible with the nucleosynthesis bounds and also the production of massless particles non-conformally coupled with gravity leading to very high reheating temperatures but ensuring the nucleosynthesis success. Dealing with cosmological perturbations, these background dynamics produce a nearly scale invariant power spectrum for the modes that leave the Hubble radius, in the contracting phase, when the Universe is quasi-matter dominated, whose spectral index and corresponding running is compatible with the recent experimental data obtained by PLANCK's team.

  12. Neutrinos, dark matter and the universe

    International Nuclear Information System (INIS)

    Stolarcyk, T.; Tran Thanh Van, J.; Vannucci, F.; Paris-7 Univ., 75

    1996-01-01

    The meeting was articulated around the general topic 'neutrinos, dark matter and the universe'. We have not yet succeeded in penetrating all of the neutrino's mysteries and in particular we still do not know its mass. Laboratory measurements involving beta disintegrations of Ni 63 , Re 187 , Xe 136 and tritium are being actively pursued by many teams. Astrophysical analyses have been led at neutrino observatories of Kamiokande, Baksan, IMB and the Mont-Blanc. But at the moment we can only give an upper limit of the neutrino mass. The problem of the 'missing' solar neutrinos cannot be dissociate from that of the neutrino mass and of the possible oscillation of one variety of neutrino into another. Dark matter shows up only through the effect of its gravitational field and at present we have no idea of its nature

  13. Dark matter: Theoretical perspectives

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ''new physics.'' The compelling candidates are: a very light axion ( 10 -6 eV--10 -4 eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos

  14. Sterile neutrino dark matter with supersymmetry

    Science.gov (United States)

    Shakya, Bibhushan; Wells, James D.

    2017-08-01

    Sterile neutrino dark matter, a popular alternative to the WIMP paradigm, has generally been studied in non-supersymmetric setups. If the underlying theory is supersymmetric, we find that several interesting and novel dark matter features can arise. In particular, in scenarios of freeze-in production of sterile neutrino dark matter, its superpartner, the sterile sneutrino, can play a crucial role in early Universe cosmology as the dominant source of cold, warm, or hot dark matter, or of a subdominant relativistic population of sterile neutrinos that can contribute to the effective number of relativistic degrees of freedom Neff during big bang nucleosynthesis.

  15. On the random geometry of a symmetric matter antimatter universe

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Goto, M.

    1977-05-01

    A statistical analysis is made of the randon geometry of an early symmetric matter-antimatter universe model. Such a model is shown to determine the total number of the largest agglomerations in the universe, as well as of some special configurations. Constraints on the time development of the protoagglomerations are also obtained

  16. Alternative dark matter candidates. Axions

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2017-01-01

    The axion is arguably one of the best motivated candidates for dark matter. For a decay constant >or similar 10 9 GeV, axions are dominantly produced non-thermally in the early universe and hence are ''cold'', their velocity dispersion being small enough to fit to large scale structure. Moreover, such a large decay constant ensures the stability at cosmological time scales and its behaviour as a collisionless fluid at cosmological length scales. Here, we review the state of the art of axion dark matter predictions and of experimental efforts to search for axion dark matter in laboratory experiments.

  17. Study of the concordance of a matter-antimatter symmetric Dirac-Milne Universe

    International Nuclear Information System (INIS)

    Benoit-Levy, A.

    2009-09-01

    This thesis is devoted to the study of the Dirac-Milne Universe, a cosmological model in which matter and antimatter are present in equal quantities and where antimatter, as suggested by general relativity through the properties of the Kerr-Newman solutions, is supposed to have a negative active gravitational mass. Supposing such hypothesis removes the necessity to invoke inflation, Dark Energy and Dark matter as mandatory components. Matter (with positive mass) and antimatter (with negative mass) being present in equal quantities, the scale factor evolves linearly with time. After a short summary of basic properties of standard cosmology, some consequences of this linear evolution are studied. The full study of primordial nucleosynthesis within the framework of the Dirac-Milne universe reveals that deuterium can be produced by residual annihilations between matter and antimatter shortly before recombination. Even though Dirac-Milne universe does not present any recent acceleration of the expansion, it is shown that this model is in good agreement with the cosmological test of type Ia supernovae. It is also shown that the position of the acoustic scale of the Cosmic Microwave Background (CMB) naturally appears at the degree scale. The full study of the CMB spectrum and the coherence of the notion of negative mass remain to be investigated, but this work exhibits a original model that could potentially give an alternative description of our Universe. (author)

  18. Cosmological perturbations in theories with non-minimal coupling between curvature and matter

    International Nuclear Information System (INIS)

    Bertolami, Orfeu; Frazão, Pedro; Páramos, Jorge

    2013-01-01

    In this work, we examine how the presence of a non-minimal coupling between spacetime curvature and matter affects the evolution of cosmological perturbations on a homogeneous and isotropic Universe, and hence the formation of large-scale structure. This framework places constraints on the terms which arise due to the coupling with matter and, in particular, on the modified growth of matter density perturbations. We derive approximate analytical solutions for the evolution of matter overdensities during the matter dominated era and discuss the compatibility of the obtained results with the hypothesis that the late time acceleration of the Universe is driven by a non-minimal coupling

  19. Dark matter: Theoretical perspectives

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-01-01

    The author both reviews and makes the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the open-quotes standard modelclose quotes of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for open-quotes new physics.close quotes The compelling candidates are a very light axion (10 -6 --10 -4 eV), a light neutrino (20--90 eV), and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. The author briefly mentions more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. 119 refs

  20. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. (Chicago Univ., IL (United States). Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL (United States))

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  1. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  2. Alternative dark matter candidates. Axions

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, Andreas

    2017-01-15

    The axion is arguably one of the best motivated candidates for dark matter. For a decay constant >or similar 10{sup 9} GeV, axions are dominantly produced non-thermally in the early universe and hence are ''cold'', their velocity dispersion being small enough to fit to large scale structure. Moreover, such a large decay constant ensures the stability at cosmological time scales and its behaviour as a collisionless fluid at cosmological length scales. Here, we review the state of the art of axion dark matter predictions and of experimental efforts to search for axion dark matter in laboratory experiments.

  3. Geneva University: Dark matter Search with the CDMS experiment

    CERN Multimedia

    Université de Genève

    2011-01-01

    Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Tel: (022) 379 62 73 Fax: (022) 379 69 92   Wednesday 21 September 2011 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium “ Dark matter Search with the CDMS experiment ” Par Dr. Sebastian Arrenberg, Université de Zürich The Cryogenic Dark Matter Search experiment (CDMS) employs a total of 30 germanium and silicon detectors at the Soudan Underground Laboratory to detect weakly interacting massive particles (WIMPs) via their scattering from the target nuclei. Previous CDMS results, released in December 2009, set the world leading limit on the spin-independent WIMP-nucleon cross section above WIMP masses of ~50 GeV/c2 assuming elastic scattering.  In a subsequent analysis we investigated the inelastic dark matter scenario which was proposed to reconcile the disagreement between the results of DAMA/LIBRA and other existing dark matter searc...

  4. Dark matter in the universe: where, what, and why?

    International Nuclear Information System (INIS)

    Trimble, V.; Maryland Univ., College Park

    1988-01-01

    The universe is pervaded by non-luminous matter. Observations at many wavelengths, and on many length scales, yield a reasonably good picture of the amount of dark matter and its distribution. In very broad terms, the larger the scale we survey, the larger the fraction of gravitating mass that does not emit its fair share of light. The range is from about 50% in the solar neighbourhood (the nearest few hundred parsecs) to 99% or more in the largest clusters and superclusters of galaxies (ten million or more parsecs across). Observations do not, so far, tell us what that dark matter is made of, or even whether it is all the same kind of thing. Candidates that cannot currently be ruled out include tiny stars, stellar remnants, some kinds of black holes, neutrinos with rest masses 10 -5 to 10 -4 of the electron mass, and still more exotic kinds of particles (photinos, gravitinos, axions, majorons, Higgsinos...) that interact at most weakly with normal matter. (author)

  5. Perceived Mattering to Parents and Friends for University Students: A Longitudinal Study

    Science.gov (United States)

    Marshall, Sheila K.; Liu, Yan; Wu, Amery; Berzonsky, Michael; Adams, Gerald R.

    2010-01-01

    A multiple indicators multilevel (MIML) latent growth model was used to examine university students' (N = 484) perceived mattering to mother, father, and friends over a three year period. The model was used to examine whether repeated measurements of perceived mattering remained invariant across time for all three referents, what the developmental…

  6. Dark matter candidates

    International Nuclear Information System (INIS)

    Turner, M.S.

    1989-01-01

    One of the simplest, yet most profound, questions we can ask about the Universe is, how much stuff is in it, and further what is that stuff composed of? Needless to say, the answer to this question has very important implications for the evolution of the Universe, determining both the ultimate fate and the course of structure formation. Remarkably, at this late date in the history of the Universe we still do not have a definitive answer to this simplest of questions---although we have some very intriguing clues. It is known with certainty that most of the material in the Universe is dark, and we have the strong suspicion that the dominant component of material in the Cosmos is not baryons, but rather is exotic relic elementary particles left over from the earliest, very hot epoch of the Universe. If true, the Dark Matter question is a most fundamental one facing both particle physics and cosmology. The leading particle dark matter candidates are: the axion, the neutralino, and a light neutrino species. All three candidates are accessible to experimental tests, and experiments are now in progress. In addition, there are several dark horse, long shot, candidates, including the superheavy magnetic monopole and soliton stars. 13 refs

  7. Vector manifestation and violation of vector dominance in hot matter

    International Nuclear Information System (INIS)

    Harada, Masayasu; Sasaki, Chihiro

    2004-01-01

    We show the details of the calculation of the hadronic thermal corrections to the two-point functions in the effective field theory of QCD for pions and vector mesons based on the hidden local symmetry (HLS) in hot matter using the background field gauge. We study the temperature dependence of the pion velocity in the low-temperature region determined from the hadronic thermal corrections, and show that, due to the presence of the dynamical vector meson, the pion velocity is smaller than the speed of the light already at one-loop level, in contrast to the result obtained in the ordinary chiral perturbation theory including only the pion at one-loop. Including the intrinsic temperature dependences of the parameters of the HLS Lagrangian determined from the underlying QCD through the Wilsonian matching, we show how the vector manifestation (VM), in which the massless vector meson becomes the chiral partner of pion, is realized at the critical temperature. We present a new prediction of the VM on the direct photon-π-π coupling which measures the validity of the vector dominance (VD) of the electromagnetic form factor of the pion: we find that the VD is largely violated at the critical temperature, which indicates that the assumption of the VD made in several analyses on the dilepton spectra in hot matter may need to be weakened for consistently including the effect of the dropping mass of the vector meson

  8. Estimating the Optical Properties of Inorganic Matter-Dominated Oligo-to-Mesotrophic Inland Waters

    Directory of Open Access Journals (Sweden)

    Thanan Rodrigues

    2018-04-01

    Full Text Available Many studies over the years have focused on bio-optical modeling of inland waters to monitor water quality. However, those studies have been conducted mainly in eutrophic and hyper-eutrophic environments dominated by phytoplankton. With the launch of the Ocean and Land Colour Instrument (OLCI/Sentinel-3A in 2016, a range of bands became available including the 709 nm band recommended for scaling up these bio-optical models for productive inland waters. It was found that one category of existing bio-optical models, the quasi-analytical algorithms (QAAs, when applied to colored dissolved organic matter (CDOM and detritus-dominated waters, produce large errors. Even after shifting the reference wavelength to 709 nm, the recently re-parameterized QAA versions could not accurately retrieve the inherent optical properties (IOPs in waterbodies dominated by inorganic matter. In this study, three existing versions of QAA were implemented and proved inefficient for the study site. Therefore, several changes were incorporated into the QAA, starting with the re-parameterization of the empirical steps related to the total absorption coefficient retrieval. The re-parameterized QAA, QAAOMW showed a significant improvement in the mean absolute percentage error (MAPE. MAPE decreased from 58.05% for existing open ocean QAA (QAALv5 to 16.35% for QAAOMW. Considerable improvement was also observed in the estimation of the absorption coefficient of CDOM and detritus from a MAPE of 91.05% for QAALv5 to 18.87% for QAAOMW. The retrieval of the absorption coefficient of phytoplankton ( a ϕ using the native form of QAA proved to be inaccurate for the oligo-to-mesotrophic waterbody due to the low a ϕ returning negative predictions. Therefore, a novel approach based on the normalized a ϕ was adopted to maintain the spectral shape and retrieve positive values, resulting in an improvement of 119% in QAAOMW. Further tuning and scale-up of QAAOMW to OLCI bands will aid in

  9. Small-scale cosmic microwave background anisotropies as probe of the geometry of the universe

    Science.gov (United States)

    Kamionkowski, Marc; Spergel, David N.; Sugiyama, Naoshi

    1994-01-01

    We perform detailed calculations of cosmic microwave background (CMB) anisotropies in a cold dark matter (CDM)-dominated open universe with primordial adiabatic density perturbations for a variety of reionization histories. The CMB anisotropies depend primarily on the geometry of the universe, which in a matter-dominated universe is determined by Omega and the optical depth to the surface of last scattering. In particular, the location on the primary Doppler peak depends primarily on Omega and is fairly insensitive to the other unknown parameters, such as Omega(sub b), h, Lambda, and the shape of the power spectrum. Therefore, if the primordial density perturbations are adiabatic, measurements of CMB anisotropies on small scales may be used to determine Omega.

  10. Behind the Scenes of the Universe - From the Higgs to Dark Matter

    International Nuclear Information System (INIS)

    Bertone, Gianfranco

    2014-01-01

    An extraordinary discovery has recently shaken the foundations of Cosmology and Particle Physics, sparking a scientific revolution that has profoundly modified our understanding of our Universe and that is still far from over. Pioneering astronomers in the 1920's and 1930's had already noticed suspicious anomalies in the motion of celestial bodies in distant galaxies and clusters of galaxies, but it wasn't until the late 20. century that the scientific community was confronted with an astonishing conclusion: the Universe is filled with an unknown, elusive substance that is fundamentally different from anything we have ever seen with our telescopes or measured in our laboratories. It is called dark matter, and it constitutes one of the most pressing challenges of modern science. In this book, aimed at the general reader with an interest in science, the author illustrates in non-technical terms, borrowing concepts and ideas from other branches of art and literature, the far-reaching implications of this discovery. It has led to a worldwide race to identify the nature of this mysterious form of matter. We may be about to witness a pivotal paradigm shift in Physics, as we set out to test the existence of dark matter particles with a wide array of experiments, including the Large Hadron Collider at CERN, as well as with a new generation of Astro-particle experiments underground and in space. This book was originally published by Oxford University Press under the title 'Behind the Scenes of the Universe - From the Higgs to Dark Matter'. It has been translated in French by J. Paul (CEA-Saclay)

  11. Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (2/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Ninety-five percent of the present mass-energy density of the Universe is dark. Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe. Dark matter and dark energy cannot be explained within the standard model of particle physics. In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter. I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis. Finally, I will discuss how the LHC might shed light on the problem. In the second lecture I will review the theoretical foundations and observational evidence that the dominant component of the present mass density of the Universe has a negative pressure, which leads to an accelerated expansion of the Universe...

  12. Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (3/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Ninety-five percent of the present mass-energy density of the Universe is dark. Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe. Dark matter and dark energy cannot be explained within the standard model of particle physics. In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter. I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis. Finally, I will discuss how the LHC might shed light on the problem. In the second lecture I will review the theoretical foundations and observational evidence that the dominant component of the present mass density of the Universe has a negative pressure, which leads to an accelerated expansion of the Universe...

  13. Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (1/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Ninety-five percent of the present mass-energy density of the Universe is dark. Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe. Dark matter and dark energy cannot be explained within the standard model of particle physics. In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter. I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis. Finally, I will discuss how the LHC might shed light on the problem. In the second lecture I will review the theoretical foundations and observational evidence that the dominant component of the present mass density of the Universe has a negative pressure, which leads to an accelerated expansion of the Universe...

  14. Dark energy and dark matter perturbations in singular universes

    International Nuclear Information System (INIS)

    Denkiewicz, Tomasz

    2015-01-01

    We discuss the evolution of density perturbations of dark matter and dark energy in cosmological models which admit future singularities in a finite time. Up to now geometrical tests of the evolution of the universe do not differentiate between singular universes and ΛCDM scenario. We solve perturbation equations using the gauge invariant formalism. The analysis shows that the detailed reconstruction of the evolution of perturbations within singular cosmologies, in the dark sector, can exhibit important differences between the singular universes models and the ΛCDM cosmology. This is encouraging for further examination and gives hope for discriminating between those models with future galaxy weak lensing experiments like the Dark Energy Survey (DES) and Euclid or CMB observations like PRISM and CoRE

  15. Dark matter, dark energy, gravitational lensing and the formation of structure in the universe

    International Nuclear Information System (INIS)

    Bernardeau, Francis

    2003-01-01

    The large-scale structure of the universe and its statistical properties can reveal many aspects of the physics of the early universe as well as of its matter content during the cosmic history. Numerous observations, based to a large extent on large-scale structure data, have given us a concordant picture of the energy and matter content in the universe. In view of these results the existence of dark matter has been firmly established although it still evades attempts at direct detection. An even more challenging puzzle is, however, yet to be explained. Indeed the model suggested by the observations is only viable with the presence of a 'dark energy', an ethereal energy associated with the cosmological vacuum, that would represent about two-thirds of the total energy density of the universe. Although strongly indicated by observations, the existence of this component is nonetheless very uncomfortable from a high-energy physics point of view. Its interpretation is a matter of far reaching debates. Indeed, the phenomenological manifestation of this component can be viewed as a geometrical property of large-scale gravity, or as the energy associated with the quantum field vacuum, or else as the manifestation of a new sort of cosmic fluid that would fill space and remain unclustered. Low redshift detailed examinations of the geometrical or clustering properties of the universe should in all cases help clarify the true nature of the dark energy. We present methods that can be used in the future for exploring the low redshift physical properties of the universe. Particular emphasis will be placed on the use of large-scale structure surveys and more specifically on weak lensing surveys that promise to be extremely powerful in exploring the large-scale mass distribution in the universe

  16. Helium-3 in Milky Way Reveals Abundance of Matter in Early Universe

    Science.gov (United States)

    2002-01-01

    Astronomers using the National Science Foundation's 140 Foot Radio Telescope in Green Bank, West Virginia, were able to infer the amount of matter created by the Big Bang, and confirmed that it accounts for only a small portion of the effects of gravity observed in the Universe. The scientists were able to make these conclusions by determining the abundance of the rare element helium-3 (helium with only one neutron and two protons in its nucleus) in the Milky Way Galaxy. The NRAO 140 Foot Radio Telescope The NRAO 140-Foot Radio Telescope "Moments after the Big Bang, protons and neutrons began to combine to form helium-3 and other basic elements," said Robert Rood of the University of Virginia. "By accurately measuring the abundance of this primordial element in our Galaxy today, we were able infer just how much matter was created when the Universe was only a few minutes old." Rood and his colleagues, Thomas Bania from Boston University and Dana Balser from the National Radio Astronomy Observatory (NRAO), report their findings in the January 3 edition of the scientific journal Nature. Rood began searching for helium-3 in the Milky Way Galaxy in 1978. At that time, scientists believed that stars like our Sun synthesized helium-3 in their nuclear furnaces. Surprisingly, Rood's observations indicated that there was far less of this element in the Galaxy than the current models predicted. "If stars were indeed producing helium-3, as scientists believed, then we should have detected this element in much greater concentrations," he said. This unexpected discovery prompted Rood and his colleagues to broaden their search, and to look throughout the Milky Way for signs of stellar production of helium-3. Over the course of two decades, the researchers discovered that regardless of where they looked -- whether in the areas of sparse star formation like the outer edges of the Galaxy, or in areas of intense star formation near center of the Galaxy -- the relative abundance of

  17. Inhomogeneous dusty Universes and their deceleration

    CERN Document Server

    Giovannini, Massimo

    2006-01-01

    Exact results stemming directly from Einstein equations imply that inhomogeneous Universes endowed with vanishing pressure density can only decelerate, unless the energy density of the Universe becomes negative. Recent proposals seem to argue that inhomogeneous (but isotropic) space-times, filled only with incoherent matter,may turn into accelerated Universes for sufficiently late times. To scrutinize these scenarios, fully inhomogeneous Einstein equations are discussed in the synchronous system. In a dust-dominated Universe, the inhomogeneous generalization of the deceleration parameter is always positive semi-definite implying that no acceleration takes place.

  18. Resurrection of neutrinos as dark matter

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1986-05-01

    It is shown that new observations of large scale structure in the universe (voids, foam, and large-scale velocity fields) are best understood if the dominant matter of the universe is in the form of massive (9eV less than or equal to m/sub nu/ less than or equal to 35 eV) neutrinos. Cold dark matter, even with biasing, seems unable to duplicate the combination of these observations (although a fine-tuned loophole with cold matter and percolated explosions may also marginally work.) The previous fatal problems of galaxy formation with neutrinos can be remedied by combining them with either cosmic strings or explosive galaxy formation. The former naturally gives the scale-free correlation function for galaxies, clusters, and superclusters, and gives large, but not necessarily spherical voids. The latter naturally gives spherical voids, but requires fine tuning and percolation to get the large scales and the scale-free correlation function. 39 refs

  19. Synergetic structuralization of matter from the gaseous state in an expanding universe

    International Nuclear Information System (INIS)

    Krempasky, J.

    1988-01-01

    The equation of evolution for the density of matter in an expanding universe is derived. The theory is based on the assumption that the formation of matter structures (galaxies and stars) starts from a gas-like material which is in a hydrodynamical motion due to Hubble's velocity. The influence of gravitation, rotation, diffusion and the scattering of particles due to thermal motion is taken into account. It is shown that the equation of evolution has two bifurcation points. One of them corresponds to the formation of galaxies and the other to the formation of stars. The critical mass of galaxies and stars is determined by the formula which is practically identical to the well-known Jeans formula. The present approach allows to calculate the critical time of the structuralisation of matter in an expanding universe, to explain the shape of galaxies and potentially also the mass spectrum of galaxies and stars. (author). 20 refs

  20. Implications of dark matter free streaming in the early Universe

    NARCIS (Netherlands)

    Diamanti, R.

    2017-01-01

    In this thesis, we link astrophysics and particle physics aspects in order to study the implications of the nature and properties of different types of dark matter candidates on the observable Universe. The main property which connects the different works on which this manuscript is based is

  1. Gravitational waves in cold dark matter

    Science.gov (United States)

    Flauger, Raphael; Weinberg, Steven

    2018-06-01

    We study the effects of cold dark matter on the propagation of gravitational waves of astrophysical and primordial origin. We show that the dominant effect of cold dark matter on gravitational waves from astrophysical sources is a small frequency dependent modification of the propagation speed of gravitational waves. However, the magnitude of the effect is too small to be detected in the near future. We furthermore show that the spectrum of primordial gravitational waves in principle contains detailed information about the properties of dark matter. However, depending on the wavelength, the effects are either suppressed because the dark matter is highly nonrelativistic or because it contributes a small fraction of the energy density of the universe. As a consequence, the effects of cold dark matter on primordial gravitational waves in practice also appear too small to be detectable.

  2. Galaxies and gas in a cold dark matter universe

    Science.gov (United States)

    Katz, Neal; Hernquist, Lars; Weinberg, David H.

    1992-01-01

    We use a combined gravity/hydrodynamics code to simulate the formation of structure in a random 22 Mpc cube of a cold dark matter universe. Adiabatic compression and shocks heat much of the gas to temperatures of 10 exp 6 - 10 exp 7 K, but a fraction of the gas cools radiatively to about 10 exp 4 K and condenses into discrete, highly overdense lumps. We identify these lumps with galaxies. The high-mass end of their baryonic mass function fits the form of the observed galaxy luminosity function. They retain independent identities after their dark halos merge, so gravitational clustering produces groups of galaxies embedded in relatively smooth envelopes of hot gas and dark matter. The galaxy correlation function is approximately an r exp -2.1 power law from separations of 35 kpc to 7 Mpc. Galaxy fluctuations are biased relative to dark matter fluctuations by a factor b about 1.5. We find no significant 'velocity bias' between galaxies and dark matter particles. However, virial analysis of the simulation's richest group leads to an estimated Omega of about 0.3, even though the simulation adopts Omega = 1.

  3. A new “culprit” for matter-antimatter asymmetry

    CERN Multimedia

    Antonella Del Rosso

    2013-01-01

    In our matter-dominated Universe, the observation of new processes showing matter-antimatter asymmetry allows scientists to test their theories and, possibly, to explore new territories. The LHCb collaboration has recently observed matter-antimatter asymmetries in the decays of the B0s meson, which thus becomes the fourth particle known to present such behaviour.   The VELO detector: a crucial element for particle identifiation in LHCb. Almost all physics processes known to scientists show perfect symmetry if a particle is interchanged with its antiparticle (C symmetry), and then if left and right are swapped (P symmetry). So it becomes very hard to explain why the Universe itself does not conform to this symmetry and, instead, shows a huge preference for matter. Processes that violate this symmetry are rare and of great interest to scientists. Violation of the CP symmetry in neutral kaons was first observed by Nobel Prize Laureates James Cronin and Val Fitch in the 1960s. About 40 years la...

  4. Superheavy dark matter

    CERN Document Server

    Riotto, Antonio

    2000-01-01

    It is usually thought that the present mass density of the Universe is dominated by a weakly interacting massive particle (WIMP), a fossil relic of the early Universe. Theoretical ideas and experimental efforts have focused mostly on production and detection of thermal relics, with mass typically in the range a few GeV to a hundred GeV. Here, we will review scenarios for production of nonthermal dark matter whose mass may be in the range 10/sup 12/ to 10/sup 19/ GeV, much larger than the mass of thermal wimpy WIMPS. We will also review recent related results in understanding the production of very heavy fermions through preheating after inflation. (19 refs).

  5. Matter with dilaton charge in Weyl-Cartan spacetime and evolution of the universe

    International Nuclear Information System (INIS)

    Babourova, Olga V; Frolov, Boris N

    2003-01-01

    The perfect dilaton-spin fluid (as a model of the dilaton matter, the particles of which are endowed with intrinsic spin and dilaton charge) is considered as the source of the gravitational field in a Weyl-Cartan spacetime. The variational formalism of the gravitational field in a Weyl-Cartan spacetime is developed in the exterior form language. A homogeneous and isotropic universe filled with the dilaton matter as the dark matter is considered and one of the field equations is represented as the Einstein-like equation which leads to the modified Friedmann-Lemaitre equation. From this equation the absence of the initial singularity in the cosmological solution follows. Also the existence of two points of inflection of the scale factor function is established, the first of which corresponds to the early stage of the universe and the second to the modern era when the expansion with deceleration is replaced by the expansion with acceleration. Possible equations of state for the self-interacting cold dark matter are found on the basis of the modern observational data. An inflation-like solution is obtained

  6. Universal properties of relaxation and diffusion in condensed matter

    International Nuclear Information System (INIS)

    Ngai K L

    2017-01-01

    By and large the research communities today are not fully aware of the remarkable universality in the dynamic properties of many-body relaxation/diffusion processes manifested in experiments and simulations on condensed matter with diverse chemical compositions and physical structures. I shall demonstrate the universality first from the dynamic processes in glass-forming systems. This is reinforced by strikingly similar properties of different processes in contrasting interacting systems all having nothing to do with glass transition. The examples given here include glass-forming systems of diverse chemical compositions and physical structures, conductivity relaxation of ionic conductors (liquid, glassy, and crystalline), translation and orientation ordered phase of rigid molecule, and polymer chain dynamics. Universality is also found in the change of dynamics when dimension is reduced to nanometer size in widely different systems. The remarkable universality indicates that many-body relaxation/diffusion is governed by fundamental physics to be unveiled. One candidate is classical chaos on which the coupling model is based, Universal properties predicted by this model are in accord with diverse experiments and simulations. (paper)

  7. Jeans instability and antiscreening in the system of matter-antimatter with antigravitation

    International Nuclear Information System (INIS)

    Trigger, S A; Gribov, I A

    2015-01-01

    The hypothesis of antigravitational interaction of elementary particles and antiparticles is applied to the simple two-component hydrodynamic model Λ-CDM (Lambda cold-dark matter) with gravitational repulsion and attraction. An increase in the Jeans instability rate, the presence of antiscreening, and the dominant role of the gravitational repulsion as a possible mechanism of spatial separation of matter and antimatter in the Universe are shown, as well as the observable acceleration of far galaxies. The sound wave is found for the two-component gravitational-antigravitational system. The suggested approach permits to reestablish the idea about baryon symmetry of the Universe, causing its steady large-scale flatness and accelerated Universe expansion. (paper)

  8. Dark energy and dark matter

    International Nuclear Information System (INIS)

    Comelli, D.; Pietroni, M.; Riotto, A.

    2003-01-01

    It is a puzzle why the densities of dark matter and dark energy are nearly equal today when they scale so differently during the expansion of the universe. This conundrum may be solved if there is a coupling between the two dark sectors. In this Letter we assume that dark matter is made of cold relics with masses depending exponentially on the scalar field associated to dark energy. Since the dynamics of the system is dominated by an attractor solution, the dark matter particle mass is forced to change with time as to ensure that the ratio between the energy densities of dark matter and dark energy become a constant at late times and one readily realizes that the present-day dark matter abundance is not very sensitive to its value when dark matter particles decouple from the thermal bath. We show that the dependence of the present abundance of cold dark matter on the parameters of the model differs drastically from the familiar results where no connection between dark energy and dark matter is present. In particular, we analyze the case in which the cold dark matter particle is the lightest supersymmetric particle

  9. SECOND-ORDER SOLUTIONS OF COSMOLOGICAL PERTURBATION IN THE MATTER-DOMINATED ERA

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim; Gong, Jinn-Ouk

    2012-01-01

    We present the growing mode solutions of cosmological perturbations to the second order in the matter-dominated era. We also present several gauge-invariant combinations of perturbation variables to the second order in the most general fluid context. Based on these solutions, we study the Newtonian correspondence of relativistic perturbations to the second order. In addition to the previously known exact relativistic/Newtonian correspondence of density and velocity perturbations to the second order in the comoving gauge, here we show that in the sub-horizon limit we have the correspondences for density, velocity, and potential perturbations in the zero-shear gauge and in the uniform-expansion gauge to the second order. Density perturbation in the uniform-curvature gauge also shows the correspondence to the second order in the sub-horizon scale. We also identify the relativistic gravitational potential that shows exact correspondence to the Newtonian one to the second order.

  10. Supersymmetric Dark Matter and Prospects for its Detection

    Science.gov (United States)

    Yamamoto, Takahiro

    Dark matter is a prominent and dominant form of matter in the Universe. Yet, despite various intense efforts, its nongravitational effects have not been observed. In this dissertation, we explore the nature of such elusive particles within a supersymmetric SU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge theory. Although large regions of parameter space within supersymmetric models have been excluded by recent results from collider experiments and direct and indirect dark matter searches, we find that there is a wide range of viable parameter space once the requirements of minimal flavor violation and mass universality are relaxed. In particular, we focus on a class of models in which electroweak-scale Majorana dark matter has interactions with the Standard Model sector via relatively light charged scalars with large chiral mixing and CP-violation. Our model is shown to lead to enhanced dark matter pair annihilation, and is constrained by precise measurements of the lepton dipole moments. We illustrate that our model satisfies all constraints, including the observed thermal relic density, and investigate prospects for the detection of dark matter annihilation products. We also examine the effects of chiral mixing and CP-violationn on the variation in the ratio of the flux of monoenergetic photons from annihilation to two photons relative to that from annihilation to a photon and a Z boson, as well as the helicity asymmetry in the diphoton final state. We also find the most general spectrum for internal bremsstrahlung, which interpolates between the regimes dominated by virtual internal bremsstrahlung and by final state radiation, and that it provides distinctive gamma-ray signals, which could potentially be observed in the near future.

  11. Baryonic dark matter

    International Nuclear Information System (INIS)

    Lynden-Bell, D.; Gilmore, G.

    1990-01-01

    Dark matter, first definitely found in the large clusters of galaxies, is now known to be dominant mass in the outer parts of galaxies. All the mass definitely deduced could be made up of baryons, and this would fit well with the requirements of nucleosynthesis in a big bang of small Ω B . However, if inflation is the explanation of the expansion and large scale homogeneity of the universe and of baryon synthesis, and if the universe did not have an infinite extent at the big bang, then Ω should be minutely greater than unity. It is commonly hypothesized that most mass is composed of some unknown, non-baryonic form. This book first discusses the known forms, comets, planets, brown dwarfs, stars, gas, galaxies and Lyman α clouds in which baryons are known to exist. Limits on the amount of dark matter in baryonic form are discussed in the context of the big bang. Inhomogeneities of the right type alleviate the difficulties associated with Ω B = 1 cosmological nucleosynthesis

  12. A universal matter-wave interferometer with optical gratings

    International Nuclear Information System (INIS)

    Haslinger, P.

    2013-01-01

    Quantum mechanics was initially developed to describe microscopic processes but scientists quickly came to far-reaching predictions, such as the wave-particle dualism of matter [1,2] or the entanglement of particles [3,4], which often contradict our classical intuition. However, not even a single experiment could falsify any theoretical prediction of quantum mechanics. Today it is the most tested theory in physics. The question of the range and limits of its validity arises. To which extend can systems be macroscopic, complex and massive while retaining their quantum features? Is there a spatial and temporal restriction to the separation of wave functions? Which decoherence mechanisms force systems at macroscopic scales to appear classical? During my thesis I focused theoretically as well as experimentally on matter-wave interferometry with atoms, molecules and molecular clusters. During my 3 month exchange stay in the group of Prof. Müller at the University of California at Berkeley we have carried out an experiment to show the largest space-time area interferometer at that time [5]. Here, matter waves of caesium atoms have been coherently split and recombined up to 8.8 mm and for 500 ms. Key to run this experiment was to compensate for earth´s rotation. Without this compensation the Coriolis force would have prevented the split matter-waves from a precise recombination. The main subject of my thesis at the University of Vienna was the experimental realization of the (first) all Optical Time-domain Ionizing Matter-wave (OTIMA) interferometer [6,7]. It consists of three pulsed nanosecond standing light waves which act on the particles with a well-defined timing sequence. Interference in the time-domain is independent of the particles’ velocities and of their de Broglie wavelengths. This has been demonstrated earlier for atoms by addressing laser light to certain atomic levels [8]. In contrast to that, the OTIMA interferometer uses optical ionization gratings [9

  13. Particle creation and non-equilibrium thermodynamical prescription of dark fluids for universe bounded by an event horizon

    OpenAIRE

    Saha, Subhajit; Biswas, Atreyee; Chakraborty, Subenoy

    2015-01-01

    In the present work, flat FRW model of the universe is considered to be an isolated open thermodynamical system where non-equilibrium prescription has been studied using the mechanism of particle creation. In the perspective of recent observational evidences, the matter distribution in the universe is assumed to be dominated by dark matter and dark energy. The dark matter is chosen as dust while for dark energy, the following choices are considered: (i) Perfect fluid with constant equation of...

  14. Astrophysics and the exploration of the universe

    International Nuclear Information System (INIS)

    Turck-Chieze, S.; Garcia, R.A.; Brun, A.S.; Minier, V.; Andre, Ph.; Motte, F.; Mathis, St.; Foglizzo, Th.; Decourchelle, A.; Ballet, J.; Chaty, S.; Corbel, St.; Rodriguez, J.; Brahic, A.; Charnoz, S.; Ferrari, C.; Lagage, P.O.; Masset, F.; Pantin, E.; Sauvage, M.; Galliano, F.; Goldwurm, A.; Ballet, J.; Decourchelle, A.; Grenier, I.; Daddi, E.; Elbaz, D.; Bournaud, F.; Yvon, D.; Arnaud, M.; Teyssier, R.; Lehoucq, R.; Palanque-Delabrouille, N.; Lehoucq, R.; Cirelli, M.; Bonvin, C.; Mansoulie, B.; Ruhlmann-Kleider, V.; Refregier, A.; Brax, Ph.; Lavignac, St.; Starck, J.L.; Talvard, M.; Sauvage, M.; Cara, Ch.; Lagage, P.O.; Ferrari, C.; Rodriguez, L.; Sauvageot, J.L.; Lebrun, F.; Grenier, I.; Glicenstein, J.F.; Gerbier, G.

    2009-01-01

    This special issue of Clefs CEA journal is entirely devoted to astrophysics and to the exploration and probing of the Universe. A first part of this dossier, described here, makes a status of our present day knowledge about stars, planets, galaxies, the Universe structure and dark matter. Content: 1 - Stars seed the Universe: What does the Sun tell us?, Probing stellar interiors, From the Sun to the stars, A tour of stellar nurseries, How heavy elements arise, How supernovae explode, Supernova remnants, High-energy objects - sources for astonishment, Focus: A Probing the Universe across the entire light spectrum; 2 - Planets: a dance of small bodies, swirling around up to the finale of their birth: How our world was born, The rings of Saturn: a magnificent research laboratory, Planetary cocoons; 3 - Galaxies: a richly paradoxical evolution: The active life of galaxies, A mysterious black hole, Elucidating the cosmic ray acceleration mechanism, Seeking out the great ancestors, The formation of galaxies: a story of paradoxes, The morphogenesis of galaxies; 4 - The Universe, a homogeneous 'soup' that has turned into a hierarchical structure: The grand thermal history of the Universe, The cosmic web, The formation of the structures of the Universe: the interplay of models, Does the Universe have a shape? Is it finite, or infinite?; 5 - Odyssey across the dark side of the Universe: The puzzle of dark matter, Astrophysics and the observation of dark matter, The theory of dark matter, Could dark matter be generated some day at LHC? A Universe dominated by dark energy, Astrophysics and the observation of dark energy, Theories of dark energy, The matter-antimatter asymmetry of the Universe; 6 - Journey into the lights of the Universe: Microwave - ESA Planck Surveyor, Submillimeter and infrared - ArTeMis, Herschel Space Observatory, VLT-VISIR, Cassini-CIRS, Visible - SoHo-GOLF, X-ray - XMM-Newton, Gamma ray - INTEGRAL, Fermi Gamma-Ray Space Telescope, HESS, EDELWEISS

  15. Dark matter in the universe

    International Nuclear Information System (INIS)

    Kormendy, J.; Knapp, G.R.

    1987-01-01

    Until recently little more was known than that dark matter appears to exist; there was little systematic information about its properties. Only in the past several years was progress made to the point where dark matter density distributions can be measured. For example, with accurate rotation curves extending over large ranges in radius, decomposing the effects of visible and dark matter to measure dark matter density profiles can be tried. Some regularities in dark matter behaviour have already turned up. This volume includes review and invited papers, poster papers, and the two general discussions. (Auth.)

  16. Background radiation fields as a probe of the large-scale matter distribution in the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, N [Cambridge Univ. (UK). Inst. of Astronomy

    1982-03-01

    A 'Swiss Cheese' model is used to calculate to order of magnitude the temperature fluctuation of the cosmic microwave background radiation (CMB) in a lumpy universe. The calculations are valid in a Friedmann background of arbitrary ..cap omega.. provided that matter has been dominant since the photons were last scattered. The inhomogeneities may be larger than the curvature scale, as is required to deal with fluctuations on a large angular scale in a low-density universe. This model is combined with observational limits on the fluctuations in the CMB to yield an upper limit to the present spectrum of inhomogeneities. The absence of any quadrupole anisotropy approximately > 3 x 10/sup -4/ sets a limit on the amplitude of lumps on scales very much greater than the present horizon. It is seen that, as shown by Peebles, for ..cap omega.. = 1 and a simple (Poisson) model the predicted ..delta..T/T(theta) is in remarkable accord with the recent measurements of quadrupole and 6/sup 0/ anisotropy. For a low-density model the predicted ..delta..T/T(theta) for large angles is markedly different. The limits on inhomogeneity from the isotropy of the X-ray background are briefly considered and they are found to be consistent with the microwave limits.

  17. Background radiation fields as a probe of the large-scale matter distribution in the Universe

    International Nuclear Information System (INIS)

    Kaiser, N.

    1982-01-01

    A 'Swiss Cheese' model is used to calculate to order of magnitude the temperature fluctuation of the cosmic microwave background radiation (CMB) in a lumpy universe. The calculations are valid in a Friedmann background of arbitrary Ω provided that matter has been dominant since the photons were last scattered. The inhomogeneities may be larger than the curvature scale, as is required to deal with fluctuations on a large angular scale in a low-density universe. This model is combined with observational limits on the fluctuations in the CMB to yield an upper limit to the present spectrum of inhomogeneities. The absence of any quadrupole anisotropy approximately > 3 x 10 -4 sets a limit on the amplitude of lumps on scales very much greater than the present horizon. It is seen that, as shown by Peebles, for Ω = 1 and a simple (Poisson) model the predicted ΔT/T(theta) is in remarkable accord with the recent measurements of quadrupole and 6 0 anisotropy. For a low-density model the predicted ΔT/T(theta) for large angles is markedly different. The limits on inhomogeneity from the isotropy of the X-ray background are briefly considered and they are found to be consistent with the microwave limits. (author)

  18. Dark matter in the universe

    International Nuclear Information System (INIS)

    Opher, Reuven

    2001-01-01

    We treat here the problem of dark matter in galaxies. Recent articles seem to imply that we are entering into the precision era of cosmology, implying that all of the basic physics of cosmology is known. However, we show here that recent observations question the pillar of the standard model: the presence of nonbaryonic 'dark matter' in galaxies. Using Newton's law of gravitation, observations indicate that most of the matter in galaxies in invisible or dark. From the observed abundances of light elements, dark matter in galaxies must be primarily nonbaryonic. The standard model and its problems in explaining nonbaryonic dark matter will first be discussed. This will be followed by a discussion of a modification of Newton's law of gravitation to explain dark matter in galaxies. (author)

  19. Superweakly interacting massive particle dark matter signals from the early Universe

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Rajaraman, Arvind; Takayama, Fumihiro

    2003-01-01

    Cold dark matter may be made of superweakly interacting massive particles, super-WIMP's, that naturally inherit the desired relic density from late decays of metastable WIMP's. Well-motivated examples are weak-scale gravitinos in supergravity and Kaluza-Klein gravitons from extra dimensions. These particles are impossible to detect in all dark matter experiments. We find, however, that super-WIMP dark matter may be discovered through cosmological signatures from the early Universe. In particular, super-WIMP dark matter has observable consequences for big bang nucleosynthesis and the cosmic microwave background (CMB), and may explain the observed underabundance of 7 Li without upsetting the concordance between deuterium and CMB baryometers. We discuss the implications for future probes of CMB blackbody distortions and collider searches for new particles. In the course of this study, we also present a model-independent analysis of entropy production from late-decaying particles in light of Wilkinson microwave anisotropy probe data

  20. Value of H, space-time patterns, vacuum, matter, expansion of the Universe, alternative cosmologies

    Directory of Open Access Journals (Sweden)

    Gonzalez-Mestres Luis

    2017-01-01

    Full Text Available To the experimental uncertainties on the present value H0 of the Lundmark - Lemaître-Hubble constant, fundamental theoretical uncertainties of several kinds should also be added. In standard Cosmology, consistency problems are really serious. The cosmological constant is a source of well-known diffculties while the associated dark energy is assumed to be at the origin of the observed acceleration of the expansion of the Universe. But in alternative cosmologies, possible approaches without these problems exist. An example is the pattern based on the spinorial space-time (SST we introduced in 1996-97 where the H t = 1 relation (t = cosmic time = age of the Universe is automatically generated by a pre-existing cosmic geometry before standard matter and conventional forces, including gravitation and relativity, are introduced. We analyse present theoretical, experimental and observational uncertainties, focusing also on the possible sources of the acceleration of the expansion of the Universe as well as on the structure of the physical vacuum and its potential cosmological role. Particular attention is given to alternative approaches to both Particle Physics and Cosmology including possible preonic constituents of the physical vacuum and associated pre-Big Bang patterns. A significant example is provided by the cosmic SST geometry together with the possibility that the expanding cosmological vacuum releases energy in the form of standard matter and dark matter, thus modifying the dependence of the matter energy density with respect to the age and size of our Universe. The SST naturally generates a new leading contribution to the value of H. If the matter energy density decreases more slowly than in standard patterns, it can naturally be at the origin of the observed acceleration of the expansion of the Universe. The mathematical and dynamical structure of standard Physics at very short distances can also be modified by an underlying preonic

  1. Value of H, space-time patterns, vacuum, matter, expansion of the Universe, alternative cosmologies

    Science.gov (United States)

    Gonzalez-Mestres, Luis

    2017-12-01

    To the experimental uncertainties on the present value H0 of the Lundmark - Lemaître-Hubble constant, fundamental theoretical uncertainties of several kinds should also be added. In standard Cosmology, consistency problems are really serious. The cosmological constant is a source of well-known diffculties while the associated dark energy is assumed to be at the origin of the observed acceleration of the expansion of the Universe. But in alternative cosmologies, possible approaches without these problems exist. An example is the pattern based on the spinorial space-time (SST) we introduced in 1996-97 where the H t = 1 relation (t = cosmic time = age of the Universe) is automatically generated by a pre-existing cosmic geometry before standard matter and conventional forces, including gravitation and relativity, are introduced. We analyse present theoretical, experimental and observational uncertainties, focusing also on the possible sources of the acceleration of the expansion of the Universe as well as on the structure of the physical vacuum and its potential cosmological role. Particular attention is given to alternative approaches to both Particle Physics and Cosmology including possible preonic constituents of the physical vacuum and associated pre-Big Bang patterns. A significant example is provided by the cosmic SST geometry together with the possibility that the expanding cosmological vacuum releases energy in the form of standard matter and dark matter, thus modifying the dependence of the matter energy density with respect to the age and size of our Universe. The SST naturally generates a new leading contribution to the value of H. If the matter energy density decreases more slowly than in standard patterns, it can naturally be at the origin of the observed acceleration of the expansion of the Universe. The mathematical and dynamical structure of standard Physics at very short distances can also be modified by an underlying preonic structure. If preons are

  2. WISPy cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Cadamuro, Davide; Redondo, Javier [Max-Planck-Institut fuer Physik, Muenchen (Germany); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-01-15

    Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches - exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques - can probe large parts of this parameter space in the foreseeable future. (orig.)

