#### Sample records for mathematical methods computer

1. Computational and mathematical methods in brain atlasing.

Science.gov (United States)

Nowinski, Wieslaw L

2017-12-01

Brain atlases have a wide range of use from education to research to clinical applications. Mathematical methods as well as computational methods and tools play a major role in the process of brain atlas building and developing atlas-based applications. Computational methods and tools cover three areas: dedicated editors for brain model creation, brain navigators supporting multiple platforms, and atlas-assisted specific applications. Mathematical methods in atlas building and developing atlas-aided applications deal with problems in image segmentation, geometric body modelling, physical modelling, atlas-to-scan registration, visualisation, interaction and virtual reality. Here I overview computational and mathematical methods in atlas building and developing atlas-assisted applications, and share my contribution to and experience in this field.

2. Mathematical optics classical, quantum, and computational methods

CERN Document Server

Lakshminarayanan, Vasudevan

2012-01-01

Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical wave

3. Digital image processing mathematical and computational methods

CERN Document Server

Blackledge, J M

2005-01-01

This authoritative text (the second part of a complete MSc course) provides mathematical methods required to describe images, image formation and different imaging systems, coupled with the principle techniques used for processing digital images. It is based on a course for postgraduates reading physics, electronic engineering, telecommunications engineering, information technology and computer science. This book relates the methods of processing and interpreting digital images to the 'physics' of imaging systems. Case studies reinforce the methods discussed, with examples of current research

4. Computational mathematics models, methods, and analysis with Matlab and MPI

CERN Document Server

White, Robert E

2004-01-01

Computational Mathematics: Models, Methods, and Analysis with MATLAB and MPI explores and illustrates this process. Each section of the first six chapters is motivated by a specific application. The author applies a model, selects a numerical method, implements computer simulations, and assesses the ensuing results. These chapters include an abundance of MATLAB code. By studying the code instead of using it as a "black box, " you take the first step toward more sophisticated numerical modeling. The last four chapters focus on multiprocessing algorithms implemented using message passing interface (MPI). These chapters include Fortran 9x codes that illustrate the basic MPI subroutines and revisit the applications of the previous chapters from a parallel implementation perspective. All of the codes are available for download from www4.ncsu.edu./~white.This book is not just about math, not just about computing, and not just about applications, but about all three--in other words, computational science. Whether us...

5. Computational mathematics in China

CERN Document Server

Shi, Zhong-Ci

1994-01-01

This volume describes the most significant contributions made by Chinese mathematicians over the past decades in various areas of computational mathematics. Some of the results are quite important and complement Western developments in the field. The contributors to the volume range from noted senior mathematicians to promising young researchers. The topics include finite element methods, computational fluid mechanics, numerical solutions of differential equations, computational methods in dynamical systems, numerical algebra, approximation, and optimization. Containing a number of survey articles, the book provides an excellent way for Western readers to gain an understanding of the status and trends of computational mathematics in China.

6. Mathematical modellings and computational methods for structural analysis of LMFBR's

International Nuclear Information System (INIS)

Liu, W.K.; Lam, D.

1983-01-01

In this paper, two aspects of nuclear reactor problems are discussed, modelling techniques and computational methods for large scale linear and nonlinear analyses of LMFBRs. For nonlinear fluid-structure interaction problem with large deformation, arbitrary Lagrangian-Eulerian description is applicable. For certain linear fluid-structure interaction problem, the structural response spectrum can be found via 'added mass' approach. In a sense, the fluid inertia is accounted by a mass matrix added to the structural mass. The fluid/structural modes of certain fluid-structure problem can be uncoupled to get the reduced added mass. The advantage of this approach is that it can account for the many repeated structures of nuclear reactor. In regard to nonlinear dynamic problem, the coupled nonlinear fluid-structure equations usually have to be solved by direct time integration. The computation can be very expensive and time consuming for nonlinear problems. Thus, it is desirable to optimize the accuracy and computation effort by using implicit-explicit mixed time integration method. (orig.)

7. COMPUTER TOOLS OF DYNAMIC MATHEMATIC SOFTWARE AND METHODICAL PROBLEMS OF THEIR USE

Directory of Open Access Journals (Sweden)

Olena V. Semenikhina

2014-08-01

Full Text Available The article presents results of analyses of standard computer tools of dynamic mathematic software which are used in solving tasks, and tools on which the teacher can support in the teaching of mathematics. Possibility of the organization of experimental investigating of mathematical objects on the basis of these tools and the wording of new tasks on the basis of the limited number of tools, fast automated check are specified. Some methodological comments on application of computer tools and methodological features of the use of interactive mathematical environments are presented. Problems, which are arising from the use of computer tools, among which rethinking forms and methods of training by teacher, the search for creative problems, the problem of rational choice of environment, check the e-solutions, common mistakes in the use of computer tools are selected.

8. Computer Facilitated Mathematical Methods in Chemical Engineering--Similarity Solution

Science.gov (United States)

Subramanian, Venkat R.

2006-01-01

High-performance computers coupled with highly efficient numerical schemes and user-friendly software packages have helped instructors to teach numerical solutions and analysis of various nonlinear models more efficiently in the classroom. One of the main objectives of a model is to provide insight about the system of interest. Analytical…

9. An intercomparison of computer assisted date processing and display methods in radioisotope scintigraphy using mathematical tumours

International Nuclear Information System (INIS)

Houston, A.S.; Macleod, M.A.

1977-01-01

Several computer assisted processing and display methods are evaluated using a series of 100 normal brain scintigrams, 50 of which have had single 'mathematical tumours' superimposed. Using a standard rating system, or in some cases quantitative estimation, LROC curves are generated for each method and compared. (author)

10. Mathematics for computer graphics

CERN Document Server

Vince, John

2006-01-01

Helps you understand the mathematical ideas used in computer animation, virtual reality, CAD, and other areas of computer graphics. This work also helps you to rediscover the mathematical techniques required to solve problems and design computer programs for computer graphic applications

11. Experimental Mathematics and Computational Statistics

Energy Technology Data Exchange (ETDEWEB)

Bailey, David H.; Borwein, Jonathan M.

2009-04-30

The field of statistics has long been noted for techniques to detect patterns and regularities in numerical data. In this article we explore connections between statistics and the emerging field of 'experimental mathematics'. These includes both applications of experimental mathematics in statistics, as well as statistical methods applied to computational mathematics.

12. Computer Aided Mathematics

DEFF Research Database (Denmark)

Sinclair, Robert

1998-01-01

Course notes of a PhD course held in 1998. The central idea is to introduce students to computational mathematics using object oriented programming in C++.......Course notes of a PhD course held in 1998. The central idea is to introduce students to computational mathematics using object oriented programming in C++....

13. Computer mathematics for programmers

CERN Document Server

Abney, Darrell H; Sibrel, Donald W

1985-01-01

Computer Mathematics for Programmers presents the Mathematics that is essential to the computer programmer.The book is comprised of 10 chapters. The first chapter introduces several computer number systems. Chapter 2 shows how to perform arithmetic operations using the number systems introduced in Chapter 1. The third chapter covers the way numbers are stored in computers, how the computer performs arithmetic on real numbers and integers, and how round-off errors are generated in computer programs. Chapter 4 details the use of algorithms and flowcharting as problem-solving tools for computer p

14. International Conference on Modern Mathematical Methods and High Performance Computing in Science and Technology

CERN Document Server

Srivastava, HM; Venturino, Ezio; Resch, Michael; Gupta, Vijay

2016-01-01

The book discusses important results in modern mathematical models and high performance computing, such as applied operations research, simulation of operations, statistical modeling and applications, invisibility regions and regular meta-materials, unmanned vehicles, modern radar techniques/SAR imaging, satellite remote sensing, coding, and robotic systems. Furthermore, it is valuable as a reference work and as a basis for further study and research. All contributing authors are respected academicians, scientists and researchers from around the globe. All the papers were presented at the international conference on Modern Mathematical Methods and High Performance Computing in Science & Technology (M3HPCST 2015), held at Raj Kumar Goel Institute of Technology, Ghaziabad, India, from 27–29 December 2015, and peer-reviewed by international experts. The conference provided an exceptional platform for leading researchers, academicians, developers, engineers and technocrats from a broad range of disciplines ...

15. Method of computer generation and projection recording of microholograms for holographic memory systems: mathematical modelling and experimental implementation

International Nuclear Information System (INIS)

Betin, A Yu; Bobrinev, V I; Evtikhiev, N N; Zherdev, A Yu; Zlokazov, E Yu; Lushnikov, D S; Markin, V V; Odinokov, S B; Starikov, S N; Starikov, R S

2013-01-01

A method of computer generation and projection recording of microholograms for holographic memory systems is presented; the results of mathematical modelling and experimental implementation of the method are demonstrated. (holographic memory)

16. Mathematics, the Computer, and the Impact on Mathematics Education.

Science.gov (United States)

Tooke, D. James

2001-01-01

Discusses the connection between mathematics and the computer; mathematics curriculum; mathematics instruction, including teachers learning to use computers; and the impact of the computer on learning mathematics. (LRW)

17. COMPUTER TOOLS OF DYNAMIC MATHEMATIC SOFTWARE AND METHODICAL PROBLEMS OF THEIR USE

OpenAIRE

Olena V. Semenikhina; Maryna H. Drushliak

2014-01-01

The article presents results of analyses of standard computer tools of dynamic mathematic software which are used in solving tasks, and tools on which the teacher can support in the teaching of mathematics. Possibility of the organization of experimental investigating of mathematical objects on the basis of these tools and the wording of new tasks on the basis of the limited number of tools, fast automated check are specified. Some methodological comments on application of computer tools and ...

18. Twenty-first century quantum mechanics Hilbert space to quantum computers mathematical methods and conceptual foundations

CERN Document Server

Fano, Guido

2017-01-01

This book is designed to make accessible to nonspecialists the still evolving concepts of quantum mechanics and the terminology in which these are expressed. The opening chapters summarize elementary concepts of twentieth century quantum mechanics and describe the mathematical methods employed in the field, with clear explanation of, for example, Hilbert space, complex variables, complex vector spaces and Dirac notation, and the Heisenberg uncertainty principle. After detailed discussion of the Schrödinger equation, subsequent chapters focus on isotropic vectors, used to construct spinors, and on conceptual problems associated with measurement, superposition, and decoherence in quantum systems. Here, due attention is paid to Bell’s inequality and the possible existence of hidden variables. Finally, progression toward quantum computation is examined in detail: if quantum computers can be made practicable, enormous enhancements in computing power, artificial intelligence, and secure communication will result...

19. Mathematical methods and the computer in oil and gas geology. Matematicheskiye metody i EVM v neftegazovoy geologii

Energy Technology Data Exchange (ETDEWEB)

Dement' yev, L.F.

1983-01-01

Fundamental questions are presented for mathematical modeling in geology. Tasks are examined for describing and grouping geological objects, separating and correlating the sections, analyzing interrelationships between the signs and spatial laws governing their change, organization of collection of automated processing of geological information. Fundamental attention is focused on methodology of using mathematical methods and computers.

20. Examinations in the Final Year of Transition to Mathematical Methods Computer Algebra System (CAS)

Science.gov (United States)

Leigh-Lancaster, David; Les, Magdalena; Evans, Michael

2010-01-01

2009 was the final year of parallel implementation for Mathematical Methods Units 3 and 4 and Mathematical Methods (CAS) Units 3 and 4. From 2006-2009 there was a common technology-free short answer examination that covered the same function, algebra, calculus and probability content for both studies with corresponding expectations for key…

1. Mathematical structures for computer graphics

CERN Document Server

Janke, Steven J

2014-01-01

A comprehensive exploration of the mathematics behind the modeling and rendering of computer graphics scenes Mathematical Structures for Computer Graphics presents an accessible and intuitive approach to the mathematical ideas and techniques necessary for two- and three-dimensional computer graphics. Focusing on the significant mathematical results, the book establishes key algorithms used to build complex graphics scenes. Written for readers with various levels of mathematical background, the book develops a solid foundation for graphics techniques and fills in relevant grap

2. Mathematical Methods and Algorithms of Mobile Parallel Computing on the Base of Multi-core Processors

Directory of Open Access Journals (Sweden)

Alexander B. Bakulev

2012-11-01

Full Text Available This article deals with mathematical models and algorithms, providing mobility of sequential programs parallel representation on the high-level language, presents formal model of operation environment processes management, based on the proposed model of programs parallel representation, presenting computation process on the base of multi-core processors.

3. Mathematical methods in engineering

CERN Document Server

2014-01-01

This book presents a careful selection of the contributions presented at the Mathematical Methods in Engineering (MME10) International Symposium, held at the Polytechnic Institute of Coimbra- Engineering Institute of Coimbra (IPC/ISEC), Portugal, October 21-24, 2010. The volume discusses recent developments about theoretical and applied mathematics toward the solution of engineering problems, thus covering a wide range of topics, such as:  Automatic Control, Autonomous Systems, Computer Science, Dynamical Systems and Control,  Electronics, Finance and Economics, Fluid Mechanics and Heat Transfer, Fractional Mathematics, Fractional Transforms and Their Applications,  Fuzzy Sets and Systems, Image and Signal Analysis, Image Processing, Mechanics, Mechatronics, Motor Control and Human Movement Analysis, Nonlinear Dynamics, Partial Differential Equations, Robotics, Acoustics, Vibration and Control, and Wavelets.

4. Methods of Mathematical and Computational Physics for Industry, Science, and Technology

Science.gov (United States)

Melnik, Roderick V. N.; Voss, Frands

2006-11-01

the problem. Under both outlined scenarios, scientists and mathematicians are provided with an opportunity to challenge themselves with real-world problems and to work together in a team on important industrial issues. This issue is a result of selected contributions by participants of the meeting that took place in the Sønderborg area of Denmark, one of the most important centers for information technology, telecommunication and electronics in the country. The meeting was hosted by the University of Southern Denmark in a picturesque area of Southern Jutland. It brought together about 65 participants, among whom were professional mathematicians, engineers, physicists, and industrial participants. The meeting was a truly international one, with delegates from four major Danish Universities, the UK, Norway, Italy, Czech Republic, Turkey, China, Germany, Latvia, Canada, the United States, and Finland. Five challenging projects were presented by leading industrial companies, including Grundfos, Danfoss Industrial Control, Unisensor, and Danfoss Flow Division (now Siemens). The meeting featured also the Mathematics for Industry Workshop with several distinguished international speakers. This volume of Journal of Physics: Conference Series on Methods of Mathematical and Computational Physics for Industry, Science, and Technology' contains contributions from some of the participants of the workshop as well as the papers produced as a result of collaborative efforts with the above mentioned industrial companies. We would like to thank all authors and participants for their contributions and for bearing with us during the review process and preparation of this issue. We thank also all our referees for their timely and detailed reports. The publication of the proceedings of this meeting in Denmark was delayed due to problems with a previous publisher. We are very grateful that Journal of Physics: Conference Series kindly agreed to publish the proceedings rapidly at this late

5. Discrete mathematics using a computer

CERN Document Server

Hall, Cordelia

2000-01-01

Several areas of mathematics find application throughout computer science, and all students of computer science need a practical working understanding of them. These core subjects are centred on logic, sets, recursion, induction, relations and functions. The material is often called discrete mathematics, to distinguish it from the traditional topics of continuous mathematics such as integration and differential equations. The central theme of this book is the connection between computing and discrete mathematics. This connection is useful in both directions: • Mathematics is used in many branches of computer science, in applica­ tions including program specification, datastructures,design and analysis of algorithms, database systems, hardware design, reasoning about the correctness of implementations, and much more; • Computers can help to make the mathematics easier to learn and use, by making mathematical terms executable, making abstract concepts more concrete, and through the use of software tools su...

6. Sampling for Patient Exit Interviews: Assessment of Methods Using Mathematical Derivation and Computer Simulations.

Science.gov (United States)

Geldsetzer, Pascal; Fink, Günther; Vaikath, Maria; Bärnighausen, Till

2018-02-01

(1) To evaluate the operational efficiency of various sampling methods for patient exit interviews; (2) to discuss under what circumstances each method yields an unbiased sample; and (3) to propose a new, operationally efficient, and unbiased sampling method. Literature review, mathematical derivation, and Monte Carlo simulations. Our simulations show that in patient exit interviews it is most operationally efficient if the interviewer, after completing an interview, selects the next patient exiting the clinical consultation. We demonstrate mathematically that this method yields a biased sample: patients who spend a longer time with the clinician are overrepresented. This bias can be removed by selecting the next patient who enters, rather than exits, the consultation room. We show that this sampling method is operationally more efficient than alternative methods (systematic and simple random sampling) in most primary health care settings. Under the assumption that the order in which patients enter the consultation room is unrelated to the length of time spent with the clinician and the interviewer, selecting the next patient entering the consultation room tends to be the operationally most efficient unbiased sampling method for patient exit interviews. © 2016 The Authors. Health Services Research published by Wiley Periodicals, Inc. on behalf of Health Research and Educational Trust.

7. The challenge of computer mathematics.

Science.gov (United States)

Barendregt, Henk; Wiedijk, Freek

2005-10-15

Progress in the foundations of mathematics has made it possible to formulate all thinkable mathematical concepts, algorithms and proofs in one language and in an impeccable way. This is not in spite of, but partially based on the famous results of Gödel and Turing. In this way statements are about mathematical objects and algorithms, proofs show the correctness of statements and computations, and computations are dealing with objects and proofs. Interactive computer systems for a full integration of defining, computing and proving are based on this. The human defines concepts, constructs algorithms and provides proofs, while the machine checks that the definitions are well formed and the proofs and computations are correct. Results formalized so far demonstrate the feasibility of this 'computer mathematics'. Also there are very good applications. The challenge is to make the systems more mathematician-friendly, by building libraries and tools. The eventual goal is to help humans to learn, develop, communicate, referee and apply mathematics.

8. Mathematical Modeling and Computational Thinking

Science.gov (United States)

Sanford, John F.; Naidu, Jaideep T.

2017-01-01

The paper argues that mathematical modeling is the essence of computational thinking. Learning a computer language is a valuable assistance in learning logical thinking but of less assistance when learning problem-solving skills. The paper is third in a series and presents some examples of mathematical modeling using spreadsheets at an advanced…

9. Mathematical and computational methods for semiclassical Schrödinger equations

KAUST Repository

Jin, Shi

2011-04-28

We consider time-dependent (linear and nonlinear) Schrödinger equations in a semiclassical scaling. These equations form a canonical class of (nonlinear) dispersive models whose solutions exhibit high-frequency oscillations. The design of efficient numerical methods which produce an accurate approximation of the solutions, or at least of the associated physical observables, is a formidable mathematical challenge. In this article we shall review the basic analytical methods for dealing with such equations, including WKB asymptotics, Wigner measure techniques and Gaussian beams. Moreover, we shall give an overview of the current state of the art of numerical methods (most of which are based on the described analytical techniques) for the Schrödinger equation in the semiclassical regime. © 2011 Cambridge University Press.

10. Mathematics and Computation in Music

DEFF Research Database (Denmark)

The 5th Biennial International Conference for Mathematics and Computation in Music (MCM 2015) took place June 22–25, 2015, at Queen Mary University of London, UK, co-hosted by the School of Electronic Engineering and Computer Science (Centre for Digital Music) and the School of Mathematical...... Sciences. As the flagship conference of the Society for Mathematics and Computation in Music (SMCM), MCM 2015 provided a dedicated platform for the communication and exchange of ideas among researchers in mathematics, informatics, music theory, composition, musicology, and related disciplines. It brought...... together researchers from around the world who combine mathematics or computation with music theory, music analysis, composition, and performance. This year’s program – full details at http://mcm2015.qmul.ac.uk – featured a number of distinguished keynote speakers, including Andrée Ehresmann (who spoke...

11. Mathematics of Computed Tomography

Science.gov (United States)

Hawkins, William Grant

A review of the applications of the Radon transform is presented, with emphasis on emission computed tomography and transmission computed tomography. The theory of the 2D and 3D Radon transforms, and the effects of attenuation for emission computed tomography are presented. The algebraic iterative methods, their importance and limitations are reviewed. Analytic solutions of the 2D problem the convolution and frequency filtering methods based on linear shift invariant theory, and the solution of the circular harmonic decomposition by integral transform theory--are reviewed. The relation between the invisible kernels, the inverse circular harmonic transform, and the consistency conditions are demonstrated. The discussion and review are extended to the 3D problem-convolution, frequency filtering, spherical harmonic transform solutions, and consistency conditions. The Cormack algorithm based on reconstruction with Zernike polynomials is reviewed. An analogous algorithm and set of reconstruction polynomials is developed for the spherical harmonic transform. The relations between the consistency conditions, boundary conditions and orthogonal basis functions for the 2D projection harmonics are delineated and extended to the 3D case. The equivalence of the inverse circular harmonic transform, the inverse Radon transform, and the inverse Cormack transform is presented. The use of the number of nodes of a projection harmonic as a filter is discussed. Numerical methods for the efficient implementation of angular harmonic algorithms based on orthogonal functions and stable recursion are presented. The derivation of a lower bound for the signal-to-noise ratio of the Cormack algorithm is derived.

12. Mathematics and Computer Science | Argonne National Laboratory

Science.gov (United States)

Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Applications Software Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Opportunities For Employees Staff Directory Argonne National Laboratory Mathematics and Computer Science Tools

13. Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013

International Nuclear Information System (INIS)

2013-01-01

The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification

14. Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013

Energy Technology Data Exchange (ETDEWEB)

NONE

2013-07-01

The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification.

15. Will the digital computer transform classical mathematics?

Science.gov (United States)

Rotman, Brian

2003-08-15

Mathematics and machines have influenced each other for millennia. The advent of the digital computer introduced a powerfully new element that promises to transform the relation between them. This paper outlines the thesis that the effect of the digital computer on mathematics, already widespread, is likely to be radical and far-reaching. To articulate this claim, an abstract model of doing mathematics is introduced based on a triad of actors of which one, the 'agent', corresponds to the function performed by the computer. The model is used to frame two sorts of transformation. The first is pragmatic and involves the alterations and progressive colonization of the content and methods of enquiry of various mathematical fields brought about by digital methods. The second is conceptual and concerns a fundamental antagonism between the infinity enshrined in classical mathematics and physics (continuity, real numbers, asymptotic definitions) and the inherently real and material limit of processes associated with digital computation. An example which lies in the intersection of classical mathematics and computer science, the P=NP problem, is analysed in the light of this latter issue.

16. Computational mathematics and mathematical computer software. Vychislitel'naia matematika i matematicheskoe obespechenie EVM

Energy Technology Data Exchange (ETDEWEB)

Tikhonov, A.N.; Samarskii, A.A.

1985-01-01

Various aspects of mathematical modeling and problem-oriented computer software are examined with reference to numerical methods in mathematical physics, methods for solving inverse problems, development of automatic systems for experimental data processing, and mathematical modeling in plasma physics. Papers are presented on some properties of difference schemes in one-dimensional gas dynamics, an algorithm for processing signals reflected from multipoint targets, and the application of simplified Navier-Stokes equations for calculating flow of a viscous gas past long bodies.

17. Mathematical foundation of computer science

CERN Document Server

Singh, YN

2005-01-01

The interesting feature of this book is its organization and structure. That consists of systematizing of the definitions, methods, and results that something resembling a theory. Simplicity, clarity, and precision of mathematical language makes theoretical topics more appealing to the readers who are of mathematical or non-mathematical background. For quick references and immediate attentions¾concepts and definitions, methods and theorems, and key notes are presented through highlighted points from beginning to end. Whenever, necessary and probable a visual approach of presentation is used. The amalgamation of text and figures make mathematical rigors easier to understand. Each chapter begins with the detailed contents, which are discussed inside the chapter and conclude with a summary of the material covered in the chapter. Summary provides a brief overview of all the topics covered in the chapter. To demonstrate the principles better, the applicability of the concepts discussed in each topic are illustrat...

18. Computational Mathematics in Medicine

Directory of Open Access Journals (Sweden)

Angel Garrido

2010-09-01

Full Text Available AI requires Logic. But its Classical version shows too many insufficiencies. So, it is very necessary to introduce more sophisticated tools, as may be Fuzzy Logic, Modal Logic, Non-
Monotonic Logic, and so on [2]. Among the things that AI needs to represent are Categories, Objects, Properties, Relations between objects, Situations, States, Time, Events, Causes and effects, Knowledge about knowledge, and so on. The problems in AI can be classified in two general types
[3, 4], Search Problems and Representation Problem. There exist different ways to reach this objective. So, we have [3] Logics, Rules, Frames, Associative Nets, Scripts, and so on, many times interconnect. Also it will be very useful, in the treatment of the problems of uncertainty and causality, the introduction of Bayesian Networks and particularly, a principal tool as the Essential Graph. We attempt here to show the scope of application of such versatile methods, currently fundamental in Medicine.

19. Nuclear physics mathematical methods

International Nuclear Information System (INIS)

Balian, R.; Gervois, A.; Giannoni, M.J.; Levesque, D.; Maille, M.

1984-01-01

The nuclear physics mathematical methods, applied to the collective motion theory, to the reduction of the degrees of freedom and to the order and disorder phenomena; are investigated. In the scope of the study, the following aspects are discussed: the entropy of an ensemble of collective variables; the interpretation of the dissipation, applying the information theory; the chaos and the universality; the Monte-Carlo method applied to the classical statistical mechanics and quantum mechanics; the finite elements method, and the classical ergodicity [fr

20. Application of mathematical and computer methods in mine rescue. Primeneniye matematicheskikh metodov i EVM v gornospasatel'nom dele

Energy Technology Data Exchange (ETDEWEB)

1980-01-01

The collection contains the following articles: ''Control automation in mine rescue''. Khudosovtzev N.M., Teper V.B., Shschukin O.F.; ''Selection of optimal control of fire-fighting equipment''. Kozlyuk A.I., Charkov V.P., Teper V.B.; ''Formal approach to describing the process of underground fire extinguishing''. Kozlyu, A.I., Teper V.B., Romanchuk A.L.,; ''Computer selection of rescue and accident prevention methods using situation control methods''. Starovoitov V.T., Tomarovshschenko V.D., Koifman Yu. L., Plepler R.,; ''Planning experiments for studying the foam generation process using a steam-gas mixture''. Karyagina N.V., Makarenko V.L., Zhukova N.E., Shkodskikh V.I.; ''Mathematical model of the temperature field of spontaneous coal combustion in a mined out area''. Chuntu G.I., Kalyusskii A.E., Lysenko E.P., Gusar G.A.; ''Mathematical model of the cooling process of rock by a gas flow''. Kleiner A.A., Semko V.N.; ''M/G/I system with selfcontained servicing''. Skripnik V.M.; ''Closed-circuit servicing with mobile one-channel devices''. Skripnik V.M.; ''Analysis of methods for describing accident situations when modelling mine rescue operations''. Shschukin O.F., Brusentzev G.K., Laktionov O.A.; ''PROLOG system and the solution to several artificial intelligence problems''. Belov V.N., Branovitzkii V.I., Getzko L.N., Kudryavtzeva S.P., Seraya V.V.; ''Representation of knowledge in interactive systems''. Branovitzkii V.I., Getzko L.N., Kudryavtzeva S.P., Sakhno A.A., Seraya V.V.; ''Programming the selection of fire extinguishing equipment for rapid control of underground fire fighting using a computer''. Teper V.B., Ibchenko I.B., Bychkov G.D.; ''Interactive method to assess the effectiveness of exogenous fire fighting methods''. Brusentzev G.K., Shschukin O.F., Laktionov O.A., Shulga O.N.; ''Practical instruction using the automatic 'mine rescuer' system''.

1. Performance of various mathematical methods for computer-aided processing of radioimmunoassay results

International Nuclear Information System (INIS)

Vogt, W.; Sandel, P.; Langfelder, Ch.; Knedel, M.

1978-01-01

The performance of 6 algorithms were compared for computer aided determination of radioimmunological end results. These were weighted and unweighted linear logit log regression; quadratic logit log regression, smoothing spline interpolation with a large and small smoothing factor, respectively, and polygonal interpolation and the manual curve fitting on the basis of three radioimmunoassays with different reference curve characteristics (digoxin, estriol, human chorionic somatomammotrophin (HCS)). Great store was set by the accuracy of the approximation at the intermediate points on the curve, i.e. those points that lie midway between two standard concentrations. These concentrations were obtained by weighing and inserted as unknown samples. In the case of digoxin and estriol the polygonal interpolation provided the best results, while the weighted logit log regression proved superior in the case of HCS. (Auth.)

2. Analytical and empirical mathematics with computers

International Nuclear Information System (INIS)

Wolfram, S.

1986-01-01

In this presentation, some of the practical methodological and theoretical implications of computation for the mathematical sciences are discussed. Computers are becoming an increasingly significant tool for research in the mathematical sciences. This paper discusses some of the fundamental ways in which computers have and can be used to do mathematics

3. Mathematical and computational methods for semiclassical Schrödinger equations

KAUST Repository

Jin, Shi; Markowich, Peter; Sparber, Christof

2011-01-01

with such equations, including WKB asymptotics, Wigner measure techniques and Gaussian beams. Moreover, we shall give an overview of the current state of the art of numerical methods (most of which are based on the described analytical techniques) for the Schrödinger

4. Mathematics and Computer Science: The Interplay

OpenAIRE

2005-01-01

Mathematics has been an important intellectual preoccupation of man for a long time. Computer science as a formal discipline is about seven decades young. However, one thing in common between all users and producers of mathematical thought is the almost involuntary use of computing. In this article, we bring to fore the many close connections and parallels between the two sciences of mathematics and computing. We show that, unlike in the other branches of human inquiry where mathematics is me...

5. Mathematical foundations of computed tomography

International Nuclear Information System (INIS)

Smith, K.T.; Keinert, F.

1985-01-01

Along with a review of some of the mathematical foundations of computed tomography, the article contains new results on derivation of reconstruction formulas in a general setting encompassing all standard formulas; discussion and examples of the role of the point spread function with recipes for producing suitable ones; formulas for, and examples of, the reconstruction of certain functions of the attenuation coefficient, e.g., sharpened versions of it, some of them with the property that reconstruction at a point requires only the attenuation along rays meeting a small neighborhood of the point

6. Mathematics in computed tomography and related techniques

International Nuclear Information System (INIS)

Sawicka, B.

1992-01-01

The mathematical basis of computed tomography (CT) was formulated in 1917 by Radon. His theorem states that the 2-D function f(x,y) can be determined at all points from a complete set of its line integrals. Modern methods of image reconstruction include three approaches: algebraic reconstruction techniques with simultaneous iterative reconstruction or simultaneous algebraic reconstruction; convolution back projection; and the Fourier transform method. There is no one best approach. Because the experimental data do not strictly satisfy theoretical models, a number of effects have to be taken into account; in particular, the problems of beam geometry, finite beam dimensions and distribution, beam scattering, and the radiation source spectrum. Tomography with truncated data is of interest, employing mathematical approximations to compensate for the unmeasured projection data. Mathematical techniques in image processing and data analysis are also extensively used. 13 refs

7. Mathematical methods for physicists

CERN Document Server

Arfken, George B

2005-01-01

This best-selling title provides in one handy volume the essential mathematical tools and techniques used to solve problems in physics. It is a vital addition to the bookshelf of any serious student of physics or research professional in the field. The authors have put considerable effort into revamping this new edition.* Updates the leading graduate-level text in mathematical physics* Provides comprehensive coverage of the mathematics necessary for advanced study in physics and engineering* Focuses on problem-solving skills and offers a vast array of exercises * Clearly illustrates and proves mathematical relationsNew in the Sixth Edition:* Updated content throughout, based on users'' feedback * More advanced sections, including differential forms and the elegant forms of Maxwell''s equations* A new chapter on probability and statistics* More elementary sections have been deleted

8. 9th and 10th Asian Symposium on Computer Mathematics

CERN Document Server

Lee, Wen-shin; Sato, Yosuke

2014-01-01

This book covers original research and the latest advances in symbolic, algebraic and geometric computation; computational methods for differential and difference equations, symbolic-numerical computation; mathematics software design and implementation; and scientific and engineering applications based on features, invited talks, special sessions and contributed papers presented at the 9th (in Fukuoka, Japan in 2009) and 10th (in Beijing China in 2012) Asian Symposium on Computer Mathematics (ASCM). Thirty selected and refereed articles in the book present the conference participants’ ideas and views on researching mathematics using computers.

9. Mathematical modeling and computational intelligence in engineering applications

CERN Document Server

Silva Neto, Antônio José da; Silva, Geraldo Nunes

2016-01-01

This book brings together a rich selection of studies in mathematical modeling and computational intelligence, with application in several fields of engineering, like automation, biomedical, chemical, civil, electrical, electronic, geophysical and mechanical engineering, on a multidisciplinary approach. Authors from five countries and 16 different research centers contribute with their expertise in both the fundamentals and real problems applications based upon their strong background on modeling and computational intelligence. The reader will find a wide variety of applications, mathematical and computational tools and original results, all presented with rigorous mathematical procedures. This work is intended for use in graduate courses of engineering, applied mathematics and applied computation where tools as mathematical and computational modeling, numerical methods and computational intelligence are applied to the solution of real problems.

10. Mathematics, Physics and Computer Sciences The computation of ...

African Journals Online (AJOL)

Mathematics, Physics and Computer Sciences The computation of system matrices for biquadraticsquare finite ... Global Journal of Pure and Applied Sciences ... The computation of system matrices for biquadraticsquare finite elements.

11. Applied Computational Mathematics in Social Sciences

CERN Document Server

Damaceanu, Romulus-Catalin

2010-01-01

Applied Computational Mathematics in Social Sciences adopts a modern scientific approach that combines knowledge from mathematical modeling with various aspects of social science. Special algorithms can be created to simulate an artificial society and a detailed analysis can subsequently be used to project social realities. This Ebook specifically deals with computations using the NetLogo platform, and is intended for researchers interested in advanced human geography and mathematical modeling studies.

12. Mathematical methods in neutronics

International Nuclear Information System (INIS)

Planchard, J.

1995-01-01

This book presents the mathematical theory of nuclear reactors. It applies to engineers in neutronics and applied mathematicians. After a recall of the elementary notions of neutronics and of diffusion-type partial derivative equations, the theory of reactors criticality calculation is described. (J.S.)

13. Methods of applied mathematics

CERN Document Server

Hildebrand, Francis B

1992-01-01

This invaluable book offers engineers and physicists working knowledge of a number of mathematical facts and techniques not commonly treated in courses in advanced calculus, but nevertheless extremely useful when applied to typical problems in many different fields. It deals principally with linear algebraic equations, quadratic and Hermitian forms, operations with vectors and matrices, the calculus of variations, and the formulations and theory of linear integral equations. Annotated problems and exercises accompany each chapter.

14. Mathematical methods for cancer evolution

CERN Document Server

Suzuki, Takashi

2017-01-01

The purpose of this monograph is to describe recent developments in mathematical modeling and mathematical analysis of certain problems arising from cell biology. Cancer cells and their growth via several stages are of particular interest. To describe these events, multi-scale models are applied, involving continuously distributed environment variables and several components related to particles. Hybrid simulations are also carried out, using discretization of environment variables and the Monte Carlo method for the principal particle variables. Rigorous mathematical foundations are the bases of these tools. The monograph is composed of four chapters. The first three chapters are concerned with modeling, while the last one is devoted to mathematical analysis. The first chapter deals with molecular dynamics occurring at the early stage of cancer invasion. A pathway network model based on a biological scenario is constructed, and then its mathematical structures are determined. In the second chapter mathematica...

15. International Conference on Mathematics and Computing

CERN Document Server

Giri, Debasis; Saxena, P; Srivastava, P

2014-01-01

This book discusses recent developments and contemporary research in mathematics, statistics and their applications in computing. All contributing authors are eminent academicians, scientists, researchers and scholars in their respective fields, hailing from around the world. The conference has emerged as a powerful forum, offering researchers a venue to discuss, interact and collaborate, and stimulating the advancement of mathematics and its applications in computer science. The book will allow aspiring researchers to update their knowledge of cryptography, algebra, frame theory, optimizations, stochastic processes, compressive sensing, functional analysis, complex variables, etc. Educating future consumers, users, producers, developers and researchers in mathematics and computing is a challenging task and essential to the development of modern society. Hence, mathematics and its applications in computer science are of vital importance to a broad range of communities, including mathematicians and computing p...

16. Computers as medium for mathematical writing

DEFF Research Database (Denmark)

Misfeldt, Morten

2011-01-01

The production of mathematical formalism on state of the art computers is quite different than by pen and paper.  In this paper I examine the question of how different media influence the writing of mathematical signs. The examination is based on an investigation of professional mathematicians' use...... of various media for their writing. A model for describing mathematical writing through turntakings is proposed. The model is applied to the ways mathematicians use computers for writing, and especially it is used to understand how interaction with the computer system LaTeX is different in the case...

17. Mathematical Methods in Tomography

CERN Document Server

Louis, Alfred; Natterer, Frank

1991-01-01

The conference was devoted to the discussion of present and future techniques in medical imaging, including 3D x-ray CT, ultrasound and diffraction tomography, and biomagnetic ima- ging. The mathematical models, their theoretical aspects and the development of algorithms were treated. The proceedings contains surveys on reconstruction in inverse obstacle scat- tering, inversion in 3D, and constrained least squares pro- blems.Research papers include besides the mentioned imaging techniques presentations on image reconstruction in Hilbert spaces, singular value decompositions, 3D cone beam recon- struction, diffuse tomography, regularization of ill-posed problems, evaluation reconstruction algorithms and applica- tions in non-medical fields. Contents: Theoretical Aspects: J.Boman: Helgason' s support theorem for Radon transforms-a newproof and a generalization -P.Maass: Singular value de- compositions for Radon transforms- W.R.Madych: Image recon- struction in Hilbert space -R.G.Mukhometov: A problem of in- teg...

18. Computer-Game-Based Tutoring of Mathematics

Science.gov (United States)

Ke, Fengfeng

2013-01-01

This in-situ, descriptive case study examined the potential of implementing computer mathematics games as an anchor for tutoring of mathematics. Data were collected from middle school students at a rural pueblo school and an urban Hispanic-serving school, through in-field observation, content analysis of game-based tutoring-learning interactions,…

19. Mathematical methods in systems biology.

Science.gov (United States)

Kashdan, Eugene; Duncan, Dominique; Parnell, Andrew; Schattler, Heinz

2016-12-01

The editors of this Special Issue of Mathematical Biosciences and Engineering were the organizers for the Third International Workshop "Mathematical Methods in System Biology" that took place on June 15-18, 2015 at the University College Dublin in Ireland. As stated in the workshop goals, we managed to attract a good mix of mathematicians and statisticians working on biological and medical applications with biologists and clinicians interested in presenting their challenging problems and looking to find mathematical and statistical tools for their solutions.

