WorldWideScience

Sample records for materials viscoplastic behaviour

  1. Micromechanical modelling of fuel viscoplastic behaviour

    International Nuclear Information System (INIS)

    Masson, R.; Blanc, V.; Gatt, J.M.; Julien, J.; Michel, B.; Largenton, R.

    2015-01-01

    To identify the effect of microstructural parameters on the viscoplastic behaviour of nuclear fuels, micromechanical (also called homogenisation) approaches are used. These approaches aim at deriving effective properties of heterogeneous material from the properties of their constituents. They stand on full-field computations of representative volume elements of microstructures as well as on mean-field semi-analytical models. For light water reactor fuels, these approaches have been applied to the modelling of the effect of two microstructural parameters: the porosity effects on the thermal creep of dioxide uranium fuels (transient conditions of irradiation) as well as the plutonium content effect on the viscoplastic behaviour (nominal conditions of irradiations) of mixed oxide fuels (MOX). (authors)

  2. A nonlinear dynamical system approach for the yielding behaviour of a viscoplastic material.

    Science.gov (United States)

    Burghelea, Teodor; Moyers-Gonzalez, Miguel; Sainudiin, Raazesh

    2017-03-08

    A nonlinear dynamical system model that approximates a microscopic Gibbs field model for the yielding of a viscoplastic material subjected to varying external stresses recently reported in R. Sainudiin, M. Moyers-Gonzalez and T. Burghelea, Soft Matter, 2015, 11(27), 5531-5545 is presented. The predictions of the model are in fair agreement with microscopic simulations and are in very good agreement with the micro-structural semi-empirical model reported in A. M. V. Putz and T. I. Burghelea, Rheol. Acta, 2009, 48, 673-689. With only two internal parameters, the nonlinear dynamical system model captures several key features of the solid-fluid transition observed in experiments: the effect of the interactions between microscopic constituents on the yield point, the abruptness of solid-fluid transition and the emergence of a hysteresis of the micro-structural states upon increasing/decreasing external forces. The scaling behaviour of the magnitude of the hysteresis with the degree of the steadiness of the flow is consistent with previous experimental observations. Finally, the practical usefulness of the approach is demonstrated by fitting a rheological data set measured with an elasto-viscoplastic material.

  3. Behaviour of Viscoelastic - Viscoplastic Spheres and Cylinders - Partly Plastic Vessel Walls

    DEFF Research Database (Denmark)

    Ottosen, N. Saabye

    1985-01-01

    The material model consists of a viscoelastic Burgers element and an additional viscoplastic Bingham element when the effective stress exceeds the yield stress. For partly plastic vessel walls, expressions are derived for the stress and strain state in pressurised or relaxation loaded thick......-walled cylinders in plane strain and spheres. For the spherical problem, the material compressibility is accounted for. The influence of the different material parameters on the behaviour of the vessels is evaluated. It is shown that the magnitude of the Maxwell viscosity is of major importance for the long......-term behaviour of thick-walled partly plastic vessels....

  4. Behaviour of Viscoelastic - Viscoplastic Spheres and Cylinders - Fully Plastic Vessel Walls

    DEFF Research Database (Denmark)

    Ottosen, N. Saabye

    1985-01-01

    The material model consists of a viscoelastic Burgers element and an additional viscoplastic Bingham element when the effective stress exceeds the yield stress. For fully plastic vessel walls, exact closed-form expressions arc derived for the stress and strain state in pressurised or relaxation...... loaded thick-walled cylinders in plane strain and spheres. For the spherical problem, the material compressibility is accounted for. The influence of the different material parameters on the behaviour of the vessels is evaluated. It is shown that the magnitude of the Maxwell viscosity is of major...... importance for the long-term behaviour of thick-walled fully plastic vessels....

  5. Steady State Crack Propagation in Layered Material Systems Displaying Visco-plastic Behaviour

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2012-01-01

    The steady state fracture toughness of elastic visco-plastic materials is studied numerically, using both a conventional and a higher order model. Focus is on the combined effect of strain hardening, strain gradient hardening and strain rate hardening on cracking in layered material systems...

  6. Nonuniform transformation field analysis of multiphase elasto viscoplastic materials: application to MOX fuels

    International Nuclear Information System (INIS)

    Roussette, S.

    2005-05-01

    The description of the overall behavior of nonlinear materials with nonlinear dissipative phases requires an infinity of internal variables. An approximate model involving only a finite number of internal variables, Nonuniform Transformation Field Analysis, is obtained by considering a decomposition of these variables on a finite set of nonuniform transformation fields, called plastic modes. The method is initially developed for incompressible elasto viscoplastic materials. Karhunen-Loeve expansion is proposed to optimize the plastic modes. Then the method is extended to porous elasto viscoplastic materials. Finally the transformation field analysis, developed by Dvorak, is applied to nuclear fuels MOX. This method enables to make sensitivity studies to determine the role of some microstructural parameters on the fuel behaviour. Moreover the adequacy of the nonuniform method for fuels MOX is shown, the final objective being to be able to apply the model to the MOX in 3D. (author)

  7. Theoretical and experimental study of high strain, high strain rate materials viscoplastic behaviour. Application to Mars 190 steel and tantalum

    International Nuclear Information System (INIS)

    Juanicotena, A.

    1998-01-01

    This work enters in the general framework of the study and modelling of metallic materials viscoplastic behaviour in the area of high strain and high strain rate, from 10 4 to 10 5 s -1 . We define a methodology allowing to describe the behaviour of armor steel Mars 190 and tantalum in the initial area. In a first time, the study of visco-plasticity physical mechanisms shows the necessity to take into account some fundamental processes of the plastic deformation. Then, the examination of various constitutive relations allows to select the Preston-Tonks-Wallace model, that notably reproduce the physical phenomenon of the flow stress saturation. In a second part, a mechanical characterization integrating loading direction, strain rate and temperature effects is conducted on the two materials. Moreover, these experimental results allow to calculate associated constants to Preston-Tonks-Wallace, Zerilli-Armstrong and Johnson-Cook models for each material. In a third time, in order to evaluate and to validate these constitutive laws, we conceive and develop an experimental device open to reach the area of study: the expanding spherical shell test. It concerns to impose a free radial expanding to a thin spherical shell by means a shock wave generated by an explosive. By the radial expanding velocity measure, we can determine stress, strain rate and strain applied on the spherical shell at each time. In a four and last part, we evaluate constitutive models out of their optimization area's. This validation is undertaken by comparisons 'experimental results/calculations' with the help of global experiences like expanding spherical shell test and Taylor test. (author)

  8. High temperature viscoplastic ratchetting: Material response or modeling artifact

    International Nuclear Information System (INIS)

    Freed, A.D.

    1991-01-01

    Ratchetting, the net accumulation of strain over a loading cycle, is a deformation mechanism that leads to distortions in shape, often resulting in a loss of function that culminates in structural failure. Viscoplastic ratchetting is prevalent at high homologous temperatures where viscous characteristics are prominent in material response. This deformation mechanism is accentuated by the presence of a mean stress; a consequence of interaction between thermal gradients and structural constraints. Favorable conditions for viscoplastic ratchetting exist in the Stirling engines being developed by the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) for space and terrestrial power applications. To assess the potential for ratchetting and its effect on durability of high temperature structures requires a viscoplastic analysis of the design. But ratchetting is a very difficult phenomenon to accurately model. One must therefore ask whether the results from such an analysis are indicative of actual material behavior, or if they are artifacts of the theory being used in the analysis. There are several subtle aspects in a viscoplastic model that must be dealt with in order to accurately model ratchetting behavior, and therefore obtain meaningful predictions from it. In this paper, some of these subtlties and the necessary ratchet experiments needed to obtain an accurate viscoplastic representation of a material are discussed

  9. Development of the PARA-ID Program to Simulate a Unified Viscoplasticity Behaviour

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi

    2009-01-01

    The PARA-ID code is a general purpose computer simulation program for a nonlinear cyclic material behavior with and without viscous effects, which can simulate various constitutive models such as - Prager Model - Armstrong and Frederick Model - Chaboche 3-decomposed rule Model - Chaboche 4-decomposed rule Model - Ohno and Wang Model - Unified Chaboche Viscoplastic Model In this paper, the unified Chaboche viscoplasticity model is investigated with some examples of application for a cyclic hardening material of 316L

  10. Dynamic frictional contact for elastic viscoplastic material

    Directory of Open Access Journals (Sweden)

    Kenneth L. Kuttler

    2007-05-01

    Full Text Available Using a general theory for evolution inclusions, existence and uniqueness theorems are obtained for weak solutions to a frictional dynamic contact problem for elastic visco-plastic material. An existence theorem in the case where the friction coefficient is discontinuous is also presented.

  11. Viscoplastic behaviour including damage for deep argillaceous rocks: from in situ observations to constitutives equations

    International Nuclear Information System (INIS)

    Souley, Mountaka; Ghoreychi, Mehdi; Armand, Gilles

    2010-01-01

    Document available in extended abstract form only. In order to demonstrate the feasibility of a radioactive waste repository in clay-stone formation, French national radioactive waste management agency (ANDRA) started in 2000 to build an underground research laboratory CMHM) at Bure located at nearly 300 km East of Paris. The host formation consists of a clay-stone (Callovo-Oxfordian argillites) and lies between 430 m and 550 m deep. On the basis of numerous campaigns of laboratory tests (uniaxial/triaxial, mono/multi stage creep and relaxation) undertaken for characterizing mechanical and hydro-mechanical short-term or long-term behaviour of these argillites, several constitutive models were developed in the framework of MODEXREP European project and scientific cooperation between ANDRA and national institutions. Moreover, more than 400 m horizontal galleries at the main level of -490 m at CMHM laboratory have been instrumented since April 2005 with the aim to understand the rock behaviour (especially the long term behaviour) needed for the repository design. The continuous measurements of convergencies of the galleries are available contributing to better understand the time-dependent response of the argillites at natural scale. Analysis of convergence data over a period of 2 years leads to the following conclusions: (a) viscoplastic strains are anisotropic and depend on the gallery orientation with regard to the initial stress anisotropy in the investigated formation; (b) the viscoplastic strain rates observed in the undamaged area far from the galleries walls are in the same order of magnitude as those obtained on samples, whereas those recorded in the damaged or fractured zone near to the walls are one to two orders of magnitude higher; indicating the damage and created macroscopic fractures influences on the viscoplastic strains. This influence has not been taken into account in the previous constitutive models. From these observations, a macroscopic

  12. Viscoplastic Matrix Materials for Embedded 3D Printing.

    Science.gov (United States)

    Grosskopf, Abigail K; Truby, Ryan L; Kim, Hyoungsoo; Perazzo, Antonio; Lewis, Jennifer A; Stone, Howard A

    2018-03-16

    Embedded three-dimensional (EMB3D) printing is an emerging technique that enables free-form fabrication of complex architectures. In this approach, a nozzle is translated omnidirectionally within a soft matrix that surrounds and supports the patterned material. To optimize print fidelity, we have investigated the effects of matrix viscoplasticity on the EMB3D printing process. Specifically, we determine how matrix composition, print path and speed, and nozzle diameter affect the yielded region within the matrix. By characterizing the velocity and strain fields and analyzing the dimensions of the yielded regions, we determine that scaling relationships based on the Oldroyd number, Od, exist between these dimensions and the rheological properties of the matrix materials and printing parameters. Finally, we use EMB3D printing to create complex architectures within an elastomeric silicone matrix. Our methods and findings will both facilitate future characterization of viscoplastic matrices and motivate the development of new materials for EMB3D printing.

  13. A viscoplastic strain gradient analysis of materials with voids or inclusions

    DEFF Research Database (Denmark)

    Borg, Ulrik; Niordson, Christian Frithiof; Fleck, N. A.

    2006-01-01

    -2454] of the strain gradient plasticity theory proposed by Fleck and Hutchinson (2001) [Journal of the Mechanics and Physics of Solids 49, 2245-2271]. The formulation is based on a viscoplastic potential that enables the formulation of the model so that it reduces to the strain gradient plasticity theory...... in the absence of viscous effects. The numerical implementation uses increments of the effective plastic strain rate as degrees of freedom in addition to increments of displacement. To illustrate predictions of the model, results are presented for materials containing either voids or rigid inclusions......A finite strain viscoplastic nonlocal plasticity model is formulated and implemented numerically within a finite element framework. The model is a viscoplastic generalisation of the finite strain generalisation by Niordson and Redanz (2004) [Journal of the Mechanics and Physics of Solids 52, 2431...

  14. A Lagrangian PFEM approach for non-Newtonian viscoplastic materials

    OpenAIRE

    Larese, A.

    2017-01-01

    This paper presents the application of a stabilized mixed Particle Finite Element Method (PFEM) to the solution of viscoplastic non-Newtonian flows. The application of the proposed model to the deformation of granular non-cohesive material is analysed. A variable yield threshold modified Bingham model is presented, using a Mohr Coulomb resistance criterion. Since the granular material is expected to undergo severe deformation, a Lagrangian approach is preferred to a fixed mesh one. PFEM i...

  15. Anisotropic constitutive equations for the viscoplastic behaviour of the single crystal superalloy CMSX-4

    International Nuclear Information System (INIS)

    Fleury, G.; Schubert, F.

    1997-09-01

    Nickel-base superalloy blades of the first rotor stage in a gas turbine have to withstand extremely severe thermomechanical loading conditions. Single crystal blades exhibit a highly anisotropic deformation behaviour and are subjected to triaxial stress fields induced by complex cooling systems. Consequently the prediction of their deformation behaviour requires constitutive equations based on multiaxial formulations. The microstructural evolution of γ/γ' superalloys during the service time modifies the material properties and has therefore to be taken into account in the constitutive equations. For the modelling of the anisotropic, viscoplastic behaviour of single crystal blades taking into account the evolution of the microstructure, a microstructure-dependent, orthotropic Hills potential, whose anisotropy coefficients are connected to the edge length of the γ'-particles, is applied. The prediction was validated by investigating the deformation behaviour of the superalloy CMSX-4 in the range of temperatures [750 C-950 C]. If the shape of γ'-particles remain cubic, for example, in creep testing at low temperatures (up to about 850 C), the microstructure-dependent potential leads to the cubic version of the Hills potential. The prediction is in good agreement with creep results for left angle 001 right angle - and left angle 111 right angle - orientated specimens but overestimates the creep resistance of left angle 011 right angle - orientated specimens. (orig.)

  16. Modelling of the high temperature behaviour of metallic materials

    International Nuclear Information System (INIS)

    Mohr, R.

    1999-01-01

    The design of components of metallic high-temperature materials by the finite element method requires the application of phenomenological viscoplastic material models. The route from the choice of a convenient model, the numerical integration of the equations and the parameter identification to the design of components is described. The Chaboche-model is used whose evolution equations are explicitly integrated. The parameters are determined by graphical and numerical methods in order to use the material model for describing the deformation behaviour of a chromium steel and an intermetallic titanium aluminide alloy. (orig.)

  17. Towards Viscoplastic Constitutive Models for Cosserat Rods

    Directory of Open Access Journals (Sweden)

    Dörlich Vanessa

    2016-06-01

    Full Text Available Flexible, slender structures like cables, hoses or wires can be described by the geometrically exact Cosserat rod theory. Due to their complex multilayer structure, consisting of various materials, viscoplastic behavior has to be expected for cables under load. Classical experiments like uniaxial tension, torsion or three-point bending already show that the behavior of e.g. electric cables is viscoplastic. A suitable constitutive law for the observed load case is crucial for a realistic simulation of the deformation of a component. Consequently, this contribution aims at a viscoplastic constitutive law formulated in the terms of sectional quantities of Cosserat rods. Since the loading of cables in applications is in most cases not represented by these mostly uniaxial classical experiments, but rather multiaxial, new experiments for cables have to be designed. They have to illustrate viscoplastic effects, enable access to (viscoplastic material parameters and account for coupling effects between different deformation modes. This work focuses on the design of such experiments.

  18. Quasi-estatic and dynamic elasto/viscoplastic analysis of plates and shells

    International Nuclear Information System (INIS)

    Dinis, L.M.S.

    1981-01-01

    The non-linear quasi-static and dynamic analysis of plates and shells is presented using the finite - element method for spatial discretization and the Central Finite Differences for the integration of the transient dynamic equation. The behaviour of the material is represented by the elasto/viscoplastic model of Perzyna together with approximations of the Von Mises yield surfaces for plates and shells. (Author) [pt

  19. Description of scattering material behaviour and damage in inelastic materials; Beschreibung von streuendem Materialverhalten und von Schaedigung bei inelastischen Werkstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Pensky, H.M.H.

    2000-07-01

    For realistic numerical simulations of the stress-strain behaviour of structures, models are necessary which describe elastic-inelastic and scattering material behaviour. The developed models simulate elastic, viscoplastic and anisotropic damage material phenomena. An approach is proposed for covering stochastic material beahviour by correspondingly distributed parameters of the deterministic material model. Numerical simulations of biaxial material tests and structural tests demonstrate the range of applicability. (orig.) [German] Die realitaetsnahe numerische Simulation des Spannungs-Verformungsverhaltens von Bauteilen erfordert Modelle zur Beschreibung inelastischen und streuenden Materialverhaltens. Die hier entwickelten Modelle beschreiben elastische, viskoplastische und anisotrope Schaedigungsphaenomene des Materialverhaltens. Desweiteren wird ein Konzept vorgestellt, mit dem streuendes Materialverhalten mit streuenden Materialparametersaetzen deterministischer Stoffmodelle beschreibbar ist. Numerische Simulationen von Werkstoff- und Bauteilversuchen veranschaulichen den Anwendungsbereich der Modelle. (orig.)

  20. A viscoelastic-viscoplastic model for short-fibre reinforced polymers with complex fibre orientations

    Directory of Open Access Journals (Sweden)

    Nciri M.

    2015-01-01

    Full Text Available This paper presents an innovative approach for the modelling of viscous behaviour of short-fibre reinforced composites (SFRC with complex distributions of fibre orientations and for a wide range of strain rates. As an alternative to more complex homogenisation methods, the model is based on an additive decomposition of the state potential for the computation of composite’s macroscopic behaviour. Thus, the composite material is seen as the assembly of a matrix medium and several linear elastic fibre media. The division of short fibres into several families means that complex distributions of orientation or random orientation can be easily modelled. The matrix behaviour is strain-rate sensitive, i.e. viscoelastic and/or viscoplastic. Viscoelastic constitutive laws are based on a generalised linear Maxwell model and the modelling of the viscoplasticity is based on an overstress approach. The model is tested for the case of a polypropylene reinforced with short-glass fibres with distributed orientations and subjected to uniaxial tensile tests, in different loading directions and under different strain rates. Results demonstrate the efficiency of the model over a wide range of strain rates.

  1. The Plastic Potential, Double-slip, Double-spin and Viscoplasticity

    Science.gov (United States)

    Harris, David

    2010-05-01

    In this paper we describe two classical models for rate-independent behaviour of granular materials, namely the plastic potential and the double shearing model, emphasising their ill-posedness. We then describe a model, called the doubleslip and double-spin model which generalises the plastic potential model and is closely related to the double shearing model. This new model eliminates the causes of the ill-posedness in the classical models and provides a suitable basis for the analysis of the deformation and flow of granular materials in the rate-independent regime. There has been considerable recent interest in the intermediate regime between densely-packed, rate-independent, quasistatic flow and the rate-dependent dilute gaseous regime. In this intermediate regime the material also exhibits a degree of ratedependence. The natural extension of a rate-independent plasticity model to incorporate rate-dependent material behaviour is by way of viscoplasticity. The archetypal example here is the Bingham material which generalises a von Mises type plasticity model and introduces a viscosity parameter into the model. We propose an extension of the double-slip and double-spin model to incorporate viscosity, thereby extending the range of the model to incorporate rate-dependent behaviour. The new model is then applied to a simplified problem of pipe flow.

  2. Yielding to stress: Recent developments in viscoplastic fluid mechanics

    OpenAIRE

    BALMFORTH, Neil; FRIGAARD, Ian A.; OVARLEZ, Guillaume

    2014-01-01

    The archetypal feature of a viscoplastic fluid is its yield stress: If the material is not sufficiently stressed, it behaves like a solid, but once the yield stress is exceeded, the material flows like a fluid. Such behavior characterizes materials common in industries such as petroleum and chemical processing, cosmetics, and food processing and in geophysical fluid dynamics. The most common idealization of a viscoplastic fluid is the Bingham model, which has been widely used to rationalize e...

  3. Application of a viscoplastic constitutive law to lead in the impact analysis of radioactive material shipping casks

    International Nuclear Information System (INIS)

    Wang, Zhibi; Turula, P.; Popper, G.F.

    1990-01-01

    Perzyna's viscoplastic material model is selected to consider the strain rate effect of lead used in radioactive material shipping packages. The model is checked using data from two scale-model tests and the deformations are found to be within 10 percent. 3 refs., 4 figs

  4. Experimental identification and mathematical modeling of viscoplastic material behavior

    Science.gov (United States)

    Haupt, P.; Lion, A.

    1995-03-01

    Uniaxial torsion and biaxial torsion-tension experiments on thin-walled tubes were carried out to investigate the viscoplastic behavior of stainless steel XCrNi18.9. A series of monotonic tests under strain and stress control shows nonlinear rate dependence and suggests the existence of equilibrium states, which are asymptotically approached during relaxation and creep processes. Strain controlled cyclic experiments display various hardening and softening phenomena that depend on strain amplitude and mean strain. All experiments indicate that the equilibrium states within the material depend on the history of the input process, whereas the history-dependence of the relaxation and creep behavior appears less significant. From the experiments the design of a constitutive model of viscoplasticity is motivated: The basic assumption is a decomposition of the total stress into an equilibrium stress and a non-equilibrium overstress: At constant strain, the overstress relaxes to zero, where the relaxation time depends on the overstress in order to account for the nonlinear rate-dependence. The equilibrium stress is assumed to be a rate independent functional of the total strain history. Classical plasticity is utilized with a kinematic hardening rule of the Armstrong-Frederick type. In order to incorporate the amplitude-dependent hardening and softening behavior, a generalized arc length representation is applied [14]. The introduction of an additional kinematic hardening variable facilitates consideration of additional hardening effects resulting from the non-radiality of the input process. Apart from the common yield and loading criterion of classical plasticity, the proposed constitutive model does not contain any further distinction of different cases. The experimental data are sufficient to identify the material parameters of the constitutive model. The results of the identification procedure demonstrate the ability of the model to represent the observed phenomena

  5. Viscoplastic Model Development with an Eye Toward Characterization

    Science.gov (United States)

    Freed, Alan D.; Walker, Kevin P.

    1995-01-01

    A viscoplastic theory is developed that reduces analytically to creep theory under steady-state conditions. A viscoplastic model is constructed within this theoretical framework by defining material functions that have close ties to the physics of inelasticity. As a consequence, this model is easily characterized-only steady-state creep data, monotonic stress-strain curves, and saturated stress-strain hysteresis loops are required.

  6. Towards Viscoplastic Constitutive Models for Cosserat Rods

    OpenAIRE

    Dörlich Vanessa; Linn Joachim; Scheffer Tobias; Diebels Stefan

    2016-01-01

    Flexible, slender structures like cables, hoses or wires can be described by the geometrically exact Cosserat rod theory. Due to their complex multilayer structure, consisting of various materials, viscoplastic behavior has to be expected for cables under load. Classical experiments like uniaxial tension, torsion or three-point bending already show that the behavior of e.g. electric cables is viscoplastic. A suitable constitutive law for the observed load case is crucial for a realistic simul...

  7. Development and Application of a Tool for Optimizing Composite Matrix Viscoplastic Material Parameters

    Science.gov (United States)

    Murthy, Pappu L. N.; Naghipour Ghezeljeh, Paria; Bednarcyk, Brett A.

    2018-01-01

    This document describes a recently developed analysis tool that enhances the resident capabilities of the Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) and its application. MAC/GMC is a composite material and laminate analysis software package developed at NASA Glenn Research Center. The primary focus of the current effort is to provide a graphical user interface (GUI) capability that helps users optimize highly nonlinear viscoplastic constitutive law parameters by fitting experimentally observed/measured stress-strain responses under various thermo-mechanical conditions for braided composites. The tool has been developed utilizing the MATrix LABoratory (MATLAB) (The Mathworks, Inc., Natick, MA) programming language. Illustrative examples shown are for a specific braided composite system wherein the matrix viscoplastic behavior is represented by a constitutive law described by seven parameters. The tool is general enough to fit any number of experimentally observed stress-strain responses of the material. The number of parameters to be optimized, as well as the importance given to each stress-strain response, are user choice. Three different optimization algorithms are included: (1) Optimization based on gradient method, (2) Genetic algorithm (GA) based optimization and (3) Particle Swarm Optimization (PSO). The user can mix and match the three algorithms. For example, one can start optimization with either 2 or 3 and then use the optimized solution to further fine tune with approach 1. The secondary focus of this paper is to demonstrate the application of this tool to optimize/calibrate parameters for a nonlinear viscoplastic matrix to predict stress-strain curves (for constituent and composite levels) at different rates, temperatures and/or loading conditions utilizing the Generalized Method of Cells. After preliminary validation of the tool through comparison with experimental results, a detailed virtual parametric study is

  8. Evaluation of viscoplastic fracture criteria and analysis methods

    International Nuclear Information System (INIS)

    Bass, B.R.; Pugh, C.E.; Keeney-Walker, J.; Dexter, R.J.; O'Donoghue, P.E.; Schwartz, C.W.