  3. Visible and dark matter from a first-order phase transition in a baryon-symmetric universe

    International Nuclear Information System (INIS)

    Petraki, Kalliopi; Volkas, Raymond R.; Trodden, Mark

    2012-01-01

    The similar cosmological abundances observed for visible and dark matter suggest a common origin for both. By viewing the dark matter density as a dark-sector asymmetry, mirroring the situation in the visible sector, we show that the visible and dark matter asymmetries may have arisen simultaneously through a first-order phase transition in the early universe. The dark asymmetry can then be equal and opposite to the usual visible matter asymmetry, leading to a universe that is symmetric with respect to a generalised baryon number. We present both a general structure, and a precisely defined example of a viable model of this type. In that example, the dark matter is ''atomic'' as well as asymmetric, and various cosmological and astrophysical constraints are derived. Testable consequences for colliders include a Z' boson that couples through the B−L charge to the visible sector, but also decays invisibly to dark sector particles. The additional scalar particles in the theory can mix with the standard Higgs boson and provide other striking signatures

  4. Dark Energy and Dark Matter Phenomena and the Universe with Variable Gravitational Mass

    Science.gov (United States)

    Gorkavyi, N.

    2005-12-01

    Generation of high-frequency gravitational waves near the singularity is a crucial factor for understanding the origin and dynamics of the Universe. Emission of gravitational waves increases with a decreasing radius of collapsed object much faster than a gravitational force itself. Gravitationally unstable matter of the Universe will be completely converted into gravitational radiation during the Big Crunch. According to Misner, Thorne & Wheeler (Gravitation, 1977, p.959) plane gravitational waves have not gravitational mass or spacetime is flat everywhere outside the pulse. We can propose that the gravitational mass of the Universe is vanished after converting matter into gravitational waves. This hypothesis in the framework of Einstein's theory of gravitation can solve the problem of singularity without contradiction with theorems by Penrose-Hawking; explain the acceleration of our Universe as the effect of a retarded gravitational potential (Gorkavyi, BAAS, 2003, 35, #3) and the low quadrupole in fluctuations in CMB as result of blue-shift effect in a gravitational field. Proposed solution of dark energy problem free from coincidence problems. The hypothesis keeps best parts of Big Bang theory and inflation model without any unknown physical fields or new dimensions. According to this hypothesis a relic sea of high-frequency gravitational radiation in our Universe can be very dense. Interaction of relic gravitational waves with gravitational fields of galaxies and stars can create an additional dynamical effects like pressure of relic radiation that proportional to gravitational potential GM/(Rc2). This effect can be responsible for dark matter phenomena in galaxies and the Pioneer acceleration in the solar system (Gorkavyi, BAAS, 2005, 37, #2).

  5. Bianchi type-I universe in f(R, T) modified gravity with quark matter and Λ

    Science.gov (United States)

    Ćaǧlar, Halife; Aygün, Sezgin

    2017-02-01

    In this study, we investigate homogeneous and anisotropic Bianchi type I universe in the presence of quark matter source in f(R, T) gravity (Harko et al. in Phys. Rev. D 84:024020, 2011) with cosmological constant Λ (where R is the Ricci scalar and T is the trace of the energy momentum tensor). For this aim we have used the anisotropy feature of Bianchi type I universe and equation of states (EoS) of quark matter. We explore the exact solution f(R,T)=R+2f(T) model for Bianchi type I universe model. When t→∞, we get very small cosmological constant value, this result agrees with recent observations.

  6. Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the universe?

    International Nuclear Information System (INIS)

    Avelino, Arturo; Nucamendi, Ulises

    2009-01-01

    We test a cosmological model which the only component is a pressureless fluid with a constant bulk viscosity as an explanation for the present accelerated expansion of the universe. We classify all the possible scenarios for the universe predicted by the model according to their past, present and future evolution and we test its viability performing a Bayesian statistical analysis using the SCP ''Union'' data set (307 SNe Ia), imposing the second law of thermodynamics on the dimensionless constant bulk viscous coefficient ζ-tilde and comparing the predicted age of the universe by the model with the constraints coming from the oldest globular clusters. The best estimated values found for ζ-tilde and the Hubble constant H 0 are: ζ-tilde = 1.922±0.089 and H 0 = 69.62±0.59 (km/s)Mpc −1 with a χ 2 min = 314 (χ 2 d.o.f = 1.031). The age of the universe is found to be 14.95±0.42 Gyr. We see that the estimated value of H 0 as well as of χ 2 d.o.f are very similar to those obtained from ΛCDM model using the same SNe Ia data set. The estimated age of the universe is in agreement with the constraints coming from the oldest globular clusters. Moreover, the estimated value of ζ-tilde is positive in agreement with the second law of thermodynamics (SLT). On the other hand, we perform different forms of marginalization over the parameter H 0 in order to study the sensibility of the results to the way how H 0 is marginalized. We found that it is almost negligible the dependence between the best estimated values of the free parameters of this model and the way how H 0 is marginalized in the present work. Therefore, this simple model might be a viable candidate to explain the present acceleration in the expansion of the universe

  7. THE CONNECTION BETWEEN GALAXIES AND DARK MATTER STRUCTURES IN THE LOCAL UNIVERSE

    International Nuclear Information System (INIS)

    Reddick, Rachel M.; Wechsler, Risa H.; Behroozi, Peter S.; Tinker, Jeremy L.

    2013-01-01

    We provide new constraints on the connection between galaxies in the local universe, identified by the Sloan Digital Sky Survey, and dark matter halos and their constituent substructures in the Λ-cold dark matter model using WMAP7 cosmological parameters. Predictions for the abundance and clustering properties of dark matter halos, and the relationship between dark matter hosts and substructures, are based on a high-resolution cosmological simulation, the Bolshoi simulation. We associate galaxies with dark matter halos and subhalos using subhalo abundance matching, and perform a comprehensive analysis which investigates the underlying assumptions of this technique including (1) which halo property is most closely associated with galaxy stellar masses and luminosities, (2) how much scatter is in this relationship, and (3) how much subhalos can be stripped before their galaxies are destroyed. The models are jointly constrained by new measurements of the projected two-point galaxy clustering and the observed conditional stellar mass function of galaxies in groups. We find that an abundance matching model that associates galaxies with the peak circular velocity of their halos is in good agreement with the data, when scatter of 0.20 ± 0.03 dex in stellar mass at a given peak velocity is included. This confirms the theoretical expectation that the stellar mass of galaxies is tightly correlated with the potential wells of their dark matter halos before they are impacted by larger structures. The data put tight constraints on the satellite fraction of galaxies as a function of galaxy stellar mass and on the scatter between halo and galaxy properties, and rule out several alternative abundance matching models that have been considered. This will yield important constraints for galaxy formation models, and also provides encouraging indications that the galaxy-halo connection can be modeled with sufficient fidelity for future precision studies of the dark universe.

  8. Superheavy thermal dark matter and primordial asymmetries

    International Nuclear Information System (INIS)

    Bramante, Joseph; Unwin, James

    2017-01-01

    The early universe could feature multiple reheating events, leading to jumps in the visible sector entropy density that dilute both particle asymmetries and the number density of frozen-out states. In fact, late time entropy jumps are usually required in models of Affleck-Dine baryogenesis, which typically produces an initial particle-antiparticle asymmetry that is much too large. An important consequence of late time dilution, is that a smaller dark matter annihilation cross section is needed to obtain the observed dark matter relic density. For cosmologies with high scale baryogenesis, followed by radiation-dominated dark matter freeze-out, we show that the perturbative unitarity mass bound on thermal relic dark matter is relaxed to 10 10 GeV. We proceed to study superheavy asymmetric dark matter models, made possible by a sizable entropy injection after dark matter freeze-out, and identify how the Affleck-Dine mechanism would generate the baryon and dark asymmetries.

  9. Superheavy thermal dark matter and primordial asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Bramante, Joseph [Perimeter Institute for Theoretical Physics,31 Caroline St N, Waterloo, ON N2L 2Y5 (Canada); Unwin, James [Department of Physics, University of Illinois at Chicago,845 W Taylor St, Chicago, IL 60607 (United States)

    2017-02-23

    The early universe could feature multiple reheating events, leading to jumps in the visible sector entropy density that dilute both particle asymmetries and the number density of frozen-out states. In fact, late time entropy jumps are usually required in models of Affleck-Dine baryogenesis, which typically produces an initial particle-antiparticle asymmetry that is much too large. An important consequence of late time dilution, is that a smaller dark matter annihilation cross section is needed to obtain the observed dark matter relic density. For cosmologies with high scale baryogenesis, followed by radiation-dominated dark matter freeze-out, we show that the perturbative unitarity mass bound on thermal relic dark matter is relaxed to 10{sup 10} GeV. We proceed to study superheavy asymmetric dark matter models, made possible by a sizable entropy injection after dark matter freeze-out, and identify how the Affleck-Dine mechanism would generate the baryon and dark asymmetries.

  10. Dark matter and galactic cosmic rays

    International Nuclear Information System (INIS)

    Taillet, R.

    2010-12-01

    Dark matter is one of the major problems encountered by modern cosmology and astrophysics, resisting the efforts of both theoreticians and experimentalists. The problem itself is easy to state: many indirect astrophysical measurements indicate that the mass contained in the Universe seems to be dominated by a new type of matter which has never been directly seen yet, this is why it is called dark matter. This hypothesis of dark matter being made of new particles is of great interest for particle physicists, whose theories provide many candidates: dark matter is one of the major topics of astro-particle physics. This work focuses on searching dark matter in the form of new particles, more precisely to indirect detection, i.e. the search of particles produced by dark matter annihilation rather than dark matter particles themselves. In this framework, I will present the studies I have been doing in the field of cosmic rays physics (particularly cosmic ray sources), in several collaborations. In particular, the study of the antimatter component of cosmic rays can give relevant information about dark matter. The last chapter is dedicated to my teaching activities

  11. Dark matter and galaxy formation

    International Nuclear Information System (INIS)

    Umemura, Masayuki

    1987-01-01

    We propose a hybrid model of universe for galaxy formation, that is, an Einstein- de Sitter universe dominated by two-component dark matter: massive neutrinos and cold dark matter. In this hybrid model, the first luminous objects are dwarf galaxies. The neutrino density fluctuations produce large-scale high density and low density regions, which consequently evolve to superclusters of galaxies and voids, respectively. Dwarf galaxies are formed preferentially in supercluster regions. In voids, the formation of dwarf galaxies is fairly suppressed by diffuse UV flux from QSOs, and instead a number of expanding clouds are born, which produce Lyα forest as seen in QSO spectra. Ordinary galaxies are expected to form as aggregations of dwarf galaxies. In this model, some galaxies are born also in voids, and they tend to evolve to spiral galaxies. Additionally, if the same number of globular clusters are formed in a dwarf, the specific globular cluster frequencies are expected to be much larger in ellipticals than in spirals. (author)

  12. Gravitationally neutral dark matter-dark antimatter universe crystal with epochs of decelerated and accelerated expansion

    Science.gov (United States)

    Gribov, I. A.; Trigger, S. A.

    2016-11-01

    A large-scale self-similar crystallized phase of finite gravitationally neutral universe (GNU)—huge GNU-ball—with spherical 2D-boundary immersed into an endless empty 3D- space is considered. The main principal assumptions of this universe model are: (1) existence of stable elementary particles-antiparticles with the opposite gravitational “charges” (M+gr and M -gr), which have the same positive inertial mass M in = |M ±gr | ≥ 0 and are equally presented in the universe during all universe evolution epochs; (2) the gravitational interaction between the masses of the opposite charges” is repulsive; (3) the unbroken baryon-antibaryon symmetry; (4) M+gr-M-gr “charges” symmetry, valid for two equally presented matter-antimatter GNU-components: (a) ordinary matter (OM)-ordinary antimatter (OAM), (b) dark matter (DM)-dark antimatter (DAM). The GNU-ball is weightless crystallized dust of equally presented, mutually repulsive (OM+DM) clusters and (OAM+DAM) anticlusters. Newtonian GNU-hydrodynamics gives the observable spatial flatness and ideal Hubble flow. The GNU in the obtained large-scale self-similar crystallized phase preserves absence of the cluster-anticluster collisions and simultaneously explains the observable large-scale universe phenomena: (1) the absence of the matter-antimatter clusters annihilation, (2) the self-similar Hubble flow stability and homogeneity, (3) flatness, (4) bubble and cosmic-net structures as 3D-2D-1D decrystallization phases with decelerative (a ≤ 0) and accelerative (a ≥ 0) expansion epochs, (5) the dark energy (DE) phenomena with Λ VACUUM = 0, (6) the DE and DM fine-tuning nature and predicts (7) evaporation into isolated huge M±gr superclusters without Big Rip.

  13. Interacting agegraphic dark energy models in non-flat universe

    International Nuclear Information System (INIS)

    Sheykhi, Ahmad

    2009-01-01

    A so-called 'agegraphic dark energy' was recently proposed to explain the dark energy-dominated universe. In this Letter, we generalize the agegraphic dark energy models to the universe with spatial curvature in the presence of interaction between dark matter and dark energy. We show that these models can accommodate w D =-1 crossing for the equation of state of dark energy. In the limiting case of a flat universe, i.e. k=0, all previous results of agegraphic dark energy in flat universe are restored.

  14. Asymmetric dark matter annihilation as a test of non-standard cosmologies

    International Nuclear Information System (INIS)

    Gelmini, Graciela B.; Huh, Ji-Haeng; Rehagen, Thomas

    2013-01-01

    We show that the relic abundance of the minority component of asymmetric dark matter can be very sensitive to the expansion rate of the Universe and the temperature of transition between a non-standard pre-Big Bang Nucleosynthesis cosmological phase and the standard radiation dominated phase, if chemical decoupling happens before this transition. In particular, because the annihilation cross section of asymmetric dark matter is typically larger than that of symmetric dark matter in the standard cosmology, the decrease in relic density of the minority component in non-standard cosmologies with respect to the majority component may be compensated by the increase in annihilation cross section, so that the annihilation rate at present of asymmetric dark matter, contrary to general belief, could be larger than that of symmetric dark matter in the standard cosmology. Thus, if the annihilation cross section of the asymmetric dark matter candidate is known, the annihilation rate at present, if detectable, could be used to test the Universe before Big Bang Nucleosynthesis, an epoch from which we do not yet have any data

  15. Notes on the production of matter in the Universe

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.; Kuzmichev, V.V.

    2012-01-01

    A model of the production of ordinary and dark matter in the decay of a hypothetical antigravitating medium in the form of a condensate of spinless massive particles, which fills the Universe, is proposed. The decays of these particles into baryons, leptons, and dark matter particles are caused by some interaction with the mass scale between the electroweak interaction and the grand unification. The observed dark energy is identified with a portion of the condensate, which has not decayed up to the instant of a measurement. The decay rate of particles of the condensate is expressed through the three parameters - the coupling constant α X , the mass scale M X ; which defines the mass of an X-particle as a mediator of the interaction, and the energy imparted to the decay products. Under the assumption that the decay rate of particles of the condensate is of the same order of magnitude as the Hubble expansion rate, the limits of the possible values of the mass M X are obtained. The cross-sections of the reactions, in which dark matter particles can be produced, are calculated.

  16. Nonthermal production of dark matter from primordial black holes

    Science.gov (United States)

    Allahverdi, Rouzbeh; Dent, James; Osinski, Jacek

    2018-03-01

    We present a scenario for nonthermal production of dark matter from evaporation of primordial black holes. A period of very early matter domination leads to formation of black holes with a maximum mass of ≃2 ×108 g , whose subsequent evaporation prior to big bang nucleosynthesis can produce all of the dark matter in the Universe. We show that the correct relic abundance can be obtained in this way for thermally underproduced dark matter in the 100 GeV-10 TeV mass range. To achieve this, the scalar power spectrum at small scales relevant for black hole formation should be enhanced by a factor of O (105) relative to the scales accessible by the cosmic microwave background experiments.

  17. Gravitino in the early Universe. A model of extra-dimension and a model of dark matter

    International Nuclear Information System (INIS)

    Gherson, D.

    2007-10-01

    This work can be related to the Horava-Witten M-theory in which the Universe could appear 5 dimensional at a stage of its evolution but also to theories of Baryogenesis through Lepto-genesis which imply high reheating temperatures after Inflation. The studied cosmological model is within the framework of a 5 dimensional supergravity with the extra-dimension compactified on an orbifold circle, where the matter and gauge field are located on one of the two branes localised at the orbifold fixed points and where the supergravity fields can propagate in the whole spatial dimensions. In the model, the Dark matter is made of neutralino which is supposed to be the lightest supersymmetric particle. We have shown that there are curves of constraints between the size of the extra-dimension and the reheating temperature of the Universe after Inflation. The constraints come from the measurements of the amount of Dark matter in the Universe and from the model of the Big Bang Nucleosynthesis of light elements. (author)

  18. Matter-antimatter separation in the early universe by rotating black holes

    Science.gov (United States)

    Leahy, D. A.

    1981-01-01

    Consideration of the effect of rotating black holes evaporating early in the universe shows that they would have produced oppositely directed neutrino and antineutrino currents, which push matter and antimatter apart. This separation mechanism is, however, too feeble to account for a present baryon-to-photon ratio of 10 to the -9th, and has no significant observational consequences.

  19. 132nd International School of Physics "Enrico Fermi" : Course on Dark Matter in the Universe

    CERN Document Server

    Primack, Joel R; Provenzale, A; International School of Physics "Enrico Fermi" : Course on Dark Matter in the Universe; Scuola Internazionale di Fisica "Enrico Fermi"

    1996-01-01

    Physics and astrophysics came to dark matter through many different routes, finally accepting it, but often with some distaste. It has been noticed that the existence of dark matter is yet another displacement of humans from the centre of the Universe: not only do our planet and our sun have no central position in the Universe, not only are humans just animals (although with a 'specialized' central nervous system), but even the material of which we are made is only a marginal component of the cosmic substance! If this is the right attitude to take, scientists feeling distaste for dark matter are much like Galileo Galilei's colleagues who refused to look through the telescope to watch the Medici planets. Nevertheless, astronomers, when required to take a ballot in favour of some cosmological model, often still vote for 'pure baryonic' with substantial majorities, although most cosmologists assume that a 'cold' component of dark matter plays a role in producing the world as we observe it. Among the many subject...

  20. Neutrino oscillation provides clues to dark matter and signals from the chilled universe

    CERN Multimedia

    2006-01-01

    The new verification that oscillations exists and neutrinos have mass though not detectible easy provides the first clue to extra dimensions, dark matter, hyperspace and chilled universe acting as a platform below it. (1/2 page)

  1. Universal extra dimensions and the graviton portal to dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Arun, Mathew Thomas [Department of Physics, Mar Thoma College, Thiruvalla 689 103, Kerala (India); Choudhury, Debajyoti; Sachdeva, Divya, E-mail: thomas.mathewarun@gmail.com, E-mail: debajyoti.choudhury@gmail.com, E-mail: divyasachdeva951@gmail.com [Department of Physics and Astrophysics,University of Delhi, Delhi 110 007 (India)

    2017-10-01

    The Universal Extra Dimension (UED) paradigm is particularly attractive as it not only includes a natural candidate for the Dark Matter particle , but also addresses several issues related to particle physics. Non-observations at the Large Hadron Collider, though, has brought the paradigm into severe tension. However, a particular 5-dimensional UED model emerges from a six dimensional space-time with nested warping. The AdS {sub 6} bulk protects both the Higgs mass as well as the UED scale without invoking unnatural parameter values. The graviton excitations in the sixth direction open up new (co-)annihilation channels for the Dark Matter particle, thereby allowing for phenomenological consistency, otherwise denied to the minimal UED scenario. The model leads to unique signatures in both satellite-based experiments as well as the LHC.

  2. Universal extra dimensions and the graviton portal to dark matter

    Science.gov (United States)

    Arun, Mathew Thomas; Choudhury, Debajyoti; Sachdeva, Divya

    2017-10-01

    The Universal Extra Dimension (UED) paradigm is particularly attractive as it not only includes a natural candidate for the Dark Matter particle , but also addresses several issues related to particle physics. Non-observations at the Large Hadron Collider, though, has brought the paradigm into severe tension. However, a particular 5-dimensional UED model emerges from a six dimensional space-time with nested warping. The AdS6 bulk protects both the Higgs mass as well as the UED scale without invoking unnatural parameter values. The graviton excitations in the sixth direction open up new (co-)annihilation channels for the Dark Matter particle, thereby allowing for phenomenological consistency, otherwise denied to the minimal UED scenario. The model leads to unique signatures in both satellite-based experiments as well as the LHC.

  3. The Mysterious Universe - Exploring Our World with Particle Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brau, James E [University of Oregon

    2010-11-23

    The universe is dark and mysterious, more so than even Einstein imagined. While modern science has established deep understanding of ordinary matter, unidentified elements ("Dark Matter" and "Dark Energy") dominate the structure of the universe, its behavior and its destiny. What are these curious elements? We are now working on answers to these and other challenging questions posed by the universe with experiments at particle accelerators on Earth. Results of this research may revolutionize our view of nature as dramatically as the advances of Einstein and other quantum pioneers one hundred years ago. Professor Brau will explain for the general audience the mysteries, introduce facilities which explore them experimentally and discuss our current understanding of the underlying science. The presentation is at an introductory level, appropriate for anyone interested in physics and astronomy.

  4. Solar system tests for realistic f(T) models with non-minimal torsion-matter coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Rui-Hui; Zhai, Xiang-Hua; Li, Xin-Zhou [Shanghai Normal University, Shanghai United Center for Astrophysics (SUCA), Shanghai (China)

    2017-08-15

    In the previous paper, we have constructed two f(T) models with non-minimal torsion-matter coupling extension, which are successful in describing the evolution history of the Universe including the radiation-dominated era, the matter-dominated era, and the present accelerating expansion. Meantime, the significant advantage of these models is that they could avoid the cosmological constant problem of ΛCDM. However, the non-minimal coupling between matter and torsion will affect the tests of the Solar system. In this paper, we study the effects of the Solar system in these models, including the gravitation redshift, geodetic effect and perihelion precession. We find that Model I can pass all three of the Solar system tests. For Model II, the parameter is constrained by the uncertainties of the planets' estimated perihelion precessions. (orig.)

  5. 3D map of Universe bolsters case for dark energy and dark matter

    CERN Multimedia

    2003-01-01

    "Astronomers from the Sloan Digital Sky Survey (SDSS) have made the most precise measurement to date of the cosmic clustering of galaxies and dark matter, refining our understanding of the structure and evolution of the Universe" (1 page).

  6. 75 FR 26822 - In the Matter of: Universal Property Development & Acquisition Corp.; Order of Suspension of Trading

    Science.gov (United States)

    2010-05-12

    ... Universal Property Development & Acquisition Corp. (``Universal Property'') because it has not filed any... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] In the Matter of: Universal Property Development & Acquisition Corp.; Order of Suspension of Trading May 10, 2010. It appears to the Securities and...

  7. Lyra’s cosmology of hybrid universe in Bianchi-V space-time

    Science.gov (United States)

    Yadav, Anil Kumar; Bhardwaj, Vinod Kumar

    2018-06-01

    In this paper we have searched for the existence of Lyra’s cosmology in a hybrid universe with minimal interaction between dark energy and normal matter using Bianchi-V space-time. To derive the exact solution, the average scale factor is taken as a={({t}n{e}kt)}\\frac{1{m}} which describes the hybrid nature of the scale factor and generates a model of the transitioning universe from the early deceleration phase to the present acceleration phase. The quintessence model makes the matter content of the derived universe remarkably able to satisfy the null, dominant and strong energy condition. It has been found that the time varying displacement β(t) co-relates with the nature of cosmological constant Λ(t). We also discuss some physical and geometrical features of the universe.

  8. The Universe, the ‘body’ of God. About the vibration of matter to God’s command or The theory of divine leverages into matter

    Directory of Open Access Journals (Sweden)

    Ciocan Tudor Cosmin

    2016-11-01

    Full Text Available The link between seen and unseen, matter and spirit, flesh and soul was always presumed, but never clarified enough, leaving room for debates and mostly controversies between the scientific domains and theologies of a different type; how could God, who is immaterial, have created the material world? Therefore, the logic of obtaining a result on this concern (would be is first to see how religions have always seen the ratio between divinity and matter/universe. In this part, the idea of a world personality is implied by many, so that nature itself was transformed into a person ; others have seen within the universe/the world a Spirit ruling all, connecting all and bending all to God’s commands. In a way or another, every culture has gifted the universe/nature with the capability of ruling all, seeing everything and controlling, even determining facts by connecting all together with a Great Spirit. What is this Great Spirit of all and where it resides? With the analogy of human body in relation to his Spirit we will try to figure out a place or vehicle for the Spirit to dwell the body, and the Great Spirit the matter. The Christianity names this linkage between God and matter as ‘the (uncreated grace of God’, which indwells matter and helps the Creator move and transform things. Is there any scientific argument to sustain such assertion? Can we argue somehow that God’s voice makes matter vibrate from within the way it can recombine primer elements into giant stars to the human body? If so, what should be the ratio between theology and science on this issue and with these assertions? How could God command to matter to bring things and beings out of it and what were the material leverages that was supposed to be operated to accomplish His will? However, if we can assume that God resides in the universe – as a whole, His body, or as in its very fabric – can we also figure out how is this even possible, without transforming our explanation

  9. Dark matter, a hidden universe

    International Nuclear Information System (INIS)

    Trodden, M.; Feng, J.

    2011-01-01

    The main candidates to dark matter are particles called WIMPs for weakly interacting massive particles. 4 experiments (CDMS in Minnesota (Usa), DAMA at Gran Sasso (Italy), CoGeNT in Minnesota (Usa) and PAMELA onboard a Russian satellite) have claimed to have detected them. New clues suggest that it could exist new particles interacting via new forces. The observation that dwarf galaxies are systematically more spherical than massive galaxies might be a sign of the existence of new forces between dark matter components. Dark matter could not be as inert as previously thought. (A.C.)

  10. Probing dark matter with active galactic nuclei jets

    International Nuclear Information System (INIS)

    Gorchtein, Mikhail; Profumo, Stefano; Ubaldi, Lorenzo

    2010-01-01

    We study the possibility of detecting a signature of particle dark matter in the spectrum of gamma-ray photons from active galactic nuclei (AGNs) resulting from the scattering of high-energy particles in the AGN jet off of dark matter particles. We consider particle dark matter models in the context of both supersymmetry and universal extra dimensions , and we present the complete lowest-order calculation for processes where a photon is emitted in dark matter-electron and/or dark matter-proton scattering, where electrons and protons belong to the AGN jet. We find that the process is dominated by a resonance whose energy is dictated by the particle spectrum in the dark matter sector (neutralino and selectron for the case of supersymmetry, Kaluza-Klein photon and electron for universal extra dimensions ). The resulting gamma-ray spectrum exhibits a very characteristic spectral feature, consisting of a sharp break to a hard power-law behavior. Although the normalization of the gamma-ray flux depends strongly on assumptions on both the AGN jet geometry, composition and particle spectrum as well as on the particle dark matter model and density distribution, we show that for realistic parameters choices, and for two prominent nearby AGNs (Centaurus A and M87), the detection of this effect is in principle possible. Finally, we compare our predictions and results with recent gamma-ray observations from the Fermi, H.E.S.S., and VERITAS telescopes.

  11. Israel-Stewart Approach to Viscous Dissipative Extended Holographic Ricci Dark Energy Dominated Universe

    Directory of Open Access Journals (Sweden)

    Surajit Chattopadhyay

    2016-01-01

    Full Text Available This paper reports a study on the truncated Israel-Stewart formalism for bulk viscosity using the extended holographic Ricci dark energy (EHRDE. Under the consideration that the universe is dominated by EHRDE, the evolution equation for the bulk viscous pressure Π in the framework of the truncated Israel-Stewart theory has been taken as τΠ˙+Π=-3ξH, where τ is the relaxation time and ξ is the bulk viscosity coefficient. Considering effective pressure as a sum of thermodynamic pressure of EHRDE and bulk viscous pressure, it has been observed that under the influence of bulk viscosity the EoS parameter wDE is behaving like phantom, that is, wDE≤-1. It has been observed that the magnitude of the effective pressure peff=p+Π is decaying with time. We also investigated the case for a specific choice of scale factor; namely, a(t=(t-t0β/(1-α. For this choice we have observed that a transition from quintessence to phantom is possible for the equation of state parameter. However, the ΛCDM phase is not attainable by the state-finder trajectories for this choice. Finally it has been observed that in both of the cases the generalized second law of thermodynamics is valid for the viscous EHRDE dominated universe enveloped by the apparent horizon.

  12. Measuring our Universe from Galaxy Redshift Surveys.

    Science.gov (United States)

    Lahav, Ofer; Suto, Yasushi

    2004-01-01

    Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local Universe looks like. While the galaxy distribution traces the bright side of the Universe, detailed quantitative analyses of the data have even revealed the dark side of the Universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant). We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of precision cosmology.

  13. Dark Matter in the Universe and in the Galaxy

    Science.gov (United States)

    Kamionkowski, Marc

    1999-01-01

    During the past four years, Prof. Kamionkowski and collaborators have made progress in research on the nature and distribution of dark-matter in the Universe and in the Galaxy, and on related topics in astrophysics and cosmology. We have made progress on research on the cosmic microwave background, large-scale structure, issues related to particle dark matter, and the gamma-ray-burst enigma. A significant fraction of the research supported by this ATP has been on the cosmic microwave background (CMB). Prof. Kamionkowski and collaborators showed how the polarization of the CMB could be used to detect long-wavelength gravitational waves, such as those produced by inflation. With Kosowsky, Prof. Kamionkowski calculated the amplitude of a stochastic gravitational-wave background that could be detected for a satellite experiment of a given sensitivity and angular resolution. They showed that polarization should improve the sensitivity oa MAP to these gravity waves, and that the Planck Surveyor should do even better. Prof. Kamionkowski, Caldwell, and a student calculated and illustrated the CMB temperature/polarization pattern produced by a single plane-wave gravitational wave. They calculated the amplitude of such a wave that would be detectable with MAP and Planck, and compared that with the sensitivity of traditional gravitational-wave detectors like LIGO and LISA. With Lue and Wang, the PI showed how parity violation from new high-energy physics could conceivably give rise to an observable signature in the CMB polarization. With Loeb, Prof. Kamionkowski showed how measurement of the polarization of CMB photons scattered by hot gas in a cluster could be used to determine the quadrupole moment of the CMB incident on that cluster. Prof. Kamionkowski and Jaffe calculated the amplitude of secondary anisotropies produced by scattering of CMB photons from reionized regions. Research has also been carried out on probing the large-scale distribution of mass in the Universe

  14. Static Universe model existing due to the matter-dark energy coupling

    International Nuclear Information System (INIS)

    Cabo Bizet, A.; Cabo Montes de Oca, A.

    2007-08-01

    The work investigates a static, isotropic and almost homogeneous Universe containing a real scalar field modeling the Dark-Energy (quintaessence) interacting with pressureless matter. It is argued that the interaction between matter and the Dark Energy, is essential for the very existence of the considered solution. Assuming the possibility that Dark-Energy can be furnished by the Dilaton (a scalar field reflecting the condensation of string states with zero angular momentum) we fix the value of scalar field at the origin to the Planck scale. It became possible to fix the ratio of the amount of Dark Energy to matter energy, in the currently estimated value (0.7)/0.3 and also the observed magnitude of the Hubble constant. The small value of the mass for the scalar field chosen for fixing the above ratio and Hubble effect strength, results to be of the order of 10 -29 cm -1 , a small value which seems to be compatible with the zero mass of the Dilaton in the lowest approximations. (author)

  15. The 7 keV axion dark matter and the X-ray line signal

    International Nuclear Information System (INIS)

    Higaki, Tetsutaro; Takahashi, Fuminobu; Tokyo Univ., Kashiwa

    2014-03-01

    We propose a scenario where the saxion dominates the energy density of the Universe and reheats the standard model sector via the dilatonic coupling, while its axionic partner contributes to dark matter decaying into photons via the same operator in supersymmetry. Interestingly, for the axion mass m a ≅ 7 keV and the decay constant f a ≅10 14-15 GeV, the recently discovered X-ray line at 3.5 keV in the XMM Newton X-ray observatory data can be explained. We discuss various cosmological aspects of the 7 keV axion dark matter such as the production of axion dark matter, the saxion decay process, hot dark matter and isocurvature constraints on the axion dark matter, and the possible baryogenesis scenarios.

  16. Asymptotic safety of gravity with matter

    Science.gov (United States)

    Christiansen, Nicolai; Litim, Daniel F.; Pawlowski, Jan M.; Reichert, Manuel

    2018-05-01

    We study the asymptotic safety conjecture for quantum gravity in the presence of matter fields. A general line of reasoning is put forward explaining why gravitons dominate the high-energy behavior, largely independently of the matter fields as long as these remain sufficiently weakly coupled. Our considerations are put to work for gravity coupled to Yang-Mills theories with the help of the functional renormalization group. In an expansion about flat backgrounds, explicit results for beta functions, fixed points, universal exponents, and scaling solutions are given in systematic approximations exploiting running propagators, vertices, and background couplings. Invariably, we find that the gauge coupling becomes asymptotically free while the gravitational sector becomes asymptotically safe. The dependence on matter field multiplicities is weak. We also explain how the scheme dependence, which is more pronounced, can be handled without changing the physics. Our findings offer a new interpretation of many earlier results, which is explained in detail. The results generalize to theories with minimally coupled scalar and fermionic matter. Some implications for the ultraviolet closure of the Standard Model or its extensions are given.

  17. Evidence for dark matter interactions in cosmological precision data?

    International Nuclear Information System (INIS)

    Lesgourgues, Julien; Marques-Tavares, Gustavo; Schmaltz, Martin

    2016-01-01

    We study a two-parameter extension of the cosmological standard model ΛCDM in which cold dark matter interacts with a new form of dark radiation. The two parameters correspond to the energy density in the dark radiation fluid ΔN fluid and the interaction strength between dark matter and dark radiation. The interactions give rise to a very weak ''dark matter drag'' which damps the growth of matter density perturbations throughout radiation domination, allowing to reconcile the tension between predictions of large scale structure from the CMB and direct measurements of σ 8 . We perform a precision fit to Planck CMB data, BAO, large scale structure, and direct measurements of the expansion rate of the universe today. Our model lowers the χ-squared relative to ΛCDM by about 12, corresponding to a preference for non-zero dark matter drag by more than 3σ. Particle physics models which naturally produce a dark matter drag of the required form include the recently proposed non-Abelian dark matter model in which the dark radiation corresponds to massless dark gluons

  18. How did matter gain the upper hand over antimatter?

    International Nuclear Information System (INIS)

    Quinn, Helen

    2009-01-01

    Antimatter exists. We routinely make it in laboratories. For every familiar particle type we find a matching antiparticle with opposite charge, but exactly the same mass. For example, a positron with positive charge has the same mass as an electron; an antiproton with negative charge has the same mass as a proton. Antimatter occurs naturally all over the universe wherever high-energy particles collide. The laws of physics for antimatter are very, very similar to those for antimatter--so far we know only one tiny difference in them, a detail of the weak interactions of quarks that earned Makoto Kobayashi and Toshihide Maskawa a share of the 2008 Nobel Prize for Physics. Our understanding of the early Universe also tells us that after inflation ended equal amounts of matter and antimatter were produced. Today there's a lot of matter in the universe, but very little antimatter. This leaves a big question for cosmology. How did matter gain the upper hand over antimatter? It's a question at the root of our existence. Without this excess, there would be no stars, no Earth, and no us. When a particle meets its antiparticle, they annihilate each other in a flash of radiation. This process removed all the antimatter and most of the matter as the universe expanded and cooled. All that's left today is the excess amount of matter when destruction began to dominate over production. To get from equality to inequality for matter and antimatter requires a difference in the laws of physics between them and some special situation where it affects the balance between them. But, when we try to use the tiny difference we know about between quark and antiquark weak interactions to generate the imbalance, it doesn't work. We find a way that it can indeed give a small excess of matter over antimatter, but not nearly enough to give us all the matter we see in our universe. We can patch up the theory by adding unknown particles to it to make a scenario that works. Indeed we can do that in

  19. Imperfect Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Mirzagholi, Leila; Vikman, Alexander, E-mail: l.mirzagholi@physik.uni-muenchen.de, E-mail: alexander.vikman@lmu.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig Maximilian University Munich, Theresienstr. 37, Munich, D-80333 Germany (Germany)

    2015-06-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.

  20. Imperfect Dark Matter

    International Nuclear Information System (INIS)

    Mirzagholi, Leila; Vikman, Alexander

    2015-01-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models

  1. Imperfect Dark Matter

    Science.gov (United States)

    Mirzagholi, Leila; Vikman, Alexander

    2015-06-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.

  2. The 7 keV axion dark matter and the X-ray line signal

    Energy Technology Data Exchange (ETDEWEB)

    Higaki, Tetsutaro [KEK, Tsukuba (Japan). Theory Center; Jeong, Kwang Sik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Takahashi, Fuminobu [Tohoku Univ., Sendai (Japan). Dept. of Physics; Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS

    2014-03-15

    We propose a scenario where the saxion dominates the energy density of the Universe and reheats the standard model sector via the dilatonic coupling, while its axionic partner contributes to dark matter decaying into photons via the same operator in supersymmetry. Interestingly, for the axion mass m{sub a} ≅ 7 keV and the decay constant f{sub a} ≅10{sup 14-15} GeV, the recently discovered X-ray line at 3.5 keV in the XMM Newton X-ray observatory data can be explained. We discuss various cosmological aspects of the 7 keV axion dark matter such as the production of axion dark matter, the saxion decay process, hot dark matter and isocurvature constraints on the axion dark matter, and the possible baryogenesis scenarios.

  3. Measuring our Universe from Galaxy Redshift Surveys

    Directory of Open Access Journals (Sweden)

    Lahav Ofer

    2004-07-01

    Full Text Available Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local Universe looks like. While the galaxy distribution traces the bright side of the Universe, detailed quantitative analyses of the data have even revealed the dark side of the Universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant. We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of precision cosmology.

  4. The Friedmann universe and the world potential

    International Nuclear Information System (INIS)

    Voracek, P.

    1981-01-01

    In Section 1 of the paper the energy equation of the Friedmann universe, when matter dominates over radiation, is discussed. It is known that the value of the world potential is constant everywhere in the Universe, despite the pulsation motion of the Universe or a possible transformation of pulsation energy into matter or vice versa. The condition for the Universe being closed is deduced. Furthermore, the possibility to define the mass-energy of the Universe is discussed; and the conclusion is arrived at the mass-energy of Universe relative to an observer in the non-metric space outside the Universe is equal to zero; i.e. the Universe orginated as a vacuum fluctation. Finally, the view-point of an external observer is described. Such an observer can claim that our closed Universe is a black hole in an non-metric empty space. Besides, the differences between such a black hole and the astrophysical black holes are indicated. In Section 2 the origin of the gravitational force retarding the expansion is discussed, using the properties of the relativistic gravitational potential. In contradiction to Section 1, the view-point of an inner observer (inside the Universe) is used here. It is concluded that the boundary of the closed Universe is an unlocalizable potential barrier. In Section 3 of the paper the apparent discrepancy between Mach's principle and the general theory of relativity is resolved. (orig./WL)

  5. Seven Hints for Primordial Black Hole Dark Matter arXiv

    CERN Document Server

    Clesse, Sebastien

    Seven observations point towards the existence of primordial black holes (PBH), constituting the whole or an important fraction of the dark matter in the Universe: the mass and spin of black holes detected by Advanced LIGO/VIRGO, the detection of micro-lensing events of distant quasars and stars in M31, the non-detection of ultra-faint dwarf satellite galaxies with radius below 15 parsecs, evidences for core galactic dark matter profiles, the correlation between X-ray and infrared cosmic backgrounds, and the existence of super-massive black holes very early in the Universe's history. Some of these hints are newly identified and they are all intriguingly compatible with the re-constructed broad PBH mass distribution from LIGO events, peaking on PBH mass $m_{\\rm PBH} \\approx 3 M_\\odot$ and passing all other constraints on PBH abundances. PBH dark matter also provides a new mechanism to explain the mass-to-light ratios of dwarf galaxies, including the recent detection of a diffuse galaxy not dominated by dark ma...

  6. LEP : four building blocks of matter ... times three Conference MT17

    CERN Multimedia

    2001-01-01

    The four building blocks of everyday matter form a family composed of the up-quark, the down-quark, the electron and the electron-neutrino. Similar particles, heavier but otherwise identical, are known to exist - grouped together in two further families. By measuring the number of neutrino types that exist, LEP has shown that there are no more fam-ilies of particles. Nature has chosen the number three. This is an intriguing result, and the reason why there are neither more nor fewer than three particle families is one of the greatest mysteries of modern physics. One important consequence is that we exist. Had there been any fewer than three families of matter particles, the phenomenon known as CP violation - which led to matter dominating anti-matter in the early Universe - would not have occurred. All the matter and antimatter created in the Big Bang would have annihilated.

  7. Strange quark matter in the Universe and accelerator nuclear beams

    International Nuclear Information System (INIS)

    Okonov, Eh.

    1995-01-01

    An almost symmetric mixture of u, d and s-quarks - Strange Quark Matter (SQM) is strongly argued to be the ground and absolutely stable of the matter. Astrophysical objects, supposed to be the SQM states, could be formed as the result of the Big Bang (in the early Universe) and the conversion of neutron stars into strange ones. Such objects are considered to be favourable candidates as black holes. The unique possibility to produce the SQM under terrestrial conditions (at accelerator laboratories) are violent relativistic nucleus-nucleus collisions so called 'little big bang'. The expected singulares of SQM are reviewed which could be revealed from astrophysical observations of peculiarities of large SQM objects as well as from accelerator experiments with searching smaller SQM states including the simplest one - metastable six-quark H dihyperon. The first results of the Dubna search experiments, with considerable heating of matter and formation a dense strangeness abundant fireball (mixed phase?) in central nuclear collisions, is presented. Under these favourable conditions a candidate for H dihyperon is observed and an upper limit of production cross sections of this SQM state is estimated. Some prospects and advantages of further searches for light SQM states, using the JINR new superconducting accelerator - Nuclotron with energy 5-6 GeV per nucleon, are briefly outlined. 19 refs., 7 figs

  8. Dark matters

    International Nuclear Information System (INIS)

    Silk, Joseph

    2010-01-01

    One of the greatest mysteries in the cosmos is that it is mostly dark. That is, not only is the night sky dark, but also most of the matter and the energy in the universe is dark. For every atom visible in planets, stars and galaxies today there exists at least five or six times as much 'Dark Matter' in the universe. Astronomers and particle physicists today are seeking to unravel the nature of this mysterious but pervasive dark matter, which has profoundly influenced the formation of structure in the universe. Dark energy remains even more elusive, as we lack candidate fields that emerge from well established physics. I will describe various attempts to measure dark matter by direct and indirect means, and discuss the prospects for progress in unravelling dark energy.

  9. Reheating effects in the matter power spectrum and implications for substructure

    International Nuclear Information System (INIS)

    Erickcek, Adrienne L.; Sigurdson, Kris

    2011-01-01

    The thermal and expansion history of the Universe before big bang nucleosynthesis is unknown. We investigate the evolution of cosmological perturbations through the transition from an early matter era to radiation domination. We treat reheating as the perturbative decay of an oscillating scalar field into relativistic plasma and cold dark matter. After reheating, we find that subhorizon perturbations in the decay-produced dark matter density are significantly enhanced, while subhorizon radiation perturbations are instead suppressed. If dark matter originates in the radiation bath after reheating, this suppression may be the primary cutoff in the matter power spectrum. Conversely, for dark matter produced nonthermally from scalar decay, enhanced perturbations can drive structure formation during the cosmic dark ages and dramatically increase the abundance of compact substructures. For low reheat temperatures, we find that as much as 50% of all dark matter is in microhalos with M > or approx. 0.1M + at z≅100, compared to a fraction of ∼10 -10 in the standard case. In this scenario, ultradense substructures may constitute a large fraction of dark matter in galaxies today.

  10. Mixed Wino Dark Matter: consequences for direct, indirect and collider detection

    International Nuclear Information System (INIS)

    Baer, Howard; Mustafayev, Azar; Park, Eun-Kyung; Profumo, Stefano

    2005-01-01

    In supersymmetric models with gravity-mediated SUSY breaking and gaugino mass unification, the predicted relic abundance of neutralinos usually exceeds the strict limits imposed by the WMAP collaboration. One way to obtain the correct relic abundance is to abandon gaugino mass universality and allow a mixed wino-bino lightest SUSY particle (LSP). The enhanced annihilation and scattering cross sections of mixed wino dark matter (MWDM) compared to bino dark matter lead to enhanced rates for direct dark matter detection, as well as for indirect detection at neutrino telescopes and for detection of dark matter annihilation products in the galactic halo. For collider experiments, MWDM leads to a reduced but significant mass gap between the lightest neutralinos so that Z-tilde 2 two-body decay modes are usually closed. This means that dilepton mass edges- the starting point for cascade decay reconstruction at the CERN LHC- should be accessible over almost all of parameter space. Measurement of the m Z-tilde2 -m Z-tilde1 mass gap at LHC plus various sparticle masses and cross sections as a function of beam polarization at the International Linear Collider (ILC) would pinpoint MWDM as the dominant component of dark matter in the universe

  11. Domain Walls and Matter-Antimatter Domains in the Early Universe

    Directory of Open Access Journals (Sweden)

    Dolgov A.D.