20. Mathematical methods for diffusion MRI processing

International Nuclear Information System (INIS)

Lenglet, C.; Lenglet, C.; Sapiro, G.; Campbell, J.S.W.; Pike, G.B.; Campbell, J.S.W.; Siddiqi, K.; Descoteaux, M.; Haro, G.; Wassermann, D.; Deriche, R.; Wassermann, D.; Anwander, A.; Thompson, P.M.

2009-01-01

In this article, we review recent mathematical models and computational methods for the processing of diffusion Magnetic Resonance Images, including state-of-the-art reconstruction of diffusion models, cerebral white matter connectivity analysis, and segmentation techniques. We focus on Diffusion Tensor Images (DTI) and Q-Ball Images (QBI). (authors)

1. 3rd International Conference on Computational Mathematics and Computational Geometry

CERN Document Server

Ravindran, Anton

2016-01-01

This volume presents original research contributed to the 3rd Annual International Conference on Computational Mathematics and Computational Geometry (CMCGS 2014), organized and administered by Global Science and Technology Forum (GSTF). Computational Mathematics and Computational Geometry are closely related subjects, but are often studied by separate communities and published in different venues. This volume is unique in its combination of these topics. After the conference, which took place in Singapore, selected contributions chosen for this volume and peer-reviewed. The section on Computational Mathematics contains papers that are concerned with developing new and efficient numerical algorithms for mathematical sciences or scientific computing. They also cover analysis of such algorithms to assess accuracy and reliability. The parts of this project that are related to Computational Geometry aim to develop effective and efficient algorithms for geometrical applications such as representation and computati...

2. Computer Algebra Recipes for Mathematical Physics

CERN Document Server

Enns, Richard H

2005-01-01

Over two hundred novel and innovative computer algebra worksheets or "recipes" will enable readers in engineering, physics, and mathematics to easily and rapidly solve and explore most problems they encounter in their mathematical physics studies. While the aim of this text is to illustrate applications, a brief synopsis of the fundamentals for each topic is presented, the topics being organized to correlate with those found in traditional mathematical physics texts. The recipes are presented in the form of stories and anecdotes, a pedagogical approach that makes a mathematically challenging subject easier and more fun to learn. Key features: * Uses the MAPLE computer algebra system to allow the reader to easily and quickly change the mathematical models and the parameters and then generate new answers * No prior knowledge of MAPLE is assumed; the relevant MAPLE commands are introduced on a need-to-know basis * All MAPLE commands are indexed for easy reference * A classroom-tested story/anecdote format is use...

3. COBRA-SFS [Spent Fuel Storage]: A thermal-hydraulic analysis computer code: Volume 1, Mathematical models and solution method

International Nuclear Information System (INIS)

Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.

1986-11-01

COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations: however, the transient capability has not yet been validated. This volume describes the finite-volume equations and the method used to solve these equations. It is directed toward the user who is interested in gaining a more complete understanding of these methods

4. Methods of mathematical optimization

Science.gov (United States)

Vanderplaats, G. N.

The fundamental principles of numerical optimization methods are reviewed, with an emphasis on potential engineering applications. The basic optimization process is described; unconstrained and constrained minimization problems are defined; a general approach to the design of optimization software programs is outlined; and drawings and diagrams are shown for examples involving (1) the conceptual design of an aircraft, (2) the aerodynamic optimization of an airfoil, (3) the design of an automotive-engine connecting rod, and (4) the optimization of a 'ski-jump' to assist aircraft in taking off from a very short ship deck.

5. Applied Mathematics, Modelling and Computational Science

CERN Document Server

Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan

2015-01-01

The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...

6. Mathematics for engineering, technology and computing science

CERN Document Server

Martin, Hedley G

1970-01-01

Mathematics for Engineering, Technology and Computing Science is a text on mathematics for courses in engineering, technology, and computing science. It covers linear algebra, ordinary differential equations, and vector analysis, together with line and multiple integrals. This book consists of eight chapters and begins with a discussion on determinants and linear equations, with emphasis on how the value of a determinant is defined and how it may be obtained. Solution of linear equations and the dependence between linear equations are also considered. The next chapter introduces the reader to

7. Creators of mathematical and computational sciences

CERN Document Server

Agarwal, Ravi P

2014-01-01

The book records the essential discoveries of mathematical and computational scientists in chronological order, following the birth of ideas on the basis of prior ideas ad infinitum. The authors document the winding path of mathematical scholarship throughout history, and most importantly, the thought process of each individual that resulted in the mastery of their subject. The book implicitly addresses the nature and character of every scientist as one tries to understand their visible actions in both adverse and congenial environments. The authors hope that this will enable the reader to understand their mode of thinking, and perhaps even to emulate their virtues in life. … presents a picture of mathematics as a creation of the human imagination. … brings the history of mathematics to life by describing the contributions of the world’s greatest mathematicians. —Rex F. Gandy, Provost and Vice President for Academic Affairs, TAMUK   It starts with the explanation and history of numbers, arithmetic, ...

8. The ANS mathematics and computation software standards

Energy Technology Data Exchange (ETDEWEB)

Smetana, A. O. [Savannah River National Laboratory, Washington Savannah River Company, Aiken, SC 29808 (United States)

2006-07-01

The Mathematics and Computations Div. of the American Nuclear Society sponsors the ANS-10 Standards Subcommittee. This subcommittee, which is part of the ANS Standards Committee, currently maintains three ANSI/ANS software standards. These standards are: Portability of Scientific and Engineering Software, ANS-10.2; Guidelines for the Verification and Validation of Scientific and Engineering Computer Programs for the Nuclear Industry, ANS-10.4; and Accommodating User Needs in Scientific and Engineering Computer Software Development, ANS-10.5. A fourth Standard, Documentation of Computer Software, ANS-10.3, is available as a historical Standard. (authors)

9. The ANS mathematics and computation software standards

International Nuclear Information System (INIS)

Smetana, A. O.

2006-01-01

The Mathematics and Computations Div. of the American Nuclear Society sponsors the ANS-10 Standards Subcommittee. This subcommittee, which is part of the ANS Standards Committee, currently maintains three ANSI/ANS software standards. These standards are: Portability of Scientific and Engineering Software, ANS-10.2; Guidelines for the Verification and Validation of Scientific and Engineering Computer Programs for the Nuclear Industry, ANS-10.4; and Accommodating User Needs in Scientific and Engineering Computer Software Development, ANS-10.5. A fourth Standard, Documentation of Computer Software, ANS-10.3, is available as a historical Standard. (authors)

10. Methods of modern mathematical physics

CERN Document Server

Reed, Michael

1980-01-01

This book is the first of a multivolume series devoted to an exposition of functional analysis methods in modern mathematical physics. It describes the fundamental principles of functional analysis and is essentially self-contained, although there are occasional references to later volumes. We have included a few applications when we thought that they would provide motivation for the reader. Later volumes describe various advanced topics in functional analysis and give numerous applications in classical physics, modern physics, and partial differential equations.

11. Numerical methods in matrix computations

CERN Document Server

Björck, Åke

2015-01-01

Matrix algorithms are at the core of scientific computing and are indispensable tools in most applications in engineering. This book offers a comprehensive and up-to-date treatment of modern methods in matrix computation. It uses a unified approach to direct and iterative methods for linear systems, least squares and eigenvalue problems. A thorough analysis of the stability, accuracy, and complexity of the treated methods is given. Numerical Methods in Matrix Computations is suitable for use in courses on scientific computing and applied technical areas at advanced undergraduate and graduate level. A large bibliography is provided, which includes both historical and review papers as well as recent research papers. This makes the book useful also as a reference and guide to further study and research work. Åke Björck is a professor emeritus at the Department of Mathematics, Linköping University. He is a Fellow of the Society of Industrial and Applied Mathematics.

12. Artificial Intelligence, Computational Thinking, and Mathematics Education

Science.gov (United States)

2017-01-01

Purpose: The purpose of this paper is to examine the intersection of artificial intelligence (AI), computational thinking (CT), and mathematics education (ME) for young students (K-8). Specifically, it focuses on three key elements that are common to AI, CT and ME: agency, modeling of phenomena and abstracting concepts beyond specific instances.…

13. Advances in Reactor physics, mathematics and computation. Volume 3

Energy Technology Data Exchange (ETDEWEB)

1987-01-01

These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, volume 3, are divided into sessions bearing on: - poster sessions on benchmark and codes: 35 conferences - review of status of assembly spectrum codes: 9 conferences - Numerical methods in fluid mechanics and thermal hydraulics: 16 conferences - stochastic transport and methods: 7 conferences.

14. Computational Methods in Plasma Physics

CERN Document Server

Jardin, Stephen

2010-01-01

Assuming no prior knowledge of plasma physics or numerical methods, Computational Methods in Plasma Physics covers the computational mathematics and techniques needed to simulate magnetically confined plasmas in modern magnetic fusion experiments and future magnetic fusion reactors. Largely self-contained, the text presents the basic concepts necessary for the numerical solution of partial differential equations. Along with discussing numerical stability and accuracy, the author explores many of the algorithms used today in enough depth so that readers can analyze their stability, efficiency,

15. Optimization and mathematical modeling in computer architecture

CERN Document Server

Sankaralingam, Karu; Nowatzki, Tony

2013-01-01

In this book we give an overview of modeling techniques used to describe computer systems to mathematical optimization tools. We give a brief introduction to various classes of mathematical optimization frameworks with special focus on mixed integer linear programming which provides a good balance between solver time and expressiveness. We present four detailed case studies -- instruction set customization, data center resource management, spatial architecture scheduling, and resource allocation in tiled architectures -- showing how MILP can be used and quantifying by how much it outperforms t

16. Mathematical challenges from theoretical/computational chemistry

Energy Technology Data Exchange (ETDEWEB)

NONE

1995-12-31

The committee believes that this report has relevance and potentially valuable suggestions for a wide range of readers. Target audiences include: graduate departments in the mathematical and chemical sciences; federal and private agencies that fund research in the mathematical and chemical sciences; selected industrial and government research and development laboratories; developers of software and hardware for computational chemistry; and selected individual researchers. Chapter 2 of this report covers some history of computational chemistry for the nonspecialist, while Chapter 3 illustrates the fruits of some past successful cross-fertilization between mathematical scientists and computational/theoretical chemists. In Chapter 4 the committee has assembled a representative, but not exhaustive, survey of research opportunities. Most of these are descriptions of important open problems in computational/theoretical chemistry that could gain much from the efforts of innovative mathematical scientists, written so as to be accessible introductions to the nonspecialist. Chapter 5 is an assessment, necessarily subjective, of cultural differences that must be overcome if collaborative work is to be encouraged between the mathematical and the chemical communities. Finally, the report ends with a brief list of conclusions and recommendations that, if followed, could promote accelerated progress at this interface. Recognizing that bothersome language issues can inhibit prospects for collaborative research at the interface between distinctive disciplines, the committee has attempted throughout to maintain an accessible style, in part by using illustrative boxes, and has included at the end of the report a glossary of technical terms that may be familiar to only a subset of the target audiences listed above.

17. Research in applied mathematics, numerical analysis, and computer science

Science.gov (United States)

1984-01-01

Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

18. MATHEMATICS AND COMPUTERS IN SPORT - OVERVIEW

Directory of Open Access Journals (Sweden)

John Hammond

2006-12-01

Full Text Available MATHEMATICS AND COMPUTERS IN SPORT - OVERVIEW The first 17 papers in this (December issue of the Journal of Sports Science and Medicine are selected papers from the Eighth Australasian Conference on Mathematics and Computers in Sport, held in Queensland in July 2006. Of the first seven conferences, five were held at Bond University in Queensland, one at the University of Technology in Sydney during the year of the Sydney Olympics, and the last one was in New Zealand at Massey University. The emerging discipline of mathematics and computers in sport has developed under the auspices of the Australian and New Zealand Industrial and Applied Mathematics (ANZIAM Division of the Australian Mathematics Society through an interest group known as MathSport, bringing together sports scientists who are interested inmathematical and statistical modelling in sport, the use of computers in sport, the application of these to improve coaching and individual performance, and teaching that combines mathematics, computers and sport. This eighth conference in the series returned to Queensland but not at Bond University, because campus accommodation for conference participants was no longer available at that venue. Instead delegates gathered at the Greenmount Beach Resort, which has been used during the past decade for a number of Applied Mathematics Conferences. There were 33 papers presented during the 3 days, across topics that covered a variety of individual and team sports. Participants attended from the United Kingdom, France, Germany, India, New Zealand and Australia. These participants were drawn from those working in mainstream mathematics, statistics, computers science, sports science support, coaching and education.Professor Steve Clarke and Emeritus Professor Neville de Mestre have been to all eight conferences and this year delivered papers on Australian rules football and golf putting respectively. Tony Lewis, of the Duckworth-Lewis formula for

19. Symbolic mathematical computing: orbital dynamics and application to accelerators

International Nuclear Information System (INIS)

Fateman, R.

1986-01-01

Computer-assisted symbolic mathematical computation has become increasingly useful in applied mathematics. A brief introduction to such capabilitites and some examples related to orbital dynamics and accelerator physics are presented. (author)

20. Attitudes towards Computer and Computer Self-Efficacy as Predictors of Preservice Mathematics Teachers' Computer Anxiety

Science.gov (United States)

2017-01-01

The study investigated attitudes towards computer and computer self-efficacy as predictors of computer anxiety among 310 preservice mathematics teachers from five higher institutions of learning in Lagos and Ogun States of Nigeria using the quantitative research method within the blueprint of the descriptive survey design. Data collected were…

1. Mathematical methods in quantum and statistical mechanics

International Nuclear Information System (INIS)

Fishman, L.

1977-01-01

The mathematical structure and closed-form solutions pertaining to several physical problems in quantum and statistical mechanics are examined in some detail. The J-matrix method, introduced previously for s-wave scattering and based upon well-established Hilbert Space theory and related generalized integral transformation techniques, is extended to treat the lth partial wave kinetic energy and Coulomb Hamiltonians within the context of square integrable (L 2 ), Laguerre (Slater), and oscillator (Gaussian) basis sets. The theory of relaxation in statistical mechanics within the context of the theory of linear integro-differential equations of the Master Equation type and their corresponding Markov processes is examined. Several topics of a mathematical nature concerning various computational aspects of the L 2 approach to quantum scattering theory are discussed

2. Mathematical methods for hydrodynamic limits

CERN Document Server

Masi, Anna

1991-01-01

Entropy inequalities, correlation functions, couplings between stochastic processes are powerful techniques which have been extensively used to give arigorous foundation to the theory of complex, many component systems and to its many applications in a variety of fields as physics, biology, population dynamics, economics, ... The purpose of the book is to make theseand other mathematical methods accessible to readers with a limited background in probability and physics by examining in detail a few models where the techniques emerge clearly, while extra difficulties arekept to a minimum. Lanford's method and its extension to the hierarchy of equations for the truncated correlation functions, the v-functions, are presented and applied to prove the validity of macroscopic equations forstochastic particle systems which are perturbations of the independent and of the symmetric simple exclusion processes. Entropy inequalities are discussed in the frame of the Guo-Papanicolaou-Varadhan technique and of theKipnis-Oll...

3. African mathematics from bones to computers

CERN Document Server

Bangura, Abdul Karim

2011-01-01

This comprehensive text on African Mathematics addresses some of the problematic issues in the field, such as attitudes, curriculum development, educational change, academic achievement, standardized and other tests, performance factors, student characteristics, cross-cultural differences and studies, literacy, native speakers, social class and differences, equal education, teaching methods, and more.

4. Mathematical methods and models in composites

CERN Document Server

2014-01-01

This book provides a representative selection of the most relevant, innovative, and useful mathematical methods and models applied to the analysis and characterization of composites and their behaviour on micro-, meso-, and macroscale. It establishes the fundamentals for meaningful and accurate theoretical and computer modelling of these materials in the future. Although the book is primarily concerned with fibre-reinforced composites, which have ever-increasing applications in fields such as aerospace, many of the results presented can be applied to other kinds of composites. The topics cover

5. Mathematical methods for elastic plates

CERN Document Server

Constanda, Christian

2014-01-01

Mathematical models of deformation of elastic plates are used by applied mathematicians and engineers in connection with a wide range of practical applications, from microchip production to the construction of skyscrapers and aircraft. This book employs two important analytic techniques to solve the fundamental boundary value problems for the theory of plates with transverse shear deformation, which offers a more complete picture of the physical process of bending than Kirchhoff’s classical one.   The first method transfers the ellipticity of the governing system to the boundary, leading to singular integral equations on the contour of the domain. These equations, established on the basis of the properties of suitable layer potentials, are then solved in spaces of smooth (Hölder continuous and Hölder continuously differentiable) functions.   The second technique rewrites the differential system in terms of complex variables and fully integrates it, expressing the solution as a combination of complex ana...

6. Mathematical analysis and numerical methods for science and technology

CERN Document Server

Dautray, Robert

These 6 volumes - the result of a 10 year collaboration between the authors, two of France's leading scientists and both distinguished international figures - compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form. The advent of large computers has in the meantime revolutionised methods of computation and made this gap in the literature intolerable: the objective of the present work is to fill just this gap. Many phenomena in physical mathematics may be modeled by a system of partial differential equations in distributed systems: a model here means a set of equations, which ...

7. Combinatorial methods with computer applications

CERN Document Server

Gross, Jonathan L

2007-01-01

Combinatorial Methods with Computer Applications provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. Requiring only a foundation in discrete mathematics, it can serve as the textbook in a combinatorial methods course or in a combined graph theory and combinatorics course.After an introduction to combinatorics, the book explores six systematic approaches within a comprehensive framework: sequences, solving recurrences, evaluating summation exp

8. Mathematical methods for physical and analytical chemistry

CERN Document Server

Goodson, David Z

2011-01-01

Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical

9. Description of mathematical models and computer programs

International Nuclear Information System (INIS)

1977-01-01

The paper gives a description of mathematical models and computer programs for analysing possible strategies for spent fuel management, with emphasis on economic analysis. The computer programs developed, describe the material flows, facility construction schedules, capital investment schedules and operating costs for the facilities used in managing the spent fuel. The computer programs use a combination of simulation and optimization procedures for the economic analyses. Many of the fuel cycle steps (such as spent fuel discharges, storage at the reactor, and transport to the RFCC) are described in physical and economic terms through simulation modeling, while others (such as reprocessing plant size and commissioning schedules, interim storage facility commissioning schedules etc.) are subjected to economic optimization procedures to determine the approximate lowest-cost plans from among the available feasible alternatives

10. Secondary School Mathematics Teachers' and Students' Views on Computer Assisted Mathematics Instruction in Turkey: Mathematica Example

Science.gov (United States)

Ardiç, Mehmet Alper; Isleyen, Tevfik

2017-01-01

This study aimed at determining the secondary school mathematics teachers' and students' views on computer-assisted mathematics instruction (CAMI) conducted via Mathematica. Accordingly, three mathematics teachers in Adiyaman and nine 10th-grade students participated in the research. Firstly, the researchers trained the mathematics teachers in the…

11. Mathematics for informatics and computer science

CERN Document Server

Audibert, Pierre

2013-01-01

How many ways do exist to mix different ingredients, how many chances to win a gambling game, how many possible paths going from one place to another in a network ? To this kind of questions Mathematics applied to computer gives a stimulating and exhaustive answer. This text, presented in three parts (Combinatorics, Probability, Graphs) addresses all those who wish to acquire basic or advanced knowledge in combinatorial theories. It is actually also used as a textbook. Basic and advanced theoretical elements are presented through simple applications like the Sudoku game, search engine al

12. Equity and Computers for Mathematics Learning: Access and Attitudes

Science.gov (United States)

Forgasz, Helen J.

2004-01-01

Equity and computer use for secondary mathematics learning was the focus of a three year study. In 2003, a survey was administered to a large sample of grade 7-10 students. Some of the survey items were aimed at determining home access to and ownership of computers, and students' attitudes to mathematics, computers, and computer use for…

13. Advances in Reactor Physics, Mathematics and Computation. Volume 1

Energy Technology Data Exchange (ETDEWEB)

1987-01-01

These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, volume one, are divided into 6 sessions bearing on: - session 1: Advances in computational methods including utilization of parallel processing and vectorization (7 conferences) - session 2: Fast, epithermal, reactor physics, calculation, versus measurements (9 conferences) - session 3: New fast and thermal reactor designs (9 conferences) - session 4: Thermal radiation and charged particles transport (7 conferences) - session 5: Super computers (7 conferences) - session 6: Thermal reactor design, validation and operating experience (8 conferences).

14. Can Digital Computers Support Ancient Mathematical Consciousness?

Directory of Open Access Journals (Sweden)

Aaron Sloman

2018-05-01

Full Text Available This paper poses, discusses, but does not definitively answer, the following questions: What sorts of reasoning machinery could the ancient mathematicians, and other intelligent animals, be using for spatial reasoning, before the discovery of modern logical mechanisms? “Diagrams in minds” perhaps? How and why did natural selection produce such machinery? Is there a single package of biological abilities for spatial reasoning, or did different sorts of mathematical competence evolve at different times, forming a “layered” system? Do the layers develop in individuals at different stages? Which components are shared with other intelligent species? Does some or all of the machinery exist at or before birth in humans and if not how and when does it develop, and what is the role of experience in its development? How do brains implement such machinery? Could similar machines be implemented as virtual machines on digital computers, and if not what sorts of non-digital “Super Turing” mechanisms could replicate the required functionality, including discovery of impossibility and necessity? How are impossibility and necessity represented in brains? Are chemical mechanisms required? How could such mechanisms be specified in a genome? Are some not specified in the genome but products of interaction between genome and environment? Does Turing’s work on chemical morphogenesis published shortly before he died indicate that he was interested in this problem? Will the answers to these questions vindicate Immanuel Kant’s claims about the nature of mathematical knowledge, including his claim that mathematical truths are non-empirical, synthetic and necessary? Perhaps it’s time for discussions of consciousness to return to the nature of ancient mathematical consciousness, and related aspects of everyday human and non-human intelligence, usually ignored by consciousness theorists.

15. High-Precision Computation and Mathematical Physics

International Nuclear Information System (INIS)

Bailey, David H.; Borwein, Jonathan M.

2008-01-01

At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents a survey of recent applications of these techniques and provides some analysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator theory, Ising theory, quantum field theory and experimental mathematics. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.

16. Handbook of mathematical methods in imaging

CERN Document Server

2015-01-01

The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. This expanded and revised second edition contains updates to existing chapters and 16 additional entries on important mathematical methods such as graph cuts, morphology, discrete geometry, PDEs, conformal methods, to name a few. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 200 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and com...

17. Mathematical and computational modeling with applications in natural and social sciences, engineering, and the arts

CERN Document Server

Melnik, Roderick

2015-01-01

Illustrates the application of mathematical and computational modeling in a variety of disciplines With an emphasis on the interdisciplinary nature of mathematical and computational modeling, Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts features chapters written by well-known, international experts in these fields and presents readers with a host of state-of-the-art achievements in the development of mathematical modeling and computational experiment methodology. The book is a valuable guide to the methods, ideas,

18. Advances in Reactor Physics, Mathematics and Computation. Volume 2

Energy Technology Data Exchange (ETDEWEB)

1987-01-01

These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, Volume 2, are divided into 7 sessions bearing on: - session 7: Deterministic transport methods 1 (7 conferences), - session 8: Interpretation and analysis of reactor instrumentation (6 conferences), - session 9: High speed computing applied to reactor operations (5 conferences), - session 10: Diffusion theory and kinetics (7 conferences), - session 11: Fast reactor design, validation and operating experience (8 conferences), - session 12: Deterministic transport methods 2 (7 conferences), - session 13: Application of expert systems to physical aspects of reactor design and operation.

19. Secondary School Mathematics Teachers’ and Students’ Views on Computer Assisted Mathematics Instruction in Turkey: Mathematica Example

OpenAIRE

Mehmet Alper Ardıç; Tevfik İşleyen

2017-01-01

This study aimed at determining the secondary school mathematics teachers’ and students’ views on computer-assisted mathematics instruction (CAMI) conducted via Mathematica. Accordingly, three mathematics teachers in Adıyaman and nine 10th-grade students participated in the research. Firstly, the researchers trained the mathematics teachers in the Mathematica program, a computer algebra system (CAS) and CAMI. Then, they provided a suitable environment for teachers to practice CAMI with their ...

20. Computer modeling in free spreadsheets OpenOffice.Calc as one of the modern methods of teaching physics and mathematics cycle subjects in primary and secondary schools

Directory of Open Access Journals (Sweden)

Markushevich M.V.

2016-10-01

Full Text Available the article details the use of such modern method of training as computer simulation applied to modelling of various kinds of mechanical motion of a material point in the free spreadsheet OpenOffice.org Calc while designing physics and computer science lessons in primary and secondary schools. Particular attention is paid to the application of computer modeling integrated with other modern teaching methods.

1. Authentic Teaching Experiences in Secondary Mathematics Methods

Science.gov (United States)

Stickles, Paula R.

2015-01-01

Often secondary mathematics methods courses include classroom peer teaching, but many pre-service teachers find it challenging to teach their classmate peers as there are no discipline issues and little mathematical discourse as the "students" know the content. We will share a recent change in our methods course where pre-service…

2. Essential numerical computer methods

CERN Document Server

Johnson, Michael L

2010-01-01

The use of computers and computational methods has become ubiquitous in biological and biomedical research. During the last 2 decades most basic algorithms have not changed, but what has is the huge increase in computer speed and ease of use, along with the corresponding orders of magnitude decrease in cost. A general perception exists that the only applications of computers and computer methods in biological and biomedical research are either basic statistical analysis or the searching of DNA sequence data bases. While these are important applications they only scratch the surface of the current and potential applications of computers and computer methods in biomedical research. The various chapters within this volume include a wide variety of applications that extend far beyond this limited perception. As part of the Reliable Lab Solutions series, Essential Numerical Computer Methods brings together chapters from volumes 210, 240, 321, 383, 384, 454, and 467 of Methods in Enzymology. These chapters provide ...

3. CDM: Teaching Discrete Mathematics to Computer Science Majors

Science.gov (United States)

Sutner, Klaus

2005-01-01

CDM, for computational discrete mathematics, is a course that attempts to teach a number of topics in discrete mathematics to computer science majors. The course abandons the classical definition-theorem-proof model, and instead relies heavily on computation as a source of motivation and also for experimentation and illustration. The emphasis on…

4. Computational experiment approach to advanced secondary mathematics curriculum

CERN Document Server

Abramovich, Sergei

2014-01-01

This book promotes the experimental mathematics approach in the context of secondary mathematics curriculum by exploring mathematical models depending on parameters that were typically considered advanced in the pre-digital education era. This approach, by drawing on the power of computers to perform numerical computations and graphical constructions, stimulates formal learning of mathematics through making sense of a computational experiment. It allows one (in the spirit of Freudenthal) to bridge serious mathematical content and contemporary teaching practice. In other words, the notion of teaching experiment can be extended to include a true mathematical experiment. When used appropriately, the approach creates conditions for collateral learning (in the spirit of Dewey) to occur including the development of skills important for engineering applications of mathematics. In the context of a mathematics teacher education program, this book addresses a call for the preparation of teachers capable of utilizing mo...

5. Mathematical methods of electromagnetic theory

CERN Document Server

Friedrichs, Kurt O

2014-01-01

This text provides a mathematically precise but intuitive introduction to classical electromagnetic theory and wave propagation, with a brief introduction to special relativity. While written in a distinctive, modern style, Friedrichs manages to convey the physical intuition and 19th century basis of the equations, with an emphasis on conservation laws. Particularly striking features of the book include: (a) a mathematically rigorous derivation of the interaction of electromagnetic waves with matter, (b) a straightforward explanation of how to use variational principles to solve problems in el

6. Mathematical methods of classical physics

CERN Document Server

Cortés, Vicente

2017-01-01

This short primer, geared towards students with a strong interest in mathematically rigorous approaches, introduces the essentials of classical physics, briefly points out its place in the history of physics and its relation to modern physics, and explains what benefits can be gained from a mathematical perspective. As a starting point, Newtonian mechanics is introduced and its limitations are discussed. This leads to and motivates the study of different formulations of classical mechanics, such as Lagrangian and Hamiltonian mechanics, which are the subjects of later chapters. In the second part, a chapter on classical field theories introduces more advanced material. Numerous exercises are collected in the appendix.

7. Correlation Educational Model in Primary Education Curriculum of Mathematics and Computer Science

Science.gov (United States)

Macinko Kovac, Maja; Eret, Lidija

2012-01-01

This article gives insight into methodical correlation model of teaching mathematics and computer science. The model shows the way in which the related areas of computer science and mathematics can be supplemented, if it transforms the way of teaching and creates a "joint" lessons. Various didactic materials are designed, in which all…

8. Effects of Attitudes and Behaviours on Learning Mathematics with Computer Tools

Science.gov (United States)

Reed, Helen C.; Drijvers, Paul; Kirschner, Paul A.

2010-01-01

This mixed-methods study investigates the effects of student attitudes and behaviours on the outcomes of learning mathematics with computer tools. A computer tool was used to help students develop the mathematical concept of function. In the whole sample (N = 521), student attitudes could account for a 3.4 point difference in test scores between…

9. Innovative methods in teaching mathematics

OpenAIRE

Чепелева, Т. И.

2013-01-01

The report outlines the main directions of innovation in the teaching of higher mathematics at the university. The basic technological approach is suggested when creating lecture presentations such as their color characteristics of fonts, the amount of information on a slide, etc., which is based on teaching experience and is suitable for development of other educational presentations.

10. Structural Equation Model to Validate: Mathematics-Computer Interaction, Computer Confidence, Mathematics Commitment, Mathematics Motivation and Mathematics Confidence

Science.gov (United States)

Garcia-Santillán, Arturo; Moreno-Garcia, Elena; Escalera-Chávez, Milka E.; Rojas-Kramer, Carlos A.; Pozos-Texon, Felipe

2016-01-01

Most mathematics students show a definite tendency toward an attitudinal deficiency, which can be primarily understood as intolerance to the matter, affecting their scholar performance adversely. In addition, information and communication technologies have been gradually included within the process of teaching mathematics. Such adoption of…

11. Influence of Writing Ability and Computation Skill on Mathematics Writing

Science.gov (United States)

Powell, Sarah R.; Hebert, Michael A.

2016-01-01

Mathematics standards expect students to communicate about mathematics using oral and written methods, and some high-stakes assessments ask students to answer mathematics questions by writing. Assumptions about mathematics communication via writing include (a) students possess writing skill, (b) students can transfer this writing skill to…

12. Keystone Method: A Learning Paradigm in Mathematics

Science.gov (United States)

Siadat, M. Vali; Musial, Paul M.; Sagher, Yoram

2008-01-01

This study reports the effects of an integrated instructional program (the Keystone Method) on the students' performance in mathematics and reading, and tracks students' persistence and retention. The subject of the study was a large group of students in remedial mathematics classes at the college, willing to learn but lacking basic educational…

13. Research in Applied Mathematics, Fluid Mechanics and Computer Science

Science.gov (United States)

1999-01-01

This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

14. [Research activities in applied mathematics, fluid mechanics, and computer science

Science.gov (United States)

1995-01-01

This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

15. Some mathematical methods of physics

CERN Document Server

Goertzel, Gerald

2014-01-01

This well-rounded, thorough treatment for advanced undergraduates and graduate students introduces basic concepts of mathematical physics involved in the study of linear systems. The text emphasizes eigenvalues, eigenfunctions, and Green's functions. Prerequisites include differential equations and a first course in theoretical physics.The three-part presentation begins with an exploration of systems with a finite number of degrees of freedom (described by matrices). In part two, the concepts developed for discrete systems in previous chapters are extended to continuous systems. New concepts u

16. International Conference on Applied Mathematics, Modeling and Computational Science & Annual meeting of the Canadian Applied and Industrial Mathematics

CERN Document Server

Bélair, Jacques; Kunze, Herb; Makarov, Roman; Melnik, Roderick; Spiteri, Raymond J

2016-01-01

Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science a...

17. Mathematical methods for physicists a comprehensive guide

CERN Document Server

Arfken, George B; Harris, Frank E

2012-01-01

Now in its 7th edition, Mathematical Methods for Physicists continues to provide all the mathematical methods that aspiring scientists and engineers are likely to encounter as students and beginning researchers. This bestselling text provides mathematical relations and their proofs essential to the study of physics and related fields. While retaining the key features of the 6th edition, the new edition provides a more careful balance of explanation, theory, and examples. Taking a problem-solving-skills approach to incorporating theorems with applications, the book's improved focus w

18. The Effects of Modern Mathematics Computer Games on Mathematics Achievement and Class Motivation

Science.gov (United States)

Kebritchi, Mansureh; Hirumi, Atsusi; Bai, Haiyan

2010-01-01

This study examined the effects of a computer game on students' mathematics achievement and motivation, and the role of prior mathematics knowledge, computer skill, and English language skill on their achievement and motivation as they played the game. A total of 193 students and 10 teachers participated in this study. The teachers were randomly…

19. A course in mathematical methods for physicists

CERN Document Server

Herman, Russell L

2014-01-01

Based on the author’s junior-level undergraduate course, this introductory textbook is designed for a course in mathematical physics. Focusing on the physics of oscillations and waves, A Course in Mathematical Methods for Physicists helps students understand the mathematical techniques needed for their future studies in physics. It takes a bottom-up approach that emphasizes physical applications of the mathematics. The book offers: •A quick review of mathematical prerequisites, proceeding to applications of differential equations and linear algebra •Classroom-tested explanations of complex and Fourier analysis for trigonometric and special functions •Coverage of vector analysis and curvilinear coordinates for solving higher dimensional problems •Sections on nonlinear dynamics, variational calculus, numerical solutions of differential equations, and Green's functions

20. Mathematical methods of many-body quantum field theory

CERN Document Server

Lehmann, Detlef

2004-01-01

Mathematical Methods of Many-Body Quantum Field Theory offers a comprehensive, mathematically rigorous treatment of many-body physics. It develops the mathematical tools for describing quantum many-body systems and applies them to the many-electron system. These tools include the formalism of second quantization, field theoretical perturbation theory, functional integral methods, bosonic and fermionic, and estimation and summation techniques for Feynman diagrams. Among the physical effects discussed in this context are BCS superconductivity, s-wave and higher l-wave, and the fractional quantum Hall effect. While the presentation is mathematically rigorous, the author does not focus solely on precise definitions and proofs, but also shows how to actually perform the computations.Presenting many recent advances and clarifying difficult concepts, this book provides the background, results, and detail needed to further explore the issue of when the standard approximation schemes in this field actually work and wh...

1. Mathematics for natural scientists II advanced methods

CERN Document Server

Kantorovich, Lev

2016-01-01

This book covers the advanced mathematical techniques useful for physics and engineering students, presented in a form accessible to physics students, avoiding precise mathematical jargon and laborious proofs. Instead, all proofs are given in a simplified form that is clear and convincing for a physicist. Examples, where appropriate, are given from physics contexts. Both solved and unsolved problems are provided in each chapter. Mathematics for Natural Scientists II: Advanced Methods is the second of two volumes. It follows the first volume on Fundamentals and Basics.

2. Computer-Based Mathematics Instructions for Engineering Students

Science.gov (United States)

Khan, Mustaq A.; Wall, Curtiss E.

1996-01-01

Almost every engineering course involves mathematics in one form or another. The analytical process of developing mathematical models is very important for engineering students. However, the computational process involved in the solution of some mathematical problems may be very tedious and time consuming. There is a significant amount of mathematical software such as Mathematica, Mathcad, and Maple designed to aid in the solution of these instructional problems. The use of these packages in classroom teaching can greatly enhance understanding, and save time. Integration of computer technology in mathematics classes, without de-emphasizing the traditional analytical aspects of teaching, has proven very successful and is becoming almost essential. Sample computer laboratory modules are developed for presentation in the classroom setting. This is accomplished through the use of overhead projectors linked to graphing calculators and computers. Model problems are carefully selected from different areas.

3. 2nd International Conference on Mathematics and Computing

CERN Document Server

Chowdhury, Dipanwita; Giri, Debasis

2015-01-01

This book discusses recent developments and contemporary research in mathematics, statistics and their applications in computing. All contributing authors are eminent academicians, scientists, researchers and scholars in their respective fields, hailing from around the world. This is the second conference on mathematics and computing organized at Haldia Institute of Technology, India. The conference has emerged as a powerful forum, offering researchers a venue to discuss, interact and collaborate, and stimulating the advancement of mathematics and its applications in computer science. The book will allow aspiring researchers to update their knowledge of cryptography, algebra, frame theory, optimizations, stochastic processes, compressive sensing, functional analysis, complex variables, etc. Educating future consumers, users, producers, developers and researchers in mathematics and computing is a challenging task and essential to the development of modern society. Hence, mathematics and its applications in com...

4. Mathematical methods in biology and neurobiology

CERN Document Server

Jost, Jürgen

2014-01-01

Mathematical models can be used to meet many of the challenges and opportunities offered by modern biology. The description of biological phenomena requires a range of mathematical theories. This is the case particularly for the emerging field of systems biology. Mathematical Methods in Biology and Neurobiology introduces and develops these mathematical structures and methods in a systematic manner. It studies:   • discrete structures and graph theory • stochastic processes • dynamical systems and partial differential equations • optimization and the calculus of variations.   The biological applications range from molecular to evolutionary and ecological levels, for example:   • cellular reaction kinetics and gene regulation • biological pattern formation and chemotaxis • the biophysics and dynamics of neurons • the coding of information in neuronal systems • phylogenetic tree reconstruction • branching processes and population genetics • optimal resource allocation • sexual recombi...

5. Mathematical methods in time series analysis and digital image processing

CERN Document Server

Kurths, J; Maass, P; Timmer, J

2008-01-01

The aim of this volume is to bring together research directions in theoretical signal and imaging processing developed rather independently in electrical engineering, theoretical physics, mathematics and the computer sciences. In particular, mathematically justified algorithms and methods, the mathematical analysis of these algorithms, and methods as well as the investigation of connections between methods from time series analysis and image processing are reviewed. An interdisciplinary comparison of these methods, drawing upon common sets of test problems from medicine and geophysical/enviromental sciences, is also addressed. This volume coherently summarizes work carried out in the field of theoretical signal and image processing. It focuses on non-linear and non-parametric models for time series as well as on adaptive methods in image processing.