    1988-01-01

    The role of nonlinear rate-dependent effects in the interpretation of crack run-arrest events in ductile materials is being investigated by the Heavy-Section Steel Technology (HSST) program through development and applications of viscoplastic-dynamic finite element analysis techniques. This paper describes a portion of these studies wherein various viscoplastic constitutive models and several proposed nonlinear fracture criteria are being installed in general purpose (ADINA) and special purpose (VISCRK) finite element computer programs. The formulations of the Bodner-Partom, the Perzyna, and the Robinson constitutive models installed in the HSST computer programs are summarized. This is followed by a description of three integral functions that are candidate fracture parameters. The capabilities of these nonlinear techniques re compared and evaluated through applications to one of the HSST wide-plate crack-arrest tests. Results are presented from benchmark viscoplastic-dynamic wide-plate analyses performed using the ADINA and VISCRK computer programs. Finally, plans are summarized for additional computational and experimental studies to assess the utility of viscoplastic analysis techniques in constructing a transferable inelastic fracture mechanics model for ductile steels. (author)

  9. Modelling of photodegradation effect on elastic-viscoplastic behaviour of amorphous polylactic acid films

    Science.gov (United States)

    Belbachir, S.; Zaïri, F.; Ayoub, G.; Maschke, U.; Naït-Abdelaziz, M.; Gloaguen, J. M.; Benguediab, M.; Lefebvre, J. M.

    2010-02-01

    Polylactic acid (PLA) films were subjected to accelerated ultra-violet (UV) ageing. The UV irradiation leads to the alteration of the chemical structure which influences directly the mechanical response of the polymer. The chemical modification of the polymer was followed by gel permeation chromatography. Uniaxial tension tests were conducted at 50 °C and for different strain rates in order to characterize the large deformation response of PLA. The influence of UV irradiation on the alteration of the large deformation response of PLA was examined. A physically based elastic-viscoplastic model was used to describe the mechanical response of virgin PLA. The photodegradation effect was incorporated into the constitutive model to capture the stress-strain behaviour up to failure of aged PLA. To that end, the measured molecular weight was used as a direct input into the model. The model is shown to be in good agreement with experimental results over a wide range of UV irradiation doses.

  10. Theoretical and experimental study of high strain, high strain rate materials viscoplastic behaviour. Application to Mars 190 steel and tantalum; Etude theorique et experimentale du comportement viscoplastique des materiaux aux grandes deformations et grandes vitesses de deformations. Application a l'acier mars 190 et au tantale

    Energy Technology Data Exchange (ETDEWEB)

    Juanicotena, A

    1998-07-01

    This work enters in the general framework of the study and modelling of metallic materials viscoplastic behaviour in the area of high strain and high strain rate, from 10{sup 4} to 10{sup 5} s{sup -1}. We define a methodology allowing to describe the behaviour of armor steel Mars 190 and tantalum in the initial area. In a first time, the study of visco-plasticity physical mechanisms shows the necessity to take into account some fundamental processes of the plastic deformation. Then, the examination of various constitutive relations allows to select the Preston-Tonks-Wallace model, that notably reproduce the physical phenomenon of the flow stress saturation. In a second part, a mechanical characterization integrating loading direction, strain rate and temperature effects is conducted on the two materials. Moreover, these experimental results allow to calculate associated constants to Preston-Tonks-Wallace, Zerilli-Armstrong and Johnson-Cook models for each material. In a third time, in order to evaluate and to validate these constitutive laws, we conceive and develop an experimental device open to reach the area of study: the expanding spherical shell test. It concerns to impose a free radial expanding to a thin spherical shell by means a shock wave generated by an explosive. By the radial expanding velocity measure, we can determine stress, strain rate and strain applied on the spherical shell at each time. In a four and last part, we evaluate constitutive models out of their optimization area's. This validation is undertaken by comparisons 'experimental results/calculations' with the help of global experiences like expanding spherical shell test and Taylor test. (author)

  11. Thermodynamic consistency of viscoplastic material models involving external variable rates in the evolution equations for the internal variables

    International Nuclear Information System (INIS)

    Malmberg, T.

    1993-09-01

    The objective of this study is to derive and investigate thermodynamic restrictions for a particular class of internal variable models. Their evolution equations consist of two contributions: the usual irreversible part, depending only on the present state, and a reversible but path dependent part, linear in the rates of the external variables (evolution equations of ''mixed type''). In the first instance the thermodynamic analysis is based on the classical Clausius-Duhem entropy inequality and the Coleman-Noll argument. The analysis is restricted to infinitesimal strains and rotations. The results are specialized and transferred to a general class of elastic-viscoplastic material models. Subsequently, they are applied to several viscoplastic models of ''mixed type'', proposed or discussed in the literature (Robinson et al., Krempl et al., Freed et al.), and it is shown that some of these models are thermodynamically inconsistent. The study is closed with the evaluation of the extended Clausius-Duhem entropy inequality (concept of Mueller) where the entropy flux is governed by an assumed constitutive equation in its own right; also the constraining balance equations are explicitly accounted for by the method of Lagrange multipliers (Liu's approach). This analysis is done for a viscoplastic material model with evolution equations of the ''mixed type''. It is shown that this approach is much more involved than the evaluation of the classical Clausius-Duhem entropy inequality with the Coleman-Noll argument. (orig.) [de

  12. Metal viscoplasticity with two-temperature thermodynamics and two dislocation densities

    Science.gov (United States)

    Roy Chowdhury, Shubhankar; Kar, Gurudas; Roy, Debasish; Reddy, J. N.

    2018-03-01

    Posed within the two-temperature theory of non-equilibrium thermodynamics, we propose a model for thermoviscoplastic deformation in metals. We incorporate the dynamics of dislocation densities-mobile and forest—that play the role of internal state variables in the formulation. The description based on two temperatures appears naturally when one recognizes that the thermodynamic system undergoing viscoplastic deformation is composed of two weakly interacting subsystems, viz. a kinetic-vibrational subsystem of the vibrating atomic lattices and a configurational subsystem of the slower degrees of freedom relating to defect motion, each with its own temperature. Starting with a basic model that involves only homogeneous deformation, a three-dimensional model for inhomogeneous viscoplasticity applicable to finite deformation is charted out in an overstress driven viscoplastic deformation framework. The model shows how the coupled evolutions of mobile and forest dislocation densities, which are critically influenced by the dynamics of configurational temperature, govern the strength and ductility of the metal. Unlike most contemporary models, the current proposal also affords a prediction of certain finer details as observed in the experimental data on stress-strain behaviour of metals and this in turn enhances the understanding of the evolving and interacting dislocation densities.

  13. Numerical modeling of the viscoplastic damage behaviour of rocks and application to underground storage facilities

    International Nuclear Information System (INIS)

    Hajdu, A.

    2003-12-01

    The long-term behavior of large, underground works of a civil engineering nature carried out in a rock mass is currently the subject of numerous studies. The object is to attain a better understanding of complex phenomena, such as the convergence of excavated cavities or the outbreak and development of damaged zones in the rock mass neighboring the works, in order to foresee them. This Ph.D. thesis is devoted to the analysis of viscoplastic strain in rocks and to the degradation of their mechanical properties with time, often referred to as deferred damage. A bibliographical record presents the current depth of understanding as regards underlying microstructural phenomena and summarizes the main theories upon which the modeling of these phenomena at the macroscopic scale is based. The formulations enabling a coupling between the viscous effects and the deferred damage are revisited and discussed in detail. One phenomenological model in particular, Lemaitre's viscoplastic constitutive damage law is retained for the numerical modeling. The calculations were performed with the help of a finite element code (CAST3M). Designs of nuclear waste disposal structures at great depth make up the subject of different case studies. The Lemaitre model, originally designed for metallic materials, is next the subject of a theoretical development of which the aim is to better adapt it to the description of the long-term mechanical behavior of rocks. The modifications focus on several points; notably that the hypotheses of anelastic strain at constant volume and of isotropy of damage are rejected. The main characteristics of time-dependent strain in rocks; in particular the phenomena of viscoplastic dilation and contraction as well as the anisotropy induced by damage to the rock matrix are reproduced by the proposed model. A parametric study is then undertaken, using the experimental results obtained on different types of rock, in order to demonstrate the model's capabilities

  14. Efficient numerical schemes for viscoplastic avalanches. Part 1: The 1D case

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Nieto, Enrique D., E-mail: edofer@us.es [Departamento de Matemática Aplicada I, Universidad de Sevilla, E.T.S. Arquitectura, Avda, Reina Mercedes, s/n, 41012 Sevilla (Spain); Gallardo, José M., E-mail: jmgallardo@uma.es [Departamento de Análisis Matemático, Universidad de Málaga, F. Ciencias, Campus Teatinos S/N (Spain); Vigneaux, Paul, E-mail: Paul.Vigneaux@math.cnrs.fr [Unitée de Mathématiques Pures et Appliquées, Ecole Normale Supérieure de Lyon, 46 allée d' Italie, 69364 Lyon Cedex 07 (France)

    2014-05-01

    This paper deals with the numerical resolution of a shallow water viscoplastic flow model. Viscoplastic materials are characterized by the existence of a yield stress: below a certain critical threshold in the imposed stress, there is no deformation and the material behaves like a rigid solid, but when that yield value is exceeded, the material flows like a fluid. In the context of avalanches, it means that after going down a slope, the material can stop and its free surface has a non-trivial shape, as opposed to the case of water (Newtonian fluid). The model involves variational inequalities associated with the yield threshold: finite-volume schemes are used together with duality methods (namely Augmented Lagrangian and Bermúdez–Moreno) to discretize the problem. To be able to accurately simulate the stopping behavior of the avalanche, new schemes need to be designed, involving the classical notion of well-balancing. In the present context, it needs to be extended to take into account the viscoplastic nature of the material as well as general bottoms with wet/dry fronts which are encountered in geophysical geometries. We derived such schemes and numerical experiments are presented to show their performances.

  15. Implementation of thermo-viscoplastic constitutive equations into the finite element code ABAQUS

    International Nuclear Information System (INIS)

    Youn, Sam Son; Lee, Soon Bok; Kim, Jong Bum; Lee, Hyeong Yeon; Yoo, Bong

    1998-01-01

    Sophisticated viscoplatic constitutive laws describing material behavior at high temperature have been implemented in the general-purpose finite element code ABAQUS to predict the viscoplastic response of structures to cyclic loading. Because of the complexity of viscoplastic constitutive equation, the general implementation methods are developed. The solution of the non-linear system of algebraic equations arising from time discretization is determined using line-search and back-tracking in combination with Newton method. The time integration method of the constitutive equations is based on semi-implicit method with efficient time step control. For numerical examples, the viscoplastic model proposed by Chaboche is implemented and several applications are illustrated

  16. Comparison of different homogenization approaches for elastic–viscoplastic materials

    International Nuclear Information System (INIS)

    Mercier, S; Molinari, A; Berbenni, S; Berveiller, M

    2012-01-01

    Homogenization of linear viscoelastic and non-linear viscoplastic composite materials is considered in this paper. First, we compare two homogenization schemes based on the Mori–Tanaka method coupled with the additive interaction (AI) law proposed by Molinari et al (1997 Mech. Mater. 26 43–62) or coupled with a concentration law based on translated fields (TF) originally proposed for the self-consistent scheme by Paquin et al (1999 Arch. Appl. Mech. 69 14–35). These methods are also evaluated against (i) full-field calculations of the literature based on the finite element method and on fast Fourier transform, (ii) available analytical exact solutions obtained in linear viscoelasticity and (iii) homogenization methods based on variational approaches. Developments of the AI model are obtained for linear and non-linear material responses while results for the TF method are shown for the linear case. Various configurations are considered: spherical inclusions, aligned fibers, hard and soft inclusions, large material contrasts between phases, volume-preserving versus dilatant anelastic flow, non-monotonic loading. The agreement between the AI and TF methods is excellent and the correlation with full field calculations is in general of quite good quality (with some exceptions for non-linear composites with a large volume fraction of very soft inclusions for which a discrepancy of about 15% was found for macroscopic stress). Description of the material behavior with internal variables can be accounted for with the AI and TF approaches and therefore complex loadings can be easily handled in contrast with most hereditary approaches. (paper)

  17. Study of a viscoplastic structure

    International Nuclear Information System (INIS)

    Bahbouhi, A.F.; Cousin, M.; Jullien, J.F.

    1987-01-01

    This study concerns the thermoplastic behavior of metallic structures under cyclic thermal loading. This work aims to bring about a contribution to the experimental plan as well as to the numerical modelisation aspect of the viscoplastic behavior of the structures. This experimental device allows the variation of the thermal loading story especially the duration of the cycle and the fixed temperature time. The numerical analysis of the viscoplastic behavior of the structures was carried out by treating the plastic strains independently of the creep strains. The comparison of the experimental and numerical results brings about important elements concerning the numerical analysis of the viscoplastic behavior of such structures. (orig.)

  18. On piezomagnetism at viscoplasticity of ferromagnetics

    International Nuclear Information System (INIS)

    Micunovic, M.

    2001-01-01

    The paper deals with viscoplasticity of ferromagnetic materials. Tensor representation is applied to a set of evolution equations comprising the plastic stretching and residual magnetization tensors. Small magnetoelastic strains of isotropic insulators are considered in detail in two special cases of finite as well as small plastic strain. A special emphasis is given to piezomagnetism effects in the case of uniaxial cycling strain (author)

  19. Viscoplastic sculpting in stable triple layer heavy oil transport flow

    Science.gov (United States)

    Sarmadi, Parisa; Hormozi, Sarah; A. Frigaard, Ian

    2017-11-01

    In we introduced a novel methodology for efficient transport of heavy oil via a triple layer core-annular flow. Pumping pressures are significantly reduced by concentrating high shear rates to a lubricating layer, while ideas from Visco-Plastic Lubrication are used to eliminate interfacial instabilities. We purposefully position a shaped unyielded skin of a viscoplastic fluid between the transported oil and the lubricating fluid layer to balance the density difference between the fluids. Here we address the sculpting of the shaped skin within a concentric inflow manifold. We use the quasi-steady model to provide inputs to an axisymmetric triple layer computation, showing the development of the streamwise skin profile and establishment of the flow. For this, we use a finite element discretization with the augmented-Lagrangian method to represent the yield surface behaviour accurately and a PLIC method to track the interface motion.

  20. Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics

    Science.gov (United States)

    Balmforth, Neil J.; Frigaard, Ian A.; Ovarlez, Guillaume

    2014-01-01

    The archetypal feature of a viscoplastic fluid is its yield stress: If the material is not sufficiently stressed, it behaves like a solid, but once the yield stress is exceeded, the material flows like a fluid. Such behavior characterizes materials common in industries such as petroleum and chemical processing, cosmetics, and food processing and in geophysical fluid dynamics. The most common idealization of a viscoplastic fluid is the Bingham model, which has been widely used to rationalize experimental data, even though it is a crude oversimplification of true rheological behavior. The popularity of the model is in its apparent simplicity. Despite this, the sudden transition between solid-like behavior and flow introduces significant complications into the dynamics, which, as a result, has resisted much analysis. Over recent decades, theoretical developments, both analytical and computational, have provided a better understanding of the effect of the yield stress. Simultaneously, greater insight into the material behavior of real fluids has been afforded by advances in rheometry. These developments have primed us for a better understanding of the various applications in the natural and engineering sciences.

  1. Nonlinear viscoplasticity in ASPECT: benchmarking and applications to subduction

    Science.gov (United States)

    Glerum, Anne; Thieulot, Cedric; Fraters, Menno; Blom, Constantijn; Spakman, Wim

    2018-03-01

    ASPECT (Advanced Solver for Problems in Earth's ConvecTion) is a massively parallel finite element code originally designed for modeling thermal convection in the mantle with a Newtonian rheology. The code is characterized by modern numerical methods, high-performance parallelism and extensibility. This last characteristic is illustrated in this work: we have extended the use of ASPECT from global thermal convection modeling to upper-mantle-scale applications of subduction.Subduction modeling generally requires the tracking of multiple materials with different properties and with nonlinear viscous and viscoplastic rheologies. To this end, we implemented a frictional plasticity criterion that is combined with a viscous diffusion and dislocation creep rheology. Because ASPECT uses compositional fields to represent different materials, all material parameters are made dependent on a user-specified number of fields.The goal of this paper is primarily to describe and verify our implementations of complex, multi-material rheology by reproducing the results of four well-known two-dimensional benchmarks: the indentor benchmark, the brick experiment, the sandbox experiment and the slab detachment benchmark. Furthermore, we aim to provide hands-on examples for prospective users by demonstrating the use of multi-material viscoplasticity with three-dimensional, thermomechanical models of oceanic subduction, putting ASPECT on the map as a community code for high-resolution, nonlinear rheology subduction modeling.

  2. Application of Chaboche viscoplastic theory for predicting the cyclic behaviour of modified 9Cr-1Mo (T91)

    International Nuclear Information System (INIS)

    Chellapandi, P.; Ramesh, R.; Chetal, S.C.; Bhoje, S.B.

    1997-01-01

    Modified 9Cr 1Mo (grade 91) is the structural material for the SG of 500 MWe Prototype Fast Breeder Reactor. This material is codified in RCC-MR (1993). SG top tubesheet and its connecting shell see the hot sodium temperature of about 800 K. The steam temperature is about 770 K at 17 MPa. It is envisaged that this component can meet the creep fatigue damage rules of RCC-MR with 'elastic route' itself. One of the important material data needed to use the simplified rules given in RCC-MR (1993) is 'symmetrization coefficient' (Ks) which is not yet included in RCC-MR. Ks values are established from numerous stress strain cyclic data generated theoretically by using Chaboche viscoplastic model and recommended for the inclusion in the RCC-MR. The Chaboche model for grade 91 material has 20 material parameters which are identified based on the uniaxial monotonic and cyclic data available in RCC-MR (1993) as well as the published data and many uniaxial monotonic, cyclic, creep data are compared well with the predictions. (author). 4 refs, 21 figs, 2 tabs

  3. A frictional contact problem with wear involving elastic-viscoplastic materials with damage and thermal effects

    Directory of Open Access Journals (Sweden)

    Abdelmoumene Djabi

    2015-05-01

    Full Text Available We consider a mathematical problem for quasistatic contact between a thermo-elastic-viscoplastic body with damage and an obstacle. The contact is frictional and bilateral with a moving rigid foundation which results in the wear of the contacting surface. We employ the thermo-elasticviscoplastic with damage constitutive law for the material. The damage of the material caused by elastic deformations. The evolution of the damage is described by an inclusion of parabolic type. The problem is formulated as a coupled system of an elliptic variational inequality for the displacement, a parabolic variational inequality for the damage and the heat equation for the temperature. We establish a variational formulation for the model and we prove the existence of a unique weak solution to the problem. The proof is based on a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed point arguments.

  4. Variational multiscale enrichment method with mixed boundary conditions for elasto-viscoplastic problems

    Science.gov (United States)

    Zhang, Shuhai; Oskay, Caglar

    2015-04-01

    This manuscript presents the formulation and implementation of the variational multiscale enrichment (VME) method for the analysis of elasto-viscoplastic problems. VME is a global-local approach that allows accurate fine scale representation at small subdomains, where important physical phenomena are likely to occur. The response within far-fields is idealized using a coarse scale representation. The fine scale representation not only approximates the coarse grid residual, but also accounts for the material heterogeneity. A one-parameter family of mixed boundary conditions that range from Dirichlet to Neumann is employed to study the effect of the choice of the boundary conditions at the fine scale on accuracy. The inelastic material behavior is modeled using Perzyna type viscoplasticity coupled with flow stress evolution idealized by the Johnson-Cook model. Numerical verifications are performed to assess the performance of the proposed approach against the direct finite element simulations. The results of verification studies demonstrate that VME with proper boundary conditions accurately model the inelastic response accounting for material heterogeneity.

  5. A viscoplastic model with plasticity for dry clay. Application to underground structures

    International Nuclear Information System (INIS)

    Tchiyep Piepi, G.

    1995-10-01

    Stiff clays are generally encountered at a great depth (more than 300 m). These materials have a relatively low water content. A lot of industrial studies justify the recent interest borne by these materials. This work deals in particular with stiff clays able to answer to stresses by elastic, plastic and viscoplastic deformations. In the first part are given the experimental study and the modelling of the stiff clays mechanical behavior. In this part, considered materials are described as well as the tests carried out. The obtained results are discussed and a viscoplastic model with rupture is elaborated. The second part deals with the elaboration of an original semi analytical solution and of an algorithm implemented in GEOMEC91. The third part shows the influence of the model on the tunnel convergence at the moment of the support laying and by consequently on the stresses of this last one. The calculations results show a strong influence of the short-term cohesion on the tunnel convergence. (O.M.)

  6. Characterization of elastic-viscoplastic properties of an AS4/PEEK thermoplastic composite

    Science.gov (United States)

    Yoon, K. J.; Sun, C. T.

    1991-01-01

    The elastic-viscoplastic properties of an AS4/PEEK (APC-2) thermoplastic composite were characterized at 24 C (75 F) and 121 C (250 F) by using a one-parameter viscoplasticity model. To determine the strain-rate effects, uniaxial tension tests were performed on unidirectional off-axis coupon specimens with different monotonic strain rates. A modified Bodner and Partom's model was also used to describe the viscoplasticity of the thermoplastic composite. The experimental results showed that viscoplastic behavior can be characterized quite well using the one-parameter overstress viscoplasticity model.

  7. Viscoplastic-dynamic analyses of small-scale fracture tests to obtain crack arrest toughness values for PTS conditions

    International Nuclear Information System (INIS)

    Kanninen, M.F.; Hudak, S.J. Jr; Dexter, R.J.; Couque, H.; O'Donoghue, P.E.; Polch, E.Z.

    1988-01-01

    Reliable predictions of crack arrest at the high upper shelf toughness conditions involved in postulated pressurized thermal shock (PTS) events require procedures beyond those utilized in conventional fracture mechanics treatments. To develop such a procedure, viscoplastic-dynamic fracture mechanics finite element analyses, viscoplastic material characterization testing, and small-scale crack propagation and arrest experimentation are being combines in this research. The approach couples SwRI's viscoplastic-dynamic fracture mechanics finite element code VISCRK with experiments using duplex 4340/A533B steel compact specimens. The experiments are simulated by VISCRK computations employing the Bodner-Partom viscoplastic constitutive relation and the nonlinear fracture mechanics parameter T. The goal is to develop temperature-dependent crack arrest toughness values for A533B steel. While only room temperature K Ia values have been obtained so far, these have been found to agree closely with those obtained from wide plate tests. (author)

  8. Simulation of Thermo-viscoplastic Behaviors for AISI 4140 Steel

    Science.gov (United States)

    Li, Hong-Bin; Feng, Yun-Li

    2016-04-01

    The thermo-viscoplastic behaviors of AISI 4140 steel are investigated over wide ranges of strain rate and deformation temperature by isothermal compression tests. Based on the experimental results, a unified viscoplastic constitutive model is proposed to describe the hot compressive deformation behaviors of the studied steel. In order to reasonably evaluate the work hardening behaviors, a strain hardening material constant (h0) is expressed as a function of deformation temperature and strain rate in the proposed constitutive model. Also, the sensitivity of initial value of internal variable s to the deformation temperature is discussed. Furthermore, it is found that the initial value of internal variable s can be expressed as a linear function of deformation temperature. Comparisons between the measured and predicted results confirm that the proposed constitutive model can give an accurate and precise estimate of the inelastic stress-strain relationships for the studied high-strength steel.

  9. Viscoplastic augmentation of the smooth cap model

    International Nuclear Information System (INIS)

    Schwer, Leonard E.

    1994-01-01

    The most common numerical viscoplastic implementations are formulations attributed to Perzyna. Although Perzyna-type algorithms are popular, they have several disadvantages relating to the lack of enforcement of the consistency condition in plasticity. The present work adapts a relatively unknown viscoplastic formulation attributed to Duvaut and Lions and generalized to multi-surface plasticity by Simo et al. The attraction of the Duvaut-Lions formulation is its ease of numerical implementation in existing elastoplastic algorithms. The present work provides a motivation for the Duvaut-Lions viscoplastic formulation, derivation of the algorithm and comparison with the Perzyna algorithm. A simple uniaxial strain numerical simulation is used to compare the results of the Duvaut-Lions algorithm, as adapted to the ppercase[dyna3d] smooth cap model with results from a Perzyna algorithm adapted by Katona and Muleret to an implicit code. ((orig.))

  10. Axial Couette-Poiseuille flow of power-law viscoplastic fluids in concentric annuli

    Czech Academy of Sciences Publication Activity Database

    Filip, Petr; David, Jiří

    2003-01-01

    Roč. 40, 3/4 (2003), s. 111-119 ISSN 0920-4105 R&D Projects: GA AV ČR IAA2060004 Institutional research plan: CEZ:AV0Z2060917 Keywords : boreholes * channel geometry * viscoplastic materials Subject RIV: BK - Fluid Dynamics Impact factor: 0.570, year: 2003

  11. A theory of viscoplasticity accounting for internal damage

    Science.gov (United States)

    Freed, A. D.; Robinson, D. N.

    1988-01-01

    A constitutive theory for use in structural and durability analyses of high temperature isotropic alloys is presented. Constitutive equations based upon a potential function are determined from conditions of stability and physical considerations. The theory is self-consistent; terms are not added in an ad hoc manner. It extends a proven viscoplastic model by introducing the Kachanov-Rabotnov concept of net stress. Material degradation and inelastic deformation are unified; they evolve simultaneously and interactively. Both isotropic hardening and material degradation evolve with dissipated work which is the sum of inelastic work and internal work. Internal work is a continuum measure of the stored free energy resulting from inelastic deformation.