    2017-01-01

    Full Text Available We suggest a scenario of spontaneous (or dynamical C and CP violation according to which it is possible to generate domains of matter and antimatter separated by cosmologically large distances. Such C(CP violation existed only in the early universe and later it disappeared with the only trace of generated matter and antimatter domains. So this scenario does not suffer from the problem of domain walls. According to this scenario the width of the domain wall should grow exponentially to prevent annihilation at the domain boundaries. Though there is a classical result obtained by Basu and Vilenkin that the width of the wall tends to the one of the stationary solution (constant physical width. That is why we considered thick domain walls in a de Sitter universe following paper by Basu and Vilenkin. However, we were interested not only in stationary solutions found therein, but also investigated the general case of domain wall evolution with time. When the wall thickness parameter, δ0 , is smaller than H−1/2 where H is the Hubble parameter in de Sitter space-time, then the stationary solutions exist, and initial field configurations tend with time to the stationary ones. However, there are no stationary solutions for δ0>H−1/2 We have calculated numerically the rate of the wall expansion in this case and have found that the width of the wall grows exponentially fast for δ0≫H−1 An explanation for the critical value δ0c=H−1/2 is also proposed.

  12. Superheavy dark matter through Higgs portal operators

    Science.gov (United States)

    Kolb, Edward W.; Long, Andrew J.

    2017-11-01

    The WIMPzilla hypothesis is that the dark matter is a super-weakly-interacting and superheavy particle. Conventionally, the WIMPzilla abundance is set by gravitational particle production during or at the end of inflation. In this study we allow the WIMPzilla to interact directly with Standard Model fields through the Higgs portal, and we calculate the thermal production (freeze-in) of WIMPzilla dark matter from the annihilation of Higgs boson pairs in the plasma. The two particle-physics model parameters are the WIMPzilla mass and the Higgs-WIMPzilla coupling. The two cosmological parameters are the reheating temperature and the expansion rate of the universe at the end of inflation. We delineate the regions of parameter space where either gravitational or thermal production is dominant, and within those regions we identify the parameters that predict the observed dark matter relic abundance. Allowing for thermal production opens up the parameter space, even for Planck-suppressed Higgs-WIMPzilla interactions.

  13. Exploring the invisible universe from black holes to superstrings

    CERN Document Server

    Baaquie, Belal E

    2015-01-01

    "Why"? Why is the world, the Universe the way it is? Is space infinitely large? How small is small? What happens when one continues to divide matter into ever smaller pieces? Indeed, what is matter? Is there anything else besides what can be seen? Pursuing the questions employing the leading notions of physics, one soon finds that the tangible and visible world dissolves — rather unexpectedly — into invisible things and domains that are beyond direct perception. A remarkable feature of our Universe is that most of its constituents turn out to be invisible, and this fact is brought out with great force by this book. Exploring the Invisible Universe covers the gamut of topics in advanced modern physics and provides extensive and well substantiated answers to these questions and many more. Discussed in a non-technical, yet also non-trivial manner, are topics dominated by invisible things — such as Black Holes and Superstrings as well as Fields, Gravitation, the Standard Model, Cosmology, Relativity, the O...

  14. Dragging force on galaxies due to streaming dark matter

    Science.gov (United States)

    Hara, Tetsuya; Miyoshi, Shigeru

    1990-01-01

    It has been reported that galaxies in large regions (approx. 10(exp 2) Mpc), including some clusters of galaxies, may be streaming coherently with velocities up to 600 km/sec or more with respect to the rest frame determined by the microwave background radiation. On the other hand, it is suggested that the dominant mass component of the universe is dark matter. Because we can only speculate the motion of dark matter from the galaxy motions, much attention should be paid to the correlation of velocities between the observed galaxies and cold dark matter. So the authors investigated whether such coherent large-scale streaming velocities are due to dark matter or only to baryonic objects which may be formed by piling up of gases due to some explosive events. It seems that, although each galaxy will not follow the motion of dark matter, clusters of galaxies may represent the velocity field of dark matter. The origin of the velocity field of dark matter would be due to the initial adiabatic perturbations and, in fact, the observed peculiar velocities of clusters are within the allowed region constrained from the isotropy of the microwave background radiation.

  15. EXTRAGALACTIC DARK MATTER AND DIRECT DETECTION EXPERIMENTS

    International Nuclear Information System (INIS)

    Baushev, A. N.

    2013-01-01

    Recent astronomical data strongly suggest that a significant part of the dark matter content of the Local Group and Virgo Supercluster is not incorporated into the galaxy halos and forms diffuse components of these galaxy clusters. A portion of the particles from these components may penetrate the Milky Way and make an extragalactic contribution to the total dark matter containment of our Galaxy. We find that the particles of the diffuse component of the Local Group are apt to contribute ∼12% to the total dark matter density near Earth. The particles of the extragalactic dark matter stand out because of their high speed (∼600 km s –1 ), i.e., they are much faster than the galactic dark matter. In addition, their speed distribution is very narrow (∼20 km s –1 ). The particles have an isotropic velocity distribution (perhaps, in contrast to the galactic dark matter). The extragalactic dark matter should provide a significant contribution to the direct detection signal. If the detector is sensitive only to the fast particles (v > 450 km s –1 ), then the signal may even dominate. The density of other possible types of the extragalactic dark matter (for instance, of the diffuse component of the Virgo Supercluster) should be relatively small and comparable with the average dark matter density of the universe. However, these particles can generate anomaly high-energy collisions in direct dark matter detectors.

  16. Probing the sign-changeable interaction between dark energy and dark matter with current observations

    Science.gov (United States)

    Guo, Juan-Juan; Zhang, Jing-Fei; Li, Yun-He; He, Dong-Ze; Zhang, Xin

    2018-03-01

    We consider the models of vacuum energy interacting with cold dark matter in this study, in which the coupling can change sigh during the cosmological evolution. We parameterize the running coupling b by the form b( a) = b 0 a+ b e(1- a), where at the early-time the coupling is given by a constant b e and today the coupling is described by another constant b 0. We explore six specific models with (i) Q = b( a) H 0 ρ 0, (ii) Q = b( a) H 0 ρ de, (iii) Q = b( a) H 0 ρ c, (iv) Q = b( a) Hρ 0, (v) Q = b( a) H ρ de, and (vi) Q = b( a) Hρ c. The current observational data sets we use to constrain the models include the JLA compilation of type Ia supernova data, the Planck 2015 distance priors data of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the Hubble constant direct measurement. We find that, for all the models, we have b 0 0 at around the 1 σ level, and b 0 and b e are in extremely strong anti-correlation. Our results show that the coupling changes sign during the evolution at about the 1 σ level, i.e., the energy transfer is from dark matter to dark energy when dark matter dominates the universe and the energy transfer is from dark energy to dark matter when dark energy dominates the universe.

  17. [Winter workshop on universalities in condensed matter physics, Les Houches, France, March 15-24, 1988]: [Foreign trip report

    International Nuclear Information System (INIS)

    Hu, Bambi.

    1988-01-01

    This paper reports on the travel of Bambi Hu to France for a workshop on Universalities in Condensed Matter Physics. A very brief discussion is given on the workshop. His paper titled ''Problem of Universality in Phase Transitions in Low-Symmetry Systems,'' is included in this report

  18. Use of ESI-FTICR-MS to Characterize Dissolved Organic Matter in Headwater Streams Draining Forest-Dominated and Pasture-Dominated Watersheds.

    Directory of Open Access Journals (Sweden)

    YueHan Lu

    Full Text Available Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS has proven to be a powerful technique revealing complexity and diversity of natural DOM molecules, but its application to DOM analysis in grazing-impacted agricultural systems remains scarce. In the present study, we presented a case study of using ESI-FTICR-MS in analyzing DOM from four headwater streams draining forest- or pasture-dominated watersheds in Virginia, USA. In all samples, most formulas were CHO compounds (71.8-87.9%, with other molecular series (CHOS, CHON, CHONS, and CHOP (N, S accounting for only minor fractions. All samples were dominated by molecules falling in the lignin-like region (H/C = 0.7-1.5, O/C = 0.1-0.67, suggesting the predominance of allochthonous, terrestrial plant-derived DOM. Relative to the two pasture streams, DOM formulas in the two forest streams were more similar, based on Jaccard similarity coefficients and nonmetric multidimensional scaling calculated from Bray-Curtis distance. Formulas from the pasture streams were characterized by lower proportions of aromatic formulas and lower unsaturation, suggesting that the allochthonous versus autochthonous contributions of organic matter to streams were modified by pasture land use. The number of condensed aromatic structures (CAS was higher for the forest streams, which is possibly due to the controlled burning in the forest-dominated watersheds and suggests that black carbon was mobilized from soils to streams. During 15-day biodegradation experiments, DOM from the two pasture streams was altered to a greater extent than DOM from the forest streams, with formulas with H/C and O/C ranges similar to protein (H/C = 1.5-2.2, O/C = 0.3-0.67, lipid (H/C = 1.5-2.0, O/C = 0-0.3, and unsaturated hydrocarbon (H/C = 0.7-1.5, O/C = 0-0.1 being the most bioreactive groups. Aromatic compound formulas including CAS were preferentially removed during combined light

  19. Particle creation in a universe filled with radiation and dust-like matter

    International Nuclear Information System (INIS)

    Villalba, V.M.

    1993-01-01

    In this article the particle creation process of scalar and spin 1/2 particles in a spatially open cosmological model associated with a universe filled with radiation and dustlike matter is analyzed. The Klein-Gordon and the Dirac equations are solved via separation of variables. After comparing the in and out vacua, we obtain that the number of created particles corresponds to Planckian and Fermi-Dirac distributions for the scalar and Dirac cases respectively. (author)

  20. Growth of matter perturbation in quintessence cosmology

    Science.gov (United States)

    Mulki, Fargiza A. M.; Wulandari, Hesti R. T.

    2017-01-01

    Big bang theory states that universe emerged from singularity with very high temperature and density, then expands homogeneously and isotropically. This theory gives rise standard cosmological principle which declares that universe is homogeneous and isotropic on large scales. However, universe is not perfectly homogeneous and isotropic on small scales. There exist structures starting from clusters, galaxies even to stars and planetary system scales. Cosmological perturbation theory is a fundamental theory that explains the origin of structures. According to this theory, the structures can be regarded as small perturbations in the early universe, which evolves as the universe expands. In addition to the problem of inhomogeneities of the universe, observations of supernovae Ia suggest that our universe is being accelerated. Various models of dark energy have been proposed to explain cosmic acceleration, one of them is cosmological constant. Because of several problems arise from cosmological constant, the alternative models have been proposed, one of these models is quintessence. We reconstruct growth of structure model following quintessence scenario at several epochs of the universe, which is specified by the effective equation of state parameters for each stage. Discussion begins with the dynamics of quintessence, in which exponential potential is analytically derived, which leads to various conditions of the universe. We then focus on scaling and quintessence dominated solutions. Subsequently, we review the basics of cosmological perturbation theory and derive formulas to investigate how matter perturbation evolves with time in subhorizon scales which leads to structure formation, and also analyze the influence of quintessence to the structure formation. From analytical exploration, we obtain the growth rate of matter perturbation and the existence of quintessence as a dark energy that slows down the growth of structure formation of the universe.

  1. Coupled dark matter-dark energy in light of near Universe observations

    CERN Document Server

    Honorez, Laura Lopez; Mena, Olga; Verde, Licia; Jimenez, Raul

    2010-01-01

    Cosmological analysis based on currently available observations are unable to rule out a sizeable coupling among the dark energy and dark matter fluids. We explore a variety of coupled dark matter-dark energy models, which satisfy cosmic microwave background constraints, in light of low redshift and near universe observations. We illustrate the phenomenology of different classes of dark coupling models, paying particular attention in distinguishing between effects that appear only on the expansion history and those that appear in the growth of structure. We find that while a broad class of dark coupling models are effectively models where general relativity (GR) is modified --and thus can be probed by a combination of tests for the expansion history and the growth of structure--, there is a class of dark coupling models where gravity is still GR, but the growth of perturbations is, in principle modified. While this effect is small in the specific models we have considered, one should bear in mind that an inco...

  2. Particle creation and non-equilibrium thermodynamical prescription of dark fluids for universe bounded by an event horizon

    Science.gov (United States)

    Saha, Subhajit; Biswas, Atreyee; Chakraborty, Subenoy

    2015-03-01

    In the present work, flat FRW model of the universe is considered to be an isolated open thermodynamical system where non-equilibrium prescription has been studied using the mechanism of particle creation. In the perspective of recent observational evidences, the matter distribution in the universe is assumed to be dominated by dark matter and dark energy. The dark matter is chosen as dust while for dark energy, the following choices are considered: (i) Perfect fluid with constant equation of state and (ii) Holographic dark energy. In both the cases, the validity of generalized second law of thermodynamics (GSLT) which states that the total entropy of the fluid as well as that of the horizon should not decrease with the evolution of the universe, has been examined graphically for universe bounded by the event horizon. It is found that GSLT holds in both the cases with some restrictions on the interacting coupling parameter.

  3. Dark matter haloes: a multistream view

    Science.gov (United States)

    Ramachandra, Nesar S.; Shandarin, Sergei F.

    2017-09-01

    Mysterious dark matter constitutes about 85 per cent of all masses in the Universe. Clustering of dark matter plays a dominant role in the formation of all observed structures on scales from a fraction to a few hundreds of Mega-parsecs. Galaxies play a role of lights illuminating these structures so they can be observed. The observations in the last several decades have unveiled opulent geometry of these structures currently known as the cosmic web. Haloes are the highest concentrations of dark matter and host luminous galaxies. Currently the most accurate modelling of dark matter haloes is achieved in cosmological N-body simulations. Identifying the haloes from the distribution of particles in N-body simulations is one of the problems attracting both considerable interest and efforts. We propose a novel framework for detecting potential dark matter haloes using the field unique for dark matter-multistream field. The multistream field emerges at the non-linear stage of the growth of perturbations because the dark matter is collisionless. Counting the number of velocity streams in gravitational collapses supplements our knowledge of spatial clustering. We assume that the virialized haloes have convex boundaries. Closed and convex regions of the multistream field are hence isolated by imposing a positivity condition on all three eigenvalues of the Hessian estimated on the smoothed multistream field. In a single-scale analysis of high multistream field resolution and low softening length, the halo substructures with local multistream maxima are isolated as individual halo sites.

  4. Star cluster evolution in dark matter dominated galaxies

    NARCIS (Netherlands)

    Praagman, Anneke; Hurley, Jarrod; Power, Chris

    We investigate the influence of the external tidal field of a dark matter halo on the dynamical evolution of star clusters using direct N-body simulations, where we assume that the halo is described by a Navarro, Frenk and White mass profile which has an inner density cusp. We assess how varying the

  5. Emissions from residential energy use dominate exposure to ambient fine particulate matter in India

    Science.gov (United States)

    Conibear, L.; Butt, E. W.; Knote, C. J.; Arnold, S.; Spracklen, D. V.

    2017-12-01

    Exposure to ambient particulate matter of less than 2.5 µm in diameter (PM2.5) is a leading cause of disease burden in India. Information on the source contributions to the burden of disease attributable to ambient PM2.5 exposure is critical to support the national and sub-national control of air pollution. Previous studies analysing the contributions of different emission sectors to disease burden in India have been limited by coarse model resolutions and a lack of extensive PM2.5 observations before 2016. We use a regional numerical weather prediction model online-coupled with chemistry, evaluated against extensive surface observations, to make the first high resolution study of the contributions of seven emission sectors to the disease burden associated with ambient PM2.5 exposure in India. We find that residential energy use is the dominant contributing emission sector. Removing air pollution emissions from residential energy use would reduce population-weighted annual mean ambient PM2.5 concentrations by 52%, reducing the number of premature mortalities caused by exposure to ambient PM2.5 by 26%, equivalent to 268,000 (95% uncertainty interval (95UI): 167,000-360,000) lives every year. The smaller fractional reduction in mortality burden is due to the non-linear exposure-response relationship at the high PM2.5 concentrations observed across India and consequently large reductions in emissions are required to reduce the health burden from ambient PM2.5 exposure in India. Keywords: ambient air quality, India, residential energy use, health impact, particulate matter, WRF-Chem

  6. Cosmic evolution in a cyclic universe

    International Nuclear Information System (INIS)

    Steinhardt, Paul J.; Turok, Neil

    2002-01-01

    Based on concepts drawn from the ekpyrotic scenario and M theory, we elaborate our recent proposal of a cyclic model of the universe. In this model, the universe undergoes an endless sequence of cosmic epochs which begin with the universe expanding from a 'big bang' and end with the universe contracting to a 'big crunch'. Matching from 'big crunch' to 'big bang' is performed according to the prescription recently proposed with Khoury, Ovrut and Seiberg. The expansion part of the cycle includes a period of radiation and matter domination followed by an extended period of cosmic acceleration at low energies. The cosmic acceleration is crucial in establishing the flat and vacuous initial conditions required for ekpyrosis and for removing the entropy, black holes, and other debris produced in the preceding cycle. By restoring the universe to the same vacuum state before each big crunch, the acceleration ensures that the cycle can repeat and that the cyclic solution is an attractor

  7. NASA’s Universe of Learning: Engaging Subject Matter Experts to Support Museum Alliance Science Briefings

    Science.gov (United States)

    Marcucci, Emma; Slivinski, Carolyn; Lawton, Brandon L.; Smith, Denise A.; Squires, Gordon K.; Biferno, Anya A.; Lestition, Kathleen; Cominsky, Lynn R.; Lee, Janice C.; Rivera, Thalia; Walker, Allyson; Spisak, Marilyn

    2018-06-01

    NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University and is part of the NASA SMD Science Activation Collective. The NASA’s Universe of Learning projects pull on the expertise of subject matter experts (scientist and engineers) from across the broad range of NASA Astrophysics themes and missions. One such project, which draws strongly on the expertise of the community, is the NASA’s Universe of Learning Science Briefings, which is done in collaboration with the NASA Museum Alliance. This collaboration presents a monthly hour-long discussion on relevant NASA astrophysics topics or events to an audience composed largely of informal educators from informal learning environments. These professional learning opportunities use experts and resources within the astronomical community to support increased interest and engagement of the informal learning community in NASA Astrophysics-related concepts and events. Briefings are designed to create a foundation for this audience using (1) broad science themes, (2) special events, or (3) breaking science news. The NASA’s Universe of Learning team engages subject matter experts to be speakers and present their science at these briefings to provide a direct connection to NASA Astrophysics science and provide the audience an opportunity to interact directly with scientists and engineers involved in NASA missions. To maximize the usefulness of the Museum Alliance Science Briefings, each briefing highlights resources related to the science theme to support informal educators in incorporating science content into their venues and/or interactions with the public. During this

  8. Seven (and a half) reasons to believe in mirror matter: from neutrino puzzles to the inferred dark matter in the universe

    International Nuclear Information System (INIS)

    Foot, R.

    2001-02-01

    Parity and time reversal are obvious and plausible candidates for fundamental symmetries of nature. Hypothesising that these symmetries exist implies the existence of a new form of matter, called mirror matter. The mirror matter theory (or exact parity model) makes four main predictions: 1) Dark matter in the form of mirror matter should exist in the Universe (i.e. mirror galaxies, stars, planets, meteoroids...), 2) Maximal ordinary neutrino - mirror neutrino oscillations if neutrinos have mass, 3) Orthopositronium should have a shorter effective lifetime than predicted by QED (in 'vacuum' experiments) because of the effects of photon-mirror photon mixing and 4) Higgs production and decay rate should be 50% lower than in the standard model due to Higgs mirror - Higgs mixing (assuming that the separation of the Higgs masses is larger than their decay widths). At the present time there is strong experimental/observational evidence supporting the first three of these predictions, while the fourth one is not tested yet because the Higgs boson, predicted in the standard model of particle physics, is yet to be found. This experimental/observational evidence is rich and varied ranging from the atmospheric and solar neutrino deficits, MACHO gravitational microlensing events, strange properties of extra-solar planets, the existence of 'isolated' planets, orthopositronium lifetime anomaly, Tunguska and other strange 'meteor' events including perhaps, the origin of the moon. The purpose of this article is to provide a not too technical review of these ideas along with some new results

  9. Improvements on a Unified Dark Matter Model

    Directory of Open Access Journals (Sweden)

    Del Popolo A.

    2016-06-01

    Full Text Available We study, by means of a spherical collapse model, the effect of shear, rotation, and baryons on a generalized Chaplygin gas (gCg dominated universe. We show that shear, rotation, and the presence of baryons slow down the collapse compared to the simple spherical collapse model. The slowing down in the growth of density perturbation is able to solve the instability of the unified dark matter (UDM models described in previous papers (e.g. Sandvik et al. 2004 at the linear perturbation level, as also shown by a direct comparison of our model with previous results.

  10. Dark matter detection - II

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the mysterious missing mass of the universe has become one of the big challenges of today's particle physics and cosmology. Astronomical observations show that only 1% of the matter of the universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world-wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  11. Dark matter detection - I

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the mysterious missing mass of the universe has become one of the big challenges of today's particle physics and cosmology. Astronomical observations show that only 1% of the matter of the universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world-wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  12. Dark matter detection - III

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the missing mass of the universe has become one of the big challenges of todays particle physics and cosmology. Astronomical observations show that only 1% of the matter of the Universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the Universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world- wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  13. 77 FR 16890 - In the Matter of ProElite, Inc. and Universal Guardian Holdings, Inc.: Order of Suspension of...

    Science.gov (United States)

    2012-03-22

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] In the Matter of ProElite, Inc. and Universal Guardian Holdings, Inc.: Order of Suspension of Trading March 20, 2012. It appears to the Securities and... information concerning the securities of Universal Guardian Holdings, Inc. because it has not filed any...

  14. Life, the universe ... and nothing?; Science still can't explain what happened to half of everything

    CERN Multimedia

    Davidson, K

    2002-01-01

    New measurements at the Stanford Linear Accelerator Centre have refined measurements of sub-atomic particles that explain why there is a dominance of matter over antimatter in the Universe. The results partially confirm an announcement made last year that describes the imbalance in these physical opposites (1 page).

  15. Detection prospects for high energy neutrino sources from the anisotropic matter distribution in the local universe

    DEFF Research Database (Denmark)

    Mertsch, Philipp; Rameez, Mohamed; Tamborra, Irene

    2017-01-01

    Constraints on the number and luminosity of the sources of the cosmic neutrinos detected by IceCube have been set by targeted searches for point sources. We set complementary constraints by using the 2MASS Redshift Survey (2MRS) catalogue, which maps the matter distribution of the local Universe....... Assuming that the distribution of the neutrino sources follows that of matter we look for correlations between `warm' spots on the IceCube skymap and the 2MRS matter distribution. Through Monte Carlo simulations of the expected number of neutrino multiplets and careful modelling of the detector performance...... (including that of IceCube-Gen2) we demonstrate that sources with local density exceeding $10^{-6} \\, \\text{Mpc}^{-3}$ and neutrino luminosity $L_{\

  16. The search for Dark Matter in our galaxy; Suche nach Dunkler Materie in unserer Galaxie

    Energy Technology Data Exchange (ETDEWEB)

    Eitel, K. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Kernphysik; Boer, W. de [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Experimentelle Kernphysik

    2007-07-01

    The matter content in galaxies like the Milky Way as well as in the entire Universe is dominated by Dark Matter (DM). The nature of this DM is one of the great enigmas of modern astroparticle physics. A promising candidate for this DM is a weakly interacting massive particle (WIMP). DM can then be detected directly via rare elastic collisions of WIMPs with atomic nuclei in a well shielded underground detector or via the decay products from the annihilation of two WIMPs. Energetic gamma rays in cosmic radiation might therefore indicate an indirect signal of DM particles in our galaxy. We present two experimental approaches to search for WIMP Dark Matter. (orig.)

  17. Spacetime emergence of the robertson-walker universe from a matrix model.

    Science.gov (United States)

    Erdmenger, Johanna; Meyer, René; Park, Jeong-Hyuck

    2007-06-29

    Using a novel, string theory-inspired formalism based on a Hamiltonian constraint, we obtain a conformal mechanical system for the spatially flat four-dimensional Robertson-Walker Universe. Depending on parameter choices, this system describes either a relativistic particle in the Robertson-Walker background or metric fluctuations of the Robertson-Walker geometry. Moreover, we derive a tree-level M theory matrix model in this time-dependent background. Imposing the Hamiltonian constraint forces the spacetime geometry to be fuzzy near the big bang, while the classical Robertson-Walker geometry emerges as the Universe expands. From our approach, we also derive the temperature of the Universe interpolating between the radiation and matter dominated eras.

  18. Generalized second law of thermodynamics in quintom dominated universe

    International Nuclear Information System (INIS)

    Setare, M.R.

    2006-01-01

    In this Letter we will investigate the validity of the generalized second law of thermodynamics for the quintom model of dark energy. Reviewing briefly the quintom scenario of dark energy, we will study the conditions of validity of the generalized second law of thermodynamics in three cases: quintessence dominated, phantom dominated and transition from quintessence to phantom will be discussed

  19. Secretly asymmetric dark matter

    Science.gov (United States)

    Agrawal, Prateek; Kilic, Can; Swaminathan, Sivaramakrishnan; Trendafilova, Cynthia

    2017-01-01

    We study a mechanism where the dark matter number density today arises from asymmetries generated in the dark sector in the early Universe, even though the total dark matter number remains zero throughout the history of the Universe. The dark matter population today can be completely symmetric, with annihilation rates above those expected from thermal weakly interacting massive particles. We give a simple example of this mechanism using a benchmark model of flavored dark matter. We discuss the experimental signatures of this setup, which arise mainly from the sector that annihilates the symmetric component of dark matter.

  20. Investigating organic matter in Fanno Creek, Oregon, Part 1 of 3: estimating annual foliar biomass for a deciduous-dominant urban riparian corridor

    Science.gov (United States)

    Sobieszczyk, Steven; Keith, Mackenzie K.; Rounds, Stewart A.; Goldman, Jami H.

    2014-01-01

    For this study, we explored the amount, type, and distribution of foliar biomass that is deposited annually as leaf litter to Fanno Creek and its floodplain in Portland, Oregon, USA. Organic matter is a significant contributor to the decreased dissolved oxygen concentrations observed in Fanno Creek each year and leaf litter is amongst the largest sources of organic matter to the stream channel and floodplain. Using a combination of field measurements and light detection and ranging (LiDAR) point cloud data, the annual foliar biomass was estimated for 13 stream reaches along the creek. Biomass estimates were divided into two sets: (1) the annual foliage available from the entire floodplain overstory canopy, and (2) the annual foliage overhanging the stream, which likely contributes leaf litter directly to the creek each year. Based on these computations, an estimated 991 (±22%) metric tons (tonnes, t) of foliar biomass is produced annually above the floodplain, with about 136 t (±24%) of that foliage falling directly into Fanno Creek. The distribution of foliar biomass varies by reach, with between 150 and 640 t/km2 produced along the floodplain and between 400 and 1100 t/km2 available over the channel. Biomass estimates vary by reach based primarily on the density of tree cover, with forest-dominant reaches containing more mature deciduous trees with broader tree canopies than either wetland or urban-dominant reaches, thus supplying more organic material to the creek. By quantifying the foliar biomass along Fanno Creek we have provided a reach-scale assessment of terrestrial organic matter loading, thereby providing land managers useful information for planning future restoration efforts.

  1. Origin of structure in the Universe

    International Nuclear Information System (INIS)

    Halliwell, J.J.; Hawking, S.W.

    1985-01-01

    It is assumed that the Universe is in the quantum state defined by a path integral over compact four-metrics. This can be regarded as a boundary condition for the wave function of the Universe on superspace, the space of all three-metrics and matter field configurations on a three-surface. We extend previous work on finite-dimensional approximations to superspace to the full infinite-dimensional space. We treat the two homogeneous and isotropic degrees of freedom exactly and the others to second order. We justify this approximation by showing that the inhomogeneous or anisotropic modes start off in their ground state. We derive time-dependent Schroedinger equations for each mode. The modes remain in their ground state until their wavelength exceeds the horizon size in the period of exponential expansion. The ground-state fluctuations are then amplified by the subsequent expansion and the modes reenter the horizon in the matter- or radiation-dominated era in a highly excited state. We obtain a scale-free spectrum of density perturbations which could account for the origin of galaxies and all other structure in the Universe. The fluctuations would be compatible with observations of the microwave background if the mass of the scalar field that drives the inflation is 10 14 GeV or less

  2. Testing Universal Relations of Neutron Stars with a Nonlinear Matter-Gravity Coupling Theory

    Science.gov (United States)

    Sham, Y.-H.; Lin, L.-M.; Leung, P. T.

    2014-02-01

    Due to our ignorance of the equation of state (EOS) beyond nuclear density, there is still no unique theoretical model for neutron stars (NSs). It is therefore surprising that universal EOS-independent relations connecting different physical quantities of NSs can exist. Lau et al. found that the frequency of the f-mode oscillation, the mass, and the moment of inertia are connected by universal relations. More recently, Yagi and Yunes discovered the I-Love-Q universal relations among the mass, the moment of inertia, the Love number, and the quadrupole moment. In this paper, we study these universal relations in the Eddington-inspired Born-Infeld (EiBI) gravity. This theory differs from general relativity (GR) significantly only at high densities due to the nonlinear coupling between matter and gravity. It thus provides us an ideal case to test how robust the universal relations of NSs are with respect to the change of the gravity theory. Due to the apparent EOS formulation of EiBI gravity developed recently by Delsate and Steinhoff, we are able to study the universal relations in EiBI gravity using the same techniques as those in GR. We find that the universal relations in EiBI gravity are essentially the same as those in GR. Our work shows that, within the currently viable coupling constant, there exists at least one modified gravity theory that is indistinguishable from GR in view of the unexpected universal relations.

  3. Testing universal relations of neutron stars with a nonlinear matter-gravity coupling theory

    International Nuclear Information System (INIS)

    Sham, Y.-H.; Lin, L.-M.; Leung, P. T.

    2014-01-01

    Due to our ignorance of the equation of state (EOS) beyond nuclear density, there is still no unique theoretical model for neutron stars (NSs). It is therefore surprising that universal EOS-independent relations connecting different physical quantities of NSs can exist. Lau et al. found that the frequency of the f-mode oscillation, the mass, and the moment of inertia are connected by universal relations. More recently, Yagi and Yunes discovered the I-Love-Q universal relations among the mass, the moment of inertia, the Love number, and the quadrupole moment. In this paper, we study these universal relations in the Eddington-inspired Born-Infeld (EiBI) gravity. This theory differs from general relativity (GR) significantly only at high densities due to the nonlinear coupling between matter and gravity. It thus provides us an ideal case to test how robust the universal relations of NSs are with respect to the change of the gravity theory. Due to the apparent EOS formulation of EiBI gravity developed recently by Delsate and Steinhoff, we are able to study the universal relations in EiBI gravity using the same techniques as those in GR. We find that the universal relations in EiBI gravity are essentially the same as those in GR. Our work shows that, within the currently viable coupling constant, there exists at least one modified gravity theory that is indistinguishable from GR in view of the unexpected universal relations.

  4. Universality in the phase behavior of soft matter: a law of corresponding states.

    Science.gov (United States)

    Malescio, G

    2006-10-01

    We show that the phase diagram of substances whose molecular structure changes upon varying the thermodynamic parameters can be mapped, through state-dependent scaling, onto the phase diagram of systems of molecules having fixed structure. This makes it possible to identify broad universality classes in the complex phase scenario exhibited by soft matter, and enlightens a surprisingly close connection between puzzling phase phenomena and familiar behaviors. The analysis presented provides a straightforward way for deriving the phase diagram of soft substances from that of simpler reference systems. This method is applied here to study the phase behavior exhibited by two significative examples of soft matter with temperature-dependent molecular structure: thermally responsive colloids and polymeric systems. A region of inverse melting, i.e., melting upon isobaric cooling, is predicted at relatively low pressure and temperature in polymeric systems.

  5. Distinguishing Supersymmetry From Universal Extra Dimensions or Little Higgs Models With Dark Matter Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; Zaharijas, Gabrijela; /Fermilab

    2006-12-01

    There are compelling reasons to think that new physics will appear at or below the TeV-scale. It is not known what form this new physics will take, however. Although The Large Hadron collider is very likely to discover new particles associated with the TeV-scale, it may be difficult for it to determine the nature of those particles, whether superpartners, Kaluza-Klein modes or other states. In this article, we consider how direct and indirect dark matter detection experiments may provide information complementary to hadron colliders, which can be used to discriminate between supersymmetry, models with universal extra dimensions, and Little Higgs theories. We find that, in many scenarios, dark matter experiments can be effectively used to distinguish between these possibilities.

  6. Supersymmetric dark-matter Q-balls and their interactions in matter

    International Nuclear Information System (INIS)

    Kusenko, Alexander; Loveridge, Lee C.; Shaposhnikov, Mikhail

    2005-01-01

    Supersymmetric extensions of the Standard Model contain nontopological solitons, Q-balls, which can be stable and can be a form of cosmological dark matter. Understanding the interaction of SUSY Q-balls with matter fermions is important for both astrophysical limits and laboratory searches for these dark-matter candidates. We show that a baryon scattering off a baryonic SUSY Q-ball can convert into its antiparticle with a high probability, while the baryon number of the Q-ball is increased by two units. For a SUSY Q-ball interacting with matter, this process dominates over those previously discussed in the literature

  7. On the Origin of the Dark Matter/Energy in the Universe and the Pioneer Anomaly

    Directory of Open Access Journals (Sweden)

    Abraham A. Ungar

    2008-07-01

    Full Text Available Einstein's special relativity is a theory rich of paradoxes, one of which is the recently discovered Relativistic Invariant Mass Paradox. According to this Paradox, the relativistic invariant mass of a galaxy of moving stars exceeds the sum of the relativistic invariant masses of the constituent stars owing to their motion relative to each other. This excess of mass is the mass of virtual matter that has no physical properties other than positive relativistic invariant mass and, hence, that reveals its presence by no means other than gravity. As such, this virtual matter is the dark matter that cosmologists believe is necessary in order to supply the missing gravity that keeps galaxies stable. Based on the Relativistic Invariant Mass Paradox we offer in this article a model which quantifies the anomalous acceleration of Pioneer 10 and 11 spacecrafts and other deep space missions, and explains the presence of dark matter and dark energy in the universe. It turns out that the origin of dark matter and dark energy in the Universe lies in the Paradox, and that the origin of the Pioneer anomaly results from neglecting the Paradox. In order to appreciate the physical significance of the Paradox within the frame of Einstein's special theory of relativity, following the presentation of the Paradox we demonstrate that the Paradox is responsible for the extension of the kinetic energy theorem and of the additivity of energy and momentum from classical to relativistic mechanics. Clearly, the claim that the acceleration of Pioneer 10 and 11 spacecrafts is anomalous is incomplete, within the frame of Einstein's special relativity, since those who made the claim did not take into account the presence of the Relativistic Invariant Mass Paradox (which is understandable since the Paradox, published in the author's 2008 book, was discovered by the author only recently. It remains to test how well the Paradox accords with observations.

  8. Dark Matter

    Indian Academy of Sciences (India)

    What You See Ain't What. You Got, Resonance, Vol.4,. No.9,1999. Dark Matter. 2. Dark Matter in the Universe. Bikram Phookun and Biman Nath. In Part 11 of this article we learnt that there are compelling evidences from dynamics of spiral galaxies, like our own, that there must be non-luminous matter in them. In this.

  9. Probing Models of Dark Matter and the Early Universe

    Science.gov (United States)

    Orlofsky, Nicholas David

    This thesis discusses models for dark matter (DM) and their behavior in the early universe. An important question is how phenomenological probes can directly search for signals of DM today. Another topic of investigation is how the DM and other processes in the early universe must evolve. Then, astrophysical bounds on early universe dynamics can constrain DM. We will consider these questions in the context of three classes of DM models--weakly interacting massive particles (WIMPs), axions, and primordial black holes (PBHs). Starting with WIMPs, we consider models where the DM is charged under the electroweak gauge group of the Standard Model. Such WIMPs, if generated by a thermal cosmological history, are constrained by direct detection experiments. To avoid present or near-future bounds, the WIMP model or cosmological history must be altered in some way. This may be accomplished by the inclusion of new states that coannihilate with the WIMP or a period of non-thermal evolution in the early universe. Future experiments are likely to probe some of these altered scenarios, and a non-observation would require a high degree of tuning in some of the model parameters in these scenarios. Next, axions, as light pseudo-Nambu-Goldstone bosons, are susceptible to quantum fluctuations in the early universe that lead to isocurvature perturbations, which are constrained by observations of the cosmic microwave background (CMB). We ask what it would take to allow axion models in the face of these strong CMB bounds. We revisit models where inflationary dynamics modify the axion potential and discuss how isocurvature bounds can be relaxed, elucidating the difficulties in these constructions. Avoiding disruption of inflationary dynamics provides important limits on the parameter space. Finally, PBHs have received interest in part due to observations by LIGO of merging black hole binaries. We ask how these PBHs could arise through inflationary models and investigate the opportunity

  10. Annihilation vs. Decay: Constraining dark matter properties from a gamma-ray detection

    CERN Document Server

    Palomares-Ruiz, Sergio

    2010-01-01

    Most proposed dark matter candidates are stable and are produced thermally in the early Universe. However, there is also the possibility of unstable (but long-lived) dark matter, produced thermally or otherwise. We propose a strategy to distinguish between dark matter annihilation and/or decay in the case that a clear signal is detected in gamma-ray observations of Milky Way dwarf spheroidal galaxies with current or future gamma-ray experiments. The sole measurement of the energy spectrum of an indirect signal would render the discrimination between these cases impossible. We show that by examining the dependence of the intensity and energy spectrum on the angular distribution of the emission, the origin could be identified as decay, annihilation, or both. In addition, once the type of signal is established, we show how these measurements could help to extract information about the dark matter properties, including mass, annihilation cross section, lifetime, dominant annihilation and decay channels, and the p...

  11. Dark Matter

    International Nuclear Information System (INIS)

    Audouze, J.; Tran Thanh Van, J.

    1988-01-01

    The book begins with the papers devoted to the experimental search of signatures of the dark matter which governs the evolution of the Universe as a whole. A series of contributions describe the presently considered experimental techniques (cryogenic detectors, supraconducting detectors...). A real dialogue concerning these techniques has been instaured between particle physicists and astrophysicists. After the progress report of the particle physicists, the book provides the reader with an updated situation concerning the research in cosmology. The second part of the book is devoted to the analysis of the backgrounds at different energies such as the possible role of the cooling flows in the constitution of massive galactic halos. Any search of dark matter implies necessarily the analysis of the spatial distributions of the large scale structures of the Universe. This report is followed by a series of statistical analyses of these distributions. These analyses concern mainly universes filled up with cold dark matter. The last paper of this third part concerns the search of clustering in the spatial distribution of QSOs. The presence of dark matter should affect the solar neighborhood and related to the existence of galactic haloes. The contributions are devoted to the search of such local dark matter. Primordial nucleosynthesis provides a very powerful tool to set up quite constraining limitations on the overall baryonic density. Even if on takes into account the inhomogeneities in density possibly induced by the Quark-Hadron transition, this baryonic density should be much lower than the overall density deduced from the dynamical models of Universe or the inflationary theories

  12. Gauge/gravity duality. Exploring universal features in quantum matter

    Energy Technology Data Exchange (ETDEWEB)

    Klug, Steffen

    2013-07-09

    density states. Thus, all aspects of quantum field theory relevant for the application of linear response theory, the computation of correlation functions, and the description of critical phenomena are covered with emphasis on elucidating connections between thermodynamics, statistical physics, statistical field theory and quantum field theory. Furthermore, the renormalization group formalism in the context of effective field theories and critical phenomena will be developed explaining the critical exponents in terms of hyperscaling relations. The main topics covered in this thesis are: the analysis of optical properties of holographic metals and their relation to the Drude-Sommerfeld model, an attempt to understand Homes' law of high temperature superconductors holographically by computing different diffusion constants and related timescales, the mesonic spectrum at zero temperature and holographic quantum matter at finite density. Crucially for the application of this framework to strongly correlated condensed matter systems is the renormalization flow interpretation of the AdS{sub 5}/CFT{sub 4} correspondence and the resulting emergent holographic duals relaxing most of the constraints of the original formulation. These so-called bottom up approaches are geared especially towards applications in condensed matter physics and to linear response theory, via the central operational prescription, the holographic fluctuation-dissipation theorem. The main results of the present work are an extensive analysis of the R-charge- and momentum diffusion in holographic s- and p-wave superconductors, described by Einstein-Maxwell theory and the Einstein-Yang-Mills model, respectively, and the lessons learned how to improve the understanding of universal features in such systems. Secondly, the stability of cold holographic quantum matter is investigated. So far, there are no instabilities detected in such systems. Instead, an interesting additional diffusion mode is discovered

  13. Gauge/gravity duality. Exploring universal features in quantum matter

    International Nuclear Information System (INIS)

    Klug, Steffen

    2013-01-01

    of quantum field theory relevant for the application of linear response theory, the computation of correlation functions, and the description of critical phenomena are covered with emphasis on elucidating connections between thermodynamics, statistical physics, statistical field theory and quantum field theory. Furthermore, the renormalization group formalism in the context of effective field theories and critical phenomena will be developed explaining the critical exponents in terms of hyperscaling relations. The main topics covered in this thesis are: the analysis of optical properties of holographic metals and their relation to the Drude-Sommerfeld model, an attempt to understand Homes' law of high temperature superconductors holographically by computing different diffusion constants and related timescales, the mesonic spectrum at zero temperature and holographic quantum matter at finite density. Crucially for the application of this framework to strongly correlated condensed matter systems is the renormalization flow interpretation of the AdS 5 /CFT 4 correspondence and the resulting emergent holographic duals relaxing most of the constraints of the original formulation. These so-called bottom up approaches are geared especially towards applications in condensed matter physics and to linear response theory, via the central operational prescription, the holographic fluctuation-dissipation theorem. The main results of the present work are an extensive analysis of the R-charge- and momentum diffusion in holographic s- and p-wave superconductors, described by Einstein-Maxwell theory and the Einstein-Yang-Mills model, respectively, and the lessons learned how to improve the understanding of universal features in such systems. Secondly, the stability of cold holographic quantum matter is investigated. So far, there are no instabilities detected in such systems. Instead, an interesting additional diffusion mode is discovered, which can be interpreted as an ''R

  14. Astrophysics and the exploration of the universe; L'astrophysique et l'exploration de l'Univers

    Energy Technology Data Exchange (ETDEWEB)

    Turck-Chieze, S.; Garcia, R.A.; Brun, A.S.; Minier, V.; Andre, Ph.; Motte, F.; Mathis, St.; Foglizzo, Th.; Decourchelle, A.; Ballet, J.; Chaty, S.; Corbel, St.; Rodriguez, J.; Brahic, A.; Charnoz, S.; Ferrari, C.; Lagage, P.O.; Masset, F.; Pantin, E.; Sauvage, M.; Galliano, F.; Goldwurm, A.; Ballet, J.; Decourchelle, A.; Grenier, I.; Daddi, E.; Elbaz, D.; Bournaud, F.; Yvon, D.; Arnaud, M.; Teyssier, R.; Lehoucq, R.; Palanque-Delabrouille, N.; Lehoucq, R.; Cirelli, M.; Bonvin, C.; Mansoulie, B.; Ruhlmann-Kleider, V.; Refregier, A.; Brax, Ph.; Lavignac, St.; Starck, J.L.; Talvard, M.; Sauvage, M.; Cara, Ch.; Lagage, P.O.; Ferrari, C.; Rodriguez, L.; Sauvageot, J.L.; Lebrun, F.; Grenier, I.; Glicenstein, J.F.; Gerbier, G.

    2009-07-01

    This special issue of Clefs CEA journal is entirely devoted to astrophysics and to the exploration and probing of the Universe. A first part of this dossier, described here, makes a status of our present day knowledge about stars, planets, galaxies, the Universe structure and dark matter. Content: 1 - Stars seed the Universe: What does the Sun tell us?, Probing stellar interiors, From the Sun to the stars, A tour of stellar nurseries, How heavy elements arise, How supernovae explode, Supernova remnants, High-energy objects - sources for astonishment, Focus: A Probing the Universe across the entire light spectrum; 2 - Planets: a dance of small bodies, swirling around up to the finale of their birth: How our world was born, The rings of Saturn: a magnificent research laboratory, Planetary cocoons; 3 - Galaxies: a richly paradoxical evolution: The active life of galaxies, A mysterious black hole, Elucidating the cosmic ray acceleration mechanism, Seeking out the great ancestors, The formation of galaxies: a story of paradoxes, The morphogenesis of galaxies; 4 - The Universe, a homogeneous 'soup' that has turned into a hierarchical structure: The grand thermal history of the Universe, The cosmic web, The formation of the structures of the Universe: the interplay of models, Does the Universe have a shape? Is it finite, or infinite?; 5 - Odyssey across the dark side of the Universe: The puzzle of dark matter, Astrophysics and the observation of dark matter, The theory of dark matter, Could dark matter be generated some day at LHC? A Universe dominated by dark energy, Astrophysics and the observation of dark energy, Theories of dark energy, The matter-antimatter asymmetry of the Universe; 6 - Journey into the lights of the Universe: Microwave - ESA Planck Surveyor, Submillimeter and infrared - ArTeMis, Herschel Space Observatory, VLT-VISIR, Cassini-CIRS, Visible - SoHo-GOLF, X-ray - XMM-Newton, Gamma ray - INTEGRAL, Fermi Gamma-Ray Space Telescope, HESS

  15. Cosmic selection rule for the glueball dark matter relic density

    Science.gov (United States)

    Soni, Amarjit; Xiao, Huangyu; Zhang, Yue

    2017-10-01

    We point out a unique mechanism to produce the relic abundance for the glueball dark matter from a gauged SU (N )d hidden sector which is bridged to the standard model sector through heavy vectorlike quarks colored under gauge interactions from both sides. A necessary ingredient of our assumption is that the vectorlike quarks, produced either thermally or nonthermally, are abundant enough to dominate the universe for some time in the early universe. They later undergo dark color confinement and form unstable vectorlike-quarkonium states which annihilate decay and reheat the visible and dark sectors. The ratio of entropy dumped into two sectors and the final energy budget in the dark glueballs is only determined by low energy parameters, including the intrinsic scale of the dark SU (N )d , Λd, and number of dark colors, Nd, but depend weakly on parameters in the ultraviolet such as the vectorlike quark mass or the initial condition. We call this a cosmic selection rule for the glueball dark matter relic density.