6. Mathematical methods for physicists and engineers

CERN Document Server

Collins, Royal Eugene

2011-01-01

This practical, highly readable text provides physics and engineering students with the essential mathematical tools for thorough comprehension of their disciplines. Featuring all the necessary topics in applied mathematics in the form of programmed instruction, the text can be understood by advanced undergraduates and beginning graduate students without any assistance from the instructor. Topics include elementary vector calculus, matrix algebra, and linear vector operations; the many and varied methods of solving linear boundary value problems, including the more common special functions o

7. Prospective Mathematics Teachers' Opinions about Mathematical Modeling Method and Applicability of This Method

Science.gov (United States)

Akgün, Levent

2015-01-01

The aim of this study is to identify prospective secondary mathematics teachers' opinions about the mathematical modeling method and the applicability of this method in high schools. The case study design, which is among the qualitative research methods, was used in the study. The study was conducted with six prospective secondary mathematics…

8. Mathematical methods in medicine: neuroscience, cardiology and pathology.

Science.gov (United States)

Amigó, José M; Small, Michael

2017-06-28

The application of mathematics, natural sciences and engineering to medicine is gaining momentum as the mutual benefits of this collaboration become increasingly obvious. This theme issue is intended to highlight the trend in the case of mathematics. Specifically, the scope of this theme issue is to give a general view of the current research in the application of mathematical methods to medicine, as well as to show how mathematics can help in such important aspects as understanding, prediction, treatment and data processing. To this end, three representative specialties have been selected: neuroscience, cardiology and pathology. Concerning the topics, the 12 research papers and one review included in this issue cover biofluids, cardiac and virus dynamics, computational neuroscience, functional magnetic resonance imaging data processing, neural networks, optimization of treatment strategies, time-series analysis and tumour growth. In conclusion, this theme issue contains a collection of fine contributions at the intersection of mathematics and medicine, not as an exercise in applied mathematics but as a multidisciplinary research effort that interests both communities and our society in general.This article is part of the themed issue 'Mathematical methods in medicine: neuroscience, cardiology and pathology'. © 2017 The Author(s).

9. Mathematical methods in medicine: neuroscience, cardiology and pathology

Science.gov (United States)

Amigó, José M.

2017-01-01

The application of mathematics, natural sciences and engineering to medicine is gaining momentum as the mutual benefits of this collaboration become increasingly obvious. This theme issue is intended to highlight the trend in the case of mathematics. Specifically, the scope of this theme issue is to give a general view of the current research in the application of mathematical methods to medicine, as well as to show how mathematics can help in such important aspects as understanding, prediction, treatment and data processing. To this end, three representative specialties have been selected: neuroscience, cardiology and pathology. Concerning the topics, the 12 research papers and one review included in this issue cover biofluids, cardiac and virus dynamics, computational neuroscience, functional magnetic resonance imaging data processing, neural networks, optimization of treatment strategies, time-series analysis and tumour growth. In conclusion, this theme issue contains a collection of fine contributions at the intersection of mathematics and medicine, not as an exercise in applied mathematics but as a multidisciplinary research effort that interests both communities and our society in general. This article is part of the themed issue ‘Mathematical methods in medicine: neuroscience, cardiology and pathology’. PMID:28507240

10. Computational methods in power system analysis

CERN Document Server

Idema, Reijer

2014-01-01

This book treats state-of-the-art computational methods for power flow studies and contingency analysis. In the first part the authors present the relevant computational methods and mathematical concepts. In the second part, power flow and contingency analysis are treated. Furthermore, traditional methods to solve such problems are compared to modern solvers, developed using the knowledge of the first part of the book. Finally, these solvers are analyzed both theoretically and experimentally, clearly showing the benefits of the modern approach.

11. Mathematical models and methods for planet Earth

CERN Document Server

Locatelli, Ugo; Ruggeri, Tommaso; Strickland, Elisabetta

2014-01-01

In 2013 several scientific activities have been devoted to mathematical researches for the study of planet Earth. The current volume presents a selection of the highly topical issues presented at the workshop “Mathematical Models and Methods for Planet Earth”, held in Roma (Italy), in May 2013. The fields of interest span from impacts of dangerous asteroids to the safeguard from space debris, from climatic changes to monitoring geological events, from the study of tumor growth to sociological problems. In all these fields the mathematical studies play a relevant role as a tool for the analysis of specific topics and as an ingredient of multidisciplinary problems. To investigate these problems we will see many different mathematical tools at work: just to mention some, stochastic processes, PDE, normal forms, chaos theory.

12. Increasing Mathematical Computation Skills for Students with Physical and Health Disabilities

Science.gov (United States)

Webb, Paula

2017-01-01

Students with physical and health disabilities struggle with basic mathematical concepts. The purpose of this research study was to increase the students' mathematical computation skills through implementing new strategies and/or methods. The strategies implemented with the students was utilizing the ten-frame tiles and technology with the purpose…

13. Ingenious mathematical problems and methods

CERN Document Server

Graham, Louis A

2013-01-01

Collection of 100 of the best submissions to a math puzzle column features problems in engineering situations, logic, number theory, and geometry. Most solutions include details of several different methods.

14. Methodological Potential of Computer Experiment in Teaching Mathematics at University

Science.gov (United States)

Lin, Kequan; Sokolova, Anna Nikolaevna; Vlasova, Vera K.

2017-01-01

The study is relevant due to the opportunity of increasing efficiency of teaching mathematics at university through integration of students of computer experiment conducted with the use of IT in this process. The problem of there search is defined by a contradiction between great potential opportunities of mathematics experiment for motivating and…

15. Computer Programming in the UK Undergraduate Mathematics Curriculum

Science.gov (United States)

Sangwin, Christopher J.; O'Toole, Claire

2017-01-01

This paper reports a study which investigated the extent to which undergraduate mathematics students in the United Kingdom are currently taught to programme a computer as a core part of their mathematics degree programme. We undertook an online survey, with significant follow-up correspondence, to gather data on current curricula and received…

16. Mathematics and Computer Science: Exploring a Symbiotic Relationship

Science.gov (United States)

Bravaco, Ralph; Simonson, Shai

2004-01-01

This paper describes a "learning community" designed for sophomore computer science majors who are simultaneously studying discrete mathematics. The learning community consists of three courses: Discrete Mathematics, Data Structures and an Integrative Seminar/Lab. The seminar functions as a link that integrates the two disciplines. Participation…

17. Teachers, Equity, and Computers for Secondary Mathematics Learning

Science.gov (United States)

Forgasz, Helen

2006-01-01

The findings presented in this article were derived from a 3-year study aimed at examining issues associated with the use of computers for secondary mathematics learning in Victorian (Australia) schools. Gender and other equity factors were of particular interest. In this article, the focus is on the participating mathematics teachers. Data on…

18. Computer programming in the UK undergraduate mathematics curriculum

Science.gov (United States)

Sangwin, Christopher J.; O'Toole, Claire

2017-11-01

This paper reports a study which investigated the extent to which undergraduate mathematics students in the United Kingdom are currently taught to programme a computer as a core part of their mathematics degree programme. We undertook an online survey, with significant follow-up correspondence, to gather data on current curricula and received replies from 46 (63%) of the departments who teach a BSc mathematics degree. We found that 78% of BSc degree courses in mathematics included computer programming in a compulsory module but 11% of mathematics degree programmes do not teach programming to all their undergraduate mathematics students. In 2016, programming is most commonly taught to undergraduate mathematics students through imperative languages, notably MATLAB, using numerical analysis as the underlying (or parallel) mathematical subject matter. Statistics is a very popular choice in optional courses, using the package R. Computer algebra systems appear to be significantly less popular for compulsory first-year courses than a decade ago, and there was no mention of logic programming, functional programming or automatic theorem proving software. The modal form of assessment of computing modules is entirely by coursework (i.e. no examination).

19. Experiences of Student Mathematics-Teachers in Computer-Based Mathematics Learning Environment

Science.gov (United States)

Karatas, Ilhan

2011-01-01

Computer technology in mathematics education enabled the students find many opportunities for investigating mathematical relationships, hypothesizing, and making generalizations. These opportunities were provided to pre-service teachers through a faculty course. At the end of the course, the teachers were assigned project tasks involving…

20. Three views of logic mathematics, philosophy, and computer science

CERN Document Server

Loveland, Donald W; Sterrett, S G

2014-01-01

Demonstrating the different roles that logic plays in the disciplines of computer science, mathematics, and philosophy, this concise undergraduate textbook covers select topics from three different areas of logic: proof theory, computability theory, and nonclassical logic. The book balances accessibility, breadth, and rigor, and is designed so that its materials will fit into a single semester. Its distinctive presentation of traditional logic material will enhance readers' capabilities and mathematical maturity. The proof theory portion presents classical propositional logic and first-orde

1. Infinitesimal methods of mathematical analysis

CERN Document Server

Pinto, J S

2004-01-01

This modern introduction to infinitesimal methods is a translation of the book Métodos Infinitesimais de Análise Matemática by José Sousa Pinto of the University of Aveiro, Portugal and is aimed at final year or graduate level students with a background in calculus. Surveying modern reformulations of the infinitesimal concept with a thoroughly comprehensive exposition of important and influential hyperreal numbers, the book includes previously unpublished material on the development of hyperfinite theory of Schwartz distributions and its application to generalised Fourier transforms and harmon

2. Mathematical methods in elasticity imaging

CERN Document Server

Ammari, Habib; Garnier, Josselin; Kang, Hyeonbae; Lee, Hyundae; Wahab, Abdul

2015-01-01

This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic...

3. Mathematical modeling and computational prediction of cancer drug resistance.

Science.gov (United States)

Sun, Xiaoqiang; Hu, Bin

2017-06-23

Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated, mathematical modeling and computational predictions using systematic and quantitative approaches have become increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms, posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms. Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then, we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model, agent-based model, pharmacokinetic-pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.). Finally, we discuss several further questions and future directions for the use of

4. Algorithms in Modern Mathematics and Computer Science.

Science.gov (United States)

1980-01-01

importance, since we will go on doing what we are doing no matter what it is called; after all, other disciplines like Mathematics and Chemistry are no...longer related very strongly to the etymology of their names. However, if I had a chance to vote for the name of my own discipline, I would choose to call

5. Logic, mathematics, and computer science modern foundations with practical applications

CERN Document Server

Nievergelt, Yves

2015-01-01

This text for the first or second year undergraduate in mathematics, logic, computer science, or social sciences, introduces the reader to logic, proofs, sets, and number theory. It also serves as an excellent independent study reference and resource for instructors. Adapted from Foundations of Logic and Mathematics: Applications to Science and Cryptography © 2002 Birkhӓuser, this second edition provides a modern introduction to the foundations of logic, mathematics, and computers science, developing the theory that demonstrates construction of all mathematics and theoretical computer science from logic and set theory.  The focus is on foundations, with specific statements of all the associated axioms and rules of logic and set theory, and  provides complete details and derivations of formal proofs. Copious references to literature that document historical development is also provided. Answers are found to many questions that usually remain unanswered: Why is the truth table for logical implication so uni...

6. Students, Computers and Mathematics the Golden Trilogy in the Teaching-Learning Process

Science.gov (United States)

García-Santillán, Arturo; Escalera-Chávez, Milka Elena; López-Morales, José Satsumi; Córdova Rangel, Arturo

2014-01-01

In this paper we examine the relationships between students' attitudes towards mathematics and technology, therefore, we take a Galbraith and Hines' scale (1998, 2000) about mathematics confidence, computer confidence, computer and mathematics interaction, mathematics motivation, computer motivation, and mathematics engagement. 164 questionnaires…

7. A mathematical method for boiling water reactor control rod programming

International Nuclear Information System (INIS)

Tokumasu, S.; Hiranuma, H.; Ozawa, M.; Yokomi, M.

1985-01-01

A new mathematical programming method has been developed and utilized in OPROD, an existing computer code for automatic generation of control rod programs as an alternative inner-loop routine for the method of approximate programming. The new routine is constructed of a dual feasible direction algorithm, and consists essentially of two stages of iterative optimization procedures Optimization Procedures I and II. Both follow almost the same algorithm; Optimization Procedure I searches for feasible solutions and Optimization Procedure II optimizes the objective function. Optimization theory and computer simulations have demonstrated that the new routine could find optimum solutions, even if deteriorated initial control rod patterns were given

8. Novel methods in computational finance

CERN Document Server

Günther, Michael; Maten, E

2017-01-01

This book discusses the state-of-the-art and open problems in computational finance. It presents a collection of research outcomes and reviews of the work from the STRIKE project, an FP7 Marie Curie Initial Training Network (ITN) project in which academic partners trained early-stage researchers in close cooperation with a broader range of associated partners, including from the private sector. The aim of the project was to arrive at a deeper understanding of complex (mostly nonlinear) financial models and to develop effective and robust numerical schemes for solving linear and nonlinear problems arising from the mathematical theory of pricing financial derivatives and related financial products. This was accomplished by means of financial modelling, mathematical analysis and numerical simulations, optimal control techniques and validation of models. In recent years the computational complexity of mathematical models employed in financial mathematics has witnessed tremendous growth. Advanced numerical techni...

9. Computers in Science and Mathematics Education in the ASEAN Region.

Science.gov (United States)

Talisayon, Vivien M.

1989-01-01

Compares policies and programs on computers in science and mathematics education in the six ASEAN countries: Brunei, Indonesia; Malaysia, Philippines, Singapore, and Thailand. Limits discussion to the computer as a teaching aid and object of study, attendant problems, and regional cooperation. (MVL)

10. Direct numerical methods of mathematical modeling in mechanical structural design

International Nuclear Information System (INIS)

2002-01-01

Full text.Structural design and numerical methods are generally interactive; requiring optimization procedures as the structure is analyzed. This analysis leads to define some mathematical terms, as the stiffness matrix, which are resulting from the modeling and then used in numerical techniques during the dimensioning procedure. These techniques and many others involve the calculation of the generalized inverse of the stiffness matrix, called also the 'compliance matrix'. The aim of this paper is to introduce first, some different existing mathematical procedures, used to calculate the compliance matrix from the stiffness matrix, then apply direct numerical methods to solve the obtained system with the lowest computational time, and to compare the obtained results. The results show a big difference of the computational time between the different procedures

11. Lattice Boltzmann method fundamentals and engineering applications with computer codes

CERN Document Server

2014-01-01

Introducing the Lattice Boltzmann Method in a readable manner, this book provides detailed examples with complete computer codes. It avoids the most complicated mathematics and physics without scarifying the basic fundamentals of the method.

12. Mathematical and Computational Modeling for Tumor Virotherapy with Mediated Immunity.

Science.gov (United States)

Timalsina, Asim; Tian, Jianjun Paul; Wang, Jin

2017-08-01

We propose a new mathematical modeling framework based on partial differential equations to study tumor virotherapy with mediated immunity. The model incorporates both innate and adaptive immune responses and represents the complex interaction among tumor cells, oncolytic viruses, and immune systems on a domain with a moving boundary. Using carefully designed computational methods, we conduct extensive numerical simulation to the model. The results allow us to examine tumor development under a wide range of settings and provide insight into several important aspects of the virotherapy, including the dependence of the efficacy on a few key parameters and the delay in the adaptive immunity. Our findings also suggest possible ways to improve the virotherapy for tumor treatment.

13. Analytical calculations by computer in physics and mathematics

International Nuclear Information System (INIS)

Gerdt, V.P.; Tarasov, O.V.; Shirokov, D.V.

1978-01-01

The review of present status of analytical calculations by computer is given. Some programming systems for analytical computations are considered. Such systems as SCHOONSCHIP, CLAM, REDUCE-2, SYMBAL, CAMAL, AVTO-ANALITIK which are implemented or will be implemented in JINR, and MACSYMA - one of the most developed systems - are discussed. It is shown on the basis of mathematical operations, realized in these systems, that they are appropriated for different problems of theoretical physics and mathematics, for example, for problems of quantum field theory, celestial mechanics, general relativity and so on. Some problems solved in JINR by programming systems for analytical computations are described. The review is intended for specialists in different fields of theoretical physics and mathematics

14. Learners with learning difficulties in mathematics : attitudes, curriculum and methods of teaching mathematics

OpenAIRE

2012-01-01

D.Ed. The aim of this theses is to find out whether there is any relationship between learners' attitudes and learning difficulties in mathematics: To investigate whether learning difficulties in mathematics are associated with learners' gender. To establish the nature of teachers' perceptions of the learning problem areas in the mathematics curriculum. To find out about the teachers' views on the methods of teaching mathematics, resources, learning of mathematics, extra curricular activit...

15. Computational geometry lectures at the morningside center of mathematics

CERN Document Server

Wang, Ren-Hong

2003-01-01

Computational geometry is a borderline subject related to pure and applied mathematics, computer science, and engineering. The book contains articles on various topics in computational geometry, which are based on invited lectures and some contributed papers presented by researchers working during the program on Computational Geometry at the Morningside Center of Mathematics of the Chinese Academy of Science. The opening article by R.-H. Wang gives a nice survey of various aspects of computational geometry, many of which are discussed in more detail in other papers in the volume. The topics include problems of optimal triangulation, splines, data interpolation, problems of curve and surface design, problems of shape control, quantum teleportation, and others.

16. 3rd International Conference on Computer Science, Applied Mathematics and Applications

CERN Document Server

Nguyen, Ngoc; Do, Tien

2015-01-01

This volume contains the extended versions of papers presented at the 3rd International Conference on Computer Science, Applied Mathematics and Applications (ICCSAMA 2015) held on 11-13 May, 2015 in Metz, France. The book contains 5 parts: 1. Mathematical programming and optimization: theory, methods and software, Operational research and decision making, Machine learning, data security, and bioinformatics, Knowledge information system, Software engineering. All chapters in the book discuss theoretical and algorithmic as well as practical issues connected with computation methods & optimization methods for knowledge engineering and machine learning techniques.

17. Computational and mathematical approaches to societal transitions

NARCIS (Netherlands)

J.S. Timmermans (Jos); F. Squazzoni (Flaminio); J. de Haan (Hans)

2008-01-01

textabstractAfter an introduction of the theoretical framework and concepts of transition studies, this article gives an overview of how structural change in social systems has been studied from various disciplinary perspectives. This overview first leads to the conclusion that computational and

18. Applied mathematical methods in nuclear thermal hydraulics

International Nuclear Information System (INIS)

Ransom, V.H.; Trapp, J.A.

1983-01-01

Applied mathematical methods are used extensively in modeling of nuclear reactor thermal-hydraulic behavior. This application has required significant extension to the state-of-the-art. The problems encountered in modeling of two-phase fluid transients and the development of associated numerical solution methods are reviewed and quantified using results from a numerical study of an analogous linear system of differential equations. In particular, some possible approaches for formulating a well-posed numerical problem for an ill-posed differential model are investigated and discussed. The need for closer attention to numerical fidelity is indicated

19. REVIEW OF MATHEMATICAL METHODS AND ALGORITHMS OF MEDICAL IMAGE PROCESSING ON THE EXAMPLE OF TECHNOLOGY OF MEDICAL IMAGE PROCESSING FROM WOLFRAM MATHEMATICS

Directory of Open Access Journals (Sweden)

O. Ye. Prokopchenko

2015-10-01

Full Text Available The article analyzes the basic methods and algorithms of mathematical processing of medical images as objects of computer mathematics. The presented methods and computer algorithms of mathematics relevant and may find application in the field of medical imaging - automated processing of images; as a tool for measurement and determination the optical parameters; identification and formation of medical images database. Methods and computer algorithms presented in the article and based on Wolfram Mathematica are also relevant to the problem of modern medical education. As an example of Wolfram Mathematics may be considered appropriate demonstration, such as recognition of special radiographs and morphological imaging. These methods are used to improve  the diagnostic significance and value of medical (clinical research and can serve as an educational interactive demonstration. Implementation submitted individual methods and algorithms of computer Wolfram Mathematics contributes, in general, the optimization process of practical processing and presentation of medical images.

20. Secondary School Mathematics Teachers’ and Students’ Views on Computer Assisted Mathematics Instruction in Turkey: Mathematica Example

Directory of Open Access Journals (Sweden)

Mehmet Alper Ardıç

2017-01-01

Full Text Available This study aimed at determining the secondary school mathematics teachers’ and students’ views on computer-assisted mathematics instruction (CAMI conducted via Mathematica. Accordingly, three mathematics teachers in Adıyaman and nine 10th-grade students participated in the research. Firstly, the researchers trained the mathematics teachers in the Mathematica program, a computer algebra system (CAS and CAMI. Then, they provided a suitable environment for teachers to practice CAMI with their students to teach quadratic functions (parabola. Case study, a qualitative research design, was utilized in the study. Semi-structured interview forms were used as data collection tools. The interview data were analyzed using descriptive and content analysis, and the codes and themes related to the topic were obtained. The findings revealed that all the teachers found CAMI implementations interesting as supported by students’ views. While all mathematics teachers wanted to benefit from CAMI in mathematics and geometry courses, most of the students asked that CAMI be used in different courses. It was found that students did not have any problems with the Mathematica used with CAMI activities. However, it was also revealed by one student and one teacher that involving CAMI constantly in the courses would hinder preparations for the university entrance exam.

1. COMPUTER MATHEMATICS SYSTEMS IN STUDENTS’ LEARNING OF "INFORMATIСS"

Directory of Open Access Journals (Sweden)

Taras P. Kobylnyk

2014-04-01

Full Text Available The article describes the general characteristics of the most popular computer mathematics systems such as commercial (Maple, Mathematica, Matlab and open source (Scilab, Maxima, GRAN, Sage, as well as the conditions of use of these systems as means of fundamentalization of the educational process of bachelor of informatics. It is considered the role of CMS in bachelor of informatics training. It is identified the approaches of CMS pedagogical use while learning information and physics and mathematics disciplines. There are presented some tasks, in which we must carefully use the «responses» have been received using CMS. It is identified the promising directions of development of computer mathematics systems in high-tech environment.

2. Combinatorial and computational mathematics present and future

CERN Document Server

Hong, Sungpyo; Kim, Ki Hang; Roush, Fred W

2001-01-01

This book describes and summarizes past work in important areas of combinatorics and computation, as well as gives directions for researchers working in these areas in the 21st century. It contains primarily survey papers and presents original research by Peter Fishburn, Jim Ho Kwak, Jaeun Lee, K H Kim, F W Roush and Susan Williams. The papers deal with some of the most exciting and promising developments in the areas of coding theory in relation to number theory, lattice theory and its applications, graph theory and its applications, topological techniques in combinatorics, symbolic dynamics

3. Physics, Computer Science and Mathematics Division. Annual report, January 1-December 31, 1980

International Nuclear Information System (INIS)

Birge, R.W.

1981-12-01

Research in the physics, computer science, and mathematics division is described for the year 1980. While the division's major effort remains in high energy particle physics, there is a continually growing program in computer science and applied mathematics. Experimental programs are reported in e + e - annihilation, muon and neutrino reactions at FNAL, search for effects of a right-handed gauge boson, limits on neutrino oscillations from muon-decay neutrinos, strong interaction experiments at FNAL, strong interaction experiments at BNL, particle data center, Barrelet moment analysis of πN scattering data, astrophysics and astronomy, earth sciences, and instrument development and engineering for high energy physics. In theoretical physics research, studies included particle physics and accelerator physics. Computer science and mathematics research included analytical and numerical methods, information analysis techniques, advanced computer concepts, and environmental and epidemiological studies

4. Physics, Computer Science and Mathematics Division. Annual report, January 1-December 31, 1980

Energy Technology Data Exchange (ETDEWEB)

Birge, R.W.

1981-12-01

Research in the physics, computer science, and mathematics division is described for the year 1980. While the division's major effort remains in high energy particle physics, there is a continually growing program in computer science and applied mathematics. Experimental programs are reported in e/sup +/e/sup -/ annihilation, muon and neutrino reactions at FNAL, search for effects of a right-handed gauge boson, limits on neutrino oscillations from muon-decay neutrinos, strong interaction experiments at FNAL, strong interaction experiments at BNL, particle data center, Barrelet moment analysis of ..pi..N scattering data, astrophysics and astronomy, earth sciences, and instrument development and engineering for high energy physics. In theoretical physics research, studies included particle physics and accelerator physics. Computer science and mathematics research included analytical and numerical methods, information analysis techniques, advanced computer concepts, and environmental and epidemiological studies. (GHT)

5. Does Computer Use Promote the Mathematical Proficiency of ELL Students?

Science.gov (United States)

Kim, Sunha; Chang, Mido

2010-01-01

The study explored the effects of computer use on the mathematical performance of students with special attention to ELL students. To achieve a high generalizability of findings, the study used a U.S. nationally representative database, the Early Childhood Longitudinal Survey Kindergarten Cohort (ECLS-K), and adopted proper weights. The study…

6. Recent developments and applications in mathematics and computer science

International Nuclear Information System (INIS)

Churchhouse, R.F.; Tahir Shah, K.; Zanella, P.

1991-01-01

The book contains 8 invited lectures and 4 short seminars presented at the College on Recent Developments and Applications in Mathematics and Computer Science held in Trieste from 7 May to 1 June 1990. A separate abstract was prepared for each paper. Refs, figs and tabs

7. The Use of Computers in Mathematics Education: A Paradigm Shift from "Computer Assisted Instruction" towards "Student Programming"

Science.gov (United States)

Aydin, Emin

2005-01-01

The purpose of this study is to review the changes that computers have on mathematics itself and on mathematics curriculum. The study aims at investigating different applications of computers in education in general, and mathematics education in particular and their applications on mathematics curriculum and on teaching and learning of…

8. Mathematical methods in geometrization of coal field

Science.gov (United States)

Shurygin, D. N.; Kalinchenko, V. M.; Tkachev, V. A.; Tretyak, A. Ya

2017-10-01

In the work, the approach to increase overall performance of collieries on the basis of an increase in accuracy of geometrization of coal thicknesses is considered. The sequence of stages of mathematical modelling of spatial placing of indicators of a deposit taking into account allocation of homogeneous sites of thickness and an establishment of quantitative interrelations between mountain-geological indicators of coal layers is offered. As a uniform mathematical method for modelling of various interrelations, it is offered to use a method of the group accounting of arguments (MGUA), one of versions of the regressive analysis. This approach can find application during delimitation between geological homogeneous sites of coal thicknesses in the form of a linear discriminant function. By an example of division into districts of a mine field in the conditions of mine “Sadkinsky” (East Donbass), the use of the complex approach for forecasting of zones of the small amplitude of disturbance of a coal layer on the basis of the discriminant analysis and MGUA is shown.

9. Mathematics and computer science in medical imaging

International Nuclear Information System (INIS)

Viergever, M.A.; Todd-Pokroper, A.E.

1987-01-01

The book is divided into two parts. Part 1 gives an introduction to and an overview of the field in ten tutorial chapters. Part 2 contains a selection of invited and proffered papers reporting on current research. Subjects covered in depth are: analytical image reconstruction, regularization, iterative methods, image structure, 3-D display, compression, architectures for image processing, statistical pattern recognition, and expert systems in medical imaging

10. The Computer Student Worksheet Based Mathematical Literacy for Statistics

Science.gov (United States)

Manoy, J. T.; Indarasati, N. A.

2018-01-01

The student worksheet is one of media teaching which is able to improve teaching an activity in the classroom. Indicators in mathematical literacy were included in a student worksheet is able to help the students for applying the concept in daily life. Then, the use of computers in learning can create learning with environment-friendly. This research used developmental research which was Thiagarajan (Four-D) development design. There are 4 stages in the Four-D, define, design, develop, and disseminate. However, this research was finish until the third stage, develop stage. The computer student worksheet based mathematical literacy for statistics executed good quality. This student worksheet is achieving the criteria if able to achieve three aspects, validity, practicality, and effectiveness. The subject in this research was the students at The 1st State Senior High School of Driyorejo, Gresik, grade eleven of The 5th Mathematics and Natural Sciences. The computer student worksheet products based mathematical literacy for statistics executed good quality, while it achieved the aspects for validity, practical, and effectiveness. This student worksheet achieved the validity aspects with an average of 3.79 (94.72%), and practical aspects with an average of 2.85 (71.43%). Besides, it achieved the effectiveness aspects with a percentage of the classical complete students of 94.74% and a percentage of the student positive response of 75%.

11. (Re)Envisioning Mathematics Education: Examining Equity and Social Justice in an Elementary Mathematics Methods Course

Science.gov (United States)

Koestler, Courtney

2010-01-01

In this dissertation, I present my attempts at designing an elementary mathematics methods course to support prospective teachers in developing an understanding of how to teach all students in learning powerful mathematics. To do this, I introduced them to teaching mathematics for equity and social justice by discussing ways to support students'…

12. Mathematical methods for mechanics a handbook with Matlab experiments

CERN Document Server

Gekeler, Eckart W

2008-01-01

This book introduces all the mathematical tools necessary for solving complex problems in the field of mechanics. It also contains various applications of mathematical and numerical methods for modeling comprehensive mechanical-technical practical problems.

13. Methods of applied mathematics with a software overview

CERN Document Server

Davis, Jon H

2016-01-01

This textbook, now in its second edition, provides students with a firm grasp of the fundamental notions and techniques of applied mathematics as well as the software skills to implement them. The text emphasizes the computational aspects of problem solving as well as the limitations and implicit assumptions inherent in the formal methods. Readers are also given a sense of the wide variety of problems in which the presented techniques are useful. Broadly organized around the theme of applied Fourier analysis, the treatment covers classical applications in partial differential equations and boundary value problems, and a substantial number of topics associated with Laplace, Fourier, and discrete transform theories. Some advanced topics are explored in the final chapters such as short-time Fourier analysis and geometrically based transforms applicable to boundary value problems. The topics covered are useful in a variety of applied fields such as continuum mechanics, mathematical physics, control theory, and si...

14. Mathematical Models and Methods for Living Systems

CERN Document Server

Chaplain, Mark; Pugliese, Andrea

2016-01-01

The aim of these lecture notes is to give an introduction to several mathematical models and methods that can be used to describe the behaviour of living systems. This emerging field of application intrinsically requires the handling of phenomena occurring at different spatial scales and hence the use of multiscale methods. Modelling and simulating the mechanisms that cells use to move, self-organise and develop in tissues is not only fundamental to an understanding of embryonic development, but is also relevant in tissue engineering and in other environmental and industrial processes involving the growth and homeostasis of biological systems. Growth and organization processes are also important in many tissue degeneration and regeneration processes, such as tumour growth, tissue vascularization, heart and muscle functionality, and cardio-vascular diseases.

15. Prospective Turkish Primary Teachers' Views about the Use of Computers in Mathematics Education

Science.gov (United States)

Dogan, Mustafa

2012-01-01

The use of computers and technology in mathematics education affects students' learning, achievements, and affective dimensions. This study explores prospective Turkish primary mathematics teachers' views about the use of computers in mathematics education. The sample comprised of 129 fourth-year prospective primary mathematics teachers from two…

16. Improving science and mathematics education with computational modelling in interactive engagement environments

Science.gov (United States)

Neves, Rui Gomes; Teodoro, Vítor Duarte

2012-09-01

A teaching approach aiming at an epistemologically balanced integration of computational modelling in science and mathematics education is presented. The approach is based on interactive engagement learning activities built around computational modelling experiments that span the range of different kinds of modelling from explorative to expressive modelling. The activities are designed to make a progressive introduction to scientific computation without requiring prior development of a working knowledge of programming, generate and foster the resolution of cognitive conflicts in the understanding of scientific and mathematical concepts and promote performative competency in the manipulation of different and complementary representations of mathematical models. The activities are supported by interactive PDF documents which explain the fundamental concepts, methods and reasoning processes using text, images and embedded movies, and include free space for multimedia enriched student modelling reports and teacher feedback. To illustrate, an example from physics implemented in the Modellus environment and tested in undergraduate university general physics and biophysics courses is discussed.

17. Introduction to mathematical physics methods and concepts

CERN Document Server

Wong, Chun Wa

2013-01-01

Mathematical physics provides physical theories with their logical basis and the tools for drawing conclusions from hypotheses. Introduction to Mathematical Physics explains to the reader why and how mathematics is needed in the description of physical events in space. For undergraduates in physics, it is a classroom-tested textbook on vector analysis, linear operators, Fourier series and integrals, differential equations, special functions and functions of a complex variable. Strongly correlated with core undergraduate courses on classical and quantum mechanics and electromagnetism, it helps the student master these necessary mathematical skills. It contains advanced topics of interest to graduate students on relativistic square-root spaces and nonlinear systems. It contains many tables of mathematical formulas and references to useful materials on the Internet. It includes short tutorials on basic mathematical topics to help readers refresh their mathematical knowledge. An appendix on Mathematica encourages...

18. Mathematical methods in electro-magneto-elasticity

CERN Document Server

Bardzokas, DI; Filshtinsky, LA

2007-01-01

The mechanics of Coupled Fields is a discipline at the edge of modern research connecting Continuum Mechanics with Solid State Physics. It integrates the Mechanics of Continuous Media, Heat Conductivity and the theory of Electromagnetism that are usually studied separately. For an accurate description of the influence of static and dynamic loadings, high temperatures and strong electromagnetic fields in elastic media and constructive installations, a new approach is required; an approach that has the potential to establish a synergism between the above mentioned fields. Throughout the book a vast number of problems are considered: two-dimensional problems of electro-magneto-elasticity as well as static and dynamical problems for piecewise homogenous compound piezoelectric plates weakened by cracks and openings. The boundary conditions, the constructive equations and the mathematical methods for their solution are thoroughly presented, so that the reader can get a clear quantitative and qualitative understandi...

19. Moving toward Positive Mathematics Beliefs and Developing Socio-Mathematical Authority: Urban Preservice Teachers in Mathematics Methods Courses

Science.gov (United States)

Saran, Rupam; Gujarati, Joan

2013-01-01

This article explores how preservice elementary teachers change their negative beliefs toward mathematics into positive ones after taking a mathematics methods course that follows the Concrete-Pictorial-Abstract (CPA) instructional method. Also explored is the relationship between those beliefs and sociomathematical authority. By administering…

20. Effective Computer-Aided Assessment of Mathematics; Principles, Practice and Results

Science.gov (United States)

Greenhow, Martin

2015-01-01

This article outlines some key issues for writing effective computer-aided assessment (CAA) questions in subjects with substantial mathematical or statistical content, especially the importance of control of random parameters and the encoding of wrong methods of solution (mal-rules) commonly used by students. The pros and cons of using CAA and…

1. Mathematical model for water quality impact assessment and its computer application in coal mine water

International Nuclear Information System (INIS)

Sundararajan, M.; Chakraborty, M.K.; Gupta, J.P.; Saxena, N.C.; Dhar, B.B.

1994-01-01

This paper presents a mathematical model to assess the Water Quality Impact in coal mine or in river system by accurate and rational method. Algorithm, flowchart and computer programme have been developed upon this model to assess the quality of coal mine water. 3 refs., 2 figs., 2 tabs

2. Mathematical model of accelerator output characteristics and their calculation on a computer

International Nuclear Information System (INIS)

Mishulina, O.A.; Ul'yanina, M.N.; Kornilova, T.V.

1975-01-01

A mathematical model is described of output characteristics of a linear accelerator. The model is a system of differential equations. Presence of phase limitations is a specific feature of setting the problem which makes it possible to ensure higher simulation accuracy and determine a capture coefficient. An algorithm is elaborated of computing output characteristics based upon the mathematical model suggested. A capture coefficient, coordinate expectation characterizing an average phase value of the beam particles, coordinate expectation characterizing an average value of the reverse relative velocity of the beam particles as well as dispersion of these coordinates are output characteristics of the accelerator. Calculation methods of the accelerator output characteristics are described in detail. The computations have been performed on the BESM-6 computer, the characteristics computing time being 2 min 20 sec. Relative error of parameter computation averages 10 -2

3. Computing Nash equilibria through computational intelligence methods

Science.gov (United States)

Pavlidis, N. G.; Parsopoulos, K. E.; Vrahatis, M. N.

2005-03-01

Nash equilibrium constitutes a central solution concept in game theory. The task of detecting the Nash equilibria of a finite strategic game remains a challenging problem up-to-date. This paper investigates the effectiveness of three computational intelligence techniques, namely, covariance matrix adaptation evolution strategies, particle swarm optimization, as well as, differential evolution, to compute Nash equilibria of finite strategic games, as global minima of a real-valued, nonnegative function. An issue of particular interest is to detect more than one Nash equilibria of a game. The performance of the considered computational intelligence methods on this problem is investigated using multistart and deflection.

4. Internalization of Malaysian mathematical and computer science journals

OpenAIRE

Zainab, A. N.

2008-01-01

The internationalization characteristics of two Malaysian journals, Bulletin of the Malaysian Mathematical Sciences Society ( indexed by ISI) and the Malaysian Journal of Computer Science ( indexed by Inspec and Scopus) is observed. All issues for the years 2000 to 2007 were looked at to obtain the following information, (i) total articles published between 2000 and 2007; (ii) the distribution of foreign and Malaysian authors publishing in the journals; (iii) the distribution of articles by c...

5. Computational Literacy and "The Big Picture" Concerning Computers in Mathematics Education

Science.gov (United States)

diSessa, Andrea A.

2018-01-01

This article develops some ideas concerning the "big picture" of how using computers might fundamentally change learning, with an emphasis on mathematics (and, more generally, STEM education). I develop the big-picture model of "computation as a new literacy" in some detail and with concrete examples of sixth grade students…

6. Evaluation of the Effectiveness of a Tablet Computer Application (App) in Helping Students with Visual Impairments Solve Mathematics Problems

Science.gov (United States)

Beal, Carole R.; Rosenblum, L. Penny

2018-01-01

Introduction: The authors examined a tablet computer application (iPad app) for its effectiveness in helping students studying prealgebra to solve mathematical word problems. Methods: Forty-three visually impaired students (that is, those who are blind or have low vision) completed eight alternating mathematics units presented using their…

7. Mathematical Methods of Game and Economic Theory

CERN Document Server

Aubin, J-P

1982-01-01

This book presents a unified treatment of optimization theory, game theory and a general equilibrium theory in economics in the framework of nonlinear functional analysis. It not only provides powerful and versatile tools for solving specific problems in economics and the social sciences but also serves as a unifying theme in the mathematical theory of these subjects as well as in pure mathematics itself.

8. Introduction to mathematical and informatics methods in Nuclear Medicine

International Nuclear Information System (INIS)

Martin, J.; Monot, C.; Legras, B.

1975-01-01

Mathematical and statistical methods are widely used in nuclear medicine because of the abundance and precision of the data obtained during morphological and dynamic explorations, and the number and complexity of the calculations involved has led to the use of informatics. Very elaborate techniques may be employed with the help of the computer. In spite of its cost it is closely associated with exploration techniques, especially in conjunction with the scintillation camera. To keep the machine in full-time use and ensure its profitability it is employed in other capacities, for an service management in particular. Each subject is dealt with from its fundamental aspect: nuclear medicine and biomathematics, statistics, informatics; compartment models in nuclear medicine (interpretation of dynamic examinations); quantitive image processing; special computer services (connections with apparatus, service and records management problems) [fr

9. Derivation and computation of discrete-delay and continuous-delay SDEs in mathematical biology.

Science.gov (United States)

Allen, Edward J

2014-06-01

Stochastic versions of several discrete-delay and continuous-delay differential equations, useful in mathematical biology, are derived from basic principles carefully taking into account the demographic, environmental, or physiological randomness in the dynamic processes. In particular, stochastic delay differential equation (SDDE) models are derived and studied for Nicholson's blowflies equation, Hutchinson's equation, an SIS epidemic model with delay, bacteria/phage dynamics, and glucose/insulin levels. Computational methods for approximating the SDDE models are described. Comparisons between computational solutions of the SDDEs and independently formulated Monte Carlo calculations support the accuracy of the derivations and of the computational methods.