  12. Modeling the viscoplastic and damage behavior in deep argillaceous rocks

    International Nuclear Information System (INIS)

    Souley, M.; Armand, G.; Su, K.; Ghoreychi, M.

    2011-01-01

    In order to demonstrate the feasibility of a radioactive waste repository in the Callovo-Oxfordian clay-stone formation, the French national radioactive waste management agency (ANDRA) started in 2000 to build an underground research laboratory at Bure (East of France). One of the key issues is to understand long term behavior of the drifts. More than 400 m horizontal galleries at the main level of -490 m have been instrumented since April 2005. The continuous measurements of convergence of the galleries are available, allowing a better understanding of the time-dependent response of the clay-stone at natural scale. Results indicate that the viscoplastic strain rates observed in the undamaged area far from the gallery walls are of the same order of magnitude as those obtained on rock samples, whereas those recorded in the damaged or fractured zone near the gallery walls are one to two orders of magnitude higher, indicating the significant influence of damage or/and macro-fractures on the viscoplastic strains. Based on these observations, a macroscopic viscoplastic model which aims to improve the viscoplastic strain prediction in the EDZ is proposed and implemented in FLAC 3Dc . Both the instantaneous and the time-dependent behavior are considered in the model. The short term response is assumed to be elastoplastic with strain hardening/softening whereas the time-dependent behavior is based on the concepts of visco-plasticity (Lemaitre's model). Finally, the damage-induced viscoplastic strains changes is examined through the plastic deformation (assumed to approach the damage rate).In order to verify both constitutive equations and their implementations, several simulations are performed: (a) triaxial tests at different confining pressures; (b) single- and multi-stage creep tests; (c) relaxation tests with different total axial strain levels, etc. Finally, an example of a blind prediction of the excavation of a drift parallel to the horizontal minor stress,

  13. Analysis of stress wave propagation in an elasto-viscoplastic plate

    International Nuclear Information System (INIS)

    Nakagawa, Noritoshi; Kawai, Ryoji; Urushi, Norio.

    1986-01-01

    Stress waves which propagate in the body are reflected at the boundary, and due to the interaction of the reflected stress waves, the focussing of stress waves will take place and a high stress level can be caused. The focussing of stress waves due to the reflection from the boundary may bring about fracture of the body, so that this is an important problem from a viewpoint of dynamic strength of structures. In this paper the process of stress wave focussing and the strain-rate dependence of constitutive equation in elastic and plastic regions are investigated. In the case where an in-plane step load uniformly acts on the straight edge of the plate with a semi-circular boundary, the propagation of stress waves in the plate was numerically analyzed by the finite element method, applying viscoelastic, elasto-plastic and elasto-viscoplastic constitutive equations. As the result, the process of focussing of stress waves due to reflection from the semi-circular boundary was observed and the difference in propagation behaviour of stress waves was discussed in materials represented by some kinds of constitutive equations. (author)

  14. Viscoelastic-Viscoplastic Modelling of the Scratch Response of PMMA

    Directory of Open Access Journals (Sweden)

    G. Kermouche

    2013-01-01

    Full Text Available This paper aims at understanding how to model the time-dependent behavior of PMMA during a scratch loading at a constant speed and at middle strain levels. A brief experimental study is first presented, consisting of the analysis of microscratches carried out at various scratching velocities and normal loads. The loading conditions have been chosen in such a way that neither (viscoelasticity nor (viscoplasticity of the PMMA may be neglected a priori. The main analyzed parameter is the tip penetration depth measured during the steady state. Then, a finite element model is used to investigate the potential of classical elastic-viscoplastic constitutive models to reproduce these experimental results. It is mainly shown that these models lead to unsatisfying results. More specifically, it is pointed out here that the time-independent Young modulus used in such models is not suitable. To take into account this feature, a viscoelastic-viscoplastic model based on the connection in series of a viscoelastic part with a viscoplastic part is proposed. It is shown that it leads to more acceptable results, which points out the importance of viscoelasticity in the scratch behavior of solid polymers.

  15. Rolling induced size effects in elastic–viscoplastic sheet metals

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2015-01-01

    sheet rolling, where a non-homogeneous material deformation takes place between the rollers. Large strain gradients develop where the rollers first come in contact with the sheet, and a higher order plasticity model is employed to illustrate their influence at small scales. The study reveals...... presented revolves around the rolling induced effect of visco-plasticity (ranging hot and cold rolling) in combination with strain gradient hardening – including both dissipative and energetic contributions. To bring out first order effects on rolling at small scale, the modeling efforts are limited to flat...

  16. Augmented Lagrangian for shallow viscoplastic flow with topography

    Science.gov (United States)

    Ionescu, Ioan R.

    2013-06-01

    In this paper we have developed a robust numerical algorithm for the visco-plastic Saint-Venant model with topography. For the time discretization an implicit (backward) Euler scheme was used. To solve the resulting nonlinear equations, a four steps iterative algorithm was proposed. To handle the non-differentiability of the plastic terms an iterative decomposition-coordination formulation coupled with the augmented Lagrangian method was adopted. The proposed algorithm is consistent, i.e. if the convergence is achieved then the iterative solution satisfies the nonlinear system at each time iteration. The equations for the velocity field are discretized using the finite element method, while a discontinuous Galerkin method, with an upwind choice of the flux, is adopted for solving the hyperbolic equations that describe the evolution of the thickness. The algorithm permits to solve alternatively, at each iteration, the equations for the velocity field and for the thickness. The iterative decomposition coordination formulation coupled with the augmented Lagrangian method works very well and no instabilities are present. The proposed algorithm has a very good convergence rate, with the exception of large Reynolds numbers (Re≫1000), not involved in the applications concerned by the shallow viscoplastic model. The discontinuous Galerkin technique assure the mass conservation of the shallow system. The model has the exact C-property for a plane bottom and an asymptotic C-property for a general topography. Some boundary value problems were selected to analyze the robustness of the numerical algorithm and the predictive capabilities of the mechanical model. The comparison with an exact rigid flow solution illustrates the accuracy of the numerical scheme in handling the non-differentiability of the plastic terms. The influence of the mesh and of the time step are investigated for the flow of a Bingham fluid in a talweg. The role of the material cohesion in stopping a

  17. Documentation for the viscoplastic and creep program

    DEFF Research Database (Denmark)

    Bellini, Anna

    2004-01-01

    of this workpackage is to simulate creep behavior of aluminum cast samples subjected to high temperature. In this document a two-state variables unified model is applied in order to simulate creep behavior and time-dependent metallurgical changes. The fundamental assumption of the unified theory is that creep...... is run using the material data obtained through the mentioned experimental study. The results obtained for the simulation of tensile tests and of creep tests are compared with experimental curves, showing a good agreement. Moreover, the document describes the results obtained during the first...... is quite stable and convergence can be reached also with big time steps. Keywords: Viscoplasticity, creep, unified constitutive model, aluminum, high temperature....

  18. Modeling of the mechanical behaviour of welded structures: behaviour laws and rupture criteria

    International Nuclear Information System (INIS)

    Paris, T.; Delaplanche, D.; Saanouni, K.

    2006-01-01

    In the framework of the technological developments carried out in the CEA, the analysis of the mechanical behaviour of the heterogeneous welded bonds Ta/TA6V is a main preoccupation. Indeed, the welding of these two materials which cannot be distinguished by their mechanical and thermal properties induces strong microstructural heterogeneities in the melted zone. In order to characterize the behaviour of the welded joints and to develop a model of mechanical behaviour, a four points bending test on a notched specimen has been developed and implemented. This new test has allowed to obtain a macroscopic response of strength-displacement type but to analyze too more finely, with an optical extensometry and images correlation method, the influence of the heterogeneities on the local deformation of the welded joint. The confrontation of these results to a metallurgical study allows to validate the first conclusions deduced of the mechanical characterization tests and to conclude as for the local mechanisms governing the behaviour and the damage of the melted zone. The mechanical behaviour can be restored by an elasto-viscoplastic model with isotropic and non linear kinematic strain hardening coupled to this damage. The proposed model allows to identify the macroscopic behaviour of the weld bead. (O.M.)

  19. Efficient and accurate two-scale FE-FFT-based prediction of the effective material behavior of elasto-viscoplastic polycrystals

    Science.gov (United States)

    Kochmann, Julian; Wulfinghoff, Stephan; Ehle, Lisa; Mayer, Joachim; Svendsen, Bob; Reese, Stefanie

    2017-09-01

    Recently, two-scale FE-FFT-based methods (e.g., Spahn et al. in Comput Methods Appl Mech Eng 268:871-883, 2014; Kochmann et al. in Comput Methods Appl Mech Eng 305:89-110, 2016) have been proposed to predict the microscopic and overall mechanical behavior of heterogeneous materials. The purpose of this work is the extension to elasto-viscoplastic polycrystals, efficient and robust Fourier solvers and the prediction of micromechanical fields during macroscopic deformation processes. Assuming scale separation, the macroscopic problem is solved using the finite element method. The solution of the microscopic problem, which is embedded as a periodic unit cell (UC) in each macroscopic integration point, is found by employing fast Fourier transforms, fixed-point and Newton-Krylov methods. The overall material behavior is defined by the mean UC response. In order to ensure spatially converged micromechanical fields as well as feasible overall CPU times, an efficient but simple solution strategy for two-scale simulations is proposed. As an example, the constitutive behavior of 42CrMo4 steel is predicted during macroscopic three-point bending tests.

  20. Hydro-mechanical modelling of an excavation in an underground research laboratory with an elasto-viscoplastic behaviour law and regularization by second gradient of dilation

    International Nuclear Information System (INIS)

    Plassart, Roland; Giraud, Albert; Hoxha, Dashnor; Laigle, Francois

    2013-01-01

    In the context of nuclear waste disposals, this paper deals with hydro-mechanical modelling in saturated conditions in deep geological formation, using a specific elasto-viscoplastic model hereafter called the L and K model. While classical Biot's framework is followed for the hydro-mechanical coupling, the mechanical L and K model offers a coupling between instantaneous and delayed behaviour and a variation of dilation of ten related to softening. These volumetric strains are especially highlighted in coupled hydro-mechanical conditions. In order to avoid mesh dependency and numerical localized solutions, this type of modelling needs the use of a regularization method which is here referred to as the second gradient dilation model. After describing the numeric tools, we use them for simulating a gallery of the underground research laboratory of Bure. The approach is validated by the good general agreement found between numeric results and in situ measures for both hydraulic pressure and displacement. (authors)

  1. FE-simulation of the viscoplastic behaviour of different RPV steels in the frame of in-vessel melt retentions scenarios

    International Nuclear Information System (INIS)

    Altstadt, E.; Willschuetz, H.G.; Mueller, G.

    2004-01-01

    Assuming the hypothetical scenario of a severe accident with subsequent core meltdown and formation of a melt pool in the reactor pressure vessel (RPV) lower plenum of a Light Water Reactor (LWR) leads to the question about the behavior of the RPV. One accident management strategy could be to stabilize the in-vessel debris configuration in the RPV as one major barrier against uncontrolled release of heat and radio nuclides. To get an improved understanding and knowledge of the melt pool convection and the vessel creep and possible failure processes and modes occurring during the late phase of a core melt down accident the FOREVER-experiments (Failure Of REactor VEssel Retention) have been performed at the Division of Nuclear Power Safety of the Royal Institute of Technology Stockholm. These experiments are simulating the behavior of the lower head of the RPV under the thermal loads of a convecting melt pool with decay heating, and under the pressure loads that the vessel experiences in a depressurization scenario. The geometrical scale of the experiments is 1:10 compared to a common LWR. This paper deals with the experimental, numerical, and metallographical results of the creep failure experiment EC-FOREVER-4, where the American pressure vessel steel SA533B was applied for the lower head. For comparison the results of the experiment EC-FOREVER-3B, build of the French 16MND5 steel, are discussed, too. Emphasis is put on the differences in the viscoplastic behaviour of different heats of the RPV steel. For this purpose, the creep tests in the frame of the LHF/OLHF experiments are reviewed, too. As a hypothesis it is stated that the sulphur content could be responsible for differences in the creep behaviour. (orig.)

  2. Concentration of stresses and strains in a notched cyclinder of a viscoplastic material under harmonic loading

    Science.gov (United States)

    Zhuk, Ya A.; Senchenkov, I. K.

    1999-02-01

    Certain aspects of the correct definitions of stress and strain concentration factors for elastic-viscoplastic solids under cyclic loading are discussed. Problems concerning the harmonic kinematic excitation of cylindrical specimens with a lateral V-notch are examined. The behavior of the material of a cylinder is modeled using generalized flow theory. An approximate model based on the concept of complex moduli is used for comparison. Invariant characteristics such as stress and strain intensities and maximum principal stress and strain are chosen as constitutive quantities for concentration-factor definitions. The behavior of time-varying factors is investigated. Concentration factors calculated in terms of the amplitudes of the constitutive quantities are used as representative characteristics over the cycle of vibration. The dependences of the concentration factors on the loads are also studied. The accuracy of Nueber's and Birger's formulas is evaluated. The solution of the problem in the approximate formulation agrees with its solution in the exact formulation. The possibilities of the approximate model for estimating low-cycle fatigue are evaluated.

  3. Effect of hydrogen and hydrides on the viscoplastic behaviour of the recrystallized zircaloy-4; Effet de l'hydrogene et des hydrures sur le comportement viscoplastique du zircaloy-4 recristallise

    Energy Technology Data Exchange (ETDEWEB)

    Rupa, N

    2000-04-15

    Zircaloy-4 is the main material of PWR fuel assemblies. In service as during the storage, the integrity of these compounds has to be guaranteed in spite of the presence of hydrogen (in solution in the zirconium matrix) and of hydrides (which precipitate when the amount of hydrogen is higher than the solubility limit). The aim of this work is to characterize the hydrogen and hydrides effect on the viscoplastic behaviour of the non irradiated recrystallized zircaloy-4. The presence of hydrogen in solid solution induces a decrease of the mechanical properties: the creep kinetics are then increased and the tensile stresses decreased. This decrease is particularly visible in conditions of oxygen/dislocations dynamic interactions (revealed on the material without hydrogen). The advanced hypothesis, strengthened by the atomic simulation results, is that the hydrogen facilitates the dislocations movement, in diminishing the effects of anchoring by the interstitials, and/or in increasing the intrinsic mobility of dislocations. The hydrides effect induces a hardening of the material (decrease of the creep kinetics, increase of the tensile stresses and of the relaxed stresses) compensating the decrease by hydrogen. The hardening mechanism is due to an increase of the internal constraints, determined by load-unload tests. For the very weak plastic deformations, the hydrides are an obstacle to the dislocations gliding. They are then passed (that corresponds to a saturation of the internal constraint). The TEM observations as well as the results obtained on the titanium indicate that the precipitates are then submitted to a deformation mechanism. (O.M.)

  4. Modelling the mechanical behaviour of heterogeneous Ta/TA6V welded joints: behaviour and failure criteria

    International Nuclear Information System (INIS)

    Paris, Th.

    2008-12-01

    As laser welding of two different materials (heterogeneous welding) leads to a joint having a characteristic size close to the millimetre, i.e. much smaller than that of a structure, and as such a junction displays completely different mechanical properties because of the metallurgical transformations induced by intense thermal loading, the aim of this research thesis is to develop a behaviour model, flexible and robust enough, to represent all together the mechanical behaviours of the Ta, the TA6V and the melted zone. This model must be able to take plasticity and visco-plasticity into account, and also to provide a failure criterion through damage mechanics and its coupling with the behaviour. The author first reports the experimental characterization of the base materials (Ta and TA6V) by using tensile tests under different strain rates and different directions, relaxation tests and fatigue shear tests. He also characterizes the melted zone by describing the influence of a thermal treatment (induced by welding) on the formation of the melted zone, and by using different tests: four point bending on notched specimens, nano-indentation test, and longitudinal tensile test. In a second part, the author develops the model within the framework of continuum thermodynamics, and explores the numerical issues. The last part deals with the validation of the model for the concerned materials (Ta and TA6V) and melted zone

  5. Application of viscoplastic constitutive equations in finite element programs

    International Nuclear Information System (INIS)

    Hornberger, K.; Stamm, H.

    1987-04-01

    The general mathematical formulation of frequently used viscoplastic constitutive equations is explained and Robinson's model is discussed in more detail. The implementation of viscoplastic constitutive equations into Finite Element programs (such as ABAQUS) is described using Robinson's model as an example. For the numerical integration both an explicit (explicit Euler) and an implicit (generalized midpoint rule) integration scheme is utilized in combination with a time step control strategy. In the implicit integration scheme, convergence in solving a system of nonlinear algebraic equation is improved introducing a projection method. The efficiency of the implemented procedures is demonstrated for different homogeneous load cases as well as for creep loading and strain controlled cyclic loading of a perforated plate. (orig./HP) [de

  6. Elasto-viscoplastic finite element model for prestressed concrete structures

    International Nuclear Information System (INIS)

    Prates Junior, N.P.; Silva, C.S.B.; Campos Filho, A.; Gastal, F.P.S.L.

    1995-01-01

    This paper presents a computational model, based on the finite element method, for the study of reinforced and prestressed concrete structures under plane stress states. It comprehends short and long-term loading situations, where creep and shrinkage in concrete and steel relaxation are considered. Elasto-viscoplastic constitutive models are used to describe the behavior of the materials. The model includes prestressing and no prestressing reinforcement, on situation with pre- and post-tension with and without bond. A set of prestressed concrete slab elements were tested under instantaneous and long-term loading. The experimental data for deflections, deformations and ultimate strength are used to compare and validate the results obtained through the proposed model. (author). 11 refs., 5 figs

  7. Theoretical description of the influence of neutron irradiation on viscoplastic properties of mild steel

    International Nuclear Information System (INIS)

    Pecherski, R.

    1978-01-01

    The physical bases of plastic deformation of mild steel are described. The influence of neutron irradiation on the change of mechanisms of plastic deformation is discussed in detail. Constitutive equations of viscoplasticity for irradiated mild steel are given. The problem of thickwalled viscoplastic spherical tank irradiated by neutrons is studied. (Z.R.)

  8. Modelling of elasto-plastic material behaviour

    International Nuclear Information System (INIS)

    Halleux, J.P.

    1981-01-01

    The present report describes time-independent elasto-plastic material behaviour modelling techniques useful for implementation in fast structural dynamics computer programs. Elasto-plastic behaviour is characteristic for metallic materials such as steel and is thus of particular importance in the study of reactor safety-related problems. The classical time-independent elasto-plastic flow theory is recalled and the fundamental incremental stress-strain relationships are established for strain rate independent material behaviour. Some particular expressions useful in practice and including reversed loading are derived and suitable computational schemes are shwon. Modelling of strain rate effects is then taken into account, according to experimental data obtained from uniaxial tension tests. Finally qualitative strain rate history effects are considered. Applications are presented and illustrate both static and dynamic material behaviour

  9. MATHEMATICAL MODEL OF THE RHEOLOGICAL BEHAVIOR OF VISCOPLASTIC FLUID, WHICH DEMONSTRATES THE EFFECT OF “SOLIDIFICATION”

    Directory of Open Access Journals (Sweden)

    V. N. Kolodezhnov

    2014-01-01

    Full Text Available Summary. The irregular behavior of some kinds of suspensions on the basis of polymeric compositions and fine-dispersed fractions is characterized. As a simple, one-dimensional, shearing, viscometric flow such materials demonstrate the following mechanical behavior. There is no deformation if the shear stress does not exceed a certain critical value. If this critical value is exceeded, the flow is begins. This behavior is well-known and corresponds to the rheological models of viscoplastic fluid. However, further increase in the shear rate results in “solidification”. The rheological model of such viscoplastic fluids, mechanical behavior demonstrating the “solidification” effect is offered . This model contains four empirical parameters. The impact of the exponent on the dependence of the shearing stress and effective viscosity on the shear rate in the rheological model is graphically presented. The rheological model extrapolation on the three-dimensional flow is proposed.

  10. Cyclic viscoelasticity and viscoplasticity of polypropylene/clay nanocomposites

    DEFF Research Database (Denmark)

    Drozdov, Aleksey; Christiansen, Jesper de Claville; Hog Lejre, Anne-Lise

    2012-01-01

    Observations are reported in tensile relaxation tests under stretching and retraction on poly-propylene/clay nanocomposites with various contents of filler. A two-phase constitutive model is developed in cyclic viscoelasticity and viscoplasticity of hybrid nanocomposites. Adjustable parameters in...

  11. Multi-scale modelling of the physicochemical-mechanical coupling of fuel behaviour at high temperature in pressurized water reactors

    International Nuclear Information System (INIS)

    Julien, Jerome

    2008-01-01

    Within the frame of the problematic of pellet-sheath interaction in a nuclear fuel rod, a good description of the fuel thermo-mechanical behaviour is required. This research thesis reports the coupling of physics-chemistry (simulation of gas transfers between different cavities) and mechanics (assessment of fuel viscoplastic strains). A new micromechanical model is developed which uses a multi-scale approach to describe the evolution of the double population of cavities (cavities with two different scales) while taking internal pressures as well as the fuel macroscopic viscoplastic behaviour into account. The author finally describes how to couple this micromechanical mode to physics-chemistry models [fr

  12. Development of a viscoplastic dynamic fracture mechanics treatment for crack arrest predictions in a PTS event

    International Nuclear Information System (INIS)

    Kanninen, M.F.; Hudak, S.J. Jr.; Reed, K.W.; Dexter, R.J.; Polch, E.Z.; Cardinal, J.W.; Achenbach, J.D.; Popelar, C.H.

    1986-01-01

    The objective of this research is to develop a fundamentally correct methodology for the prediction of crack arrest at the high upper shelf conditions occurring in a postulated pressurized thermal shock (PTS) event. The effort is aimed at the development of a versatile finite-element method for the solution of time-dependent boundary value problems that admit inertia effects, a prescribed spatial temperature distribution, and viscoplastic constitutive and fracture behavior. Supporting this development are (1) material characterization and fracture experimentation, (2) detailed mathematical analyses of the near-tip region, (3) elastodynamic fracture analysis, and (4) elastic-plastic tearing instability analyses. As a first step, dynamic-viscoplastic analyses are currently being made of the wide plate tests being performed by the National Bureau of Standards in a companion HSST program. Some preliminary conclusions drawn from this work and from the supporting research activities are offered in this paper. The outstanding critical issues that subsequent research must focus on are also described

  13. Stress hot spots in viscoplastic deformation of polycrystals

    International Nuclear Information System (INIS)

    Rollett, A D; Li, J; Rohrer, G S; Lebensohn, R A; Groeber, M; Choi, Y

    2010-01-01

    The viscoplastic deformation of polycrystals under uniaxial loading is investigated to determine the relationship between hot spots in stress and their location in relation to the microstructure. A 3D full-field formulation based on fast Fourier transforms for the prediction of the viscoplastic deformation of poly-crystals is used with rate-sensitive crystal plasticity. Two measured polycrystalline structures are used to instantiate the simulations, as well as a fully periodic synthetic polycrystal adapted from a simulation of grain growth. Application of (Euclidean) distance maps shows that hot spots in stress tend to occur close to grain boundaries. It is also found that low stress regions lie close to boundaries. The radial distribution function of the hot spots indicates clustering. Despite the lack of texture in the polycrystals, the hot spots are strongly concentrated in (1 1 0) orientations, which can account for the observed clustering. All three microstructures yield similar results despite significant differences in topology

  14. A multiphysics-viscoplastic cap model for simulating blast response of cemented tailings backfill

    Directory of Open Access Journals (Sweden)

    Gongda Lu

    2017-06-01

    Full Text Available Although a large number of previous researches have significantly contributed to the understanding of the quasi-static mechanical behavior of cemented tailings backfill, an evolutive porous medium used in underground mine cavities, very few efforts have been made to improve the knowledge on its response under sudden dynamic loading during the curing process. In fact, there is a great need for such information given that cemented backfill structures are often subjected to blast loadings due to mine exploitations. In this study, a coupled thermo-hydro-mechanical-chemical (THMC-viscoplastic cap model is developed to describe the behavior of cementing mine backfill material under blast loading. A THMC model for cemented backfill is adopted to evaluate its behavior and evolution of its properties in curing processes with coupled thermal, hydraulic, mechanical and chemical factors. Then, the model is coupled to a Perzyna type of viscoplastic model with a modified smooth surface cap envelope and a variable bulk modulus, in order to reasonably capture the nonlinear and rate-dependent behaviors of the cemented tailings backfill under blast loading. All of the parameters required for the variable-modulus viscoplastic cap model were obtained by applying the THMC model to reproducing evolution of cemented paste backfill (CPB properties in the curing process. Thus, the behavior of hydrating cemented backfill under high-rate impacts can be evaluated under any curing time of concern. The validation results of the proposed model indicate a good agreement between the experimental and the simulated results. The authors believe that the proposed model will contribute to a better understanding of the performance of hydrating cemented backfill under blasting, and also to practical risk management of backfill structures associated with such a dynamic condition.