  16. Inflation in a closed universe

    Science.gov (United States)

    Ratra, Bharat

    2017-11-01

    To derive a power spectrum for energy density inhomogeneities in a closed universe, we study a spatially-closed inflation-modified hot big bang model whose evolutionary history is divided into three epochs: an early slowly-rolling scalar field inflation epoch and the usual radiation and nonrelativistic matter epochs. (For our purposes it is not necessary to consider a final dark energy dominated epoch.) We derive general solutions of the relativistic linear perturbation equations in each epoch. The constants of integration in the inflation epoch solutions are determined from de Sitter invariant quantum-mechanical initial conditions in the Lorentzian section of the inflating closed de Sitter space derived from Hawking's prescription that the quantum state of the universe only include field configurations that are regular on the Euclidean (de Sitter) sphere section. The constants of integration in the radiation and matter epoch solutions are determined from joining conditions derived by requiring that the linear perturbation equations remain nonsingular at the transitions between epochs. The matter epoch power spectrum of gauge-invariant energy density inhomogeneities is not a power law, and depends on spatial wave number in the way expected for a generalization to the closed model of the standard flat-space scale-invariant power spectrum. The power spectrum we derive appears to differ from a number of other closed inflation model power spectra derived assuming different (presumably non de Sitter invariant) initial conditions.

  17. Dark Matter Annihilation at the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Timothy Ryan [Univ. of California, Santa Cruz, CA (United States)

    2013-06-01

    Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately ve times as much dark matter as baryonic matter. However, e orts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the rst multiwavelength analysis of the GC, with suitable e ective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing e orts which have successfully detected an excess in -ray emission from the region immediately surrounding the GC, which is di cult to describe in terms of standard di use emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I discuss the

  18. Outer-2-independent domination in graphs

    Indian Academy of Sciences (India)

    Outer-2-independent domination in graphs. MARCIN KRZYWKOWSKI1,2,∗, DOOST ALI MOJDEH3 and MARYEM RAOOFI4. 1Department of Pure and Applied Mathematics, University of Johannesburg,. Johannesburg, South Africa. 2Faculty of Electronics, Telecommunications and Informatics, Gdansk University.

  19. A small amount of mini-charged dark matter could cool the baryons in the early Universe.

    Science.gov (United States)

    Muñoz, Julian B; Loeb, Abraham

    2018-05-01

    The dynamics of our Universe is strongly influenced by pervasive-albeit elusive-dark matter, with a total mass about five times the mass of all the baryons 1,2 . Despite this, its origin and composition remain a mystery. All evidence for dark matter relies on its gravitational pull on baryons, and thus such evidence does not require any non-gravitational coupling between baryons and dark matter. Nonetheless, some small coupling would explain the comparable cosmic abundances of dark matter and baryons 3 , as well as solving structure-formation puzzles in the pure cold-dark-matter models 4 . A vast array of observations has been unable to find conclusive evidence for any non-gravitational interactions of baryons with dark matter 5-9 . Recent observations by the EDGES collaboration, however, suggest that during the cosmic dawn, roughly 200 million years after the Big Bang, the baryonic temperature was half of its expected value 10 . This observation is difficult to reconcile with the standard cosmological model but could be explained if baryons are cooled down by interactions with dark matter, as expected if their interaction rate grows steeply at low velocities 11 . Here we report that if a small fraction-less than one per cent-of the dark matter has a mini-charge, a million times smaller than the charge on the electron, and a mass in the range of 1-100 times the electron mass, then the data 10 from the EDGES experiment can be explained while remaining consistent with all other observations. We also show that the entirety of the dark matter cannot have a mini-charge.

  20. The Universe and Life

    Directory of Open Access Journals (Sweden)

    Eduard Kazantsev

    2016-02-01

    Full Text Available This article discusses some of the unsolved problems of modern cosmology, which lead to the need to consider the role of living matter in the evolution of the universe. The author proposes the hy- pothesis of the emergence, in the process of evolution of the universe, “biological vacuum” (physical antipode, which has a purpose of improving physical matter until the appearance of living matter. Substantiates the idea that the “biological vacuum” in the “live” dark matter with the participation of a living organism as an intermediary. The model of a stationary universe, as the local group of galaxies, placed in a halo of “live” dark matter. At the end of the article the author predicts the final evolution of the physical universe (after the collapse of the physical fields and particles as the begin- ning of a new stage of evolution of the “live” dark matter.

  1. Dark Matter Detection: Current Status

    International Nuclear Information System (INIS)

    Akerib, Daniel S.

    2011-01-01

    Overwhelming observational evidence indicates that most of the matter in the Universe consists of non-baryonic dark matter. One possibility is that the dark matter is Weakly-Interacting Massive Particles (WIMPs) that were produced in the early Universe. These relics could comprise the Milky Way's dark halo and provide evidence for new particle physics, such as Supersymmetry. This talk focuses on the status of current efforts to detect dark matter by testing the hypothesis that WIMPs exist in the galactic halo. WIMP searches have begun to explore the region of parameter space where SUSY particles could provide dark matter candidates.

  2. On finite density effects on cosmic reheating and moduli decay and implications for Dark Matter production

    International Nuclear Information System (INIS)

    Drewes, Marco

    2014-01-01

    We study the damping of an oscillating scalar field in a Friedmann-Robertson-Walker spacetime by perturbative processes, taking into account the back-reaction of the plasma of decay products on the damping rate. The scalar field may be identified with the inflaton, in which case this process resembles the reheating of the universe after inflation. It can also model a modulus that dominates the energy density of the universe at later times. We find that the finite density corrections to the damping rate can have a drastic effect on the thermal history and considerably increase both, the maximal temperature in the early universe and the reheating temperature at the onset of the radiation dominated era. As a result the abundance of some Dark Matter candidates may be considerably larger than previously estimated. We give improved analytic estimates for the maximal and the reheating temperatures and confirm them numerically in a simple model

  3. Modified dark matter: Relating dark energy, dark matter and baryonic matter

    Science.gov (United States)

    Edmonds, Douglas; Farrah, Duncan; Minic, Djordje; Ng, Y. Jack; Takeuchi, Tatsu

    Modified dark matter (MDM) is a phenomenological model of dark matter, inspired by gravitational thermodynamics. For an accelerating universe with positive cosmological constant (Λ), such phenomenological considerations lead to the emergence of a critical acceleration parameter related to Λ. Such a critical acceleration is an effective phenomenological manifestation of MDM, and it is found in correlations between dark matter and baryonic matter in galaxy rotation curves. The resulting MDM mass profiles, which are sensitive to Λ, are consistent with observational data at both the galactic and cluster scales. In particular, the same critical acceleration appears both in the galactic and cluster data fits based on MDM. Furthermore, using some robust qualitative arguments, MDM appears to work well on cosmological scales, even though quantitative studies are still lacking. Finally, we comment on certain nonlocal aspects of the quanta of modified dark matter, which may lead to novel nonparticle phenomenology and which may explain why, so far, dark matter detection experiments have failed to detect dark matter particles.

  4. Searching dark matter at LHC

    International Nuclear Information System (INIS)

    Nojiri, Mihoko M.

    2007-01-01

    We now believe that the dark matter in our Universe must be an unknown elementary particle, which is charge neutral and weakly interacting. The standard model must be extended to include it. The dark matter was likely produced in the early universe from the high energy collisions of the particles. Now LHC experiment starting from 2008 will create such high energy collision to explore the nature of the dark matter. In this article we explain how dark matter and LHC physics will be connected in detail. (author)

  5. Neutrinos in the Early Universe, Kalb-Ramond Torsion and Matter-Antimatter Asymmetry

    Directory of Open Access Journals (Sweden)

    Mavromatos Nick E.

    2014-04-01

    Full Text Available The generation of a matter-antimatter asymmetry in the universe may be induced by the propagation of fermions in non-trivial, spherically asymmetric (and hence Lorentz violating gravitational backgrounds. Such backgrounds may characterise the epoch of the early universe. The key point in these models is that the background induces di_erent dispersion relations, hence populations, between fermions and antifermions, and thus CPT Violation (CPTV appears in thermal equilibrium. Species populations may freeze out leading to leptogenesis and baryogenesis. We consider here a string-inspired scenario, in which the CPTV is associated with a cosmological background with torsion provided by the Kalb-Ramond (KR antisymemtric tensor field of the string gravitational multiplet. In a four-dimensional space time this field is dual to a pseudoscalar “axionlike” field. The mixing of the KR field with an ordinary axion field can lead to the generation of a Majorana neutrino mass.

  6. 77 FR 4389 - In the Matter of Tornado Gold International Corp., Twin Faces East Entertainment Corp., Universal...

    Science.gov (United States)

    2012-01-27

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] In the Matter of Tornado Gold International Corp., Twin Faces East Entertainment Corp., Universal Ice Blast, Inc., US Farms, Inc., US Microbics... concerning the securities of Tornado Gold International Corp. because it has not filed any periodic reports...

  7. The dark side of matter

    International Nuclear Information System (INIS)

    Cline, D.

    2003-01-01

    The number of baryons (protons and neutrons) of the universe can be deduced from the relative abundances of light elements (deuterium, helium and lithium) that were generated during the very first minutes of the cosmic history. This calculation has shown that the baryonic matter represents only 5% of the total mass of the universe. As for neutrinos (hot dark matter), their very low mass restraints their contribution to only 0,3%. The spinning movement of galaxies requires the existence of huge quantity of matter that seems invisible (black matter). Astrophysicists have recently discovered that the universal expansion is accelerating and that the space geometry is euclidean, from these 2 facts they have deduced a value of the mass-energy density that implies the existence of something different from dark matter called dark energy and that is expected to represent about 70% of the mass of the universe. Physicists face the challenge of detecting black matter and black energy. The first attempt for detecting black matter began in 1997 when the UKDMC detector entered into service. Now more than half a dozen of detectors are searching for dark matter but till now in vain. A new generation of detectors (CDMS-2, ZEPLIN-2, CRESST-2 and Edelweiss-2) combining detection, new methods of particle discrimination and the study of the evolution of the signal over very long periods of time are progressively entering into operation. (A.C.)

  8. A Universe without Weak Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Harnik, Roni; Kribs, Graham D.; Perez, Gilad

    2006-04-07

    A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical ''Weakless Universe'' is matched to our Universe by simultaneously adjusting Standard Model and cosmological parameters. For instance, chemistry and nuclear physics are essentially unchanged. The apparent habitability of the Weakless Universe suggests that the anthropic principle does not determine the scale of electroweak breaking, or even require that it be smaller than the Planck scale, so long as technically natural parameters may be suitably adjusted. Whether the multi-parameter adjustment is realized or probable is dependent on the ultraviolet completion, such as the string landscape. Considering a similar analysis for the cosmological constant, however, we argue that no adjustments of other parameters are able to allow the cosmological constant to raise up even remotely close to the Planck scale while obtaining macroscopic structure. The fine-tuning problems associated with the electroweak breaking scale and the cosmological constant therefore appear to be qualitatively different from the perspective of obtaining a habitable universe.

  9. A Universe without Weak Interactions

    International Nuclear Information System (INIS)

    Harnik, R

    2006-01-01

    A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical ''Weakless Universe'' is matched to our Universe by simultaneously adjusting Standard Model and cosmological parameters. For instance, chemistry and nuclear physics are essentially unchanged. The apparent habitability of the Weakless Universe suggests that the anthropic principle does not determine the scale of electroweak breaking, or even require that it be smaller than the Planck scale, so long as technically natural parameters may be suitably adjusted. Whether the multi-parameter adjustment is realized or probable is dependent on the ultraviolet completion, such as the string landscape. Considering a similar analysis for the cosmological constant, however, we argue that no adjustments of other parameters are able to allow the cosmological constant to raise up even remotely close to the Planck scale while obtaining macroscopic structure. The fine-tuning problems associated with the electroweak breaking scale and the cosmological constant therefore appear to be qualitatively different from the perspective of obtaining a habitable universe

  10. A universe without weak interactions

    International Nuclear Information System (INIS)

    Harnik, Roni; Kribs, Graham D.; Perez, Gilad

    2006-01-01

    A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical ''weakless universe'' is matched to our Universe by simultaneously adjusting standard model and cosmological parameters. For instance, chemistry and nuclear physics are essentially unchanged. The apparent habitability of the weakless universe suggests that the anthropic principle does not determine the scale of electroweak breaking, or even require that it be smaller than the Planck scale, so long as technically natural parameters may be suitably adjusted. Whether the multiparameter adjustment is realized or probable is dependent on the ultraviolet completion, such as the string landscape. Considering a similar analysis for the cosmological constant, however, we argue that no adjustments of other parameters are able to allow the cosmological constant to raise up even remotely close to the Planck scale while obtaining macroscopic structure. The fine-tuning problems associated with the electroweak breaking scale and the cosmological constant therefore appear to be qualitatively different from the perspective of obtaining a habitable universe

  11. Baryogenesis in an inflationary universe

    International Nuclear Information System (INIS)

    Dodelson, S.

    1988-01-01

    The existence of matter in our universe today is a result of fundamental processes in the early universe. This matter is the remnant of an asymmetry between matter and anti-matter. How that asymmetry developed is the focus of this thesis. A statistical mechanical analysis is given of baryogenesis after an inflationary era

  12. Mirror matter as self-interacting dark matter

    International Nuclear Information System (INIS)

    Mohapatra, R.N.; Nussinov, S.; Teplitz, V.L.

    2002-01-01

    It has been argued that the observed core density profile of galaxies is inconsistent with having a dark matter particle that is collisionless and that alternative dark matter candidates which are self-interacting may explain observations better. One new class of self-interacting dark matter that has been proposed in the context of mirror universe models of particle physics is the mirror hydrogen atom, whose stability is guaranteed by the conservation of mirror baryon number. We show that the effective transport cross section for mirror hydrogen atoms has the right order of magnitude for solving the 'cuspy' halo problem. Furthermore, the suppression of dissipation effects for mirror atoms due to a higher mirror mass scale prevents the mirror halo matter from collapsing into a disk, strengthening the argument for mirror matter as galactic dark matter

  13. A correlation between the cosmic microwave background and large-scale structure in the Universe.

    Science.gov (United States)

    Boughn, Stephen; Crittenden, Robert

    2004-01-01

    Observations of distant supernovae and the fluctuations in the cosmic microwave background (CMB) indicate that the expansion of the Universe may be accelerating under the action of a 'cosmological constant' or some other form of 'dark energy'. This dark energy now appears to dominate the Universe and not only alters its expansion rate, but also affects the evolution of fluctuations in the density of matter, slowing down the gravitational collapse of material (into, for example, clusters of galaxies) in recent times. Additional fluctuations in the temperature of CMB photons are induced as they pass through large-scale structures and these fluctuations are necessarily correlated with the distribution of relatively nearby matter. Here we report the detection of correlations between recent CMB data and two probes of large-scale structure: the X-ray background and the distribution of radio galaxies. These correlations are consistent with those predicted by dark energy, indicating that we are seeing the imprint of dark energy on the growth of structure in the Universe.

  14. The isotropic Universe

    International Nuclear Information System (INIS)

    Raine, D.J.

    1981-01-01

    This introduction to contemporary ideas in cosmology differs from other books on the 'expanding Universe' in its emphasis on physical cosmology and on the physical basis of the general theory of relativity. It is considered that the remarkable degree of isotropy, rather than the expansion, can be regarded as the central observational feature of the Universe. The various theories and ideas in 'big-bang' cosmology are discussed, providing an insight into current problems. Chapter headings are: quality of matter; expanding Universe; quality of radiation; quantity of matter; general theory of relativity; cosmological models; cosmological tests; matter and radiation; limits of isotropy; why is the Universe isotropic; singularities; evolution of structure. (U.K.)

  15. The fact of the matter the first results of an experiment designed to find out why the universe is composed of matter have just been announced

    CERN Multimedia

    2001-01-01

    The PEP accelerator at SLAC was relaunched as a B-Factory in May 1999. It has just published its first results which do show the predicted asymmetry in the behaviour of B-mesons and anti-mesons. This is not enough however to account for all the matter in the universe (1 page).

  16. Origin of ΔNeff as a result of an interaction between dark radiation and dark matter

    International Nuclear Information System (INIS)

    Bjaelde, Ole Eggers; Das, Subinoy; Moss, Adam

    2012-01-01

    Results from the Wilkinson Microwave Anisotropy Probe (WMAP), Atacama Cosmology Telescope (ACT) and recently from the South Pole Telescope (SPT) have indicated the possible existence of an extra radiation component in addition to the well known three neutrino species predicted by the Standard Model of particle physics. In this paper, we explore the possibility of the apparent extra dark radiation being linked directly to the physics of cold dark matter (CDM). In particular, we consider a generic scenario where dark radiation, as a result of an interaction, is produced directly by a fraction of the dark matter density effectively decaying into dark radiation. At an early epoch when the dark matter density is negligible, as an obvious consequence, the density of dark radiation is also very small. As the Universe approaches matter radiation equality, the dark matter density starts to dominate thereby increasing the content of dark radiation and changing the expansion rate of the Universe. As this increase in dark radiation content happens naturally after Big Bang Nucleosynthesis (BBN), it can relax the possible tension with lower values of radiation degrees of freedom measured from light element abundances compared to that of the CMB. We numerically confront this scenario with WMAP+ACT and WMAP+SPT data and derive an upper limit on the allowed fraction of dark matter decaying into dark radiation

  17. The tensor bi-spectrum in a matter bounce

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debika; Sreenath, V.; Sriramkumar, L., E-mail: debika@physics.iitm.ac.in, E-mail: sreenath@lsu.edu, E-mail: sriram@physics.iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2015-11-01

    Matter bounces are bouncing scenarios wherein the universe contracts as in a matter dominated phase at early times. Such scenarios are known to lead to a scale invariant spectrum of tensor perturbations, just as de Sitter inflation does. In this work, we examine if the tensor bi-spectrum can discriminate between the inflationary and the bouncing scenarios. Using the Maldacena formalism, we analytically evaluate the tensor bi-spectrum in a matter bounce for an arbitrary triangular configuration of the wavevectors. We show that, over scales of cosmological interest, the non-Gaussianity parameter h{sub NL} that characterizes the amplitude of the tensor bi-spectrum is quite small when compared to the corresponding values in de Sitter inflation. During inflation, the amplitude of the tensor perturbations freeze on super-Hubble scales, a behavior that results in the so-called consistency condition relating the tensor bi-spectrum and the power spectrum in the squeezed limit. In contrast, in the bouncing scenarios, the amplitude of the tensor perturbations grow strongly as one approaches the bounce, which suggests that the consistency condition will not be valid in such situations. We explicitly show that the consistency relation is indeed violated in the matter bounce. We discuss the implications of the results.

  18. Coupled dark matter-dark energy in light of near universe observations

    International Nuclear Information System (INIS)

    Honorez, Laura Lopez; Reid, Beth A.; Verde, Licia; Jimenez, Raul; Mena, Olga

    2010-01-01

    Cosmological analysis based on currently available observations are unable to rule out a sizeable coupling among the dark energy and dark matter fluids. We explore a variety of coupled dark matter-dark energy models, which satisfy cosmic microwave background constraints, in light of low redshift and near universe observations. We illustrate the phenomenology of different classes of dark coupling models, paying particular attention in distinguishing between effects that appear only on the expansion history and those that appear in the growth of structure. We find that while a broad class of dark coupling models are effectively models where general relativity (GR) is modified — and thus can be probed by a combination of tests for the expansion history and the growth of structure —, there is a class of dark coupling models where gravity is still GR, but the growth of perturbations is, in principle modified. While this effect is small in the specific models we have considered, one should bear in mind that an inconsistency between reconstructed expansion history and growth may not uniquely indicate deviations from GR. Our low redshift constraints arise from cosmic velocities, redshift space distortions and dark matter abundance in galaxy voids. We find that current data constrain the dimensionless coupling to be |ξ| < 0.2, but prospects from forthcoming data are for a significant improvement. Future, precise measurements of the Hubble constant, combined with high-precision constraints on the growth of structure, could provide the key to rule out dark coupling models which survive other tests. We shall exploit as well weak equivalence principle violation arguments, which have the potential to highly disfavour a broad family of coupled models

  19. Chaotic universe model.

    Science.gov (United States)

    Aydiner, Ekrem

    2018-01-15

    In this study, we consider nonlinear interactions between components such as dark energy, dark matter, matter and radiation in the framework of the Friedman-Robertson-Walker space-time and propose a simple interaction model based on the time evolution of the densities of these components. By using this model we show that these interactions can be given by Lotka-Volterra type equations. We numerically solve these coupling equations and show that interaction dynamics between dark energy-dark matter-matter or dark energy-dark matter-matter-radiation has a strange attractor for 0 > w de  >-1, w dm  ≥ 0, w m  ≥ 0 and w r  ≥ 0 values. These strange attractors with the positive Lyapunov exponent clearly show that chaotic dynamics appears in the time evolution of the densities. These results provide that the time evolution of the universe is chaotic. The present model may have potential to solve some of the cosmological problems such as the singularity, cosmic coincidence, big crunch, big rip, horizon, oscillation, the emergence of the galaxies, matter distribution and large-scale organization of the universe. The model also connects between dynamics of the competing species in biological systems and dynamics of the time evolution of the universe and offers a new perspective and a new different scenario for the universe evolution.

  20. Matter and Energy

    CERN Document Server

    Karam, P Andrew

    2011-01-01

    In Matter and Energy, readers will learn about the many forms of energy, the wide variety of particles in nature, and Albert Einstein's world-changing realization of how matter can be changed into pure energy. The book also examines the recent discoveries of dark matter and dark energy and the future of the universe.

  1. Marital Satisfaction as it Related to Agreement on Money Matters and Money Management Competence Among Utah State University Married Students

    OpenAIRE

    Young, Carol S.

    1982-01-01

    The primary purpose of this study was to investigate the relationship between marital satisfaction, agreement on money matters, and money management competence among married couples at Utah State University . A sample of 43 student couples responded to a written questionnaire designed to measure the three variables. On all three variables measured, high scores indicated that both spouses rated themselves high on marital satisfaction, agreement on money matters, and money management competence...

  2. The missing universe

    International Nuclear Information System (INIS)

    Springel, V.; Taillet, R.; Deffayet, C.

    2014-01-01

    According to the Big Bang model, ordinary matter would play a second role in the universe compared to 2 mysterious components: dark matter and dark energy. Although the nature of both components is unknown, observational hints for their existence pile up but the direct detection of both has been unsuccessful so far. New ways have been explored to do without the concepts of dark matter and dark energy. This document that is divided into 3 parts presents the observational data that back the idea of dark matter and dark energy, the experimental effort made worldwide to detect dark matter particles, and the other ways to explain universe expansion

  3. Macro Dark Matter

    CERN Document Server

    Jacobs, David M; Lynn, Bryan W.

    2015-01-01

    Dark matter is a vital component of the current best model of our universe, $\\Lambda$CDM. There are leading candidates for what the dark matter could be (e.g. weakly-interacting massive particles, or axions), but no compelling observational or experimental evidence exists to support these particular candidates, nor any beyond-the-Standard-Model physics that might produce such candidates. This suggests that other dark matter candidates, including ones that might arise in the Standard Model, should receive increased attention. Here we consider a general class of dark matter candidates with characteristic masses and interaction cross-sections characterized in units of grams and cm$^2$, respectively -- we therefore dub these macroscopic objects as Macros. Such dark matter candidates could potentially be assembled out of Standard Model particles (quarks and leptons) in the early universe. A combination of earth-based, astrophysical, and cosmological observations constrain a portion of the Macro parameter space; ho...

  4. Dark Matter

    International Nuclear Information System (INIS)

    Bashir, A.; Cotti, U.; De Leon, C. L.; Raya, A; Villasenor, L.

    2008-01-01

    One of the biggest scientific mysteries of our time resides in the identification of the particles that constitute a large fraction of the mass of our Universe, generically known as dark matter. We review the observations and the experimental data that imply the existence of dark matter. We briefly discuss the properties of the two best dark-matter candidate particles and the experimental techniques presently used to try to discover them. Finally, we mention a proposed project that has recently emerged within the Mexican community to look for dark matter

  5. Soft CP violation and the global matter-antimatter symmetry of the universe

    Science.gov (United States)

    Senjanovic, G.; Stecker, F. W.

    1980-01-01

    Scenarios for baryon production are considered within the context of SU(5) and SO(10) grand unified theories where CP violation arises spontaneously. The spontaneous CP symmetry breaking then results in a matter-antimatter domain structure in the universe. Two possible, distinct types of theories of soft CP violation are defined. In the first type the CP nonconservation originates only from the breaking of SU(2) sub L X U(1) symmetry, and in the second type, even at the unification temperature scale, CP violation can emerge as a result of symmetry breaking by the vacuum expectation values of the superheavy Higgs sector scalars.

  6. In search of dark matter

    CERN Document Server

    Freeman, Kenneth C

    2006-01-01

    The dark matter problem is one of the most fundamental and profoundly difficult to solve problems in the history of science. Not knowing what makes up most of the known universe goes to the heart of our understanding of the Universe and our place in it. In Search of Dark Matter is the story of the emergence of the dark matter problem, from the initial erroneous ‘discovery’ of dark matter by Jan Oort to contemporary explanations for the nature of dark matter and its role in the origin and evolution of the Universe. Written for the educated non-scientist and scientist alike, it spans a variety of scientific disciplines, from observational astronomy to particle physics. Concepts that the reader will encounter along the way are at the cutting edge of scientific research. However the themes are explained in such a way that no prior understanding of science beyond a high school education is necessary.

  7. The potential of Neganov-Luke amplified cryogenic light detectors and the scintillation-light quenching mechanism in CaWO4 single crystals in the context of the dark matter search experiment CRESST-II

    International Nuclear Information System (INIS)

    Roth, Sabine B.

    2013-01-01

    The matter in universe is dominated by currently unknown elementary particles, the dark matter. Within the CRESST collaboration, it is attempted to directly detect dark matter for the first time. The interaction of this unknown kind of matter in the detector material creates phonons and light and allows, thus, for the detection and identification of these unknown particles. Within the present work, a new method for detecting the created light was investigated and a microscopic theory of the light creation in the detector material was developed as well as confirmed by experiments.

  8. On uniform world models with matter and radiation

    International Nuclear Information System (INIS)

    Wojciulewitsch, E.

    1977-01-01

    Some properties of a universe containing matter with density and radiation with density have been investigated. The use of a density parameter for matter strongly suggests the use of an analogous parameter for radiation. Both parameters are associated with deceleration and their evolution in time can be calculated. The definition of a radiation density paramater allows for a generalization of the Stabell-Refsdal classification of uniform matter universes to universes containing both matter and radiation. In this paper no interaction between matter and radiation has been assumed. The effect of an interaction will be investigated in a future paper. (Author)

  9. Non-universal gaugino mass GUT models in the light of dark matter and LHC constraints

    International Nuclear Information System (INIS)

    Chakrabortty, Joydeep; Mohanty, Subhendra; Rao, Soumya

    2014-01-01

    We perform a comprehensive study of SU(5), SO(10) and E(6) supersymmetric GUT models where the gaugino masses are generated through the F-term breaking vacuum expectation values of the non-singlet scalar fields. In these models the gauginos are non-universal at the GUT scale unlike in the mSUGRA scenario. We discuss the properties of the LSP which is stable and a viable candidate for cold dark matter. We look for the GUT scale parameter space that leads to the the lightest SM like Higgs mass in the range of 122–127 GeV compatible with the observations at ATLAS and CMS, the relic density in the allowed range of WMAP-PLANCK and compatible with other constraints from colliders and direct detection experiments. We scan universal scalar (m 0 G ), trilinear coupling A 0 and SU(3) C gaugino mass (M 3 G ) as the independent free parameters for these models. Based on the gaugino mass ratios at the GUT scale, we classify 25 SUSY GUT models and find that of these only 13 models satisfy the dark matter and collider constraints. Out of these 13 models there is only one model where there is a sizeable SUSY contribution to muon (g−2)

  10. Quantum universe on extremely small space-time scales

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.; Kuzmichev, V.V.

    2010-01-01

    The semiclassical approach to the quantum geometrodynamical model is used for the description of the properties of the Universe on extremely small space-time scales. Under this approach, the matter in the Universe has two components of the quantum nature which behave as antigravitating fluids. The first component does not vanish in the limit h → 0 and can be associated with dark energy. The second component is described by an extremely rigid equation of state and goes to zero after the transition to large spacetime scales. On small space-time scales, this quantum correction turns out to be significant. It determines the geometry of the Universe near the initial cosmological singularity point. This geometry is conformal to a unit four-sphere embedded in a five-dimensional Euclidean flat space. During the consequent expansion of the Universe, when reaching the post-Planck era, the geometry of the Universe changes into that conformal to a unit four-hyperboloid in a five-dimensional Lorentzsignatured flat space. This agrees with the hypothesis about the possible change of geometry after the origin of the expanding Universe from the region near the initial singularity point. The origin of the Universe can be interpreted as a quantum transition of the system from a region in the phase space forbidden for the classical motion, but where a trajectory in imaginary time exists, into a region, where the equations of motion have the solution which describes the evolution of the Universe in real time. Near the boundary between two regions, from the side of real time, the Universe undergoes almost an exponential expansion which passes smoothly into the expansion under the action of radiation dominating over matter which is described by the standard cosmological model.

  11. Dark Matter

    International Nuclear Information System (INIS)

    Holt, S. S.; Bennett, C. L.

    1995-01-01

    These proceedings represent papers presented at the Astrophysics conference in Maryland, organized by NASA Goddard Space Flight Center and the University of Maryland. The topics covered included low mass stars as dark matter, dark matter in galaxies and clusters, cosmic microwave background anisotropy, cold and hot dark matter, and the large scale distribution and motions of galaxies. There were eighty five papers presented. Out of these, 10 have been abstracted for the Energy Science and Technology database

  12. Cosmic strings in an open universe: Quantitative evolution and observational consequences

    International Nuclear Information System (INIS)

    Avelino, P.P.; Caldwell, R.R.; Martins, C.J.

    1997-01-01

    The cosmic string scenario in an open universe is developed - including the equations of motion, a model of network evolution, the large angular scale cosmic microwave background (CMB) anisotropy, and the power spectrum of density fluctuations produced by cosmic strings with dark matter. We first derive the equations of motion for a cosmic string in an open Friedmann-Robertson-Walker (FRW) space-time. With these equations and the cosmic string stress-energy conservation law, we construct a quantitative model of the evolution of the gross features of a cosmic string network in a dust-dominated, Ω 2 /Mpc. In a low density universe the string+CDM scenario is a better model for structure formation. We find that for cosmological parameters Γ=Ωh∼0.1 - 0.2 in an open universe the string+CDM power spectrum fits the shape of the linear power spectrum inferred from various galaxy surveys. For Ω∼0.2 - 0.4, the model requires a bias b approx-gt 2 in the variance of the mass fluctuation on scales 8h -1 Mpc. In the presence of a cosmological constant, the spatially flat string+CDM power spectrum requires a slightly lower bias than for an open universe of the same matter density. copyright 1997 The American Physical Society

  13. Annihilation vs. decay: constraining dark matter properties from a gamma-ray detection

    International Nuclear Information System (INIS)

    Palomares-Ruiz, Sergio; Siegal-Gaskins, Jennifer M.

    2010-01-01

    Most proposed dark matter candidates are stable and are produced thermally in the early Universe. However, there is also the possibility of unstable (but long-lived) dark matter, produced thermally or otherwise. We propose a strategy to distinguish between dark matter annihilation and/or decay in the case that a clear signal is detected in gamma-ray observations of Milky Way dwarf spheroidal galaxies with gamma-ray experiments. The sole measurement of the energy spectrum of an indirect signal would render the discrimination between these cases impossible. We show that by examining the dependence of the intensity and energy spectrum on the angular distribution of the emission, the origin could be identified as decay, annihilation, or both. In addition, once the type of signal is established, we show how these measurements could help to extract information about the dark matter properties, including mass, annihilation cross section, lifetime, dominant annihilation and decay channels, and the presence of substructure. Although an application of the approach presented here would likely be feasible with current experiments only for very optimistic dark matter scenarios, the improved sensitivity of upcoming experiments could enable this technique to be used to study a wider range of dark matter models

  14. Annihilation vs. decay: constraining dark matter properties from a gamma-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    Palomares-Ruiz, Sergio [Centro de Física Teórica de Partículas, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Siegal-Gaskins, Jennifer M., E-mail: sergio.palomares.ruiz@ist.utl.pt, E-mail: jsg@mps.ohio-state.edu [Center for Cosmology and AstroParticle Physics, The Ohio State University, 191 W. Woodruff Ave., Columbus OH 43210 (United States)

    2010-07-01

    Most proposed dark matter candidates are stable and are produced thermally in the early Universe. However, there is also the possibility of unstable (but long-lived) dark matter, produced thermally or otherwise. We propose a strategy to distinguish between dark matter annihilation and/or decay in the case that a clear signal is detected in gamma-ray observations of Milky Way dwarf spheroidal galaxies with gamma-ray experiments. The sole measurement of the energy spectrum of an indirect signal would render the discrimination between these cases impossible. We show that by examining the dependence of the intensity and energy spectrum on the angular distribution of the emission, the origin could be identified as decay, annihilation, or both. In addition, once the type of signal is established, we show how these measurements could help to extract information about the dark matter properties, including mass, annihilation cross section, lifetime, dominant annihilation and decay channels, and the presence of substructure. Although an application of the approach presented here would likely be feasible with current experiments only for very optimistic dark matter scenarios, the improved sensitivity of upcoming experiments could enable this technique to be used to study a wider range of dark matter models.

  15. Some aspects of matter-antimatter asymmetry and states in the Universe

    International Nuclear Information System (INIS)

    Braghin, Fabio L.

    2011-01-01

    Full text: Matter-antimatter asymmetry observed in our Universe is discussed considering different aspects. The usual baryogenesis mechanism proposed by Sakharov is described and and few other mechanisms are analyzed. Furthermore, the possibility of the existence of antimatter islands is discussed in view of different observational results and plans for future observations. For the different mechanisms of producing such asymmetry, besides the breaking of CP, particular attention is given to CPT , considering both its possible breakdown in different systems and the framework of the CPT theorem, and to few other different effects which are (or might be) present in the (extended) phase diagram of strong interacting systems and which might not rely on non-equilibrium conditions. Some ideas of relevance for finite (anti)baryonic density systems are discussed as well. (author)

  16. Dispersion Distance and the Matter Distribution of the Universe in Dispersion Space.

    Science.gov (United States)

    Masui, Kiyoshi Wesley; Sigurdson, Kris

    2015-09-18

    We propose that "standard pings," brief broadband radio impulses, can be used to study the three-dimensional clustering of matter in the Universe even in the absence of redshift information. The dispersion of radio waves as they travel through the intervening plasma can, like redshift, be used as a cosmological distance measure. Because of inhomogeneities in the electron density along the line of sight, dispersion is an imperfect proxy for radial distance and we show that this leads to calculable dispersion-space distortions in the apparent clustering of sources. Fast radio bursts (FRBs) are a new class of radio transients that are the prototypical standard ping and, due to their high observed dispersion, have been interpreted as originating at cosmological distances. The rate of fast radio bursts has been estimated to be several thousand over the whole sky per day and, if cosmological, the sources of these events should trace the large-scale structure of the Universe. We calculate the dispersion-space power spectra for a simple model where electrons and FRBs are biased tracers of the large-scale structure of the Universe, and we show that the clustering signal could be measured using as few as 10 000 events. Such a survey is in line with what may be achieved with upcoming wide-field radio telescopes.

  17. Hybrid Dark Matter

    OpenAIRE

    Chao, Wei

    2018-01-01

    Dark matter can be produced in the early universe via the freeze-in or freeze-out mechanisms. Both scenarios were investigated in references, but the production of dark matters via the combination of these two mechanisms are not addressed. In this paper we propose a hybrid dark matter model where dark matters have two components with one component produced thermally and the other one produced non-thermally. We present for the first time the analytical calculation for the relic abundance of th...

  18. Strategic field No.5 'the origin of matter and the universe'. Toward interdisciplinary researches in particle, nuclear and astrophysics

    International Nuclear Information System (INIS)

    Aoki, Shinya

    2011-01-01

    Four main research subjects in the strategic field No. 5 'The origin of matter and the universe', planned to be investigated on 'Kei' super computer, are explained in detail, by focusing on interdisciplinary aspect of researches among particle, nuclear and astrophysics. (author)

  19. Forbidden Channels and SIMP Dark Matter

    OpenAIRE

    Choi Soo-Min; Kang Yoo-Jin; Lee Hyun Min

    2018-01-01

    In this review, we focus on dark matter production from thermal freeze-out with forbidden channels and SIMP processes. We show that forbidden channels can be dominant to produce dark matter depending on the dark photon and / or dark Higgs mass compared to SIMP.

  20. Podzolisation and soil organic matter dynamics

    NARCIS (Netherlands)

    Buurman, P.; Jongmans, A.G.

    2005-01-01

    Present models of podzolisation emphasize the mobilization and precipitation of dissolved organic matter. together with Al(-silicates) and Fe. Such models cannot explain the dominance of pellet-like organic matter in most boreal podzols and in well-drained podzols outside the boreal zone, and the

  1. Universal subhalo accretion in cold and warm dark matter cosmologies

    Science.gov (United States)

    Kubik, Bogna; Libeskind, Noam I.; Knebe, Alexander; Courtois, Hélène; Yepes, Gustavo; Gottlöber, Stefan; Hoffman, Yehuda

    2017-12-01

    The influence of the large-scale structure on host haloes may be studied by examining the angular infall pattern of subhaloes. In particular, since warm dark matter (WDM) and cold dark matter (CDM) cosmologies predict different abundances and internal properties for haloes at the low-mass end of the mass function, it is interesting to examine if there are differences in how these low-mass haloes are accreted. The accretion events are defined as the moment a halo becomes a substructure, namely when it crosses its host's virial radius. We quantify the cosmic web at each point by the shear tensor and examine where, with respect to its eigenvectors, such accretion events occur in ΛCDM and ΛWDM (1 keV sterile neutrino) cosmological models. We find that the CDM and WDM subhaloes are preferentially accreted along the principal axis of the shear tensor corresponding to the direction of weakest collapse. The beaming strength is modulated by the host and subhalo masses and by the redshift at which the accretion event occurs. Although strongest for the most massive hosts and subhaloes at high redshift, the preferential infall is found to be always aligned with the axis of weakest collapse, thus we say that it has universal nature. We compare the strength of beaming in the ΛWDM cosmology with the one found in the ΛCDM scenario. While the main findings remain the same, the accretion in the ΛWDM model for the most massive host haloes appears more beamed than in ΛCDM cosmology across all the redshifts.

  2. Flooded Dark Matter and S level rise

    International Nuclear Information System (INIS)

    Randall, Lisa; Scholtz, Jakub; Unwin, James

    2016-01-01

    Most dark matter models set the dark matter relic density by some interaction with Standard Model particles. Such models generally assume the existence of Standard Model particles early on, with the dark matter relic density a later consequence of those interactions. Perhaps a more compelling assumption is that dark matter is not part of the Standard Model sector and a population of dark matter too is generated at the end of inflation. This democratic assumption about initial conditions does not necessarily provide a natural value for the dark matter relic density, and furthermore superficially leads to too much entropy in the dark sector relative to ordinary matter. We address the latter issue by the late decay of heavy particles produced at early times, thereby associating the dark matter relic density with the lifetime of a long-lived state. This paper investigates what it would take for this scenario to be compatible with observations in what we call Flooded Dark Matter (FDM) models and discusses several interesting consequences. One is that dark matter can be very light and furthermore, light dark matter is in some sense the most natural scenario in FDM as it is compatible with larger couplings of the decaying particle. A related consequence is that the decay of the field with the smallest coupling and hence the longest lifetime dominates the entropy and possibly the matter content of the Universe, a principle we refer to as “Maximum Baroqueness”. We also demonstrate that the dark sector should be colder than the ordinary sector, relaxing the most stringent free-streaming constraints on light dark matter candidates. We will discuss the potential implications for the core-cusp problem in a follow-up paper. The FDM framework will furthermore have interesting baryogenesis implications. One possibility is that dark matter is like the baryon asymmetry and both are simultaneously diluted by a late entropy dump. Alternatively, FDM is compatible with an elegant

  3. Flooded Dark Matter and S level rise

    Energy Technology Data Exchange (ETDEWEB)

    Randall, Lisa; Scholtz, Jakub [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Unwin, James [Department of Physics, University of Illinois at Chicago,Chicago, IL 60607 (United States)

    2016-03-03

    Most dark matter models set the dark matter relic density by some interaction with Standard Model particles. Such models generally assume the existence of Standard Model particles early on, with the dark matter relic density a later consequence of those interactions. Perhaps a more compelling assumption is that dark matter is not part of the Standard Model sector and a population of dark matter too is generated at the end of inflation. This democratic assumption about initial conditions does not necessarily provide a natural value for the dark matter relic density, and furthermore superficially leads to too much entropy in the dark sector relative to ordinary matter. We address the latter issue by the late decay of heavy particles produced at early times, thereby associating the dark matter relic density with the lifetime of a long-lived state. This paper investigates what it would take for this scenario to be compatible with observations in what we call Flooded Dark Matter (FDM) models and discusses several interesting consequences. One is that dark matter can be very light and furthermore, light dark matter is in some sense the most natural scenario in FDM as it is compatible with larger couplings of the decaying particle. A related consequence is that the decay of the field with the smallest coupling and hence the longest lifetime dominates the entropy and possibly the matter content of the Universe, a principle we refer to as “Maximum Baroqueness”. We also demonstrate that the dark sector should be colder than the ordinary sector, relaxing the most stringent free-streaming constraints on light dark matter candidates. We will discuss the potential implications for the core-cusp problem in a follow-up paper. The FDM framework will furthermore have interesting baryogenesis implications. One possibility is that dark matter is like the baryon asymmetry and both are simultaneously diluted by a late entropy dump. Alternatively, FDM is compatible with an elegant

  4. The Birth of Matter

    CERN Multimedia

    2005-01-01

    To mark the World Year of Physics, the Physics Section of the University of Geneva is organising a series of lectures for the uninitiated. Each lecture will begin with a demonstration in the auditorium of the detection of cosmic rays and, in collaboration with Professor E. Ellberger of the Conservatoire de Musique de Genève, of how these signals from the farthest reaches of the Universe can be used to create 'cosmic music'. The fourth lecture in the series, entitled 'The Birth of Matter', will take place on Tuesday 3 May 2005 and will be given by CERN's theoretical physicist, John Ellis. Where does matter come from? Where do the structures that surround us, such as galaxies, come from? Are we living in a world of invisible matter? Why is the universe so old and so big? John Ellis will show how elementary particle physics and, in particular, the LHC under construction at CERN, can answer these questions. The Birth of Matter Professor John Ellis Tuesday 3 May, starting 8.00 p.m. Main Auditorium...

  5. The Birth of Matter

    CERN Multimedia

    2005-01-01

    To mark the World Year of Physics, the Physics Section of the University of Geneva is organising a series of lectures for the uninitiated. Each lecture will begin with a demonstration in the auditorium of the detection of cosmic rays and, in collaboration with Professor E. Ellberger of the Conservatoire de Musique de Genève, of how these signals from the farthest reaches of the Universe can be used to create "cosmic music". The fourth lecture in the series, entitled "The Birth of Matter", will take place on Tuesday 3 May 2005 and will be given by CERN's theoretical physicist, John Ellis. Where does matter come from? Where do the structures that surround us, such as galaxies, come from? Are we living in a world of invisible matter? Why is the universe so old and so big? John Ellis will show how elementary particle physics and, in particular, the LHC under construction at CERN, can answer these questions. The Birth of Matter Professor John Ellis Tuesday 3 May, starting 8.00 p.m. Main Audito...

  6. Historical Theology at public universities matter

    Directory of Open Access Journals (Sweden)

    Jerry Pillay

    2017-11-01

    Full Text Available South African universities are in the process of serious transformation and restructuring. The place of faculties of theology at universities has come under the spotlight resulting in the closure of several theological faculties or in the moving of theology to other faculties, mainly humanities or arts. Theology is under pressure and in the current academic environment, Church History, in its traditional form, has all but disappeared from South African universities.  This article is an attempt to address the current situation. Whilst this article looks at the issue of theology at public universities, its main focus is to explore the future study of church history in the context of universities and, in particular, a Faculty of Theology. Understanding church history in the broad framework as Historical Theology, this article asserts the significance of church history at public universities, but points out the need to restructure the Department giving due consideration to community engagement, internationalisation, transformation, africanisation and interreligious collaboration. All of these would have a serious impact on teaching, learning and research.