10. War of ontology worlds: mathematics, computer code, or Esperanto?

Science.gov (United States)

Rzhetsky, Andrey; Evans, James A

2011-09-01

The use of structured knowledge representations-ontologies and terminologies-has become standard in biomedicine. Definitions of ontologies vary widely, as do the values and philosophies that underlie them. In seeking to make these views explicit, we conducted and summarized interviews with a dozen leading ontologists. Their views clustered into three broad perspectives that we summarize as mathematics, computer code, and Esperanto. Ontology as mathematics puts the ultimate premium on rigor and logic, symmetry and consistency of representation across scientific subfields, and the inclusion of only established, non-contradictory knowledge. Ontology as computer code focuses on utility and cultivates diversity, fitting ontologies to their purpose. Like computer languages C++, Prolog, and HTML, the code perspective holds that diverse applications warrant custom designed ontologies. Ontology as Esperanto focuses on facilitating cross-disciplinary communication, knowledge cross-referencing, and computation across datasets from diverse communities. We show how these views align with classical divides in science and suggest how a synthesis of their concerns could strengthen the next generation of biomedical ontologies.

11. Method for computed tomography

International Nuclear Information System (INIS)

Wagner, W.

1980-01-01

In transversal computer tomography apparatus, in which the positioning zone in which the patient can be positioned is larger than the scanning zone in which a body slice can be scanned, reconstruction errors are liable to occur. These errors are caused by incomplete irradiation of the body during examination. They become manifest not only as an incorrect image of the area not irradiated, but also have an adverse effect on the image of the other, completely irradiated areas. The invention enables reduction of these errors

12. Computational methods working group

International Nuclear Information System (INIS)

Gabriel, T.A.

1997-09-01

During the Cold Moderator Workshop several working groups were established including one to discuss calculational methods. The charge for this working group was to identify problems in theory, data, program execution, etc., and to suggest solutions considering both deterministic and stochastic methods including acceleration procedures.

13. Research methods in indigenous mathematical Knowledge: An ...

African Journals Online (AJOL)

Indigenous games are an integral component of indigenous knowledge systems. ... and national activities; mathematical concepts associated with the games; possibilities and implications for general classroom ... AJOL African Journals Online.

14. Mathematics

CERN Document Server

Eringen, A Cemal

2013-01-01

Continuum Physics: Volume 1 - Mathematics is a collection of papers that discusses certain selected mathematical methods used in the study of continuum physics. Papers in this collection deal with developments in mathematics in continuum physics and its applications such as, group theory functional analysis, theory of invariants, and stochastic processes. Part I explains tensor analysis, including the geometry of subspaces and the geometry of Finsler. Part II discusses group theory, which also covers lattices, morphisms, and crystallographic groups. Part III reviews the theory of invariants th

15. Computational methods for two-phase flow and particle transport

CERN Document Server

Lee, Wen Ho

2013-01-01

This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.

16. The Effects of Computer Games on the Achievement of Basic Mathematical Skills

Science.gov (United States)

Sayan, Hamiyet

2015-01-01

This study aims to analyze the relationship between playing computer games and learning basic mathematics skills. It shows the role computer games play in the learning and achievement of basic mathematical skills by students. Nowadays it is clear that individuals, especially young persons are very fond of computer and computer games. Since…

17. Zonal methods and computational fluid dynamics

International Nuclear Information System (INIS)

Atta, E.H.

1985-01-01

Recent advances in developing numerical algorithms for solving fluid flow problems, and the continuing improvement in the speed and storage of large scale computers have made it feasible to compute the flow field about complex and realistic configurations. Current solution methods involve the use of a hierarchy of mathematical models ranging from the linearized potential equation to the Navier Stokes equations. Because of the increasing complexity of both the geometries and flowfields encountered in practical fluid flow simulation, there is a growing emphasis in computational fluid dynamics on the use of zonal methods. A zonal method is one that subdivides the total flow region into interconnected smaller regions or zones. The flow solutions in these zones are then patched together to establish the global flow field solution. Zonal methods are primarily used either to limit the complexity of the governing flow equations to a localized region or to alleviate the grid generation problems about geometrically complex and multicomponent configurations. This paper surveys the application of zonal methods for solving the flow field about two and three-dimensional configurations. Various factors affecting their accuracy and ease of implementation are also discussed. From the presented review it is concluded that zonal methods promise to be very effective for computing complex flowfields and configurations. Currently there are increasing efforts to improve their efficiency, versatility, and accuracy

18. Applied Mathematical Methods in Theoretical Physics

Science.gov (United States)

Masujima, Michio

2005-04-01

All there is to know about functional analysis, integral equations and calculus of variations in a single volume. This advanced textbook is divided into two parts: The first on integral equations and the second on the calculus of variations. It begins with a short introduction to functional analysis, including a short review of complex analysis, before continuing a systematic discussion of different types of equations, such as Volterra integral equations, singular integral equations of Cauchy type, integral equations of the Fredholm type, with a special emphasis on Wiener-Hopf integral equations and Wiener-Hopf sum equations. After a few remarks on the historical development, the second part starts with an introduction to the calculus of variations and the relationship between integral equations and applications of the calculus of variations. It further covers applications of the calculus of variations developed in the second half of the 20th century in the fields of quantum mechanics, quantum statistical mechanics and quantum field theory. Throughout the book, the author presents over 150 problems and exercises -- many from such branches of physics as quantum mechanics, quantum statistical mechanics, and quantum field theory -- together with outlines of the solutions in each case. Detailed solutions are given, supplementing the materials discussed in the main text, allowing problems to be solved making direct use of the method illustrated. The original references are given for difficult problems. The result is complete coverage of the mathematical tools and techniques used by physicists and applied mathematicians Intended for senior undergraduates and first-year graduates in science and engineering, this is equally useful as a reference and self-study guide.

19. Improving the reliability of nuclear reprocessing by application of computers and mathematical modelling

International Nuclear Information System (INIS)

Gabowitsch, E.; Trauboth, H.

1982-01-01

After a brief survey of the present and expected future state of nuclear energy utilization, which should demonstrate the significance of nuclear reprocessing, safety and reliability aspects of nuclear reprocessing plants (NRP) are considered. Then, the principal possibilities of modern computer technology including computer systems architecture and application-oriented software for improving the reliability and availability are outlined. In this context, two information systems being developed at the Nuclear Research Center Karlsruhe (KfK) are briefly described. For design evaluation of certain areas of a large NRP mathematical methods and computer-aided tools developed, used or being designed by KfK are discussed. In conclusion, future research to be pursued in information processing and applied mathematics in support of reliable operation of NRP's is proposed. (Auth.)

20. Fourth SIAM conference on mathematical and computational issues in the geosciences: Final program and abstracts

Energy Technology Data Exchange (ETDEWEB)

NONE

1997-12-31

The conference focused on computational and modeling issues in the geosciences. Of the geosciences, problems associated with phenomena occurring in the earths subsurface were best represented. Topics in this area included petroleum recovery, ground water contamination and remediation, seismic imaging, parameter estimation, upscaling, geostatistical heterogeneity, reservoir and aquifer characterization, optimal well placement and pumping strategies, and geochemistry. Additional sessions were devoted to the atmosphere, surface water and oceans. The central mathematical themes included computational algorithms and numerical analysis, parallel computing, mathematical analysis of partial differential equations, statistical and stochastic methods, optimization, inversion, homogenization and renormalization. The problem areas discussed at this conference are of considerable national importance, with the increasing importance of environmental issues, global change, remediation of waste sites, declining domestic energy sources and an increasing reliance on producing the most out of established oil reservoirs.

1. A study of symbol segmentation method for handwritten mathematical formula recognition using mathematical structure information

OpenAIRE

Toyozumi, Kenichi; Yamada, Naoya; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Mase, Kenji; Takahashi, Tomoichi

2004-01-01

Symbol segmentation is very important in handwritten mathematical formula recognition, since it is the very first portion of the recognition, since it is the very first portion of the recognition process. This paper proposes a new symbol segmentation method using mathematical structure information. The base technique of symbol segmentation employed in theexisting methods is dynamic programming which optimizes the overall results of individual symbol recognition. The new method we propose here...

2. Mathematical Methods in Survival Analysis, Reliability and Quality of Life

CERN Document Server

Huber, Catherine; Mesbah, Mounir

2008-01-01

Reliability and survival analysis are important applications of stochastic mathematics (probability, statistics and stochastic processes) that are usually covered separately in spite of the similarity of the involved mathematical theory. This title aims to redress this situation: it includes 21 chapters divided into four parts: Survival analysis, Reliability, Quality of life, and Related topics. Many of these chapters were presented at the European Seminar on Mathematical Methods for Survival Analysis, Reliability and Quality of Life in 2006.

3. Mathematical models and algorithms for the computer program 'WOLF'

International Nuclear Information System (INIS)

Halbach, K.

1975-12-01

The computer program FLOW finds the nonrelativistic self- consistent set of two-dimensional ion trajectories and electric fields (including space charges from ions and electrons) for a given set of initial and boundary conditions for the particles and fields. The combination of FLOW with the optimization code PISA gives the program WOLF, which finds the shape of the emitter which is consistent with the plasma forming it, and in addition varies physical characteristics such as electrode position, shapes, and potentials so that some performance characteristics are optimized. The motivation for developing these programs was the desire to design optimum ion source extractor/accelerator systems in a systematic fashion. The purpose of this report is to explain and derive the mathematical models and algorithms which approximate the real physical processes. It serves primarily to document the computer programs. 10 figures

4. Computational Methods in Medicine

Directory of Open Access Journals (Sweden)

Angel Garrido

2010-01-01

Full Text Available Artificial Intelligence requires Logic. But its Classical version shows too many insufficiencies. So, it is absolutely necessary to introduce more sophisticated tools, such as Fuzzy Logic, Modal Logic, Non-Monotonic Logic, and so on [2]. Among the things that AI needs to represent are Categories, Objects, Properties, Relations between objects, Situations, States, Time, Events, Causes and effects, Knowledge about knowledge, and so on. The problems in AI can be classified in two general types
[3, 4], Search Problems and Representation Problem. There exist different ways to reach this objective. So, we have [3] Logics, Rules, Frames, Associative Nets, Scripts and so on, that are often interconnected. Also, it will be very useful, in dealing with problems of uncertainty and causality, to introduce Bayesian Networks and particularly, a principal tool as the Essential Graph. We attempt here to show the scope of application of such versatile methods, currently fundamental in Medicine.

5. Mathematical and computational modeling and simulation fundamentals and case studies

CERN Document Server

Moeller, Dietmar P F

2004-01-01

Mathematical and Computational Modeling and Simulation - a highly multi-disciplinary field with ubiquitous applications in science and engineering - is one of the key enabling technologies of the 21st century. This book introduces to the use of Mathematical and Computational Modeling and Simulation in order to develop an understanding of the solution characteristics of a broad class of real-world problems. The relevant basic and advanced methodologies are explained in detail, with special emphasis on ill-defined problems. Some 15 simulation systems are presented on the language and the logical level. Moreover, the reader can accumulate experience by studying a wide variety of case studies. The latter are briefly described within the book but their full versions as well as some simulation software demos are available on the Web. The book can be used for University courses of different level as well as for self-study. Advanced sections are marked and can be skipped in a first reading or in undergraduate courses...

6. The Multiple Intelligences Teaching Method and Mathematics ...

African Journals Online (AJOL)

The Multiple Intelligences teaching approach has evolved and been embraced widely especially in the United States. The approach has been found to be very effective in changing situations for the better, in the teaching and learning of any subject especially mathematics. Multiple Intelligences teaching approach proposes ...

7. Introduction to mathematical models and methods

Energy Technology Data Exchange (ETDEWEB)

Siddiqi, A. H.; Manchanda, P. [Gautam Budha University, Gautam Budh Nagar-201310 (India); Department of Mathematics, Guru Nanak Dev University, Amritsar (India)

2012-07-17

Some well known mathematical models in the form of partial differential equations representing real world systems are introduced along with fundamental concepts of Image Processing. Notions such as seismic texture, seismic attributes, core data, well logging, seismic tomography and reservoirs simulation are discussed.

8. The Incorporation of Micro-Computer Technology into School Mathematics: Some Suggestions for Middle and Senior Mathematics Courses.

Science.gov (United States)

Newton, Bill

1987-01-01

Argues that the use of computer technologies in secondary schools should change the nature of mathematics education. Urges the rethinking of the uses of traditional paper-and-pencil computations. Suggests some computer applications for elementary algebra and for problem solving in arithmetic and calculus. (TW)

9. The 6th International Conference on Computer Science and Computational Mathematics (ICCSCM 2017)

Science.gov (United States)

2017-09-01

The ICCSCM 2017 (The 6th International Conference on Computer Science and Computational Mathematics) has aimed to provide a platform to discuss computer science and mathematics related issues including Algebraic Geometry, Algebraic Topology, Approximation Theory, Calculus of Variations, Category Theory; Homological Algebra, Coding Theory, Combinatorics, Control Theory, Cryptology, Geometry, Difference and Functional Equations, Discrete Mathematics, Dynamical Systems and Ergodic Theory, Field Theory and Polynomials, Fluid Mechanics and Solid Mechanics, Fourier Analysis, Functional Analysis, Functions of a Complex Variable, Fuzzy Mathematics, Game Theory, General Algebraic Systems, Graph Theory, Group Theory and Generalizations, Image Processing, Signal Processing and Tomography, Information Fusion, Integral Equations, Lattices, Algebraic Structures, Linear and Multilinear Algebra; Matrix Theory, Mathematical Biology and Other Natural Sciences, Mathematical Economics and Financial Mathematics, Mathematical Physics, Measure Theory and Integration, Neutrosophic Mathematics, Number Theory, Numerical Analysis, Operations Research, Optimization, Operator Theory, Ordinary and Partial Differential Equations, Potential Theory, Real Functions, Rings and Algebras, Statistical Mechanics, Structure Of Matter, Topological Groups, Wavelets and Wavelet Transforms, 3G/4G Network Evolutions, Ad-Hoc, Mobile, Wireless Networks and Mobile Computing, Agent Computing & Multi-Agents Systems, All topics related Image/Signal Processing, Any topics related Computer Networks, Any topics related ISO SC-27 and SC- 17 standards, Any topics related PKI(Public Key Intrastructures), Artifial Intelligences(A.I.) & Pattern/Image Recognitions, Authentication/Authorization Issues, Biometric authentication and algorithms, CDMA/GSM Communication Protocols, Combinatorics, Graph Theory, and Analysis of Algorithms, Cryptography and Foundation of Computer Security, Data Base(D.B.) Management & Information

10. Numerical computer methods part D

CERN Document Server

Johnson, Michael L

2004-01-01

The aim of this volume is to brief researchers of the importance of data analysis in enzymology, and of the modern methods that have developed concomitantly with computer hardware. It is also to validate researchers' computer programs with real and synthetic data to ascertain that the results produced are what they expected. Selected Contents: Prediction of protein structure; modeling and studying proteins with molecular dynamics; statistical error in isothermal titration calorimetry; analysis of circular dichroism data; model comparison methods.

11. Selecting and Using Mathematics Methods Texts: Nontrivial Tasks

Science.gov (United States)

Harkness, Shelly Sheats; Brass, Amy

2017-01-01

Mathematics methods textbooks/texts are important components of many courses for preservice teachers. Researchers should explore how these texts are selected and used. Within this paper we report the findings of a survey administered electronically to 132 members of the Association of Mathematics Teacher Educators (AMTE) in order to answer the…

12. Numerical methods for solution of some nonlinear problems of mathematical physics

International Nuclear Information System (INIS)

Zhidkov, E.P.

1981-01-01

The continuous analog of the Newton method and its application to some nonlinear problems of mathematical physics using a computer is considered. It is shown that the application of this method in JINR to the wide range of nonlinear problems has shown its universality and high efficiency [ru

13. Laser filamentation mathematical methods and models

CERN Document Server

Lorin, Emmanuel; Moloney, Jerome

2016-01-01

This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear...

14. Elementary mathematical and computational tools for electrical and computer engineers using Matlab

CERN Document Server

Manassah, Jamal T

2013-01-01

Ideal for use as a short-course textbook and for self-study Elementary Mathematical and Computational Tools for Electrical and Computer Engineers Using MATLAB fills that gap. Accessible after just one semester of calculus, it introduces the many practical analytical and numerical tools that are essential to success both in future studies and in professional life. Sharply focused on the needs of the electrical and computer engineering communities, the text provides a wealth of relevant exercises and design problems. Changes in MATLAB's version 6.0 are included in a special addendum.

15. Numerical methods of mathematical optimization with Algol and Fortran programs

CERN Document Server

Künzi, Hans P; Zehnder, C A; Rheinboldt, Werner

1971-01-01

Numerical Methods of Mathematical Optimization: With ALGOL and FORTRAN Programs reviews the theory and the practical application of the numerical methods of mathematical optimization. An ALGOL and a FORTRAN program was developed for each one of the algorithms described in the theoretical section. This should result in easy access to the application of the different optimization methods.Comprised of four chapters, this volume begins with a discussion on the theory of linear and nonlinear optimization, with the main stress on an easily understood, mathematically precise presentation. In addition

16. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.

Science.gov (United States)

Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V

2016-01-01

Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.

17. Silent method for mathematics instruction: An overview of teaching subsets

Science.gov (United States)

Sugiman, Apino, Ezi

2017-05-01

Generally, teachers use oral communication for teaching mathematics. Taking an opposite perspective, this paper describes how instructional practices for mathematics can be carried out namely a silent method. Silent method uses body language, written, and oral communication for classroom interaction. This research uses a design research approach consisting of four phases: preliminary, prototyping and developing the instruction, and assessment. There are four stages of silent method. The first stage is conditioning stage in which the teacher introduces the method and makes agreement about the rule of the game'. It is followed by the second one, elaborating stage, where students guess and explore alternative answers. The third stage is developing mathematical thinking by structuring and symbolizing. Finally, the method is ended by reinforcing stage which aims at strengthening and reflecting student's understanding. In this paper, every stage is described on the basis of practical experiences in a real mathematics classroom setting.

18. Literature Review of Applying Visual Method to Understand Mathematics

Directory of Open Access Journals (Sweden)

Yu Xiaojuan

2015-01-01

Full Text Available As a new method to understand mathematics, visualization offers a new way of understanding mathematical principles and phenomena via image thinking and geometric explanation. It aims to deepen the understanding of the nature of concepts or phenomena and enhance the cognitive ability of learners. This paper collates and summarizes the application of this visual method in the understanding of mathematics. It also makes a literature review of the existing research, especially with a visual demonstration of Euler’s formula, introduces the application of this method in solving relevant mathematical problems, and points out the differences and similarities between the visualization method and the numerical-graphic combination method, as well as matters needing attention for its application.

19. Computational benchmark problems: a review of recent work within the American Nuclear Society Mathematics and Computation Division

International Nuclear Information System (INIS)

Dodds, H.L. Jr.

1977-01-01

An overview of the recent accomplishments of the Computational Benchmark Problems Committee of the American Nuclear Society Mathematics and Computation Division is presented. Solutions of computational benchmark problems in the following eight areas are presented and discussed: (a) high-temperature gas-cooled reactor neutronics, (b) pressurized water reactor (PWR) thermal hydraulics, (c) PWR neutronics, (d) neutron transport in a cylindrical ''black'' rod, (e) neutron transport in a boiling water reactor (BWR) rod bundle, (f) BWR transient neutronics with thermal feedback, (g) neutron depletion in a heavy water reactor, and (h) heavy water reactor transient neutronics. It is concluded that these problems and solutions are of considerable value to the nuclear industry because they have been and will continue to be useful in the development, evaluation, and verification of computer codes and numerical-solution methods

20. COLLEGE STUDENTS’ PERCEPTIONS OF LEARNING MATHEMATICS AND USING COMPUTERS

OpenAIRE

Gok, Tolga

2016-01-01

Mathematics isthe key course to interpret the science and nature. A positive attitude shouldbe improved by learners to comprehend the logic of mathematics. However, mostof the research indicated that they were not interested in learning andstudying mathematics. Instead of understanding the basic principles, manystudents preferred to use sophisticated software packages or graphingcalculators for solving mathematics problems. Thus, these tools prevent theimprovement of their mathematical skills...

1. High-Precision Computation: Mathematical Physics and Dynamics

International Nuclear Information System (INIS)

Bailey, D.H.; Barrio, R.; Borwein, J.M.

2010-01-01

At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.

2. High-Precision Computation: Mathematical Physics and Dynamics

Energy Technology Data Exchange (ETDEWEB)

Bailey, D. H.; Barrio, R.; Borwein, J. M.

2010-04-01

At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.

3. Changing Pre-Service Mathematics Teachers' Beliefs about Using Computers for Teaching and Learning Mathematics: The Effect of Three Different Models

Science.gov (United States)

Karatas, Ilhan

2014-01-01

This study examines the effect of three different computer integration models on pre-service mathematics teachers' beliefs about using computers in mathematics education. Participants included 104 pre-service mathematics teachers (36 second-year students in the Computer Oriented Model group, 35 fourth-year students in the Integrated Model (IM)…

4. Computational methods in earthquake engineering

CERN Document Server

Plevris, Vagelis; Lagaros, Nikos

2017-01-01

This is the third book in a series on Computational Methods in Earthquake Engineering. The purpose of this volume is to bring together the scientific communities of Computational Mechanics and Structural Dynamics, offering a wide coverage of timely issues on contemporary Earthquake Engineering. This volume will facilitate the exchange of ideas in topics of mutual interest and can serve as a platform for establishing links between research groups with complementary activities. The computational aspects are emphasized in order to address difficult engineering problems of great social and economic importance. .

5. Mathematical methods in physics and engineering

CERN Document Server

Dettman, John W

2011-01-01

Intended for college-level physics, engineering, or mathematics students, this volume offers an algebraically based approach to various topics in applied math. It is accessible to undergraduates with a good course in calculus which includes infinite series and uniform convergence. Exercises follow each chapter to test the student's grasp of the material; however, the author has also included exercises that extend the results to new situations and lay the groundwork for new concepts to be introduced later. A list of references for further reading will be found at the end of each chapter. For t

6. Mathematical methods in the theory of queuing

CERN Document Server

Khinchin, A Y; Quenouille, M H

2013-01-01

Written by a prominent Russian mathematician, this concise monograph examines aspects of queuing theory as an application of probability. The three-part treatment begins with a study of the stream of incoming demands (or ""calls,"" in the author's terminology). Subsequent sections explore systems with losses and systems allowing delay. Prerequisites include a familiarity with the theory of probability and mathematical analysis. A. Y. Khinchin made significant contributions to probability theory, statistical physics, and several other fields. His elegant, groundbreaking work will prove of subs

7. Scattering theory in quantum mechanics. Physical principles and mathematical methods

International Nuclear Information System (INIS)

Amrein, W.O.; Jauch, J.M.; Sinha, K.B.

1977-01-01

A contemporary approach is given to the classical topics of physics. The purpose is to explain the basic physical concepts of quantum scattering theory, to develop the necessary mathematical tools for their description, to display the interrelation between the three methods (the Schroedinger equation solutions, stationary scattering theory, and time dependence) to derive the properties of various quantities of physical interest with mathematically rigorous methods

8. Variables that Affect Math Teacher Candidates' Intentions to Integrate Computer-Assisted Mathematics Education (CAME)

Science.gov (United States)

Erdogan, Ahmet

2010-01-01

Based on Social Cognitive Carier Theory (SCCT) (Lent, Brown, & Hackett, 1994, 2002), this study tested the effects of mathematics teacher candidates' self-efficacy in, outcome expectations from, and interest in CAME on their intentions to integrate Computer-Assisted Mathematics Education (CAME). While mathematics teacher candidates' outcome…

9. The Impact of Specialist School Status: A Case Study of Two Contrasting Mathematics and Computing Colleges

Science.gov (United States)

Sinkinson, Anne J.

2006-01-01

The research examines the range of effects of obtaining Specialist School status in two contrasting mathematics and computing colleges, concentrating on the mathematics department. The positive impact of a wider range of technology was evident in both schools although the inherent pedagogical perspectives within each mathematics department…

10. [Geometry, analysis, and computation in mathematics and applied science]. Progress report

Energy Technology Data Exchange (ETDEWEB)

Hoffman, D.

1994-02-01

The principal investigators work on a variety of pure and applied problems in Differential Geometry, Calculus of Variations and Mathematical Physics has been done in a computational laboratory and been based on interactive scientific computer graphics and high speed computation created by the principal investigators to study geometric interface problems in the physical sciences. We have developed software to simulate various physical phenomena from constrained plasma flow to the electron microscope imaging of the microstructure of compound materials, techniques for the visualization of geometric structures that has been used to make significant breakthroughs in the global theory of minimal surfaces, and graphics tools to study evolution processes, such as flow by mean curvature, while simultaneously developing the mathematical foundation of the subject. An increasingly important activity of the laboratory is to extend this environment in order to support and enhance scientific collaboration with researchers at other locations. Toward this end, the Center developed the GANGVideo distributed video software system and software methods for running lab-developed programs simultaneously on remote and local machines. Further, the Center operates a broadcast video network, running in parallel with the Centers data networks, over which researchers can access stored video materials or view ongoing computations. The graphical front-end to GANGVideo can be used to make multi-media mail from both live computing sessions and stored materials without video editing. Currently, videotape is used as the delivery medium, but GANGVideo is compatible with future all-digital` distribution systems. Thus as a byproduct of mathematical research, we are developing methods for scientific communication. But, most important, our research focuses on important scientific problems; the parallel development of computational and graphical tools is driven by scientific needs.

11. Methods for computing color anaglyphs

Science.gov (United States)

McAllister, David F.; Zhou, Ya; Sullivan, Sophia

2010-02-01

A new computation technique is presented for calculating pixel colors in anaglyph images. The method depends upon knowing the RGB spectral distributions of the display device and the transmission functions of the filters in the viewing glasses. It requires the solution of a nonlinear least-squares program for each pixel in a stereo pair and is based on minimizing color distances in the CIEL*a*b* uniform color space. The method is compared with several techniques for computing anaglyphs including approximation in CIE space using the Euclidean and Uniform metrics, the Photoshop method and its variants, and a method proposed by Peter Wimmer. We also discuss the methods of desaturation and gamma correction for reducing retinal rivalry.

12. Computational methods in drug discovery

Directory of Open Access Journals (Sweden)

Sumudu P. Leelananda

2016-12-01

Full Text Available The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein–ligand docking, pharmacophore modeling and QSAR techniques are reviewed.

13. Dialogue in mathematics classrooms: Beyond question-and- answer methods

Directory of Open Access Journals (Sweden)

Karin Brodie

2007-10-01

Full Text Available This paper explores different kinds of interaction observed in South African mathematics classrooms in order to unpack the notion of participation in mathematics learning. It argues that conventional question-and-answer methods do not promote the kind of interaction that the new South African curriculum calls for. It presents more appropriate kinds of interactions, where teachers maintain high task demands, respond to genuine learner questions and support conversations among learners. The paper argues that combinations of different kinds of interaction are  most likely to support learner participation and mathematical thinking in classrooms.

14. Methods and models in mathematical biology deterministic and stochastic approaches

CERN Document Server

Müller, Johannes

2015-01-01

This book developed from classes in mathematical biology taught by the authors over several years at the Technische Universität München. The main themes are modeling principles, mathematical principles for the analysis of these models, and model-based analysis of data. The key topics of modern biomathematics are covered: ecology, epidemiology, biochemistry, regulatory networks, neuronal networks, and population genetics. A variety of mathematical methods are introduced, ranging from ordinary and partial differential equations to stochastic graph theory and  branching processes. A special emphasis is placed on the interplay between stochastic and deterministic models.

15. Computational and Mathematical Modeling of Coupled Superconducting Quantum Interference Devices

Science.gov (United States)

Berggren, Susan Anne Elizabeth

This research focuses on conducting an extensive computational investigation and mathematical analysis into the average voltage response of arrays of Superconducting Quantum Interference Devices (SQUIDs). These arrays will serve as the basis for the development of a sensitive, low noise, significantly lower Size, Weight and Power (SWaP) antenna integrated with Low-Noise Amplifier (LNA) using the SQUID technology. The goal for this antenna is to be capable of meeting all requirements for Guided Missile Destroyers (DDG) 1000 class ships for Information Operations/Signals Intelligence (IO/SIGINT) applications in Very High Frequency/Ultra High Frequency (V/UHF) bands. The device will increase the listening capability of receivers by moving technology into a new regime of energy detection allowing wider band, smaller size, more sensitive, stealthier systems. The smaller size and greater sensitivity will allow for ships to be “de-cluttered” of their current large dishes and devices, replacing everything with fewer and smaller SQUID antenna devices. The fewer devices present on the deck of a ship, the more invisible the ship will be to enemy forces. We invent new arrays of SQUIDs, optimized for signal detection with very high dynamic range and excellent spur-free dynamic range, while maintaining extreme small size (and low radar cross section), wide bandwidth, and environmentally noise limited sensitivity, effectively shifting the bottle neck of receiver systems forever away from the antenna itself deeper into the receiver chain. To accomplish these goals we develop and validate mathematical models for different designs of SQUID arrays and use them to invent a new device and systems design. This design is capable of significantly exceeding, per size weight and power, state-of-the-art receiver system measures of performance, such as bandwidth, sensitivity, dynamic range, and spurious-free dynamic range.

16. Discrete mathematics, formal methods, the Z schema and the software life cycle

Science.gov (United States)

Bown, Rodney L.

1991-01-01

The proper role and scope for the use of discrete mathematics and formal methods in support of engineering the security and integrity of components within deployed computer systems are discussed. It is proposed that the Z schema can be used as the specification language to capture the precise definition of system and component interfaces. This can be accomplished with an object oriented development paradigm.

17. THE METHODICAL ASPECTS OF THE ALGEBRA AND THE MATHEMATICAL ANALYSIS STUDY USING THE SAGEMATH CLOUD

Directory of Open Access Journals (Sweden)

M. Popel

2014-06-01

Full Text Available The quality of mathematics education depends largely on the quality of education in general. The main idea may be summarized as follows: in order to educate the younger generation of people to be able to meet adequately the demands of the time, it is necessary to create conditions for the high-quality mathematics education. Improving the quality of mathematics education of pupils in secondary school is one of the most pressing problems. Contents of the school course of mathematics and its teaching method has always been the subject of undammed and sometimes stormy scientific debates. There are especially true methods of teaching algebra and the analisis in the high secondary school. Still in the study process the algebraic concepts and principles of analysis are given in such an abstract and generalized form that the student may has considerable difficulties to map these general abstract concepts to the certain concrete images, they are generalizations of. Improving education quality indicators can be achieved by using the appropriate computer technology. The article deals with the use of the cloud-oriented systems of computer mathematics (SCM. The prospects of development of the Web-SCM in terms of cloud-based learning environment are considered. The pedagogical features of the SageMath Cloud use as a tool for mathematics learning are revealed. The methodological aspects of algebra and elementary analysis teaching in a high profile school using the cloud-oriented the SCM SageMath Cloud are revealed.

18. Using the Tower of Hanoi Puzzle to Infuse Your Mathematics Classroom with Computer Science Concepts

Science.gov (United States)

Marzocchi, Alison S.

2016-01-01

This article suggests that logic puzzles, such as the well-known Tower of Hanoi puzzle, can be used to introduce computer science concepts to mathematics students of all ages. Mathematics teachers introduce their students to computer science concepts that are enacted spontaneously and subconsciously throughout the solution to the Tower of Hanoi…

19. Effectiveness of Computer-Assisted Mathematics Education (CAME) over Academic Achievement: A Meta-Analysis Study

Science.gov (United States)

Demir, Seda; Basol, Gülsah

2014-01-01

The aim of the current study is to determine the overall effects of Computer-Assisted Mathematics Education (CAME) on academic achievement. After an extensive review of the literature, studies using Turkish samples and observing the effects of Computer-Assisted Education (CAE) on mathematics achievement were examined. As a result of this…

20. Computer-Assisted Mathematics Instruction for Students with Specific Learning Disability: A Review of the Literature

Science.gov (United States)

Stultz, Sherry L.

2017-01-01

This review was conducted to evaluate the current body of scholarly research regarding the use of computer-assisted instruction (CAI) to teach mathematics to students with specific learning disability (SLD). For many years, computers are utilized for educational purposes. However, the effectiveness of CAI for teaching mathematics to this specific…

1. Examining Student Opinions on Computer Use Based on the Learning Styles in Mathematics Education

Science.gov (United States)

Ozgen, Kemal; Bindak, Recep

2012-01-01

The purpose of this study is to identify the opinions of high school students, who have different learning styles, related to computer use in mathematics education. High school students' opinions on computer use in mathematics education were collected with both qualitative and quantitative approaches in the study conducted with a survey model. For…

2. Physics, Computer Science and Mathematics Division. Annual report, 1 January--31 December 1977. [LBL, 1977

Energy Technology Data Exchange (ETDEWEB)

Lepore, J.V. (ed.)

1977-01-01

This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during 1977. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics, although there is a relatively small program of medium-energy research. The High Energy Physics research program in the Physics Division is concerned with fundamental research which will enable man to comprehend the nature of the physical world. The major effort is now directed toward experiments with positron-electron colliding beam at PEP. The Medium Energy Physics program is concerned with research using mesons and nucleons to probe the properties of matter. This research is concerned with the study of nuclear structure, nuclear reactions, and the interactions between nuclei and electromagnetic radiation and mesons. The Computer Science and Applied Mathematics Department engages in research in a variety of computer science and mathematics disciplines. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The Computer Center provides large-scale computational support to LBL's scientific programs. Descriptions of the various activities are quite short; references to published results are given. 24 figures. (RWR)

3. Physics, Computer Science and Mathematics Division. Annual report, 1 January--31 December 1977

International Nuclear Information System (INIS)

Lepore, J.V.

1977-01-01

This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during 1977. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics, although there is a relatively small program of medium-energy research. The High Energy Physics research program in the Physics Division is concerned with fundamental research which will enable man to comprehend the nature of the physical world. The major effort is now directed toward experiments with positron-electron colliding beam at PEP. The Medium Energy Physics program is concerned with research using mesons and nucleons to probe the properties of matter. This research is concerned with the study of nuclear structure, nuclear reactions, and the interactions between nuclei and electromagnetic radiation and mesons. The Computer Science and Applied Mathematics Department engages in research in a variety of computer science and mathematics disciplines. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The Computer Center provides large-scale computational support to LBL's scientific programs. Descriptions of the various activities are quite short; references to published results are given. 24 figures

4. Mathematical methods linear algebra normed spaces distributions integration

CERN Document Server

Korevaar, Jacob

1968-01-01

Mathematical Methods, Volume I: Linear Algebra, Normed Spaces, Distributions, Integration focuses on advanced mathematical tools used in applications and the basic concepts of algebra, normed spaces, integration, and distributions.The publication first offers information on algebraic theory of vector spaces and introduction to functional analysis. Discussions focus on linear transformations and functionals, rectangular matrices, systems of linear equations, eigenvalue problems, use of eigenvectors and generalized eigenvectors in the representation of linear operators, metric and normed vector

5. Computer-based image studies on tumor nests mathematical features of breast cancer and their clinical prognostic value.

Science.gov (United States)

Wang, Lin-Wei; Qu, Ai-Ping; Yuan, Jing-Ping; Chen, Chuang; Sun, Sheng-Rong; Hu, Ming-Bai; Liu, Juan; Li, Yan

2013-01-01

The expending and invasive features of tumor nests could reflect the malignant biological behaviors of breast invasive ductal carcinoma. Useful information on cancer invasiveness hidden within tumor nests could be extracted and analyzed by computer image processing and big data analysis. Tissue microarrays from invasive ductal carcinoma (n = 202) were first stained with cytokeratin by immunohistochemical method to clearly demarcate the tumor nests. Then an expert-aided computer analysis system was developed to study the mathematical and geometrical features of the tumor nests. Computer recognition system and imaging analysis software extracted tumor nests information, and mathematical features of tumor nests were calculated. The relationship between tumor nests mathematical parameters and patients' 5-year disease free survival was studied. There were 8 mathematical parameters extracted by expert-aided computer analysis system. Three mathematical parameters (number, circularity and total perimeter) with area under curve >0.5 and 4 mathematical parameters (average area, average perimeter, total area/total perimeter, average (area/perimeter)) with area under curve nests could be a useful parameter to predict the prognosis of early stage breast invasive ductal carcinoma.

6. Physics, Computer Science and Mathematics Division annual report, 1 January--31 December 1975

International Nuclear Information System (INIS)

Lepore, J.L.

1975-01-01

This annual report describes the scientific research and other work carried out during the calendar year 1975. The report is nontechnical in nature, with almost no data. A 17-page bibliography lists the technical papers which detail the work. The contents of the report include the following: experimental physics (high-energy physics--SPEAR, PEP, SLAC, FNAL, BNL, Bevatron; particle data group; medium-energy physics; astrophysics, astronomy, and cosmic rays; instrumentation development), theoretical physics (particle theory and accelerator theory and design), computer science and applied mathematics (data management systems, socio-economic environment demographic information system, computer graphics, computer networks, management information systems, computational physics and data analysis, mathematical modeling, programing languages, applied mathematics research), real-time systems (ModComp and PDP networks), and computer center activities (systems programing, user services, hardware development, computer operations). A glossary of computer science and mathematics terms is also included. 32 figures

7. Physics, Computer Science and Mathematics Division annual report, 1 January--31 December 1975. [LBL

Energy Technology Data Exchange (ETDEWEB)

Lepore, J.L. (ed.)

1975-01-01

This annual report describes the scientific research and other work carried out during the calendar year 1975. The report is nontechnical in nature, with almost no data. A 17-page bibliography lists the technical papers which detail the work. The contents of the report include the following: experimental physics (high-energy physics--SPEAR, PEP, SLAC, FNAL, BNL, Bevatron; particle data group; medium-energy physics; astrophysics, astronomy, and cosmic rays; instrumentation development), theoretical physics (particle theory and accelerator theory and design), computer science and applied mathematics (data management systems, socio-economic environment demographic information system, computer graphics, computer networks, management information systems, computational physics and data analysis, mathematical modeling, programing languages, applied mathematics research), real-time systems (ModComp and PDP networks), and computer center activities (systems programing, user services, hardware development, computer operations). A glossary of computer science and mathematics terms is also included. 32 figures. (RWR)

8. Computational methods for fluid dynamics

CERN Document Server

Ferziger, Joel H

2002-01-01

In its 3rd revised and extended edition the book offers an overview of the techniques used to solve problems in fluid mechanics on computers and describes in detail those most often used in practice. Included are advanced methods in computational fluid dynamics, like direct and large-eddy simulation of turbulence, multigrid methods, parallel computing, moving grids, structured, block-structured and unstructured boundary-fitted grids, free surface flows. The 3rd edition contains a new section dealing with grid quality and an extended description of discretization methods. The book shows common roots and basic principles for many different methods. The book also contains a great deal of practical advice for code developers and users, it is designed to be equally useful to beginners and experts. The issues of numerical accuracy, estimation and reduction of numerical errors are dealt with in detail, with many examples. A full-feature user-friendly demo-version of a commercial CFD software has been added, which ca...