  15. Viscoplastic fracture transition of a biopolymer gel.

    Science.gov (United States)

    Frieberg, Bradley R; Garatsa, Ray-Shimry; Jones, Ronald L; Bachert, John O; Crawshaw, Benjamin; Liu, X Michael; Chan, Edwin P

    2018-06-13

    Physical gels are swollen polymer networks consisting of transient crosslink junctions associated with hydrogen or ionic bonds. Unlike covalently crosslinked gels, these physical crosslinks are reversible thus enabling these materials to display highly tunable and dynamic mechanical properties. In this work, we study the polymer composition effects on the fracture behavior of a gelatin gel, which is a thermoreversible biopolymer gel consisting of denatured collagen chains bridging physical network junctions formed from triple helices. Below the critical volume fraction for chain entanglement, which we confirm via neutron scattering measurements, we find that the fracture behavior is consistent with a viscoplastic type process characterized by hydrodynamic friction of individual polymer chains through the polymer mesh to show that the enhancement in fracture scales inversely with the squared of the mesh size of the gelatin gel network. Above this critical volume fraction, the fracture process can be described by the Lake-Thomas theory that considers fracture as a chain scission process due to chain entanglements.

  16. A unified model to describe the anisotropic viscoplastic behavior of Zircaloy-4 cladding tubes

    International Nuclear Information System (INIS)

    Delobelle, P.; Robinet, P.; Bouffioux, P.; Geyer, P.; Pichon, I. Le

    1996-01-01

    This paper presents the constitutive equations of a unified viscoplastic model and its validation with experimental data. The mechanical tests were carried out in a temperature range of 20 to 400 C on both cold-worked stress-relieved and fully annealed Zircaloy-4 tubes. Although their geometry (14.3 by 1.2 mm) is different, the crystallographic texture was close to that expected in the cladding tubes. To characterize the anisotropy, mechanical tests were performed under both monotonic and cyclic uni- and bi-directional loadings, i.e., tension-compression, tension-torsion, and tension-internal pressure tests. The results obtained at ambient temperatures and the independence of the ratio R p = var-epsilon θθ p /var-epsilon zz p , with respect to temperature would seem to indicate that the set of anisotropy coefficients does not depend on temperature. Zircaloy-4 material also has a slight supplementary hardening during out-of-phase cyclic loading. The authors propose to extend the formulation of a unified viscoplastic model, developed and identified elsewhere for other initially isotropic materials, to the case of Zircaloy-4. Generally speaking, anisotropy is introduced through fourth order tensors affecting the flow directions, the linear kinematical hardening components, as well as the dynamic and static recoveries of the forementioned hardening variables. The ability of the model to describe all the mechanical properties of the material is shown. The application of the model to simulate mechanical tests (tension, creep, and relaxation) performed on true CWSR Zircaloy-4 cladding tubes with low tin content is also presented

  17. Mechanical Behaviour of Materials Volume 1 Micro- and Macroscopic Constitutive Behaviour

    CERN Document Server

    François, Dominique; Zaoui, André

    2012-01-01

    Advances in technology are demanding ever-increasing mastery over the materials being used: the challenge is to gain a better understanding of their behaviour, and more particularly of the relations between their microstructure and their macroscopic properties.   This work, of which this is the first volume, aims to provide the means by which this challenge may be met. Starting from the mechanics of deformation, it develops the laws governing macroscopic behaviour – expressed as the constitutive equations – always taking account of the physical phenomena which underlie rheological behaviour. The most recent developments are presented, in particular those concerning heterogeneous materials such as metallic alloys, polymers and composites. Each chapter is devoted to one of the major classes of material behaviour.   As the subtitles indicate, Volume 1 deals with micro- and macroscopic constitutive behaviour and Volume 2 with damage and fracture mechanics. A third volume will be devoted to exercises and the...

  18. Materials behaviour in PWRs core

    International Nuclear Information System (INIS)

    Barbu, A.; Massoud, J.P.

    2008-01-01

    Like in any industrial facility, the materials of PWR reactors are submitted to mechanical, thermal or chemical stresses during particularly long durations of operation: 40 years, and even 60 years. Materials closer to the nuclear fuel are submitted to intense bombardment of particles (mainly neutrons) coming from the nuclear reactions inside the core. In such conditions, the damages can be numerous and various: irradiation aging, thermal aging, friction wear, generalized corrosion, stress corrosion etc.. The understanding of the materials behaviour inside the cores of reactors in operation is a major concern for the nuclear industry and its long term forecast is a necessity. This article describes the main ways of materials degradation without and under irradiation, with the means used to foresee their behaviour using physics-based models. Content: 1 - structures, components and materials: structure materials, nuclear materials; 2 - main ways of degradation without irradiation: thermal aging, stress corrosion, wear; 3 - main ways of degradation under irradiation: microscopic damaging - point defects, dimensional alterations, evolution of mechanical characteristics under irradiation, irradiation-assisted stress corrosion cracking (IASCC), synergies; 4 - forecast of materials evolution under irradiation using physics-based models: primary damage - fast dynamics, primary damage annealing - slow kinetics microstructural evolution, impact of microstructural changes on the macroscopic behaviour, insight on modeling methods; 5 - materials change characterization techniques: microscopic techniques - direct defects observation, nuclear techniques using a particle beam, global measurements, mechanical characterizations; 6 - perspectives. (J.S.)

  19. Constitutive modelling of creep in a long fiber random glass mat thermoplastic composite

    Science.gov (United States)

    Dasappa, Prasad

    The primary objective of this proposed research is to characterize and model the creep behaviour of Glass Mat Thermoplastic (GMT) composites under thermo-mechanical loads. In addition, tensile testing has been performed to study the variability in mechanical properties. The thermo-physical properties of the polypropylene matrix including crystallinity level, transitions and the variation of the stiffness with temperature have also been determined. In this work, the creep of a long fibre GMT composite has been investigated for a relatively wide range of stresses from 5 to 80 MPa and temperatures from 25 to 90°C. The higher limit for stress is approximately 90% of the nominal tensile strength of the material. A Design of Experiments (ANOVA) statistical method was applied to determine the effects of stress and temperature in the random mat material which is known for wild experimental scatter. Two sets of creep tests were conducted. First, preliminary short-term creep tests consisting of 30 minutes creep followed by recovery were carried out over a wide range of stresses and temperatures. These tests were carried out to determine the linear viscoelastic region of the material. From these tests, the material was found to be linear viscoelastic up-to 20 MPa at room temperature and considerable non-linearities were observed with both stress and temperature. Using Time-Temperature superposition (TTS) a long term master curve for creep compliance for up-to 185 years at room temperature has been obtained. Further, viscoplastic strains were developed in these tests indicating the need for a non-linear viscoelastic viscoplastic constitutive model. The second set of creep tests was performed to develop a general non-linear viscoelastic viscoplastic constitutive model. Long term creep-recovery tests consisting of 1 day creep followed by recovery has been conducted over the stress range between 20 and 70 MPa at four temperatures: 25°C, 40°C, 60°C and 80°C. Findley's model

  20. Preliminary Development of a Unified Viscoplastic Constitutive Model for Alloy 617 with Special Reference to Long Term Creep Behavior

    International Nuclear Information System (INIS)

    Sham, Sam; Walker, Kevin P.

    2008-01-01

    The expected service life of the Next Generation Nuclear Plant is 60 years. Structural analyses of the Intermediate Heat Exchanger (IHX) will require the development of unified viscoplastic constitutive models that address the material behavior of Alloy 617, a construction material of choice, over a wide range of strain rates. Many unified constitutive models employ a yield stress state variable which is used to account for cyclic hardening and softening of the material. For low stress values below the yield stress state variable these constitutive models predict that no inelastic deformation takes place which is contrary to experimental results. The ability to model creep deformation at low stresses for the IHX application is very important as the IHX operational stresses are restricted to very small values due to the low creep strengths at elevated temperatures and long design lifetime. This paper presents some preliminary work in modeling the unified viscoplastic constitutive behavior of Alloy 617 which accounts for the long term, low stress, creep behavior and the hysteretic behavior of the material at elevated temperatures. The preliminary model is presented in one-dimensional form for ease of understanding, but the intent of the present work is to produce a three-dimensional model suitable for inclusion in the user subroutines UMAT and USERPL of the ABAQUS and ANSYS nonlinear finite element codes. Further experiments and constitutive modeling efforts are planned to model the material behavior of Alloy 617 in more detail

  1. Micromechanical modelling of heterogeneous materials in transient conditions: contributions for the study of the ageing of structural components under service

    International Nuclear Information System (INIS)

    Masson, R.

    2010-01-01

    The modelling of the mechanical behaviour of structural materials is increasingly based on microstructural parameters. Within this framework, homogenisation methods have the advantage of providing deductive methods which, starting from the properties and space distribution of each constituent, deduce the effective properties of the heterogeneous material. Nevertheless, many applications make still difficult the use of homogenisation methods. It is in particular the case of structural materials presenting elastic-viscoplastic behaviours and subjected to both non-monotone and ageing loadings. To progress on the treatment by homogenisation of these useful situations constitutes precisely the main idea of the various contributions presented in this work.For linear elasticity, new expressions for the computation of the Eshelby tensor are first of all established in order to improve the efficiency of homogenisation methods usually used. Always for linear behaviours but now viscoelastic, various approximations associated with the use of the theorem of correspondence are studied and compared. The equivalence of one of these approximations (the so-called 'collocation method') with an internal variables formulation of the effective behaviour is shown. This internal variables formulation leads to exact results in some situations and strongly simplifies the treatment of ageing linear viscoelastic behaviours. In the case of elastic-viscoplastic behaviours, is added to the previous difficulty (viscoelastic coupling) that of the treatment of nonlinear behaviour. Comparisons made between various families of estimates make it possible to determine the effects of the various approximations needed to deal with these nonlinearities. An improvement is also proposed and implemented in a particular case while the extension of this internal variable formulation to nonlinear behaviours is discussed. Finally, full-field computations of microstructures are also tackled by considering the

  2. An anisotropic elasto-viscoplastic model for short-fiber reinforced polymers

    NARCIS (Netherlands)

    Amiri Rad, A.; Govaert, L.E.; van Dommelen, J.A.W.

    2017-01-01

    The influence of flow on the fiber orientation in injection molding of short-fiber composites leads to both anisotropy and inhomogeneity of the mechanical response. An anisotropic elasto-viscoplastic constitutive model is developed to capture the anisotropic and time-dependent behavior and

  3. An Anisotropic Elasto-Viscoplastic Model for Short-Fiber Reinforced Polymers

    NARCIS (Netherlands)

    Amiri Rad, A.; Govaert, L.E.; van Dommelen, J.A.W.

    2018-01-01

    The influence of flow on the fiber orientation in injection molding of short-fiber composites leads to both anisotropy and inhomogeneity of the mechanical response. An anisotropic elasto-viscoplastic constitutive model is developed to capture the anisotropic and time-dependent behavior and

  4. Modeling of the mechanical behaviour of welded structures: behaviour laws and rupture criteria; Modelisation du comportement mecanique de structures soudees: lois de comportement et criteres de rupture

    Energy Technology Data Exchange (ETDEWEB)

    Paris, T.; Delaplanche, D. [CEA Valduc, Laboratoire Calcul et Simulations, 21120 Is-sur-Tille (France); Saanouni, K. [LASMIS-CNRS-FRE 2719, Universite de Technologie de Troyes BP 2060 - 10010 Troyes - (France)

    2006-07-01

    In the framework of the technological developments carried out in the CEA, the analysis of the mechanical behaviour of the heterogeneous welded bonds Ta/TA6V is a main preoccupation. Indeed, the welding of these two materials which cannot be distinguished by their mechanical and thermal properties induces strong microstructural heterogeneities in the melted zone. In order to characterize the behaviour of the welded joints and to develop a model of mechanical behaviour, a four points bending test on a notched specimen has been developed and implemented. This new test has allowed to obtain a macroscopic response of strength-displacement type but to analyze too more finely, with an optical extensometry and images correlation method, the influence of the heterogeneities on the local deformation of the welded joint. The confrontation of these results to a metallurgical study allows to validate the first conclusions deduced of the mechanical characterization tests and to conclude as for the local mechanisms governing the behaviour and the damage of the melted zone. The mechanical behaviour can be restored by an elasto-viscoplastic model with isotropic and non linear kinematic strain hardening coupled to this damage. The proposed model allows to identify the macroscopic behaviour of the weld bead. (O.M.)

  5. Development of a shell finite element. Application to the thermo-viscoplastic behaviour of a PWR vessel during a severe accident; Developpement d`un element fini coque. Application au comportement thermo-viscoplastique d`une cuve de reacteur nucleaire (REP) en situation d`accident grave

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, V

    1998-10-07

    The aim of this study is to develop a model for the thermo-viscoplastic behaviour of he power water reactor lower head during a severe accident, so as to implement it in codes representing the whole accident progress (scenario codes). So it has to give a precise solution in a short cpu-time. The main loadings are the internal pressure and the strong longitudinal and transverse thermal gradients. To deal with this problem, the idea is to develop a new shell element with variable mechanical parameters with the temperature. This is possible in taking advantage of the properties of the bending center line, called neutral fiber. Besides, this new shell element has the particularity to be able to melt without modifying the initial dimensions of the structure. Then, we have developed a complete program to study the mechanical resistance of the vessel. The visco-plastic behaviour is considered as a loading (so it is placed in the second member of the system to be solved) and represented by a Norton law whose parameters depend on the temperature, the law is integrated explicitly which necessitates the introduction of criteria limiting the time step. The rupture criterion by creep is defined by a damage law whereas the rupture criterion by plasticity is based on the exceeding of the mean limit stress in the thickness. Then the model was validated by comparing the results with those of a Castem 2000 volume mesh (finite element code). Finally the model was coupled with the scenario codes ICARE2 and MAAP4 and tested on two typical severe accidents. The results are very satisfactory both on accuracy and cpu-time execution. (author) 113 refs.

  6. Materials for the nuclear - Modelling and simulation of structure materials

    International Nuclear Information System (INIS)

    Berthoud, Georges; Ducros, Gerard; Feron, Damien; Guerin, Yannick; Latge, Christian; Limoge, Yves; Santarini, Gerard; Seiler, Jean-Marie; Vernaz, Etienne; Cappelaere, Chantal; Andrieux, Catherine; Athenes, Manuel; Baldinozzi, Guido; Bechade, Jean-Luc; Bonin, Bernard; Boutard, Jean-Louis; Brechet, Yves; Bruneval, Fabien; Carassou, Sebastien; Castelier, Etienne; Chartier, Alain; Clouet, Emmanuel; Marinica, Mihai-Cosmin; Crocombette, Jean-Paul; Dupuy, Laurent; Forget, Pierre; Fu, Chu Chun; Garnier, Jerome; Gelebart, Lionel; Henry, Jean; Jourdan, Thomas; Luneville, Laurence; Marini, Bernard; Meslin, Estelle; Nastar, Maylise; Onimus, Fabien; Poussard, Christophe; Proville, Laurent; Ribis, Joel; Robertson, Christian; Rodney, David; Roma, Guido; Sauzay, Maxime; Simeone, David; Soisson, Frederic; Tanguy, Benoit; Toffolon-Masclet, Caroline; Trocellier, Patrick; Van Brutzel, Laurent; Ventelon, Usa; Vincent, Ludovic; Willaime, Francois; Yvon, Pascal; Behar, Christophe; Provitina, Olivier; Lecomte, Michael; Forestier, Alain; Bender, Alexandra; Parisot, Jean-Francois; Finot, Pierre

    2016-01-01

    This collective publication proposes presentations of scientific approaches implemented to model and simulate the behaviour of materials submitted to irradiation, of associated experimental methods, and of some recent important results. After an introduction presenting the various materials used in different types of nuclear reactors (PWR, etc.), the effects of irradiation at the macroscopic or at the atomic scale, and the multi-scale (time and space) approach to the modelling of these materials, a chapter proposes an overview of modelling tools: multi-scale approach, electronic calculations for condensed matter, inter-atomic potentials, molecular dynamics simulation, thermodynamic and medium force potentials, phase diagrams, simulation of primary damages in reactor materials, kinetic models, dislocation dynamics, production of microstructures for simulation, crystalline visco-plasticity, homogenization methods in continuum mechanics, local approach and probabilistic approach in material fracture. The next part presents tools for experimental validation: tools for microscopic characterization or for mechanical characterization, experimental reactors and tests in atomic pile, tools for irradiation by charged particles. The next chapters presents different examples of thermodynamic and kinetic modelling in the case of various alloys (zirconium alloys, iron-chromium alloys, silicon carbide, austenitic alloys), of plasticity and failure modelling

  7. Matrix viscoplasticity and its shielding by active mechanics in microtissue models: experiments and mathematical modeling

    Science.gov (United States)

    Liu, Alan S.; Wang, Hailong; Copeland, Craig R.; Chen, Christopher S.; Shenoy, Vivek B.; Reich, Daniel H.

    2016-01-01

    The biomechanical behavior of tissues under mechanical stimulation is critically important to physiological function. We report a combined experimental and modeling study of bioengineered 3D smooth muscle microtissues that reveals a previously unappreciated interaction between active cell mechanics and the viscoplastic properties of the extracellular matrix. The microtissues’ response to stretch/unstretch actuations, as probed by microcantilever force sensors, was dominated by cellular actomyosin dynamics. However, cell lysis revealed a viscoplastic response of the underlying model collagen/fibrin matrix. A model coupling Hill-type actomyosin dynamics with a plastic perfectly viscoplastic description of the matrix quantitatively accounts for the microtissue dynamics, including notably the cells’ shielding of the matrix plasticity. Stretch measurements of single cells confirmed the active cell dynamics, and were well described by a single-cell version of our model. These results reveal the need for new focus on matrix plasticity and its interactions with active cell mechanics in describing tissue dynamics. PMID:27671239

  8. Existence for viscoplastic contact with Coulomb friction problems

    Directory of Open Access Journals (Sweden)

    Amina Amassad

    2002-01-01

    frictional contact between an elastic-viscoplastic body and a rigid obstacle. We model the frictional contact both by a Tresca's friction law and a regularized Coulomb's law. We assume, in a first part, that the contact is bilateral and that no separation takes place. In a second part, we consider the Signorini unilateral contact conditions. Proofs are based on a time-discretization method, Banach and Schauder fixed point theorems.

  9. Micromechanical modeling of the elasto-viscoplastic bahavior of semi-crystalline polymers

    NARCIS (Netherlands)

    Dommelen, van J.A.W.; Parks, D.M.; Boyce, M.C.; Brekelmans, W.A.M.; Baaijens, F.P.T.

    2003-01-01

    A micromechanically-based constitutive model for the elasto-viscoplastic deformationand texture evolution of semi-crystalline polymers is developed. The modelidealizes the microstructure to consist of an aggregate of two-phase layered compositeinclusions. A new framework for the composite inclusion

  10. Material inertia and size effects in the Charpy V-notch test

    DEFF Research Database (Denmark)

    Desandre, D. A.; Benzerga, A. A.; Tvergaard, Viggo

    2004-01-01

    The effect of material inertia on the size dependence of the absorbed energy in the Charpy V-notch test is investigated. The material response is characterized by an elastic-viscoplastic constitutive relation for a porous plastic solid, with adiabatic heating due to plastic dissipation and the re......The effect of material inertia on the size dependence of the absorbed energy in the Charpy V-notch test is investigated. The material response is characterized by an elastic-viscoplastic constitutive relation for a porous plastic solid, with adiabatic heating due to plastic dissipation...

  11. Dynamics of viscoplastic deformation in amorphous solids

    International Nuclear Information System (INIS)

    Falk, M.L.; Langer, J.S.

    1998-01-01

    We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically, reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a stress threshold above which unbounded plastic flow occurs, and a strong dependence of the state of the system on the history of past deformations. Microscopic observations suggest that a dynamically complete description of the macroscopic state of this deforming body requires specifying, in addition to stress and strain, certain average features of a population of two-state shear transformation zones. Our introduction of these state variables into the constitutive equations for this system is an extension of earlier models of creep in metallic glasses. In the treatment presented here, we specialize to temperatures far below the glass transition and postulate that irreversible motions are governed by local entropic fluctuations in the volumes of the transformation zones. In most respects, our theory is in good quantitative agreement with the rich variety of phenomena seen in the simulations. copyright 1998 The American Physical Society

  12. Thermal convection of a viscoplastic liquid with high Rayleigh and Bingham numbers

    Science.gov (United States)

    Vikhansky, A.

    2009-10-01

    We consider the effect of yield stress on the Rayleigh-Bénard convection of a viscoplastic material. First we consider the model problem of convection in a differentially heated loop, which is described by the (modified) Lorenz equations. The presence of the yield stress significantly alters the dynamics of the system. In particular, the chaotic motion can stop suddenly (sometimes, after a period of chaotic oscillations). Guided by the model equations we performed direct numerical simulations of convection of the Bingham liquid in a square cavity heated from bellow. Our interest has been concentrated on the situation when both buoyancy and plastic forces are large. The obtained results are in a reasonable agreement with the predictions by the Lorenz equations.

  13. On the Link Between Kolmogorov Microscales and Friction in Wall-Bounded Flow of Viscoplastic Fluids

    Science.gov (United States)

    Ramos, Fabio; Anbarlooei, Hamid; Cruz, Daniel; Silva Freire, Atila; Santos, Cecilia M.

    2017-11-01

    Most discussions in literature on the friction coefficient of turbulent flows of fluids with complex rheology are empirical. As a rule, theoretical frameworks are not available even for some relatively simple constitutive models. In this work, we present a new family of formulas for the evaluation of the friction coefficient of turbulent flows of a large family of viscoplastic fluids. The developments combine an unified analysis for the description of the Kolmogorov's micro-scales and the phenomenological turbulence model of Gioia and Chakraborty. The resulting Blasius-type friction equation has only Blasius' constant as a parameter, and tests against experimental data show excellent agreement over a significant range of Hedstrom and Reynolds numbers. The limits of the proposed model are also discussed. We also comment on the role of the new formula as a possible benchmark test for the convergence of DNS simulations of viscoplastic flows. The friction formula also provides limits for the Maximum Drag Reduction (MDR) for viscoplastic flows, which resembles MDR asymptote for viscoelastic flows.

  14. Homogenisation of heterogeneous viscoplastic materials.

    NARCIS (Netherlands)

    Sluis, van der O.; Schreurs, P.J.G.; Meijer, H.E.H.; Anderson, P.D.; Kruijt, P.G.M.

    1999-01-01

    Heterogeneous materials have been used extensively in the past few decades, since their mechanical properties, such as strength, stiffness and toughness are being improved continuously. Experimental work has clearly demonstrated the significant influence of the micromechanical phenomena on the

  15. Elastic and viscoplastic properties

    International Nuclear Information System (INIS)

    Lebensohn, R.A.

    2015-01-01

    In this chapter, we review crystal elasticity and plasticity-based self-consistent theories and apply them to the determination of the effective response of polycrystalline aggregates. These mean-field formulations, which enable the prediction of the mechanical behaviour of polycrystalline aggregates based on the heterogeneous and/or directional properties of their constituent single crystal grains and phases, are ideal tools to establish relationships between microstructure and properties of these materials, ubiquitous among fuels and structural materials for nuclear systems. (author)

  16. Application of viscoelastic, viscoplastic, and rate-and-state friction constitutive laws to the deformation of unconsolidated sands

    Science.gov (United States)

    Hagin, Paul N.

    Laboratory experiments on dry, unconsolidated sands from the Wilmington field, CA, reveal significant viscous creep strain under a variety of loading conditions. In hydrostatic compression tests between 10 and 50 MPa of pressure, the creep strain exceeds the magnitude of the instantaneous strain and follows a power law function of time. Interestingly, the viscous effects only appear when loading a sample beyond its preconsolidation pressure. Cyclic loading tests (at quasi-static frequencies of 10-6 to 10 -2 Hz) show that the bulk modulus increases by a factor of two with increasing frequency while attenuation remains constant. I attempt to fit these observations using three classes of models: linear viscoelastic, viscoplastic, and rate-and-state friction models. For the linear viscoelastic modeling, I investigated two types of models; spring-dashpot (exponential) and power law models. I find that a combined power law-Maxwell solid creep model adequately fits all of the data. Extrapolating the power law-Maxwell creep model out to 30 years (to simulate the lifetime of a reservoir) predicts that the static bulk modulus is 25% of the dynamic modulus, in good agreement with field observations. Laboratory studies also reveal that a large portion of the deformation is permanent, suggesting that an elastic-plastic model is appropriate. However, because the viscous component of deformation is significant, an elastic-viscoplastic model is necessary. An appropriate model for unconsolidated sands is developed by incorporating Perzyna (power law) viscoplasticity theory into the modified Cambridge clay cap model. Hydrostatic compression tests conducted as a function of volumetric strain rate produced values for the required model parameters. As a result, by using an end cap model combined with power law viscoplasticity theory, changes in porosity in both the elastic and viscoplastic regimes can be predicted as a function of both stress path and strain rate. To test whether rate

  17. Rayleigh-Taylor instability in a visco-plastic fluid

    International Nuclear Information System (INIS)

    Demianov, A Yu; Doludenko, A N; Son, E E; Inogamov, N A

    2010-01-01

    The Rayleigh-Taylor and Richtmyer-Meshkov instabilities of a visco-plastic fluid are discussed. The Bingham model is used as an effective rheological model which takes into account plastic effects. For the purposes of numerical simulation a one-mode disturbance of the contact surface between two fluids is considered. The main goal of this work is to construct numerical 2D and 3D models and to obtain the relationship between yield stress and the development of instability.