  7. Dark Matter Mystery Deepens in Cosmic "Train Wreck"

    Science.gov (United States)

    2007-08-01

    Astronomers have discovered a chaotic scene unlike any witnessed before in a cosmic "train wreck" between giant galaxy clusters. NASA's Chandra X-ray Observatory and optical telescopes revealed a dark matter core that was mostly devoid of galaxies, which may pose problems for current theories of dark matter behavior. "These results challenge our understanding of the way clusters merge," said Dr. Andisheh Mahdavi of the University of Victoria, British Columbia. "Or, they possibly make us even reexamine the nature of dark matter itself." There are three main components to galaxy clusters: individual galaxies composed of billions of stars, hot gas in between the galaxies, and dark matter, a mysterious substance that dominates the cluster mass and can be detected only through its gravitational effects. Illustration of Abell 520 System Illustration of Abell 520 System Optical telescopes can observe the starlight from the individual galaxies, and can infer the location of dark matter by its subtle light-bending effects on distant galaxies. X-ray telescopes like Chandra detect the multimillion-degree gas. A popular theory of dark matter predicts that dark matter and galaxies should stay together, even during a violent collision, as observed in the case of the so-called Bullet Cluster. However, when the Chandra data of the galaxy cluster system known as Abell 520 was mapped along with the optical data from the Canada-France-Hawaii Telescope and Subaru Telescope atop Mauna Kea, HI, a puzzling picture emerged. A dark matter core was found, which also contained hot gas but no bright galaxies. "It blew us away that it looks like the galaxies are removed from the densest core of dark matter," said Dr. Hendrik Hoekstra, also of University of Victoria. "This would be the first time we've seen such a thing and could be a huge test of our knowledge of how dark matter behaves." Animation of Galaxy Cluster Animation of Galaxy Cluster In addition to the dark matter core, a

  8. QED coherence in matter

    CERN Document Server

    Preparata, Giuliano

    1995-01-01

    Up until now the dominant view of condensed matter physics has been that of an "electrostatic MECCANO" (erector set, for Americans). This book is the first systematic attempt to consider the full quantum-electrodynamical interaction (QED), thus greatly enriching the possible dynamical mechanisms that operate in the construction of the wonderful variety of condensed matter systems, including life itself.A new paradigm is emerging, replacing the "electrostatic MECCANO" with an "electrodynamic NETWORK," which builds condensed matter through the long range (as opposed to the "short range" nature o

  9. Universe symmetries

    International Nuclear Information System (INIS)

    Souriau, J.M.

    1984-01-01

    The sky uniformity can be noticed in studying the repartition of objects far enough. The sky isotropy description uses space rotations. The group theory elements will allow to give a meaning at the same time precise and general to the word a ''symmetry''. Universe models are reviewed, which must have both of the following qualities: - conformity with the physic known laws; - rigorous symmetry following one of the permitted groups. Each of the models foresees that universe evolution obeys an evolution equation. Expansion and big-bang theory are recalled. Is universe an open or closed space. Universe is also electrically neutral. That leads to a work hypothesis: the existing matter is not given data of universe but it appeared by evolution from nothing. Problem of matter and antimatter is then raised up together with its place in universe [fr

  10. Dark matter (energy) may be indistinguishable from modified gravity (MOND)

    Science.gov (United States)

    Sivaram, C.

    For Newtonian dynamics to hold over galactic scales, large amounts of dark matter (DM) are required which would dominate cosmic structures. Accounting for the strong observational evidence that the universe is accelerating requires the presence of an unknown dark energy (DE) component constituting about 70% of the matter. Several ingenious ongoing experiments to detect the DM particles have so far led to negative results. Moreover, the comparable proportions of the DM and DE at the present epoch appear unnatural and not predicted by any theory. For these reasons, alternative ideas like MOND and modification of gravity or general relativity over cosmic scales have been proposed. It is shown in this paper that these alternate ideas may not be easily distinguishable from the usual DM or DE hypotheses. Specific examples are given to illustrate this point that the modified theories are special cases of a generalized DM paradigm.

  11. DARK MATTER: Optical shears

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Evidence for dark matter continues to build up. Last year (December 1993, page 4) excitement rose when the French EROS (Experience de Recherche d'Objets Sombres) and the US/Australia MACHO collaborations reported hints that small inert 'brown dwarf stars could provide some of the Universe's missing matter. In the 1930s, astronomers first began to suspect that there is a lot more to the Universe than meets the eye

  12. Organic matter in the universe

    CERN Document Server

    Kwok, Sun

    2012-01-01

    Authored by an experienced writer and a well-known researcher of stellar evolution, interstellar matter and spectroscopy, this unique treatise on the formation and observation of organic compounds in space includes a spectroscopy refresher, as well as links to geological findings and finishes with the outlook for future astronomical facilities and solar system exploration missions. A whole section on laboratory simulations includes the Miller-Urey experiment and the ultraviolet photolysis of ices.

  13. Mimicking dark matter through a non-minimal gravitational coupling with matter

    International Nuclear Information System (INIS)

    Bertolami, O.; Páramos, J.

    2010-01-01

    In this study one resorts to the phenomenology of models endowed with a non-minimal coupling between matter and geometry, in order to develop a mechanism through which dynamics similar to that due to the presence of dark matter is generated. As a first attempt, one tries to account for the flattening of the galaxy rotation curves as an effect of the non-(covariant) conservation of the energy-momentum tensor of visible matter. Afterwards, one assumes instead that this non-minimal coupling modifies the scalar curvature in a way that can be interpreted as a dark matter component (albeit with negative pressure). It is concluded that it is possible to mimic known dark matter density profiles through an appropriate power-law coupling f 2 = (R/R 0 ) n , with a negative index n — a fact that reflects the dominance of dark matter at large distances. The properties of the model are extensively discussed, and possible cosmological implications are addressed

  14. Golden Jubilee Photos: A Universal Imbalance

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ View along the NA48 beamline with the detector in the distance. No one is sure why the Universe wound up the way it has: all matter and no antimatter. According to prevailing theories, the early universe had equal amounts of matter and antimatter. However, whenever such opposites meet, they annihilate and become a burst of energy. This would seem to leave the Universe with neither matter nor antimatter - and thus no stars, planets, or physicists. If nature shows a bias for matter over antimatter, this could explain why the Universe is all matter. To see what might be missing from the theories, physicists search for the rare cases in which matter and antimatter behave differently. One such imbalance, called direct CP violation, showed up in the NA 31 experiment at CERN. The results from this experiment, first presented in 1993, showed that when K mesons and their antimatter cousins decay, they show a slight preference for matter over antimatter. Later experiments with neutral K mes...

  15. Quark matter in astrophysics and cosmology

    International Nuclear Information System (INIS)

    Olinto, A.V.

    1987-10-01

    We dicuss the role of quark matter in astrophysics and cosmology. The implications of the dynamics of the quark-hadron phase transition in the early universe for the element abundances from big bang nucleosynthesis and the composition of the dark matter in the universe are addressed. We discuss the possibility of deciding on an equation of state for high density matter by observing the cooling of a neutron star remnant of SN1987A. Quark matter models for the Centauros events, Cygnus X-3 cosmic ray events, high energy gamma-ray bursts and the solar neutrino problem are described. 25 refs., 3 figs

  16. ACCURATE UNIVERSAL MODELS FOR THE MASS ACCRETION HISTORIES AND CONCENTRATIONS OF DARK MATTER HALOS

    International Nuclear Information System (INIS)

    Zhao, D. H.; Jing, Y. P.; Mo, H. J.; Boerner, G.

    2009-01-01

    A large amount of observations have constrained cosmological parameters and the initial density fluctuation spectrum to a very high accuracy. However, cosmological parameters change with time and the power index of the power spectrum dramatically varies with mass scale in the so-called concordance ΛCDM cosmology. Thus, any successful model for its structural evolution should work well simultaneously for various cosmological models and different power spectra. We use a large set of high-resolution N-body simulations of a variety of structure formation models (scale-free, standard CDM, open CDM, and ΛCDM) to study the mass accretion histories, the mass and redshift dependence of concentrations, and the concentration evolution histories of dark matter halos. We find that there is significant disagreement between the much-used empirical models in the literature and our simulations. Based on our simulation results, we find that the mass accretion rate of a halo is tightly correlated with a simple function of its mass, the redshift, parameters of the cosmology, and of the initial density fluctuation spectrum, which correctly disentangles the effects of all these factors and halo environments. We also find that the concentration of a halo is strongly correlated with the universe age when its progenitor on the mass accretion history first reaches 4% of its current mass. According to these correlations, we develop new empirical models for both the mass accretion histories and the concentration evolution histories of dark matter halos, and the latter can also be used to predict the mass and redshift dependence of halo concentrations. These models are accurate and universal: the same set of model parameters works well for different cosmological models and for halos of different masses at different redshifts, and in the ΛCDM case the model predictions match the simulation results very well even though halo mass is traced to about 0.0005 times the final mass, when

  17. NASA Finds Direct Proof of Dark Matter

    Science.gov (United States)

    2006-08-01

    Dark matter and normal matter have been wrenched apart by the tremendous collision of two large clusters of galaxies. The discovery, using NASA's Chandra X-ray Observatory and other telescopes, gives direct evidence for the existence of dark matter. "This is the most energetic cosmic event, besides the Big Bang, which we know about," said team member Maxim Markevitch of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. Lensing Illustration Gravitational Lensing Explanation These observations provide the strongest evidence yet that most of the matter in the universe is dark. Despite considerable evidence for dark matter, some scientists have proposed alternative theories for gravity where it is stronger on intergalactic scales than predicted by Newton and Einstein, removing the need for dark matter. However, such theories cannot explain the observed effects of this collision. "A universe that's dominated by dark stuff seems preposterous, so we wanted to test whether there were any basic flaws in our thinking," said Doug Clowe of the University of Arizona at Tucson, and leader of the study. "These results are direct proof that dark matter exists." Animation of Cluster Collision Animation of Cluster Collision In galaxy clusters, the normal matter, like the atoms that make up the stars, planets, and everything on Earth, is primarily in the form of hot gas and stars. The mass of the hot gas between the galaxies is far greater than the mass of the stars in all of the galaxies. This normal matter is bound in the cluster by the gravity of an even greater mass of dark matter. Without dark matter, which is invisible and can only be detected through its gravity, the fast-moving galaxies and the hot gas would quickly fly apart. The team was granted more than 100 hours on the Chandra telescope to observe the galaxy cluster 1E0657-56. The cluster is also known as the bullet cluster, because it contains a spectacular bullet-shaped cloud of hundred

  18. Using Dark Matter Haloes to Learn about Cosmic Acceleration: A New Proposal for a Universal Mass Function

    Science.gov (United States)

    Prescod-Weinstein, Chanda; Afshordi, Niayesh

    2011-01-01

    Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit or overpredict the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy or a modified gravity implement a modified Press-Schechter formalism, which relates the linear overdensities to the abundance of dark matter haloes at the same time. We critically examine the universality of the Press-Schechter formalism for different cosmologies, and show that the halo abundance is best correlated with spherical linear overdensity at 94% of collapse (or observation) time. We then extend this argument to ellipsoidal collapse (which decreases the fractional time of best correlation for small haloes), and show that our results agree with deviations from modified Press-Schechter formalism seen in simulated mass functions. This provides a novel universal prescription to measure linear density evolution, based on current and future observations of cluster (or dark matter) halo mass function. In particular, even observations of cluster abundance in a single epoch will constrain the entire history of linear growth of cosmological of perturbations.

  19. Natural NMSSM after LHC Run I and the Higgsino dominated dark matter scenario

    International Nuclear Information System (INIS)

    Cao, Junjie; He, Yangle; Shang, Liangliang; Su, Wei; Zhang, Yang

    2016-01-01

    We investigate the impact of the direct searches for SUSY at LHC Run I on the naturalness of the Next-to-Minimal Supersymmetric Standard Model (NMSSM). For this end, we first scan the vast parameter space of the NMSSM to get the region where the fine tuning measures Δ Z and Δ h at the electroweak scale are less than about 50, then we implement by simulations the constraints of the direct searches on the parameter points in the region. Our results indicate that although the direct search experiments are effective in excluding the points, the parameter intervals for the region and also the minimum reaches of Δ Z and Δ h are scarcely changed by the constraints, which implies that the fine tuning of the NMSSM does not get worse after LHC Run I. Moreover, based on the results we propose a natural NMSSM scenario where the lightest neutralino χ̃ 1 0 as the dark matter (DM) candidate is Higgsino-dominated. In this scenario, Δ Z and Δ h may be as low as 2 without conflicting with any experimental constraints, and intriguingly χ̃ 1 0 can easily reach the measured DM relic density due to its significant Singlino component. We exhibit the features of the scenario which distinguish it from the other natural SUSY scenario, including the properties of its neutralino-chargino sector and scalar top quark sector. We emphasize that the scenario can be tested either through searching for 3l+E T miss signal at 14 TeV LHC or through future DM direct detection experiments.

  20. The space-time of dark-matter

    International Nuclear Information System (INIS)

    Dey, Dipanjan

    2015-01-01

    Dark-matter is a hypothetical matter which can't be seen but around 27% of our universe is made of it. Its distribution, evolution from early stage of our universe to present stage, its particle constituents all these are great unsolved mysteries of modern Cosmology and Astrophysics. In this talk I will introduce a special kind of space-time which is known as Bertrand Space-time (BST). I will show this space-time interestingly shows some dark-matter properties like- flat velocity curve, density profile of Dark-matter, total mass of Dark matter-halo, gravitational lensing etc, for that reason we consider BST is seeded by Dark-matter or it is a space-time of Dark-matter. At last I will show using modified gravity formalism the behaviour of the equation of state parameter of Dark-matter and the behaviour of the Newton's gravitational constant in the vicinity of the singularity. (author)

  1. Superball dark matter

    CERN Document Server

    Kusenko, A

    1999-01-01

    Supersymmetric models predict a natural dark-matter candidate, stable baryonic Q-balls. They could be copiously produced in the early Universe as a by-product of the Affleck-Dine baryogenesis. I review the cosmological and astrophysical implications, methods of detection, and the present limits on this form of dark matter.

  2. Light element abundances in a matter-antimatter model of the universe

    International Nuclear Information System (INIS)

    Aly, J.J.

    1978-01-01

    This paper is devoted to the problem of light element synthesis in a baryon symmetric Big-Bang cosmology, in which the universe is constituted at the end of the leptonic era by a nucleon-antinucleon emulsion. If the initial typical size of the matter or antimatter regions is sufficiently high to avoid significant neutron annihilation, nucleosynthesis can proceed in this kind of model in the same way as in the conventional Big-Bang. But the abundances of the created light elements can be modified at a later time by interaction of the nuclei with the high energy particles and photons resulting from annihilation. In this article, we consider two specific mechanisms able to change the abundances: a 4 He 'nucleodisruption' process (proposed by Combes et al., 1975), which leads to deuterium production, and 4 He photodisintegration by annihilation γ-rays, which leads to an increase of the 3 He and D production. General relations are established which allow one to compute the abundances of the so created elements when the size l of the matter or antimatter regions and the annihilation rate are given as function of time. These relations are applied to the Omnes model, in which the size l grows by a coalescence mechanism. It is shown that in this model the D and 3 He abundances are much greater than the limits on primordial abundances deduced from the present observations. (orig.) [de

  3. Change in the pace of universe expansion

    International Nuclear Information System (INIS)

    Palanque-Delabrouille, N.; Yeche, C.

    2016-01-01

    During the first 8 billion years the universe expansion was slowed down by gravity, at that time the universe was made up mostly of ordinary matter. The accelerating expansion phase we know dates back to 6 billion years ago and now the content of the universe can be divided into: dark energy (73%), dark matter (23%), gas (3.6%) and stars, planets... (0.4%). Quasars which are among the most luminous objects of the universe and whose light can be detected even after having travelled through the universe for 12 billion years, can be used as markers of the matter all along the history of the universe. 3 international projects (SDSS, DESI and LSST) will study, in a complementary way, the period when dark energy overtook ordinary matter. (A.C.)

  4. Dominance of physical and chemical gases properties on kinetics of gassing in NPP's circulation contours

    International Nuclear Information System (INIS)

    Piontkovskij, A.I.

    2001-01-01

    Is seen out a dominance analysis of physical and chemical matter properties on gases solubility in circulation contour NPP's heat-transfer. Is represented a concentration computation methods of gas dissolved in heat-transfer with use of in lying pressure in matter. Are analysed the computation results for diverse gases in wide range of operating parameters, and also dominance of physical and chemical gas properties on intensity of heat-exchange processes in heat-transfer with dissolved gase

  5. Dark Matter Reality Check: Chandra Casts Cloud On Alternative Theory

    Science.gov (United States)

    2002-10-01

    New evidence from NASA's Chandra X-ray Observatory challenges an alternative theory of gravity that eliminates the need for dark matter. The observation also narrows the field for competing forms of dark matter, the elusive material thought to be the dominant form of matter in the universe. An observation of the galaxy NGC 720 shows it is enveloped in a slightly flattened, or ellipsoidal cloud of hot gas that has an orientation different from that of the optical image of the galaxy. The flattening is too large to be explained by theories in which stars and gas are assumed to contain most of the mass in the galaxy. "The shape and orientation of the hot gas cloud require it to be confined by an egg-shaped dark matter halo," said David Buote of the University of California, Irvine, and lead author of a report on this research in the 2002 September 20 issue of The Astrophysical Journal. "This means that dark matter is not just an illusion due to a shortcoming of the standard theory of gravity - it is real." According to the generally accepted standard theory of gravity, the hot X-ray cloud would need an additional source of gravity - a halo of dark matter - to keep the hot gas from expanding away. The mass of dark matter required would be about five to ten times the mass of the stars in the galaxy. If the dark matter tracked the optical light from the stars in the galaxy, the hot X-ray cloud would be more round than it is. The flattened shape of the hot gas cloud requires a flattened dark matter halo. An alternative theory of gravity called MOND, for Modified Newtonian Dynamics, was proposed in 1983 by Mordecai Milgrom of the Weizmann Institute in Israel, and has remained viable over the years. MOND does away with the need for dark matter by modifying the theory where the acceleration produced by gravity is very small, such as the outskirts of galaxies. However, MOND cannot explain the Chandra observation of NGC 720. This is apparently the first dynamical evidence that

  6. Dark-matter QCD-axion searches.

    Science.gov (United States)

    Rosenberg, Leslie J

    2015-10-06

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments

  7. Dark matter in and around stars

    International Nuclear Information System (INIS)

    Sivertsson, Sofia

    2009-01-01

    There is by now compelling evidence that most of the matter in the universe is in the form of dark matter, a form of matter quite different from the matter we experience in every day life. The gravitational effects of this dark matter have been observed in many different ways but its true nature is still unknown. In most models dark matter particles can annihilate with each other into standard model particles. The direct or indirect observation of such annihilation products could give important clues for the dark matter puzzle. For signals from dark matter annihilations to be detectable, typically high dark matter densities are required. Massive objects, such as stars, can increase the local dark matter density both via scattering off nucleons and by pulling in dark matter gravitationally as the star forms. Dark matter annihilations outside the star would give rise to gamma rays and this is discussed in the first paper. Furthermore dark matter annihilations inside the star would deposit energy inside the star which, if abundant enough, could alter the stellar evolution. Aspects of this are investigated in the second paper. Finally, local dark matter over densities formed in the early universe could still be around today; prospects of detecting gamma rays from such clumps are discussed in the third paper

  8. Correlation function for density perturbations in an expanding universe. I. Linear theory

    International Nuclear Information System (INIS)

    McClelland, J.; Silk, J.

    1977-01-01

    We derive analytic solutions for the evolution of linearized adiabatic spherically symmetric density perturbations and the two-point correlation function in two regimes of the early universe: the radiation-dominated regime prior to decoupling, and the matter-dominated regime after decoupling. The solutions are for an Einstein--de Sitter universe, and include pressure effects. In the radiation era, we find that individual spherically symmetric adiabatic density perturbations smaller than the Jeans length flow outward like water waves instead of oscillating as infinite plane waves. It seems likely that the only primordial structures on scales smaller than the maximum Jeans length which could survive are very regular waves such as infinite plane waves. However, structure does build up in the correlation function over distances comparable with the maximum Jeans length in the radiation regime, and could lead to the eventual formation of galaxy superclusters. This scale (approx.10 17 Ω -2 M/sub sun)/therefore provides a natural dimension for large-scale structure arising out of the early universe. A general technique is described for constructing solutions for the evolution of the two-point correlation function, and applied to study white noise and power-law initial conditions for primordial inhomogeneities

  9. Cosmological Imprints of a Generalized Chaplygin Gas Model for the Early Universe

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-Lopez, Mariam; /Lisbon, CENTRA; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC; Liu, Yen-Wei; /Taiwan, Natl. Taiwan U.

    2012-06-06

    We propose a phenomenological model for the early universe where there is a smooth transition between an early quintessence phase and a radiation-dominated era. The matter content is modeled by an appropriately modified Chaplygin gas for the early universe. We constrain the model observationally by mapping the primordial power spectrum of the scalar perturbations to the latest data of WMAP7. We compute as well the spectrum of the primordial gravitational waves as would be measured today. We show that the high frequencies region of the spectrum depends on the free parameter of the model and most importantly this region of the spectrum can be within the reach of future gravitational waves detectors.

  10. Heavy baryon clusters and search for signals of quark matter formation

    International Nuclear Information System (INIS)

    Gagarin, Yu.F.; Kalinkin, B.N.

    2000-01-01

    New experimental data are discussed on the distribution of protons over transverse momentum of p perpendicular to in the Fe+Em process at energies 2-200 GeV/n and of α-particles in the Au + Em process at incident energy 10.7 GeV/n. A possible interpretation of the experiment within the framework of the gluon dominance and the thermodynamic approximation can be achieved with a minor additional assumption only. This assumption is that at an early stage of evolution of the heavy baryon cluster matter the quark matter transforms into baryons at a temperature T ∼ 0.22 GeV and its global decay into nucleons is completed at T ∼ 0.14 GeV. The results are also of interest in connection with the problem of abundance of helium and hydrogen in the universe which has been considered in cosmology and astrophysics for a long time. (orig.)

  11. Light higgsino dark matter from non-thermal cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, Luis [ICTP,Strada Costiera 11, Trieste 34014 (Italy); Cicoli, Michele [ICTP,Strada Costiera 11, Trieste 34014 (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, 40126 Bologna (Italy); Dutta, Bhaskar [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy,TAMU, College Station, TX 77843-4242 (United States); Muia, Francesco [Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, 40126 Bologna (Italy); Quevedo, Fernando [ICTP,Strada Costiera 11, Trieste 34014 (Italy); DAMTP, Centre for Mathematical Sciences,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2016-11-08

    We study the scenario of higgsino dark matter in the context of a non-standard cosmology with a period of matter domination prior to Big Bang nucleosynthesis. Matter domination changes the dark matter relic abundance if it ends via reheating to a temperature below the higgsino thermal freeze-out temperature. We perform a model independent analysis of the higgsino dark matter production in such scenario. We show that light higgsino-type dark matter is possible for reheating temperatures close to 1 GeV. We study the impact of dark matter indirect detection and collider physics in this context. We show that Fermi-LAT data rule out non-thermal higgsinos with masses below 300 GeV. Future indirect dark matter searches from Fermi-LAT and CTA will be able to cover essentially the full parameter space. Contrary to the thermal case, collider signals from a 100 TeV collider could fully test the non-thermal higgsino scenario. In the second part of the paper we discuss the motivation of such non-thermal cosmology from the perspective of string theory with late-time decaying moduli for both KKLT and LVS moduli stabilisation mechanisms. We finally describe the impact of embedding higgsino dark matter in these scenarios.

  12. What is the entropy of the universe?

    International Nuclear Information System (INIS)

    Frampton, Paul H; Hsu, Stephen D H; Reeb, David; Kephart, Thomas W

    2009-01-01

    Standard calculations suggest that the entropy of our universe is dominated by black holes, whose entropy is of order their area in Planck units, although they comprise only a tiny fraction of its total energy. Statistical entropy is the logarithm of the number of microstates consistent with the observed macroscopic properties of a system, hence a measure of uncertainty about its precise state. Therefore, assuming unitarity in black hole evaporation, the standard results suggest that the largest uncertainty in the future quantum state of the universe is due to the Hawking radiation from evaporating black holes. However, the entropy of the matter precursors to astrophysical black holes is enormously less than that given by area entropy. If unitarity relates the future radiation states to the black hole precursor states, then the standard results are highly misleading, at least for an observer that can differentiate the individual states of the Hawking radiation.

  13. What is the entropy of the universe?

    Energy Technology Data Exchange (ETDEWEB)

    Frampton, Paul H [Department of Physics and Astronomy, UNC-Chapel Hill, NC 27599 (United States); Hsu, Stephen D H; Reeb, David [Institute of Theoretical Science, University of Oregon, Eugene, OR 97403 (United States); Kephart, Thomas W, E-mail: frampton@physics.unc.ed, E-mail: hsu@uoregon.ed, E-mail: tom.kephart@gmail.co, E-mail: dreeb@uoregon.ed [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States)

    2009-07-21

    Standard calculations suggest that the entropy of our universe is dominated by black holes, whose entropy is of order their area in Planck units, although they comprise only a tiny fraction of its total energy. Statistical entropy is the logarithm of the number of microstates consistent with the observed macroscopic properties of a system, hence a measure of uncertainty about its precise state. Therefore, assuming unitarity in black hole evaporation, the standard results suggest that the largest uncertainty in the future quantum state of the universe is due to the Hawking radiation from evaporating black holes. However, the entropy of the matter precursors to astrophysical black holes is enormously less than that given by area entropy. If unitarity relates the future radiation states to the black hole precursor states, then the standard results are highly misleading, at least for an observer that can differentiate the individual states of the Hawking radiation.

  14. On the track of dark matter

    International Nuclear Information System (INIS)

    Astier, P.; Pain, R.; Daninos, F.

    2008-01-01

    Physicists link dark matter to the acceleration of the universe expansion via a state equation that sets the ration between pressure and energy density of the dark matter component. 5 candidates to dark matter comply with this test. First, the cosmological constant, it might correspond to a homogenous fluid but not to vacuum energy as previously thought because its value would be far too big to match reality. Secondly, the quintessence, it means a new type of matter that does not interact with ordinary particles and does not collapse when submitted to gravity, it stays diffuse and fluctuates weakly even on very large distances. Thirdly, a modified version of general relativity theory that creates a new basic interaction that is negligible at the scale of the solar system but that affects the universe on cosmological scales. Fourthly, axions, in this theory there is no need for expansion acceleration since photons are likely to turn into axions and as a consequence remote objects appear to be farther than they really are. Fifth, inhomogeneous models, these models challenge the cosmological principle that states that in the universe matter is dispatched in a homogenous and isotropic way. According to these models the universe expansion is an illusion that results from a bad interpretation of experimental results. (A.C.)

  15. The Behavior of Matter under Extreme Conditions

    NARCIS (Netherlands)

    Paerels, F.; Méndez, M.; Agueros, M.; Baring, M.; Barret, D.; Bhattacharyya, S.; Cackett, E.; Cottam, J.; Diaz Trigo, M.; Fox, D.; Garcia, M.; Gotthelf, E.; Hermsen, W.; Ho, W.; Hurley, K.; Jonker, P.; Juett, A.; Kaaret, P.; Kargaltsev, O.; Lattimer, J.; Matt, G.; Özel, F.; Pavlov, G.; Rutledge, R.; Smith, R.; Stella, L.; Strohmayer, T.; Tananbaum, H.; Uttley, P.; van Kerkwijk, M.; Weisskopf, M.; Zane, S.

    2009-01-01

    The cores of neutron stars harbor the highest matter densities known to occur in nature, up to several times the densities in atomic nuclei. Similarly, magnetic field strengths can exceed the strongest fields generated in terrestrial laboratories by ten orders of magnitude. Hyperon-dominated matter,

  16. Black hole formation in a contracting universe

    Energy Technology Data Exchange (ETDEWEB)

    Quintin, Jerome; Brandenberger, Robert H., E-mail: jquintin@physics.mcgill.ca, E-mail: rhb@hep.physics.mcgill.ca [Department of Physics, McGill University, 3600 rue University, Montréal, QC, H3A 2T8 Canada (Canada)

    2016-11-01

    We study the evolution of cosmological perturbations in a contracting universe. We aim to determine under which conditions density perturbations grow to form large inhomogeneities and collapse into black holes. Our method consists in solving the cosmological perturbation equations in complete generality for a hydrodynamical fluid. We then describe the evolution of the fluctuations over the different length scales of interest and as a function of the equation of state for the fluid, and we explore two different types of initial conditions: quantum vacuum and thermal fluctuations. We also derive a general requirement for black hole collapse on sub-Hubble scales, and we use the Press-Schechter formalism to describe the black hole formation probability. For a fluid with a small sound speed (e.g., dust), we find that both quantum and thermal initial fluctuations grow in a contracting universe, and the largest inhomogeneities that first collapse into black holes are of Hubble size and the collapse occurs well before reaching the Planck scale. For a radiation-dominated fluid, we find that no black hole can form before reaching the Planck scale. In the context of matter bounce cosmology, it thus appears that only models in which a radiation-dominated era begins early in the cosmological evolution are robust against the formation of black holes. Yet, the formation of black holes might be an interesting feature for other models. We comment on a number of possible alternative early universe scenarios that could take advantage of this feature.

  17. Black hole formation in a contracting universe

    International Nuclear Information System (INIS)

    Quintin, Jerome; Brandenberger, Robert H.

    2016-01-01

    We study the evolution of cosmological perturbations in a contracting universe. We aim to determine under which conditions density perturbations grow to form large inhomogeneities and collapse into black holes. Our method consists in solving the cosmological perturbation equations in complete generality for a hydrodynamical fluid. We then describe the evolution of the fluctuations over the different length scales of interest and as a function of the equation of state for the fluid, and we explore two different types of initial conditions: quantum vacuum and thermal fluctuations. We also derive a general requirement for black hole collapse on sub-Hubble scales, and we use the Press-Schechter formalism to describe the black hole formation probability. For a fluid with a small sound speed (e.g., dust), we find that both quantum and thermal initial fluctuations grow in a contracting universe, and the largest inhomogeneities that first collapse into black holes are of Hubble size and the collapse occurs well before reaching the Planck scale. For a radiation-dominated fluid, we find that no black hole can form before reaching the Planck scale. In the context of matter bounce cosmology, it thus appears that only models in which a radiation-dominated era begins early in the cosmological evolution are robust against the formation of black holes. Yet, the formation of black holes might be an interesting feature for other models. We comment on a number of possible alternative early universe scenarios that could take advantage of this feature.

  18. Moduli induced cogenesis of baryon asymmetry and dark matter

    Directory of Open Access Journals (Sweden)

    Mansi Dhuria

    2016-05-01

    Full Text Available We study a cogenesis mechanism in which the observed baryon asymmetry of the universe and the dark matter abundance can be produced simultaneously at low reheating temperature without violating baryon number in the fundamental interactions. In particular, we consider a model which can be realized in the context of type IIB large volume string compactifications. The matter superfields in this model include additional pairs of color triplet and singlet superfields in addition to the Minimal Supersymmetric Standard Model (MSSM superfields. Assuming that the mass of the additional singlet fermions is O(GeV and of the color triplet fermions is O(TeV, we show that the modulus dominantly decays into the additional color triplet superfields. After soft supersymmetry (SUSY breaking, the lightest eigenstate of scalar component of color triplet superfield further decays into fermionic component of singlet superfield and quarks without violating baryon number. Imposing discrete Z2 symmetry, it follows that the singlet fermion will not further decay into the SM particles and therefore it can be considered as a stable asymmetric dark matter (ADM component. We find that the decay of the lightest eigenstate of scalar component of color triplet superfield gives the observed baryon asymmetry in the visible sector, an asymmetric dark matter component with the right abundance and naturally explains cosmic coincidence.

  19. A hypothesis concerning the nature of dark matter

    International Nuclear Information System (INIS)

    Paduroiu, Sinziana; Rusu, Mircea

    2004-01-01

    In this paper we briefly review the main observational facts that lead to the hypothesis of the so called 'dark matter' as a considerable part of the matter in the Universe that is not visible. The expansion rate of the universe, the birth of the galaxies and their rotation curves are some of the phenomena that can be explained by the existence of dark matter. Generally, there are two models for dark matter: the hot dark matter (HDM) model and the cold dark matter one (CDM). In this paper we will refer mainly to the cold dark matter model. Two different opinions regarding the nature of dark matter and its contribution to the total mass of the matter in the Universe due to a cosmological constant will be discussed. In the first part some particles candidates for dark matter like neutralino and axions will be considered and their prediction made by supersymmetry theory. In the second part different alternative models will be presented that imply singularities of the gravitational theory; inflationary models; and in particular one model that introduces a new expression in the gravitational potential as an attempt to explain the phenomena that made us believe in the existence of this kind of matter. (authors)

  20. Search for Non-thermal Dark Matter in Monojet Events in Proton-Proton Collisions at $\\sqrt{s}$ = 13 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Undleeb, Sonaina [Texas Tech Univ., Lubbock, TX (United States)

    2017-01-01

    This dissertation presents a search for dark matter in events with one or more jets and large missing transverse energy using proton-proton collisions at center-of-mass energy of 13 TeV. The data was collected in 2016 by the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) corresponding to an integrated luminosity of 35.9 $fb^{-1}$. The results are interpreted in terms of Light Non-thermal dark matter model which explains presence of dark matter as well as baryon asymmetry in the universe. Model independent limit on narrow resonance is also obtained for monojet dominant coupling parameter space. There is no evidence for an excess of events above the background processes in the signal region, therefore cross section limits are set for different mediator masses.

  1. Fatal youth of the Universe: black hole threat for the electroweak vacuum during preheating

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, Dmitry; Levkov, Dmitry; Panin, Alexander, E-mail: gorby@ms2.inr.ac.ru, E-mail: levkov@ms2.inr.ac.ru, E-mail: panin@ms2.inr.ac.ru [Institute for Nuclear Research of Russian Academy of Sciences, 117312 Moscow (Russian Federation)

    2017-10-01

    Small evaporating black holes were proposed to be dangerous inducing fast decay of the electroweak false vacuum. We observe that the flat-spectrum matter perturbations growing at the post-inflationary matter dominated stage can produce such black holes in a tiny amount which may nevertheless be sufficient to destroy the vacuum in the visible part of the Universe via the induced process. If the decay probability in the vicinity of Planck-mass black holes was of order one as suggested in literature, the absence of such objects in the early Universe would put severe constraints on inflation and subsequent stages thus excluding many well-motivated models (e.g. the R {sup 2}-inflation) and supporting the need of new physics in the Higgs sector. We give a qualitative argument, however, that exponential suppression of the probability should persist in the limit of small black hole masses. This suppression relaxes our cosmological constraints, and, if sufficiently strong, may cancel them.

  2. Detection prospects for high energy neutrino sources from the anisotropic matter distribution in the local Universe

    Energy Technology Data Exchange (ETDEWEB)

    Mertsch, Philipp; Rameez, Mohamed; Tamborra, Irene, E-mail: mertsch@nbi.ku.dk, E-mail: mohamed.rameez@nbi.ku.dk, E-mail: tamborra@nbi.ku.dk [Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen (Denmark)

    2017-03-01

    Constraints on the number and luminosity of the sources of the cosmic neutrinos detected by IceCube have been set by targeted searches for point sources. We set complementary constraints by using the 2MASS Redshift Survey (2MRS) catalogue, which maps the matter distribution of the local Universe. Assuming that the distribution of the neutrino sources follows that of matter, we look for correlations between ''warm'' spots on the IceCube skymap and the 2MRS matter distribution. Through Monte Carlo simulations of the expected number of neutrino multiplets and careful modelling of the detector performance (including that of IceCube-Gen2), we demonstrate that sources with local density exceeding 10{sup −6} Mpc{sup −3} and neutrino luminosity L {sub ν} ∼< 10{sup 42} erg s{sup −1} (10{sup 41} erg s{sup −1}) will be efficiently revealed by our method using IceCube (IceCube-Gen2). At low luminosities such as will be probed by IceCube-Gen2, the sensitivity of this analysis is superior to requiring statistically significant direct observation of a point source.

  3. The mystery of dark matter

    International Nuclear Information System (INIS)

    Khalatbari, Azar

    2015-01-01

    As only 0.5 per cent (the shining part) of the Universe is seen by telescopes, and corresponds to a tenth of ordinary matter or 5 per cent of the cosmos, astrophysicists postulated that the remaining 95 per cent are made of dark matter and dark energy. But always more researchers put the existence of this dark matter and energy into question again. They notably think of giving up Newton's law of universal gravitation, and also the basic assumption of cosmology, i.e. the homogeneous character of the Universe. The article recalls the emergence of the notion of dark matter to explain the fact that stars stay within a galaxy, whereas with their observed speed and the application of the gravitational theory they should escape their galaxy. Then, the issue has been to find evidence of the existence of dark matter. Neutrinos were supposed to be a clue, but only for a while. The notion of dark energy was introduced more recently by researchers who, by the observation of supernovae, noticed that the Universe expansion was accelerated in time. Then, after having discussed the issues raised by the possible existence of dark energy, the article explains how and why a new non homogeneous cosmology emerged. It also evokes current and future researches in this field. In an interview, an astrophysicist outlines why we should dare to modify Newton's law

  4. Graviton production in noninflationary cosmology

    International Nuclear Information System (INIS)

    Durrer, Ruth; Rinaldi, Massimiliano

    2009-01-01

    We discuss the creation of massless particles in a Universe, which transits from a radiation-dominated era to any other expansion law. We calculate in detail the generation of gravitons during the transition to a matter-dominated era. We show that the resulting gravitons generated in the standard radiation/matter transition are negligible. We use our result to constrain one or more previous matter-dominated era, or any other expansion law, which may have taken place in the early Universe. We also derive a general formula for the modification of a generic initial graviton spectrum by an early matter-dominated era.

  5. Exothermic dark matter

    International Nuclear Information System (INIS)

    Graham, Peter W.; Saraswat, Prashant; Harnik, Roni; Rajendran, Surjeet

    2010-01-01

    We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, and XENON10. The dark matter consists of at least two light states with mass ∼few GeV and splittings ∼5 keV. It is natural for the heavier states to be cosmologically long-lived and to make up an O(1) fraction of the dark matter. Direct detection rates are dominated by the exothermic reactions in which an excited dark matter state downscatters off of a nucleus, becoming a lower energy state. In contrast to (endothermic) inelastic dark matter, the most sensitive experiments for exothermic dark matter are those with light nuclei and low threshold energies. Interestingly, this model can also naturally account for the observed low-energy events at CoGeNT. The only significant constraint on the model arises from the DAMA/LIBRA unmodulated spectrum but it can be tested in the near future by a low-threshold analysis of CDMS-Si and possibly other experiments including CRESST, COUPP, and XENON100.

  6. Baryonic dark matter

    International Nuclear Information System (INIS)

    Uson, Juan M.

    2000-01-01

    Many searches for baryonic dark matter have been conducted but, so far, all have been unsuccessful. Indeed, no more than 1% of the dark matter can be in the form of hydrogen burning stars. It has recently been suggested that most of the baryons in the universe are still in the form of ionized gas so that it is possible that there is no baryonic dark matter. Although it is likely that a significant fraction of the dark matter in the Milky Way is in a halo of non-baryonic matter, the data do not exclude the possibility that a considerable amount, perhaps most of it, could be in a tenuous halo of diffuse ionized gas

  7. Inelastic dark matter

    International Nuclear Information System (INIS)

    Smith, David; Weiner, Neal

    2001-01-01

    Many observations suggest that much of the matter of the universe is nonbaryonic. Recently, the DAMA NaI dark matter direct detection experiment reported an annual modulation in their event rate consistent with a WIMP relic. However, the Cryogenic Dark Matter Search (CDMS) Ge experiment excludes most of the region preferred by DAMA. We demonstrate that if the dark matter can only scatter by making a transition to a slightly heavier state (Δm∼100 keV), the experiments are no longer in conflict. Moreover, differences in the energy spectrum of nuclear recoil events could distinguish such a scenario from the standard WIMP scenario. Finally, we discuss the sneutrino as a candidate for inelastic dark matter in supersymmetric theories

  8. Dark matter search with XENON1T

    NARCIS (Netherlands)

    Aalbers, J.

    2018-01-01

    Most matter in the universe consists of 'dark matter' unknown to particle physics. Deep underground detectors such as XENON1T attempt to detect rare collisions of dark matter with ordinary atoms. This thesis describes the first dark matter search of XENON1T, how dark matter signals would appear in

  9. Decaying dark matter from dark instantons

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Erlich, Joshua; Primulando, Reinard

    2010-01-01

    We construct an explicit, TeV-scale model of decaying dark matter in which the approximate stability of the dark matter candidate is a consequence of a global symmetry that is broken only by instanton-induced operators generated by a non-Abelian dark gauge group. The dominant dark matter decay channels are to standard model leptons. Annihilation of the dark matter to standard model states occurs primarily through the Higgs portal. We show that the mass and lifetime of the dark matter candidate in this model can be chosen to be consistent with the values favored by fits to data from the PAMELA and Fermi-LAT experiments.

  10. A consistent model for leptogenesis, dark matter and the IceCube signal

    Energy Technology Data Exchange (ETDEWEB)

    Fiorentin, M. Re [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Niro, V. [Departamento de Física Teórica, Universidad Autónoma de Madrid,Cantoblanco, E-28049 Madrid (Spain); Instituto de Física Teórica UAM/CSIC,Calle Nicolás Cabrera 13-15, Cantoblanco, E-28049 Madrid (Spain); Fornengo, N. [Dipartimento di Fisica, Università di Torino,via P. Giuria, 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino,via P. Giuria, 1, 10125 Torino (Italy)

    2016-11-04

    We discuss a left-right symmetric extension of the Standard Model in which the three additional right-handed neutrinos play a central role in explaining the baryon asymmetry of the Universe, the dark matter abundance and the ultra energetic signal detected by the IceCube experiment. The energy spectrum and neutrino flux measured by IceCube are ascribed to the decays of the lightest right-handed neutrino N{sub 1}, thus fixing its mass and lifetime, while the production of N{sub 1} in the primordial thermal bath occurs via a freeze-in mechanism driven by the additional SU(2){sub R} interactions. The constraints imposed by IceCube and the dark matter abundance allow nonetheless the heavier right-handed neutrinos to realize a standard type-I seesaw leptogenesis, with the B−L asymmetry dominantly produced by the next-to-lightest neutrino N{sub 2}. Further consequences and predictions of the model are that: the N{sub 1} production implies a specific power-law relation between the reheating temperature of the Universe and the vacuum expectation value of the SU(2){sub R} triplet; leptogenesis imposes a lower bound on the reheating temperature of the Universe at 7×10{sup 9} GeV. Additionally, the model requires a vanishing absolute neutrino mass scale m{sub 1}≃0.

  11. Mass, matter, materialization, mattergenesis and conservation of charge

    International Nuclear Information System (INIS)

    Tsan, Ung Chan

    2013-01-01

    Conservation of mass in classical physics and in chemistry is considered to be equivalent to conservation of matter and is a necessary condition together with other universal conservation laws to account for observed experiments. Indeed matter conservation is associated to conservation of building blocks (molecules, atoms, nucleons, quarks and leptons). Matter is massive but mass and matter are two distinct concepts even if conservation of mass and conservation of matter represent the same reality in classical physics and chemistry. Conservation of mass is a consequence of conservation of atoms. Conservation of mass is valid because in these cases it is a very good approximation, the variation of mass being tiny and undetectable by weighing. However, nuclear physics and particle physics clearly show that conservation of mass is not valid to express conservation of matter. Mass is one form of energy, is a positive quantity and plays a fundamental role in dynamics allowing particles to be accelerated. Origin of mass may be linked to recently discovered Higgs bosons. Matter conservation means conservation of baryonic number A and leptonic number L, A and L being algebraic numbers. Positive A and L are associated to matter particles, negative A and L are associated to antimatter particles. All known interactions do conserve matter thus could not generate, from pure energy, a number of matter particles different from that of number of antimatter particles. But our universe is material and neutral, this double message has to be deciphered simultaneously. Asymmetry of our universe demands an interaction which violates matter conservation but obeys all universal conservation laws, in particular conservation of electric charge Q. Expression of Q shows that conservation of (A–L) and total flavor TF are necessary and sufficient to conserve Q. Conservation of A and L is indeed a trivial case of conservation of (A–L) and is valid for all known interactions of the standard

  12. Sterile neutrinos as dark matter

    International Nuclear Information System (INIS)

    Dodelson, S.; Widrow, L.M.

    1994-01-01

    The simplest model that can accommodate a viable nonbaryonic dark matter candidate is the standard electroweak theory with the addition of right-handed (sterile) neutrinos. We consider a single generation of neutrinos with a Dirac mass μ and a Majorana mass M for the right-handed component. If M much-gt μ (standard hot dark matter corresponds to M=0), then sterile neutrinos are produced via oscillations in the early Universe with energy density independent of M. However, M is crucial in determining the large scale structure of the Universe; for M∼100 eV, sterile neutrinos make an excellent warm dark matter candidate

  13. Particle Dark Matter (1/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    I review the phenomenology of particle dark matter, including the process of thermal freeze-out in the early universe, and the direct and indirect detection of WIMPs. I also describe some of the most popular particle candidates for dark matter and summarize the current status of the quest to discover dark matter's particle identity.

  14. Direct search for dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jonghee; /Fermilab

    2009-12-01

    Dark matter is hypothetical matter which does not interact with electromagnetic radiation. The existence of dark matter is only inferred from gravitational effects of astrophysical observations to explain the missing mass component of the Universe. Weakly Interacting Massive Particles are currently the most popular candidate to explain the missing mass component. I review the current status of experimental searches of dark matter through direct detection using terrestrial detectors.