9. Mathematic models for a ray tracing method and its applications in wireless optical communications.

Science.gov (United States)

Zhang, Minglun; Zhang, Yangan; Yuan, Xueguang; Zhang, Jinnan

2010-08-16

This paper presents a new ray tracing method, which contains a whole set of mathematic models, and its validity is verified by simulations. In addition, both theoretical analysis and simulation results show that the computational complexity of the method is much lower than that of previous ones. Therefore, the method can be used to rapidly calculate the impulse response of wireless optical channels for complicated systems.

10. Modules and methods for all photonic computing

Science.gov (United States)

Schultz, David R.; Ma, Chao Hung

2001-01-01

A method for all photonic computing, comprising the steps of: encoding a first optical/electro-optical element with a two dimensional mathematical function representing input data; illuminating the first optical/electro-optical element with a collimated beam of light; illuminating a second optical/electro-optical element with light from the first optical/electro-optical element, the second optical/electro-optical element having a characteristic response corresponding to an iterative algorithm useful for solving a partial differential equation; iteratively recirculating the signal through the second optical/electro-optical element with light from the second optical/electro-optical element for a predetermined number of iterations; and, after the predetermined number of iterations, optically and/or electro-optically collecting output data representing an iterative optical solution from the second optical/electro-optical element.

11. A functional analytic approach to computer-interactive mathematics.

Science.gov (United States)

Ninness, Chris; Rumph, Robin; McCuller, Glen; Harrison, Carol; Ford, Angela M; Ninness, Sharon K

2005-01-01

Following a pretest, 11 participants who were naive with regard to various algebraic and trigonometric transformations received an introductory lecture regarding the fundamentals of the rectangular coordinate system. Following the lecture, they took part in a computer-interactive matching-to-sample procedure in which they received training on particular formula-to-formula and formula-to-graph relations as these formulas pertain to reflections and vertical and horizontal shifts. In training A-B, standard formulas served as samples and factored formulas served as comparisons. In training B-C, factored formulas served as samples and graphs served as comparisons. Subsequently, the program assessed for mutually entailed B-A and C-B relations as well as combinatorially entailed C-A and A-C relations. After all participants demonstrated mutual entailment and combinatorial entailment, we employed a test of novel relations to assess 40 different and complex variations of the original training formulas and their respective graphs. Six of 10 participants who completed training demonstrated perfect or near-perfect performance in identifying novel formula-to-graph relations. Three of the 4 participants who made more than three incorrect responses during the assessment of novel relations showed some commonality among their error patterns. Derived transfer of stimulus control using mathematical relations is discussed.

12. Numerical computer methods part E

CERN Document Server

Johnson, Michael L

2004-01-01

The contributions in this volume emphasize analysis of experimental data and analytical biochemistry, with examples taken from biochemistry. They serve to inform biomedical researchers of the modern data analysis methods that have developed concomitantly with computer hardware. Selected Contents: A practical approach to interpretation of SVD results; modeling of oscillations in endocrine networks with feedback; quantifying asynchronous breathing; sample entropy; wavelet modeling and processing of nasal airflow traces.

13. Numerical methods design, analysis, and computer implementation of algorithms

CERN Document Server

Greenbaum, Anne

2012-01-01

Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects--design, analysis, or computer implementation--of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book a...

14. Contemporary computational mathematics a celebration of the 80th birthday of Ian Sloan

CERN Document Server

Kuo, Frances; Woźniakowski, Henryk

2018-01-01

This book is a tribute to Professor Ian Hugh Sloan on the occasion of his 80th birthday. It consists of nearly 60 articles written by international leaders in a diverse range of areas in contemporary computational mathematics. These papers highlight the impact and many achievements of Professor Sloan in his distinguished academic career. The book also presents state of the art knowledge in many computational fields such as quasi-Monte Carlo and Monte Carlo methods for multivariate integration, multi-level methods, finite element methods, uncertainty quantification, spherical designs and integration on the sphere, approximation and interpolation of multivariate functions, oscillatory integrals, and in general in information-based complexity and tractability, as well as in a range of other topics. The book also tells the life story of the renowned mathematician, family man, colleague and friend, who has been an inspiration to many of us. The reader may especially enjoy the story from the perspective of his fami...

15. Mathematical foundation of the optimization-based fluid animation method

DEFF Research Database (Denmark)

Erleben, Kenny; Misztal, Marek Krzysztof; Bærentzen, Jakob Andreas

2011-01-01

We present the mathematical foundation of a fluid animation method for unstructured meshes. Key contributions not previously treated are the extension to include diffusion forces and higher order terms of non-linear force approximations. In our discretization we apply a fractional step method to ...

16. Preferences of Teaching Methods and Techniques in Mathematics with Reasons

Science.gov (United States)

Ünal, Menderes

2017-01-01

In this descriptive study, the goal was to determine teachers' preferred pedagogical methods and techniques in mathematics. Qualitative research methods were employed, primarily case studies. 40 teachers were randomly chosen from various secondary schools in Kirsehir during the 2015-2016 educational terms, and data were gathered via…

17. How Preservice Teachers Make Meaning of Mathematics Methods Texts

Science.gov (United States)

Harkness, Shelly Sheats; Brass, Amy

2017-01-01

Mathematics methods texts are important resources for supporting preservice teachers' learning. Methods instructors routinely assign readings from texts. Yet, anecdotally and also based on reading compliance literature, many students report that they do not read assigned readings. Within this paper we briefly describe the findings from a survey of…

18. Computational methods for stellerator configurations

International Nuclear Information System (INIS)

Betancourt, O.

1992-01-01

This project had two main objectives. The first one was to continue to develop computational methods for the study of three dimensional magnetic confinement configurations. The second one was to collaborate and interact with researchers in the field who can use these techniques to study and design fusion experiments. The first objective has been achieved with the development of the spectral code BETAS and the formulation of a new variational approach for the study of magnetic island formation in a self consistent fashion. The code can compute the correct island width corresponding to the saturated island, a result shown by comparing the computed island with the results of unstable tearing modes in Tokamaks and with experimental results in the IMS Stellarator. In addition to studying three dimensional nonlinear effects in Tokamaks configurations, these self consistent computed island equilibria will be used to study transport effects due to magnetic island formation and to nonlinearly bifurcated equilibria. The second objective was achieved through direct collaboration with Steve Hirshman at Oak Ridge, D. Anderson and R. Talmage at Wisconsin as well as through participation in the Sherwood and APS meetings

19. Approach to Computer Implementation of Mathematical Model of 3-Phase Induction Motor

Science.gov (United States)

Pustovetov, M. Yu

2018-03-01

This article discusses the development of the computer model of an induction motor based on the mathematical model in a three-phase stator reference frame. It uses an approach that allows combining during preparation of the computer model dual methods: means of visual programming circuitry (in the form of electrical schematics) and logical one (in the form of block diagrams). The approach enables easy integration of the model of an induction motor as part of more complex models of electrical complexes and systems. The developed computer model gives the user access to the beginning and the end of a winding of each of the three phases of the stator and rotor. This property is particularly important when considering the asymmetric modes of operation or when powered by the special circuitry of semiconductor converters.

20. A Guided Tour of Mathematical Methods - 2nd Edition

Science.gov (United States)

Snieder, Roel

2004-09-01

Mathematical methods are essential tools for all physical scientists. This second edition provides a comprehensive tour of the mathematical knowledge and techniques that are needed by students in this area. In contrast to more traditional textbooks, all the material is presented in the form of problems. Within these problems the basic mathematical theory and its physical applications are well integrated. The mathematical insights that the student acquires are therefore driven by their physical insight. Topics that are covered include vector calculus, linear algebra, Fourier analysis, scale analysis, complex integration, Green's functions, normal modes, tensor calculus, and perturbation theory. The second edition contains new chapters on dimensional analysis, variational calculus, and the asymptotic evaluation of integrals. This book can be used by undergraduates, and lower-level graduate students in the physical sciences. It can serve as a stand-alone text, or as a source of problems and examples to complement other textbooks. All the material is presented in the form of problems Mathematical insights are gained by getting the reader to develop answers themselves Many applications of the mathematics are given

1. Computational Technique for Teaching Mathematics (CTTM): Visualizing the Polynomial's Resultant

Science.gov (United States)

Alves, Francisco Regis Vieira

2015-01-01

We find several applications of the Dynamic System Geogebra--DSG related predominantly to the basic mathematical concepts at the context of the learning and teaching in Brasil. However, all these works were developed in the basic level of Mathematics. On the other hand, we discuss and explore, with DSG's help, some applications of the polynomial's…

2. Cognitive Play and Mathematical Learning in Computer Microworlds.

Science.gov (United States)

Steffe, Leslie P.; Wiegel, Heide G.

1994-01-01

Uses the constructivist principle of active learning to explore the possibly essential elements in transforming a cognitive play activity into mathematical activity. Suggests that for such transformation to occur, cognitive play activity must involve operations of intelligence that, yield situations of mathematical schemes. Illustrates the…

3. Computational methods for molecular imaging

CERN Document Server

Shi, Kuangyu; Li, Shuo

2015-01-01

This volume contains original submissions on the development and application of molecular imaging computing. The editors invited authors to submit high-quality contributions on a wide range of topics including, but not limited to: • Image Synthesis & Reconstruction of Emission Tomography (PET, SPECT) and other Molecular Imaging Modalities • Molecular Imaging Enhancement • Data Analysis of Clinical & Pre-clinical Molecular Imaging • Multi-Modal Image Processing (PET/CT, PET/MR, SPECT/CT, etc.) • Machine Learning and Data Mining in Molecular Imaging. Molecular imaging is an evolving clinical and research discipline enabling the visualization, characterization and quantification of biological processes taking place at the cellular and subcellular levels within intact living subjects. Computational methods play an important role in the development of molecular imaging, from image synthesis to data analysis and from clinical diagnosis to therapy individualization. This work will bring readers fro...

4. An Evaluation into the Views of Candidate Mathematics Teachers over "Tablet Computers" to be Applied in Secondary Schools

Science.gov (United States)

Aksu, Hasan Hüseyin

2014-01-01

This study aims to investigate, in terms of different variables, the views of prospective Mathematics teachers on tablet computers to be used in schools as an outcome of the Fatih Project, which was initiated by the Ministry of National Education. In the study, scanning model, one of the quantitative research methods, was used. In the population…

5. Discrete Mathematics in the Schools. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Volume 36.

Science.gov (United States)

Rosenstein, Joseph G., Ed.; Franzblau, Deborah S., Ed.; Roberts, Fred S., Ed.

This book is a collection of articles by experienced educators and explains why and how discrete mathematics should be taught in K-12 classrooms. It includes evidence for "why" and practical guidance for "how" and also discusses how discrete mathematics can be used as a vehicle for achieving the broader goals of the major…

6. Computational Psychiatry: towards a mathematically informed understanding of mental illness

Science.gov (United States)

Huys, Quentin J M; Roiser, Jonathan P

2016-01-01

Computational Psychiatry aims to describe the relationship between the brain's neurobiology, its environment and mental symptoms in computational terms. In so doing, it may improve psychiatric classification and the diagnosis and treatment of mental illness. It can unite many levels of description in a mechanistic and rigorous fashion, while avoiding biological reductionism and artificial categorisation. We describe how computational models of cognition can infer the current state of the environment and weigh up future actions, and how these models provide new perspectives on two example disorders, depression and schizophrenia. Reinforcement learning describes how the brain can choose and value courses of actions according to their long-term future value. Some depressive symptoms may result from aberrant valuations, which could arise from prior beliefs about the loss of agency (‘helplessness’), or from an inability to inhibit the mental exploration of aversive events. Predictive coding explains how the brain might perform Bayesian inference about the state of its environment by combining sensory data with prior beliefs, each weighted according to their certainty (or precision). Several cortical abnormalities in schizophrenia might reduce precision at higher levels of the inferential hierarchy, biasing inference towards sensory data and away from prior beliefs. We discuss whether striatal hyperdopaminergia might have an adaptive function in this context, and also how reinforcement learning and incentive salience models may shed light on the disorder. Finally, we review some of Computational Psychiatry's applications to neurological disorders, such as Parkinson's disease, and some pitfalls to avoid when applying its methods. PMID:26157034

7. Methods of mathematical modelling continuous systems and differential equations

CERN Document Server

Witelski, Thomas

2015-01-01

This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.

8. Mathematical methods in engineering and physics

CERN Document Server

Felder, Gary N

2016-01-01

This text is intended for the undergraduate course in math methods, with an audience of physics and engineering majors. As a required course in most departments, the text relies heavily on explained examples, real-world applications and student engagement. Supporting the use of active learning, a strong focus is placed upon physical motivation combined with a versatile coverage of topics that can be used as a reference after students complete the course. Each chapter begins with an overview that includes a list of prerequisite knowledge, a list of skills that will be covered in the chapter, and an outline of the sections. Next comes the motivating exercise, which steps the students through a real-world physical problem that requires the techniques taught in each chapter.

9. Department of Energy Mathematical, Information, and Computational Sciences Division: High Performance Computing and Communications Program

Energy Technology Data Exchange (ETDEWEB)

NONE

1996-11-01

This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, The DOE Program in HPCC), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW).

10. Department of Energy: MICS (Mathematical Information, and Computational Sciences Division). High performance computing and communications program

Energy Technology Data Exchange (ETDEWEB)

NONE

1996-06-01

This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, {open_quotes}The DOE Program in HPCC{close_quotes}), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW). The information pointed to by the URL is updated frequently, and the interested reader is urged to access the WWW for the latest information.

11. Evolutionary Computing Methods for Spectral Retrieval

Science.gov (United States)

Terrile, Richard; Fink, Wolfgang; Huntsberger, Terrance; Lee, Seugwon; Tisdale, Edwin; VonAllmen, Paul; Tinetti, Geivanna

2009-01-01

A methodology for processing spectral images to retrieve information on underlying physical, chemical, and/or biological phenomena is based on evolutionary and related computational methods implemented in software. In a typical case, the solution (the information that one seeks to retrieve) consists of parameters of a mathematical model that represents one or more of the phenomena of interest. The methodology was developed for the initial purpose of retrieving the desired information from spectral image data acquired by remote-sensing instruments aimed at planets (including the Earth). Examples of information desired in such applications include trace gas concentrations, temperature profiles, surface types, day/night fractions, cloud/aerosol fractions, seasons, and viewing angles. The methodology is also potentially useful for retrieving information on chemical and/or biological hazards in terrestrial settings. In this methodology, one utilizes an iterative process that minimizes a fitness function indicative of the degree of dissimilarity between observed and synthetic spectral and angular data. The evolutionary computing methods that lie at the heart of this process yield a population of solutions (sets of the desired parameters) within an accuracy represented by a fitness-function value specified by the user. The evolutionary computing methods (ECM) used in this methodology are Genetic Algorithms and Simulated Annealing, both of which are well-established optimization techniques and have also been described in previous NASA Tech Briefs articles. These are embedded in a conceptual framework, represented in the architecture of the implementing software, that enables automatic retrieval of spectral and angular data and analysis of the retrieved solutions for uniqueness.

12. Calculation method of rate and area of sedimentation, by non-conventional mathematical process of data treatment

International Nuclear Information System (INIS)

Cota, P.L.

1987-01-01

The used methods for calculating the rate and area of sedimentation are based in techniques of graphical resolution. The solution of the problem by a mathematical resolution, using computational methods, is more fast and more accuracy. The comparison between the results from this methods and the conventional method is shown. (E.G.) [pt

13. Computer methods in general relativity: algebraic computing

CERN Document Server

Araujo, M E; Skea, J E F; Koutras, A; Krasinski, A; Hobill, D; McLenaghan, R G; Christensen, S M

1993-01-01

Karlhede & MacCallum [1] gave a procedure for determining the Lie algebra of the isometry group of an arbitrary pseudo-Riemannian manifold, which they intended to im- plement using the symbolic manipulation package SHEEP but never did. We have recently ﬁnished making this procedure explicit by giving an algorithm suitable for implemen- tation on a computer [2]. Specifically, we have written an algorithm for determining the isometry group of a spacetime (in four dimensions), and partially implemented this algorithm using the symbolic manipulation package CLASSI, which is an extension of SHEEP.

14. Application of computer mathematical modeling in nuclear well-logging industry

International Nuclear Information System (INIS)

Cai Shaohui

1994-01-01

Nuclear well logging techniques have made rapid progress since the first well log calibration facility (the API pits) was dedicated in 1959. Then came the first computer mathematical model in the late 70's. Mathematical modeling can now minimize design and experiment time, as well as provide new information and idea on tool design, environmental effects and result interpretation. The author gives a brief review on the achievements of mathematical modeling on nuclear logging problems

15. Recent Development in Rigorous Computational Methods in Dynamical Systems

OpenAIRE

Arai, Zin; Kokubu, Hiroshi; Pilarczyk, Paweł

2009-01-01

We highlight selected results of recent development in the area of rigorous computations which use interval arithmetic to analyse dynamical systems. We describe general ideas and selected details of different ways of approach and we provide specific sample applications to illustrate the effectiveness of these methods. The emphasis is put on a topological approach, which combined with rigorous calculations provides a broad range of new methods that yield mathematically rel...

16. Prevalence of Mixed Methods Research in Mathematics Education

Science.gov (United States)

Ross, Amanda A.; Onwuegbuzie, Anthony J.

2012-01-01

In wake of federal legislation such as the No Child Left Behind Act of 2001 that have called for "scientifically based research in education," this study examined the possible trends in mixed methods research articles published in 2 peer-reviewed mathematics education journals (n = 87) from 2002 to 2006. The study also illustrates how…

17. Current Mathematical Methods Used in QSAR/QSPR Studies

Directory of Open Access Journals (Sweden)

Peixun Liu

2009-04-01

Full Text Available This paper gives an overview of the mathematical methods currently used in quantitative structure-activity/property relationship (QASR/QSPR studies. Recently, the mathematical methods applied to the regression of QASR/QSPR models are developing very fast, and new methods, such as Gene Expression Programming (GEP, Project Pursuit Regression (PPR and Local Lazy Regression (LLR have appeared on the QASR/QSPR stage. At the same time, the earlier methods, including Multiple Linear Regression (MLR, Partial Least Squares (PLS, Neural Networks (NN, Support Vector Machine (SVM and so on, are being upgraded to improve their performance in QASR/QSPR studies. These new and upgraded methods and algorithms are described in detail, and their advantages and disadvantages are evaluated and discussed, to show their application potential in QASR/QSPR studies in the future.

18. Climate of mathematics through English instruction (CLIL method

Directory of Open Access Journals (Sweden)

Helena Binterová

2012-03-01

Full Text Available The paper presents a case study focusing on the climate of the teaching of mathematics in a concrete school. The quantitative characteristics of the climate are based on questionnaires and interviews. The study presents research results conducted in connection with implementation of the teaching of mathematics in a foreign language. After analyzing interviews with teachers and pupils together with the analysis of the questionnaires, the paper describes changes of the climate of the mathematics teaching in a diff erent language than the mother tongue from the teachers' as well as the pupils' point of view. At the same time, the paper identifies possible causes of the changes and describes in detail teaching methods and characteristics of the teaching and learning environment.

19. Exercises and problems in mathematical methods of physics

CERN Document Server

Cicogna, Giampaolo

2018-01-01

This book presents exercises and problems in the mathematical methods of physics with the aim of offering undergraduate students an alternative way to explore and fully understand the mathematical notions on which modern physics is based. The exercises and problems are proposed not in a random order but rather in a sequence that maximizes their educational value. Each section and subsection starts with exercises based on first definitions, followed by groups of problems devoted to intermediate and, subsequently, more elaborate situations. Some of the problems are unavoidably "routine", but others bring to the forenontrivial properties that are often omitted or barely mentioned in textbooks. There are also problems where the reader is guided to obtain important results that are usually stated in textbooks without complete proofs. In all, some 350 solved problems covering all mathematical notions useful to physics are included. While the book is intended primarily for undergraduate students of physics, students...

20. Improving Mathematics Learning of Kindergarten Students through Computer-Assisted Instruction

Science.gov (United States)

Foster, Matthew E.; Anthony, Jason L.; Clements, Doug H.; Sarama, Julie; Williams, Jeffrey M.

2016-01-01

This study evaluated the effects of a mathematics software program, the Building Blocks software suite, on young children's mathematics performance. Participants included 247 Kindergartners from 37 classrooms in 9 schools located in low-income communities. Children within classrooms were randomly assigned to receive 21 weeks of computer-assisted…

1. The Gap between Expectations and Reality: Integrating Computers into Mathematics Classrooms

Science.gov (United States)

Guven, Bulent; Cakiroglu, Unal; Akkan, Yasar

2009-01-01

As a result of dramatic changes in mathematics education around the world, in Turkey both elementary and secondary school mathematics curriculums have changed in the light of new demands since 2005. In order to perform the expected change in newly developed curriculum, computer should be integrated into learning and teaching process. Teachers'…

2. Using Mental Imagery Processes for Teaching and Research in Mathematics and Computer Science

Science.gov (United States)

Arnoux, Pierre; Finkel, Alain

2010-01-01

The role of mental representations in mathematics and computer science (for teaching or research) is often downplayed or even completely ignored. Using an ongoing work on the subject, we argue for a more systematic study and use of mental representations, to get an intuition of mathematical concepts, and also to understand and build proofs. We…

3. Secondary School Students' Attitudes towards Mathematics Computer--Assisted Instruction Environment in Kenya

Science.gov (United States)

Mwei, Philip K.; Wando, Dave; Too, Jackson K.

2012-01-01

This paper reports the results of research conducted in six classes (Form IV) with 205 students with a sample of 94 respondents. Data represent students' statements that describe (a) the role of Mathematics teachers in a computer-assisted instruction (CAI) environment and (b) effectiveness of CAI in Mathematics instruction. The results indicated…

4. Research in progress in applied mathematics, numerical analysis, and computer science

Science.gov (United States)

1990-01-01

Research conducted at the Institute in Science and Engineering in applied mathematics, numerical analysis, and computer science is summarized. The Institute conducts unclassified basic research in applied mathematics in order to extend and improve problem solving capabilities in science and engineering, particularly in aeronautics and space.

5. Learning Mathematics by Designing, Programming, and Investigating with Interactive, Dynamic Computer-Based Objects

Science.gov (United States)

Marshall, Neil; Buteau, Chantal

2014-01-01

As part of their undergraduate mathematics curriculum, students at Brock University learn to create and use computer-based tools with dynamic, visual interfaces, called Exploratory Objects, developed for the purpose of conducting pure or applied mathematical investigations. A student's Development Process Model of creating and using an Exploratory…

6. Prospects of Cloud Computing as Safe Haven for Improving Mathematics Education in Nigeria Tertiary Institutions

OpenAIRE

Iji, Clement Onwu; Abah, Joshua Abah

2016-01-01

International audience; Historically, mathematics education has been bedeviled by the deployment of instructional strategies that seriously stunt the growth of students. Methodologies and approaches of instructional delivery in tertiary institutions have raised the need for technological augmentation for both students and mathematics educators. Cloud computing yield itself to this quest by strengthening individualized learning via unrestricted access to infrastructure, platforms, content, and...

7. Getting from x to y without Crashing: Computer Syntax in Mathematics Education

Science.gov (United States)

Jeffrey, David J.

2010-01-01

When we use technology to teach mathematics, we hope to focus on the mathematics, restricting the computer software systems to providing support for our pedagogy. It is a matter of common experience, however, that students can become distracted or frustrated by the quirks of the particular software system being used. Here, experience using the…

8. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

Science.gov (United States)

1987-10-01

include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen

9. Partnership in Being a Specialist Mathematics and Computing College--Who Gains What, How and Why?

Science.gov (United States)

Sinkinson, Anne J.

2007-01-01

The research took place in a mathematics and computing specialist school. The article reports on part of a case study of the mathematics department's experience of being a major contributor to the requirements of being a specialist school. This article aims to explore and describe one model of partnership within the "community" remit of…

10. A Study of the Use of a Handheld Computer Algebra System in Discrete Mathematics

Science.gov (United States)

Powers, Robert A.; Allison, Dean E.; Grassl, Richard M.

2005-01-01

This study investigated the impact of the TI-92 handheld Computer Algebra System (CAS) on student achievement in a discrete mathematics course. Specifically, the researchers examined the differences between a CAS section and a control section of discrete mathematics on students' in-class examinations. Additionally, they analysed student approaches…

11. Fast computation of the characteristics method on vector computers

International Nuclear Information System (INIS)

Kugo, Teruhiko

2001-11-01

Fast computation of the characteristics method to solve the neutron transport equation in a heterogeneous geometry has been studied. Two vector computation algorithms; an odd-even sweep (OES) method and an independent sequential sweep (ISS) method have been developed and their efficiency to a typical fuel assembly calculation has been investigated. For both methods, a vector computation is 15 times faster than a scalar computation. From a viewpoint of comparison between the OES and ISS methods, the followings are found: 1) there is a small difference in a computation speed, 2) the ISS method shows a faster convergence and 3) the ISS method saves about 80% of computer memory size compared with the OES method. It is, therefore, concluded that the ISS method is superior to the OES method as a vectorization method. In the vector computation, a table-look-up method to reduce computation time of an exponential function saves only 20% of a whole computation time. Both the coarse mesh rebalance method and the Aitken acceleration method are effective as acceleration methods for the characteristics method, a combination of them saves 70-80% of outer iterations compared with a free iteration. (author)

12. Discrete Mathematics

DEFF Research Database (Denmark)

Sørensen, John Aasted

2011-01-01

The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

13. The Effectiveness of Computer-Assisted Instruction for Teaching Mathematics to Students with Specific Learning Disability

Science.gov (United States)

Stultz, Sherry L.

2013-01-01

Using computers to teach students is not a new idea. Computers have been utilized for educational purposes for over 80 years. However, the effectiveness of these programs for teaching mathematics to students with specific learning disability is unclear. This study was undertaken to determine if computer-assisted instruction was as effective as…

14. Implementing Computer Algebra Enabled Questions for the Assessment and Learning of Mathematics

Science.gov (United States)

Sangwin, Christopher J.; Naismith, Laura

2008-01-01

We present principles for the design of an online system to support computer algebra enabled questions for use within the teaching and learning of mathematics in higher education. The introduction of a computer algebra system (CAS) into a computer aided assessment (CAA) system affords sophisticated response processing of student provided answers.…

15. Students' Mathematics Word Problem-Solving Achievement in a Computer-Based Story

Science.gov (United States)

Gunbas, N.

2015-01-01

The purpose of this study was to investigate the effect of a computer-based story, which was designed in anchored instruction framework, on sixth-grade students' mathematics word problem-solving achievement. Problems were embedded in a story presented on a computer as computer story, and then compared with the paper-based version of the same story…

16. Hybrid modelling framework by using mathematics-based and information-based methods

International Nuclear Information System (INIS)

Ghaboussi, J; Kim, J; Elnashai, A

2010-01-01

Mathematics-based computational mechanics involves idealization in going from the observed behaviour of a system into mathematical equations representing the underlying mechanics of that behaviour. Idealization may lead mathematical models that exclude certain aspects of the complex behaviour that may be significant. An alternative approach is data-centric modelling that constitutes a fundamental shift from mathematical equations to data that contain the required information about the underlying mechanics. However, purely data-centric methods often fail for infrequent events and large state changes. In this article, a new hybrid modelling framework is proposed to improve accuracy in simulation of real-world systems. In the hybrid framework, a mathematical model is complemented by information-based components. The role of informational components is to model aspects which the mathematical model leaves out. The missing aspects are extracted and identified through Autoprogressive Algorithms. The proposed hybrid modelling framework has a wide range of potential applications for natural and engineered systems. The potential of the hybrid methodology is illustrated through modelling highly pinched hysteretic behaviour of beam-to-column connections in steel frames.

17. Physics, Computer Science and Mathematics Division. Annual report, 1 January-31 December 1979

International Nuclear Information System (INIS)

Lepore, J.V.

1980-09-01

This annual report describes the research work carried out by the Physics, Computer Science and Mathematics Division during 1979. The major research effort of the Division remained High Energy Particle Physics with emphasis on preparing for experiments to be carried out at PEP. The largest effort in this field was for development and construction of the Time Projection Chamber, a powerful new particle detector. This work took a large fraction of the effort of the physics staff of the Division together with the equivalent of more than a hundred staff members in the Engineering Departments and shops. Research in the Computer Science and Mathematics Department of the Division (CSAM) has been rapidly expanding during the last few years. Cross fertilization of ideas and talents resulting from the diversity of effort in the Physics, Computer Science and Mathematics Division contributed to the software design for the Time Projection Chamber, made by the Computer Science and Applied Mathematics Department

18. A Mixed Methods Study of Teach for America Teachers' Mathematical Beliefs, Knowledge, and Classroom Teaching Practices during a Reform-Based University Mathematics Methods Course

Science.gov (United States)

Swars, Susan Lee

2015-01-01

This mixed methods study examined the mathematical preparation of elementary teachers in a Teach for America (TFA) program, focal participants for whom there is scant extant research. Data collection occurred before and after a university mathematics methods course, with a particular focus on the participants' (n = 22) mathematical beliefs,…

19. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

Science.gov (United States)

1994-01-01

This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

20. Methods of mathematical modeling using polynomials of algebra of sets

Science.gov (United States)

Kazanskiy, Alexandr; Kochetkov, Ivan

2018-03-01

The article deals with the construction of discrete mathematical models for solving applied problems arising from the operation of building structures. Security issues in modern high-rise buildings are extremely serious and relevant, and there is no doubt that interest in them will only increase. The territory of the building is divided into zones for which it is necessary to observe. Zones can overlap and have different priorities. Such situations can be described using formulas algebra of sets. Formulas can be programmed, which makes it possible to work with them using computer models.

1. Case Study of an Epistemic Mathematics Computer Game

Science.gov (United States)

Buteau, Chantal; Muller, Eric

2018-01-01

E-Brock Bugs is a serious educational game (SEG) about probability which was created based on Devlin's design principles for games whose players adopt identities of mathematically able persons. This kind of games in which "players think and act like real world professionals" has been called epistemic. This article presents an empirical…

2. Mathematical and computational modeling simulation of solar drying Systems

Science.gov (United States)

Mathematical modeling of solar drying systems has the primary aim of predicting the required drying time for a given commodity, dryer type, and environment. Both fundamental (Fickian diffusion) and semi-empirical drying models have been applied to the solar drying of a variety of agricultural commo...

3. THE CONCEPT OF THE EDUCATIONAL COMPUTER MATHEMATICS SYSTEM AND EXAMPLES OF ITS IMPLEMENTATION

Directory of Open Access Journals (Sweden)

M. Lvov

2014-11-01

Full Text Available The article deals with the educational computer mathematics system, based in Kherson State University and resulted in more than 8 software tools to orders of the Ministry of Education, Science, Youth and Sports of Ukraine. The exact and natural sciences are notable among all disciplines both in secondary schools and universities. They form the fundamental scientific knowledge, based on precise mathematical models and methods. The educational process for these courses should include not only lectures and seminars, but active forms of studying as well: practical classes, laboratory work, practical training, etc. The enumerated peculiarities determine specific intellectual and architectural properties of information technologies, developed to be used in the educational process of these disciplines. Whereas, in terms of technologies used in the implementation of the functionality of software, they are actually the educational computer algebra system. Thus the algebraic programming system APS developed in the Institute of Cybernetics of the National Academy of Sciences of Ukraine led by Academician O.A. Letychevskyi in the 80 years of the twentieth century is especially important for their development.

4. Mathematics of shape description a morphological approach to image processing and computer graphics

CERN Document Server

Ghosh, Pijush K

2009-01-01

Image processing problems are often not well defined because real images are contaminated with noise and other uncertain factors. In Mathematics of Shape Description, the authors take a mathematical approach to address these problems using the morphological and set-theoretic approach to image processing and computer graphics by presenting a simple shape model using two basic shape operators called Minkowski addition and decomposition. This book is ideal for professional researchers and engineers in Information Processing, Image Measurement, Shape Description, Shape Representation and Computer Graphics. Post-graduate and advanced undergraduate students in pure and applied mathematics, computer sciences, robotics and engineering will also benefit from this book.  Key FeaturesExplains the fundamental and advanced relationships between algebraic system and shape description through the set-theoretic approachPromotes interaction of image processing geochronology and mathematics in the field of algebraic geometryP...

5. NATO Advanced Research Workshop on Exploiting Mental Imagery with Computers in Mathematics Education

CERN Document Server

Mason, John

1995-01-01

The advent of fast and sophisticated computer graphics has brought dynamic and interactive images under the control of professional mathematicians and mathematics teachers. This volume in the NATO Special Programme on Advanced Educational Technology takes a comprehensive and critical look at how the computer can support the use of visual images in mathematical problem solving. The contributions are written by researchers and teachers from a variety of disciplines including computer science, mathematics, mathematics education, psychology, and design. Some focus on the use of external visual images and others on the development of individual mental imagery. The book is the first collected volume in a research area that is developing rapidly, and the authors pose some challenging new questions.

6. Physics, Computer Science and Mathematics Division annual report, January 1--December 31, 1976

Energy Technology Data Exchange (ETDEWEB)

Lepore, J.V. (ed.)

1977-01-01

This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during the calendar year 1976. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics; a vigorous program is maintained in this pioneering field. The high-energy physics research program in the Division now focuses on experiments with e/sup +/e/sup -/ colliding beams using advanced techniques and developments initiated and perfected at the Laboratory. The Division continues its work in medium energy physics, with experimental work carried out at the Bevatron and at the Los Alamos Pi-Meson Facility. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The computer center serves the Laboratory by constantly upgrading its facility and by providing day-to-day service. This report is descriptive in nature; references to detailed publications are given. (RWR)

7. Physics, Computer Science and Mathematics Division annual report, January 1--December 31, 1976

International Nuclear Information System (INIS)

Lepore, J.V.

1977-01-01

This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during the calendar year 1976. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics; a vigorous program is maintained in this pioneering field. The high-energy physics research program in the Division now focuses on experiments with e + e - colliding beams using advanced techniques and developments initiated and perfected at the Laboratory. The Division continues its work in medium energy physics, with experimental work carried out at the Bevatron and at the Los Alamos Pi-Meson Facility. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The computer center serves the Laboratory by constantly upgrading its facility and by providing day-to-day service. This report is descriptive in nature; references to detailed publications are given

8. Mathematical and Statistical Methods for Actuarial Sciences and Finance

CERN Document Server

Legros, Florence; Perna, Cira; Sibillo, Marilena

2017-01-01

This volume gathers selected peer-reviewed papers presented at the international conference "MAF 2016 – Mathematical and Statistical Methods for Actuarial Sciences and Finance”, held in Paris (France) at the Université Paris-Dauphine from March 30 to April 1, 2016. The contributions highlight new ideas on mathematical and statistical methods in actuarial sciences and finance. The cooperation between mathematicians and statisticians working in insurance and finance is a very fruitful field, one that yields unique  theoretical models and practical applications, as well as new insights in the discussion of problems of national and international interest. This volume is addressed to academicians, researchers, Ph.D. students and professionals.

9. Problems of Mathematical Finance by Stochastic Control Methods

Science.gov (United States)

Stettner, Łukasz

The purpose of this paper is to present main ideas of mathematics of finance using the stochastic control methods. There is an interplay between stochastic control and mathematics of finance. On the one hand stochastic control is a powerful tool to study financial problems. On the other hand financial applications have stimulated development in several research subareas of stochastic control in the last two decades. We start with pricing of financial derivatives and modeling of asset prices, studying the conditions for the absence of arbitrage. Then we consider pricing of defaultable contingent claims. Investments in bonds lead us to the term structure modeling problems. Special attention is devoted to historical static portfolio analysis called Markowitz theory. We also briefly sketch dynamic portfolio problems using viscosity solutions to Hamilton-Jacobi-Bellman equation, martingale-convex analysis method or stochastic maximum principle together with backward stochastic differential equation. Finally, long time portfolio analysis for both risk neutral and risk sensitive functionals is introduced.

10. Payroll. Computer Module for Use in a Mathematics Laboratory Setting.

Science.gov (United States)

Barker, Karen; And Others

This is one of a series of computer modules designed for use by secondary students who have access to a computer. The module, designed to help students understand various aspects of payroll calculation, includes a statement of objectives, a time schedule, a list of materials, an outline for each section, and several computer programs. (MK)

11. Teaching by Open-Approach Method in Japanese Mathematics Classroom.

Science.gov (United States)

Nohda, Nobuhiko

Mathematics educators in Japan have traditionally emphasized mathematical perspectives in research and practice. This paper features an account of changes in mathematics education in Japan that focus on the possibilities of individual students as well as their mathematical ways of thinking. Students' mathematical thinking, mathematical…

12. Mathematical aspects of finite element methods for incompressible viscous flows

Science.gov (United States)

Gunzburger, M. D.

1986-01-01

Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.

13. Mathematical foundations of the projection-operator method

International Nuclear Information System (INIS)

Moore, S.M.

1979-01-01

Mathematical foundations are determined for the projection-operator method developed by Zwanzig and Mori and used in the study of cooperative phenomena in non-equilibrium processes. It is shown that the Hilbert space of operators can be taken as the Hilbert-Schmidt class. Comments are made on the possibility of a complete formulation of quantum mechanics in terms of this Hilbert space. (author)

14. Progress report No. 53, October 1, 1976--September 30, 1977. [Courant Mathematics and Computing Laboratory, New York University

Energy Technology Data Exchange (ETDEWEB)

None

1977-12-01

Work in the following areas is considered in this annual report: applied mathematics (partial differential equations) in computational fluid dynamics, numerical analysis, etc.; computational physics and chemistry (partial differential equations); programing languages and compilers and other applications of computer science; and network access methods and applications of the ARPA network. Also discussed is the relation of work done at the Courant Institute to other projects, systems programing and user services, seminars, and publications. Individual reports are a paragraph or so in length. Completed work is reported in the appropriate publications. (RWR)

15. Computational Methods and Function Theory

CERN Document Server

Saff, Edward; Salinas, Luis; Varga, Richard

1990-01-01

The volume is devoted to the interaction of modern scientific computation and classical function theory. Many problems in pure and more applied function theory can be tackled using modern computing facilities: numerically as well as in the sense of computer algebra. On the other hand, computer algorithms are often based on complex function theory, and dedicated research on their theoretical foundations can lead to great enhancements in performance. The contributions - original research articles, a survey and a collection of problems - cover a broad range of such problems.

16. Mathematical and Computational Aspects Related to Soil Modeling and Simulation

Science.gov (United States)

2017-09-26

and simulation challenges at the interface of applied math (homogenization, handling of discontinuous behavior, discrete vs. continuum representations...topics: a) Visco-elasto-plastic continuum models of geo-surface materials b) Discrete models of geo-surface materials (rocks/gravel/sand) c) Mixed...continuum- discrete representations. Coarse-graining and fine-graining mathematical formulations d) Multi-physics aspects related to the modeling of

17. Mathematical model and computer programme for theoretical calculation of calibration curves of neutron soil moisture probes with highly effective counters

International Nuclear Information System (INIS)

Kolev, N.A.