  18. Rayleigh-Taylor instability in a visco-plastic fluid

    Science.gov (United States)

    Demianov, A. Yu; Doludenko, A. N.; Inogamov, N. A.; Son, E. E.

    2010-12-01

    The Rayleigh-Taylor and Richtmyer-Meshkov instabilities of a visco-plastic fluid are discussed. The Bingham model is used as an effective rheological model which takes into account plastic effects. For the purposes of numerical simulation a one-mode disturbance of the contact surface between two fluids is considered. The main goal of this work is to construct numerical 2D and 3D models and to obtain the relationship between yield stress and the development of instability.

  19. Modelling the mechanical behaviour of heterogeneous Ta/TA6V welded joints: behaviour and failure criteria; Modelisation du comportement mecanique des liaisons soudees heterogenes Ta/TA6V: comportement et critere de rupture

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Th

    2008-12-15

    As laser welding of two different materials (heterogeneous welding) leads to a joint having a characteristic size close to the millimetre, i.e. much smaller than that of a structure, and as such a junction displays completely different mechanical properties because of the metallurgical transformations induced by intense thermal loading, the aim of this research thesis is to develop a behaviour model, flexible and robust enough, to represent all together the mechanical behaviours of the Ta, the TA6V and the melted zone. This model must be able to take plasticity and visco-plasticity into account, and also to provide a failure criterion through damage mechanics and its coupling with the behaviour. The author first reports the experimental characterization of the base materials (Ta and TA6V) by using tensile tests under different strain rates and different directions, relaxation tests and fatigue shear tests. He also characterizes the melted zone by describing the influence of a thermal treatment (induced by welding) on the formation of the melted zone, and by using different tests: four point bending on notched specimens, nano-indentation test, and longitudinal tensile test. In a second part, the author develops the model within the framework of continuum thermodynamics, and explores the numerical issues. The last part deals with the validation of the model for the concerned materials (Ta and TA6V) and melted zone.

  20. Predicting intragranular misorientation distributions in polycrystalline metals using the viscoplastic self-consistent formulation

    DEFF Research Database (Denmark)

    Zecevic, Miroslav; Pantleon, Wolfgang; Lebensohn, Ricardo A.

    2017-01-01

    In a recent paper, we reported the methodology to calculate intragranular fluctuations in the instantaneous lattice rotation rates in polycrystalline materials within the mean-field viscoplastic self-consistent (VPSC) model. This paper is concerned with the time integration and subsequent use......, we calculate intragranular misorientations in face-centered cubic polycrystals deformed in tension and plane-strain compression. These predictions are tested by comparison with corresponding experiments for polycrystalline copper and aluminum, respectively, and with full-field calculations....... It is observed that at sufficiently high strains some grains develop large misorientations that may lead to grain fragmentation and/or act as driving forces for recrystallization. The proposed VPSC-based prediction of intragranular misorientations enables modeling of grain fragmentation, as well as a more...

  1. Inline motion and hydrodynamic interaction of 2D particles in a viscoplastic fluid

    Science.gov (United States)

    Chaparian, Emad; Wachs, Anthony; Frigaard, Ian A.

    2018-03-01

    In Stokes flow of a particle settling within a bath of viscoplastic fluid, a critical resistive force must be overcome in order for the particle to move. This leads to a critical ratio of the buoyancy stress to the yield stress: the critical yield number. This translates geometrically to an envelope around the particle in the limit of zero flow that contains both the particle and encapsulated unyielded fluid. Such unyielded envelopes and critical yield numbers are becoming well understood in our previous studies for single (2D) particles as well as the means of calculating. Here we address the case of having multiple particles, which introduces interesting new phenomena. First, plug regions can appear between the particles and connect them together, depending on the proximity and yield number. This can change the yielding behaviour since the combination forms a larger (and heavier) "particle." Moreover, small particles (that cannot move alone) can be pulled/pushed by larger particles or assembly of particles. Increasing the number of particles leads to interesting chain dynamics, including breaking and reforming.

  2. The Propagation of the Gravity Current of Viscoplastic Fluid

    Science.gov (United States)

    Liu, Ye

    2014-11-01

    We are studying the spreading of the viscoplastic fluid of Bingham type over a horizontal plane, using both mathematical derivation and numerical experiments. We are interested in its final shape and whether theory and numerics correspond well. There are two theories for comparison: lubrication theory from asymptotics, and slipline theory from plasticity. The numerical method we are using is based on the volume-of-fluid method, with both regularization and Augmented Lagrangian for the constitutive law of Bingham type fluid. UBC IRSN.

  3. About the identification of behaviour law parameters of clayey rocks

    International Nuclear Information System (INIS)

    Lecampion, B.

    2002-09-01

    This work aims at developing identification methods for clayey rock parameters. These methods are necessary for the interpretation of the numerous data obtained at the ANDRA's Meuse/Haute-Marne underground laboratory. Two main rheological aspects have been considered: the poro-elastic behaviour and the elasto-visco-plastic behaviour. The first part of the study focusses on the poro-elastic parameters. Chapter 2 recalls the direct problem and discusses some important points of the identification inverse problem. Chapter 3 deals with the formulation of gradient calculation techniques for the linear poro-elastic case. The resolution using the finite-element method is discussed. The direct and associated state differentiation methods are validated for a 2D numerical example using the finite-element code Cast3M. The identification of poro-elastic coefficients of the Meuse/Haute-Marne argillaceous rocks is discussed in detail in chapter 4. The use of approximate semi-explicit solutions of the direct problems allows to obtain a fast identification method. The second part deals with the identification of elasto-visco-plastic parameters. The visco-plastic behaviour of Meuse/Haute-Marne rocks is discussed in chapter 5 and a visco-plastic model with nonlinear isotropic cold-drawing is proposed which allows to reproduce the tests. The parameters of this behaviour law are identified on a 1D creep test in drained conditions. Thus, the delayed deformations come from the poro-elastic and visco-plastic behaviour of the rock. It is shown that both phenomena can be separated. All poro-elasto-visco-plastic parameters are identified and a semi-explicit solution of the creep test is used. Chapter 6 presents an identification method of the elasto-visco-plastic parameters for the general case. The identification is equivalent to the minimization of a cost functional. The gradient of the functional is calculated by direct differentiation. The direct differentiation method is developed in

  4. Viscoplastic discontinuum model of time-dependent fracture and seismicity effects in brittle rock

    CSIR Research Space (South Africa)

    Napier, JAL

    1997-10-01

    Full Text Available A model is proposed for the direct mechanistic simulation of seismic activity and stress transfer effects in deep level mines. The model uses a discontinuum viscoplastic formulation to relate the rate of slip on a crack to the shear stress acting...

  5. A viscoplastic shear-zone model for deep (15-50 km) slow-slip events at plate convergent margins

    Science.gov (United States)

    Yin, An; Xie, Zhoumin; Meng, Lingsen

    2018-06-01

    A key issue in understanding the physics of deep (15-50 km) slow-slip events (D-SSE) at plate convergent margins is how their initially unstable motion becomes stabilized. Here we address this issue by quantifying a rate-strengthening mechanism using a viscoplastic shear-zone model inspired by recent advances in field observations and laboratory experiments. The well-established segmentation of slip modes in the downdip direction of a subduction shear zone allows discretization of an interseismic forearc system into the (1) frontal segment bounded by an interseismically locked megathrust, (2) middle segment bounded by episodically locked and unlocked viscoplastic shear zone, and (3) interior segment that slips freely. The three segments are assumed to be linked laterally by two springs that tighten with time, and the increasing elastic stress due to spring tightening eventually leads to plastic failure and initial viscous shear. This simplification leads to seven key model parameters that dictate a wide range of mechanical behaviors of an idealized convergent margin. Specifically, the viscoplastic rheology requires the initially unstable sliding to be terminated nearly instantaneously at a characteristic velocity, which is followed by stable sliding (i.e., slow-slip). The characteristic velocity, which is on the order of <10-7 m/s for the convergent margins examined in this study, depends on the (1) effective coefficient of friction, (2) thickness, (3) depth, and (4) viscosity of the viscoplastic shear zone. As viscosity decreases exponentially with temperature, our model predicts faster slow-slip rates, shorter slow-slip durations, more frequent slow-slip occurrences, and larger slow-slip magnitudes at warmer convergent margins.

  6. Microstructure-sensitive Crystal Viscoplasticity for Ni-base Superalloys Targeting Long-term Creep-Fatigue Interaction Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Neu, Richard W.

    2017-09-30

    The aim of this project is to develop a microstructure-sensitive crystal viscoplasticity (CVP) model for single-crystal Ni-base superalloys to model the behavior of the material and components in the hot gas path sections of industrial gas turbines (IGT). Microstructure degradation associated with aging critical to predicting long-term creep-fatigue interactions will be embedded into the model through the γ' precipitate morphology evolution by coupling the coarsening drivers and kinetics into the constitutive equations of the CVP model. Model parameters will be determined using new experimental protocols that involve systematically artificially aging the alloy under different stress conditions to determine the relationship between the size and morphology g' precipitates on the creep and thermomechanical fatigue response.

  7. Identification of a thermo-elasto-viscoplastic behavior law for the simulation of thermoforming of high impact polystyrene

    Science.gov (United States)

    Atmani, O.; Abbès, B.; Abbès, F.; Li, Y. M.; Batkam, S.

    2018-05-01

    Thermoforming of high impact polystyrene sheets (HIPS) requires technical knowledge on material behavior, mold type, mold material, and process variables. Accurate thermoforming simulations are needed in the optimization process. Determining the behavior of the material under thermoforming conditions is one of the key parameters for an accurate simulation. The aim of this work is to identify the thermomechanical behavior of HIPS in the thermoforming conditions. HIPS behavior is highly dependent on temperature and strain rate. In order to reproduce the behavior of such material, a thermo-elasto-viscoplastic constitutive law was implement in the finite element code ABAQUS. The proposed model parameters are considered as thermo-dependent. The strain-dependence effect is introduced using Prony series. Tensile tests were carried out at different temperatures and strain rates. The material parameters were then identified using a NSGA-II algorithm. To validate the rheological model, experimental blowing tests were carried out on a thermoforming pilot machine. To compare the numerical results with the experimental ones the thickness distribution and the bubble shape were investigated.

  8. Gas turbine blades and disks. Materials and component behaviour

    International Nuclear Information System (INIS)

    1990-01-01

    This progress report summarizes the research results obtained by the special research programme 339 in the years 1988 and 1989. Emphasis is given to the following aspects and problems: Optimisation of structure, protective coatings, connection between structure parameters and mechanical materials behaviour, tribologic materials and component behaviour, impacts of overall loads, and of stress and deformation state in the inelastic regime under mechanical and thermal load, and impacts of the manufacturing process on component behaviour, quality assurance. Eleven of the fifteen papers of the report have been separately analysed for the ENERGY database, and thirteen for the DELURA database. (orig./MM) With 191 figs., 13 tabs [de

  9. On the hydro-mechanical behaviour of MX80 bentonite-based materials

    Directory of Open Access Journals (Sweden)

    Yu-Jun Cui

    2017-06-01

    Full Text Available Bentonite-based materials have been considered in many countries as engineered barrier/backfilling materials in deep geological disposal of high-level radioactive waste. During the long period of waste storage, these materials will play an essential role in ensuring the integrity of the storage system that consists of the waste canisters, the engineered barrier/backfill, the retaining structures as well as the geological barrier. Thus, it is essential to well understand the hydro-mechanical behaviours of these bentonite-based materials. This review paper presents the recent advances of knowledge on MX80 bentonite-based materials, in terms of water retention properties, hydraulic behaviour and mechanical behaviour. Emphasis is put on the effect of technological voids and the role of the dry density of bentonite. The swelling anisotropy is also discussed based on the results from swelling tests with measurements of both axial and radial swelling pressures on a sand-bentonite mixture compacted at different densities. Microstructure observation was used to help the interpretation of macroscopic hydro-mechanical behaviour. Also, the evolution of soil microstructure thus the soil density over time is discussed based on the results from mock-up tests. This evolution is essential for understanding the long-term hydro-mechanical behaviour of the engineered barrier/backfill.

  10. EDSPA, 1-D Mechanical Displacement for Elastic, Thermoelastic, Viscoelastic Behaviour

    International Nuclear Information System (INIS)

    Schlich, M.; Elsen, R.

    1995-01-01

    1 - Description of program or function: EDSPA solves the one dimensional mechanical displacement equation in radial (sphere) axisymmetric cylindrical (infinite cylinder, slab) coordinates. The constitutive laws for the material to be considered can comprise the - elastic and/or - thermoelastic and/or - viscoplastic behaviour. The boundary conditions allow to prescribe displacement and/or stress values. The delivered version of EDSPA is especially suitable for the calculation of borehole problems in rock salt (heater boreholes or free converging boreholes or caverns) where convergence rates and/or contact pressures are of interest. 2 - Method of solution: The coarse-mesh method is used to transform the displacement differential equation (quasi-stationary case: second order ordinary differential equation as a two point boundary value problem) into a system of algebraic equations. This three-diagonal system is solved with the Thomas algorithm (direct solver). 3 - Restrictions on the complexity of the problem: Because of EDSPA's simple one-dimensional formulation there are no restrictions for storage allocation and argument ranges

  11. Slip of Spreading Viscoplastic Droplets.

    Science.gov (United States)

    Jalaal, Maziyar; Balmforth, Neil J; Stoeber, Boris

    2015-11-10

    The spreading of axisymmetric viscoplastic droplets extruded slowly on glass surfaces is studied experimentally using shadowgraphy and swept-field confocal microscopy. The microscopy furnishes vertical profiles of the radial velocity using particle image velocimetry (PIV) with neutrally buoyant tracers seeded in the fluid. Experiments were conducted for two complex fluids: aqueous solutions of Carbopol and xanthan gum. On untreated glass surfaces, PIV demonstrates that both fluids experience a significant amount of effective slip. The experiments were repeated on glass that had been treated to feature positive surface charges, thereby promoting adhesion between the negatively charged polymeric constituents of the fluids and the glass surface. The Carbopol and xanthan gum droplets spread more slowly on the treated surface and to a smaller radial distance. PIV demonstrated that this reduced spreading was associated with a substantial reduction in slip. For Carbopol, the effective slip could be eliminated entirely to within the precision of the PIV measurements; the reduction in slip was less effective for xanthan gum, with a weak slip velocity remaining noticeable.

  12. A dynamic contact problem between elasto-viscoplastic piezoelectric bodies

    Directory of Open Access Journals (Sweden)

    Tedjani Hadj ammar

    2014-10-01

    Full Text Available We consider a dynamic contact problem with adhesion between two elastic-viscoplastic piezoelectric bodies. The contact is frictionless and is described with the normal compliance condition. We derive variational formulation for the model which is in the form of a system involving the displacement field, the electric potential field and the adhesion field. We prove the existence of a unique weak solution to the problem. The proof is based on arguments of nonlinear evolution equations with monotone operators, a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed point arguments.

  13. Implicit implementation and consistent tangent modulus of a viscoplastic model for polymers

    OpenAIRE

    ACHOUR, Nadia; CHATZIGEORGIOU, George; MERAGHNI, Fodil; CHEMISKY, Yves; FITOUSSI, Joseph

    2015-01-01

    In this work, the phenomenological viscoplastic DSGZ model (Duan et al., 2001 [13]), developed for glassy or semi-crystalline polymers, is numerically implemented in a three-dimensional framework, following an implicit formulation. The computational methodology is based on the radial return mapping algorithm. This implicit formulation leads to the definition of the consistent tangent modulus which permits the implementation in incremental micromechanical scale transition analysis. The extende...

  14. On the elasto-viscoplastic behavior of the Ti5553 alloy

    OpenAIRE

    Ben Bettaieb , Mohamed; VAN HOOF , Thibaut; Pardoen , Thomas; Dufour , Philippe; LENAIN , Astrid; JACQUES , Pascal J.; Habraken , Anne-Marie

    2014-01-01

    International audience; The elastoviscoplastic behavior of the Ti5553 alloy is characterized and compared to the classical Ti–6Al–4V alloy. The true stress–strain curves are determined based on tensile tests performed under different strain rates at room temperature and at 1501C, from which the elastic constants and the parameters of a Norton–Hoff viscoplastic model are identified. The strength of the Ti5553 alloy is 20–40% higher than the strength of the Ti–6Al–4V alloy. The Ti5553 alloy con...

  15. Implicit implementation and consistent tangent modulus of a viscoplastic model for polymers

    OpenAIRE

    ACHOUR-RENAULT, Nadia; CHATZIGEORGIOU, George; MERAGHNI, Fodil; CHEMISKY, Yves; FITOUSSI, Joseph

    2015-01-01

    In this work, the phenomenological viscoplastic DSGZ model[Duan, Y., Saigal, A., Greif, R., Zimmerman, M. A., 2001. A Uniform Phenomenological Constitutive Model for Glassy and Semicrystalline Polymers. Polymer Engineering and Science 41 (8), 1322-1328], developed for glassy or semi-crystalline polymers, is numerically implemented in a three dimensional framework, following an implicit formulation. The computational methodology is based on the radial return mapping algorithm. This implicit fo...

  16. Viscoplastic Constitutive Theory Demonstrated for Monolithic Ceramic Materials

    Science.gov (United States)

    Janosik, Lesley A.

    1999-01-01

    Development of accurate three-dimensional (multiaxial) inelastic stress-strain models is critical in utilizing advanced ceramics for challenging 21st century high-temperature structural applications. The current state of the art uses elastic stress fields as a basis for both subcritical crack growth and creep life prediction efforts aimed at predicting the time dependent reliability response of ceramic components subjected to elevated service temperatures. However, to successfully design components that will meet tomorrow's challenging requirements, design engineers must recognize that elastic predictions are inaccurate for these materials when subjected to high-temperature service conditions such as those encountered in advanced heat engine components. Analytical life prediction methodologies developed for advanced ceramics and other brittle materials must employ accurate constitutive models that capture the inelastic response exhibited by these materials at elevated service temperatures. A constitutive model recently developed at the NASA Lewis Research Center helps address this issue by accounting for the time-dependent (inelastic) material deformation phenomena (e.g., creep, rate sensitivity, and stress relaxation) exhibited by monolithic ceramics exposed to high-temperature service conditions. In addition, the proposed formulation is based on a threshold function that is sensitive to hydrostatic stress and allows different behavior in tension and compression, reflecting experimental observations obtained for these material systems.

  17. Multi-scale modeling of the thermo-hydro- mechanical behaviour of heterogeneous materials. Application to cement-based materials under severe loads

    International Nuclear Information System (INIS)

    Grondin, Frederic Alain

    2005-01-01

    The work of modeling presented here relates to the study of the thermo-hydro- mechanical behaviour of porous materials based on hydraulic binder such as concrete, High Performance Concrete or more generally cement-based materials. This work is based on the exploitation of the Digital Concrete model, of the finite element code Symphonie developed in the Scientific and Technical Centre for Building (CSTB), in coupling with the homogenization methods to obtain macroscopic behaviour laws drawn from the Micro-Macro relations. Scales of investigation, macroscopic and microscopic, has been exploited by simulation in order to allow the comprehension fine of the behaviour of cement-based materials according to thermal, hydrous and mechanical loads. It appears necessary to take into account various scales of modeling. In order to study the behaviour of the structure, we are brought to reduce the scale of investigation to study the material more particularly. The research tasks presented suggest a new approach for the identification of the multi-physic behaviour of materials by simulation. In complement of the purely experimental approach, based on observations on the sample with measurements of the apparent parameters on the macroscopic scale, this new approach allows to obtain the fine analysis of elementary mechanisms in acting within the material. These elementary mechanisms are at the origin of the evolution of the macroscopic parameters measured in experimental tests. In this work, coefficients of the thermo-hydro-mechanical behaviour law of porous materials and the equivalent hydraulic conductivity were obtained by a multi-scales approach. Applications has been carried out on the study of the damaged behaviour of cement-based materials, in the objective to determine the elasticity tensor and the permeability tensor of a High Performance Concrete at high temperatures under a mechanical load. Also, the study of the strain evolution of cement-based materials at low

  18. Dynamic contact problem with adhesion and damage between thermo-electro-elasto-viscoplastic bodies

    Science.gov (United States)

    Hadj ammar, Tedjani; Saïdi, Abdelkader; Azeb Ahmed, Abdelaziz

    2017-05-01

    We study of a dynamic contact problem between two thermo-electro-elasto-viscoplastic bodies with damage and adhesion. The contact is frictionless and is modeled with normal compliance condition. We derive variational formulation for the model and prove an existence and uniqueness result of the weak solution. The proof is based on arguments of evolutionary variational inequalities, parabolic inequalities, differential equations, and fixed point theorem.

  19. Material pre-conditioning effects on the creep behaviour of 316H stainless steel

    International Nuclear Information System (INIS)

    Mehmanparast, A.; Davies, C.M.; Dean, D.W.; Nikbin, K.

    2013-01-01

    Material pre-conditioning by, for example, pre-strain through component bending and welding is known to alter the creep deformation and creep crack growth (CCG) behaviour of 316H stainless steel. Experimental test data on the creep deformation and crack growth behaviour of 316H weldment compact tension specimens at 550 °C, where the starter defect was introduced into the heat affected zone (HAZ), have been compared to those of obtained from similar specimens manufactured from parent material, which had been subjected to 8% compressive plastic pre-strain at room temperature. Similar degrees of accelerated cracking behaviour compared to parent material, for given values of C*, were exhibited in both 316H HAZ and pre-compressed parent materials. This acceleration has been attributed to the influence of material hardening effects and the reduction of creep ductility in the pre-conditioned materials. These results are discussed in terms of the potential for using material pre-conditioning to assist in predicting the long term cracking behaviour of high temperature 316H stainless steel plant components from shorter term laboratory CCG tests

  20. Fluid boundary of a viscoplastic Bingham flow for finite solid deformations

    OpenAIRE

    Thual , Olivier; Lacaze , Laurent

    2010-01-01

    International audience; The modelling of viscoplastic Bingham fluids often relies on a rheological constitutive law based on a "plastic rule function" often identical to the yield criterion of the solid state. It is also often assumed that this plastic rule function vanishes at the boundary between the solid and fluid states, based on the fact that it is true in the limit of small deformations of the solid state or for simple yield criteria. We show that this is not the case for finite deform...

  1. Fatigue life prediction of autofrettage tubes using actual material behaviour

    International Nuclear Information System (INIS)

    Jahed, Hamid; Farshi, Behrooz; Hosseini, Mohammad

    2006-01-01

    There is a profound Bauschinger effect in the behaviour of high-strength steels used in autofrettaged tubes. This has led to development of methods capable of considering experimentally obtained (actual) material behaviour in residual stress calculations. The extension of these methods to life calculations is presented here. To estimate the life of autofrettaged tubes with a longitudinal surface crack emanating from the bore more accurately, instead of using idealized models, the experimental loading-unloading stress-strain behaviour is employed. The resulting stresses are then used to calculate stress intensity factors by the weight function method as input to fatigue life determination. Fatigue lives obtained using the actual material behaviour are then compared with the results of frequently used ideal models including those considering Bauschinger effect factors and strain hardening in unloading. Using standard fatigue crack growth relationships, life of the vessel is then calculated based on recommended initial and final crack length. It is shown that the life gain due to autofrettage above 70% overstrain is considerable

  2. Oxidation and creep behaviour of dense silicon nitride materials with different compositions

    International Nuclear Information System (INIS)

    Ernstberger, U.

    1985-09-01

    The study was intended to yield information on the oxidation and creep behaviour of Si 3 N 4 materials of different composition and microstructure, and produced by different processes. The experiments carried out in a vast temperature and load range showed that the chemical grain boundary composition is the key parameter affecting the materials' high-temperature properties. Significant correlations could be established between oxidation and creep behaviour on the one hand, and between microstructure and the behaviour on the other. (orig./IHOE) [de

  3. A Cosserat crystal plasticity and phase field theory for grain boundary migration

    Science.gov (United States)

    Ask, Anna; Forest, Samuel; Appolaire, Benoit; Ammar, Kais; Salman, Oguz Umut

    2018-06-01

    The microstructure evolution due to thermomechanical treatment of metals can largely be described by viscoplastic deformation, nucleation and grain growth. These processes take place over different length and time scales which present significant challenges when formulating simulation models. In particular, no overall unified field framework exists to model concurrent viscoplastic deformation and recrystallization and grain growth in metal polycrystals. In this work a thermodynamically consistent diffuse interface framework incorporating crystal viscoplasticity and grain boundary migration is elaborated. The Kobayashi-Warren-Carter (KWC) phase field model is extended to incorporate the full mechanical coupling with material and lattice rotations and evolution of dislocation densities. The Cosserat crystal plasticity theory is shown to be the appropriate framework to formulate the coupling between phase field and mechanics with proper distinction between bulk and grain boundary behaviour.

  4. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... thermal stresses are also carried out using finite element methods. The material behaviour is considered as visco-plastic. The simulations are compared with available experimental data and the comparison is found to be good. Special considerations regarding the simulation of solidification process are also brought out.