  15. Direct SUSY dark matter detection-theoretical rates due to the spin

    International Nuclear Information System (INIS)

    Vergados, J D

    2004-01-01

    The recent WMAP data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Thus direct dark matter detection, consisting of detecting the recoiling nucleus, is central to particle physics and cosmology. Supersymmetry provides a natural dark matter candidate, the lightest supersymmetric particle (LSP). The relevant cross sections arise out of two mechanisms: (i) the coherent mode, due to the scalar interaction and (ii) the spin contribution arising from the axial current. In this paper we will focus on the spin contribution, which is expected to dominate for light targets. For both modes it is possible to obtain detectable rates, but in most models the expected rates are much lower than the present experimental goals. So one should exploit two characteristic signatures of the reaction, namely the modulation effect and in directional experiments the correlation of the event rates with the sun's motion. In standard non-directional experiments the modulation is small, less than 2 per cent. In the case of the directional event rates we would like to suggest that the experiments exploit two features of the process, which are essentially independent of the SUSY model employed, namely: (1) the forward-backward asymmetry, with respect to the sun's direction of motion, is very large and (2) the modulation is much larger, especially if the observation is made in a plane perpendicular to the sun's velocity. In this case the difference between maximum and minimum can be larger than 40 per cent and the phase of the earth at the maximum is direction dependent

  16. Z2 SIMP dark matter

    International Nuclear Information System (INIS)

    Bernal, Nicolás; Chu, Xiaoyong

    2016-01-01

    Dark matter with strong self-interactions provides a compelling solution to several small-scale structure puzzles. Under the assumption that the coupling between dark matter and the Standard Model particles is suppressed, such strongly interacting massive particles (SIMPs) allow for a successful thermal freeze-out through N-to-N' processes, where N dark matter particles annihilate to N' of them. In the most common scenarios, where dark matter stability is guaranteed by a Z 2 symmetry, the seemingly leading annihilating channel, i.e. 3-to-2 process, is forbidden, so the 4-to-2 one dominate the production of the dark matter relic density. Moreover, cosmological observations require that the dark matter sector is colder than the thermal bath of Standard Model particles, a condition that can be dynamically generated via a small portal between dark matter and Standard Model particles, à la freeze-in. This scenario is exemplified in the context of the Singlet Scalar dark matter model

  17. The Cryogenic Dark Matter Search (CDMS)

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.D., Jr. [UC, Berkeley

    1996-01-01

    A substantial body of observational evidence indicates that the universe contains much more material than we observe directly via photons of any wavelength. The existence of this "missing" mass or "dark" matter is inferred by its gravitational effects on the luminous material. Accepting the existence of dark matter has profoundly shaken our understanding in most areas of cosmology. If it exists at the lowest densities measured it is hard to understand in detail the creation of the elements in the early universe. If moderate density values are correct, then we have trouble understanding how the universe came to have so much structure on large scales. If the largest densities are correct, then dark matter is not ordinary matter, but must be something exotic like a new fundamental particle. We would like to measure the properties of the dark matter directly. Supposing that the dark matter consists of a WIMP, that was in thermal equilibrium in the early universe, we have built an experiment to detect dark matter directly by elastic scattering with germanium or silicon nuclei. Our detectors are large (~ 200 g) calorimeters that can discriminate between interactions with the electrons, due to background photons and beta particles, and interactions with the nuclei, due to WIMPs and background neutrons. The detectors operate at low temperatures (~ 20 mK) in a specially constructed cryostat. To reduce the rate of background events to a manageable level, the detectors and cryostat have been constructed out of selected materials and properly shielded. This dissertation discusses the properties of the hypothetical WIMPs, the detectors, cryostat, and shielding system, and finally, the analysis methods.new fundamental particle, a

  18. Scale-invariant matter distribution in the universe

    International Nuclear Information System (INIS)

    Balian, R.; Schaeffer, R.

    1989-01-01

    We calculate the galaxy counts or the matter content within a randomly placed cell, under the sole hypothesis of scale-invariance of the many-body correlations functions. The various forms taken by the probability for finding N objects in a given volume are obtained as a function of its size. At smallscales ( -1 Mpc), this probability decreases exponentially with N. At larger scales (0.5h -1 Mpc to 10h -1 Mpc) it behaves as a power-law with an upper and possibly a lower exponential cut-off, reminiscent of the current parametrizations of the galaxy and cluster luminosity functions. We show that the large scale void probability, whose logarithm is seen to be a power-law, is a scale-free extrapolation of its small scale behaviour. As long as the correlation functions are power-laws, this void distribution is not compatible with the linear theory, whatever large scale is considered. We relate this large-scale behaviour of the void probability to the power-law observed at the faint end of the luminosity functions. A scaling law is found, the galaxy and cluster distributions being expressed by the same universal function. We show that the counts in cells are approximately gaussian, only at very large scales, above 50h -1 Mpc, provived the density fluctuations are less than 10% of the mean. In the intermediate range of 10h -1 to 50h -1 Mpc, considerable deviations from gaussian statistics are predicted. Counts in cells are seen to provide a cleaner statistical tool than the mass or luminosity functions and are as easy to obtain either from theoretical information on correlation functions or from observations

  19. Nuclear matter revisited

    International Nuclear Information System (INIS)

    Negele, J.W.; Zabolitzky, J.G.

    1978-01-01

    It is stated that at the Workshop on Nuclear and Dense Matter held at the University of Illinois in May 1977 significant progress was reported that largely resolves many of the questions raised in this journal Vol. 6, p.149, 1976. These include perturbative versus variational methods as applied to nuclear matter, exact solutions for bosons, what is known as the fermion 'homework problem', and various other considerations regarding nuclear matter, including the use of variational methods as opposed to perturbation theory. (15 references) (U.K.)

  20. Evolution of structure in cold dark matter universes

    OpenAIRE

    Consortium, The Virgo; :; Jenkins, A.; Frenk, C. S.; Pearce, F. R.; Thomas, P. A.; Colberg, J. M.; White, S. D. M.; Couchman, H. M. P.; Peacock, J. A.; Efstathiou, G.; Nelson, A. H.

    1997-01-01

    We present an analysis of the clustering evolution of dark matter in four cold dark matter (CDM) cosmologies. We use a suite of high resolution, 17-million particle, N-body simulations which sample volumes large enough to give clustering statistics with unprecedented accuracy. We investigate both a flat and an open model with Omega_0=0.3, and two models with Omega=1, one with the standard CDM power spectrum and the other with the same power spectrum as the Omega_0=0.3 models. The amplitude of...

  1. Distinguishing Dark Matter Stabilization Symmetries at Hadron Colliders with Mass Variables

    CERN Document Server

    Kim, Heejoo

    2017-01-01

    Cosmological and astrophysical observations, yet all gravitational, suggest that there exists stable matter, so-called dark matter (DM), in our universe, which is exerting gravity but hardly detectable in relevant experiments. The stability of DM indicates that DM needs to be either massless or protected by a new symmetry (henceforth called DM stabilizing symmetry) preventing its decay. It turns out that cosmological consideration suggests that massless particles be unlikely to constitute a dominant portion of the DM, motivating DM candidates with a sizable mass. While a massive particle, in general, may decay into lighter particles, the charge conservation associated with the symmetry ensures the stability of DM. There is a tremendous amount of effort in the search for DM candidates and it also comprises collider experiments. DM is, by definition, hard to be detected at colliders such as the LHC. So, its existence may be inferred from (visible) Standard Model (SM) particles emitted from a decay chain of a...

  2. University IPRs and knowledge transfer : is university ownership more efficient?

    NARCIS (Netherlands)

    Crespi, G.A.; Geuna, A.; Nomaler, Z.O.; Verspagen, B.

    2010-01-01

    This paper addresses an issue that has been largely ignored so far in the empirical literature on the role of patents in university-industry knowledge transfer: does it matter who owns the patents on university research? We observe that especially in Europe, many patents in which university

  3. Natural Implementation of Neutralino Dark Matter

    CERN Document Server

    King, S F

    2006-01-01

    The prediction of neutralino dark matter is generally regarded as one of the successes of the Minimal Supersymmetric Standard Model (MSSM). However the successful regions of parameter space allowed by WMAP and collider constraints are quite restricted. We discuss fine-tuning with respect to both dark matter and Electroweak Symmetry Breaking (EWSB) and explore regions of MSSM parameter space with non-universal gaugino and third family scalar masses in which neutralino dark matter may be implemented naturally. In particular allowing non-universal gauginos opens up the bulk region that allows Bino annihilation via t-channel slepton exchange, leading to ``supernatural dark matter'' corresponding to no fine-tuning at all with respect to dark matter. By contrast we find that the recently proposed ``well tempered neutralino'' regions involve substantial fine-tuning of MSSM parameters in order to satisfy the dark matter constraints, although the fine tuning may be ameliorated if several annihilation channels act simu...

  4. On wave dark matter in spiral and barred galaxies

    International Nuclear Information System (INIS)

    Martinez-Medina, Luis A.; Matos, Tonatiuh; Bray, Hubert L.

    2015-01-01

    We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particles simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter

  5. Direct dark matter searches—Test of the Big Bounce Cosmology

    International Nuclear Information System (INIS)

    Cheung, Yeuk-Kwan E.; Vergados, J.D.

    2015-01-01

    We consider the possibility of using dark matter particle's mass and its interaction cross section as a smoking gun signal of the existence of a Big Bounce at the early stage in the evolution of our currently observed universe. A study of dark matter production in the pre-bounce contraction and the post bounce expansion epochs of this universe reveals a new venue for achieving the observed relic abundance of our present universe. Specifically, it predicts a characteristic relation governing a dark matter mass and interaction cross section and a factor of 1/2 in thermally averaged cross section, as compared to the non-thermal production in standard cosmology, is needed for creating enough dark matter particle to satisfy the currently observed relic abundance because dark matter is being created during the pre-bounce contraction, in addition to the post-bounce expansion. As the production rate is lower than the Hubble expansion rate information of the bounce universe evolution is preserved. Therefore once the value of dark matter mass and interaction cross section are obtained by direct detection in laboratories, this alternative route becomes a signature prediction of the bounce universe scenario. This leads us to consider a scalar dark matter candidate, which if it is light, has important implications on dark matter searches

  6. The large-scale peculiar velocity field in flat models of the universe

    International Nuclear Information System (INIS)

    Vittorio, N.; Turner, M.S.

    1986-10-01

    The inflationary Universe scenario predicts a flat Universe and both adiabatic and isocurvature primordial density perturbations with the Zel'dovich spectrum. The two simplest realizations, models dominated by hot or cold dark matter, seem to be in conflict with observations. Flat models are examined with two components of mass density, where one of the components of mass density is smoothly distributed and the large-scale (≥10h -1 MpC) peculiar velocity field for these models is considered. For the smooth component relativistic particles, a relic cosmological term, and light strings are considered. At present the observational situation is unsettled; but, in principle, the large-scale peculiar velocity field is very powerful discriminator between these different models. 61 refs

  7. Cosmic Explosions, Life in the Universe, and the Cosmological Constant

    Science.gov (United States)

    Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J.; Simpson, Fergus; Verde, Licia

    2016-02-01

    Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N -body simulations to determine at what time and for what value of the cosmological constant (Λ ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.

  8. Cosmic Explosions, Life in the Universe, and the Cosmological Constant.

    Science.gov (United States)

    Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J; Simpson, Fergus; Verde, Licia

    2016-02-26

    Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N-body simulations to determine at what time and for what value of the cosmological constant (Λ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.

  9. Dark matter and electroweak phase transition in the mixed scalar dark matter model

    Science.gov (United States)

    Liu, Xuewen; Bian, Ligong

    2018-03-01

    We study the electroweak phase transition in the framework of the scalar singlet-doublet mixed dark matter model, in which the particle dark matter candidate is the lightest neutral Higgs that comprises the C P -even component of the inert doublet and a singlet scalar. The dark matter can be dominated by the inert doublet or singlet scalar depending on the mixing. We present several benchmark models to investigate the two situations after imposing several theoretical and experimental constraints. An additional singlet scalar and the inert doublet drive the electroweak phase transition to be strongly first order. A strong first-order electroweak phase transition and a viable dark matter candidate can be accomplished in two benchmark models simultaneously, for which a proper mass splitting among the neutral and charged Higgs masses is needed.

  10. Natural implementation of neutralino dark matter

    International Nuclear Information System (INIS)

    King, Steve F.; Roberts, Jonathan P.

    2006-01-01

    The prediction of neutralino dark matter is generally regarded as one of the successes of the Minimal Supersymmetric Standard Model (MSSM). However the successful regions of parameter space allowed by WMAP and collider constraints are quite restricted. We discuss fine-tuning with respect to both dark matter and Electroweak Symmetry Breaking (EWSB) and explore regions of MSSM parameter space with non-universal gaugino and third family scalar masses in which neutralino dark matter may be implemented naturally. In particular allowing non-universal gauginos opens up the bulk region that allows Bino annihilation via t-channel slepton exchange, leading to 'supernatural dark matter' corresponding to no fine-tuning at all with respect to dark matter. By contrast we find that the recently proposed 'well tempered neutralino' regions involve substantial fine-tuning of MSSM parameters in order to satisfy the dark matter constraints, although the fine tuning may be ameliorated if several annihilation channels act simultaneously. Although we have identified regions of 'supernatural dark matter' in which there is no fine tuning to achieve successful dark matter, the usual MSSM fine tuning to achieve EWSB always remains

  11. Natural implementation of neutralino dark matter

    Science.gov (United States)

    King, Steve F.; Roberts, Jonathan P.

    2006-09-01

    The prediction of neutralino dark matter is generally regarded as one of the successes of the Minimal Supersymmetric Standard Model (MSSM). However the successful regions of parameter space allowed by WMAP and collider constraints are quite restricted. We discuss fine-tuning with respect to both dark matter and Electroweak Symmetry Breaking (EWSB) and explore regions of MSSM parameter space with non-universal gaugino and third family scalar masses in which neutralino dark matter may be implemented naturally. In particular allowing non-universal gauginos opens up the bulk region that allows Bino annihilation via t-channel slepton exchange, leading to ``supernatural dark matter'' corresponding to no fine-tuning at all with respect to dark matter. By contrast we find that the recently proposed ``well tempered neutralino'' regions involve substantial fine-tuning of MSSM parameters in order to satisfy the dark matter constraints, although the fine tuning may be ameliorated if several annihilation channels act simultaneously. Although we have identified regions of ``supernatural dark matter'' in which there is no fine tuning to achieve successful dark matter, the usual MSSM fine tuning to achieve EWSB always remains.

  12. Neutrino neutral current interactions in nuclear matter

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Wehrberger, K.

    1991-01-01

    Detailed knowledge of neutrino transport properties in matter is crucial for an understanding of the evolution of supernovae and of neutron star cooling. We investigate screening of neutrino scattering from a dense degenerate gas of electrons, protons and neutrons. We take into account correlations induced by the Coulomb interactions of the electrons and protons, and the strong interactions of the protons and neutrons. Nuclear matter is described by the σω model of quantum hadrodynamics. Results are presented for typical astrophysical scenarios. The differential cross section is strongly reduced at large energy transfer, where electrons dominate, and slightly reduced for small energy transfer, where nucleons dominate. At large densities, the nucleon effective mass is considerably lower than the free mass, and the region dominated by nucleons extends to larger energy transfer than for free nucleons. (orig.)

  13. Low Mass Dark Matter: Some Perspectives

    International Nuclear Information System (INIS)

    Chen Shaolong

    2012-01-01

    The low mass (10 GeV scale) dark matter is indicted and favored by several recent dark matter direct detection experimental results, such as DAMA and CoGeNT. In this talk, we discuss some aspects of the low mass dark matter. We study the indirect detection of dark matter through neutrino flux from their annihilation in the center of the Sun, in a class of models where the dark matter-nucleon spin-independent interactions break the isospin symmetry. The indirect detection using neutrino telescopes can impose a relatively stronger constraint and brings tension to such explanation, if the dark matter self-annihilation is dominated by heavy quarks or τ-lepton final states. The asymmetric dark matter doesn't suffer the constraints from the indirect detection results. We propose a model of asymmetric dark matter where the matter and dark matter share the common origin, the asymmetries in both the matter and dark matter sectors are simultaneously generated through leptogenesis, and we explore how this model can be tested in direct search experiments.

  14. Continuum photon spectrum from Z1Z1 annihilations in universal extra dimensions

    International Nuclear Information System (INIS)

    Melbéus, Henrik; Merle, Alexander; Ohlsson, Tommy

    2012-01-01

    We calculate the continuum photon spectrum from the pair annihilation of a Z 1 LKP in non-minimal universal extra dimensions. We find that, due to the preferred annihilation into W + W - pairs, the continuum flux of collinear photons is relatively small compared to the standard case of the B 1 as the LKP. This conclusion applies in particular to the spectral endpoint, where also the additional fermionic contributions are not large enough to increase the flux significantly. When searching for the line signal originating from Z 1 Z 1 annihilations, this is actually a perfect situation, since the continuum signal can be regarded as background to the smoking gun signature of a peak in the photon flux at an energy that is nearly equal to the mass of the dark matter particle. This signal, in combination with (probably) a non-observation of the continuum signal at lower photon energies, constitutes a perfect handle to probe the hypothesis of the Z 1 LKP being the dominant component of the dark matter observed in the Universe.

  15. Highly dominating, highly authoritarian personalities.

    Science.gov (United States)

    Altemeyer, Bob

    2004-08-01

    The author considered the small part of the population whose members score highly on both the Social Dominance Orientation scale and the Right-Wing Authoritarianism scale. Studies of these High SDO-High RWAs, culled from samples of nearly 4000 Canadian university students and over 2600 of their parents and reported in the present article, reveal that these dominating authoritarians are among the most prejudiced persons in society. Furthermore, they seem to combine the worst elements of each kind of personality, being power-hungry, unsupportive of equality, manipulative, and amoral, as social dominators are in general, while also being religiously ethnocentric and dogmatic, as right-wing authoritarians tend to be. The author suggested that, although they are small in number, such persons can have considerable impact on society because they are well-positioned to become the leaders of prejudiced right-wing political movements.

  16. Equilibration of matter near the QCD critical point

    International Nuclear Information System (INIS)

    Bravina, L V; Arsene, I; Nilsson, M S; Tywoniuk, K; Zabrodin, E E

    2006-01-01

    The relaxation of hot and dense nuclear matter to local equilibrium in the central zone of heavy-ion collisions at energies around 40 A GeV is studied within the microscopic transport model. Dynamical calculations performed for the central cell in the reaction are compared to the predictions of the thermal statistical model. It is found that kinetic, thermal and chemical equilibrations of the expanding hadronic matter are nearly approached for the period of 10-18 fm/c. Within this time, the matter in the cell expands almost isentropically. It is quite interesting that in the T-μ B plane the system crosses the critical point predicted by lattice QCD calculations. Similar to the cells studied at lower (AGS) and higher (SPS, RHIC) energies, the central cell at 40 A GeV possesses negative (though small) net strangeness. Several peculiarities are observed as well. These features can be attributed to the transition from baryon-dominated to meson-dominated matter, discussed recently

  17. Dark matter as the Bose-Einstein condensation in loop quantum cosmology

    International Nuclear Information System (INIS)

    Atazadeh, K.; Mousavi, M.; Darabi, F.

    2016-01-01

    We consider the FLRW universe in a loop quantum cosmological model filled with radiation, baryonic matter (with negligible pressure), dark energy, and dark matter. The dark matter sector is supposed to be of Bose-Einstein condensate type. The Bose-Einstein condensation process in a cosmological context by supposing it as an approximate first-order phase transition, has already been studied in the literature. Here, we study the evolution of the physical quantities related to the early universe description such as the energy density, temperature, and scale factor of the universe, before, during, and after the condensation process. We also consider in detail the evolution era of the universe in a mixed normal-condensate dark matter phase. The behavior and time evolution of the condensate dark matter fraction is also analyzed. (orig.)

  18. On the tracks of the invisible universe

    International Nuclear Information System (INIS)

    Springel, V.

    2014-01-01

    In the universe the ordinary matter occupies only a minute place (5%) compared to 2 other components: dark energy and dark matter. Dark matter is useful to explain two facts, first the galaxies and the clusters of galaxies are moving faster than expected and secondly the acknowledged presence of tiny fluctuations of temperature in the diffused cosmological background. For its part, dark energy explains why the universe is steadily expanding. Dark matter seems to be omnipresent in the universe, at any time between early universe and now, and at any scale (cosmological or galactic). Despite important technological efforts, hypothetical constituents of dark matter like supersymmetric particles or axions have never been detected directly so far. The MOND theory, proposed in 1983 relies on changes in the gravitation interaction to explain the rotation spin of galaxies. As for dark energy, one thing that puzzles scientists is that the densities of dark matter and dark energy are of the same order of magnitude which might imply interaction between them. The Euclid satellite that will be launched in 2020, will bring information on the universe expansion by measuring the red-shift of more than 100 million galaxies, the results will certainly help for better understanding dark energy. (A.C.)

  19. CCDM model from quantum particle creation: constraints on dark matter mass

    International Nuclear Information System (INIS)

    Jesus, J.F.; Pereira, S.H.

    2014-01-01

    In this work the results from the quantum process of matter creation have been used in order to constrain the mass of the dark matter particles in an accelerated Cold Dark Matter model (Creation Cold Dark Matter, CCDM). In order to take into account a back reaction effect due to the particle creation phenomenon, it has been assumed a small deviation ε for the scale factor in the matter dominated era of the form t 2/3+ε . Based on recent H(z) data, the best fit values for the mass of dark matter created particles and the ε parameter have been found as m = 1.6× 10 3 GeV, restricted to a 68.3% c.l. interval of 1.5 < m < 6.3× 10 7 ) GeV and ε = -0.250 +0.15 -0.096 at 68.3% c.l. For these best fit values the model correctly recovers a transition from decelerated to accelerated expansion and admits a positive creation rate near the present era. Contrary to recent works in CCDM models where the creation rate was phenomenologically derived, here we have used a quantum mechanical result for the creation rate of real massive scalar particles, given a self consistent justification for the physical process. This method also indicates a possible solution to the so called ''dark degeneracy'', where one can not distinguish if it is the quantum vacuum contribution or quantum particle creation which accelerates the Universe expansion

  20. Particle Dark Matter: An Overview

    International Nuclear Information System (INIS)

    Roszkowski, Leszek

    2009-01-01

    Dark matter in the Universe is likely to be made up of some new, hypothetical particle which would be a part of an extension of the Standard Model of particle physics. In this overview, I will first briefly review well motivated particle candidates for dark matter. Next I will focus my attention on the neutralino of supersymmetry which is the by far most popular dark matter candidate. I will discuss some recent progress and comment on prospects for dark matter detection.

  1. Dark Matter from new Technicolor Theories

    DEFF Research Database (Denmark)

    Bjarke Gudnason, Sven; Kouvaris, Christoforos; Sannino, Francesco

    2006-01-01

    We investigate dark matter candidates emerging in recently proposed technicolor theories. We determine the relic density of the lightest, neutral, stable technibaryon having imposed weak thermal equilibrium conditions and overall electric neutrality of the Universe. In addition we consider...... sphaleron processes that violate baryon, lepton and technibaryon number. Our analysis is performed in the case of a first order electroweak phase transition as well as a second order one. We argue that, in both cases, the new technibaryon contributes to the dark matter in the Universe. Finally we examine...... the problem of the constraints on these types of dark matter components from earth based experiments....

  2. Multiple dark matter scenarios from ubiquitous stringy throats

    DEFF Research Database (Denmark)

    Chialva, D.; Dev, P.S.B.; Mazumdar, A.

    2013-01-01

    We discuss the possibility of having multiple Kaluza-Klein dark matter candidates which arise naturally in generic type-IIB string theory compactification scenarios. These dark matter candidates reside in various throats of the Calabi-Yau manifold. In principle, they can come with a varied range......, we find that the mass scales allowed for the Kaluza-Klein dark matter particles in various throats can vary between 0.1 eV and 10 TeV, depending upon the throat geometry. Thus, there could be simultaneously more than one kind of cold (and possibly warm and hot) dark matter components residing...... in the Universe. This multiple dark matter scenario could weaken the bound on a conventional supersymmetric dark matter candidate and could also account for extra relativistic degrees of freedom in our Universe....

  3. Decaying dark matter in supersymmetric SU(5) models

    International Nuclear Information System (INIS)

    Luo Mingxing; Wang Liucheng; Wu Wei; Zhu Guohuai

    2010-01-01

    Motivated by recent observations from PAMELA, Fermi and H.E.S.S., we consider dark matter decays in the framework of supersymmetric SU(5) grand unification theories. An SU(5) singlet S is assumed to be the main component of dark matters, which decays into visible particles through dimension six operators suppressed by the grand unification scale. Under certain conditions, S decays dominantly into a pair of sleptons with universal coupling for all generations. Subsequently, electrons and positrons are produced from cascade decays of these sleptons. These cascade decay chains smooth the e + +e - spectrum, which permit naturally a good fit to the Fermi-LAT data. The observed positron fraction upturn by PAMELA can be reproduced simultaneously. We have also calculated diffuse gamma-ray spectra due to the e ± excesses and compared them with the preliminary Fermi-LAT data from 0.1 GeV to 10 GeV in the region 0 deg. ≤l≤ 360 deg., 10 deg. ≤|b|≤20 deg. The photon spectrum of energy above 100 GeV, mainly from final state radiations, may be checked in the near future.

  4. Archaeal remains dominate marine organic matter from the early Albian oceanic anoxic event 1b

    DEFF Research Database (Denmark)

    Kuypers, M.M.M.; Blokker, P.; Hopmans, E.C.

    2002-01-01

    The sources for both soluble and insoluble organic matter of the early Albian (∼112 Myr) oceanic anoxic event (OAE) 1b black shales of the Ocean Drilling Program (ODP) site 1049C (North Atlantic Ocean off the coast of Florida) and the Ravel section of the Southeast France Basin (SEFB) were...... in C/C ratios was used to estimate that up to ∼40% of the organic matter of the SEFB and up to ∼80% of the organic matter of ODP site 1049C preserved in the black shales is derived from archaea. Furthermore, it is shown that, even though there are apparent similarities (high organic carbon (OC) content......, distinct lamination, C-enrichment of OC) between the black shales of OAE1b and the Cenomanian/Turonian (∼94 Myr) OAE, the origin of the organic matter (archaeal versus phytoplanktonic) and causes for C-enrichment of OC are completely different....

  5. Long gravitational waves in a closed universe

    International Nuclear Information System (INIS)

    Grishchuk, L.P.; Doroshkevich, A.G.; Yudin, V.M.

    The important part played by long gravitational waves in the evolution of a homogeneous closed universe (model of type IX in Biancki's classification) is discussed. It is shown that the metric of this model can be represented in the form of a sum of a background metric, describing nonstationary space of constant positive curvature, and a group of terms that may be interpreted as a set of gravitational waves of maximal length compatible with closure of the space. This subdivision of the metric is exact and does not presuppose necessary smallness of the wave corrections. For this reason the behavior of the wave terms can be traced at all stages of their evolution--both in the epoch when the contribution of the ''energy density'' and ''pressure'' of the gravitational waves to the dynamics of the background universe is negligibly small and in the epoch when this contribution is dominant. It was demonstrated, in particular, that in the limiting case of complete absence of ordinary matter the scale factor of the background metric, because of the negativity of gravitational ''pressure,''can pass during the evolution of the universe through a state of stable regular minimum

  6. Prominent microglial activation in cortical white matter is selectively associated with cortical atrophy in primary progressive aphasia.

    Science.gov (United States)

    Ohm, Daniel T; Kim, Garam; Gefen, Tamar; Rademaker, Alfred; Weintraub, Sandra; Bigio, Eileen; Mesulam, M-Marsel; Rogalski, Emily; Geula, Changiz

    2018-04-21

    Primary progressive aphasia (PPA) is a clinical syndrome characterized by selective language impairments associated with focal cortical atrophy favouring the language dominant hemisphere. PPA is associated with Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD), and significant accumulation of activated microglia. Activated microglia can initiate an inflammatory cascade that may contribute to neurodegeneration, but their quantitative distribution in cortical white matter and their relationship with cortical atrophy are unknown. We investigated white matter activated microglia and their association with grey matter atrophy in 10 PPA cases with either AD or FTLD-TDP pathology. Activated microglia were quantified with optical density measures of HLA-DR immunoreactivity in two regions with peak cortical atrophy, and one non-atrophied region within the language dominant hemisphere of each PPA case. Non-atrophied contralateral homologues of the language dominant regions were examined for hemispheric asymmetry. Qualitatively, greater densities of activated microglia were observed in cortical white matter when compared to grey matter. Quantitative analyses revealed significantly greater densities of activated microglia in the white matter of atrophied regions compared to non-atrophied regions in the language dominant hemisphere (p<0.05). Atrophied regions of the language dominant hemisphere also showed significantly more activated microglia compared to contralateral homologues (p<0.05). White matter activated microglia accumulate more in atrophied regions in the language dominant hemisphere of PPA. While microglial activation may constitute a response to neurodegenerative processes in white matter, the resultant inflammatory processes may also exacerbate disease progression and contribute to cortical atrophy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Alcohol drinking in university students matters for their self-rated health status: A cross-sectional study in three European countries

    Directory of Open Access Journals (Sweden)

    Rafael T Mikolajczyk

    2016-09-01

    Full Text Available Background:Alcohol drinking was linked to self-rated health in different populations, but the association was inconsistent. We studied the association among university students across three European countries with different patterns of drinking. Methods:We analysed data from three universities, one from each country: Germany (beer dominant, Bulgaria (wine dominant and Poland (unclassified among youths, spirits dominant in adults (N=2103. Frequency of drinking and problem drinking (two positive responses on CAGE-scale on the one side and self-rated health, caring for ones own health and worsening of health since the last year on the other side were assessed by means of self-administered questionnaire. The association between alcohol- (independent and health-related (dependent variables was evaluated by means of logistic regression, adjusting for country and sex. Results:Poor self-rated health and worsened health since previous year were associated only with problem drinking (odds ratio 1.82 (95% confidence interval [CI] 1.21-2.73 and 1.61 (95% CI 1.17-2.21, respectively, but not with a higher frequency of drinking. In contrast, not caring for one’s own health was associated with frequent drinking (1.40 (95% CI 1.10-1.78 but not with problem drinking (1.25 (95% CI 0.95-1.63. The results were consistent across the studied countries and by sex. Conclusions:The health status of university students was associated with problem drinking. A high frequency of drinking was associated with the lack of care of own health, but it was not associated with current health status. These associations were independent of the predominant pattern of drinking across the studied countries.

  8. Autosomal dominant arteriopathy with sub cortical infarcts and leucoencephalopathy (CADASIL)

    International Nuclear Information System (INIS)

    Ojeda, Adriana; Tiezzi, Gerardo; Uriarte, Ana M.; Eguren, Leonor

    2002-01-01

    Cerebral autosomal dominant arteriopathy with sub cortical infarcts and leucoencephalopathy (CASADIL) is a systemic hereditary, vascular disease that involves small arteries. Recurrent ischemia, pseudo bulbar paralysis and dementia are characteristic. Other manifestations include migraine and depression. We report an Argentine family with VI generations with evidence of disease in IV. MR examinations were performed on 21 family members (both symptomatic and asymptomatic). The main findings on MR on symptomatic and asymptomatic patients were small lesions with high signal on T2 localised in periventricular white matter, brain stem, basal ganglia and thalamus, and confluent patches on white matter although with high signal on T2 images, usually symmetric. In conclusion we can assess that diffuse myelin loss and small infarcts occurring in cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy well demonstrated with MR. In addition, some of the abnormalities in pre symptomatic patients can be identified on MR images. (author)

  9. Holographic vortices in the presence of dark matter sector

    International Nuclear Information System (INIS)

    Rogatko, Marek; Wysokinski, Karol I.

    2015-01-01

    The dark matter seem to be an inevitable ingredient of the total matter configuration in the Universe and the knowledge how the dark matter affects the properties of superconductors is of vital importance for the experiments aimed at its direct detection. The homogeneous magnetic field acting perpendicularly to the surface of (2+1) dimensional s-wave holographic superconductor in the theory with dark matter sector has been modeled by the additional U(1)-gauge field representing dark matter and coupled to the Maxwell one. As expected the free energy for the vortex configuration turns out to be negative. Importantly its value is lower in the presence of dark matter sector. This feature can explain why in the Early Universe first the web of dark matter appeared and next on these gratings the ordinary matter forming cluster of galaxies has formed.

  10. Holographic vortices in the presence of dark matter sector

    Energy Technology Data Exchange (ETDEWEB)

    Rogatko, Marek; Wysokinski, Karol I. [Institute of Physics, Maria Curie-Skłodowska University, 20-031 Lublin, pl. Marii Curie-Skłodowskiej 1 (Poland)

    2015-12-09

    The dark matter seem to be an inevitable ingredient of the total matter configuration in the Universe and the knowledge how the dark matter affects the properties of superconductors is of vital importance for the experiments aimed at its direct detection. The homogeneous magnetic field acting perpendicularly to the surface of (2+1) dimensional s-wave holographic superconductor in the theory with dark matter sector has been modeled by the additional U(1)-gauge field representing dark matter and coupled to the Maxwell one. As expected the free energy for the vortex configuration turns out to be negative. Importantly its value is lower in the presence of dark matter sector. This feature can explain why in the Early Universe first the web of dark matter appeared and next on these gratings the ordinary matter forming cluster of galaxies has formed.

  11. Holographic vortices in the presence of dark matter sector

    Science.gov (United States)

    Rogatko, Marek; Wysokinski, Karol I.

    2015-12-01

    The dark matter seem to be an inevitable ingredient of the total matter configuration in the Universe and the knowledge how the dark matter affects the properties of superconductors is of vital importance for the experiments aimed at its direct detection. The homogeneous magnetic field acting perpendicularly to the surface of (2+1) dimensional s-wave holographic superconductor in the theory with dark matter sector has been modeled by the additional U(1)-gauge field representing dark matter and coupled to the Maxwell one. As expected the free energy for the vortex configuration turns out to be negative. Importantly its value is lower in the presence of dark matter sector. This feature can explain why in the Early Universe first the web of dark matter appeared and next on these gratings the ordinary matter forming cluster of galaxies has formed.

  12. Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter

    International Nuclear Information System (INIS)

    Davoudiasl, Hooman; Morrissey, David E.; Tulin, Sean; Sigurdson, Kris

    2010-01-01

    We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.

  13. Unified origin for baryonic visible matter and antibaryonic dark matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Morrissey, David E; Sigurdson, Kris; Tulin, Sean

    2010-11-19

    We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.

  14. The Limiting background in a dark matter search at shallow depth

    Energy Technology Data Exchange (ETDEWEB)

    Perera, Thushara A. [Case Western Reserve U.

    2002-01-01

    A convincing body of evidence from observational and theoretical astrophysics suggests that matter in the universe is dominated by a non-luminous, non-baryonic, non-relativistic component. Weakly Interacting Massive Particles (WIMPs) are a proposed particle candidate that satisfy all of the above criteria. They are a front-runner among dark matter candidates because their predicted contribution to matter in the universe is cosmologically signicant and because they may arise naturally from supersymmetric (SUSY) models of particle physics. The Cryogenic Dark Matter Search (CDMS) employs advanced detectors sensitive to nuclear recoils caused by WIMP scatters and capable of rejecting ionizing backgrounds. The rst phase of the experiment, conducted at a shallow site, is limited by a background of neutrons which are indistinguishable from WIMPs in terms of the acquired data. By accounting for and statistically subtracting these neutrons, CDMS I provides the best dark matter limits to date over a wide range of WIMP masses above 10 GeV/c2 . These results also exclude the signal region claimed by the DAMA annual modulation search at a >71% condence level. The second phase of the experiment, located at a deep site, is scheduled to begin data acquisition in 2002. Due to longer exposures, larger detector mass, and low background rates at this site, data from CDMS II are expected to improve on present WIMP sensitivity by about two orders of magnitude. Emphasized in this work are the research topics in which I have been directly involved. These include the work described in Chapters 3 and 5 with regard to the development and use of simulation tools, detailed studies into the limiting neutron background, and the present understanding of this background in relation to CDMS I and CDMS II. I was also involved in several detector development projects in preparation for CDMS II. Analysis of test data from a ZIP detector, planned for use in CDMS II, is presented in Chapter 6.

  15. Fundamental Particle Structure in the Cosmological Dark Matter

    Science.gov (United States)

    Khlopov, Maxim

    2013-11-01

    The nonbaryonic dark matter of the universe is assumed to consist of new stable forms of matter. Their stability reflects symmetry of micro-world and mechanisms of its symmetry breaking. Particle candidates for cosmological dark matter are lightest particles that bear new conserved quantum numbers. Dark matter particles may represent ideal gas of noninteracting particles. Self-interacting dark matter weakly or superweakly coupled to ordinary matter is also possible, reflecting nontrivial pattern of particle symmetry in the hidden sector of particle theory. In the early universe the structure of particle symmetry breaking gives rise to cosmological phase transitions, from which macroscopic cosmological defects or primordial nonlinear structures can be originated. Primordial black holes (PBHs) can be not only a candidate for dark matter, but also represent a universal probe for superhigh energy physics in the early universe. Evaporating PBHs turn to be a source of even superweakly interacting particles, while clouds of massive PBHs can serve as nonlinear seeds for galaxy formation. The observed broken symmetry of the three known families may provide a simultaneous solution for the problems of the mass of neutrino and strong CP-violation in the unique framework of models of horizontal unification. Dark matter candidates can also appear in the new families of quarks and leptons and the existence of new stable charged leptons and quarks is possible, hidden in elusive "dark atoms." Such possibility, strongly restricted by the constraints on anomalous isotopes of light elements, is not excluded in scenarios that predict stable double charged particles. The excessive -2 charged particles are bound in these scenarios with primordial helium in O-helium "atoms," maintaining specific nuclear-interacting form of the dark matter, which may provide an interesting solution for the puzzles of the direct dark matter searches. In the context of cosmoparticle physics, studying

  16. Evidence for dark matter in the inner Milky Way

    NARCIS (Netherlands)

    Iocco, F.; Pato, M.; Bertone, G.

    2015-01-01

    The ubiquitous presence of dark matter in the Universe is today a central tenet in modern cosmology and astrophysics(1). Throughout the Universe, the evidence for dark matter is compelling in dwarfs, spiral galaxies, galaxy clusters as well as at cosmological scales. However, it has been

  17. Comment on String-Dominated Universe(SDU)

    International Nuclear Information System (INIS)

    Turner, M.S.

    1984-09-01

    Theoretical prejudice favors the flat(k=0) cosmology, and the inflationary Universe scenario implements this prejudice in a natural way. For the k=0 model Ω (defined as rho total/rho critical; rho total = rho NR + rho vac + rho R + rho S) = 1. However, observational data suggests: Ω/sub OBS/ approx. = 0.2' +- 0.1', where +- 0.1 indicates the range of values reported. This discrepancy is known as the Ω-problem. A number of solutions have been suggested: Ω/sub OBS/ is determined by assuming that light (i.e., galaxies) traces mass - perhaps this assumption is not valid; Ω/sub OBS/ is not sensitive to a smoothly-distributed component of mass density - perhaps most of the mass density resides in a smooth component. Candidates for the smooth component include: relativistic particles (rho/sub R/), a relic cosmological term (rho/sub vac/), and in a recent letter Vilenkin has suggested fast-moving strings (rho/sub S/)

  18. Universe reveals its dark side

    International Nuclear Information System (INIS)

    Araujo, Henrique

    2005-01-01

    Evidence for dark matter is growing, and so are our chances of directly detecting it. It may come as a surprise to many people but 95% of what makes up the universe is still a mystery to scientists. Until very recently, however, we had devoted at least that proportion of our effort to understanding the remaining 5% - the small fraction that seems to be made up of ordinary baryonic matter such as atoms. But most cosmologists now agree that there is five times as much 'dark matter' as ordinary matter. Moreover, the remaining 70% of the universe is thought to consist of an even more mysterious entity called dark energy, which is causing the universe to expand ever more rapidly. Dark matter may be invisible but it ranks among the hottest topics in modern physics. Without it, we cannot explain the gravitational pull that holds galaxies and clusters of galaxies together when they clearly have insufficient mass in the form of stars. This mass discrepancy was noted as long ago as the 1930s, but it is only in the last few years that precision observations of the cosmic microwave background, combined with other cosmological measurements, have allowed physicists to determine the abundance of dark matter more precisely. (U.K.)

  19. Distance 2-Domination in Prisms of Graphs

    Directory of Open Access Journals (Sweden)

    Hurtado Ferran

    2017-05-01

    Full Text Available A set of vertices D of a graph G is a distance 2-dominating set of G if the distance between each vertex u ∊ (V (G − D and D is at most two. Let γ2(G denote the size of a smallest distance 2-dominating set of G. For any permutation π of the vertex set of G, the prism of G with respect to π is the graph πG obtained from G and a copy G′ of G by joining u ∊ V(G with v′ ∊ V(G′ if and only if v′ = π(u. If γ2(πG = γ2(G for any permutation π of V(G, then G is called a universal γ2-fixer. In this work we characterize the cycles and paths that are universal γ2-fixers.

  20. Matter-antimatter Cosmology

    Science.gov (United States)

    Omnes, R.

    1973-01-01

    The possible existence of antimatter on a large scale in the universe is evaluated. As a starting point, an attempt was made to understand the origin of matter as being essentially analogous to the origin of backgound thermal radiation. Several theories and models are examined, with particular emphasis on nucleon-antinucleon interactions at intermediate energies. Data also cover annihilation interaction with the matter-antimatter boundary to produce the essential fluid motion known as coalesence.

  1. Studying dark matter haloes with weak lensing

    NARCIS (Netherlands)

    Velander, Malin Barbro Margareta

    2012-01-01

    Our Universe is comprised not only of normal matter but also of unknown components: dark matter and dark energy. This Thesis recounts studies of dark matter haloes, using a technique known as weak gravitational lensing, in order to learn more about the nature of these dark components. The haloes

  2. A History of Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Gianfranco [U. Amsterdam, GRAPPA; Hooper, Dan [Fermilab

    2016-05-16

    Although dark matter is a central element of modern cosmology, the history of how it became accepted as part of the dominant paradigm is often ignored or condensed into a brief anecdotical account focused around the work of a few pioneering scientists. The aim of this review is to provide the reader with a broader historical perspective on the observational discoveries and the theoretical arguments that led the scientific community to adopt dark matter as an essential part of the standard cosmological model.

  3. Sterile neutrino dark matter

    CERN Document Server

    Merle, Alexander

    2017-01-01

    This book is a new look at one of the hottest topics in contemporary science, Dark Matter. It is the pioneering text dedicated to sterile neutrinos as candidate particles for Dark Matter, challenging some of the standard assumptions which may be true for some Dark Matter candidates but not for all. So, this can be seen either as an introduction to a specialized topic or an out-of-the-box introduction to the field of Dark Matter in general. No matter if you are a theoretical particle physicist, an observational astronomer, or a ground based experimentalist, no matter if you are a grad student or an active researcher, you can benefit from this text, for a simple reason: a non-standard candidate for Dark Matter can teach you a lot about what we truly know about our standard picture of how the Universe works.

  4. Dark matter and particle physics

    International Nuclear Information System (INIS)

    Peskin, Michael E.

    2007-01-01

    Astrophysicists now know that 80% of the matter in the universe is 'dark matter', composed of neutral and weakly interacting elementary particles that are not part of the Standard Model of particle physics. I will summarize the evidence for dark matter. I will explain why I expect dark matter particles to be produced at the CERN LHC. We will then need to characterize the new weakly interacting particles and demonstrate that they the same particles that are found in the cosmos. I will describe how this might be done. (author)

  5. Direct and indirect singlet scalar dark matter detection in the lepton-specific two-Higgs-doublet model

    International Nuclear Information System (INIS)

    Boucenna, M. S.; Profumo, S.

    2011-01-01

    A recent study of gamma-ray data from the Galactic center motivates the investigation of light (∼7-10 GeV) particle dark matter models featuring tau-lepton pairs as dominant annihilation final state. The lepton-specific two-Higgs-doublet model provides a natural framework where light, singlet scalar dark matter can pair-annihilate dominantly into tau leptons. We calculate the nucleon-dark matter cross section for singlet scalar dark matter within the lepton-specific two-Higgs-doublet model framework, and compare with recent results from direct detection experiments. We study how direct dark matter searches can be used to constrain the dark matter interpretation of gamma-ray observations, for different dominant annihilation final states. We show that models exist with the correct thermal relic abundance that could fit the claimed gamma-ray excess from the Galactic center region and have direct detection cross sections of the order of what is needed to interpret recent anomalous events reported by direct detection experiments.

  6. Asymmetric dark matter

    International Nuclear Information System (INIS)

    Kaplan, David E.; Luty, Markus A.; Zurek, Kathryn M.

    2009-01-01

    We consider a simple class of models in which the relic density of dark matter is determined by the baryon asymmetry of the Universe. In these models a B-L asymmetry generated at high temperatures is transferred to the dark matter, which is charged under B-L. The interactions that transfer the asymmetry decouple at temperatures above the dark matter mass, freezing in a dark matter asymmetry of order the baryon asymmetry. This explains the observed relation between the baryon and dark matter densities for the dark matter mass in the range 5-15 GeV. The symmetric component of the dark matter can annihilate efficiently to light pseudoscalar Higgs particles a or via t-channel exchange of new scalar doublets. The first possibility allows for h 0 →aa decays, while the second predicts a light charged Higgs-like scalar decaying to τν. Direct detection can arise from Higgs exchange in the first model or a nonzero magnetic moment in the second. In supersymmetric models, the would-be lightest supersymmetric partner can decay into pairs of dark matter particles plus standard model particles, possibly with displaced vertices.