1981-07-01

A mathematical model based on the three group theory for theoretical calculation by means of computer of the calibration curves of neutron soil moisture probes with highly effective counters, is described. Methods for experimental correction of the mathematical model are discussed and proposed. The computer programme described allows the calibration of neutron probes with high or low effective counters, and central or end geometry, with or without linearizing of the calibration curve. The use of two calculation variants and printing of output data gives the possibility not only for calibration, but also for other researches. The separate data inputs for soil and probe temperature allow the temperature influence analysis. The computer programme and calculation examples are given. (author)

18. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

International Nuclear Information System (INIS)

Jackson, J.D.

1984-08-01

This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department

19. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

Energy Technology Data Exchange (ETDEWEB)

Jackson, J.D.

1984-08-01

This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department.

20. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.

Directory of Open Access Journals (Sweden)

Full Text Available Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.

1. Computing Active Power Losses Using a Mathematical Model of a Regulated Street Luminaire

Directory of Open Access Journals (Sweden)

Roman Sikora

2018-05-01

Full Text Available Before the use of regulated street luminaires with variable power and luminous flux, computations were performed using constant values for their electrical and photometric parameters. At present, where such lighting is in use, it is no longer possible to base calculations on such assumptions. Computations of energy and power losses, for example, need to be performed for all dimming levels and based on the applied regulation algorithm. Based on measurements carried out on regulated luminaires, it was found that certain electrical parameters have a nonlinear dependence on the dimming level. Electrical parameters were also observed to depend on the value of the supply voltage. The results of the measurements are presented in this article. Failure to take account of power losses in computations of the energy efficiency of street lighting in accordance with the applicable EN 13201 standard causes values of energy efficiency indicators to be overstated. Power loss computations are presented in this article for a sample street lighting system with regulated luminaires, for the whole range of dimming levels and additionally for fluctuations of ±10% in the supply voltage. In addition, a mathematical model of a regulated luminaire is constructed with the use of regression methods, and a practical application of that model is described.

2. Modeling of requirement specification for safety critical real time computer system using formal mathematical specifications

International Nuclear Information System (INIS)

Sankar, Bindu; Sasidhar Rao, B.; Ilango Sambasivam, S.; Swaminathan, P.

2002-01-01

Full text: Real time computer systems are increasingly used for safety critical supervision and control of nuclear reactors. Typical application areas are supervision of reactor core against coolant flow blockage, supervision of clad hot spot, supervision of undesirable power excursion, power control and control logic for fuel handling systems. The most frequent cause of fault in safety critical real time computer system is traced to fuzziness in requirement specification. To ensure the specified safety, it is necessary to model the requirement specification of safety critical real time computer systems using formal mathematical methods. Modeling eliminates the fuzziness in the requirement specification and also helps to prepare the verification and validation schemes. Test data can be easily designed from the model of the requirement specification. Z and B are the popular languages used for modeling the requirement specification. A typical safety critical real time computer system for supervising the reactor core of prototype fast breeder reactor (PFBR) against flow blockage is taken as case study. Modeling techniques and the actual model are explained in detail. The advantages of modeling for ensuring the safety are summarized

3. Personalized Computer-Assisted Mathematics Problem-Solving Program and Its Impact on Taiwanese Students

Science.gov (United States)

Chen, Chiu-Jung; Liu, Pei-Lin

2007-01-01

This study evaluated the effects of a personalized computer-assisted mathematics problem-solving program on the performance and attitude of Taiwanese fourth grade students. The purpose of this study was to determine whether the personalized computer-assisted program improved student performance and attitude over the nonpersonalized program.…

4. A Comparison of Equality in Computer Algebra and Correctness in Mathematical Pedagogy (II)

Science.gov (United States)

Bradford, Russell; Davenport, James H.; Sangwin, Chris

2010-01-01

A perennial problem in computer-aided assessment is that "a right answer", pedagogically speaking, is not the same thing as "a mathematically correct expression", as verified by a computer algebra system, or indeed other techniques such as random evaluation. Paper I in this series considered the difference in cases where there was "the right…

5. Projects Using a Computer Algebra System in First-Year Undergraduate Mathematics

Science.gov (United States)

Rosenzweig, Martin

2007-01-01

This paper illustrates the use of computer-based projects in two one-semester first-year undergraduate mathematics classes. Developed over a period of years, the approach is one in which the classes are organised into work-groups, with computer-based projects being undertaken periodically to illustrate the class material. These projects are…

6. Traditional vs. Innovative Uses of Computers among Mathematics Pre-Service Teachers in Serbia

Science.gov (United States)

Teo, Timothy; Milutinovic, Verica; Zhou, Mingming; Bankovic, Dragic

2017-01-01

This study examined pre-service teachers' intentions to use computers in traditional and innovative teaching practices in primary mathematics classrooms. It extended the technology acceptance model (TAM) by adding as external variables pre-service teachers' experience with computers and their technological pedagogical content knowledge (TPCK).…

7. Effects of Computer Graphics Types and Epistemological Beliefs on Students' Learning of Mathematical Concepts.

Science.gov (United States)

Lin, Chi-Hui

2002-01-01

Describes a study that determined the implications of computer graphics types and epistemological beliefs with regard to the design of computer-based mathematical concept learning with elementary school students in Taiwan. Discusses the factor structure of the epistemological belief questionnaire, student performance, and students' attitudes…

8. Tensor Arithmetic, Geometric and Mathematic Principles of Fluid Mechanics in Implementation of Direct Computational Experiments

Directory of Open Access Journals (Sweden)

Bogdanov Alexander

2016-01-01

Full Text Available The architecture of a digital computing system determines the technical foundation of a unified mathematical language for exact arithmetic-logical description of phenomena and laws of continuum mechanics for applications in fluid mechanics and theoretical physics. The deep parallelization of the computing processes results in functional programming at a new technological level, providing traceability of the computing processes with automatic application of multiscale hybrid circuits and adaptive mathematical models for the true reproduction of the fundamental laws of physics and continuum mechanics.

9. Parallelism, fractal geometry and other aspects of computational mathematics

International Nuclear Information System (INIS)

Churchhouse, R.F.

1991-01-01

In some fields such as meteorology, theoretical physics, quantum chemistry and hydrodynamics there are problems which involve so much computation that computers of the power of a thousand times a Cray 2 could be fully utilised if they were available. Since it is unlikely that uniprocessors of such power will be available, such large scale problems could be solved by using systems of computers running in parallel. This approach, of course, requires to find appropriate algorithms for the solution of such problems which can efficiently make use of a large number of computers working in parallel. 11 refs, 10 figs, 1 tab

10. Cognitive assessment in mathematics with the least squares distance method.

Science.gov (United States)

Ma, Lin; Çetin, Emre; Green, Kathy E

2012-01-01

This study investigated the validation of comprehensive cognitive attributes of an eighth-grade mathematics test using the least squares distance method and compared performance on attributes by gender and region. A sample of 5,000 students was randomly selected from the data of the 2005 Turkish national mathematics assessment of eighth-grade students. Twenty-five math items were assessed for presence or absence of 20 cognitive attributes (content, cognitive processes, and skill). Four attributes were found to be misspecified or nonpredictive. However, results demonstrated the validity of cognitive attributes in terms of the revised set of 17 attributes. The girls had similar performance on the attributes as the boys. The students from the two eastern regions significantly underperformed on the most attributes.

11. A MATLAB-Aided Method for Teaching Calculus-Based Business Mathematics

Science.gov (United States)

Liang, Jiajuan; Pan, William S. Y.

2009-01-01

MATLAB is a powerful package for numerical computation. MATLAB contains a rich pool of mathematical functions and provides flexible plotting functions for illustrating mathematical solutions. The course of calculus-based business mathematics consists of two major topics: 1) derivative and its applications in business; and 2) integration and its…

12. Studies in Mathematics, Volume 22. Studies in Computer Science.

Science.gov (United States)

Pollack, Seymour V., Ed.

The nine articles in this collection were selected because they represent concerns central to computer science, emphasize topics of particular interest to mathematicians, and underscore the wide range of areas deeply and continually affected by computer science. The contents consist of: "Introduction" (S. V. Pollack), "The…

13. Computational methods for reversed-field equilibrium

International Nuclear Information System (INIS)

Boyd, J.K.; Auerbach, S.P.; Willmann, P.A.; Berk, H.L.; McNamara, B.

1980-01-01

Investigating the temporal evolution of reversed-field equilibrium caused by transport processes requires the solution of the Grad-Shafranov equation and computation of field-line-averaged quantities. The technique for field-line averaging and the computation of the Grad-Shafranov equation are presented. Application of Green's function to specify the Grad-Shafranov equation boundary condition is discussed. Hill's vortex formulas used to verify certain computations are detailed. Use of computer software to implement computational methods is described

14. REVIEW OF MATHEMATICAL METHODS AND ALGORITHMS OF MEDICAL IMAGE PROCESSING ON THE EXAMPLE OF TECHNOLOGY OF MEDICAL IMAGE PROCESSING FROM WOLFRAM MATHEMATICA

Directory of Open Access Journals (Sweden)

О. E. Prokopchenko

2015-09-01

Full Text Available The article analyzes the basic methods and algorithms of mathematical processing of medical images as objects of computer mathematics. The presented methods and computer algorithms of mathematics relevant and may find application in the field of medical imaging - automated processing of images; as a tool for measurement and determination the optical parameters; identification and formation of medical images database. Methods and computer algorithms presented in the article & based on Wolfram Mathematica are also relevant to the problem of modern medical education. As an example of Wolfram Mathematica may be considered appropriate demonstration, such as recognition of special radiographs and morphological imaging. These methods are used to improve the diagnostic significance and value of medical (clinical research and can serve as an educational interactive demonstration. Implementation submitted individual methods and algorithms of computer Wolfram Mathematics contributes, in general, the optimization process of practical processing and presentation of medical images.

15. Effects of Mathematics Integration in a Teaching Methods Course on Mathematics Ability of Preservice Agricultural Education Teachers

Science.gov (United States)

Stripling, Christopher T.; Roberts, T. Grady

2014-01-01

The purpose of this study was to determine the effects of incorporating mathematics teaching and integration strategies (MTIS) in a teaching methods course on preservice agricultural teachers' mathematics ability. The research design was quasi-experimental and utilized a nonequivalent control group. The MTIS treatment had a positive effect on the…

16. Improved methods for the mathematically controlled comparison of biochemical systems

Directory of Open Access Journals (Sweden)

Schwacke John H

2004-06-01

Full Text Available Abstract The method of mathematically controlled comparison provides a structured approach for the comparison of alternative biochemical pathways with respect to selected functional effectiveness measures. Under this approach, alternative implementations of a biochemical pathway are modeled mathematically, forced to be equivalent through the application of selected constraints, and compared with respect to selected functional effectiveness measures. While the method has been applied successfully in a variety of studies, we offer recommendations for improvements to the method that (1 relax requirements for definition of constraints sufficient to remove all degrees of freedom in forming the equivalent alternative, (2 facilitate generalization of the results thus avoiding the need to condition those findings on the selected constraints, and (3 provide additional insights into the effect of selected constraints on the functional effectiveness measures. We present improvements to the method and related statistical models, apply the method to a previously conducted comparison of network regulation in the immune system, and compare our results to those previously reported.

17. Evaluation of mathematical methods and linear programming for optimization of the planning in radiotherapy

International Nuclear Information System (INIS)

Fernandes, Marco A.R.; Fernandes, David M.; Florentino, Helenice O.

2010-01-01

The work detaches the importance of the use of mathematical tools and computer systems for optimization of the planning in radiotherapy, seeking to the distribution of dose of appropriate radiation in the white volume that provides an ideal therapeutic rate between the tumor cells and the adjacent healthy tissues, extolled in the radiotherapy protocols. Examples of target volumes mathematically modeled are analyzed with the technique of linear programming, comparing the obtained results using the Simplex algorithm with those using the algorithm of Interior Points. The System Genesis II was used for obtaining of the isodose curves for the outline and geometry of fields idealized in the computer simulations, considering the parameters of a 10 MV photons beams. Both programming methods (Simplex and Interior Points) they resulted in a distribution of integral dose in the tumor volume and allow the adaptation of the dose in the critical organs inside of the restriction limits extolled. The choice of an or other method should take into account the facility and the need of limiting the programming time. The isodose curves, obtained with the Genesis II System, illustrate that the adjacent healthy tissues to the tumor receives larger doses than those reached in the computer simulations. More coincident values can be obtained altering the weights and some factors of minimization of the objective function. The prohibitive costs of the computer planning systems, at present available for radiotherapy, it motivates the researches to look for the implementation of simpler and so effective methods for optimization of the treatment plan. (author)

18. The history of theoretical, material and computational mechanics mathematics meets mechanics and engineering

CERN Document Server

2014-01-01

This collection of 23 articles is the output of lectures in special sessions on “The History of Theoretical, Material and Computational Mechanics” within the yearly conferences of the GAMM in the years 2010 in Karlsruhe, Germany, 2011 in Graz, Austria, and in 2012 in Darmstadt, Germany; GAMM is the “Association for Applied Mathematics and Mechanics”, founded in 1922 by Ludwig Prandtl and Richard von Mises. The contributions in this volume discuss different aspects of mechanics. They are related to solid and fluid mechanics in general and to specific problems in these areas including the development of numerical solution techniques. In the first part the origins and developments of conservation principles in mechanics and related variational methods are treated together with challenging applications from the 17th to the 20th century. Part II treats general and more specific aspects of material theories of deforming solid continua and porous soils. and Part III presents important theoretical and enginee...

19. The presence of mathematics and computer anxiety in nursing students and their effects on medication dosage calculations.

Science.gov (United States)

Glaister, Karen

2007-05-01

To determine if the presence of mathematical and computer anxiety in nursing students affects learning of dosage calculations. The quasi-experimental study compared learning outcomes at differing levels of mathematical and computer anxiety when integrative and computer based learning approaches were used. Participants involved a cohort of second year nursing students (n=97). Mathematical anxiety exists in 20% (n=19) of the student nurse population, and 14% (n=13) experienced mathematical testing anxiety. Those students more anxious about mathematics and the testing of mathematics benefited from integrative learning to develop conditional knowledge (F(4,66)=2.52 at pComputer anxiety was present in 12% (n=11) of participants, with those reporting medium and high levels of computer anxiety performing less well than those with low levels (F(1,81)=3.98 at pmathematical and computer anxiety when planning an educational program to develop competency in dosage calculations.

20. My Entirely Plausible Fantasy: Early Mathematics Education in the Age of the Touchscreen Computer

Science.gov (United States)

Ginsburg, Herbert P.

2014-01-01

This paper offers an account of what early mathematics education could look like in an age of young digital natives. Each "Tubby," as the tablets are called, presents Nicole (our generic little child) with stimulating mathematics microworlds, from which, beginning at age 3, she can learn basic math concepts, as well as methods of…

1. Lowering Preservice Teachers' Mathematics Anxiety through an Experience-Based Mathematics Methods Course.

Science.gov (United States)

Conrad, Karen S.; Tracy, Dyanne M.

Research has shown that elementary teachers are mathematics anxious, and that this anxiousness can be transmitted to their students. Therefore, many students are not afforded the opportunity to participate in a comfortable mathematics environment. Preservice elementary teachers (n=63) reported their pre- and posttest mathematics anxiety using the…

2. Annotated Computer Output for Illustrative Examples of Clustering Using the Mixture Method and Two Comparable Methods from SAS.

Science.gov (United States)

1987-06-26

BUREAU OF STANDAR-S1963-A Nw BOM -ILE COPY -. 4eo .?3sa.9"-,,A WIN* MAT HEMATICAL SCIENCES _*INSTITUTE AD-A184 687 DTICS!ELECTE ANNOTATED COMPUTER OUTPUT...intoduction to the use of mixture models in clustering. Cornell University Biometrics Unit Technical Report BU-920-M and Mathematical Sciences Institute...mixture method and two comparable methods from SAS. Cornell University Biometrics Unit Technical Report BU-921-M and Mathematical Sciences Institute

3. Mathematical programming methods for large-scale topology optimization problems

DEFF Research Database (Denmark)

Rojas Labanda, Susana

for mechanical problems, but has rapidly extended to many other disciplines, such as fluid dynamics and biomechanical problems. However, the novelty and improvements of optimization methods has been very limited. It is, indeed, necessary to develop of new optimization methods to improve the final designs......, and at the same time, reduce the number of function evaluations. Nonlinear optimization methods, such as sequential quadratic programming and interior point solvers, have almost not been embraced by the topology optimization community. Thus, this work is focused on the introduction of this kind of second...... for the classical minimum compliance problem. Two of the state-of-the-art optimization algorithms are investigated and implemented for this structural topology optimization problem. A Sequential Quadratic Programming (TopSQP) and an interior point method (TopIP) are developed exploiting the specific mathematical...

4. Recent progress and modern challenges in applied mathematics, modeling and computational science

CERN Document Server

Makarov, Roman; Belair, Jacques

2017-01-01

This volume is an excellent resource for professionals in various areas of applications of mathematics, modeling, and computational science. It focuses on recent progress and modern challenges in these areas. The volume provides a balance between fundamental theoretical and applied developments, emphasizing the interdisciplinary nature of modern trends and detailing state-of-the-art achievements in Applied Mathematics, Modeling, and Computational Science.  The chapters have been authored by international experts in their respective fields, making this book ideal for researchers in academia, practitioners, and graduate students. It can also serve as a reference in the diverse selected areas of applied mathematics, modelling, and computational sciences, and is ideal for interdisciplinary collaborations.

5. 9th Annual Conference of the North East Polytechnics Mathematical Modelling & Computer Simulation Group

CERN Document Server

1987-01-01

In recent years, mathematical modelling allied to computer simulation has emerged as en effective and invaluable design tool for industry and a discipline in its own right. This has been reflected in the popularity of the growing number of courses and conferences devoted to the area. The North East Polytechnics Mathematical Modelling and Computer Simulation Group has a balanced representation of academics and industrialists and, as a Group, has the objective of promoting a continuing partnership between the Polytechnics in the North East and local industry. Prior to the present conference the Group has organised eight conferences with a variety of themes related to mathematical modelling and computer simulation. The theme chosen for the Polymodel 9 Conference held in Newcastle upon Tyne in May 1986 was Industrial Vibration Modelling, which is particularly approp riate for 'Industry Year' and is an area which continues to present industry and academics with new and challenging problems. The aim of the Conferen...

6. Overview of the ANS [American Nuclear Society] mathematics and computation software standards

International Nuclear Information System (INIS)

Smetana, A.O.

1991-01-01

The Mathematics and Computations Division of the American Nuclear Society sponsors the ANS-10 Standards Subcommittee. This subcommittee, which is part of the ANS Standards Committee, currently maintains four ANSI/ANS software standards. These standards are: Recommended Programming Practices to Facilitate the Portability of Scientific Computer Programs, ANS-10.2; Guidelines for the Documentation of Computer Software, ANS-10.3; Guidelines for the Verification and Validation of Scientific and Engineering Computer Programs for the Nuclear Industry, ANS-10.4; and Guidelines for Accommodating User Needs in Computer Program Development, ANS-10.5. 5 refs

7. New trends and advanced methods in interdisciplinary mathematical sciences

CERN Document Server

2017-01-01

The latest of five multidisciplinary volumes, this book spans the STEAM-H (Science, Technology, Engineering, Agriculture, Mathematics, and Health) disciplines with the intent to generate meaningful interdisciplinary interaction and student interest. Emphasis is placed on important methods and applications within and beyond each field. Topics include geometric triple systems, image segmentation, pattern recognition in medicine, pricing barrier options, p-adic numbers distribution in geophysics data pattern, adelic physics, and evolutionary game theory. Contributions were by invitation only and peer-reviewed. Each chapter is reasonably self-contained and pedagogically presented for a multidisciplinary readership.

8. Application of mathematical statistics methods to study fluorite deposits

International Nuclear Information System (INIS)

Chermeninov, V.B.

1980-01-01

Considered are the applicability of mathematical-statistical methods for the increase of reliability of sampling and geological tasks (study of regularities of ore formation). Compared is the reliability of core sampling (regarding the selective abrasion of fluorite) and neutron activation logging for fluorine. The core sampling data are characterized by higher dispersion than neutron activation logging results (mean value of variation coefficients are 75% and 56% respectively). However the hypothesis of the equality of average two sampling is confirmed; this fact testifies to the absence of considerable variability of ore bodies

9. How to solve it a new aspect of mathematical method

CERN Document Server

Polya, G

2014-01-01

A perennial bestseller by eminent mathematician G. Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be "reasoned" out-from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft-indeed, brilliant-instructions on stripping away irrelevancies and going straight to the heart of the problem.

10. Mathematic modeling of the method of measurement relative dielectric permeability

Science.gov (United States)

Plotnikova, I. V.; Chicherina, N. V.; Stepanov, A. B.

2018-05-01

The method of measuring relative permittivity’s and the position of the interface between layers of a liquid medium is considered in the article. An electric capacitor is a system consisting of two conductors that are separated by a dielectric layer. It is mathematically proven that at any given time it is possible to obtain the values of the relative permittivity in the layers of the liquid medium and to determine the level of the interface between the layers of the two-layer liquid. The estimation of measurement errors is made.

11. An Improved Mathematical Model for Computing Power Output of Solar Photovoltaic Modules

Directory of Open Access Journals (Sweden)

Abdul Qayoom Jakhrani

2014-01-01

Full Text Available It is difficult to determine the input parameters values for equivalent circuit models of photovoltaic modules through analytical methods. Thus, the previous researchers preferred to use numerical methods. Since, the numerical methods are time consuming and need long term time series data which is not available in most developing countries, an improved mathematical model was formulated by combination of analytical and numerical methods to overcome the limitations of existing methods. The values of required model input parameters were computed analytically. The expression for output current of photovoltaic module was determined explicitly by Lambert W function and voltage was determined numerically by Newton-Raphson method. Moreover, the algebraic equations were derived for the shape factor which involves the ideality factor and the series resistance of a single diode photovoltaic module power output model. The formulated model results were validated with rated power output of a photovoltaic module provided by manufacturers using local meteorological data, which gave ±2% error. It was found that the proposed model is more practical in terms of precise estimations of photovoltaic module power output for any required location and number of variables used.

12. Theorema 2.0: Computer-Assisted Natural-Style Mathematics

Directory of Open Access Journals (Sweden)

Bruno Buchberger

2016-01-01

Full Text Available The Theorema project aims at the development of a computer assistant for the working mathematician. Support should be given throughout all phases of mathematical activity, from introducing new mathematical concepts by definitions or axioms, through first (computational experiments, the formulation of theorems, their justification by an exact proof, the application of a theorem as an algorithm, until to the dissemination of the results in form of a mathematical publication, the build up of bigger libraries of certified mathematical content and the like. This ambitious project is exactly along the lines of the QED manifesto issued in 1994 (see e.g. http://www.cs.ru.nl/~freek/qed/qed.html and it was initiated in the mid-1990s by Bruno Buchberger. The Theorema system is a computer implementation of the ideas behind the Theorema project. One focus lies on the natural style of system input (in form of definitions, theorems, algorithms, etc., system output (mainly in form of mathematical proofs and user interaction. Another focus is theory exploration, i.e. the development of large consistent mathematical theories in a formal frame, in contrast to just proving single isolated theorems. When using the Theorema system, a user should not have to follow a certain style of mathematics enforced by the system (e.g. basing all of mathematics on set theory or certain variants of type theory, rather should the system support the user in her preferred flavour of doing math. The new implementation of the system, which we refer to as Theorema 2.0, is open-source and available through GitHub.

13. PENGEMBANGAN MODEL COMPUTER-BASED E-LEARNING UNTUK MENINGKATKAN KEMAMPUAN HIGH ORDER MATHEMATICAL THINKING SISWA SMA

OpenAIRE

Jarnawi Afgani Dahlan; Yaya Sukjaya Kusumah; Mr Heri Sutarno

2011-01-01

The focus of this research is on the development of mathematics teaching and learning activity which is based on the application of computer software. The aim of research is as follows : 1) to identify some mathematics topics which feasible to be presented by computer-based e-learning, 2) design, develop, and implement computer-based e-learning on mathematics, and 3) analyze the impact of computer-based e-learning in the enhancement of SMA students’ high order mathematical thinking. All activ...

14. Research in mathematics and computer science, March 1, 1991--September 30, 1992

Energy Technology Data Exchange (ETDEWEB)

Pieper, G.W.

1992-10-01

This report discusses the following topics in mathematics and computer science at Argonne National Laboratory: Harnessing the Power; Modeling Piezoelectric Crystals; A Two-Way Street; The Challenge Is On; A True Molecular Engineering Capability; CHAMMPions Attack Climate Issues; Studying Vortex Dynamics; Studying Vortex Structure; Providing Reliable and Fast Derivatives; Automating Reasoning for Scientific Problem Solving; Optimization and Mathematical Programming; Scalable Algorithms for Linear Algebra; Reliable Core Software; Computing Phylogenetic Trees; Managing Life-Critical Systems; Interacting with Data through Visualization; New Tools for New Technologies.

15. COMPUTER METHODS OF GENETIC ANALYSIS.

Directory of Open Access Journals (Sweden)

A. L. Osipov

2017-02-01

Full Text Available The basic statistical methods used in conducting the genetic analysis of human traits. We studied by segregation analysis, linkage analysis and allelic associations. Developed software for the implementation of these methods support.

16. Computational methods in drug discovery

OpenAIRE

Sumudu P. Leelananda; Steffen Lindert

2016-01-01

The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD) tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery project...

17. Computational methods for three-dimensional microscopy reconstruction

CERN Document Server

Frank, Joachim

2014-01-01

Approaches to the recovery of three-dimensional information on a biological object, which are often formulated or implemented initially in an intuitive way, are concisely described here based on physical models of the object and the image-formation process. Both three-dimensional electron microscopy and X-ray tomography can be captured in the same mathematical framework, leading to closely-related computational approaches, but the methodologies differ in detail and hence pose different challenges. The editors of this volume, Gabor T. Herman and Joachim Frank, are experts in the respective methodologies and present research at the forefront of biological imaging and structural biology.   Computational Methods for Three-Dimensional Microscopy Reconstruction will serve as a useful resource for scholars interested in the development of computational methods for structural biology and cell biology, particularly in the area of 3D imaging and modeling.

18. SOME ASPECTS OF THE USE OF MATHEMATICAL-STATISTICAL METHODS IN THE ANALYSIS OF SOCIO-HUMANISTIC TEXTS Humanities and social text, mathematics, method, statistics, probability

Directory of Open Access Journals (Sweden)

Zaira M Alieva

2016-01-01

Full Text Available The article analyzes the application of mathematical and statistical methods in the analysis of socio-humanistic texts. The essence of mathematical and statistical methods, presents examples of their use in the study of Humanities and social phenomena. Considers the key issues faced by the expert in the application of mathematical-statistical methods in socio-humanitarian sphere, including the availability of sustainable contrasting socio-humanitarian Sciences and mathematics; the complexity of the allocation of the object that is the bearer of the problem; having the use of a probabilistic approach. The conclusion according to the results of the study.

19. Mathematical and statistical methods for actuarial sciences and finance

CERN Document Server

Sibillo, Marilena

2014-01-01

The interaction between mathematicians and statisticians working in the actuarial and financial fields is producing numerous meaningful scientific results. This volume, comprising a series of four-page papers, gathers new ideas relating to mathematical and statistical methods in the actuarial sciences and finance. The book covers a variety of topics of interest from both theoretical and applied perspectives, including: actuarial models; alternative testing approaches; behavioral finance; clustering techniques; coherent and non-coherent risk measures; credit-scoring approaches; data envelopment analysis; dynamic stochastic programming; financial contagion models; financial ratios; intelligent financial trading systems; mixture normality approaches; Monte Carlo-based methodologies; multicriteria methods; nonlinear parameter estimation techniques; nonlinear threshold models; particle swarm optimization; performance measures; portfolio optimization; pricing methods for structured and non-structured derivatives; r...

20. Scientific Computing: A New Way of Looking at Mathematics

Amiya Kumar Pani

repose faith on the numbers being crunched. To design and develop reliable and efficient algorithms for numerical solutions to PDEs. By reliability, we mean that for a given tolerance and measurement, the computed solution stays near to the exact unknown solution within the prescribed tolerance with respect to the given.

1. FOREWORD: Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology and Mathematics

Science.gov (United States)

1990-01-01

These are Proceedings of the Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology, and Mathematics, held August 25-26, 1989, at Lahti (Finland). The Symposium belongs to an annual series of Meetings, the first one of which was arranged in 1987 at Lund (Sweden) and the second one in 1988 at Kolle-Kolle near Copenhagen (Denmark). Although these Symposia have thus far been essentially Nordic events, their international character has increased significantly; the trend is vividly reflected through contributions in the present Topical Issue. The interdisciplinary nature of Computational Science is central to the activity; this fundamental aspect is also responsible, in an essential way, for its rapidly increasing impact. Crucially important to a wide spectrum of superficially disparate fields is the common need for extensive - and often quite demanding - computational modelling. For such theoretical models, no closed-form (analytical) solutions are available or they would be extremely difficult to find; hence one must rather resort to the Art of performing computational investigations. Among the unifying features in the computational research are the methods of simulation employed; methods which frequently are quite closely related with each other even for faculties of science that are quite unrelated. Computer simulation in Natural Sciences is presently apprehended as a discipline on its own right, occupying a broad region somewhere between the experimental and theoretical methods, but also partially overlapping with and complementing them. - Whichever its proper definition may be, the computational approach serves as a novel and an extremely versatile tool with which one can equally well perform "pure" experimental modelling and conduct "computational theory". Computational studies that have earlier been made possible only through supercomputers have opened unexpected, as well as exciting, novel frontiers equally in mathematics (e.g., fractals

2. Proceedings, 3rd International Satellite Conference on Mathematical Methods in Physics (ICMP13)

CERN Document Server

2013-01-01

The aim of the Conference is to present the latest advances in Mathematical Methods to researchers, post-docs and graduated students acting in the areas of Physics of Particles and Fields, Mathematical Physics and Applied Mathematics. Topics: Methods of Spectral and Group Theory, Differential and Algebraic Geometry and Topology in Field Theory, Quantum Gravity, String Theory and Cosmology.

3. What Math Matters? Types of Mathematics Knowledge and Relationships to Methods Course Performance

Science.gov (United States)

Kajander, Ann; Holm, Jennifer

2016-01-01

This study investigated the effect of a departmental focus on enhanced mathematics knowledge for teaching on overall performance in upper elementary mathematics methods courses. The study examined the effect of performance on a new course in mathematics for teaching on performance at the methods course level. In addition, the effect of performance…

4. Infusing Mathematics Content into a Methods Course: Impacting Content Knowledge for Teaching

Science.gov (United States)

Burton, Megan; Daane, C. J.; Giesen, Judy

2008-01-01

This study compared content knowledge for teaching mathematics differences between elementary pre-service teachers in a traditional versus an experimental mathematics methods course. The experimental course replaced 20 minutes of traditional methods, each class, with an intervention of elementary mathematics content. The difference between groups…

5. An Invitation to the Mathematics of Topological Quantum Computation

International Nuclear Information System (INIS)

Rowell, E C

2016-01-01

Two-dimensional topological states of matter offer a route to quantum computation that would be topologically protected against the nemesis of the quantum circuit model: decoherence. Research groups in industry, government and academic institutions are pursuing this approach. We give a mathematician's perspective on some of the advantages and challenges of this model, highlighting some recent advances. We then give a short description of how we might extend the theory to three-dimensional materials. (paper)

6. Advanced Computational Methods in Bio-Mechanics.

Science.gov (United States)

Al Qahtani, Waleed M S; El-Anwar, Mohamed I

2018-04-15

A novel partnership between surgeons and machines, made possible by advances in computing and engineering technology, could overcome many of the limitations of traditional surgery. By extending surgeons' ability to plan and carry out surgical interventions more accurately and with fewer traumas, computer-integrated surgery (CIS) systems could help to improve clinical outcomes and the efficiency of healthcare delivery. CIS systems could have a similar impact on surgery to that long since realised in computer-integrated manufacturing. Mathematical modelling and computer simulation have proved tremendously successful in engineering. Computational mechanics has enabled technological developments in virtually every area of our lives. One of the greatest challenges for mechanists is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. Biomechanics has significant potential for applications in orthopaedic industry, and the performance arts since skills needed for these activities are visibly related to the human musculoskeletal and nervous systems. Although biomechanics is widely used nowadays in the orthopaedic industry to design orthopaedic implants for human joints, dental parts, external fixations and other medical purposes, numerous researches funded by billions of dollars are still running to build a new future for sports and human healthcare in what is called biomechanics era.

7. Hybrid Monte Carlo methods in computational finance

NARCIS (Netherlands)

Leitao Rodriguez, A.

2017-01-01

Monte Carlo methods are highly appreciated and intensively employed in computational finance in the context of financial derivatives valuation or risk management. The method offers valuable advantages like flexibility, easy interpretation and straightforward implementation. Furthermore, the

8. Advanced computational electromagnetic methods and applications

CERN Document Server

Li, Wenxing; Elsherbeni, Atef; Rahmat-Samii, Yahya

2015-01-01

This new resource covers the latest developments in computational electromagnetic methods, with emphasis on cutting-edge applications. This book is designed to extend existing literature to the latest development in computational electromagnetic methods, which are of interest to readers in both academic and industrial areas. The topics include advanced techniques in MoM, FEM and FDTD, spectral domain method, GPU and Phi hardware acceleration, metamaterials, frequency and time domain integral equations, and statistics methods in bio-electromagnetics.

9. Computational Methods for Biomolecular Electrostatics

Science.gov (United States)

Dong, Feng; Olsen, Brett; Baker, Nathan A.

2008-01-01

An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der Waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of special importance because of their long range and their influence on polar or charged molecules, including water, aqueous ions, and amino or nucleic acids, which are some of the primary components of living systems. Electrostatics, therefore, play important roles in determining the structure, motion and function of a wide range of biological molecules. This chapter presents a brief overview of electrostatic interactions in cellular systems with a particular focus on how computational tools can be used to investigate these types of interactions. PMID:17964951

10. Technical Training: EMAG-2005 - Electromagnetic Design and Mathematical Optimization Methods in Magnet Technology

CERN Multimedia

Monique Duval

2005-01-01

CERN Technical Training 2005: Learning for the LHC! CERN Technical Training, in collaboration with the AT-MEL-EM section, is organising a new course series in the framework of the 2005 CERN Technical Training programme: EMAG-2005 - Electromagnetic Design and Mathematical Optimization Methods in Magnet Technology, composed of three-hour lectures in the morning and topical seminars in the afternoon. The EMAG-2005 course series will run at CERN from Monday April 4 until Thursday April 14 (no lectures on Friday 8). The course series, in English, will focus on the foundations of electromagnetism and the design of accelerator magnets, both normal conducting and superconducting, employing analytical and numerical field computations. Examples of the LHC magnet design using the CERN field computation program ROXIE will be presented. However, EMAG-2005 is not a ROXIE user course: it is rather a course for users or potential users of numerical field computation software, and for magnet designers. The course will be o...

11. Use of digital computers for correction of gamma method and neutron-gamma method indications

International Nuclear Information System (INIS)

Lakhnyuk, V.M.

1978-01-01

The program for the NAIRI-S computer is described which is intended for accounting and elimination of the effect of by-processes when interpreting gamma and neutron-gamma logging indications. By means of slight corrections it is possible to use the program as a mathematical basis for logging diagram standardization by the method of multidimensional regressive analysis and estimation of rock reservoir properties

12. Uncertainty and variability in computational and mathematical models of cardiac physiology.

Science.gov (United States)

Mirams, Gary R; Pathmanathan, Pras; Gray, Richard A; Challenor, Peter; Clayton, Richard H

2016-12-01

Mathematical and computational models of cardiac physiology have been an integral component of cardiac electrophysiology since its inception, and are collectively known as the Cardiac Physiome. We identify and classify the numerous sources of variability and uncertainty in model formulation, parameters and other inputs that arise from both natural variation in experimental data and lack of knowledge. The impact of uncertainty on the outputs of Cardiac Physiome models is not well understood, and this limits their utility as clinical tools. We argue that incorporating variability and uncertainty should be a high priority for the future of the Cardiac Physiome. We suggest investigating the adoption of approaches developed in other areas of science and engineering while recognising unique challenges for the Cardiac Physiome; it is likely that novel methods will be necessary that require engagement with the mathematics and statistics community. The Cardiac Physiome effort is one of the most mature and successful applications of mathematical and computational modelling for describing and advancing the understanding of physiology. After five decades of development, physiological cardiac models are poised to realise the promise of translational research via clinical applications such as drug development and patient-specific approaches as well as ablation, cardiac resynchronisation and contractility modulation therapies. For models to be included as a vital component of the decision process in safety-critical applications, rigorous assessment of model credibility will be required. This White Paper describes one aspect of this process by identifying and classifying sources of variability and uncertainty in models as well as their implications for the application and development of cardiac models. We stress the need to understand and quantify the sources of variability and uncertainty in model inputs, and the impact of model structure and complexity and their consequences for

13. Mathematical methods for quantification and comparison of dissolution testing data.

Science.gov (United States)

Vranić, Edina; Mehmedagić, Aida; Hadzović, Sabira

2002-12-01

In recent years, drug release/dissolution from solid dosage forms has been the subject of intense and profitable scientific developments. Whenever a new solid dosage form is developed or produced, it is necessary to ensure that drug dissolution occurs in an appropriate manner. The pharmaceutical industry and the registration authorities do focus, nowadays, on drug dissolution studies. The quantitative analysis of the values obtained in dissolution/release tests is easier when mathematical formulas that express the dissolution results as a function of some of the dosage forms characteristics are used. This work discusses the analysis of data obtained for dissolution profiles under different media pH conditions using mathematical methods of analysis described by Moore and Flanner. These authors have described difference factor (f1) and similarity factor (f2), which can be used to characterise drug dissolution/release profiles. In this work we have used these formulas for evaluation of dissolution profiles of the conventional tablets in different pH of dissolution medium (range of physiological variations).