  5. Viscoplastic equations incorporated into a finite element model to predict deformation behavior of irradiated reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuanyuan, E-mail: 630wyy@163.com [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian 116024 (China); Zhao, Jijun, E-mail: zhaojj@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian 116024 (China); Zhang, Chi [Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • The initial internal variable in the Anand model is modified by considering both temperature and irradiation dose. • The tensile stress-strain response is examined and analyzed under different temperatures and irradiation doses. • Yield strengths are predicted as functions of strain rate, temperature and irradiation dose. - Abstract: The viscoplastic equations with a modified initial internal variable are implemented into the finite element code to investigate stress-strain response and irradiation hardening of the materials under increased temperature and at different levels of irradiated dose. We applied this model to Mod 9Cr-1Mo steel. The predicted results are validated by the experimentally measured data. Furthermore, they show good agreement with the previous data from a constitutive crystal plasticity model in account of dislocation and interstitial loops. Three previous hardening models for predicting the yield strength of the material are discussed and compared with our simulation results.

  6. Long-term behaviour of heat-resistant steels and high-temperature materials

    International Nuclear Information System (INIS)

    1987-01-01

    This book contains 10 lectures with the following subjects: On the effect of thermal pretreatment on the structure and creep behaviour of the alloy 800 H (V. Guttmann, J. Timm); Material properties of heat resistant ferritic and austenitic steels after cold forming (W. Bendick, H. Weber); Investigations for judging the working behaviour of components made of alloy 800 and alloy 617 under creep stress (H.J. Penkalla, F. Schubert); Creep behaviour of gas turbine materials in hot gas (K.H. Kloos et al.); Effect of small cold forming on the creep beahviour of gas turbine blades made of Nimonic 90 (K.H. Keienburg et al.); Investigations on creep fatigue alternating load strength of nickel alloys (G. Raule); Change of structure, creep fatigue behaviour and life of X20 Cr Mo V 12 1 (by G. Eggeler et al.); Investigations on thermal fatigue behaviour (K.H. Mayer et al.); Creep behaviour of similar welds of the steels 13 Cr Mo 4 4, 14 MoV 6 3, 10 Cr Mo 910 and GS-17 Cr Mo V 5 11 (K. Niel et al.); Determining the creep crack behaviour of heat resistant steels with samples of different geometry (K. Maile, R. Tscheuschner). (orig.,/MM) [de

  7. The Role of Materialism on Social, Emotional and Behavioural Difficulties for British Adolescents

    Science.gov (United States)

    Maras, Pam; Moon, Amy; Gupta, Taveeshi; Gridley, Nicole

    2015-01-01

    The relationship between materialism and social-emotional behavioural difficulties (SEBDs) was assessed by comparing a sample of adolescents receiving in-school behavioural support with adolescents not receiving any support. All participants completed the Youth Materialism Scale and the Strengths and Difficulties Questionnaire. Binary logistic…

  8. Development, Parameterization, and Validation of a Visco-Plastic Material Model for Sand with DifferentLevels of Water Saturation

    Science.gov (United States)

    2009-01-01

    in essential physics of the tire –sand interactions. Towards that end, a simpler ribbed- tread tire model (described below) of the type often used for...i.e. the deflection and the contact area) on a rigid sur- face. The tire was modelled in the present work using a ribbed- tread tire model similar to...with material properties representing the composite behaviour through the carcass thick - ness. The tread -cap is constructed using linear, hybrid

  9. The role of materialism on social, emotional and behavioural difficulties for British adolescents

    OpenAIRE

    Maras, Pam; Moon, Amy; Gupta, Taveeshi; Gridley, Nicole

    2015-01-01

    The relationship between materialism and social-emotional behavioural difficulties (SEBDs) was assessed by comparing a sample of adolescents receiving in-school behavioural support with adolescents not receiving any support. All participants completed the Youth Materialism Scale and the Strengths and Difficulties Questionnaire. Binary logistic regression indicated that adolescents who reported higher levels of materialism were more likely to be classified into a group considered ‘at-risk’ for...

  10. Effective properties of a viscoplastic constitutive model obtained by homogenisation

    NARCIS (Netherlands)

    Sluis, van der O.; Schreurs, P.J.G.; Meijer, H.E.H.

    1999-01-01

    Heterogeneous materials are used more and more frequent due to their enhanced mechanical properties. If the relation between the microscopic deformation and the macroscopic mechanical behaviour can be obtained, it can be used to design new materials with desired properties such as high strength,

  11. Material operating behaviour of ABB BWR control rods

    International Nuclear Information System (INIS)

    Rebensdorff, B.; Bart, G.

    2000-01-01

    The BWR control rods made by ABB use boron carbide (B 4 C and hafnium as absorber material within a cladding of stainless steel. The general behaviour under operation has proven to be very good. ABB and many of their control rod customers have performed extensive inspection programs of control rod behaviour. However, due to changes in the material properties under fast and thermal neutron irradiation defects may occur in the control rods at high neutron fluences. Examinations of irradiated control rod materials have been performed in hot cell laboratories. The examinations have revealed the defect mechanism Irradiation Assisted Stress Corrosion Cracking (IASCC) to appear in the stainless steel cladding. For IASCC to occur three factors have to act simultaneously. Stress, material sensitization and an oxidising environment. Stress may be obtained from boron carbide swelling due to irradiation. Stainless steel may be sensitized to intergranular stress corrosion cracking under irradiation. Normally the reactor environment in a BWR is oxidising. The presentation focuses on findings from hot cell laboratory work on irradiated ABB BWR control rods and studies of irradiated control rod materials in the hot cells at PSI. Apart from physical, mechanical and microstructural examinations, isotope analyses were performed to describe the local isotopic burnup of boron. Consequences (such as possible B 4 C washout) of a under operation in a ABB BWR, after the occurrence of a crack is discussed based on neutron radiographic examinations of control rods operated with cracks. (author)

  12. Mechanical Behaviour of Materials Volume II Fracture Mechanics and Damage

    CERN Document Server

    François, Dominique; Zaoui, André

    2013-01-01

    Designing new structural materials, extending lifetimes and guarding against fracture in service are among the preoccupations of engineers, and to deal with these they need to have command of the mechanics of material behaviour. This ought to reflect in the training of students. In this respect, the first volume of this work deals with elastic, elastoplastic, elastoviscoplastic and viscoelastic behaviours; this second volume continues with fracture mechanics and damage, and with contact mechanics, friction and wear. As in Volume I, the treatment links the active mechanisms on the microscopic scale and the laws of macroscopic behaviour. Chapter I is an introduction to the various damage phenomena. Chapter II gives the essential of fracture mechanics. Chapter III is devoted to brittle fracture, chapter IV to ductile fracture and chapter V to the brittle-ductile transition. Chapter VI is a survey of fatigue damage. Chapter VII is devoted to hydogen embrittlement and to environment assisted cracking, chapter VIII...

  13. Viscoplastic behavior of uranium dioxide at high temperature; Comportement viscoplastique du dioxyde d'uranium a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sauter, F

    2001-02-01

    This work is a part of a project led by EDF the purpose of which is the development of more predictive models to describe the thermomechanical behavior of fuel assembly. First, we recall the baselines of the Power Water Reactors then we deal with the viscoplastic behavior of uranium dioxide (UO{sub 2}). This knowledge enables an accurate description of the stress relaxation during Pellet Cladding Interactions. The pellets we have used in the last part are similar to the industrial ones. They exhibit a yield point during strain hardening tests and a sigma creep curve. In order to describe these characteristics, we have adapted different kind of approaches: thermodynamical - the Distribution of Non Linear Relaxations, approaches based on dislocation glide inspired by Alexander and Haasen and introduced in the Pilvin polycrystalline model. We recall the purpose of internal variables in the thermodynamics of system far from equilibrium then in case of a viscoplastic flow controlled by dislocation glide, we establish a link between densities of dislocations and internal variables in the D.N.L.R. approach. As vacancy diffusion in the grain boundary has a contribution to the viscoplastic strain, a similar is presented in appendix. These models are able to reproduce the behavior of UO{sub 2} pellets in strain hardening, stress relaxation and creep tests. Much possible progress has been revealed by the analysis of the tests. Further more, we propose a model for yield point and sigma creep curve. We also have extended these results to the behavior of irradiated pellets and stressed the influence of damage. (author)

  14. On a solvability of hydro-mechanical problem based on contact problem with visco-plastic friction in Bingham rheology

    Czech Academy of Sciences Publication Activity Database

    Nedoma, Jiří; Tomášek, Luboš

    2008-01-01

    Roč. 218, č. 1 (2008), s. 116-124 ISSN 0377-0427 Institutional research plan: CEZ:AV0Z10300504 Keywords : visco-plasticity * Bingham rheology * contact problems with friction * variational inequalities * FEM * geomechanics * hydromechanics Subject RIV: BA - General Mathematics Impact factor: 1.048, year: 2008

  15. Local behaviour of negative thermal expansion materials

    International Nuclear Information System (INIS)

    Fornasini, P.; Dalba, G.; Grisenti, R.; Purans, J.; Vaccari, M.; Rocca, F.; Sanson, A.

    2006-01-01

    EXAFS can represent a powerful probe of the local behaviour of negative thermal expansion (NTE) materials, thanks to the possibility of measuring the expansion of selected inter-atomic bonds and the perpendicular relative atomic displacements. The effectiveness of EXAFS for NTE studies is illustrated by a comparison of results recently obtained on germanium, CuCl and the cuprites Cu 2 O and Ag 2 O

  16. Organizational Behaviour Study Material

    OpenAIRE

    P. Sreeramana Aithal

    2016-01-01

    An overview of Organizational Behaviour – History of Organisational Behaviour and its emergence as a disciple-emerging perspective Organizational Behaviour. Individual process in organisation – Learning, perception and attribution- Individual differences - Basic concepts of motivation - Advanced concepts of motivation. Group process in Organisation – Group dynamics, leadership theories - Power, politics and conflict - inter- personal communication. Enhancing individu...

  17. A one-dimensional model to describe flow localization in viscoplastic slender bars subjected to super critical impact velocities

    Science.gov (United States)

    Vaz-Romero, A.; Rodríguez-Martínez, J. A.

    2018-01-01

    In this paper we investigate flow localization in viscoplastic slender bars subjected to dynamic tension. We explore loading rates above the critical impact velocity: the wave initiated in the impacted end by the applied velocity is the trigger for the localization of plastic deformation. The problem has been addressed using two kinds of numerical simulations: (1) one-dimensional finite difference calculations and (2) axisymmetric finite element computations. The latter calculations have been used to validate the capacity of the finite difference model to describe plastic flow localization at high impact velocities. The finite difference model, which highlights due to its simplicity, allows to obtain insights into the role played by the strain rate and temperature sensitivities of the material in the process of dynamic flow localization. Specifically, we have shown that viscosity can stabilize the material behavior to the point of preventing the appearance of the critical impact velocity. This is a key outcome of our investigation, which, to the best of the authors' knowledge, has not been previously reported in the literature.

  18. Microstructural characterisation and constitutive behaviour of alloy RR1000 under fatigue and creep-fatigue loading conditions

    International Nuclear Information System (INIS)

    Stoecker, C.; Zimmermann, M.; Christ, H.-J.; Zhan, Z.-L.; Cornet, C.; Zhao, L.G.; Hardy, M.C.; Tong, J.

    2009-01-01

    Mechanical behaviour of a nickel-based superalloy, RR1000, has been investigated at 650 deg. C under cyclic and dwell loading conditions. The microstructural characteristics of the alloy have been studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the distribution patterns of the dislocations and slip planes have been compared between samples tested under fatigue and creep-fatigue loading conditions. Constitutive behaviour of the alloy was described by a unified constitutive model, where both cyclic plastic and viscoplastic strains were represented by one inelastic strain. The results show that the precipitation state is very stable at 650 deg. C and only minor differences exist in the dislocation arrangements formed under pure fatigue and combined creep and fatigue conditions. Hence, a unified constitutive model seems to be justified in describing and predicting the constitutive behaviour in both cases.

  19. Modeling of the influence of coarsening on viscoplastic behavior of a 319 foundry aluminum alloy

    International Nuclear Information System (INIS)

    Martinez, R.; Russier, V.; Couzinié, J.P.; Guillot, I.; Cailletaud, G.

    2013-01-01

    Both metallurgical and mechanical behaviors of a 319 foundry aluminum alloy have been modeled by means of a multiscale approach. The nano-scale, represented by the coarsening of Al 2 Cu precipitates, has been modeled according to the Lifshitz–Slyozov–Wagner (LSW) law in a range of temperature going from 23 °C to 300 °C up to 1000 h aging time. Results were then compared to transmission electron microscope (TEM) observations and are in good agreement with the experimental measurements. The model allows us to know the critical radius, the volume fraction and the number of particles per μm 3 in a α-phase representative volume element (RVE). The increase in yield stress generated by the interaction of dislocations with precipitates, lattice and solid solution, is modeled on the microscale. The yield stress becomes thus a function of the precipitation state, and is time/temperature dependent. These two models were then combined into a mechanical macroscale model in order to represent the Low Cycle Fatigue (LCF) behavior of the material. An elasto-viscoplastic law has been used and all the material parameters were experimentally determined with LCF stress/strain loops for the first cycle and for the mechanical steady state. The simulation results are in good agreement with the experiments.

  20. Strain gradient effects on steady state crack growth in rate-sensitive materials

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Niordson, Christian Frithiof; Hutchinson, John W.

    2012-01-01

    , a characteristic velocity, at which the toughness becomes independent of the rate-sensitivity, has been observed. It is the aim to bring forward a similar characteristic velocity for the current strain gradient visco-plastic model, as-well as to signify its use in future visco-plastic material modeling.......Steady state crack propagation produce substantial plastic strain gradients near the tip, which are accompanied by a high density of geometrically necessary dislocations and additional local strain hardening. Here, the objective is to study these gradient effects on Mode I toughness...... of a homogeneous rate-sensitive metal, using a higher order plasticity theory. Throughout, emphasis is on the toughness rate-sensitivity, as a recent numerical study of a conventional material (no gradient effects) has indicated a significant influence of both strain rate hardening and crack tip velocity. Moreover...

  1. Global Existence Results for Viscoplasticity at Finite Strain

    Science.gov (United States)

    Mielke, Alexander; Rossi, Riccarda; Savaré, Giuseppe

    2018-01-01

    We study a model for rate-dependent gradient plasticity at finite strain based on the multiplicative decomposition of the strain tensor, and investigate the existence of global-in-time solutions to the related PDE system. We reveal its underlying structure as a generalized gradient system, where the driving energy functional is highly nonconvex and features the geometric nonlinearities related to finite-strain elasticity as well as the multiplicative decomposition of finite-strain plasticity. Moreover, the dissipation potential depends on the left-invariant plastic rate, and thus depends on the plastic state variable. The existence theory is developed for a class of abstract, nonsmooth, and nonconvex gradient systems, for which we introduce suitable notions of solutions, namely energy-dissipation-balance and energy-dissipation-inequality solutions. Hence, we resort to the toolbox of the direct method of the calculus of variations to check that the specific energy and dissipation functionals for our viscoplastic models comply with the conditions of the general theory.

  2. Efficient cycle jumping techniques for the modelling of materials and structures under cyclic mechanical and thermal loading

    International Nuclear Information System (INIS)

    Dunne, F.P.E.; Hayhurst, D.R.

    1994-01-01

    Highly efficient cycle jumping algorithms have been developed for the calculation of stress and damage histories for both cyclic mechanical and cycle thermal loading. The techniques have been shown to be suitable for cyclic plasticity; creep-cyclic plasticity interaction; and creep dominated material behaviour. The cycle jumping algorithms have been validated by comparison of the predictions made using both the cycle jumping technique, and the full calculation involving the integration of the equations around all cycles. Excellent agreement has been achieved, and significant reductions in computer processing time of up to 90% have been obtained by using the cycle jumping technique. A further cycle jumping technique has been developed for full component analysis, using a viscoplastic damage finite element solver, which enables stress redistribution to be modelled. The behaviour and lifetime of a slag tap component has been predicted when subjected to cyclic thermal loading. Cyclic plasticity damage and micro-crack initiation is predicted to occur at the water cooling duct after 2.974 cycles, with damage and micro-crack evolution arresting after 60.000. (author). 18 refs., 13 figs., 4 photos

  3. Magnetic hysteresis at the domain scale of a multi-scale material model for magneto-elastic behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Vanoost, D., E-mail: dries.vanoost@kuleuven-kulak.be [KU Leuven Technology Campus Ostend, ReMI Research Group, Oostende B-8400 (Belgium); KU Leuven Kulak, Wave Propagation and Signal Processing Research Group, Kortrijk B-8500 (Belgium); Steentjes, S. [Institute of Electrical Machines, RWTH Aachen University, Aachen D-52062 (Germany); Peuteman, J. [KU Leuven Technology Campus Ostend, ReMI Research Group, Oostende B-8400 (Belgium); KU Leuven, Department of Electrical Engineering, Electrical Energy and Computer Architecture, Heverlee B-3001 (Belgium); Gielen, G. [KU Leuven, Department of Electrical Engineering, Microelectronics and Sensors, Heverlee B-3001 (Belgium); De Gersem, H. [KU Leuven Kulak, Wave Propagation and Signal Processing Research Group, Kortrijk B-8500 (Belgium); TU Darmstadt, Institut für Theorie Elektromagnetischer Felder, Darmstadt D-64289 (Germany); Pissoort, D. [KU Leuven Technology Campus Ostend, ReMI Research Group, Oostende B-8400 (Belgium); KU Leuven, Department of Electrical Engineering, Microelectronics and Sensors, Heverlee B-3001 (Belgium); Hameyer, K. [Institute of Electrical Machines, RWTH Aachen University, Aachen D-52062 (Germany)

    2016-09-15

    This paper proposes a multi-scale energy-based material model for poly-crystalline materials. Describing the behaviour of poly-crystalline materials at three spatial scales of dominating physical mechanisms allows accounting for the heterogeneity and multi-axiality of the material behaviour. The three spatial scales are the poly-crystalline, grain and domain scale. Together with appropriate scale transitions rules and models for local magnetic behaviour at each scale, the model is able to describe the magneto-elastic behaviour (magnetostriction and hysteresis) at the macroscale, although the data input is merely based on a set of physical constants. Introducing a new energy density function that describes the demagnetisation field, the anhysteretic multi-scale energy-based material model is extended to the hysteretic case. The hysteresis behaviour is included at the domain scale according to the micro-magnetic domain theory while preserving a valid description for the magneto-elastic coupling. The model is verified using existing measurement data for different mechanical stress levels. - Highlights: • A ferromagnetic hysteretic energy-based multi-scale material model is proposed. • The hysteresis is obtained by new proposed hysteresis energy density function. • Avoids tedious parameter identification.

  4. Guidelines for Applying Cohesive Models to the Damage Behaviour of Engineering Materials and Structures

    CERN Document Server

    Schwalbe, Karl-Heinz; Cornec, Alfred

    2013-01-01

    This brief provides guidance for the application of cohesive models to determine damage and fracture in materials and structural components. This can be done for configurations with or without a pre-existing crack. Although the brief addresses structural behaviour, the methods described herein may also be applied to any deformation induced material damage and failure, e.g. those occurring during manufacturing processes. The methods described are applicable to the behaviour of ductile metallic materials and structural components made thereof. Hints are also given for applying the cohesive model to other materials.

  5. Crack and fracture behaviour in tough ductile materials

    International Nuclear Information System (INIS)

    Venter, R.D.; Hoeppner, D.W.

    1985-10-01

    The report describes various approaches and developments pertaining to the understanding of crack and fracture behaviour in tough ductile materials. The fundamental elastic fracture mechanics concepts based on the concepts of energy, stress field, and displacement are introduced and their interrelationships demonstrated. The extension of these concepts to include elasto-plastic fracture mechanics considerations is reviewed in the context of the preferred options available for the development of appropriate design methodologies. The recommendations of the authors are directed towards the continued development of the J-integral concept. This energy-based concept, in its fundamental form, has a sound theoretical basis and as such offers the possibility of incorporating elasto-plastic fracture mechanics considerations in the crack and fracture behaviour of tough ductile materials. It must however be emphasized that the concise defintion of J becomes increasingly suspect as the crack length increases. J is not a material property, as is J IC , but emerges as a useful empirical parameter which is dependent upon the particular geometry and the loading imposed on the structure. It is proposed that 'lowest bound' J-resistance curves and the associated J-T curves be experimentally developed and employed in the design process. Improvements to these 'lowest bounds' can be developed through extensive analysis of the twin J-CTOA criteria and validation of this approach through near full scale tests

  6. Characterization and modeling of performance of Polymer Composites Reinforced with Highly Non-Linear Cellulosic Fibers

    International Nuclear Information System (INIS)

    Rozite, L; Joffe, R; Varna, J; Nyström, B

    2012-01-01

    The behaviour of highly non-linear cellulosic fibers and their composite is characterized. Micro-mechanisms occurring in these materials are identified. Mechanical properties of regenerated cellulose fibers and composites are obtained using simple tensile test. Material visco-plastic and visco-elastic properties are analyzed using creep tests. Two bio-based resins are used in this study – Tribest and EpoBioX. The glass and flax fiber composites are used as reference materials to compare with Cordenka fiber laminates.

  7. Characterization and modeling of performance of Polymer Composites Reinforced with Highly Non-Linear Cellulosic Fibers

    Science.gov (United States)

    Rozite, L.; Joffe, R.; Varna, J.; Nyström, B.

    2012-02-01

    The behaviour of highly non-linear cellulosic fibers and their composite is characterized. Micro-mechanisms occurring in these materials are identified. Mechanical properties of regenerated cellulose fibers and composites are obtained using simple tensile test. Material visco-plastic and visco-elastic properties are analyzed using creep tests. Two bio-based resins are used in this study - Tribest and EpoBioX. The glass and flax fiber composites are used as reference materials to compare with Cordenka fiber laminates.

  8. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation. A unified elasto-viscoplastic constitutive model

    International Nuclear Information System (INIS)

    Chen, Ming-Song; Lin, Y.C.; Li, Kuo-Kuo; Chen, Jian

    2016-01-01

    In authors' previous work (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0371-6, 2016), the nonlinear unloading behavior of a typical Ni-based superalloy was investigated by hot compressive experiments with intermediate unloading-reloading cycles. The characters of unloading curves were discussed in detail, and a new elasto-viscoplastic constitutive model was proposed to describe the nonlinear unloading behavior of the studied Ni-based superalloy. Still, the functional relationships between the deformation temperature, strain rate, pre-strain and the parameters of the proposed constitutive model need to be established. In this study, the effects of deformation temperature, strain rate and pre-strain on the parameters of the new constitutive model proposed in authors' previous work (Chen et al. 2016) are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate and pre-strain. (orig.)

  9. A review of mechanical and tribological behaviour of polymer composite materials

    Science.gov (United States)

    Prabhakar, K.; Debnath, S.; Ganesan, R.; Palanikumar, K.

    2018-04-01

    Composite materials are finding increased applications in many industrial applications. A nano-composite is a matrix to which nanosized particles have been incorporated to drastically improve the mechanical performance of the original material. The structural components produced using nano-composites will exhibit a high strength-to-weight ratio. The properties of nano-composites have caused researchers and industries to consider using this material in several fields. Polymer nanocomposites consists of a polymer material having nano-particles or nano-fillers dispersed in the polymer matrix which may be of different shapes with at least one of the dimensions less than 100nm. In this paper, comprehensive review of polymer nanocomposites was done majorly in three different areas. First, mechanical behaviour of polymer nanocomposites which focuses on the mechanical property evaluation such as tensile strength, impact strength and modulus of elasticity based on the different combination of filler materials and nanoparticle inclusion. Second, wear behavior of Polymer composite materials with respect to different impingement angles and variation of filler composition using different processing techniques. Third, tribological (Friction and Wear) behaviour of nanocomposites using various combination of nanoparticle inclusion and time. Finally, it summarized the challenges and prospects of polymer nanocomposites.

  10. Chewing as a forming application: A viscoplastic damage law in modelling food oral breakdown

    Science.gov (United States)

    Skamniotis, C. G.; Charalambides, M. N.; Elliott, M.

    2017-10-01

    The first bite mechanical response of a food item resembles compressive forming processes, where a tool is pressed into a workpiece. The present study addresses ongoing interests in the deformations and damage of food products, particularly during the first bite, in relation to their mechanical properties. Uniaxial tension, compression and shear tests on a starch based food reveal stress-strain response and fracture strains strongly dependent on strain rate and stress triaxiality, while damage mechanisms are identified in the form of stress softening. A pressure dependent viscoplastic constitutive law reproduces the behavior with the aid of ABAQUS subroutines, while a ductile damage initiation and evolution framework based on fracture toughness data enables accurate predictions of the product breakdown. The material model is implemented in a Finite Element (FE) chewing model based on digital pet teeth geometry where the first bite of molar teeth against a food item is simulated. The FE force displacement results match the experimental data obtained by a physical replicate of the bite model, lending weight to the approach as a powerful tool in understanding of food breakdown and product development.

  11. A New, General Strategy for Fabricating Highly Concentrated and Viscoplastic Suspensions Based on a Structural Approach To Modulate Interparticle Interaction.