  7. Flipped neutrino emissivity from strange matter

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, A.; Dutta, S. (Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India))

    1994-04-15

    Energy loss due to wrong helicity sterile neutrinos through spin flip processes leads to rapid cooling of nascent neutron stars. The observed cooling of neutron stars associated with SN 1987A seems to preclude the existence of Dirac neutrinos with a mass in excess of 20 keV. Assuming that nuclear matter in the core of the neutron star undergoes a phase transition to quark matter leading to a strange star or a neutron star with a strange matter core, we examine the emission of flipped Dirac neutrinos for two dominant processes: quark-neutrino scattering [[ital q]+[nu][sub [minus

  8. Charged mediators in dark matter scattering

    Science.gov (United States)

    Stengel, Patrick

    2017-11-01

    We consider a scenario, within the framework of the MSSM, in which dark matter is bino-like and dark matter-nucleon spin-independent scattering occurs via the exchange of light squarks which exhibit left-right mixing. We show that direct detection experiments such as LUX and SuperCDMS will be sensitive to a wide class of such models through spin-independent scattering. The dominant nuclear physics uncertainty is the quark content of the nucleon, particularly the strangeness content. We also investigate parameter space with nearly degenerate neutralino and squark masses, thus enhancing dark matter annihilation and nucleon scattering event rates.

  9. Mach's principle and rotating universes

    International Nuclear Information System (INIS)

    King, D.H.

    1990-01-01

    It is shown that the Bianchi 9 model universe satisfies the Mach principle. These closed rotating universes were previously thought to be counter-examples to the principle. The Mach principle is satisfied because the angular momentum of the rotating matter is compensated by the effective angular momentum of gravitational waves. A new formulation of the Mach principle is given that is based on the field theory interpretation of general relativity. Every closed universe with 3-sphere topology is shown to satisfy this formulation of the Mach principle. It is shown that the total angular momentum of the matter and gravitational waves in a closed 3-sphere topology universe is zero

  10. Exposing asymmetric gray matter vulnerability in amyotrophic lateral sclerosis

    OpenAIRE

    Devine, Matthew S.; Pannek, Kerstin; Coulthard, Alan; McCombe, Pamela A.; Rose, Stephen E.; Henderson, Robert D.

    2015-01-01

    Limb weakness in amyotrophic lateral sclerosis (ALS) is typically asymmetric. Previous studies have identified an effect of limb dominance on onset and spread of weakness, however relative atrophy of dominant and non-dominant brain regions has not been investigated. Our objective was to use voxel-based morphometry (VBM) to explore gray matter (GM) asymmetry in ALS, in the context of limb dominance. 30 ALS subjects were matched with 17 healthy controls. All subjects were right-handed. Each und...

  11. Dark energy with a gradient coupling to the dark matter fluid: cosmological dynamics and structure formation

    Science.gov (United States)

    Dutta, Jibitesh; Khyllep, Wompherdeiki; Tamanini, Nicola

    2018-01-01

    We consider scalar field models of dark energy interacting with dark matter through a coupling proportional to the contraction of the four-derivative of the scalar field with the four-velocity of the dark matter fluid. The coupling is realized at the Lagrangian level employing the formalism of Scalar-Fluid theories, which use a consistent Lagrangian approach for relativistic fluid to describe dark matter. This framework produces fully covariant field equations, from which we can derive unequivocal cosmological equations at both background and linear perturbations levels. The background evolution is analyzed in detail applying dynamical systems techniques, which allow us to find the complete asymptotic behavior of the universe given any set of model parameters and initial conditions. Furthermore we study linear cosmological perturbations investigating the growth of cosmic structures within the quasi-static approximation. We find that these interacting dark energy models give rise to interesting phenomenological dynamics, including late-time transitions from dark matter to dark energy domination, matter and accelerated scaling solutions and dynamical crossing of the phantom barrier. Moreover we obtain possible deviations from standard ΛCDM behavior at the linear perturbations level, which have an impact on the dynamics of structure formation and might provide characteristic observational signatures.

  12. The origin of matter

    International Nuclear Information System (INIS)

    Cline, J.

    2004-01-01

    The author presents the issue of how matter triumphed over anti-matter in the formation of the universe. Theories focus on the nature of asymmetry that might have created an excess of matter over anti-matter. Sakharov and Kuzmin listed 3 conditions that must be met for baryogenesis to take place. First the baryon number must not be conserved: there must be some interactions that change the number of baryons, baryon-number violation can rise from an interaction between quarks and leptons. Secondly, 2 symmetries that relate particles to antiparticles must be violated. The CP violation in Kaon decay is too weak to create enough baryon asymmetry, so physicists believe that larger sources of CP violation await discovery. Thirdly, there must be the loss of thermal equilibrium of the universe. In thermal equilibrium, baryons are decaying but inverse processes are also taking place, quarks are fusing to form baryons, rates being equal no baryon asymmetry is generated. But if thermal equilibrium is broken, to say temperature is decreasing, at a certain temperature a pair of quarks will no longer have enough energy to produce a heavy particle which generates baryon asymmetry. (A.C.)

  13. Gravitational production of superheavy dark matter

    International Nuclear Information System (INIS)

    Chung, Daniel J. H.; Crotty, Patrick; Kolb, Edward W.; Riotto, Antonio

    2001-01-01

    The dark matter in the universe can be in the form of a superheavy matter species (wimpzilla). Several mechanisms have been proposed for the production of wimpzilla particles during or immediately following the inflationary epoch. Perhaps the most attractive mechanism is through gravitational particle production, where particles are produced simply as a result of the expansion of the universe. In this paper we present a detailed numerical calculation of wimpzilla gravitational production in hybrid-inflation models and natural-inflation models. Generalizing these findings, we also explore the dependence of the gravitational production mechanism on various models of inflation. We show that superheavy dark matter production seems to be robust, with Omega X h 2 ∼(M X /10 11 GeV) 2 (T RH /10 9 GeV), so long as M X I , where M X is the wimpzilla mass, T RH is the reheat temperature, and H I is the expansion rate of the universe during inflation

  14. An Investigation of University Student and K-12 Teacher Reasoning about Key Ideas in the Development of the Particulate Nature of Matter

    Science.gov (United States)

    Robertson, Amy D.

    2011-01-01

    This dissertation describes a systematic investigation of university student and K-12 teacher reasoning about key ideas relevant to the development of a particulate model for matter. Written assessments and individual demonstration interviews have been used to study the reasoning of introductory and sophomore-level physics students, introductory…

  15. Asymmetric dark matter and baryogenesis from pseudoscalar inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cado, Yann; Sabancilar, Eray, E-mail: yann.cado@epfl.ch, E-mail: eray.sabancilar@epfl.ch [Laboratory of Particle Physics and Cosmology, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

    2017-04-01

    We show that both the baryon asymmetry of the Universe and the dark matter abundance can be explained within a single framework that makes use of maximally helical hypermagnetic fields produced during pseudoscalar inflation and the chiral anomaly in the Standard Model. We consider a minimal asymmetric dark matter model free from anomalies and constraints. We find that the observed baryon and the dark matter abundances are achieved for a wide range of inflationary parameters, and the dark matter mass ranges between 7–15 GeV . The novelty of our mechanism stems from the fact that the same source of CP violation occurring during inflation explains both baryonic and dark matter in the Universe with two inflationary parameters, hence addressing all the initial condition problems in an economical way.

  16. Matter and cosmology

    International Nuclear Information System (INIS)

    Effenberger, R.

    1974-09-01

    The author summarizes some of the many questions and answers which have been raised over the years regarding the nature of matter, the origin of its forms and the associated concept of cosmology including the formation of the universe, our place in it and its course of evolution. An examination of the development of the classical concept of matter and its subsequent transformations within the space-time fields of relativity and quantum theory is also presented

  17. LEP shines light on dark matter

    International Nuclear Information System (INIS)

    Fox, Patrick J.; Harnik, Roni; Kopp, Joachim; Tsai, Yuhsin

    2011-01-01

    Dark matter pair production at high energy colliders may leave observable signatures in the energy and momentum spectra of the objects recoiling against the dark matter. We use LEP data on monophoton events with large missing energy to constrain the coupling of dark matter to electrons. Within a large class of models, our limits are complementary to and competitive with limits on dark matter annihilation and on WIMP-nucleon scattering from indirect and direct searches. Our limits, however, do not suffer from systematic and astrophysical uncertainties associated with direct and indirect limits. For example, we are able to rule out light (< or approx. 10 GeV) thermal relic dark matter with universal couplings exclusively to charged leptons. In addition, for dark matter mass below about 80 GeV, LEP limits are stronger than Fermi constraints on annihilation into charged leptons in dwarf spheroidal galaxies. Within its kinematic reach, LEP also provides the strongest constraints on the spin-dependent direct detection cross section in models with universal couplings to both quarks and leptons. In such models the strongest limit is also set on spin-independent scattering for dark matter masses below ∼4 GeV. Throughout our discussion, we consider both low energy effective theories of dark matter, as well as several motivated renormalizable scenarios involving light mediators.

  18. Testing structure formation in the universe via coupled matter fluids ...

    African Journals Online (AJOL)

    We present results from a new framework in which the matter fluid is split into a strongly clustered “halo” component and a weakly clustered “free” component accreted by the haloes. The interaction is modelled using a simple function of the matter density that mimics recently published results from halo theory of N-body ...

  19. Material content of the universe - Introductory survey

    Science.gov (United States)

    Tayler, R. J.

    1986-12-01

    Matter in the universe can be detected either by the radiation it emits or by its gravitational influence. There is a strong suggestion that the universe contains substantial hidden matter, mass without corresponding light. There are also arguments from elementary particle physics that the universe should have closure density, which would also imply hidden mass. Observations of the chemical composition of the universe interpreted in terms of the hot Big Bang cosmological theory suggest that this hidden matter cannot all be of baryonic form but must consist of weakly interacting elementary particles. A combination of observations and theoretical ideas about the origin of large-scale structure may demand that these particles are of a type which is not yet definitely known to exist.

  20. Collapsed Dark Matter Structures

    Science.gov (United States)

    Buckley, Matthew R.; DiFranzo, Anthony

    2018-02-01

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  1. Collapsed Dark Matter Structures.

    Science.gov (United States)

    Buckley, Matthew R; DiFranzo, Anthony

    2018-02-02

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  2. Strange Hadronic Matter in a Chiral Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Liang; SONG Hong-Qiu; WANG Ping; SU Ru-Keng

    2000-01-01

    The strange hadronic matter with nucleon, Λ-hyperon and E-hyperon is studied by using a chiral symmetry model in a mean-field approximation. The saturation properties and stabilities of the strange hadronic matter are discussed. The result indicates a quite large strangeness fraction (fs) region where the strange hadronic matter is stable against particle emission. In the large fs region, the component dominates, resulting in a deep minimum in the curve of the binding energy per baryon EB versus the strangeness fraction fs with (EB, fs) -~ (-26.0MeV, 1.23).

  3. Large-scale instability in interacting dark energy and dark matter fluids

    International Nuclear Information System (INIS)

    Väliviita, Jussi; Majerotto, Elisabetta; Maartens, Roy

    2008-01-01

    If dark energy interacts with dark matter, this gives a new approach to the coincidence problem. But interacting dark energy models can suffer from pathologies. We consider the case where the dark energy is modelled as a fluid with constant equation of state parameter w. Non-interacting constant-w models are well behaved in the background and in the perturbed universe. But the combination of constant w and a simple interaction with dark matter leads to an instability in the dark sector perturbations at early times: the curvature perturbation blows up on super-Hubble scales. Our results underline how important it is to carefully analyse the relativistic perturbations when considering models of coupled dark energy. The instability that we find has been missed in some previous work where the perturbations were not consistently treated. The unstable mode dominates even if adiabatic initial conditions are used. The instability also arises regardless of how weak the coupling is. This non-adiabatic instability is different from previously discovered adiabatic instabilities on small scales in the strong-coupling regime

  4. Towards a Gravity Dual for the Large Scale Structure of the Universe

    CERN Document Server

    Kehagias, A.

    2016-01-01

    The dynamics of the large-scale structure of the universe enjoys at all scales, even in the highly non-linear regime, a Lifshitz symmetry during the matter-dominated period. In this paper we propose a general class of six-dimensional spacetimes which could be a gravity dual to the four-dimensional large-scale structure of the universe. In this set-up, the Lifshitz symmetry manifests itself as an isometry in the bulk and our universe is a four-dimensional brane moving in such six-dimensional bulk. After finding the correspondence between the bulk and the brane dynamical Lifshitz exponents, we find the intriguing result that the preferred value of the dynamical Lifshitz exponent of our observed universe, at both linear and non-linear scales, corresponds to a fixed point of the RGE flow of the dynamical Lifshitz exponent in the dual system where the symmetry is enhanced to the Schrodinger group containing a non-relativistic conformal symmetry. We also investigate the RGE flow between fixed points of the Lifshitz...

  5. Domination, Eternal Domination, and Clique Covering

    Directory of Open Access Journals (Sweden)

    Klostermeyer William F.

    2015-05-01

    Full Text Available Eternal and m-eternal domination are concerned with using mobile guards to protect a graph against infinite sequences of attacks at vertices. Eternal domination allows one guard to move per attack, whereas more than one guard may move per attack in the m-eternal domination model. Inequality chains consisting of the domination, eternal domination, m-eternal domination, independence, and clique covering numbers of graph are explored in this paper.

  6. Dark matter and dark energy: The critical questions

    International Nuclear Information System (INIS)

    Michael S. Turner

    2002-01-01

    Stars account for only about 0.5% of the content of the Universe; the bulk of the Universe is optically dark. The dark side of the Universe is comprised of: at least 0.1% light neutrinos; 3.5% ± 1% baryons; 29% ± 4% cold dark matter; and 66% ± 6% dark energy. Now that we have characterized the dark side of the Universe, the challenge is to understand it. The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark energy that is causing the Universe to speed up

  7. Interacting hot dark matter

    International Nuclear Information System (INIS)

    Atrio-Barandela, F.; Davidson, S.

    1997-01-01

    We discuss the viability of a light particle (∼30eV neutrino) with strong self-interactions as a dark matter candidate. The interaction prevents the neutrinos from free-streaming during the radiation-dominated regime so galaxy-sized density perturbations can survive. Smaller scale perturbations are damped due to neutrino diffusion. We calculate the power spectrum in the imperfect fluid approximation, and show that it is damped at the length scale one would estimate due to neutrino diffusion. The strength of the neutrino-neutrino coupling is only weakly constrained by observations, and could be chosen by fitting the power spectrum to the observed amplitude of matter density perturbations. The main shortcoming of our model is that interacting neutrinos cannot provide the dark matter in dwarf galaxies. copyright 1997 The American Physical Society

  8. The cosmic cocktail three parts dark matter

    CERN Document Server

    Freese, Katherine

    2014-01-01

    The ordinary atoms that make up the known universe-from our bodies and the air we breathe to the planets and stars-constitute only 5 percent of all matter and energy in the cosmos. The rest is known as dark matter and dark energy, because their precise identities are unknown. The Cosmic Cocktail is the inside story of the epic quest to solve one of the most compelling enigmas of modern science - what is the universe made of? - told by one of today's foremost pioneers in the study of dark matter. Blending cutting-edge science with her own behind-the-scenes insights as a leading researcher in the

  9. Exclusion limits on the WIMP nucleon elastic scattering cross-section from the Cryogenic Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Golwala, Sunil Ramanlal [UC, Berkeley

    2000-01-01

    Extensive evidence indicates that a large fraction of the matter in the universe is nonluminous, nonbaryonic, and “cold” — nonrelativistic at the time matter began to dominate the energy density of the universe. Weakly Interacting Massive Particles (WIMPs) are an excellent candidate for nonbaryonic, cold dark matter. Minimal supersymmetry provides a natural WIMP candidate in the form of the lightest superpartner, with a typical mass Mδ ~ 100 GeV c-2 . WIMPs are expected to have collapsed into a roughly isothermal, spherical halo within which the visible portion of our galaxy resides. They would scatter off nuclei via the weak interaction, potentially allowingtheir direct detection. The Cryogenic Dark Matter Search (CDMS) employs Ge and Si detectors to search for WIMPs via their elastic-scatteringinteractions with nuclei while discriminatingagainst interactions of background particles. The former yield nuclear recoils while the latter produce electron recoils. The ionization yield (the ratio of ionization production to recoil energy in a semiconductor) of a particle interaction differs greatly for nuclear and electron recoils. CDMS detectors measure phonon and electron-hole-pair production to determine recoil energy and ionization yield for each event and thereby discriminate nuclear recoils from electron recoils. This dissertation reports new limits on the spin-independent WIMP-nucleon elastic-scattering cross section that exclude unexplored parameter space above 10 GeV c-2 WIMP mass and, at > 75% CL, the entire 3σ allowed region for the WIMP signal reported by the DAMA experiment. The experimental apparatus, detector performance, and data analysis are fully described.

  10. Dark matter and the dinosaurs the astounding interconnectedness of the universe

    CERN Document Server

    Randall, Lisa

    2015-01-01

    In this brilliant exploration of our cosmic environment, the renowned particle physicist and New York Times bestselling author of Warped Passages and Knocking on Heaven’s Door uses her research into dark matter to illuminate the startling connections between the furthest reaches of space and life here on Earth. Sixty-six million years ago, an object the size of a city descended from space to crash into Earth, creating a devastating cataclysm that killed off the dinosaurs, along with three-quarters of the other species on the planet. What was its origin? In Dark Matter and the Dinosaurs, Lisa Randall proposes it was a comet that was dislodged from its orbit as the Solar System passed through a disk of dark matter embedded in the Milky Way. In a sense, it might have been dark matter that killed the dinosaurs. Working through the background and consequences of this proposal, Randall shares with us the latest findings—established and speculative—regarding the nature and role of dark matter and the origin ...

  11. Prevention Research Matters

    Centers for Disease Control (CDC) Podcasts

    Prevention Research Matters is a series of one-on-one interviews with researchers from 26 university prevention research centers across the country. Their work focuses on preventing and controlling chronic diseases like obesity, cancer, and heart disease.

  12. Strange matter and Big Bang helium synthesis

    International Nuclear Information System (INIS)

    Madsen, J.; Riisager, K.

    1985-01-01

    Stable strange quark matter produced in the QCD phase transition in the early universe will trap neutrons and repel protons, thus reducing primordial helium production, Ysub(p). For reasonable values of Ysub(p), the radius of strange droplets must exceed 10 -6 cm if strange matter shall solve the dark-matter problem without spoiling Big Bang helium synthesis. (orig.)

  13. Baryonic dark matter and Machos

    International Nuclear Information System (INIS)

    Griest, K.

    2000-01-01

    A brief description of the status of baryons in the Universe is given, along with recent results from the MACHO collaboration and their meaning. A dark matter halo consisting of baryons in the form of Machos is ruled out, leaving an elementary particle as the prime candidate for the dark matter. The observed microlensing events may make up around 20% of the dark matter in the Milky Way, or may indicate an otherwise undetected component of the Large Magellanic Cloud

  14. A Model for the Expansion of the Universe

    Directory of Open Access Journals (Sweden)

    Silva N. P.

    2014-04-01

    Full Text Available One introduces an ansatz for the expansion factor a ( t = e ( H ( t t or our Universe in the spirit of the FLRW model; is a constant to be determined. Considering that the ingredients acting on the Universe expansion ( t > 4 10 12 s 1 : 3 10 are mainly matter (baryons plus dark matter and dark energy, one uses the current mea- sured values of Hubble constant H 0 , the Universe current age T 0 , matter density param- eter Ω m ( T 0 and dark energy parameter Ω ( T 0 together with the Friedmann equations to find = 0 : 5804 and that our Universe may have had a negative expansion accelera- tion up to the age T ⋆ = 3 : 214 G y r ( matter era and positive after that ( dark energy era , leading to an eternal expansion. An interaction between matter and dark energy is found to exist. The deceleration q ( t has been found to be q ( T ⋆ = 0 and q ( T 0 = -0.570.

  15. Invisible Higgs and Dark Matter

    DEFF Research Database (Denmark)

    Heikinheimo, Matti; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2012-01-01

    We investigate the possibility that a massive weakly interacting fermion simultaneously provides for a dominant component of the dark matter relic density and an invisible decay width of the Higgs boson at the LHC. As a concrete model realizing such dynamics we consider the minimal walking...... technicolor, although our results apply more generally. Taking into account the constraints from the electroweak precision measurements and current direct searches for dark matter particles, we find that such scenario is heavily constrained, and large portions of the parameter space are excluded....

  16. Ionization history of the universe as a test for superheavy dark matter particles

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.; Naselsky, P.D.

    2002-01-01

    In this paper we discuss the possible distortions of the ionization history of the universe caused by an injection of nonthermal energy due to decays of hypothetical superheavy dark matter (SHDM) particles. These particles are usually considered as a possible source of ultrahigh energy cosmic rays in the framework of the top-down model. Estimates of the fraction of energy of decays converted to the UV range show that, for suitable parameters of the SHDM particles, significant distortions of the power spectra of the cosmic microwave background anisotropy appear. A comparison with the observed power spectrum allows us to restrict some properties of the SHDM particles. These decays can also increase by about 5-10 times the degree of ionization of hydrogen at redshifts z∼10-50, which essentially accelerates the formation of molecules of H 2 and the first stars during the 'dark ages'

  17. Dark matter reflection of particle symmetry

    Science.gov (United States)

    Khlopov, Maxim Yu.

    2017-05-01

    In the context of the relationship between physics of cosmological dark matter and symmetry of elementary particles, a wide list of dark matter candidates is possible. New symmetries provide stability of different new particles and their combination can lead to a multicomponent dark matter. The pattern of symmetry breaking involves phase transitions in the very early Universe, extending the list of candidates by topological defects and even primordial nonlinear structures.

  18. Viable tensor-to-scalar ratio in a symmetric matter bounce

    Science.gov (United States)

    Nath Raveendran, Rathul; Chowdhury, Debika; Sriramkumar, L.

    2018-01-01

    Matter bounces refer to scenarios wherein the universe contracts at early times as in a matter dominated epoch until the scale factor reaches a minimum, after which it starts expanding. While such scenarios are known to lead to scale invariant spectra of primordial perturbations after the bounce, the challenge has been to construct completely symmetric bounces that lead to a tensor-to-scalar ratio which is small enough to be consistent with the recent cosmological data. In this work, we construct a model involving two scalar fields (a canonical field and a non-canonical ghost field) to drive the symmetric matter bounce and study the evolution of the scalar perturbations in the model. We find that the model can be completely described in terms of a single parameter, viz. the ratio of the scale associated with the bounce to the value of the scale factor at the bounce. We evolve the scalar perturbations numerically across the bounce and evaluate the scalar power spectra after the bounce. We show that, while the scalar and tensor perturbation spectra are scale invariant over scales of cosmological interest, the tensor-to-scalar ratio proves to be much smaller than the current upper bound from the observations of the cosmic microwave background anisotropies by the Planck mission. We also support our numerical analysis with analytical arguments.

  19. On the Phenomenology of an Accelerated Large-Scale Universe

    Directory of Open Access Journals (Sweden)

    Martiros Khurshudyan

    2016-10-01

    Full Text Available In this review paper, several new results towards the explanation of the accelerated expansion of the large-scale universe is discussed. On the other hand, inflation is the early-time accelerated era and the universe is symmetric in the sense of accelerated expansion. The accelerated expansion of is one of the long standing problems in modern cosmology, and physics in general. There are several well defined approaches to solve this problem. One of them is an assumption concerning the existence of dark energy in recent universe. It is believed that dark energy is responsible for antigravity, while dark matter has gravitational nature and is responsible, in general, for structure formation. A different approach is an appropriate modification of general relativity including, for instance, f ( R and f ( T theories of gravity. On the other hand, attempts to build theories of quantum gravity and assumptions about existence of extra dimensions, possible variability of the gravitational constant and the speed of the light (among others, provide interesting modifications of general relativity applicable to problems of modern cosmology, too. In particular, here two groups of cosmological models are discussed. In the first group the problem of the accelerated expansion of large-scale universe is discussed involving a new idea, named the varying ghost dark energy. On the other hand, the second group contains cosmological models addressed to the same problem involving either new parameterizations of the equation of state parameter of dark energy (like varying polytropic gas, or nonlinear interactions between dark energy and dark matter. Moreover, for cosmological models involving varying ghost dark energy, massless particle creation in appropriate radiation dominated universe (when the background dynamics is due to general relativity is demonstrated as well. Exploring the nature of the accelerated expansion of the large-scale universe involving generalized

  20. Hydrogen-like spectrum of spontaneously created brane universes with de-Sitter ground state

    Science.gov (United States)

    Davidson, Aharon

    2018-05-01

    Unification of Randall-Sundrum and Regge-Teitelboim brane cosmologies gives birth to a serendipitous Higgs-deSitter interplay. A localized Dvali-Gabadadze-Porrati scalar field, governed by a particular (analytically derived) double-well quartic potential, becomes a mandatory ingredient for supporting a deSitter brane universe. When upgraded to a general Higgs potential, the brane surface tension gets quantized, resembling a Hydrogen atom spectrum, with deSitter universe serving as the ground state. This reflects the local/global structure of the Euclidean manifold: From finite energy density no-boundary initial conditions, via a novel acceleration divide filter, to exact matching conditions at the exclusive nucleation point. Imaginary time periodicity comes as a bonus, with the associated Hawking temperature vanishing at the continuum limit. Upon spontaneous creation, while a finite number of levels describe universes dominated by a residual dark energy combined with damped matter oscillations, an infinite tower of excited levels undergo a Big Crunch.

  1. Unified Description of Dark Energy and Dark Matter

    OpenAIRE

    Petry, Walter

    2008-01-01

    Dark energy in the universe is assumed to be vacuum energy. The energy-momentum of vacuum is described by a scale-dependent cosmological constant. The equations of motion imply for the density of matter (dust) the sum of the usual matter density (luminous matter) and an additional matter density (dark matter) similar to the dark energy. The scale-dependent cosmological constant is given up to an exponent which is approximated by the experimentally decided density parameters of dark matter and...

  2. The quark matter

    International Nuclear Information System (INIS)

    Rho, Mannque.

    1980-04-01

    The present status of our understanding of the physics of hadronic (nuclear or neutron) matter under extreme conditions, in particular at high densities is discussed. This is a problem which challenges three disciplines of physics: nuclear physics, astrophysics and particle physics. It is generally believed that we now have a correct and perhaps ultimate theory of the strong interactions, namely quantum chromodynamics (QCD). The constituents of this theory are quarks and gluons, so highly dense matters should be describable in terms of these constituents alone. This is a question that addresses directly to the phenomenon of quark confinement, one of the least understood aspects in particle physics. For nuclear physics, the possibility of a phase change between nuclear matter and quark matter introduces entirely new degrees of freedom in the description of nuclei and will bring perhaps a deeper understanding of nuclear dynamics. In astrophysics, the properties of neutron stars will be properly understood only when the equation of state of 'neutron' matter at densities exceeding that of nuclear matter can be realiably calculated. Most fascinating is the possibility of quark stars existing in nature, not entirely an absurd idea. Finally the quark matter - nuclear matter phase transition must have occured in the early stage of universe when matter expanded from high temperature and density; this could be an essential ingredient in the big-bang cosmology

  3. Gravitino dark matter in the CMSSM and implications for leptogenesis and the LHC

    International Nuclear Information System (INIS)

    Roszkowski, Leszek; Austri, Roberto Ruiz de; Choi, Ki-Young

    2005-01-01

    In the framework of the CMSSM we study the gravitino as the lightest supersymmetric particle and the dominant component of cold dark matter in the Universe. We include both a thermal contribution to its relic abundance from scatterings in the plasma and a non-thermal one from neutralino or stau decays after freeze-out. In general both contributions can be important, although in different regions of the parameter space. We further include constraints from BBN on electromagnetic and hadronic showers, from the CMB blackbody spectrum and from collider and non-collider SUSY searches. The region where the neutralino is the next-to-lightest superpartner is severely constrained by a conservative bound from excessive electromagnetic showers and probably basically excluded by the bound from hadronic showers, while the stau case remains mostly allowed. In both regions the constraint from CMB is often important or even dominant. In the stau case, for the assumed reasonable ranges of soft SUSY breaking parameters, we find regions where the gravitino abundance is in agreement with the range inferred from CMB studies, provided that, in many cases, a reheating temperature T R is large, T R ∼ 10 9 GeV. On the other side, we find an upper bound T R ∼ 9 GeV. Less conservative bounds from BBN or an improvement in measuring the CMB spectrum would provide a dramatic squeeze on the whole scenario, in particular it would strongly disfavor the largest values of T R ∼ 10 9 GeV. The regions favored by the gravitino dark matter scenario are very different from standard regions corresponding to the neutralino dark matter, and will be partly probed at the LHC

  4. Dark Matter: Looking for WIMPs in the Galactic Halo

    International Nuclear Information System (INIS)

    Akerib, Daniel S.

    2006-01-01

    Overwhelming observational evidence indicates that most of the matter in the Universe consists of non-baryonic dark matter. One possibility is that the dark matter is Weakly-Interacting Massive Particles (WIMPs) that were produced in the early Universe. These relics could comprise the Milky Way's dark halo and provide evidence for new particle physics, such as Supersymmetry. After reviewing some of the evidence for dark matter and the WIMP hypothesis, I will describe the strategy for searching for WIMPs, along with a survey of the current status and outlook. In particular, dark matter searches have begun to explore the region of parameter space where SUSY particles could provide dark matter candidates. I will also mention some of the recent theoretical work on dark matter candidates which is being done in anticipation of the turn-on of the LHC and as part of the active R and D on the ILC. Finally, a vigorous detector development program promises significant advances in WIMP sensitivity in the coming years

  5. Eureka! Physics of Particles, Matter and the Universe

    International Nuclear Information System (INIS)

    O'Sullivan, Colm T

    1997-01-01

    To provide a simple account of the whole of physics within 200 pages (excluding a glossary and index) of a small-format book is an extraordinarily ambitious project, yet this is what Roger Blin-Stoyle has attempted in Eureka! and, on the whole, he has succeeded admirably. Furthermore, he has achieved this without resorting to much more than a dozen mathematical expressions, most of them in the treatment of special relativity. To say that the account is comprehensive would be something of an understatement; this reviewer failed to detect a single topic, pure or applied, which could be described as part of mainstream physics which did not get at least a mention in these pages. The book is well written and the explanations are clear, as one would expect from an author who is an eminent scientist and who has given a professional lifetime to physics education and the promotion of the discipline. The reader should be warned, however, not to expect anything very radical - there are no novel treatments, no unique insights. The strength of the book lies in its clarity and compactness. The material is presented in a matter-of-fact manner with no forced emphasis on the exotic, so often a feature of recent attempts to present physics to the lay reader. The modern trend towards early specialization in physics courses in schools and universities has many unhappy consequences, not least of which is the loss of awareness of the essential unity of the subject. In this little book Professor Blin-Stoyle makes a valiant and welcome attempt to address the balance. Anyone with an interest in getting to know what is involved in that area of human knowledge we call physics could do a lot worse than start here. (book review)

  6. The Coyote Universe II: Cosmological Models and Precision Emulation of the Nonlinear Matter Power Spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Heitmann, Katrin [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Higdon, David [Los Alamos National Laboratory; Williams, Brian J [Los Alamos National Laboratory; White, Martin [Los Alamos National Laboratory; Wagner, Christian [Los Alamos National Laboratory

    2008-01-01

    The power spectrum of density fluctuations is a foundational source of cosmological information. Precision cosmological probes targeted primarily at investigations of dark energy require accurate theoretical determinations of the power spectrum in the nonlinear regime. To exploit the observational power of future cosmological surveys, accuracy demands on the theory are at the one percent level or better. Numerical simulations are currently the only way to produce sufficiently error-controlled predictions for the power spectrum. The very high computational cost of (precision) N-body simulations is a major obstacle to obtaining predictions in the nonlinear regime, while scanning over cosmological parameters. Near-future observations, however, are likely to provide a meaningful constraint only on constant dark energy equation of state 'wCDM' cosmologies. In this paper we demonstrate that a limited set of only 37 cosmological models -- the 'Coyote Universe' suite -- can be used to predict the nonlinear matter power spectrum at the required accuracy over a prior parameter range set by cosmic microwave background observations. This paper is the second in a series of three, with the final aim to provide a high-accuracy prediction scheme for the nonlinear matter power spectrum for wCDM cosmologies.

  7. Leptogenesis as the origin of matter

    International Nuclear Information System (INIS)

    Buchmueller, W.; Peccei, R.D.; Yanagida, T.

    2005-02-01

    We explore in some detail the hypothesis that the generation of a primordial lepton-antilepton asymmetry (Leptogenesis) early on in the history of the Universe is the root cause for the origin of matter. After explaining the theoretical conditions for producing a matter-antimatter asymmetry in the Universe we detail how, through sphaleron processes, it is possible to transmute a lepton asymmetry- or, more precisely, a (B-L)-asymmetry- into a baryon asymmetry. Because Leptogenesis depends in detail on properties of the neutrino spectrum, we review briefly existing experimental information on neutrinos as well as the seesaw mechanism, which offers a theoretical understanding of why neutrinos are so light. The bulk of the Review is devoted to a discussion of thermal Leptogenesis and we show that for the neutrino spectrum suggested by oscillation experiments one obtains the observed value for the baryon to photon density ratio in the Universe, independently of any initial boundary conditions. In the latter part of the Review we consider how well Leptogenesis fits with particle physics models of dark matter. Although axionic dark matter and Leptogenesis can be very naturally linked, there is a potential clash between Leptogenesis and models of supersymmetric dark matter because the high temperature needed for Leptogenesis leads to an overproduction of gravitinos, which alter the standard predictions of big bang nucleosynthesis. This problem can be resolved, but it constrains the supersymmetric spectrum at low energies and the nature of the LSP. Finally, as an illustration of possible other options for the origin of matter, we discuss the possibility that Leptogenesis may occur as a result of non-thermal processes. (orig.)

  8. The early universe

    International Nuclear Information System (INIS)

    Steigman, G.

    1989-01-01

    The author discusses the physics of the early universe: the production and survival of relics from the big bang. The author comments on relic WIMPs as the dark matter in the universe. The remainder of this discussion is devoted to a review of the status of the only predictions from the early evolution of the universe that are accessible to astronomical observation: primordial nucleosynthesis

  9. Galaxy clusters in simulations of the local Universe: a matter of constraints

    Science.gov (United States)

    Sorce, Jenny G.; Tempel, Elmo

    2018-06-01

    To study the full formation and evolution history of galaxy clusters and their population, high-resolution simulations of the latter are flourishing. However, comparing observed clusters to the simulated ones on a one-to-one basis to refine the models and theories down to the details is non-trivial. The large variety of clusters limits the comparisons between observed and numerical clusters. Simulations resembling the local Universe down to the cluster scales permit pushing the limit. Simulated and observed clusters can be matched on a one-to-one basis for direct comparisons provided that clusters are well reproduced besides being in the proper large-scale environment. Comparing random and local Universe-like simulations obtained with differently grouped observational catalogues of peculiar velocities, this paper shows that the grouping scheme used to remove non-linear motions in the catalogues that constrain the simulations affects the quality of the numerical clusters. With a less aggressive grouping scheme - galaxies still falling on to clusters are preserved - combined with a bias minimization scheme, the mass of the dark matter haloes, simulacra for five local clusters - Virgo, Centaurus, Coma, Hydra, and Perseus - is increased by 39 per cent closing the gap with observational mass estimates. Simulacra are found on average in 89 per cent of the simulations, an increase of 5 per cent with respect to the previous grouping scheme. The only exception is Perseus. Since the Perseus-Pisces region is not well covered by the used peculiar velocity catalogue, the latest release lets us foresee a better simulacrum for Perseus in a near future.

  10. Indirect search for dark matter with AMS

    International Nuclear Information System (INIS)

    Goy, Corinne

    2006-01-01

    This document summarises the potential of AMS in the indirect search for Dark Matter. Observations and cosmology indicate that the Universe may include a large amount of Dark Matter of unknown nature. A good candidate is the Ligthest Supersymmetric Particle in R-Parity conserving models. AMS offers a unique opportunity to study Dark Matter indirect signature in three spectra: gamma, antiprotons and positrons

  11. Advances in Soft Matter Mechanics

    CERN Document Server

    Li, Shaofan

    2012-01-01

    "Advances in Soft Matter Mechanics" is a compilation and selection of recent works in soft matter mechanics by a group of active researchers in the field. The main objectives of this book are first to disseminate the latest developments in soft matter mechanics in the field of applied and computational mechanics, and second to introduce soft matter mechanics as a sub-discipline of soft matter physics. As an important branch of soft matter physics, soft matter mechanics has developed rapidly in recent years. A number of the novel approaches discussed in this book are unique, such as the coarse grained finite element method for modeling colloidal adhesion, entropic elasticity, meshfree simulations of liquid crystal elastomers, simulations of DNA, etc. The book is intended for researchers and graduate students in the field of mechanics, condensed matter physics and biomaterials. Dr. Shaofan Li is a professor of the University of California-Berkeley, U.S.A; Dr. Bohua Sun is a professor of Cape Peninsula Universit...

  12. Social dominance and ethical ideology: the end justifies the means?

    Science.gov (United States)

    Wilson, Marc Stewart

    2003-10-01

    Although many social psychological researchers have tried to identify the antecedents of unethical or immoral behavior, investigators have little considered the content of ethical beliefs that associate with important personality variables such as authoritarianism (B. Altemeyer, 1981, 1996) and social dominance orientation (SDO; J. Sidanius, 1993). Previous studies suggest that authoritarianism is associated with the rejection of relativistic standards for moral actions and--to a lesser extent--the idealistic belief that moral actions should not harm others (J. W. McHoskey, 1996). In the present study, 160 New Zealand University students completed measures of SDO (J. Sidanius), Right Wing Authoritarianism (RWA, B. Altemeyer, 1981), and two subscales of ethical ideology: Relativism and Idealism (D. R. Forsyth, 1980). As expected, SDO showed a negative relationship with Idealism, a belief that actions should not harm others. But, contrary to expectations, SDO showed no consistent association with relativism, a belief that the moralities of actions are not comparable. On the basis of those findings, people with high SDO might be described as "ruthless" in their pursuit of desirable goals and are indifferent about whether the morality of different actions can be compared or even matter.

  13. A modified generalized Chaplygin gas as the unified dark matter-dark energy revisited

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xue-Mei, E-mail: xmd@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China)

    2011-12-15

    A modified generalized Chaplygin gas (MGCG) is considered as the unified dark matter-dark energy revisited. The character of MGCG is endued with the dual role, which behaves as matter at early times and as a quiescence dark energy at late times. The equation of state for MGCG is p = -{alpha}{rho}/(1 + {alpha}) - {upsilon}(z){rho}{sup -{alpha}/(1 + {alpha})}, where {upsilon}(z) = -[{rho}0{sub c}(1 + z){sup 3}] {sup (1+{alpha})} (1 - {Omega}{sub 0B}){sup {alpha} {l_brace}{alpha}{Omega}0{sub DM} + {Omega}{sub 0DE} [{omega}{sub DE} + {alpha}(1 +{omega}{sub DE})](1 + z){sup 3}{omega}DE(1+{alpha}){r_brace}}. Some cosmological quantities, such as the densities of different components of the universe {Omega}{sub i} (i, respectively, denotes baryons, dark matter, and dark energy) and the deceleration parameter q, are obtained. The present deceleration parameter q{sub 0}, the transition redshift z{sub T}, and the redshift z{sub eq}, which describes the epoch when the densities in dark matter and dark energy are equal, are also calculated. To distinguish MGCG from others, we then apply the Statefinder diagnostic. Later on, the parameters ({alpha} and {omega}{sub DE}) of MGCG are constrained by combination of the sound speed c{sup 2}{sub s} , the age of the universe t{sub 0}, the growth factor m, and the bias parameter b. It yields {alpha} = -3.07{sup +5.66} {sub -4.98} x 10{sup -2} and {omega}{sub DE} = -1.05 {sup +0.06} {sub -0.11}. Through the analysis of the growth of density perturbations for MGCG, it is found that the energy will transfer from dark matter to dark energy which reach equal at z{sub e}{approx} 0.48 and the density fluctuations start deviating from the linear behavior at z {approx} 0.25 caused by the dominance of dark energy. (author)

  14. The Emotional Dominant of Fear in Neo-Gothic Novel Via Opposition “Familiar - Alien” (on the Material of Neo-Gothic Novel I. Murdoch “The Unicorn”

    Directory of Open Access Journals (Sweden)

    Sergey Mihaylovich Pashkov

    2015-12-01

    Full Text Available The article dwells on the emotional dominant of fear in the text of neo-gothic fiction. This text type is popular with the readership and viewed as a manifestation of the socalled "culture of fear" (F. Furedi. The author analyzes the emotional dominant of fear in terms of the universal opposition "familiar - alien" that reflects the principles of dialogism, relevant for modern science. This opposition is localized in mind and determines man's emotional and aesthetic segmentation of the world in the process of its cognition. The universality of the opposition is seen in a treatment of its members: "familiar" – good; "alien" – bad. These members are usually associated with the category of space modeled in a text as a secondary modeling system (Y. M. Lotman. The author identifies the opposition by means of revealing opposite linguistic interdependences that are emotionally colored in a character's mind according to a writer's intention. It helps to distinguish correlative links between the structure of the emotional dominant of fear and the cyclicity of a plot of neo-gothic texts. "The familiar space" arouses positive emotions in a character but approaching, being in and moving off "the alien space" arouse predominant emotions (e.g. solitude, worry, foreboding, the dominating emotion proper (fear and postdominant emotions (e.g. joy, nostalgia, love respectively. The proposed approach to the analysis of the emotional dominant of fear, that is a subject-matter of the article, lets one arrange a complex emotive semantics of the neo-gothic text, make necessary emotional stresses that represent the emotional dynamics of a character (quasisubject and provide its systemic linguistic analysis.

  15. Gravitino in the early Universe. A model of extra-dimension and a model of dark matter; Gravitino dans l'Univers primordial: un modele d'extra-dimension et de matiere noire

    Energy Technology Data Exchange (ETDEWEB)

    Gherson, D

    2007-10-15

    This work can be related to the Horava-Witten M-theory in which the Universe could appear 5 dimensional at a stage of its evolution but also to theories of Baryogenesis through Lepto-genesis which imply high reheating temperatures after Inflation. The studied cosmological model is within the framework of a 5 dimensional supergravity with the extra-dimension compactified on an orbifold circle, where the matter and gauge field are located on one of the two branes localised at the orbifold fixed points and where the supergravity fields can propagate in the whole spatial dimensions. In the model, the Dark matter is made of neutralino which is supposed to be the lightest supersymmetric particle. We have shown that there are curves of constraints between the size of the extra-dimension and the reheating temperature of the Universe after Inflation. The constraints come from the measurements of the amount of Dark matter in the Universe and from the model of the Big Bang Nucleosynthesis of light elements. (author)

  16. Common origin of visible and dark universe

    International Nuclear Information System (INIS)

    Gu Peihong; Sarkar, Utpal

    2010-01-01

    Dark matter, baryonic matter, and dark energy have different properties but contribute comparable energy density to the present Universe. We point out that they may have a common origin. As the dark energy has a scale far lower than all known scales in particle physics but very close to neutrino masses, while the excess matter over antimatter in the baryonic sector is probably related to the neutrino-mass generation, we unify the origin of the dark and visible universe in a variant of the seesaw model. In our model (i) the dark matter relic density is a dark matter asymmetry emerged simultaneously with the baryon asymmetry from leptogenesis; (ii) the dark energy is due to a pseudo-Nambu-Goldstone-Boson associated with the neutrino-mass generation.

  17. New Spectral Features from Bound Dark Matter

    DEFF Research Database (Denmark)

    Catena, Riccardo; Kouvaris, Chris

    2016-01-01

    We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature we predict can provide the ultimate smoking gun for dark matter discovery for experiments...... with positive signal but unclear background. The new feature is universal, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section....

  18. The correlation between emotional intelligence and gray matter volume in university students.

    Science.gov (United States)

    Tan, Yafei; Zhang, Qinglin; Li, Wenfu; Wei, Dongtao; Qiao, Lei; Qiu, Jiang; Hitchman, Glenn; Liu, Yijun

    2014-11-01

    A number of recent studies have investigated the neurological substrates of emotional intelligence (EI), but none of them have considered the neural correlates of EI that are measured using the Schutte Self-Report Emotional Intelligence Scale (SSREIS). This scale was developed based on the EI model of Salovey and Mayer (1990). In the present study, SSREIS was adopted to estimate EI. Meanwhile, magnetic resonance imaging (MRI) and voxel-based morphometry (VBM) were used to evaluate the gray matter volume (GMV) of 328 university students. Results found positive correlations between Monitor of Emotions and VBM measurements in the insula and orbitofrontal cortex. In addition, Utilization of Emotions was positively correlated with the GMV in the parahippocampal gyrus, but was negatively correlated with the VBM measurements in the fusiform gyrus and middle temporal gyrus. Furthermore, Social Ability had volume correlates in the vermis. These findings indicate that the neural correlates of the EI model, which primarily focuses on the abilities of individuals to appraise and express emotions, can also regulate and utilize emotions to solve problems. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Was ordinary matter synthesized from mirror matter? An attempt to explain why ΩB≅0.2Ωdark

    International Nuclear Information System (INIS)

    Foot, R.; Volkas, R.R.