14. Gender Differences in Preschool Children's Recall of Competitive and Noncompetitive Computer Mathematics Games

Science.gov (United States)

Wei, Fang-Yi Flora; Hendrix, Katherine Grace

2009-01-01

This study investigated whether competitive and noncompetitive educational mathematics computer games influence four- to seven-year-old boys' and girls' recall of game-playing experience. A qualitative analysis was performed to investigate what preschool children may have learned through their selective recall of game-playing experience. A…

15. Computer Mathematics Games and Conditions for Enhancing Young Children's Learning of Number Sense

Science.gov (United States)

Kermani, Hengameh

2017-01-01

Purpose: The present study was designed to examine whether mathematics computer games improved young children's learning of number sense under three different conditions: when used individually, with a peer, and with teacher facilitation. Methodology: This study utilized a mixed methodology, collecting both quantitative and qualitative data. A…

16. Modeling Students' Problem Solving Performance in the Computer-Based Mathematics Learning Environment

Science.gov (United States)

Lee, Young-Jin

2017-01-01

Purpose: The purpose of this paper is to develop a quantitative model of problem solving performance of students in the computer-based mathematics learning environment. Design/methodology/approach: Regularized logistic regression was used to create a quantitative model of problem solving performance of students that predicts whether students can…

17. Transitioning the GED[R] Mathematics Test to Computer with and without Accommodations: A Pilot Project

Science.gov (United States)

Patterson, Margaret Becker; Higgins, Jennifer; Bozman, Martha; Katz, Michael

2011-01-01

We conducted a pilot study to see how the GED Mathematics Test could be administered on computer with embedded accessibility tools. We examined test scores and test-taker experience. Nineteen GED test centers across five states and 216 randomly assigned GED Tests candidates participated in the project. GED candidates completed two GED mathematics…

18. Connecting Expectations and Values: Students' Perceptions of Developmental Mathematics in a Computer-Based Learning Environment

Science.gov (United States)

Jackson, Karen Latrice Terrell

2014-01-01

Students' perceptions influence their expectations and values. According to Expectations and Values Theory of Achievement Motivation (EVT-AM), students' expectations and values impact their behaviors (Eccles & Wigfield, 2002). This study seeks to find students' perceptions of developmental mathematics in a mastery learning computer-based…

19. Beyond Cognitive Increase: Investigating the Influence of Computer Programming on Perception and Application of Mathematical Skills

Science.gov (United States)

Rich, Peter J.; Bly, Neil; Leatham, Keith R.

2014-01-01

This study aimed to provide first-hand accounts of the perceived long-term effects of learning computer programming on a learner's approach to mathematics. These phenomenological accounts, garnered from individual interviews of seven different programmers, illustrate four specific areas of interest: (1) programming provides context for many…

20. Pedagogical Factors Affecting Integration of Computers in Mathematics Instruction in Secondary Schools in Kenya

Science.gov (United States)

Wanjala, Martin M. S.; Aurah, Catherine M.; Symon, Koros C.

2015-01-01

The paper reports findings of a study which sought to examine the pedagogical factors that affect the integration of computers in mathematics instruction as perceived by teachers in secondary schools in Kenya. This study was based on the Technology Acceptance Model (TAM). A descriptive survey design was used for this study. Stratified and simple…

1. Multiple-Choice versus Constructed-Response Tests in the Assessment of Mathematics Computation Skills.

Science.gov (United States)

The equivalence of multiple-choice (MC) and constructed response (discrete) (CR-D) response formats as applied to mathematics computation at grade levels two to six was tested. The difference between total scores from the two response formats was tested for statistical significance, and the factor structure of items in both response formats was…

2. Mathematical Language Development and Talk Types in Computer Supported Collaborative Learning Environments

Science.gov (United States)

Symons, Duncan; Pierce, Robyn

2015-01-01

In this study we examine the use of cumulative and exploratory talk types in a year 5 computer supported collaborative learning environment. The focus for students in this environment was to participate in mathematical problem solving, with the intention of developing the proficiencies of problem solving and reasoning. Findings suggest that…

3. THE EFFECTS OF ACUTE PHYSICAL EXERCISE TRAINING ON MATHEMATICAL COMPUTATION IN CHILDREN

Directory of Open Access Journals (Sweden)

Gustav Bala

2014-12-01

The results showed that the children’s computation performance was enhanced significantly in the groups with 30, or 45, or 60 min of physical exercise, but not in the groups without physical exercise. This means that even acute intensive physical training can yield positive effects on children's mathematical abilities.

4. A Computer-Based Game That Promotes Mathematics Learning More than a Conventional Approach

Science.gov (United States)

McLaren, Bruce M.; Adams, Deanne M.; Mayer, Richard E.; Forlizzi, Jodi

2017-01-01

Excitement about learning from computer-based games has been papable in recent years and has led to the development of many educational games. However, there are relatively few sound empirical studies in the scientific literature that have shown the benefits of learning mathematics from games as opposed to more traditional approaches. The…

5. The effectiveness of remedial computer use for mathematics in a university setting (Botswana)

NARCIS (Netherlands)

Plomp, T.; Pilon, J.; Pilon, Jacqueline; Janssen Reinen, I.A.M.

1991-01-01

This paper describes the evaluation of the effects of the Mathematics and Science Computer Assisted Remedial Teaching (MASCART) software on students from the Pre-Entry Science Course at the University of Botswana. A general significant improvement of basic algebra knowledge and skills could be

6. Introducing Laptops to Children: An Examination of Ubiquitous Computing in Grade 3 Reading, Language, and Mathematics

Science.gov (United States)

Bernard, Robert M.; Bethel, Edward Clement; Abrami, Philip C.; Wade, C. Anne

2007-01-01

This study examines the achievement outcomes accompanying the implementation of a Grade 3 laptop or so-­called "ubiquitous computing" program in a Quebec school district. CAT­3 reading, language, and mathematics batteries were administered at the end of Grade 2 and again at the end of Grade 3, after the first year of computer…

7. Teachers' Use of Computational Tools to Construct and Explore Dynamic Mathematical Models

Science.gov (United States)

Santos-Trigo, Manuel; Reyes-Rodriguez, Aaron

2011-01-01

To what extent does the use of computational tools offer teachers the possibility of constructing dynamic models to identify and explore diverse mathematical relations? What ways of reasoning or thinking about the problems emerge during the model construction process that involves the use of the tools? These research questions guided the…

8. Summary of research in applied mathematics, numerical analysis and computer science at the Institute for Computer Applications in Science and Engineering

Science.gov (United States)

1984-01-01

Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period October 1, 1983 through March 31, 1984 is summarized.

9. Summary of research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

Science.gov (United States)

1989-01-01

Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1988 through March 31, 1989 is summarized.

10. A Method for Identifying Contours in Processing Digital Images from Computer Tomograph

Science.gov (United States)

Roşu, Şerban; Pater, Flavius; Costea, Dan; Munteanu, Mihnea; Roşu, Doina; Fratila, Mihaela

2011-09-01

The first step in digital processing of two-dimensional computed tomography images is to identify the contour of component elements. This paper deals with the collective work of specialists in medicine and applied mathematics in computer science on elaborating new algorithms and methods in medical 2D and 3D imagery.

11. Mathematics

CERN Document Server

Stein, Sherman K

2010-01-01

Anyone can appreciate the beauty, depth, and vitality of mathematics with the help of this highly readable text, specially developed from a college course designed to appeal to students in a variety of fields. Readers with little mathematical background are exposed to a broad range of subjects chosen from number theory, topology, set theory, geometry, algebra, and analysis. Starting with a survey of questions on weight, the text discusses the primes, the fundamental theorem of arithmetic, rationals and irrationals, tiling, tiling and electricity, probability, infinite sets, and many other topi

12. Current research activities: Applied and numerical mathematics, fluid mechanics, experiments in transition and turbulence and aerodynamics, and computer science

Science.gov (United States)

1992-01-01

Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.

13. Mathematical Model for Dengue Epidemics with Differential Susceptibility and Asymptomatic Patients Using Computer Algebra

Science.gov (United States)

Saldarriaga Vargas, Clarita

When there are diseases affecting large populations where the social, economic and cultural diversity is significant within the same region, the biological parameters that determine the behavior of the dispersion disease analysis are affected by the selection of different individuals. Therefore and because of the variety and magnitude of the communities at risk of contracting dengue disease around all over the world, suggest defining differentiated populations with individual contributions in the results of the dispersion dengue disease analysis. In this paper those conditions were taken in account when several epidemiologic models were analyzed. Initially a stability analysis was done for a SEIR mathematical model of Dengue disease without differential susceptibility. Both free disease and endemic equilibrium states were found in terms of the basic reproduction number and were defined in the Theorem (3.1). Then a DSEIR model was solved when a new susceptible group was introduced to consider the effects of important biological parameters of non-homogeneous populations in the spreading analysis. The results were compiled in the Theorem (3.2). Finally Theorems (3.3) and (3.4) resumed the basic reproduction numbers for three and n different susceptible groups respectively, giving an idea of how differential susceptibility affects the equilibrium states. The computations were done using an algorithmic method implemented in Maple 11, a general-purpose computer algebra system.

14. Perception of mathematics teachers on cooperative learning method in the 21st century

Science.gov (United States)

Taufik, Nurshahira Alwani Mohd; Maat, Siti Mistima

2017-05-01

Mathematics education is one of the branches to be mastered by students to help them compete with the upcoming challenges that are very challenging. As such, all parties should work together to help increase student achievement in Mathematics education in line with the Malaysian Education Blueprint (MEB) 2010-2025. Teaching methods play a very important role in attracting and fostering student understanding and interested in learning Mathematics. Therefore, this study was conducted to identify the perceptions of teachers in carrying out cooperative methods in the teaching and learning of mathematics. Participants of this study involving 4 teachers who teach Mathematics in primary schools around the state of Negeri Sembilan. Interviews are used as a method for gathering data. The findings indicate that cooperative methods help increasing interest and understanding in the teaching and learning of mathematics. In conclusion, the teaching methods affect the interest and understanding of students in the learning of Mathematics in the classroom.

15. Prospects of a mathematical theory of human behavior in complex man-machine systems tasks. [time sharing computer analogy of automobile driving

Science.gov (United States)

Johannsen, G.; Rouse, W. B.

1978-01-01

A hierarchy of human activities is derived by analyzing automobile driving in general terms. A structural description leads to a block diagram and a time-sharing computer analogy. The range of applicability of existing mathematical models is considered with respect to the hierarchy of human activities in actual complex tasks. Other mathematical tools so far not often applied to man machine systems are also discussed. The mathematical descriptions at least briefly considered here include utility, estimation, control, queueing, and fuzzy set theory as well as artificial intelligence techniques. Some thoughts are given as to how these methods might be integrated and how further work might be pursued.

16. Computational methods for data evaluation and assimilation

CERN Document Server

Cacuci, Dan Gabriel

2013-01-01

Data evaluation and data combination require the use of a wide range of probability theory concepts and tools, from deductive statistics mainly concerning frequencies and sample tallies to inductive inference for assimilating non-frequency data and a priori knowledge. Computational Methods for Data Evaluation and Assimilation presents interdisciplinary methods for integrating experimental and computational information. This self-contained book shows how the methods can be applied in many scientific and engineering areas. After presenting the fundamentals underlying the evaluation of experiment

17. Mathematics

International Nuclear Information System (INIS)

Demazure, M.

1988-01-01

The 1988 progress report of the Mathematics center (Polytechnic School, France), is presented. The Center is composed of different research teams: analysis, Riemann geometry, group theory, formal calculus and algorithm geometry, dynamical systems, topology and singularity. For each team, the members, the research topics, the national and international cooperations, are given. The papers concerning the investigations carried out in 1988, are listed [fr

18. Computing the stability of steady-state solutions of mathematical models of the electrical activity in the heart.

Science.gov (United States)

Tveito, Aslak; Skavhaug, Ola; Lines, Glenn T; Artebrant, Robert

2011-08-01

Instabilities in the electro-chemical resting state of the heart can generate ectopic waves that in turn can initiate arrhythmias. We derive methods for computing the resting state for mathematical models of the electro-chemical process underpinning a heartbeat, and we estimate the stability of the resting state by invoking the largest real part of the eigenvalues of a linearized model. The implementation of the methods is described and a number of numerical experiments illustrate the feasibility of the methods. In particular, we test the methods for problems where we can compare the solutions with analytical results, and problems where we have solutions computed by independent software. The software is also tested for a fairly realistic 3D model. Copyright © 2011 Elsevier Ltd. All rights reserved.

19. Investigation of the computer experiences and attitudes of pre-service mathematics teachers: new evidence from Turkey.

Science.gov (United States)

Birgin, Osman; Catlioğlu, Hakan; Gürbüz, Ramazan; Aydin, Serhat

2010-10-01

This study aimed to investigate the experiences of pre-service mathematics (PSM) teachers with computers and their attitudes toward them. The Computer Attitude Scale, Computer Competency Survey, and Computer Use Information Form were administered to 180 Turkish PSM teachers. Results revealed that most PSM teachers used computers at home and at Internet cafes, and that their competency was generally intermediate and upper level. The study concludes that PSM teachers' attitudes about computers differ according to their years of study, computer ownership, level of computer competency, frequency of computer use, computer experience, and whether they had attended a computer-aided instruction course. However, computer attitudes were not affected by gender.

20. Reframing Research on Methods Courses to Inform Mathematics Teacher Educators' Practice

Science.gov (United States)

Kastberg, Signe E.; Tyminski, Andrew M.; Sanchez, Wendy B.

2017-01-01

Calls have been made for the creation of a shared knowledge base in mathematics teacher education with the power to inform the design of scholarly inquiry and mathematics teacher educators' (MTEs) scholarly practices. Focusing on mathematics methods courses, we summarize and contribute to literature documenting activities MTEs use in mathematics…

1. Introductory discrete mathematics

CERN Document Server

Balakrishnan, V K

2010-01-01

This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems.Chapters 0-3 cover fundamental operations involv

2. New mathematical method for the solution of gas-gas equilibria with special application to HTGR primary-coolant environments

International Nuclear Information System (INIS)

Bongartz, K.

1983-07-01

A new mathematical method and corresponding computer program have been developed that provide a general method for the numerical solution of an equilibrium problem involving the chemical interactions of gaseous species. The method and computer code were developed to calculate the equilibrium concentrations of impurity gases, such as CO, CO 2 , H 2 , H 2 O, CH 4 , and O 2 , which may be approached as the result of gaseous chemical reactions occurring within the hot primary coolant helium of a high-temperature gas-cooled reactor (HTGR). The method, however, can be applied to any gas mixture

3. Generic Mathematical Programming Formulation and Solution for Computer-Aided Molecular Design

DEFF Research Database (Denmark)

Zhang, Lei; Cignitti, Stefano; Gani, Rafiqul

2015-01-01

This short communication presents a generic mathematical programming formulation for Computer-Aided Molecular Design (CAMD). A given CAMD problem, based on target properties, is formulated as a Mixed Integer Linear/Non-Linear Program (MILP/MINLP). The mathematical programming model presented here......, which is formulated as an MILP/MINLP problem, considers first-order and second-order molecular groups for molecular structure representation and property estimation. It is shown that various CAMD problems can be formulated and solved through this model....

4. Mathematical Methods of System Analysis in Construction Materials

Science.gov (United States)

Garkina, Irina; Danilov, Alexander

2017-10-01

modules and their levels (the mathematical description, a decision algorithm) are defined. Adequacy is established (compliance of results of modelling to experimental data; is defined by the level of knowledge of process and validity of the accepted assumptions). The global criterion of quality of material is considered as a set of private criteria (properties). Synthesis of material is carried out on the basis of one-criteria optimization on each of the chosen private criteria. Results of one-criteria optimization are used at multicriteria optimization. The methods of developing materials as single-purpose, multi-purpose, including contradictory, systems are indicated. The scheme of synthesis of composite materials as difficult systems is developed. The specified system approach effectively was used in case of synthesis of composite materials with special properties.

5. The influence of early computer use on educational achievement in mathematics

Directory of Open Access Journals (Sweden)

Andrés Fernández Aráuz

2014-11-01

Full Text Available Does early access to computer use improve student achievement? Empirical evidence from experimental designs shows little or no relationship between the use of ICT and academic performance. Using the data collected in PISA it can be analyzed this association some years after that the student had access to a computer for the first time. Performing an exploratory data analysis of Costa Rican students in PISA 2012 mathematics assessment and by estimating a linear regression model even controlling for factors with high explanatory power on academic performance, it’s shown that age at access to a computer is a determinant of educational performance.

6. Mathematical modelling

CERN Document Server

2016-01-01

This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.

7. Development of computer program for simulation of an ice bank system operation, Part I: Mathematical modelling

Energy Technology Data Exchange (ETDEWEB)

Halasz, Boris; Grozdek, Marino; Soldo, Vladimir [Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lucica 5, 10 000 Zagreb (Croatia)

2009-09-15

Since the use of standard engineering methods in the process of an ice bank performance evaluation offers neither adequate flexibility nor accuracy, the aim of this research was to provide a powerful tool for an industrial design of an ice storage system allowing to account for the various design parameters and system arrangements over a wide range of time varying operating conditions. In this paper the development of a computer application for the prediction of an ice bank system operation is presented. Static, indirect, cool thermal storage systems with external ice on coil building/melting were considered. The mathematical model was developed by means of energy and mass balance relations for each component of the system and is basically divided into two parts, the model of an ice storage system and the model of a refrigeration unit. Heat transfer processes in an ice silo were modelled by use of empirical correlations while the performance of refrigeration unit components were based on manufacturers data. Programming and application design were made in Fortran 95 language standard. Input of data is enabled through drop down menus and dialog boxes, while the results are presented via figures, diagrams and data (ASCII) files. In addition, to demonstrate the necessity for development of simulation program a case study was performed. Simulation results clearly indicate that no simple engineering methods or rule of thumb principles could be utilised in order to validate performance of an ice bank system properly. (author)

8. Electromagnetic field computation by network methods

CERN Document Server

Felsen, Leopold B; Russer, Peter

2009-01-01

This monograph proposes a systematic and rigorous treatment of electromagnetic field representations in complex structures. The book presents new strong models by combining important computational methods. This is the last book of the late Leopold Felsen.

9. Applications of a Sequence of Points in Teaching Linear Algebra, Numerical Methods and Discrete Mathematics

Science.gov (United States)

Shi, Yixun

2009-01-01

Based on a sequence of points and a particular linear transformation generalized from this sequence, two recent papers (E. Mauch and Y. Shi, "Using a sequence of number pairs as an example in teaching mathematics". Math. Comput. Educ., 39 (2005), pp. 198-205; Y. Shi, "Case study projects for college mathematics courses based on a particular…

10. Methods in computed angiotomography of the brain

International Nuclear Information System (INIS)

Yamamoto, Yuji; Asari, Shoji; Sadamoto, Kazuhiko.

1985-01-01

Authors introduce the methods in computed angiotomography of the brain. Setting of the scan planes and levels and the minimum dose bolus (MinDB) injection of contrast medium are described in detail. These methods are easily and safely employed with the use of already propagated CT scanners. Computed angiotomography is expected for clinical applications in many institutions because of its diagnostic value in screening of cerebrovascular lesions and in demonstrating the relationship between pathological lesions and cerebral vessels. (author)

11. 2nd International Conference on Multiscale Computational Methods for Solids and Fluids

CERN Document Server

2016-01-01

This volume contains the best papers presented at the 2nd ECCOMAS International Conference on Multiscale Computations for Solids and Fluids, held June 10-12, 2015. Topics dealt with include multiscale strategy for efficient development of scientific software for large-scale computations, coupled probability-nonlinear-mechanics problems and solution methods, and modern mathematical and computational setting for multi-phase flows and fluid-structure interaction. The papers consist of contributions by six experts who taught short courses prior to the conference, along with several selected articles from other participants dealing with complementary issues, covering both solid mechanics and applied mathematics. .

12. Mathematical methods in physics distributions, Hilbert space operators, variational methods, and applications in quantum physics

CERN Document Server

Blanchard, Philippe

2015-01-01

The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas.  The authors stress that learning mathematical physics is not a passive process and include numerous detailed proofs, examples, and over 200 exercises, as well as hints linking mathematical concepts and results to the relevant physical concepts and theories.  All of the material from the first edition has been updated, and five new chapters have been added on such topics as distributions, Hilbert space operators, and variational methods.   The text is divided into three main parts. Part I is a brief introduction to distribution theory, in which elements from the theories of ultradistributions and hyperfunctions are considered in addition to some deeper results for Schwartz distributions, thus providing a comprehensive introduction to the theory of generalized functions. P...

13. Methods and experimental techniques in computer engineering

CERN Document Server

Schiaffonati, Viola

2014-01-01

Computing and science reveal a synergic relationship. On the one hand, it is widely evident that computing plays an important role in the scientific endeavor. On the other hand, the role of scientific method in computing is getting increasingly important, especially in providing ways to experimentally evaluate the properties of complex computing systems. This book critically presents these issues from a unitary conceptual and methodological perspective by addressing specific case studies at the intersection between computing and science. The book originates from, and collects the experience of, a course for PhD students in Information Engineering held at the Politecnico di Milano. Following the structure of the course, the book features contributions from some researchers who are working at the intersection between computing and science.

14. Research Progress in Mathematical Analysis of Map Projection by Computer Algebra

Directory of Open Access Journals (Sweden)

BIAN Shaofeng

2017-10-01

Full Text Available Map projection is an important component of modern cartography, and involves many fussy mathematical analysis processes, such as the power series expansions of elliptical functions, differential of complex and implicit functions, elliptical integral and the operation of complex numbers. The derivation of these problems by hand not only consumes much time and energy but also makes mistake easily, and sometimes can not be realized at all because of the impossible complexity. The research achievements in mathematical analysis of map projection by computer algebra are systematically reviewed in five aspects, i.e., the symbolic expressions of forward and inverse solution of ellipsoidal latitudes, the direct transformations between map projections with different distortion properties, expressions of Gauss projection by complex function, mathematical analysis of oblique Mercator projection, polar chart projection with its transformation. Main problems that need to be further solved in this research field are analyzed. It will be helpful to promote the development of map projection.

15. Mathematical and computational analyses of cracking formation fracture morphology and its evolution in engineering materials and structures

CERN Document Server

Sumi, Yoichi

2014-01-01

This book is about the pattern formation and the evolution of crack propagation in engineering materials and structures, bridging mathematical analyses of cracks based on singular integral equations, to computational simulation of engineering design. The first two parts of this book focus on elasticity and fracture and provide the basis for discussions on fracture morphology and its numerical simulation, which may lead to a simulation-based fracture control in engineering structures. Several design concepts are discussed for the prevention of fatigue and fracture in engineering structures, including safe-life design, fail-safe design, damage tolerant design. After starting with basic elasticity and fracture theories in parts one and two, this book focuses on the fracture morphology that develops due to the propagation of brittle cracks or fatigue cracks.   In part three, the mathematical analysis of a curved crack is precisely described, based on the perturbation method. The stability theory of interactive ...

16. Introducing Computational Thinking to Young Learners: Practicing Computational Perspectives through Embodiment in Mathematics Education

Science.gov (United States)

Sung, Woonhee; Ahn, Junghyun; Black, John B.

2017-01-01

A science, technology, engineering, and mathematics-influenced classroom requires learning activities that provide hands-on experiences with technological tools to encourage problem-solving skills (Brophy et al. in "J Eng Educ" 97(3):369-387, 2008; Mataric et al. in "AAAI spring symposium on robots and robot venues: resources for AI…

17. Computational techniques of the simplex method

CERN Document Server

Maros, István

2003-01-01

Computational Techniques of the Simplex Method is a systematic treatment focused on the computational issues of the simplex method. It provides a comprehensive coverage of the most important and successful algorithmic and implementation techniques of the simplex method. It is a unique source of essential, never discussed details of algorithmic elements and their implementation. On the basis of the book the reader will be able to create a highly advanced implementation of the simplex method which, in turn, can be used directly or as a building block in other solution algorithms.

18. The effects of computer-assisted instruction on the mathematics performance and classroom behavior of children with ADHD.

Science.gov (United States)

Mautone, Jennifer A; DuPaul, George J; Jitendra, Asha K

2005-08-01

The present study examines the effects of computer-assisted instruction (CAI) on the mathematics performance and classroom behavior of three second-through fourth-grade students with ADHD. A controlled case study is used to evaluate the effects of the computer software on participants' mathematics performance and on-task behavior. Participants' mathematics achievement improve and their on-task behavior increase during the CAI sessions relative to independent seatwork conditions. In addition, students and teachers consider CAI to be an acceptable intervention for some students with ADHD who are having difficulty with mathematics. Implications of these results for practice and research are discussed.

19. Computational Methods for Conformational Sampling of Biomolecules

DEFF Research Database (Denmark)

Bottaro, Sandro

mathematical approach to a classic geometrical problem in protein simulations, and demonstrated its superiority compared to existing approaches. Secondly, we have constructed a more accurate implicit model of the aqueous environment, which is of fundamental importance in protein chemistry. This model......Proteins play a fundamental role in virtually every process within living organisms. For example, some proteins act as enzymes, catalyzing a wide range of reactions necessary for life, others mediate the cell interaction with the surrounding environment and still others have regulatory functions...... is computationally much faster than models where water molecules are represented explicitly. Finally, in collaboration with the group of structural bioinformatics at the Department of Biology (KU), we have applied these techniques in the context of modeling of protein structure and flexibility from low...

20. Formative questioning in computer learning environments: a course for pre-service mathematics teachers

Science.gov (United States)

Akkoç, Hatice

2015-11-01

This paper focuses on a specific aspect of formative assessment, namely questioning. Given that computers have gained widespread use in learning and teaching, specific attention should be made when organizing formative assessment in computer learning environments (CLEs). A course including various workshops was designed to develop knowledge and skills of questioning in CLEs. This study investigates how pre-service mathematics teachers used formative questioning with technological tools such as Geogebra and Graphic Calculus software. Participants are 35 pre-service mathematics teachers. To analyse formative questioning, two types of questions are investigated: mathematical questions and technical questions. Data were collected through lesson plans, teaching notes, interviews and observations. Descriptive statistics of the number of questions in the lesson plans before and after the workshops are presented. Examples of two types of questions are discussed using the theoretical framework. One pre-service teacher was selected and a deeper analysis of the way he used questioning during his three lessons was also investigated. The findings indicated an improvement in using technical questions for formative purposes and that the course provided a guideline in planning and using mathematical and technical questions in CLEs.

1. Modelling of elementary computer operations using the intellect method

Energy Technology Data Exchange (ETDEWEB)

Shabanov-kushnarenko, Yu P

1982-01-01

The formal and apparatus intellect theory is used to describe functions of machine intelligence. A mathematical description is proposed as well as a machine realisation as switched networks of some simple computer operations. 5 references.

2. M and c'99 : Mathematics and computation, reactor physics and environmental analysis in nuclear applications, Madrid, September 27-30, 1999

International Nuclear Information System (INIS)

Aragones, J. M.; Ahnert, C.; Cabellos, O.

1999-01-01

The international conference on mathematics and computation, reactor physics and environmental analysis in nuclear applications in the biennial topical meeting of the mathematics and computation division of the American Nuclear Society. (Author)

3. M and c'99 : Mathematics and computation, reactor physics and environmental analysis in nuclear applications, Madrid, September 27-30, 1999

Energy Technology Data Exchange (ETDEWEB)

Aragones, J. M.; Ahnert, C.; Cabellos, O.

1999-07-01

The international conference on mathematics and computation, reactor physics and environmental analysis in nuclear applications in the biennial topical meeting of the mathematics and computation division of the American Nuclear Society. (Author)

4. Computational Methods for Inviscid and Viscous Two-and-Three-Dimensional Flow Fields.

Science.gov (United States)

1975-01-01

Difference Equations Over a Network, Watson Sei. Comput. Lab. Report, 19U9. 173- Isaacson, E. and Keller, H. B., Analaysis of Numerical Methods...element method has given a new impulse to the old mathematical theory of multivariate interpolation. We first study the one-dimensional case, which

5. Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy

DEFF Research Database (Denmark)

the mathematical community around shapes and the MICCAI community in view of computational anatomy applications. It targets more particularly researchers investigating the combination of statistical and geometrical aspects in the modeling of the variability of biological shapes. The workshop is a forum...... of the workshop: statistics on manifolds and diff eomorphisms for surface or longitudinal registration. One session gathers papers exploring new mathematical structures beyond Riemannian geometry while the last oral session deals with the emerging theme of statistics on graphs and trees. Finally, a poster session......Computational anatomy is an emerging discipline at the interface of geometry, statistics and image analysis which aims at modeling and analyzing the biological shape of tissues and organs. The goal is to estimate representative organ anatomies across diseases, populations, species or ages, to model...

6. Concentrator optical characterization using computer mathematical modelling and point source testing

Science.gov (United States)

Dennison, E. W.; John, S. L.; Trentelman, G. F.

1984-01-01

The optical characteristics of a paraboloidal solar concentrator are analyzed using the intercept factor curve (a format for image data) to describe the results of a mathematical model and to represent reduced data from experimental testing. This procedure makes it possible not only to test an assembled concentrator, but also to evaluate single optical panels or to conduct non-solar tests of an assembled concentrator. The use of three-dimensional ray tracing computer programs to calculate the mathematical model is described. These ray tracing programs can include any type of optical configuration from simple paraboloids to array of spherical facets and can be adapted to microcomputers or larger computers, which can graphically display real-time comparison of calculated and measured data.

7. Coherent structures in granular crystals from experiment and modelling to computation and mathematical analysis

CERN Document Server

Chong, Christopher

2018-01-01

This book summarizes a number of fundamental developments at the interface of granular crystals and the mathematical and computational analysis of some of their key localized nonlinear wave solutions. The subject presents a blend of the appeal of granular crystals as a prototypical engineering tested for a variety of diverse applications, the novelty in the nonlinear physics of its coherent structures, and the tractability of a series of mathematical and computational techniques to analyse them. While the focus is on principal one-dimensional solutions such as shock waves, traveling waves, and discrete breathers, numerous extensions of the discussed patterns, e.g., in two dimensions, chains with defects, heterogeneous settings, and other recent developments are discussed. The book appeals to researchers in the field, as well as for graduate and advanced undergraduate students. It will be of interest to mathematicians, physicists and engineers alike.

8. Numerical Methods for Stochastic Computations A Spectral Method Approach

CERN Document Server

Xiu, Dongbin

2010-01-01

The first graduate-level textbook to focus on fundamental aspects of numerical methods for stochastic computations, this book describes the class of numerical methods based on generalized polynomial chaos (gPC). These fast, efficient, and accurate methods are an extension of the classical spectral methods of high-dimensional random spaces. Designed to simulate complex systems subject to random inputs, these methods are widely used in many areas of computer science and engineering. The book introduces polynomial approximation theory and probability theory; describes the basic theory of gPC meth

9. Empirical evaluation methods in computer vision

CERN Document Server

Christensen, Henrik I

2002-01-01

This book provides comprehensive coverage of methods for the empirical evaluation of computer vision techniques. The practical use of computer vision requires empirical evaluation to ensure that the overall system has a guaranteed performance. The book contains articles that cover the design of experiments for evaluation, range image segmentation, the evaluation of face recognition and diffusion methods, image matching using correlation methods, and the performance of medical image processing algorithms. Sample Chapter(s). Foreword (228 KB). Chapter 1: Introduction (505 KB). Contents: Automate

10. A computational method for sharp interface advection

DEFF Research Database (Denmark)

Roenby, Johan; Bredmose, Henrik; Jasak, Hrvoje

2016-01-01

We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volu...

11. Computational physics and applied mathematics capability review June 8-10, 2010

Energy Technology Data Exchange (ETDEWEB)

Lee, Stephen R [Los Alamos National Laboratory

2010-01-01

Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the Laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled multi-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CPAM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections), as follows. Theme 1: Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the Laboratory. Theme 2: Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution

12. An Analysis of Mathematics Interventions: Increased Time-on-Task Compared with Computer-Assisted Mathematics Instruction

Science.gov (United States)

Calhoun, James M., Jr.

2011-01-01

Student achievement is not progressing on mathematics as measured by state, national, and international assessments. Much of the research points to mathematics curriculum and instruction as the root cause of student failure to achieve at levels comparable to other nations. Since mathematics is regarded as a gate keeper to many educational…

13. Perceptions of Online Tutorials for Distance Learning in Mathematics and Computing

OpenAIRE

Lowe, Tim; Mestel, Ben; Wiliams, Gareth

2016-01-01

We report on student and staff perceptions of synchronous online teaching and learning sessions in mathematics and computing. The study is based on two surveys of students and tutors conducted 5 years apart, and focusses on the educational experience as well as societal and accessibility dimensions. Key conclusions are that both staff and students value online sessions, to supplement face-to-face sessions, mainly for their convenience, but interaction within the sessions is limited. Students ...

14. PREDICTION OF MEAT PRODUCT QUALITY BY THE MATHEMATICAL PROGRAMMING METHODS

Directory of Open Access Journals (Sweden)

A. B. Lisitsyn

2016-01-01

Full Text Available Abstract Use of the prediction technologies is one of the directions of the research work carried out both in Russia and abroad. Meat processing is accompanied by the complex physico-chemical, biochemical and mechanical processes. To predict the behavior of meat raw material during the technological processing, a complex of physico-technological and structural-mechanical indicators, which objectively reflects its quality, is used. Among these indicators are pH value, water binding and fat holding capacities, water activity, adhesiveness, viscosity, plasticity and so on. The paper demonstrates the influence of animal proteins (beef and pork on the physico-chemical and functional properties before and after thermal treatment of minced meat made from meat raw material with different content of the connective and fat tissues. On the basis of the experimental data, the model (stochastic dependence parameters linking the quantitative resultant and factor variables were obtained using the regression analysis, and the degree of the correlation with the experimental data was assessed. The maximum allowable levels of meat raw material replacement with animal proteins (beef and pork were established by the methods of mathematical programming. Use of the information technologies will significantly reduce the costs of the experimental search and substantiation of the optimal level of replacement of meat raw material with animal proteins (beef, pork, and will also allow establishing a relationship of product quality indicators with quantity and quality of minced meat ingredients.

15. Mathematical and Numerical Methods for Non-linear Beam Dynamics

International Nuclear Information System (INIS)

Herr, W

2014-01-01

Non-linear effects in accelerator physics are important for both successful operation of accelerators and during the design stage. Since both of these aspects are closely related, they will be treated together in this overview. Some of the most important aspects are well described by methods established in other areas of physics and mathematics. The treatment will be focused on the problems in accelerators used for particle physics experiments. Although the main emphasis will be on accelerator physics issues, some of the aspects of more general interest will be discussed. In particular, we demonstrate that in recent years a framework has been built to handle the complex problems in a consistent form, technically superior and conceptually simpler than the traditional techniques. The need to understand the stability of particle beams has substantially contributed to the development of new techniques and is an important source of examples which can be verified experimentally. Unfortunately, the documentation of these developments is often poor or even unpublished, in many cases only available as lectures or conference proceedings

16. E-learning support for Economic-mathematical methods

Directory of Open Access Journals (Sweden)

Pavel Kolman

2009-01-01

Full Text Available Article is describing process of creating and using of e-learning program for graphical solution of li­near programming problems that is used in the Economic mathematical methods course on Faculty of Business and Economics, MZLU. The program was created within FRVŠ 788/2008 grant and is intended for practicing of graphical solution of LP problems and allows better understanding of the li­near programming problems. In the article is on one hand described the way, how does the program work, it means how were the algorithms implemented, and on the other hand there is described way of use of that program. The program is constructed for working with integer and rational numbers. At the end of the article are shown basic statistics of programs use of students in the present form and the part-time form of study. It is mainly the number of programs downloads and comparison to another programs and students opinion on the e-learning support.

17. Computing discharge using the index velocity method

Science.gov (United States)

Levesque, Victor A.; Oberg, Kevin A.

2012-01-01

Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression

18. Applied Wave Mathematics Selected Topics in Solids, Fluids, and Mathematical Methods

CERN Document Server

Quak, Ewald

2009-01-01

This edited volume addresses the importance of mathematics in wave-related research, and its tutorial style contributions provide educational material for courses or seminars. It presents highlights from research carried out at the Centre for Nonlinear Studies in Tallinn, Estonia, the Centre of Mathematics for Applications in Oslo, Norway, and by visitors from the EU project CENS-CMA. The example applications discussed include wave propagation in inhomogeneous solids, liquid crystals in mesoscopic physics, and long ship waves in shallow water bodies. Other contributions focus on specific mathe

19. Computational efficiency for the surface renewal method

Science.gov (United States)

2018-04-01

Measuring surface fluxes using the surface renewal (SR) method requires programmatic algorithms for tabulation, algebraic calculation, and data quality control. A number of different methods have been published describing automated calibration of SR parameters. Because the SR method utilizes high-frequency (10 Hz+) measurements, some steps in the flux calculation are computationally expensive, especially when automating SR to perform many iterations of these calculations. Several new algorithms were written that perform the required calculations more efficiently and rapidly, and that tested for sensitivity to length of flux averaging period, ability to measure over a large range of lag timescales, and overall computational efficiency. These algorithms utilize signal processing techniques and algebraic simplifications that demonstrate simple modifications that dramatically improve computational efficiency. The results here complement efforts by other authors to standardize a robust and accurate computational SR method. Increased speed of computation time grants flexibility to implementing the SR method, opening new avenues for SR to be used in research, for applied monitoring, and in novel field deployments.

20. Computational methods in molecular imaging technologies

CERN Document Server

Gunjan, Vinit Kumar; Venkatesh, C; Amarnath, M

2017-01-01

This book highlights the experimental investigations that have been carried out on magnetic resonance imaging and computed tomography (MRI & CT) images using state-of-the-art Computational Image processing techniques, and tabulates the statistical values wherever necessary. In a very simple and straightforward way, it explains how image processing methods are used to improve the quality of medical images and facilitate analysis. It offers a valuable resource for researchers, engineers, medical doctors and bioinformatics experts alike.

1. Rethinking logic logic in relation to mathematics, evolution, and method

CERN Document Server

Cellucci, Carlo

2014-01-01

This book examines the limitations of mathematical logic and proposes a new approach intended to overcome them. Formulates new rules of discovery, such as induction, analogy, generalization, specialization, metaphor, metonymy, definition and diagrams.

2. Summary of research in applied mathematics, numerical analysis, and computer sciences

Science.gov (United States)

1986-01-01

The major categories of current ICASE research programs addressed include: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effective numerical methods; computational problems in engineering and physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and computer systems and software, especially vector and parallel computers.

3. Physics, computer science and mathematics division. Annual report, 1 January - 31 December 1982

Energy Technology Data Exchange (ETDEWEB)

Jackson, J.D.

1983-08-01

Experimental physics research activities are described under the following headings: research on e/sup +/e/sup -/ annihilation; research at Fermilab; search for effects of a right-handed gauge boson; the particle data center; high energy astrophysics and interdisciplinary experiments; detector and other research and development; publications and reports of other research; computation and communication; and engineering, evaluation, and support operations. Theoretical particle physics research and heavy ion fusion research are described. Also, activities of the Computer Science and Mathematics Department are summarized. Publications are listed. (WHK)

4. A comparison of equality in computer algebra and correctness in mathematical pedagogy (II)

OpenAIRE

Bradford, Russell; Davenport, James H; Sangwin, C

2010-01-01

A perennial problem in computer-aided assessment is that “a right answer”, pedagogically speaking, is not the same thing as “a mathematically correct expression”, as verified by a computer algebra system, or indeed other techniques such as random evaluation. Paper I in this series considered the difference in cases where there was “the right answer”, typically calculus questions. Here we look at some other cases, notably in linear algebra, where there can be many “right answers”, but still th...