    Science.gov (United States)

    Sakurai, Shunsuke; Kamada, Fuminori; Kobashi, Kazufumi; Futaba, Don N; Hata, Kenji

    2018-01-24

    We report a general strategy to fabricate highly concentrated, viscoplastic and stable suspensions by designing the particle surface structure to control the interparticle attractive forces. Unlike conventional methods, where the choice of solvent is critical in balancing interparticle interactions, suspensions showing excellent stability and viscoplastic properties were made using various solvents. We demonstrated this approach using highly sparse agglomerates of carbon nanotubes (CNTs) as the particles. Our results revealed that the essential feature of the CNT agglomerate to fabricate these suspensions was high porosity with a spacing size much smaller than the overall size, which was only possible using long single-walled carbon nanotubes (SWNTs). In this way, the agglomerate surface was characterized by fine network of CNT bundles. These suspensions exhibited solid-like behavior at rest (characterized by a high yield stress of c.a. 100 Pa) and a liquid-like behavior when subjected to a stress (characterized by a significant drop of an apparent viscosity to 1 Pa·s at a shear rate of 1000 s -1 ). Furthermore, in contrast to conventionally fabricated suspensions, these "CNT pastes" exhibited exceptional stability at rest, under flow, and at extremely high concentrations during the drying process, with only a weakly observable dependence on solvent type. As a result, highly uniform micrometer-thick SWNT films were successfully fabricated by dried blade-coated films of these pastes. Finally, we developed a simple, semiempirical model and clarified the importance of the CNT agglomerate microstructure (the ratio of spacing size/particle size and porosity) on tailoring the cohesive forces between particles to fabricate stable viscoplastic suspensions.

  12. Time dependent mechanical modeling for polymers based on network theory

    Energy Technology Data Exchange (ETDEWEB)

    Billon, Noëlle [MINES ParisTech, PSL-Research University, CEMEF – Centre de mise en forme des matériaux, CNRS UMR 7635, CS 10207 rue Claude Daunesse 06904 Sophia Antipolis Cedex (France)

    2016-05-18

    Despite of a lot of attempts during recent years, complex mechanical behaviour of polymers remains incompletely modelled, making industrial design of structures under complex, cyclic and hard loadings not totally reliable. The non linear and dissipative viscoelastic, viscoplastic behaviour of those materials impose to take into account non linear and combined effects of mechanical and thermal phenomena. In this view, a visco-hyperelastic, viscoplastic model, based on network description of the material has recently been developed and designed in a complete thermodynamic frame in order to take into account those main thermo-mechanical couplings. Also, a way to account for coupled effects of strain-rate and temperature was suggested. First experimental validations conducted in the 1D limit on amorphous rubbery like PMMA in isothermal conditions led to pretty goods results. In this paper a more complete formalism is presented and validated in the case of a semi crystalline polymer, a PA66 and a PET (either amorphous or semi crystalline) are used. Protocol for identification of constitutive parameters is described. It is concluded that this new approach should be the route to accurately model thermo-mechanical behaviour of polymers using a reduced number of parameters of some physical meaning.

  13. Swarm robotics and complex behaviour of continuum material

    Science.gov (United States)

    dell'Erba, Ramiro

    2018-05-01

    In swarm robotics, just as for an animal swarm in nature, one of the aims is to reach and maintain a desired configuration. One of the possibilities for the team, to reach this aim, is to see what its neighbours are doing. This approach generates a rules system governing the movement of the single robot just by reference to neighbour's motion. The same approach is used in position-based dynamics to simulate behaviour of complex continuum materials under deformation. Therefore, in some previous works, we have considered a two-dimensional lattice of particles and calculated its time evolution by using a rules system derived from our experience in swarm robotics. The new position of a particle, like the element of a swarm, is determined by the spatial position of the other particles. No dynamic is considered, but it can be thought as being hidden in the behaviour rules. This method has given good results in some simple situations reproducing the behaviour of deformable bodies under imposed strain. In this paper we try to stress our model to highlight its limits and how they can be improved. Some other, more complex, examples are computed and discussed. Shear test, different lattices, different fracture mechanisms and ASTM shape sample behaviour have been investigated by the software tool we have developed.

  14. Augmented Lagrangian Method and Compressible Visco-plastic Flows: Applications to Shallow Dense Avalanches

    Science.gov (United States)

    Bresch, D.; Fernández-Nieto, E. D.; Ionescu, I. R.; Vigneaux, P.

    In this paper we propose a well-balanced finite volume/augmented Lagrangian method for compressible visco-plastic models focusing on a compressible Bingham type system with applications to dense avalanches. For the sake of completeness we also present a method showing that such a system may be derived for a shallow flow of a rigid-viscoplastic incompressible fluid, namely for incompressible Bingham type fluid with free surface. When the fluid is relatively shallow and spreads slowly, lubrication-style asymptotic approximations can be used to build reduced models for the spreading dynamics, see for instance [N.J. Balmforth et al., J. Fluid Mech (2002)]. When the motion is a little bit quicker, shallow water theory for non-Newtonian flows may be applied, for instance assuming a Navier type boundary condition at the bottom. We start from the variational inequality for an incompressible Bingham fluid and derive a shallow water type system. In the case where Bingham number and viscosity are set to zero we obtain the classical Shallow Water or Saint-Venant equations obtained for instance in [J.F. Gerbeau, B. Perthame, DCDS (2001)]. For numerical purposes, we focus on the one-dimensional in space model: We study associated static solutions with sufficient conditions that relate the slope of the bottom with the Bingham number and domain dimensions. We also propose a well-balanced finite volume/augmented Lagrangian method. It combines well-balanced finite volume schemes for spatial discretization with the augmented Lagrangian method to treat the associated optimization problem. Finally, we present various numerical tests.

  15. Structural Behaviour of Strengthened Composite Materials. Experimental Studies

    Directory of Open Access Journals (Sweden)

    Vlad Munteanu

    2007-01-01

    Full Text Available Masonry represents one of the earliest structural materials used by mankind. A lot of the ancient building structures were made using masonry. A large number of these buildings have been stated historical monuments. Most commonly masonry elements which are able to cover large spans was masonry arches. The paper makes a detailed presentation on structural behaviour and failure mechanisms of a horizontally loaded masonry arch. The arch model was built at a 1 : 1 scale using solid bricks and M10Z mortar. It was firstly loaded with vertically acting dead loads and with horizontal load acting in its plane. In this loading hypothesis, a plastic hinge occurred leading to the failure of the arch and loss of load bearing capacity. In the next stage of the experimental program, the arch was strengthened using a composite material membrane at the upper face. The membrane consisted in a continuous, glass-fiber fabric and epoxy resin. After proper curing, the same loading hypothesis was used. The failure mechanisms changed and a larger horizontal loading level was noticed. Further on, the arch was rehabilitated using a different composite material layout, the membrane was applied both on upper and bottom faces as well as partially on the lateral faces of the arch. This new rehabilitation layout leads to a significant increase in the load bearing capacity of the arch. The failure mechanisms were changed causing a significantly better overall structural behaviour of the arch.

  16. About the identification of behaviour law parameters of clayey rocks; Sur l'identification des parametres des lois de comportement des roches argileuses

    Energy Technology Data Exchange (ETDEWEB)

    Lecampion, B

    2002-09-15

    This work aims at developing identification methods for clayey rock parameters. These methods are necessary for the interpretation of the numerous data obtained at the ANDRA's Meuse/Haute-Marne underground laboratory. Two main rheological aspects have been considered: the poro-elastic behaviour and the elasto-visco-plastic behaviour. The first part of the study focusses on the poro-elastic parameters. Chapter 2 recalls the direct problem and discusses some important points of the identification inverse problem. Chapter 3 deals with the formulation of gradient calculation techniques for the linear poro-elastic case. The resolution using the finite-element method is discussed. The direct and associated state differentiation methods are validated for a 2D numerical example using the finite-element code Cast3M. The identification of poro-elastic coefficients of the Meuse/Haute-Marne argillaceous rocks is discussed in detail in chapter 4. The use of approximate semi-explicit solutions of the direct problems allows to obtain a fast identification method. The second part deals with the identification of elasto-visco-plastic parameters. The visco-plastic behaviour of Meuse/Haute-Marne rocks is discussed in chapter 5 and a visco-plastic model with nonlinear isotropic cold-drawing is proposed which allows to reproduce the tests. The parameters of this behaviour law are identified on a 1D creep test in drained conditions. Thus, the delayed deformations come from the poro-elastic and visco-plastic behaviour of the rock. It is shown that both phenomena can be separated. All poro-elasto-visco-plastic parameters are identified and a semi-explicit solution of the creep test is used. Chapter 6 presents an identification method of the elasto-visco-plastic parameters for the general case. The identification is equivalent to the minimization of a cost functional. The gradient of the functional is calculated by direct differentiation. The direct differentiation method is developed

  17. Mechanical behaviour of composite materials made by resin film infusion

    Directory of Open Access Journals (Sweden)

    Casavola C.

    2010-06-01

    Full Text Available Innovative composite materials are frequently used in designing aerospace, naval and automotive components. In the typical structure of composites, multiple layers are stacked together with a particular sequence in order to give specific mechanical properties. Layers are organized with different angles, different sequences and different technological process to obtain a new and innovative material. From the standpoint of engineering designer it is useful to consider the single layer of composite as macroscopically homogeneous material. However, composites are non homogeneous bodies. Moreover, layers are not often perfectly bonded together and delamination often occurs. Other violations of lamination theory hypotheses, such as plane stress and thin material, are not unusual and in many cases the transverse shear flexibility and the thickness-normal stiffness should be considered. Therefore the real behaviour of composite materials is quite different from the predictions coming from the traditional lamination theory. Due to the increasing structural performance required to innovative composites, the knowledge of the mechanical properties for different loading cases is a fundamental source of concern. Experimental characterization of materials and structures in different environmental conditions is extremely important to understand the mechanical behaviour of these new materials. The purpose of the present work is to characterize a composite material developed for aerospace applications and produced by means of the resin film infusion process (RFI. Different tests have been carried out: tensile, open-hole and filled-hole tensile, compressive, openhole and filled-hole compressive. The experimental campaign has the aim to define mechanical characteristics of this RFI composite material in different conditions: environmental temperature, Hot/Wet and Cold.

  18. Physically based multiscale-viscoplastic model for metals and steel alloys: Theory and computation

    Science.gov (United States)

    Abed, Farid H.

    The main requirement of large deformation problems such as high-speed machining, impact, and various primarily metal forming, is to develop constitutive relations which are widely applicable and capable of accounting for complex paths of deformation. Achieving such desirable goals for material like metals and steel alloys involves a comprehensive study of their microstructures and experimental observations under different loading conditions. In general, metal structures display a strong rate- and temperature-dependence when deformed non-uniformly into the inelastic range. This effect has important implications for an increasing number of applications in structural and engineering mechanics. The mechanical behavior of these applications cannot be characterized by classical (rate-independent) continuum theories because they incorporate no 'material length scales'. It is therefore necessary to develop a rate-dependent (viscoplasticity) continuum theory bridging the gap between the classical continuum theories and the microstructure simulations. Physically based vicoplasticity models for different types of metals (body centered cubic, face centered cubic and hexagonal close-packed) and steel alloys are derived in this work for this purpose. We adopt a multi-scale, hierarchical thermodynamic consistent framework to construct the material constitutive relations for the rate-dependent behavior. The concept of thermal activation energy, dislocations interactions mechanisms and the role of dislocations dynamics in crystals are used in the derivation process taking into consideration the contribution of the plastic strain evolution of dislocation density to the flow stress of polycrystalline metals. Material length scales are implicitly introduced into the governing equations through material rate-dependency (viscosity). The proposed framework is implemented into the commercially well-known finite element software ABAQUS. The finite element simulations of material

  19. Rheological behaviour of fibre-rich plant materials in fat-based food systems

    NARCIS (Netherlands)

    Bonarius, G.A.; Vieira, J.B.; Goot, van der A.J.; Bodnar, I.

    2014-01-01

    The potential use of fibre-rich materials as bulking agents to replace sucrose in chocolate confectionary products is investigated. Since the rheological behaviour of the molten chocolate mass is key in chocolate production, the rheology of fibre-rich materials in medium chain triglycerides (MCT) is

  20. Thermal stresses in hexagonal materials - heat treatment influence on their mechanical behaviour

    International Nuclear Information System (INIS)

    Gloaguen, D.; Freour, S.; Guillen, R.; Royer, J.; Francois, M.

    2004-01-01

    Internal stresses due to anisotropic thermal and plastic properties were investigated in rolled zirconium and titanium. The thermal stresses induced by a cooling process were predicted using a self-consistent model and compared with experimental results obtained by X-ray diffraction. The study of the elastoplastic response during uniaxial loading was performed along the rolling and the transverse direction of the sheet, considering the influence of the texture and the thermal stresses on the mechanical behaviour. An approach in order to determine the thermal behaviour of phases embedded in two-phase materials is also presented. For zirconium, the residual stresses due to thermal anisotropy are rather important (equivalent to 35% of the yield stress) and consequently they play an important role on the elastoplastic transition contrary to titanium. The study of two-phase material shows the influence and the interaction of the second phase on the thermal behaviour in the studied phase

  1. Hook tool manufacture in New Caledonian crows: behavioural variation and the influence of raw materials.

    Science.gov (United States)

    Klump, Barbara C; Sugasawa, Shoko; St Clair, James J H; Rutz, Christian

    2015-11-18

    New Caledonian crows use a range of foraging tools, and are the only non-human species known to craft hooks. Based on a small number of observations, their manufacture of hooked stick tools has previously been described as a complex, multi-stage process. Tool behaviour is shaped by genetic predispositions, individual and social learning, and/or ecological influences, but disentangling the relative contributions of these factors remains a major research challenge. The properties of raw materials are an obvious, but largely overlooked, source of variation in tool-manufacture behaviour. We conducted experiments with wild-caught New Caledonian crows, to assess variation in their hooked stick tool making, and to investigate how raw-material properties affect the manufacture process. In Experiment 1, we showed that New Caledonian crows' manufacture of hooked stick tools can be much more variable than previously thought (85 tools by 18 subjects), and can involve two newly-discovered behaviours: 'pulling' for detaching stems and bending of the tool shaft. Crows' tool manufactures varied significantly: in the number of different action types employed; in the time spent processing the hook and bending the tool shaft; and in the structure of processing sequences. In Experiment 2, we examined the interaction of crows with raw materials of different properties, using a novel paradigm that enabled us to determine subjects' rank-ordered preferences (42 tools by 7 subjects). Plant properties influenced: the order in which crows selected stems; whether a hooked tool was manufactured; the time required to release a basic tool; and, possibly, the release technique, the number of behavioural actions, and aspects of processing behaviour. Results from Experiment 2 suggested that at least part of the natural behavioural variation observed in Experiment 1 is due to the effect of raw-material properties. Our discovery of novel manufacture behaviours indicates a plausible scenario for the

  2. Experimental studies of the crack behaviour during elastoplastic deformations of materials

    International Nuclear Information System (INIS)

    Hollstein, R.

    1982-01-01

    In C-, SEN- and WOL X-samples of the materials StE 460 (Ni-V), 22NiCr37, and 30CrNiMo8 a transition from linear elasticity to elastoplastic behaviour is observed with increasing temperature. Before crack propagation can be observed, a stretching zone at the crack tip is formed, which depends on the material and the stress conditions. (DG) [de

  3. Influence of the recycled material percentage on the rheological behaviour of HDPE for injection moulding process.

    Science.gov (United States)

    Javierre, C; Clavería, I; Ponz, L; Aísa, J; Fernández, A

    2007-01-01

    The amount of polymer material wasted during thermoplastic injection moulding is very high. It comes from both the feed system of the part, and parts necessary to set up the mould, as well as the scrap generated along the process due to quality problems. The residues are managed through polymer recycling that allows reuse of the materials in the manufacturing injection process. Recycling mills convert the parts into small pieces that are used as feed material for injection, by mixing the recycled feedstock in different percentages with raw material. This mixture of both raw and recycled material modifies material properties according to the percentage of recycled material introduced. Some of the properties affected by this modification are those related to rheologic behaviour, which strongly conditions the future injection moulding process. This paper analyzes the rheologic behaviour of material with different percentages of recycled material by means of a capillary rheometer, and evaluates the influence of the corresponding viscosity curves obtained on the injection moulding process, where small variations of parameters related to rheological behaviour, such as pressure or clamping force, can be critical to the viability and cost of the parts manufactured by injection moulding.

  4. Role of Brittle Behaviour of Soft Calcarenites Under Low Confinement: Laboratory Observations and Numerical Investigation

    Science.gov (United States)

    Lollino, Piernicola; Andriani, Gioacchino Francesco

    2017-07-01

    The strength decay that occurs in the post-peak stage, under low confinement stress, represents a key factor of the stress-strain behaviour of rocks. However, for soft rocks this issue is generally underestimated or even neglected in the solution of boundary value problems, as for example those concerning the stability of underground cavities or rocky cliffs. In these cases, the constitutive models frequently used in limit equilibrium analyses or more sophisticated numerical calculations are, respectively, rigid-plastic or elastic-perfectly plastic. In particular, most of commercial continuum-based numerical codes propose a variety of constitutive models, including elasticity, elasto-plasticity, strain-softening and elasto-viscoplasticity, which are not exhaustive in simulating the progressive failure mechanisms affecting brittle rock materials, these being characterized by material detachment and crack opening and propagation. As a consequence, a numerical coupling with mechanical joint propagation is needed to cope with fracture mechanics. Therefore, continuum-based applications that treat the simulation of the failure processes of intact rock masses at low stress levels may need the adoption of numerical techniques capable of implementing fracture mechanics and rock brittleness concepts, as it is shown in this paper. This work is aimed at highlighting, for some applications of rock mechanics, the essential role of post-peak brittleness of soft rocks by means of the application of a hybrid finite-discrete element method. This method allows for a proper simulation of the brittle rock behaviour and the related mechanism of fracture propagation. In particular, the paper presents two ideal problems, represented by a shallow underground cave and a vertical cliff, for which the evolution of the stability conditions is investigated by comparing the solutions obtained implementing different brittle material responses with those resulting from the assumption of perfectly

  5. Selfwelding, friction and wear behaviour of special materials in sodium under corroding conditions

    International Nuclear Information System (INIS)

    Borgstedt, H.U.; Mattes, K.; Wild, E.

    1975-11-01

    Control rod guides and fuel element duct load pads have to be fabricated from materials exhibiting optimum slide behaviour. Galling or self-welding under static conditions should not be tolerated. Given bearing clearances have to be maintained constant and loop contamination, caused by wear particles, have to be prevented. Since high friction between contacting pads may impose severe limitations on core compaction, for the duct load pads a maximum friction coefficient of 0.5 is acceptable. The effect of sodium corrosion should not impair the friction and wear behaviour of the materials applied. This report covers the work performed to optain appropriate mechanical design data. (orig.) [de

  6. Melt-Flow Behaviours of Thermoplastic Materials under Fire Conditions: Recent Experimental Studies and Some Theoretical Approaches

    Directory of Open Access Journals (Sweden)

    Paul Joseph

    2015-12-01

    Full Text Available Polymeric materials often exhibit complex combustion behaviours encompassing several stages and involving solid phase, gas phase and interphase. A wide range of qualitative, semi-quantitative and quantitative testing techniques are currently available, both at the laboratory scale and for commercial purposes, for evaluating the decomposition and combustion behaviours of polymeric materials. They include, but are not limited to, techniques such as: thermo-gravimetric analysis (TGA, oxygen bomb calorimetry, limiting oxygen index measurements (LOI, Underwriters Laboratory 94 (UL-94 tests, cone calorimetry, etc. However, none of the above mentioned techniques are capable of quantitatively deciphering the underpinning physiochemical processes leading to the melt flow behaviour of thermoplastics. Melt-flow of polymeric materials can constitute a serious secondary hazard in fire scenarios, for example, if they are present as component parts of a ceiling in an enclosure. In recent years, more quantitative attempts to measure the mass loss and melt-drip behaviour of some commercially important chain- and step-growth polymers have been accomplished. The present article focuses, primarily, on the experimental and some theoretical aspects of melt-flow behaviours of thermoplastics under heat/fire conditions.

  7. Melt-Flow Behaviours of Thermoplastic Materials under Fire Conditions: Recent Experimental Studies and Some Theoretical Approaches.

    Science.gov (United States)

    Joseph, Paul; Tretsiakova-McNally, Svetlana

    2015-12-15

    Polymeric materials often exhibit complex combustion behaviours encompassing several stages and involving solid phase, gas phase and interphase. A wide range of qualitative, semi-quantitative and quantitative testing techniques are currently available, both at the laboratory scale and for commercial purposes, for evaluating the decomposition and combustion behaviours of polymeric materials. They include, but are not limited to, techniques such as: thermo-gravimetric analysis (TGA), oxygen bomb calorimetry, limiting oxygen index measurements (LOI), Underwriters Laboratory 94 (UL-94) tests, cone calorimetry, etc. However, none of the above mentioned techniques are capable of quantitatively deciphering the underpinning physiochemical processes leading to the melt flow behaviour of thermoplastics. Melt-flow of polymeric materials can constitute a serious secondary hazard in fire scenarios, for example, if they are present as component parts of a ceiling in an enclosure. In recent years, more quantitative attempts to measure the mass loss and melt-drip behaviour of some commercially important chain- and step-growth polymers have been accomplished. The present article focuses, primarily, on the experimental and some theoretical aspects of melt-flow behaviours of thermoplastics under heat/fire conditions.

  8. A Comparative Study of the Behaviour of Five Dense Glass Materials Under Shock Loading Conditions

    Science.gov (United States)

    Radford, Darren D.; Proud, William G.; Field, John E.

    2001-06-01

    Previous work at the Cavendish Laboratory on the properties of glasses under shock loading has demonstrated that the material response is highly dependent upon the composition of the glass. The shock response of glass materials with an open structure, such as borosilicate, exhibits a ramping behaviour in the longitudinal stress histories due to structural collapse. Glass materials with a “filled” microstructure, as in the case of Type-D, Extra Dense Flint (DEDF) do not exhibit a ramping behaviour and behave in a manner similar to polycrystalline ceramics [1]. The current investigation compares the behaviour of five such glasses (SF15, DEDF, LACA, SF57 and DEDF-927210) under shock loading conditions. It is observed that slight changes in material composition can have a large affect on the inelastic behaviour. Principal Hugoniot and shear strength data are presented for all of the materials for pressures ranging from 2 to 14 GPa. Evidence of the so-called failure-front [2] is presented via lateral stress histories measured using manganin stress gauges and confirmed with high-speed photography. 1. Bourne, N.K., Millett, J.C.F., and Field, J.E., “On the strength of shocked glasses” Proc. R. Soc. Lond. A 455 (1999) 1275-1282 2. Brar, N.S., “Failure Waves in Glass and Ceramics Under Shock Compression”, in "Shock Compression of Condensed Matter 1999", ed. M.D. Furnish, L.C. Chhabildas, and R.S. Hixson, American Institute of Physics, Woodbury, New York, (1999) 601-606

  9. Contribution to concrete modelling towards aging and durability: interactions between creep deformations and non-linear behaviour of the material

    International Nuclear Information System (INIS)

    Berthollet, A.

    2003-10-01

    Concrete structures are examined during their lifetime and often present important cracking states, which can progress with time and lead to change the structural behavior. The civil engineering works that the main function corresponds to protection's wall are very sensitive to this damage and its evolution. The growth of the time - dependent cracks represents an aging pathology linked with interaction between creep mechanism and the non-linear behavior of the material. In this thesis, a modeling for these mechanisms and their coupling are proposed. It based on creep strains analysis under different load levels, on the influence of the rate effect to the mechanical behavior. A stress limit is put on prominent manner, where beyond it, the creep - cracking interaction becomes important with the introduction of the ultimate tertiary creep kinetic. This level of strength is identified for infinitely slow loading rates and is also called intrinsic strength. It defines the limit on this side the viscous behavior of the cement paste limits the irreversibility processes as cracking. Thus, a constitutive law of viscoelastic - viscoplastic behavior with a high coupling between the cracking mechanism and the creep strains is proposed. The developments of the model are built on DUVAUT - LIONS approach integrated a generalized MAXWELL chain model. For one part, the viscoelastic behavior translates the creep mechanism under low stresses. For a second part, it associated with the viscoplastic behavior, which allows introducing both creep effect under high stresses and rate effect acting on micro-cracked zones. The cracking mechanism is described throughout a plasticity theory with multi-criteria, which induce a property of anisotropy for hardening. Qualitatively, ails of the creep kinetics are reproduced. An additional validation is based on experimental tests in compression, traction and flexion where the main parameters of the modeling are detailed. Thus, we can conclude on the

  10. Mechanical modelling of transient- to- failure SFR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L. E.

    2014-07-01

    The response of Sodium Fast Reactor (SFR) fuel rods to transient accident conditions is an important safety concern. During transients the cladding strain caused by the stress due to pellet cladding mechanical interaction (PCMI) can lead to failure. Due to the fact that SFR fuel rods are commonly clad with strengthened material made of stainless steel (SS), cladding is usually treated as an elastic-perfectly-plastic material. However, viscoplastic behaviour can contribute to mechanical strain at high temperature (> 1000 K). (Author)

  11. The effect of the dislocation image force on the brittle behaviour of materials

    International Nuclear Information System (INIS)

    Lung, C.W.

    1986-06-01

    The dislocation image force due to the free surface of a finite width specimen makes the plastic zone at a crack tip larger. The effect of the dislocation image force on the fracture behaviour of materials with different geometrical shapes is discussed. It is found that the ratio V/A as an indication of the brittle behaviour of structural components is reasonable for elastic-plastic fracture. (author)

  12. Static and dynamic experimental behaviour of sands and anisotropic elasto-viscoplastic modelling in small and medium deformations

    International Nuclear Information System (INIS)

    Ezaoui, A.