    2003-01-01

    The cosmological dust has begun to settle. A likely picture is a universe comprised (predominantly) of three components: ordinary baryons (Ω B ≅0.05), nonbaryonic dark matter (Ω dark ≅0.22) and dark energy (Ω Λ ≅0.7). We suggest that the observed similarity of the abundances of ordinary baryons and nonbaryonic dark matter (Ω B /Ω dark ≅0.20) hints at an underlying similarity between the fundamental properties of ordinary and dark matter particles. This is necessarily the case if dark matter is identified with mirror matter. We examine a specific mirror matter scenario where Ω B /Ω dark ≅0.20 is naturally obtained

  20. White matter pathology and disconnection in the frontal lobe in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL).

    Science.gov (United States)

    Craggs, Lucinda J L; Yamamoto, Yumi; Ihara, Masafumi; Fenwick, Richard; Burke, Matthew; Oakley, Arthur E; Roeber, Sigrun; Duering, Marco; Kretzschmar, Hans; Kalaria, Raj N

    2014-08-01

    Magnetic resonance imaging indicates diffuse white matter (WM) changes are associated with cognitive impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). We examined whether the distribution of axonal abnormalities is related to microvascular pathology in the underlying WM. We used post-mortem brains from CADASIL subjects and similar age cognitively normal controls to examine WM axonal changes, microvascular pathology, and glial reaction in up to 16 different regions extending rostro-caudally through the cerebrum. Using unbiased stereological methods, we estimated length densities of affected axons immunostained with neurofilament antibody SMI32. Standard immunohistochemistry was used to assess amyloid precursor protein immunoreactivity per WM area. To relate WM changes to microvascular pathology, we also determined the sclerotic index (SI) in WM arterioles. The degree of WM pathology consistently scored higher across all brain regions in CADASIL subjects (Pneurones connecting to targets in the subcortical structures. © 2013 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society.

  1. Sheet universes and the shapes of Friedmann universes

    International Nuclear Information System (INIS)

    Lynden-Bell, D.; Redmount, I.H.

    1989-01-01

    Unless Ω>1,the Big Bang did not start from a point. Consideration shows sheet universes in which matter is confined to a homogeneous universe. Sheet universes and the corresponding embeddings of FRW universes into Minkowski space are drawn. Their initial singularities are shown to be point-like for the 'closed' case, line-like for the 'flat' (Ω=1) case and surface-like for the 'open' case. In contrast to the cross-sections at constant comoving proper time, typical spacelike cross-sections of the 'flat' universes are closed and encounter their extensive singularities. All cross-sections of the 'closed' universe are closed and only very special cross-sections encounter the point singularities at the Big Bang or the Big Crunch. (author)

  2. Plasmas the first state of matter

    CERN Document Server

    Krishan, Vinod

    2014-01-01

    Most astronomers believe that the universe began about 15 billion years ago when an explosion led to its expansion and cooling. The present state of the universe compels us to believe that the universe was extremely hot and dense in its infancy. In the beginning there was intense radiation. The photons produced equal amounts of matter and antimatter and a plasma soup of particles and antiparticles was present. Plasma is the first state of matter from which all the other states originated. This book discusses the diversity of cosmic and terrestrial plasmas found in the early universe, galactic and intergalactic media, stellar atmospheres, interstellar spaces, the solar system and the Earth's ionosphere, and their observability with the most recent telescopes such as the Chandra X-ray telescope and gamma ray telescopes. It deals with different ways of creating plasmas such as thermal, pressure and radiative ionization for laboratory and cosmic plasmas.

  3. Gender and facial dominance in gaze cuing: emotional context matters in the eyes that we follow.

    Directory of Open Access Journals (Sweden)

    Garian Ohlsen

    Full Text Available Gaze following is a socio-cognitive process that provides adaptive information about potential threats and opportunities in the individual's environment. The aim of the present study was to investigate the potential interaction between emotional context and facial dominance in gaze following. We used the gaze cue task to induce attention to or away from the location of a target stimulus. In the experiment, the gaze cue either belonged to a (dominant looking male face or a (non-dominant looking female face. Critically, prior to the task, individuals were primed with pictures of threat or no threat to induce either a dangerous or safe environment. Findings revealed that the primed emotional context critically influenced the gaze cuing effect. While a gaze cue of the dominant male face influenced performance in both the threat and no-threat conditions, the gaze cue of the non-dominant female face only influenced performance in the no-threat condition. This research suggests an implicit, context-dependent follower bias, which carries implications for research on visual attention, social cognition, and leadership.

  4. Neutron stars with spin polarized self-interacting dark matter

    OpenAIRE

    Rezaei, Zeinab

    2018-01-01

    Dark matter, one of the important portion of the universe, could affect the visible matter in neutron stars. An important physical feature of dark matter is due to the spin of dark matter particles. Here, applying the piecewise polytropic equation of state for the neutron star matter and the equation of state of spin polarized self-interacting dark matter, we investigate the structure of neutron stars which are influenced by the spin polarized self-interacting dark matter. The behavior of the...

  5. Primary somatosensory/motor cortical thickness distinguishes paresthesia-dominant from pain-dominant carpal tunnel syndrome.

    Science.gov (United States)

    Maeda, Yumi; Kettner, Norman; Kim, Jieun; Kim, Hyungjun; Cina, Stephen; Malatesta, Cristina; Gerber, Jessica; McManus, Claire; Libby, Alexandra; Mezzacappa, Pia; Mawla, Ishtiaq; Morse, Leslie R; Audette, Joseph; Napadow, Vitaly

    2016-05-01

    Paresthesia-dominant and pain-dominant subgroups have been noted in carpal tunnel syndrome (CTS), a peripheral neuropathic disorder characterized by altered primary somatosensory/motor (S1/M1) physiology. We aimed to investigate whether brain morphometry dissociates these subgroups. Subjects with CTS were evaluated with nerve conduction studies, whereas symptom severity ratings were used to allocate subjects into paresthesia-dominant (CTS-paresthesia), pain-dominant (CTS-pain), and pain/paresthesia nondominant (not included in further analysis) subgroups. Structural brain magnetic resonance imaging data were acquired at 3T using a multiecho MPRAGE T1-weighted pulse sequence, and gray matter cortical thickness was calculated across the entire brain using validated, automated methods. CTS-paresthesia subjects demonstrated reduced median sensory nerve conduction velocity (P = 0.05) compared with CTS-pain subjects. In addition, cortical thickness in precentral and postcentral gyri (S1/M1 hand area) contralateral to the more affected hand was significantly reduced in CTS-paresthesia subgroup compared with CTS-pain subgroup. Moreover, in CTS-paresthesia subjects, precentral cortical thickness was negatively correlated with paresthesia severity (r(34) = -0.40, P = 0.016) and positively correlated with median nerve sensory velocity (r(36) = 0.51, P = 0.001), but not with pain severity. Conversely, in CTS-pain subjects, contralesional S1 (r(9) = 0.62, P = 0.042) and M1 (r(9) = 0.61, P = 0.046) cortical thickness were correlated with pain severity, but not median nerve velocity or paresthesia severity. This double dissociation in somatotopically specific S1/M1 areas suggests a neuroanatomical substrate for symptom-based CTS subgroups. Such fine-grained subgrouping of CTS may lead to improved personalized therapeutic approaches, based on superior characterization of the linkage between peripheral and central neuroplasticity.

  6. Constraining Dark Matter with ATLAS

    CERN Document Server

    Czodrowski, Patrick; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  7. Casting light on dark matter

    International Nuclear Information System (INIS)

    Ellis, John

    2012-01-01

    The prospects for detecting a candidate supersymmetric dark matter particle at the LHC are reviewed, and compared with the prospects for direct and indirect searches for astrophysical dark matter. The discussion is based on a frequentist analysis of the preferred regions of the Minimal supersymmetric extension of the Standard Model with universal soft supersymmetry breaking (the CMSSM). LHC searches may have good chances to observe supersymmetry in the near future - and so may direct searches for astrophysical dark matter particles, whereas indirect searches may require greater sensitivity, at least within the CMSSM.

  8. Antimatter in the universe

    Science.gov (United States)

    Stigman, G.

    1973-01-01

    The means of detecting the presence of antimatter in the universe are discussed. Both direct, annihilation processes, and indirect, cosmic ray particles, were analyzed. All results were negative and it was concluded that no antimatter exists, if the universe is in fact symmetric. If the universe is not symmetric then matter and antimatter are well separated from each other.

  9. How cold is cold dark matter?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2014-01-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed

  10. The weak conversion rate in quark matter

    International Nuclear Information System (INIS)

    Heiselberg, H.

    1992-01-01

    The weak conversion rate of strange to down quarks, s + u ↔ u + d, is calculated analytically for degenerate u, d and s quark matter to leading orders in temperature and deviations from chemical equilibrium. The rate is applied to burning of neutron matter into quark matter, to evaporation from quark nuggets in the early universe, for estimating the lifetime of strangelets, and to pulsar glitches

  11. Right-handed sneutrino as cold dark matter

    International Nuclear Information System (INIS)

    Asaka, Takehiko; Ishiwata, Koji; Moroi, Takeo

    2006-01-01

    We consider supersymmetric models with right-handed neutrinos where neutrino masses are purely Dirac-type. In this model, right-handed sneutrino can be the lightest supersymmetric particle and can be a viable candidate of cold dark matter of the universe. Right-handed sneutrinos are never thermalized in the early universe because of weakness of Yukawa interaction, but are effectively produced by decays of various superparticles. We show that the present mass density of right-handed sneutrino can be consistent with the observed dark matter density

  12. Tying dark matter to baryons with self-interactions.

    Science.gov (United States)

    Kaplinghat, Manoj; Keeley, Ryan E; Linden, Tim; Yu, Hai-Bo

    2014-07-11

    Self-interacting dark matter (SIDM) models have been proposed to solve the small-scale issues with the collisionless cold dark matter paradigm. We derive equilibrium solutions in these SIDM models for the dark matter halo density profile including the gravitational potential of both baryons and dark matter. Self-interactions drive dark matter to be isothermal and this ties the core sizes and shapes of dark matter halos to the spatial distribution of the stars, a radical departure from previous expectations and from cold dark matter predictions. Compared to predictions of SIDM-only simulations, the core sizes are smaller and the core densities are higher, with the largest effects in baryon-dominated galaxies. As an example, we find a core size around 0.3 kpc for dark matter in the Milky Way, more than an order of magnitude smaller than the core size from SIDM-only simulations, which has important implications for indirect searches of SIDM candidates.

  13. Axion: Mass -- Dark Matter Abundance Relation

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The axion is a hypothetical particle which would explain why QCD is approximately T-conserving, and is also an excellent Cold Dark Matter candidate. It should be possible to make a clean theoretical prediction relating the dark matter density in axions and the axion mass (under reasonable assumptions about inflation). But the axion's early-Universe dynamics, which establish its density as dark matter, are unexpectedly rich in a way which is only starting to yield to quantitative numerical study.

  14. Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation

    International Nuclear Information System (INIS)

    Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund

    2009-01-01

    Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ -1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.

  15. Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation

    Science.gov (United States)

    Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund

    2009-04-01

    Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ-1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.

  16. Classifying the future of universes with dark energy

    International Nuclear Information System (INIS)

    Chiba, Takeshi; Takahashi, Ryuichi; Sugiyama, Naoshi

    2005-01-01

    We classify the future of the universe for general cosmological models including matter and dark energy. If the equation of state of dark energy is less then -1, the age of the universe becomes finite. We compute the rest of the age of the universe for such universe models. The behaviour of the future growth of matter density perturbation is also studied. We find that the collapse of the spherical overdensity region is greatly changed if the equation of state of dark energy is less than -1

  17. Academic Training: Search for Dark Matter - Lecture series

    CERN Multimedia

    Françoise Benz

    2004-01-01

    28, 29, 30 June, 1 & 2 July ACADEMIC TRAINING LECTURE REGULAR PROGRAMME From 11:00 hrs - 28, 29 June, 1, 2 July, Main Auditorium bldg. 500. 30 June, Council Chamber bldg. 503 Search for Dark Matter B. Sadoulet / Univ. of California, Berkeley, USA In the first lecture, I will review the most recent cosmological evidence for the pervading dark matter in the universe and the emerging consensus that it is not ordinary matter. We will then focus on thermal particle candidates, which may have been produced in the hot early universe and stayed around to constitute dark matter: neutrinos and Weakly Interacting Massive Particles (WIMPs). I will emphasize what can be learnt from cosmology (e.g. the evidence for cold dark matter and the limits on neutrino masses). The third and the fourth lectures will be devoted the direct detection of WIMPs, its technical challenges and the present status. I will describe the recent advances from phonon-mediated detectors which currently provide the best limits and revi...

  18. SOLAR CONSTRAINTS ON ASYMMETRIC DARK MATTER

    International Nuclear Information System (INIS)

    Lopes, Ilídio; Silk, Joseph

    2012-01-01

    The dark matter content of the universe is likely to be a mixture of matter and antimatter, perhaps comparable to the measured asymmetric mixture of baryons and antibaryons. During the early stages of the universe, the dark matter particles are produced in a process similar to baryogenesis, and dark matter freezeout depends on the dark matter asymmetry and the annihilation cross section (s-wave and p-wave annihilation channels) of particles and antiparticles. In these η-parameterized asymmetric dark matter (ηADM) models, the dark matter particles have an annihilation cross section close to the weak interaction cross section, and a value of dark matter asymmetry η close to the baryon asymmetry η B . Furthermore, we assume that dark matter scattering of baryons, namely, the spin-independent scattering cross section, is of the same order as the range of values suggested by several theoretical particle physics models used to explain the current unexplained events reported in the DAMA/LIBRA, CoGeNT, and CRESST experiments. Here, we constrain ηADM by investigating the impact of such a type of dark matter on the evolution of the Sun, namely, the flux of solar neutrinos and helioseismology. We find that dark matter particles with a mass smaller than 15 GeV, a spin-independent scattering cross section on baryons of the order of a picobarn, and an η-asymmetry with a value in the interval 10 –12 -10 –10 , would induce a change in solar neutrino fluxes in disagreement with current neutrino flux measurements. This result is also confirmed by helioseismology data. A natural consequence of this model is suppressed annihilation, thereby reducing the tension between indirect and direct dark matter detection experiments, but the model also allows a greatly enhanced annihilation cross section. All the cosmological ηADM scenarios that we discuss have a relic dark matter density Ωh 2 and baryon asymmetry η B in agreement with the current WMAP measured values, Ω DM h 2 = 0

  19. Structural asymmetry of cortical visual areas is related to ocular dominance

    DEFF Research Database (Denmark)

    Jensen, Bettina H; Hougaard, Anders; Amin, Faisal M

    2015-01-01

    lateralized visual areas were identified, both right>left and left>right. When correlating the asymmetries to the functional parameters, we found a significant correlation to ocular dominance (P...The grey matter of the human brain is asymmetrically distributed between the cerebral hemispheres. This asymmetry includes visual areas, but its relevance to visual function is not understood. Voxel-based morphometry is a well-established technique for localization and quantification of cerebral...... was identified to be significantly larger in the left hemisphere for right-eyed participants and vice versa. These results suggest a cerebral basis for ocular dominance....

  20. Space-time and matter in 'prephysics'

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1985-05-01

    Many fundamental questions concerning the space-time and matter are asked and answered in ''prephysics'', a new line of physics (or philosophy but not metaphysics). They include the following: 1) ''Why is our space-time of 4 dimensions.'', 2) ''What is the ultimate form of matter.'' and 3) ''How was our universe created.''. (author)

  1. Unification of dark energy and dark matter

    International Nuclear Information System (INIS)

    Takahashi, Fuminobu; Yanagida, T.T.

    2006-01-01

    We propose a scenario in which dark energy and dark matter are described in a unified manner. The ultralight pseudo-Nambu-Goldstone (pNG) boson, A, naturally explains the observed magnitude of dark energy, while the bosonic supersymmetry partner of the pNG boson, B, can be a dominant component of dark matter. The decay of B into a pair of electron and positron may explain the 511 keV γ ray from the Galactic Center

  2. Topology of large-scale structure in seeded hot dark matter models

    Science.gov (United States)

    Beaky, Matthew M.; Scherrer, Robert J.; Villumsen, Jens V.

    1992-01-01

    The topology of the isodensity surfaces in seeded hot dark matter models, in which static seed masses provide the density perturbations in a universe dominated by massive neutrinos is examined. When smoothed with a Gaussian window, the linear initial conditions in these models show no trace of non-Gaussian behavior for r0 equal to or greater than 5 Mpc (h = 1/2), except for very low seed densities, which show a shift toward isolated peaks. An approximate analytic expression is given for the genus curve expected in linear density fields from randomly distributed seed masses. The evolved models have a Gaussian topology for r0 = 10 Mpc, but show a shift toward a cellular topology with r0 = 5 Mpc; Gaussian models with an identical power spectrum show the same behavior.

  3. Higgs decays to dark matter: Beyond the minimal model

    International Nuclear Information System (INIS)

    Pospelov, Maxim; Ritz, Adam

    2011-01-01

    We examine the interplay between Higgs mediation of dark-matter annihilation and scattering on one hand and the invisible Higgs decay width on the other, in a generic class of models utilizing the Higgs portal. We find that, while the invisible width of the Higgs to dark matter is now constrained for a minimal singlet scalar dark matter particle by experiments such as XENON100, this conclusion is not robust within more generic examples of Higgs mediation. We present a survey of simple dark matter scenarios with m DM h /2 and Higgs portal mediation, where direct-detection signatures are suppressed, while the Higgs width is still dominated by decays to dark matter.

  4. Ten scenarios from early radiation to late time acceleration with a minimally coupled dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Fay, Stéphane, E-mail: steph.fay@gmail.com [Palais de la Découverte, Astronomy Department, Avenue Franklin Roosevelt, 75008 Paris (France)

    2013-09-01

    We consider General Relativity with matter, radiation and a minimally coupled dark energy defined by an equation of state w. Using dynamical system method, we find the equilibrium points of such a theory assuming an expanding Universe and a positive dark energy density. Two of these points correspond to classical radiation and matter dominated epochs for the Universe. For the other points, dark energy mimics matter, radiation or accelerates Universe expansion. We then look for possible sequences of epochs describing a Universe starting with some radiation dominated epoch(s) (mimicked or not by dark energy), then matter dominated epoch(s) (mimicked or not by dark energy) and ending with an accelerated expansion. We find ten sequences able to follow this Universe history without singular behaviour of w at some saddle points. Most of them are new in dark energy literature. To get more than these ten sequences, w has to be singular at some specific saddle equilibrium points. This is an unusual mathematical property of the equation of state in dark energy literature, whose physical consequences tend to be discarded by observations. This thus distinguishes the ten above sequences from an infinity of ways to describe Universe expansion.

  5. Ten scenarios from early radiation to late time acceleration with a minimally coupled dark energy

    International Nuclear Information System (INIS)

    Fay, Stéphane

    2013-01-01

    We consider General Relativity with matter, radiation and a minimally coupled dark energy defined by an equation of state w. Using dynamical system method, we find the equilibrium points of such a theory assuming an expanding Universe and a positive dark energy density. Two of these points correspond to classical radiation and matter dominated epochs for the Universe. For the other points, dark energy mimics matter, radiation or accelerates Universe expansion. We then look for possible sequences of epochs describing a Universe starting with some radiation dominated epoch(s) (mimicked or not by dark energy), then matter dominated epoch(s) (mimicked or not by dark energy) and ending with an accelerated expansion. We find ten sequences able to follow this Universe history without singular behaviour of w at some saddle points. Most of them are new in dark energy literature. To get more than these ten sequences, w has to be singular at some specific saddle equilibrium points. This is an unusual mathematical property of the equation of state in dark energy literature, whose physical consequences tend to be discarded by observations. This thus distinguishes the ten above sequences from an infinity of ways to describe Universe expansion

  6. Domination versus disjunctive domination in graphs | Henning ...

    African Journals Online (AJOL)

    Domination versus disjunctive domination in graphs. Michael A Henning, Sinclair A Marcon. Abstract. A dominating set in a graph G is a set S of vertices of G such that every vertex not in S is adjacent to a vertex of S. The domination number of G is the minimum cardinality of a dominating set of G. For a positive integer b, ...

  7. Constraining decaying dark matter with FERMI-LAT gamma rays

    International Nuclear Information System (INIS)

    Maccione, L.

    2011-01-01

    High energy electron sand positrons from decaying dark matter can produce a significant flux of gamma rays by inverse Compton of low energy photons in the interstellar radiation field. This possibility is inevitably related with the dark matter interpretation of the observed PAMELA and FERMI excesses. We will describe a simple and universal method to constrain dark matter models which produce electrons and positrons in their decay by using the FERMI-LAT gamma-ray observations in the energy range between 0.5 GeV and 300 GeV, by exploiting universal response functions that, once convolved with a specific dark matter model, produce the desired constraint. The response functions contain all the astrophysical inputs. Here is discussed the uncertainties in the determination of the response functions and apply them to place constraints on some specific dark matter decay models that can well fit the positron and electron fluxes observed by PAMELA and FERMI LAT, also taking into account prompt radiation from the dark matter decay. With the available data decaying dark matter can not be excluded as source of the PAMELA positron excess.

  8. Models of the universe

    International Nuclear Information System (INIS)

    Dirac, P.A.M.

    1981-01-01

    Most models of the universe are dependent on the assumption of a uniform distribution of matter, and thus are rather crude, due to the nonlinear nature of Einstein's field equations. Here, a model is proposed which avoids this smoothing-out process. A metric is obtained which is consistent with the assumption that the matter of the universe is concentrated mainly in stars, moving with the velocity of recession implied by Hubble's law. The solution obtained gives results comparable to those obtainable by Schwarzchild metric, suitably adjusted to agree with the Einstein-DeSitter model at large distances

  9. Era of superheavy-particle dominance and big bang nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Polnarev, A.G.; Khlopov, M.Y.

    1982-01-01

    The observed primordial He/sup 4/ abundance imposes astrophysical constraints on the possible departures from radiation dominance in the big bang universe during the neutron hardening era (at epoch t roughly-equal1 sec). Limits are obtained which, along with the data on the spectrum of the cosmic background radiation, practically rule out any stages of superheavy stable-particle dominance in the era 1< or approx. =t<10/sup 10/ sec, thereby setting restrictions on current elementary-particle theories.

  10. Personality Dominant Values in Graphic Design Students in Their Educational Practice

    Science.gov (United States)

    Flores, René Pedroza

    2016-01-01

    The purpose of this article is to study the personality dominant values in Graphic Design students from the Autonomous University of the State of Mexico. A scale developed by Allport, Vernon and Lindsey called: "Study of values. A scale for the measuring of personality dominant interests" was used. The sample was applied to 124 students,…

  11. A hydrodynamic approach to cosmology - Texture-seeded cold dark matter and hot dark matter cosmogonies

    Science.gov (United States)

    Cen, R. Y.; Ostriker, J. P.; Spergel, D. N.; Turok, N.

    1991-01-01

    Hydrodynamical simulations of galaxy formation in a texture-seeded cosmology are presented, with attention given to Omega = 1 galaxies dominated by both hot dark matter (HDM) and cold dark matter (CDM). The simulations include both gravitational and hydrodynamical physics with a detailed treatment of collisional and radiative thermal processes, and use a cooling criterion to estimate galaxy formation. Background radiation fields and Zel'dovich-Sunyaev fluctuations are explicitly computed. The derived galaxy mass function is well fitted by the observed Schechter luminosity function for a baryonic M/L of 3 and total M/L of 60 in galaxies. In both HDM and CDM texture scenarios, the 'galaxies' and 'clusters' are significantly more strongly correlated than the dark matter due to physical bias processes. The slope of the correlation function in both cases is consistent with observations. In contrast to Gaussian models, peaks in the dark matter density distributrion are less correlated than average.

  12. Inflatable Dark Matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  13. Current and future searches for dark matter

    International Nuclear Information System (INIS)

    Bauer, Daniel A.

    2005-01-01

    Recent experimental data confirms that approximately one quarter of the universe consists of cold dark matter. Particle theories provide natural candidates for this dark matter in the form of either Axions or Weakly Interacting Massive Particles (WIMPs). A growing body of experiments is aimed at direct or indirect detection of particle dark matter. I summarize the current status of these experiments and offer projections of their future sensitivity

  14. Illuminating structural proteins in viral "dark matter" with metaproteomics.

    Science.gov (United States)

    Brum, Jennifer R; Ignacio-Espinoza, J Cesar; Kim, Eun-Hae; Trubl, Gareth; Jones, Robert M; Roux, Simon; VerBerkmoes, Nathan C; Rich, Virginia I; Sullivan, Matthew B

    2016-03-01

    Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional "viral dark matter." Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional dark matter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore, four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world's oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Together, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter.

  15. Entropy, matter, and cosmology.

    Science.gov (United States)

    Prigogine, I; Géhéniau, J

    1986-09-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary "C" field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production.

  16. Asymmetric condensed dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Anthony; Diez-Tejedor, Alberto, E-mail: aguirre@scipp.ucsc.edu, E-mail: alberto.diez@fisica.ugto.mx [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States)

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  17. Gamma-Ray Emission from Galaxy Clusters : DARK MATTER AND COSMIC-RAYS

    Science.gov (United States)

    Pinzke, Anders

    The quest for the first detection of a galaxy cluster in the high energy gamma-ray regime is ongoing, and even though clusters are observed in several other wave-bands, there is still no firm detection in gamma-rays. To complement the observational efforts we estimate the gamma-ray contributions from both annihilating dark matter and cosmic-ray (CR) proton as well as CR electron induced emission. Using high-resolution simulations of galaxy clusters, we find a universal concave shaped CR proton spectrum independent of the simulated galaxy cluster. Specifically, the gamma-ray spectra from decaying neutral pions, which are produced by CR protons, dominate the cluster emission. Furthermore, based on our derived flux and luminosity functions, we identify the galaxy clusters with the brightest galaxy clusters in gamma-rays. While this emission is challenging to detect using the Fermi satellite, major observations with Cherenkov telescopes in the near future may put important constraints on the CR physics in clusters. To extend these predictions, we use a dark matter model that fits the recent electron and positron data from Fermi, PAMELA, and H.E.S.S. with remarkable precision, and make predictions about the expected gamma-ray flux from nearby clusters. In order to remain consistent with the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures for cold dark matter halos. In addition, we find comparable levels of gamma-ray emission from CR interactions and dark matter annihilations without Sommerfeld enhancement.

  18. Self-accelerating universe in scalar-tensor theories after GW170817

    Science.gov (United States)

    Crisostomi, Marco; Koyama, Kazuya

    2018-04-01

    The recent simultaneous detection of gravitational waves and a gamma-ray burst from a neutron star merger significantly shrank the space of viable scalar-tensor theories by demanding that the speed of gravity is equal to that of light. The survived theories belong to the class of degenerate higher order scalar-tensor theories. We study whether these theories are suitable as dark energy candidates. We find scaling solutions in the matter dominated universe that lead to de Sitter solutions at late times without the cosmological constant, realizing self-acceleration. We evaluate quasistatic perturbations around self-accelerating solutions and show that the stringent constraints coming from astrophysical objects and gravitational waves can be satisfied, leaving interesting possibilities to test these theories by cosmological observations.

  19. Baryon asymmetry, dark matter and local baryon number

    International Nuclear Information System (INIS)

    Fileviez Pérez, Pavel; Patel, Hiren H.

    2014-01-01

    We propose a new mechanism to understand the relation between baryon and dark matter asymmetries in the universe in theories where the baryon number is a local symmetry. In these scenarios the B−L asymmetry generated through a mechanism such as leptogenesis is transferred to the dark matter and baryonic sectors through sphalerons processes which conserve total baryon number. We show that it is possible to have a consistent relation between the dark matter relic density and the baryon asymmetry in the universe even if the baryon number is broken at the low scale through the Higgs mechanism. We also discuss the case where one uses the Stueckelberg mechanism to understand the conservation of baryon number in nature.

  20. Propagators for a scalar field in a homogeneous expanding universe, 1

    International Nuclear Information System (INIS)

    Nariai, Hidekazu; Tanabe, Kenji.

    1975-11-01

    In view of a recent interest in the quantum field-theoretical creation of particles in a big-bang universe (which, via the problem how their vacuum state should be defined, will be connected with their propagators whose structure depends also on that of the universe), our previous formulae for bi-scalar Green's functions corresponding to a massless scalar field in the radiation- and matter-dominated stages of the Friedmann universe with flat 3-space are extended in a classical level. One is to derive the formulae for a massive scalar field in the same universe, and another lies in deriving the ones applicable to the respective stages of a closed universe with spherical topology. As an application, we discuss a massless scalar field (e.g., photons or gravitons defined suitably) and its physical property in the cases where its source distribution is spatially uniform and where that is of a delta-singularity. It is shown that the energy-momentum tensor in the first case is formally the same as a perfect fluid whose sound velocity relative to the light velocity is unity, while the tensor in the second case leads naturally to Robertson's formula for the apparent luminosity of a receding galaxy. The behavior of photons or gravitons generated from a turbulent medium in an early universe is also dealt with. (auth.)

  1. Holographic dual of de Sitter universe with AdS bubbles

    International Nuclear Information System (INIS)

    Kanno, Sugumi; Sasaki, Misao; Soda, Jiro

    2012-01-01

    We study the proposal that a de Sitter (dS) universe with an Anti-de Sitter (AdS) bubble can be replaced by a dS universe with a boundary CFT. To explore this duality, we consider incident gravitons coming from the dS universe through the bubble wall into the AdS bubble in the original picture. In the dual picture, this process has to be identified with the absorption of gravitons by CFT matter. We have obtained a general formula for the absorption probability in general d+1 spacetime dimensions. The result shows the different behavior depending on whether spacetime dimensions are even or odd. We find that the absorption process of gravitons from the dS universe by CFT matter is controlled by localized gravitons (massive bound state modes in the Kaluza-Klein decomposition) in the dS universe. The absorption probability is determined by the effective degrees of freedom of the CFT matter and the effective gravitational coupling constant which encodes information of localized gravitons. We speculate that the dual of (d+1)-dimensional dS universe with an AdS bubble is also dual to a d-dimensional dS universe with CFT matter.

  2. Recipes for the Universe

    CERN Multimedia

    2005-01-01

    As part of the World Year of Physics, the Physics Section of the University of Geneva is organising a series of conferences for the uninitiated. Each of the conferences will begin with a demonstration in the auditorium of the detection of cosmic rays and, in collaboration with Professor E. Ellberger of the Conservatoire de Musique de Genève, of how these signals from the farthest reaches of the Universe can be used to create "cosmic music". The third conference in the series, "How to build a universe?", will take place on Tuesday 15 March 2005 and the speaker will be the CERN theoretical physicist, John Ellis. A tiny number of elementary particles are responsible for the very diverse universe that surrounds us. These basic building blocks of matter interact by exchanging photons and other similar particles. After summing up what we know about these fundamental building blocks, their role in the history of the universe will be discussed. Where does matter come from? Where do the structures that ...

  3. Implications of the DAMA and CRESST experiments for mirror matter-type dark matter

    International Nuclear Information System (INIS)

    Foot, R.

    2004-01-01

    Mirror atoms are expected to be a significant component of the galactic dark matter halo if mirror matter is identified with the nonbaryonic dark matter in the Universe. Mirror matter can interact with ordinary matter via gravity and via the photon-mirror photon kinetic mixing interaction--causing mirror charged particles to couple to ordinary photons with an effective electric charge εe. This means that the nuclei of mirror atoms can elastically scatter off the nuclei of ordinary atoms, leading to nuclear recoils, which can be detected in existing dark matter experiments. We show that the dark matter experiments most sensitive to this type of dark matter candidate (via the nuclear recoil signature) are the DAMA/NaI and CRESST/Sapphire experiments. Furthermore, we show that the impressive annual modulation signal obtained by the DAMA/NaI experiment can be explained by mirror matter-type dark matter for vertical bar ε vertical bar ∼5x10 -9 and is supported by DAMA's absolute rate measurement as well as the CRESST/Sapphire data. This value of vertical bar ε vertical bar is consistent with the value obtained from various solar system anomalies including the Pioneer spacecraft anomaly, anomalous meteorite events and lack of small craters on the asteroid Eros. It is also consistent with standard big bang nucleosynthesis

  4. Geneva University

    CERN Multimedia

    2010-01-01

    Ecole de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 GENEVE 4 Tel: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 14 April 2010 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium Dark Matter and the XENON Experiment By Dr. Marc Schumann, Physik Institut, Universität Zürich There is convincing astrophysical and cosmological evidence that most of the matter in the Universe is dark: It is invisible in every band of the electromagnetic spectrum. Weakly interacting massive particles (WIMPs) are promising Dark Matter candidates that arise naturally in many theories beyond the Standard Model. Several experiments aim to directly detect WIMPs by measuring nuclear recoils from WIMPs scattered on target nuclei. In this talk, I will give an overview on Dark Matter and direct Dark Matter detection. Then I will focus on the XENON100 experiment, a 2-phase liquid/gas time projection chamber (TPC) that ...

  5. Discovery Mondays: The very early Universe

    CERN Multimedia

    2003-01-01

    Copyright NASARetracing the very early Universe to understand why there is "something rather than nothing" is one of the challenges facing astrophysics today. It is also the theme of the third Discovery Monday, to be held in the Microcosm on 7 July, where you will be welcomed by a number of scientists. A professional astronomer will allow you to look through his telescope and explain how it works. A cosmologist will talk to you about the very early Universe and a CERN physicist will show you how it's possible to trap antimatter. The mirror of matter, antimatter should have existed in the same quantities as matter in the very early stages of the Universe but today it seems to have virtually disappeared. Perhaps the research being done at CERN will one day explain how an infinitesimal predominance of matter over antimatter resulted in such a richly structured Universe. Come along to the Microcosm on Monday, 7 July between 7.30 p.m. and 9.00 p.m. Entrance is free http://www.cern.ch/microcosm N.B.: The Discove...

  6. Determining the dark matter mass with DeepCore

    Energy Technology Data Exchange (ETDEWEB)

    Das, Chitta R. [Centro de Física Teórica de Partículas, Instituto Superior Técnico (CFTP), Universidade Tćnica de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Mena, Olga [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Palomares-Ruiz, Sergio, E-mail: sergio.palomares.ruiz@ist.utl.pt [Centro de Física Teórica de Partículas, Instituto Superior Técnico (CFTP), Universidade Tćnica de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Pascoli, Silvia [IPPP, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom)

    2013-10-01

    Cosmological and astrophysical observations provide increasing evidence of the existence of dark matter in our Universe. Dark matter particles with a mass above a few GeV can be captured by the Sun, accumulate in the core, annihilate, and produce high energy neutrinos either directly or by subsequent decays of Standard Model particles. We investigate the prospects for indirect dark matter detection in the IceCube/DeepCore neutrino telescope and its capabilities to determine the dark matter mass.

  7. Qualitative analysis of homogeneous universes

    International Nuclear Information System (INIS)

    Novello, M.; Araujo, R.A.

    1980-01-01

    The qualitative behaviour of cosmological models is investigated in two cases: Homogeneous and isotropic Universes containing viscous fluids in a stokesian non-linear regime; Rotating expanding universes in a state which matter is off thermal equilibrium. (Author) [pt

  8. Mixed Inert scalar triplet dark matter, radiative neutrino masses and leptogenesis

    Directory of Open Access Journals (Sweden)

    Wen-Bin Lu

    2017-11-01

    Full Text Available The neutral component of an inert scalar multiplet with hypercharge can provide a stable dark matter particle when its real and imaginary parts have a splitting mass spectrum. Otherwise, a tree-level dark-matter-nucleon scattering mediated by the Z boson will be much above the experimental limit. In this paper we focus on a mixed inert scalar triplet dark matter scenario where a complex scalar triplet with hypercharge can mix with another real scalar triplet without hypercharge through their renormalizable coupling to the standard model Higgs doublet. We consider three specified cases that carry most of the relevant features of the full parameter space: (i the neutral component of the real triplet dominates the dark matter particle, (ii the neutral component of the complex triplet dominates the dark matter particle; and (iii the neutral components of the real and complex triplets equally constitute the dark matter particle. Subject to the dark matter relic abundance and direct detection constraint, we perform a systematic study on the allowed parameter space with particular emphasis on the interplay among triplet-doublet terms and gauge interactions. In the presence of these mixed inert scalar triplets, some heavy Dirac fermions composed of inert fermion doublets can be utilized to generate a tiny Majorana neutrino mass term at one-loop level and realize a successful leptogenesis for explaining the cosmic baryon asymmetry.

  9. Compton Composites Late in the Early Universe

    Directory of Open Access Journals (Sweden)

    Frederick Mayer

    2014-07-01

    Full Text Available Beginning roughly two hundred years after the big-bang, a tresino phase transition generated Compton-scale composite particles and converted most of the ordinary plasma baryons into new forms of dark matter. Our model consists of ordinary electrons and protons that have been bound into mostly undetectable forms. This picture provides an explanation of the composition and history of ordinary to dark matter conversion starting with, and maintaining, a critical density Universe. The tresino phase transition started the conversion of ordinary matter plasma into tresino-proton pairs prior to the the recombination era. We derive the appropriate Saha–Boltzmann equilibrium to determine the plasma composition throughout the phase transition and later. The baryon population is shown to be quickly modified from ordinary matter plasma prior to the transition to a small amount of ordinary matter and a much larger amount of dark matter after the transition. We describe the tresino phase transition and the origin, quantity and evolution of the dark matter as it takes place from late in the early Universe until the present.

  10. Revival of the unified dark energy-dark matter model?

    International Nuclear Information System (INIS)

    Bento, M.C.; Bertolami, O.; Sen, A.A.

    2004-01-01

    We consider the generalized Chaplygin gas (GCG) proposal for unification of dark energy and dark matter and show that it admits an unique decomposition into dark energy and dark matter components once phantomlike dark energy is excluded. Within this framework, we study structure formation and show that difficulties associated to unphysical oscillations or blowup in the matter power spectrum can be circumvented. Furthermore, we show that the dominance of dark energy is related to the time when energy density fluctuations start deviating from the linear δ∼a behavior

  11. Particle dark matter searches in the anisotropic sky

    Science.gov (United States)

    Fornengo, Nicolao; Regis, Marco

    2014-02-01

    Anisotropies in the electromagnetic emission produced by dark matter annihilation or decay in the extragalactic sky are a recent tool in the quest for a particle dark matter evidence. We review the formalism to compute the two-point angular power spectrum in the halo-model approach and discuss the features and the relative size of the various auto- and cross-correlation signals that can be envisaged for anisotropy studies. From the side of particle dark matter signals, we consider the full multi-wavelength spectrum, from the radio emission to X-ray and gamma-ray productions. We discuss the angular power spectra of the auto-correlation of each of these signals and of the cross-correlation between any pair of them. We then extend the search to comprise specific gravitational tracers of dark matter distribution in the Universe: weak-lensing cosmic shear, large-scale-structure matter distribution and CMB-lensing. We have shown that cross-correlating a multi-wavelength dark matter signal (which is a direct manifestation of its particle physics nature) with a gravitational tracer (which is a manifestation of the presence of large amounts of unseen matter in the Universe) may offer a promising tool to demonstrate that what we call DM is indeed formed by elementary particles.

  12. Particle dark matter searches in the anisotropic sky

    Directory of Open Access Journals (Sweden)

    Nicolao eFornengo

    2014-02-01

    Full Text Available Anisotropies in the electromagnetic emission produced by dark matter annihilation or decay in the extragalactic sky are a recent tool in the quest for a particle dark matter evidence. We review the formalism to compute the two-point angular power spectrum in the halo-model approach and discuss the features and the relative size of the various auto- and cross-correlation signals that can be envisaged for anisotropy studies. From the side of particle dark matter signals, we consider the full multi-wavelength spectrum, from the radio emission to X-ray and gamma-ray productions. We discuss the angular power spectra of the auto-correlation of each of these signals and of the cross-correlation between any pair of them. We then extend the search to comprise specific gravitational tracers of dark matter distribution in the Universe: weak-lensing cosmic shear, large-scale-structure matter distribution and CMB-lensing. We have shown that cross-correlating a multi-wavelength dark matter signal (which is a direct manifestation of its particle physics nature with a gravitational tracer (which is a manifestation of the presence of large amounts of unseen matter in the Universe may offer a promising tool to demonstrate that what we call DM is indeed formed by elementary particles.

  13. Search for Dark Matter at ATLAS

    CERN Document Server

    Conventi, Francesco; The ATLAS collaboration

    2017-01-01

    Dark Matter composes almost 25% of our Universe, but its identity is still unknown which makes it a large challenge for current fundamental physics. A lot of approaches are used to discover the identity of Dark Matter and one of them, collider searches, are discussed in this talk. The latest results on Dark Matter search at ATLAS using 2015 and 2016 data are presented. Results from searches for new physics in the events with final states containing large missing transverse energy + X (photons, jets, boson) are shown. Higgs to invisible and dijet searches are used in sense of complementarity to constrain properties of Dark Matter.

  14. Molecular characterization of macrophyte-derived dissolved organic matters and their implications for lakes

    Science.gov (United States)

    Chemical properties of whole organic matter (OM) and its dissolved organic matter (DOM) fraction from six dominant macrophytes in Lake Dianchi were comparatively characterized, and their environmental implications were discussed. Significant differences in chemical composition of the OM samples were...

  15. Gravity-mediated (or Composite) Dark Matter

    CERN Document Server

    Lee, Hyun Min; Sanz, Veronica

    2014-01-01

    Dark matter could have an electroweak origin, yet communicate with the visible sector exclusively through gravitational interactions. In a set-up addressing the hierarchy problem, we propose a new dark matter scenario where gravitational mediators, arising from the compactification of extra-dimensions, are responsible for dark matter interactions and its relic abundance in the Universe. We write an explicit example of this mechanism in warped extra-dimensions and work out its constraints. We also develop a dual picture of the model, based on a four-dimensional scenario with partial compositeness. We show that Gravity-mediated Dark Matter is equivalent to a mechanism of generating viable dark matter scenarios in a strongly-coupled, near-conformal theory, such as in composite Higgs models.

  16. Teaching Criteria That Matter in University Academic Promotions

    Science.gov (United States)

    Subbaye, Reshma; Vithal, Renuka

    2017-01-01

    While many universities have taken steps to recognise teaching in academic promotions, debate continues on the teaching criteria to be used and their evaluation. This article analyses the 10 criteria that inform the evaluation of teaching and eventual promotion decisions at a South African university: rationale for teaching, teaching methods,…

  17. Rotation of Galaxies within Gravity of the Universe

    Directory of Open Access Journals (Sweden)

    Arto Annila

    2016-05-01

    Full Text Available Rotation of galaxies is examined by the general principle of least action. This law of nature describes a system in its surroundings, here specifically a galaxy in the surrounding Universe. According to this holistic theory the gravitational potential due to all matter in the expanding Universe relates to the universal curvature which, in turn, manifests itself as the universal acceleration. Then the orbital velocities from the central bulge to distant perimeters are understood to balance both the galactic and universal acceleration. Since the galactic acceleration decreases with distance from the galaxy’s center to its luminous edge, the orbital velocities of ever more distant stars and gas clouds tend toward a value that tallies the universal acceleration. This tiny term has been acknowledged earlier by including it as a parameter in the modified gravitational law, but here the tiny acceleration is understood to result from the gravitational potential that spans across the expanding Universe. This resolution of the galaxy rotation problem is compared with observations and contrasted with models of dark matter. Also, other astronomical observations that have been interpreted as evidence for dark matter are discussed in light of the least-action principle.

  18. The 4-percent universe

    CERN Document Server

    Panek, Richard

    2012-01-01

    It is one of the most disturbing aspects of our universe: only four per cent of it consists of the matter that makes up every star, planet, and every book. The rest is completely unknown. Acclaimed science writer Richard Panek tells the story of the handful of scientists who have spent the past few decades on a quest to unlock the secrets of “dark matter" and the even stranger substance called “dark energy". These are perhaps the greatest mysteries in science,and solving them will reshape our understanding of the universe and our place in it. The stakes could not be higher. Panek's fast-paced

  19. The search for dark matter

    International Nuclear Information System (INIS)

    Smith, Nigel; Spooner, Neil

    2000-01-01

    Experiments housed deep underground are searching for new particles that could simultaneously solve one of the biggest mysteries in astrophysics and reveal what lies beyond the Standard Model of particle physics. Physicists are very particular about balancing budgets. Energy, charge and momentum all have to be conserved and often money as well. Astronomers were therefore surprised and disturbed to learn in the 1930s that our own Milky Way galaxy behaved as if it contained more matter than could be seen with telescopes. This puzzling non-luminous matter became known as ''dark matter'' and we now know that over 90% of the matter in the entire universe is dark. In later decades the search for this dark matter shifted from the heavens to the Earth. In fact, the search for dark matter went underground. Today there are experiments searching for dark matter hundreds and thousands of metres below ground in mines, road tunnels and other subterranean locations. These experiments are becoming more sensitive every year and are beginning to test various new models and theories in particle physics and cosmology. (UK)

  20. Sub-horizon evolution of cold dark matter perturbations through dark matter-dark energy equivalence epoch

    International Nuclear Information System (INIS)

    Piattella, O.F.; Martins, D.L.A.; Casarini, L.

    2014-01-01

    We consider a cosmological model of the late universe constituted by standard cold dark matter plus a dark energy component with constant equation of state w and constant effective speed of sound. By neglecting fluctuations in the dark energy component, we obtain an equation describing the evolution of sub-horizon cold dark matter perturbations through the epoch of dark matter-dark energy equality. We explore its analytic solutions and calculate an exact w-dependent correction for the dark matter growth function, logarithmic growth function and growth index parameter through the epoch considered. We test our analytic approximation with the numerical solution and find that the discrepancy is less than 1% for 0k = during the cosmic evolution up to a = 100