5. Physics, computer science and mathematics division. Annual report, 1 January - 31 December 1982

International Nuclear Information System (INIS)

Jackson, J.D.

1983-08-01

Experimental physics research activities are described under the following headings: research on e + e - annihilation; research at Fermilab; search for effects of a right-handed gauge boson; the particle data center; high energy astrophysics and interdisciplinary experiments; detector and other research and development; publications and reports of other research; computation and communication; and engineering, evaluation, and support operations. Theoretical particle physics research and heavy ion fusion research are described. Also, activities of the Computer Science and Mathematics Department are summarized. Publications are listed

6. Pair Programming as a Modern Method of Teaching Computer Science

Directory of Open Access Journals (Sweden)

Irena Nančovska Šerbec

2008-10-01

Full Text Available At the Faculty of Education, University of Ljubljana we educate future computer science teachers. Beside didactical, pedagogical, mathematical and other interdisciplinary knowledge, students gain knowledge and skills of programming that are crucial for computer science teachers. For all courses, the main emphasis is the absorption of professional competences, related to the teaching profession and the programming profile. The latter are selected according to the well-known document, the ACM Computing Curricula. The professional knowledge is therefore associated and combined with the teaching knowledge and skills. In the paper we present how to achieve competences related to programming by using different didactical models (semiotic ladder, cognitive objectives taxonomy, problem solving and modern teaching method “pair programming”. Pair programming differs from standard methods (individual work, seminars, projects etc.. It belongs to the extreme programming as a discipline of software development and is known to have positive effects on teaching first programming language. We have experimentally observed pair programming in the introductory programming course. The paper presents and analyzes the results of using this method: the aspects of satisfaction during programming and the level of gained knowledge. The results are in general positive and demonstrate the promising usage of this teaching method.

7. METHOD OF GREEN FUNCTIONS IN MATHEMATICAL MODELLING FOR TWO-POINT BOUNDARY-VALUE PROBLEMS

Directory of Open Access Journals (Sweden)

E. V. Dikareva

2015-01-01

Full Text Available Summary. In many applied problems of control, optimization, system theory, theoretical and construction mechanics, for problems with strings and nods structures, oscillation theory, theory of elasticity and plasticity, mechanical problems connected with fracture dynamics and shock waves, the main instrument for study these problems is a theory of high order ordinary differential equations. This methodology is also applied for studying mathematical models in graph theory with different partitioning based on differential equations. Such equations are used for theoretical foundation of mathematical models but also for constructing numerical methods and computer algorithms. These models are studied with use of Green function method. In the paper first necessary theoretical information is included on Green function method for multi point boundary-value problems. The main equation is discussed, notions of multi-point boundary conditions, boundary functionals, degenerate and non-degenerate problems, fundamental matrix of solutions are introduced. In the main part the problem to study is formulated in terms of shocks and deformations in boundary conditions. After that the main results are formulated. In theorem 1 conditions for existence and uniqueness of solutions are proved. In theorem 2 conditions are proved for strict positivity and equal measureness for a pair of solutions. In theorem 3 existence and estimates are proved for the least eigenvalue, spectral properties and positivity of eigenfunctions. In theorem 4 the weighted positivity is proved for the Green function. Some possible applications are considered for a signal theory and transmutation operators.

8. Mathematical methods to model rodent behavior in the elevated plus-maze.

Science.gov (United States)

Arantes, Rafael; Tejada, Julián; Bosco, Geraldine G; Morato, Silvio; Roque, Antonio C

2013-11-15

The elevated plus maze is a widely used experimental test to study anxiety-like rodent behavior. It is made of four arms, two open and two closed, connected at a central area forming a plus shaped maze. The whole apparatus is elevated 50 cm from the floor. The anxiety of the animal is usually assessed by the number of entries and duration of stay in each arm type during a 5-min period. Different mathematical methods have been proposed to model the mechanisms that control the animal behavior in the maze, such as factor analysis, statistical inference on Markov chains and computational modeling. In this review we discuss these methods and propose possible extensions of them as a direction for future research. Copyright © 2013 Elsevier B.V. All rights reserved.

9. THE CASE STUDY TASKS AS A BASIS FOR THE FUND OF THE ASSESSMENT TOOLS AT THE MATHEMATICAL ANALYSIS FOR THE DIRECTION 01.03.02 APPLIED MATHEMATICS AND COMPUTER SCIENCE

Directory of Open Access Journals (Sweden)

Dina Aleksandrovna Kirillova

2015-12-01

Full Text Available The modern reform of the Russian higher education involves the implementation of competence-based approach, the main idea of which is the practical orientation of education. Mathematics is a universal language of description, modeling and studies of phenomena and processes of different nature. Therefore creating the fund of assessment tools for mathematical disciplines based on the applied problems is actual. The case method is the most appropriate mean of monitoring the learning outcomes, it is aimed at bridging the gap between theory and practice.The aim of the research is the development of methodical materials for the creating the fund of assessment tools that are based on the case-study for the mathematical analisis for direction «Applied Mathematics and Computer Science». The aim follows from the contradiction between the need for the introduction of case-method in the educational process in high school and the lack of study of the theoretical foundations of using of this method as applied to mathematical disciplines, insufficient theoretical basis and the description of the process of creating case-problems for use their in the monitoring of the learning outcomes.

10. Using the Scientific Method to Engage Mathematical Modeling: An Investigation of pi

Science.gov (United States)

Archer, Lester A. C.; Ng, Karen E.

2016-01-01

The purpose of this paper is to explain how to use the scientific method as the framework to introduce mathematical model. Two interdisciplinary activities, targeted for students in grade 6 or grade 7, are explained to show the application of the scientific method while building a mathematical model to investigate the relationship between the…

11. Efficacy of the Cooperative Learning Method on Mathematics Achievement and Attitude: A Meta-Analysis Research

Science.gov (United States)

Capar, Gulfer; Tarim, Kamuran

2015-01-01

This research compiles experimental studies from 1988 to 2010 that examined the influence of the cooperative learning method, as compared with that of traditional methods, on mathematics achievement and on attitudes towards mathematics. The related field was searched using the following key words in Turkish "matematik ve isbirlikli ögrenme,…

12. Developing corpus-based translation methods between informal and formal mathematics : project description

NARCIS (Netherlands)

Kaliszyk, C.; Urban, J.; Vyskocil, J.; Geuvers, J.H.; Watt, S.M.; Davenport, J.H.; Sexton, A.P.; Sojka, P.; Urban, J.

2014-01-01

The goal of this project is to (i) accumulate annotated informal/formal mathematical corpora suitable for training semi-automated translation between informal and formal mathematics by statistical machine-translation methods, (ii) to develop such methods oriented at the formalization task, and in

13. An Interdisciplinary Collaboration between Computer Engineering and Mathematics/Bilingual Education to Develop a Curriculum for Underrepresented Middle School Students

Science.gov (United States)

Celedón-Pattichis, Sylvia; LópezLeiva, Carlos Alfonso; Pattichis, Marios S.; Llamocca, Daniel

2013-01-01

There is a strong need in the United States to increase the number of students from underrepresented groups who pursue careers in Science, Technology, Engineering, and Mathematics. Drawing from sociocultural theory, we present approaches to establishing collaborations between computer engineering and mathematics/bilingual education faculty to…

14. Domain decomposition methods and parallel computing

International Nuclear Information System (INIS)

Meurant, G.

1991-01-01

In this paper, we show how to efficiently solve large linear systems on parallel computers. These linear systems arise from discretization of scientific computing problems described by systems of partial differential equations. We show how to get a discrete finite dimensional system from the continuous problem and the chosen conjugate gradient iterative algorithm is briefly described. Then, the different kinds of parallel architectures are reviewed and their advantages and deficiencies are emphasized. We sketch the problems found in programming the conjugate gradient method on parallel computers. For this algorithm to be efficient on parallel machines, domain decomposition techniques are introduced. We give results of numerical experiments showing that these techniques allow a good rate of convergence for the conjugate gradient algorithm as well as computational speeds in excess of a billion of floating point operations per second. (author). 5 refs., 11 figs., 2 tabs., 1 inset

15. Courant Mathematics and Computing Laboratory, New York University. Progress report No. 54, October 1, 1977--September 30, 1978

International Nuclear Information System (INIS)

1978-01-01

Work is reported in the following areas: applied mathematics (computational fluid dynamics, numerical analysis), computational magnetohydrodynamics, computational physics and chemistry (materials science, quantum many-body systems, chemistry), computer science (CIMS PL/I, Version II; distributed systems and resource sharing, computer design - PUMA; SETL; algorithmic combinatorics), systems programing and user services. The relationship to other projects, list of seminars, and list of publications are also included. The research descriptions are administrative in nature, usually less than a page in length

16. Computational and instrumental methods in EPR

CERN Document Server

Bender, Christopher J

2006-01-01

Computational and Instrumental Methods in EPR Prof. Bender, Fordham University Prof. Lawrence J. Berliner, University of Denver Electron magnetic resonance has been greatly facilitated by the introduction of advances in instrumentation and better computational tools, such as the increasingly widespread use of the density matrix formalism. This volume is devoted to both instrumentation and computation aspects of EPR, while addressing applications such as spin relaxation time measurements, the measurement of hyperfine interaction parameters, and the recovery of Mn(II) spin Hamiltonian parameters via spectral simulation. Key features: Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T1) and Spin-Spin (T2) Relaxation Times Improvement in the Measurement of Spin-Lattice Relaxation Time in Electron Paramagnetic Resonance Quantitative Measurement of Magnetic Hyperfine Parameters and the Physical Organic Chemistry of Supramolecular Systems New Methods of Simulation of Mn(II) EPR Spectra: Single Cryst...

17. Proceedings of computational methods in materials science

International Nuclear Information System (INIS)

Mark, J.E. Glicksman, M.E.; Marsh, S.P.

1992-01-01

The Symposium on which this volume is based was conceived as a timely expression of some of the fast-paced developments occurring throughout materials science and engineering. It focuses particularly on those involving modern computational methods applied to model and predict the response of materials under a diverse range of physico-chemical conditions. The current easy access of many materials scientists in industry, government laboratories, and academe to high-performance computers has opened many new vistas for predicting the behavior of complex materials under realistic conditions. Some have even argued that modern computational methods in materials science and engineering are literally redefining the bounds of our knowledge from which we predict structure-property relationships, perhaps forever changing the historically descriptive character of the science and much of the engineering

18. Computational botany methods for automated species identification

CERN Document Server

Remagnino, Paolo; Wilkin, Paul; Cope, James; Kirkup, Don

2017-01-01

This book discusses innovative methods for mining information from images of plants, especially leaves, and highlights the diagnostic features that can be implemented in fully automatic systems for identifying plant species. Adopting a multidisciplinary approach, it explores the problem of plant species identification, covering both the concepts of taxonomy and morphology. It then provides an overview of morphometrics, including the historical background and the main steps in the morphometric analysis of leaves together with a number of applications. The core of the book focuses on novel diagnostic methods for plant species identification developed from a computer scientist’s perspective. It then concludes with a chapter on the characterization of botanists' visions, which highlights important cognitive aspects that can be implemented in a computer system to more accurately replicate the human expert’s fixation process. The book not only represents an authoritative guide to advanced computational tools fo...

19. Interpolation Environment of Tensor Mathematics at the Corpuscular Stage of Computational Experiments in Hydromechanics

Science.gov (United States)

Bogdanov, Alexander; Degtyarev, Alexander; Khramushin, Vasily; Shichkina, Yulia

2018-02-01

Stages of direct computational experiments in hydromechanics based on tensor mathematics tools are represented by conditionally independent mathematical models for calculations separation in accordance with physical processes. Continual stage of numerical modeling is constructed on a small time interval in a stationary grid space. Here coordination of continuity conditions and energy conservation is carried out. Then, at the subsequent corpuscular stage of the computational experiment, kinematic parameters of mass centers and surface stresses at the boundaries of the grid cells are used in modeling of free unsteady motions of volume cells that are considered as independent particles. These particles can be subject to vortex and discontinuous interactions, when restructuring of free boundaries and internal rheological states has place. Transition from one stage to another is provided by interpolation operations of tensor mathematics. Such interpolation environment formalizes the use of physical laws for mechanics of continuous media modeling, provides control of rheological state and conditions for existence of discontinuous solutions: rigid and free boundaries, vortex layers, their turbulent or empirical generalizations.

20. Computer-Aided Modelling Methods and Tools

DEFF Research Database (Denmark)

Cameron, Ian; Gani, Rafiqul

2011-01-01

The development of models for a range of applications requires methods and tools. In many cases a reference model is required that allows the generation of application specific models that are fit for purpose. There are a range of computer aided modelling tools available that help to define the m...

1. Applying Human Computation Methods to Information Science

Science.gov (United States)

Harris, Christopher Glenn

2013-01-01

Human Computation methods such as crowdsourcing and games with a purpose (GWAP) have each recently drawn considerable attention for their ability to synergize the strengths of people and technology to accomplish tasks that are challenging for either to do well alone. Despite this increased attention, much of this transformation has been focused on…

2. The asymptotic expansion method via symbolic computation

OpenAIRE

Navarro, Juan F.

2012-01-01

This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.

3. The Asymptotic Expansion Method via Symbolic Computation

Directory of Open Access Journals (Sweden)

Juan F. Navarro

2012-01-01

Full Text Available This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.

4. Computationally efficient methods for digital control

NARCIS (Netherlands)

Guerreiro Tome Antunes, D.J.; Hespanha, J.P.; Silvestre, C.J.; Kataria, N.; Brewer, F.

2008-01-01

The problem of designing a digital controller is considered with the novelty of explicitly taking into account the computation cost of the controller implementation. A class of controller emulation methods inspired by numerical analysis is proposed. Through various examples it is shown that these

5. Studies on the zeros of Bessel functions and methods for their computation

Science.gov (United States)

Kerimov, M. K.

2014-09-01

The zeros of Bessel functions play an important role in computational mathematics, mathematical physics, and other areas of natural sciences. Studies addressing these zeros (their properties, computational methods) can be found in various sources. This paper offers a detailed overview of the results concerning the real zeros of the Bessel functions of the first and second kinds and general cylinder functions. The author intends to publish several overviews on this subject. In this first publication, works dealing with real zeros are analyzed. Primary emphasis is placed on classical results, which are still important. Some of the most recent publications are also discussed.

6. Mathematical methods for mathematicians, physical scientists and engineers

CERN Document Server

Dunning-Davies, J

2003-01-01

This practical introduction encapsulates the entire content of teaching material for UK honours degree courses in mathematics, physics, chemistry and engineering, and is also appropriate for post-graduate study. It imparts the necessary mathematics for use of the techniques, with subject-related worked examples throughout. The text is supported by challenging problem exercises (and answers) to test student comprehension. Index notation used in the text simplifies manipulations in the sections on vectors and tensors. Partial differential equations are discussed, and special functions introduced

7. INFORMATIONAL-METHODICAL SUPPORT OF THE COURSE «MATHEMATICAL LOGIC AND THEORY OF ALGORITHMS»

Directory of Open Access Journals (Sweden)

Y. I. Sinko

2010-06-01

Full Text Available In this article the basic principles of training technique of future teachers of mathematics to foundations of mathematical logic and theory of algorithms in the Kherson State University with the use of information technologies are examined. General description of functioning of the methodical system of learning of mathematical logic with the use of information technologies, in that variant, when information technologies are presented by the integrated specialized programmatic environment of the educational purpose «MatLog» is given.

8. Development process of in-service training intended for teachers to perform teaching of mathematics with computer algebra systems

Science.gov (United States)

Ardıç, Mehmet Alper; Işleyen, Tevfik

2018-01-01

In this study, we deal with the development process of in-service training activities designed in order for mathematics teachers of secondary education to realize teaching of mathematics, utilizing computer algebra systems. In addition, the results obtained from the researches carried out during and after the in-service training were summarized. Last section focuses on suggestions any teacher can use to carry out activities aimed at using computer algebra systems in teaching environments.

9. Mathematical Model and Computational Analysis of Selected Transient States of Cylindrical Linear Induction Motor Fed via Frequency Converter

Directory of Open Access Journals (Sweden)

Andrzej Rusek

2008-01-01

Full Text Available The mathematical model of cylindrical linear induction motor (C-LIM fed via frequency converter is presented in the paper. The model was developed in order to analyze numerically the transient states. Problems concerning dynamics of ac-machines especially linear induction motor are presented in [1 – 7]. Development of C-LIM mathematical model is based on circuit method and analogy to rotary induction motor. The analogy between both: (a stator and rotor windings of rotary induction motor and (b winding of primary part of C-LIM (inductor and closed current circuits in external secondary part of C-LIM (race is taken into consideration. The equations of C-LIM mathematical model are presented as matrix together with equations expressing each vector separately. A computational analysis of selected transient states of C-LIM fed via frequency converter is presented in the paper. Two typical examples of C-LIM operation are considered for the analysis: (a starting the motor at various static loads and various synchronous velocities and (b reverse of the motor at the same operation conditions. Results of simulation are presented as transient responses including transient electromagnetic force, transient linear velocity and transient phase current.

10. Summary of researches being performed in the Institute of Mathematics and Computer Science on computer science and information technologies

Directory of Open Access Journals (Sweden)

Artiom Alhazov

2008-07-01

Full Text Available Evolution of the informatization notion (which assumes automation of majority of human activities applying computers, computer networks, information technologies towards the notion of {\\it Global Information Society} (GIS challenges the determination of new paradigms of society: automation and intellectualization of production, new level of education and teaching, formation of new styles of work, active participation in decision making, etc. To assure transition to GIS for any society, including that from Republic of Moldova, requires both special training and broad application of progressive technologies and information systems. Methodological aspects concerning impact of GIS creation over the citizen, economic unit, national economy in the aggregate demands a profound study. Without systematic approach to these aspects the GIS creation would have confront great difficulties. Collective of researchers from the Institute of Mathematics and Computer Science (IMCS of Academy of Sciences of Moldova, which work in the field of computer science, constitutes the center of advanced researches and activates in those directions of researches of computer science which facilitate technologies and applications without of which the development of GIS cannot be assured.

11. Design and Development Computer-Based E-Learning Teaching Material for Improving Mathematical Understanding Ability and Spatial Sense of Junior High School Students

Science.gov (United States)

Nurjanah; Dahlan, J. A.; Wibisono, Y.

2017-02-01

This paper aims to make a design and development computer-based e-learning teaching material for improving mathematical understanding ability and spatial sense of junior high school students. Furthermore, the particular aims are (1) getting teaching material design, evaluation model, and intrument to measure mathematical understanding ability and spatial sense of junior high school students; (2) conducting trials computer-based e-learning teaching material model, asessment, and instrument to develop mathematical understanding ability and spatial sense of junior high school students; (3) completing teaching material models of computer-based e-learning, assessment, and develop mathematical understanding ability and spatial sense of junior high school students; (4) resulting research product is teaching materials of computer-based e-learning. Furthermore, the product is an interactive learning disc. The research method is used of this study is developmental research which is conducted by thought experiment and instruction experiment. The result showed that teaching materials could be used very well. This is based on the validation of computer-based e-learning teaching materials, which is validated by 5 multimedia experts. The judgement result of face and content validity of 5 validator shows that the same judgement result to the face and content validity of each item test of mathematical understanding ability and spatial sense. The reliability test of mathematical understanding ability and spatial sense are 0,929 and 0,939. This reliability test is very high. While the validity of both tests have a high and very high criteria.

12. FREE SOFTWARE IN ELECTRONIC LEARNING FUTURE TEACHERS OF MATHEMATICS, PHYSICS AND COMPUTER SCIENCE

Directory of Open Access Journals (Sweden)

2016-05-01

Full Text Available Popularity of the use of free software in the IT industry is much higher than its popular use in educational activities. Disadvantages of free software and problems of its implementation in the educational process is a limiting factor for its use in the education system, however, openness, accessibility and functionality are the main factors for the introduction of free software in the educational process. Nevertheless, for future teachers of mathematics, physics and informatics free software is designed as well as possible because of the specificity of its creation, and therefore, there is a question of the system analysis of the possibilities of using open source software in e-learning for future teachers of mathematics, physics and computer science.

13. EVALUATION OF SEMANTIC SIMILARITY FOR SENTENCES IN NATURAL LANGUAGE BY MATHEMATICAL STATISTICS METHODS

Directory of Open Access Journals (Sweden)

A. E. Pismak

2016-03-01

Full Text Available Subject of Research. The paper is focused on Wiktionary articles structural organization in the aspect of its usage as the base for semantic network. Wiktionary community references, article templates and articles markup features are analyzed. The problem of numerical estimation for semantic similarity of structural elements in Wiktionary articles is considered. Analysis of existing software for semantic similarity estimation of such elements is carried out; algorithms of their functioning are studied; their advantages and disadvantages are shown. Methods. Mathematical statistics methods were used to analyze Wiktionary articles markup features. The method of semantic similarity computing based on statistics data for compared structural elements was proposed.Main Results. We have concluded that there is no possibility for direct use of Wiktionary articles as the source for semantic network. We have proposed to find hidden similarity between article elements, and for that purpose we have developed the algorithm for calculation of confidence coefficients proving that each pair of sentences is semantically near. The research of quantitative and qualitative characteristics for the developed algorithm has shown its major performance advantage over the other existing solutions in the presence of insignificantly higher error rate. Practical Relevance. The resulting algorithm may be useful in developing tools for automatic Wiktionary articles parsing. The developed method could be used in computing of semantic similarity for short text fragments in natural language in case of algorithm performance requirements are higher than its accuracy specifications.

14. Application of mathematical methods to the investigation of uranium deposits

International Nuclear Information System (INIS)

Formery, P.; Ziegler, V.

1958-01-01

It may be considered approximately that grades, widths and accumulations (grade-width products), in french uranium deposits are distributed according to a lognormal law. This property associated to KRIGE'S and de WIGE'S formulae make a powerful tool in ore deposits surveys. The correlation between radioactivities and grades is realized, in logarithmic coordinates, through a straight line the properties of which are analysed in the paper. MATHERON'S recent works, in association with data of classical statistics and the above mentioned formulae make possible to complete the ore reserves evaluation by computing the accuracy. Statistical methods applied to ore deposits have given birth to a parameter which is as important as the mean grade for characterisation of deposits: the absolute dispersion. (author) [fr

15. Performance of various mathematical methods for calculation of radioimmunoassay results

International Nuclear Information System (INIS)

Sandel, P.; Vogt, W.

1977-01-01

Interpolation and regression methods are available for computer aided determination of radioimmunological end results. We compared the performance of eight algorithms (weighted and unweighted linear logit-log regression, quadratic logit-log regression, Rodbards logistic model in the weighted and unweighted form, smoothing spline interpolation with a large and small smoothing factor and polygonal interpolation) on the basis of three radioimmunoassays with different reference curve characteristics (digoxin, estriol, human chorionic somatomammotropin = HCS). Great store was set by the accuracy of the approximation at the intermediate points on the curve, ie. those points that lie midway between two standard concentrations. These concentrations were obtained by weighing and inserted as unknown samples. In the case of digoxin and estriol the polygonal interpolation provided the best results while the weighted logit-log regression proved superior in the case of HCS. (orig.) [de

16. Computational Fluid Dynamics Methods and Their Applications in Medical Science

Directory of Open Access Journals (Sweden)

Kowalewski Wojciech

2016-12-01

Full Text Available As defined by the National Institutes of Health: “Biomedical engineering integrates physical, chemical, mathematical, and computational sciences and engineering principles to study biology, medicine, behavior, and health”. Many issues in this area are closely related to fluid dynamics. This paper provides an overview of the basic concepts concerning Computational Fluid Dynamics and its applications in medicine.

17. Application of methods of discrete mathematics at modular synthesis of mechatronic devices

OpenAIRE

Nikiforov, S.; Nikiforov, B.; Mandarov, E.; Rabdanova, N.

2010-01-01

The article is devoted to application of methods of discrete mathematics (the theory of counts, the method of matrix code and others) and synthesis of executive mechanisms of mechatronic handling devices

18. The Interval Market Model in Mathematical Finance : Game Theoretic Methods

NARCIS (Netherlands)

Bernhard, P.; Engwerda, J.C.; Roorda, B.; Schumacher, J.M.; Kolokoltsov, V.; Saint-Pierre, P.; Aubin, J.P.

2013-01-01

Toward the late 1990s, several research groups independently began developing new, related theories in mathematical finance. These theories did away with the standard stochastic geometric diffusion “Samuelson” market model (also known as the Black-Scholes model because it is used in that most famous

19. Improving Instruction in the Mathematics Methods Classroom through Action Research

Science.gov (United States)

Mostofo, Jameel; Zambo, Ron

2015-01-01

There is a continuing emphasis in the United States on improving students' mathematical abilities, and one approach is to better prepare teachers. To investigate the potential usefulness of Lesson Study to better prepare teachers, one author set out to conduct action research on his classroom practice. Specifically, he sought to determine whether…

20. Multiscale methods in turbulent combustion: strategies and computational challenges

International Nuclear Information System (INIS)

Echekki, Tarek

2009-01-01

A principal challenge in modeling turbulent combustion flows is associated with their complex, multiscale nature. Traditional paradigms in the modeling of these flows have attempted to address this nature through different strategies, including exploiting the separation of turbulence and combustion scales and a reduced description of the composition space. The resulting moment-based methods often yield reasonable predictions of flow and reactive scalars' statistics under certain conditions. However, these methods must constantly evolve to address combustion at different regimes, modes or with dominant chemistries. In recent years, alternative multiscale strategies have emerged, which although in part inspired by the traditional approaches, also draw upon basic tools from computational science, applied mathematics and the increasing availability of powerful computational resources. This review presents a general overview of different strategies adopted for multiscale solutions of turbulent combustion flows. Within these strategies, some specific models are discussed or outlined to illustrate their capabilities and underlying assumptions. These strategies may be classified under four different classes, including (i) closure models for atomistic processes, (ii) multigrid and multiresolution strategies, (iii) flame-embedding strategies and (iv) hybrid large-eddy simulation-low-dimensional strategies. A combination of these strategies and models can potentially represent a robust alternative strategy to moment-based models; but a significant challenge remains in the development of computational frameworks for these approaches as well as their underlying theories. (topical review)

1. Advances of evolutionary computation methods and operators

CERN Document Server

Cuevas, Erik; Oliva Navarro, Diego Alberto

2016-01-01

The goal of this book is to present advances that discuss alternative Evolutionary Computation (EC) developments and non-conventional operators which have proved to be eﬀective in the solution of several complex problems. The book has been structured so that each chapter can be read independently from the others. The book contains nine chapters with the following themes: 1) Introduction, 2) the Social Spider Optimization (SSO), 3) the States of Matter Search (SMS), 4) the collective animal behavior (CAB) algorithm, 5) the Allostatic Optimization (AO) method, 6) the Locust Search (LS) algorithm, 7) the Adaptive Population with Reduced Evaluations (APRE) method, 8) the multimodal CAB, 9) the constrained SSO method.

2. Computational Methods in Stochastic Dynamics Volume 2

CERN Document Server

2013-01-01

The considerable influence of inherent uncertainties on structural behavior has led the engineering community to recognize the importance of a stochastic approach to structural problems. Issues related to uncertainty quantification and its influence on the reliability of the computational models are continuously gaining in significance. In particular, the problems of dynamic response analysis and reliability assessment of structures with uncertain system and excitation parameters have been the subject of continuous research over the last two decades as a result of the increasing availability of powerful computing resources and technology.   This book is a follow up of a previous book with the same subject (ISBN 978-90-481-9986-0) and focuses on advanced computational methods and software tools which can highly assist in tackling complex problems in stochastic dynamic/seismic analysis and design of structures. The selected chapters are authored by some of the most active scholars in their respective areas and...

3. Equating TIMSS Mathematics Subtests with Nonlinear Equating Methods Using NEAT Design: Circle-Arc Equating Approaches

Science.gov (United States)

Ozdemir, Burhanettin

2017-01-01

The purpose of this study is to equate Trends in International Mathematics and Science Study (TIMSS) mathematics subtest scores obtained from TIMSS 2011 to scores obtained from TIMSS 2007 form with different nonlinear observed score equating methods under Non-Equivalent Anchor Test (NEAT) design where common items are used to link two or more test…

4. A Multi-Method Investigation of Mathematics Motivation for Elementary Age Students

Science.gov (United States)

Linder, Sandra M.; Smart, Julie B.; Cribbs, Jennifer

2015-01-01

This paper presents the results of a multi-method study examining elementary students with high self-reported levels of mathematics motivation. Second- through fifth-grade students at a Title One school in the southeastern United States completed the Elementary Mathematics Motivation Instrument (EMMI), which examines levels of mathematics…

5. Structural and Conceptual Interweaving of Mathematics Methods Coursework and Field Practica

Science.gov (United States)

Bahr, Damon L.; Monroe, Eula Ewing; Eggett, Dennis

2014-01-01

This paper describes a study of observed relationships between the design of a preservice elementary mathematics methods course with accompanying field practicum and changes in the extent to which participating prospective teachers identified themselves with the mathematics reform movement after becoming practicing teachers. The curriculum of the…

6. Computer Hardware, Advanced Mathematics and Model Physics pilot project final report

International Nuclear Information System (INIS)

1992-05-01

The Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP) Program was launched in January, 1990. A principal objective of the program has been to utilize the emerging capabilities of massively parallel scientific computers in the challenge of regional scale predictions of decade-to-century climate change. CHAMMP has already demonstrated the feasibility of achieving a 10,000 fold increase in computational throughput for climate modeling in this decade. What we have also recognized, however, is the need for new algorithms and computer software to capitalize on the radically new computing architectures. This report describes the pilot CHAMMP projects at the DOE National Laboratories and the National Center for Atmospheric Research (NCAR). The pilot projects were selected to identify the principal challenges to CHAMMP and to entrain new scientific computing expertise. The success of some of these projects has aided in the definition of the CHAMMP scientific plan. Many of the papers in this report have been or will be submitted for publication in the open literature. Readers are urged to consult with the authors directly for questions or comments about their papers

7. Computational methods for industrial radiation measurement applications

International Nuclear Information System (INIS)

Gardner, R.P.; Guo, P.; Ao, Q.

1996-01-01

8. The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate

International Nuclear Information System (INIS)

Dridi, G; Julien, R; Hliwa, M; Joachim, C

2015-01-01

The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor. (paper)

9. The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate.

Science.gov (United States)

Dridi, G; Julien, R; Hliwa, M; Joachim, C

2015-08-28

The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor.

10. Perceptions of online tutorials for distance learning in mathematics and computing

Directory of Open Access Journals (Sweden)

Tim Lowe

2016-07-01

Full Text Available We report on student and staff perceptions of synchronous online teaching and learning sessions in mathematics and computing. The study is based on two surveys of students and tutors conducted 5 years apart, and focusses on the educational experience as well as societal and accessibility dimensions. Key conclusions are that both staff and students value online sessions, to supplement face-to-face sessions, mainly for their convenience, but interaction within the sessions is limited. Students find the recording of sessions particularly helpful in their studies.

11. Solving applied mathematical problems with Matlab

CERN Document Server

Xue, Dingyu

2008-01-01

Computer Mathematics Language-An Overview. Fundamentals of MATLAB Programming. Calculus Problems. MATLAB Computations of Linear Algebra Problems. Integral Transforms and Complex Variable Functions. Solutions to Nonlinear Equations and Optimization Problems. MATLAB Solutions to Differential Equation Problems. Solving Interpolations and Approximations Problems. Solving Probability and Mathematical Statistics Problems. Nontraditional Solution Methods for Mathematical Problems.

12. Conference on Boundary and Interior Layers : Computational and Asymptotic Methods

CERN Document Server

Stynes, Martin; Zhang, Zhimin

2017-01-01

This volume collects papers associated with lectures that were presented at the BAIL 2016 conference, which was held from 14 to 19 August 2016 at Beijing Computational Science Research Center and Tsinghua University in Beijing, China. It showcases the variety and quality of current research into numerical and asymptotic methods for theoretical and practical problems whose solutions involve layer phenomena. The BAIL (Boundary And Interior Layers) conferences, held usually in even-numbered years, bring together mathematicians and engineers/physicists whose research involves layer phenomena, with the aim of promoting interaction between these often-separate disciplines. These layers appear as solutions of singularly perturbed differential equations of various types, and are common in physical problems, most notably in fluid dynamics. This book is of interest for current researchers from mathematics, engineering and physics whose work involves the accurate app roximation of solutions of singularly perturbed diffe...

13. Activation method for measuring the neutron spectra parameters. Computer software

International Nuclear Information System (INIS)

Efimov, B.V.; Ionov, V.S.; Konyaev, S.I.; Marin, S.V.

2005-01-01

The description of mathematical statement of a task for definition the spectral characteristics of neutron fields with use developed in RRC KI unified activation detectors (UKD) is resulted. The method of processing of results offered by authors activation measurements and calculation of the parameters used for an estimation of the neutron spectra characteristics is discussed. Features of processing of the experimental data received at measurements of activation with using UKD are considered. Activation detectors UKD contain a little bit specially the picked up isotopes giving at irradiation peaks scale of activity in the common spectrum scale of activity. Computing processing of results of the measurements is applied on definition of spectrum parameters for nuclear reactor installations with thermal and close to such power spectrum of neutrons. The example of the data processing, the measurements received at carrying out at RRC KI research reactor F-1 is resulted [ru

14. Methods of Approximation Theory in Complex Analysis and Mathematical Physics

CERN Document Server

Saff, Edward

1993-01-01

The book incorporates research papers and surveys written by participants ofan International Scientific Programme on Approximation Theory jointly supervised by Institute for Constructive Mathematics of University of South Florida at Tampa, USA and the Euler International Mathematical Instituteat St. Petersburg, Russia. The aim of the Programme was to present new developments in Constructive Approximation Theory. The topics of the papers are: asymptotic behaviour of orthogonal polynomials, rational approximation of classical functions, quadrature formulas, theory of n-widths, nonlinear approximation in Hardy algebras,numerical results on best polynomial approximations, wavelet analysis. FROM THE CONTENTS: E.A. Rakhmanov: Strong asymptotics for orthogonal polynomials associated with exponential weights on R.- A.L. Levin, E.B. Saff: Exact Convergence Rates for Best Lp Rational Approximation to the Signum Function and for Optimal Quadrature in Hp.- H. Stahl: Uniform Rational Approximation of x .- M. Rahman, S.K. ...

15. Mathematical methods for students of physics and related fields

CERN Document Server

2000-01-01

Intended to follow the usual introductory physics courses, this book has the unique feature of addressing the mathematical needs of sophomores and juniors in physics, engineering and other related fields Many original, lucid, and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts help guide the student through the material Beginning with reviews of vector algebra and differential and integral calculus, the book continues with infinite series, vector analysis, complex algebra and analysis, ordinary and partial differential equations Discussions of numerical analysis, nonlinear dynamics and chaos, and the Dirac delta function provide an introduction to modern topics in mathematical physics This new edition has been made more user-friendly through organization into convenient, shorter chapters Also, it includes an entirely new section on Probability and plenty of new material on tensors and integral transforms Some praise for the previous edi...

16. Mathematical Methods For Students of Physics and Related Fields

CERN Document Server

2009-01-01

Intended to follow the usual introductory physics courses, this book has the unique feature of addressing the mathematical needs of sophomores and juniors in physics, engineering and other related fields. Many original, lucid, and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts help guide the student through the material. Beginning with reviews of vector algebra and differential and integral calculus, the book continues with infinite series, vector analysis, complex algebra and analysis, ordinary and partial differential equations. Discussions of numerical analysis, nonlinear dynamics and chaos, and the Dirac delta function provide an introduction to modern topics in mathematical physics. This new edition has been made more user-friendly through organization into convenient, shorter chapters. Also, it includes an entirely new section on Probability and plenty of new material on tensors and integral transforms. Some praise for the previo...

17. BLUES function method in computational physics

Science.gov (United States)

Indekeu, Joseph O.; Müller-Nedebock, Kristian K.

2018-04-01

We introduce a computational method in physics that goes ‘beyond linear use of equation superposition’ (BLUES). A BLUES function is defined as a solution of a nonlinear differential equation (DE) with a delta source that is at the same time a Green’s function for a related linear DE. For an arbitrary source, the BLUES function can be used to construct an exact solution to the nonlinear DE with a different, but related source. Alternatively, the BLUES function can be used to construct an approximate piecewise analytical solution to the nonlinear DE with an arbitrary source. For this alternative use the related linear DE need not be known. The method is illustrated in a few examples using analytical calculations and numerical computations. Areas for further applications are suggested.

18. Spatial analysis statistics, visualization, and computational methods

CERN Document Server

Oyana, Tonny J

2015-01-01

An introductory text for the next generation of geospatial analysts and data scientists, Spatial Analysis: Statistics, Visualization, and Computational Methods focuses on the fundamentals of spatial analysis using traditional, contemporary, and computational methods. Outlining both non-spatial and spatial statistical concepts, the authors present practical applications of geospatial data tools, techniques, and strategies in geographic studies. They offer a problem-based learning (PBL) approach to spatial analysis-containing hands-on problem-sets that can be worked out in MS Excel or ArcGIS-as well as detailed illustrations and numerous case studies. The book enables readers to: Identify types and characterize non-spatial and spatial data Demonstrate their competence to explore, visualize, summarize, analyze, optimize, and clearly present statistical data and results Construct testable hypotheses that require inferential statistical analysis Process spatial data, extract explanatory variables, conduct statisti...

19. A mathematical method to calculate efficiency of BF3 detectors

International Nuclear Information System (INIS)

Si Fenni; Hu Qingyuan; Peng Taiping

2009-01-01

In order to calculate absolute efficiency of the BF 3 detector, MCNP/4C code is applied to calculate relative efficiency of the BF 3 detector first, and then absolute efficiency is figured out through mathematical techniques. Finally an energy response curve of the BF 3 detector for 1-20 MeV neutrons is derived. It turns out that efficiency of BF 3 detector are relatively uniform for 2-16 MeV neutrons. (authors)

20. Computer Animation Based on Particle Methods

Directory of Open Access Journals (Sweden)

Rafal Wcislo

1999-01-01

Full Text Available The paper presents the main issues of a computer animation of a set of elastic macroscopic objects based on the particle method. The main assumption of the generated animations is to achieve very realistic movements in a scene observed on the computer display. The objects (solid bodies interact mechanically with each other, The movements and deformations of solids are calculated using the particle method. Phenomena connected with the behaviour of solids in the gravitational field, their defomtations caused by collisions and interactions with the optional liquid medium are simulated. The simulation ofthe liquid is performed using the cellular automata method. The paper presents both simulation schemes (particle method and cellular automata rules an the method of combining them in the single animation program. ln order to speed up the execution of the program the parallel version based on the network of workstation was developed. The paper describes the methods of the parallelization and it considers problems of load-balancing, collision detection, process synchronization and distributed control of the animation.