    2008-06-01

    In the first part, based on various works realized in situ, the author discusses the importance of a fine characterization of soils within the field of small and medium deformations. He also presents the rheological background on which the modelling will be based. Then, he presents the experimental device, a tri-axial apparatus, 'StaDy', which allows high precision measurements, possesses force sensors comprising a piezoelectric device to generate compression and shear waves. He also presents the different static and dynamic prompting systems. He reports the experimental campaign performed on a Hostun S28 sand, and the analysis of its results. He describes the procedure of determination of the elastic tensor, and analyses and discusses the evolutions of this tensor in terms of the stress-strain status. Viscous phenomena creep and relaxation stages, and plastic behaviours are quantified and discussed with respect to the loading status, the initial granular arrangement, and the efforts applied to the material. The small deformation modelling is then presented and predictions are compared with experimental results obtained in the literature about a bus station. A general analog formulation is introduced, which associates three components (elastic, plastic and viscous). Models are calibrated with triaxial test results, and simulations of viscous and plastic phenomena allow the proposed approaches to be validated

  13. Corrosion behaviour of container materials for geological disposal of high-level waste. Joint annual progress report 1983

    International Nuclear Information System (INIS)

    1985-01-01

    Within the framework of the Community R and D programme on management and storage of radioactive waste (shared-cost action), a research activity is aiming at the assessment of corrosion behaviour of potential container materials for geological disposal of vitrified high-level wastes. In this report, the results obtained during the year 1983 are described. Research performed at the Studiecentrum voor Kernenergie/Centre d'Etudes de l'Energie Nucleaire (SCK/CEN) at Mol (B), concerns the corrosion behaviour in clay environments. The behaviour in salt is tested by the Kernforschungszentrum (KfK) at Karlsruhe (D). Corrosion behaviour in granitic environments is being examined by the Commissariat a l'Energie Atomique (CEA) at Fontenay-aux-Roses (F) and the Atomic Energy Research Establishment (AERE) at Harwell (UK); the first is concentrating on corrosion-resistant materials and the latter on corrosion-allowance materials. Finally, the Centre National de la Recherche Scientifique (CNRS) at Vitry (F) is examining the formation and behaviour of passive layers on the metal alloys in the various environments

  14. Effect of Anisotropy on the Resilient Behaviour of a Granular Material in Low Traffic Pavement.

    Science.gov (United States)

    Jing, Peng; Nowamooz, Hossein; Chazallon, Cyrille

    2017-12-03

    Granular materials are often used in pavement structures. The influence of anisotropy on the mechanical behaviour of granular materials is very important. The coupled effects of water content and fine content usually lead to more complex anisotropic behaviour. With a repeated load triaxial test (RLTT), it is possible to measure the anisotropic deformation behaviour of granular materials. This article initially presents an experimental study of the resilient repeated load response of a compacted clayey natural sand with three fine contents and different water contents. Based on anisotropic behaviour, the non-linear resilient model (Boyce model) is improved by the radial anisotropy coefficient γ ₃ instead of the axial anisotropy coefficient γ ₁. The results from both approaches ( γ ₁ and γ ₃) are compared with the measured volumetric and deviatoric responses. These results confirm the capacity of the improved model to capture the general trend of the experiments. Finally, finite element calculations are performed with CAST3M in order to validate the improvement of the modified Boyce model (from γ ₁ to γ ₃). The modelling results indicate that the modified Boyce model with γ ₃ is more widely available in different water contents and different fine contents for this granular material. Besides, based on the results, the coupled effects of water content and fine content on the deflection of the structures can also be observed.

  15. Behavioural response of Phytoseiulus persimilisin inert materials for technical application.

    Science.gov (United States)

    Wendorf, Dennis; Sermann, Helga; Katz, Peter; Lerche, Sandra; Büttner, Carmen

    2009-01-01

    A large scale application of the predatory mite Phytoseiulus persimilis Athias-Henriot for use in the biological control of spider mites in the field requires testing the behaviour of Phytoseiulus persimilis in inert materials, like millet pelts and Vermiculite (1-3 mm). In laboratory studies, the distribution of the individuals in such materials, the time of remaining in the material were proved. To examine the abiotic influences on the time of remaining in the material, the dampness of the materials was varied (0%, 5% and 10%). Moreover, the influence of attitude of materials was tested. The time of emigration from the material was noted for each individual. Emigration from all dry materials was completed 15 minutes at the latest after set up of the mites. The increase of dampness had an obvious effect on the time of remaining in the material. In this respect the material millet pelts showed the most favourable effect with 10% dampness. Increasing attitude of material the mobility of predatory mites will be influenced negatively above 75 cm. Up to 50 cm, mites have not a problem to move in the material and the time of remaining can be prolonged considerably.

  16. Theoretical study of laser feedback interferometry for dynamical material's behaviour studies

    International Nuclear Information System (INIS)

    Le-Barbier, Laura

    2017-01-01

    The purpose of this thesis is to study the feasibility of optical feedback interferometry (OFI) for measuring velocities for dynamical material's behaviour studies. Dynamical material's behaviour studies permit to analyse the shocked material when subjects to shocks (laser shocks, isentropic compression, projectiles, etc.). In these conditions, we seek to measure velocities up to 10 km/s. The OFI technique is regularly used as an embedded system to measure slow velocities in various fields. However, very few studies have been performed for determining velocities measurement limits for this system. As a matter of fact, the optical feedback induces nonlinear effects into the laser's cavity: it disrupts the laser's emitted optical power. Depending on the optical feedback strength, the laser can show chaotic behaviour, then it is no longer possible to get the information for the target's velocity or displacement regarding the signal. In this study, we have been developing mathematical models and performing a wide range of numerical simulations to study the performances and the limits of the OFI technique. We have been also studying the influence of the targets reflectivity, the length and the modulation frequency of the external cavity. (author) [fr

  17. Continuum viscoplastic simulation of a granular column collapse on large slopes : μ(I) rheology and lateral wall effects

    Science.gov (United States)

    Martin, Nathan; Mangeney, Anne; Ionescu, Ioan; Bouchut, Francois

    2016-04-01

    The description of the mechanical behaviour of granular flows and in particular of the static/flowing transition is still an open and challenging issue with strong implication for hazard assessment [{Delannay et al.}, 2016]. In particular, {detailed quantitative} comparison between numerical models and observations is necessary to go further in this direction. We simulate here dry granular flows resulting from the collapse of granular columns on an inclined channel (from horizontal to 22^o) and compare precisely the results with laboratory experiments performed by {Mangeney et al.} [2010] and {Farin et al.} [2014]. Incompressibility is assumed despite the dilatancy observed in the experiments (up to 10%). The 2-D model is based on the so-called μ(I) rheology that induces a Drucker-Prager yield stress and a variable viscosity. A nonlinear Coulomb friction term, representing the friction on the lateral walls of the channel is added to the model. We demonstrate that this term is crucial to accurately reproduce granular collapses on slopes higher than 10o whereas it remains of little effect on horizontal slope [{Martin et al.}, 2016]. We show that the use of a variable or a constant viscosity does not change significantly the results provided that these viscosities are of the same order [{Ionescu et al.}, 2015]. However, only a fine tuning of the constant viscosity (η = 1 Pa.s) makes it possible to predict the slow propagation phase observed experimentally on large slopes. This was not possible when using, without tuning, the variable viscosity calculated from the μ(I) rheology with the parameters estimated from experiments. Finally, we discuss the well-posedness of the model with variable and constant viscosity based in particular on the development of shear bands observed in the numerical simulations. References Delannay, R., Valance, A., Mangeney, A., Roche, O., and Richard, P., 2016. Granular and particle-laden flows: from laboratory experiments to field

  18. Who is reducing their material consumption and why? A cross-cultural analysis of dematerialization behaviours.

    Science.gov (United States)

    Whitmarsh, Lorraine; Capstick, Stuart; Nash, Nicholas

    2017-06-13

    The environmental and economic imperatives to dematerialize economies, or 'do more with less', have been established for some years. Yet, to date, little is known about the personal drivers associated with dematerializing. This paper explores the prevalence and profile of those who are taking action to reduce consumption in different cultural contexts (UK and Brazil) and considers influences on dematerialization behaviours. We find that exemplar behaviours (avoiding buying new things and avoiding packaging) are far less common than archetypal environmental behaviours (e.g. recycling), but also that cultural context is important (Brazilians are more likely to reduce their material consumption than people in the UK). We also find that the two dematerialization behaviours are associated with different pro-environmental actions (more radical action versus green consumption, respectively); and have distinct, but overlapping, psychological (e.g. identity) and socio-demographic (e.g. education) predictors. Comparing a more traditional value-identity model of pro-environmental behaviour with a motivation-based (self-determination) model, we find that the latter explains somewhat more variance than the former. However, overall, little variance is explained, suggesting that additional factors at the personal and structural levels are important for determining these consumption behaviours. We conclude by outlining policy implications and avenues for further research.This article is part of the themed issue 'Material demand reduction'. © 2017 The Author(s).

  19. Characterizing the tribological behaviour of fast breeder reactor materials

    International Nuclear Information System (INIS)

    Depierre, J.; Raffailhac, J.

    1984-04-01

    The object of these tests is to define the behaviour of material couples working in conditions as representative as possible of reactor operation. For this purpose a certain number of test installations have been developed to simulate the most typical cases of friction encountered: plane to plane geometry, rotational bearings, guiding bearings. Endurance tests have also been carried out on ball bearings and ballscrews samples. As said before, the test conditions attempt to reproduce as faithfully as possible the environment of the materials used in fast breeder reactors, particularly in: - using purified liquid sodium, and maintaining it isotherm, respectively at three temperature levels: 180, 400 and 550 0 C; - or using argon containing sodium aerosol particles. Some typical values of friction coefficients and rates of wear obtained during the tests with certain couples of materials are given here as examples. The aims which are currently guiding the direction of the tests are also briefly described

  20. Thermomechanical behaviour of two heterogeneous tungsten materials via 2D and 3D image-based FEM

    International Nuclear Information System (INIS)

    Zivelonghi, Alessandro

    2011-01-01

    An advanced numerical procedure based on imaging of the material microstructure (Image- Based Finite Element Method or Image-Based FEM) was extended and applied to model the thermomechanical behaviour of novel materials for fusion applications. Two tungsten based heterogeneous materials with different random morphologies have been chosen as challenging case studies: (1) a two-phase mixed ductile-brittle W/CuCr1Zr composite and (2) vacuum plasma-sprayed tungsten (VPS-W 75 vol.%), a porous coating system with complex dual-scale microstructure. Both materials are designed for the future fusion reactor DEMO: W/CuCr1Zr as main constituent of a layered functionally graded joint between plasma-facing armor and heat sink whereas VPS-W for covering the first wall of the reactor vessel in direct contact with the plasma. The primary focus of this work was to investigate the mesoscopic material behaviour and the linkage to the macroscopic response in modeling failure and heat-transfer. Particular care was taken in validating and integrating simulation findings with experimental inputs. The solution of the local thermomechanical behaviour directly on the real material microstructure enabled meaningful insights into the complex failure mechanism of both materials. For W/CuCr1Zr full macroscopic stress-strain curves including the softening and failure part could be simulated and compared with experimental ones at different temperatures, finding an overall good agreement. The comparison of simulated and experimental macroscopic behaviour of plastic deformation and rupture also showed the possibility to indirectly estimate micro- and mesoscale material parameters. Both heat conduction and elastic behaviour of VPS-W have been extensively investigated. New capabilities of the Image-Based FEM could be shown: decomposition of the heat transfer reduction as due to the individual morphological phases and back-fitting of the reduced stiffness at interlamellar boundaries. The

  1. The effect of low-concentration inorganic materials on the behaviour of supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Imre, A.R., E-mail: imre@aeki.kfki.h [KFKI Atomic Energy Research Institute, POB 49, Budapest (Hungary); Hazi, G.; Horvath, A.; Maraczy, Cs. [KFKI Atomic Energy Research Institute, POB 49, Budapest (Hungary); Mazur, V.; Artemenko, S. [Odessa State Academy of Refrigeration, 1/3 Dvoryanslaya Str., 65026, Odessa (Ukraine)

    2011-01-15

    Research highlights: Small amount of inorganic materials (like corrosion products) can be dissolved in the supercritical water. Pseudo-critical temperature and other properties will be changed. Thermal and hydraulic behaviours of the SCW with small amount of contaminants differ in great extent from the behaviour of pure SCW. - Abstract: Supercritical water is a promising working fluid in the new Generation IV nuclear power plants. Due to the presence of the pseudo-critical line, the thermo-hydraulics (thermal and flow properties) and the physical chemistry of the supercritical water differ significantly from the pressurized hot water used in pressurized water reactors. In this study we would like to analyse the effect of small amount of inorganic material on the thermo-hydraulics of the supercritical water cooled nuclear reactors and other, non-nuclear supercritical water loops.

  2. Behaviour of LWR core materials under accident conditions. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-12-01

    At the invitation of the Government of the Russian Federation, following a proposal of the International Working Group on Water Reactor Fuel Performance and Technology, the IAEA convened a Technical Committee Meeting on Behaviour of LWR Core Materials Under Accident Conditions from 9 to 13 October 1995 in Dimitrovgrad to analyze and evaluate the behaviour of LWR core materials under accident conditions with special emphasis on severe accidents. In-vessel severe accidents phenomena were considered in detail, but specialized thermal hydraulic aspects as well as ex-vessel phenomena were outside the scope of the meeting. Forty participants representing eight countries attended the meeting. Twenty-three papers were presented and discussed during five sessions. Refs, figs, tabs

  3. Constitutive Theory Developed for Monolithic Ceramic Materials

    Science.gov (United States)

    Janosik, Lesley A.

    1998-01-01

    with these service conditions by developing a multiaxial viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (such as creep and stress relaxation) in monolithic structural ceramics. Using continuum principles of engineering mechanics, we derived the complete viscoplastic theory from a scalar dissipative potential function.

  4. Experimental creep behaviour determination of cladding tube materials under multi-axial loadings

    International Nuclear Information System (INIS)

    Grosjean, Catherine; Poquillon, Dominique; Salabura, Jean-Claude; Cloue, Jean-Marc

    2009-01-01

    Cladding tubes are structural parts of nuclear plants, submitted to complex thermomechanical loadings. Thus, it is necessary to know and predict their behaviour to preserve their integrity and to enhance their lifetime. Therefore, a new experimental device has been developed to control the load path under multi-axial load conditions. The apparatus is designed to determine the thermomechanical behaviour of zirconium alloys used for cladding tubes. First results are presented. Creep tests with different biaxial loadings were performed. Results are analysed in terms of thermal expansion and of creep strain. The anisotropy of the material is revealed and iso-creep strain curves are given.

  5. Tensile behaviour of geopolymer-based materials under medium and high strain rates

    Science.gov (United States)

    Menna, Costantino; Asprone, Domenico; Forni, Daniele; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Bozza, Anna; Prota, Andrea; Cadoni, Ezio

    2015-09-01

    Geopolymers are a promising class of inorganic materials typically obtained from an alluminosilicate source and an alkaline solution, and characterized by an amorphous 3-D framework structure. These materials are particularly attractive for the construction industry due to mechanical and environmental advantages they exhibit compared to conventional systems. Indeed, geopolymer-based concretes represent a challenge for the large scale uses of such a binder material and many research studies currently focus on this topic. However, the behaviour of geopolymers under high dynamic loads is rarely investigated, even though it is of a fundamental concern for the integrity/vulnerability assessment under extreme dynamic events. The present study aims to investigate the effect of high dynamic loading conditions on the tensile behaviour of different geopolymer formulations. The dynamic tests were performed under different strain rates by using a Hydro-pneumatic machine and a modified Hopkinson bar at the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The results are processed in terms of stress-strain relationships and strength dynamic increase factor at different strain-rate levels. The dynamic increase factor was also compared with CEB recommendations. The experimental outcomes can be used to assess the constitutive laws of geopolymers under dynamic load conditions and implemented into analytical models.

  6. Effect of cyclic loading on the viscoplastic behaviour of Zircaloy 4 cladding tubes

    International Nuclear Information System (INIS)

    Bouffioux, P.; Gabriel, B.; Soniak, A.; Mardon, J.P.

    1995-06-01

    Most of the electricity being generated by nuclear energy load follow and remote control have become normal operating modes in the French PWR. In addition, EDF is developing a strategy of fuel sub-assembly burnup extension. Those operating conditions will lead to cyclic straining of the Zircaloy cladding tube which could induce damages. Therefore, EDF, CEA, and FRAMATOME has started a joint R and D cooperative program in order to investigate the mechanical behaviour of Zircaloy cladding tubes under cyclic loading. This paper is dealing with the effect of a pre-cyclic loading on the plasticity properties of Zircaloy 4 cladding tubes. Load controlled cyclic tests were carried out at 350 deg. C and 0.5 Hz in both axial and hoop directions. The Woehler curves were determined. Sequential tests combining pre-cyclic loading to 50 and 75 % fraction life with tension were then performed. It has ben noticed that the pre-cycling loading does not change the plastic flow curve of the Zircaloy 4 cladding tubes and therefore does not induce observable macroscopic damage. It has been concluded that a linear cumulative damage rule like ΣΔN(σ)/N r(σ) is very conservative. (author)

  7. Material, behavioural, cultural and psychosocial factors in the explanation of socioeconomic inequalities in oral health.

    Science.gov (United States)

    Duijster, Denise; Oude Groeniger, Joost; van der Heijden, Geert J M G; van Lenthe, Frank J

    2017-12-19

    This study aimed to assess the contribution of material, behavioural, cultural and psychosocial factors in the explanation of socioeconomic inequalities (education and income) in oral health of Dutch adults. Cross-sectional data from participants (25-75 years of age) of the fifth wave of the GLOBE cohort were used (n = 2812). Questionnaires were used to obtain data on material factors (e.g. financial difficulties), behavioural factors (e.g. smoking), cultural factors (e.g. cultural activities) and psychosocial factors (e.g. psychological distress). Oral health outcomes were self-reported number of teeth and self-rated oral health (SROH). Mediation analysis, using multivariable negative binomial regression and logistic regression, was performed. Education level and income showed a graded positive relationship with both oral health outcomes. Adding material, behavioural, cultural and psychosocial factors substantially reduced the rate ratio for the number of teeth of the lowest education group from 0.79 (95% confidence interval (CI): 0.75-0.83) to 0.92 (95% CI: 0.87-0.97) and of the lowest income group from 0.80 (95% CI: 0.73-0.88) to 1.04 (95% CI: 0.96-1.14). Inclusion of all factors also substantially reduced the odds ratio for poor SROH of the lowest education group from 1.61 (95% CI: 1.28-2.03) to 1.12 (95% CI: 0.85-1.48) and of the lowest income groups from 3.18 (95% CI: 2.13-4.74) to 1.48 (95% CI: 0.90-2.45). In general, behavioural factors contributed most to the explanation of socioeconomic inequalities in adult oral health, followed by material factors. The contribution of cultural and psychosocial factors was relatively moderate. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association.

  8. From polycrystal to multi-crystal: ''numerical meso-scope'' development for a local analysis in the elasto-viscoplastic field

    International Nuclear Information System (INIS)

    Heraud, St.

    2000-01-01

    The knowledge of the local mechanical fields over several adjacent grains is needed for a better understanding of damage initiation and intergranular. failure in metallic polycrystals. This thesis aimed at the derivation of such fields through a 'numerical meso-scope': this simulation tool relies on the finite element analysis of a multi-crystalline pattern embedded in a large matrix whose mechanical behaviour is derived experimentally from classical tests performed on the studied metal. First, we derived macroscopic elastic-viscoplastic constitutive equations from tensile and creep tests on a AIS1316 stainless steel and we inferred from them the general form of similar, but crystallographic equations to be used for the single crystals; the corresponding parameters were determined by fitting the computed overall response of an aggregate made of 1000 grains with the macroscopic experimental one. We then investigated a creep-damaged area of the same steel and we simulated the same grain ensemble in the 'numerical meso-scope' so as to compare the computed normal stress on all grain boundaries with the observed de-bonded boundaries: this showed the most damaged boundaries to sustain the largest normal stress. Another application was concerned with the understanding of the origin of intergranular damage of aged AIS321 stainless steel. A similar approach was adopted with help of the meso-scope: it showed that observations could not be explained by a sole intragranular hardening as it is currently proposed in the literature. Thus the pertinence of the 'numerical meso-scope' concept can now be demonstrated, which opens on a number of new interesting perspectives. (author)

  9. Residual stresses in high temperature corrosion of pure zirconium using elasto-viscoplastic model: Application to the deflection test in monofacial oxidation

    Science.gov (United States)

    Fettré, D.; Bouvier, S.; Favergeon, J.; Kurpaska, L.

    2015-12-01

    The paper is devoted to modeling residual stresses and strains in an oxide film formed during high temperature oxidation. It describes the deflection test in isothermal high-temperature monofacial oxidation (DTMO) of pure zirconium. The model incorporates kinetics and mechanism of oxidation and takes into account elastic, viscoplastic, growth and chemical strains. Different growth strains models are considered, namely, isotropic growth strains given by Pilling-Bedworth ratio, anisotropic growth strains defined by Parise and co-authors and physically based model for growth strain proposed by Clarke. Creep mechanisms based on dislocation slip and core diffusion, are used. A mechanism responsible for through thickness normal stress gradient in the oxide film is proposed. The material parameters are identified using deflection tests under 400 °C, 500 °C and 600 °C. The effect of temperature on creep and stress relaxation is analyzed. Numerical sensitivity study of the DTMO experiment is proposed in order to investigate the effects of the initial foil thickness and platinum coating on the deflection curves.

  10. Influence of the temperature on materials electric behaviour: Understanding and students’ learning difficulties

    Directory of Open Access Journals (Sweden)

    Antonio García Carmona

    2006-03-01

    Full Text Available In this article, we defend that in the teaching/learning of the electricity, its contents must be associa ted with contents concerning the structure and behaviour of the matter. Thus, it is possible to understand some electricity topics as the influence of the temperature on electric behaviour of materials. In this sense, we propose a conceptual framework for its teaching, coherent with the Spanish Physics and Chemistry curriculum of Secondary Education. Likewise, we show the results of a research carried out with 60 pupils (age 14-15, about theirs understanding levels and theirs learning difficulties regarding considered topic.

  11. The effects of the finest grains on the mechanical behaviours of nanocrystalline materials

    International Nuclear Information System (INIS)

    Hu Lingling; Huo Ruxiao; Zhou Jianqiu; Wang Ying; Zhang Shu

    2012-01-01

    This article proposes a new constitutive model to account for effects of the finest grains, with sizes ranging from 2 to 4 nm, on the mechanical behaviours of nanocrystalline (NC) materials. In this model, the normal nanograins (ranging from 20 to 100 nm) were treated as though they were composed of a grain interior (GI) and a grain boundary (GB) affected zone (GBAZ). The finest grains were considered to be part of the GBAZ, denoted as super triple junctions (STJs). For the initial plastic deformation stage of the NC materials, a phenomenological constitutive equation was suggested to predict the deformation behaviours of the GBAZ. The formation of GB dislocation (GBD) pileups provides dramatic strain hardening in deformed NC materials and thereby enhances their ductility. Then, the constitutive equations to describe the plastic deformation of the GI and the GBAZ lattice region were established. In this stage, the GBAZ are already saturated with GBD pileups, and GI deformation is the dominant mechanism. Finally, the mechanical model for the NC materials with the finest grains was built using the self-consistent method, and an overall moderate “work hardening,” sustained over a long range of plastic strain, was predicted. The effects of TJs/STJs on the deformation mechanism were quantitatively analysed. The analysis demonstrated that the existence of the finest grains will simultaneously lead to good strength and good ductility.

  12. Development of a reactive burn model based upon an explicit visco-plastic pore collapse model

    Science.gov (United States)

    Bouton, Eric; Lefrançois, Alexandre; Belmas, Robert

    2015-06-01

    Our aim in this study is to develop a reactive burn model based upon a microscopic hot spot model to compute the initiation and shock to detonation of pressed TATB explosives. For the sake of simplicity, the hot spots are supposed to result from the viscoplastic collapse of spherical micro-voids inside the composition. Such a model has been incorporated in a lagrangian hydrodynamic code. In our calculations, 8 different pore diameters, ranging from 100 nm to 1.2 μm, have been taken into account and the porosity associated to each pore size has been deduced from the PBX-9502 void distribution derived from the SAXS. The last ingredient of our model is the burn rate that depends on two main variables. The first one is the shock pressure as proposed by the developers of the CREST model. The second one is the number of effective chemical reaction sites calculated by the microscopic model. Furthermore, the function of the reaction progress variable of the burn rate is similar to that in the SURF model proposed by Menikoff. Our burn rate has been calibrated by using pressure profile, material velocities wave forms obtained with embedded particle velocity gauges and run distance to detonation. The comparison between the numerical and experimental results is really good and sufficient to perform a wide variety of simulations including single, double shock waves and the desensitization phenomenon. In conclusion, future works are described.

  13. Melting behaviour of raw materials and recycled stone wool waste

    DEFF Research Database (Denmark)

    Schultz-Falk, Vickie; Agersted, Karsten; Jensen, Peter Arendt

    2018-01-01

    Stone wool is a widely used material for building insulation, to provide thermal comfort along with fire stability and acoustic comfort for all types of buildings. Stone wool waste generated either during production or during renovation or demolition of buildings can be recycled back into the sto...... wool melt production. This study investigates and compares the thermal response and melting behaviour of a conventional stone wool charge and stone wool waste. The study combines differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray diffraction (XRD). DSC reveals...... that the conventional charge and stone wool waste have fundamentally different thermal responses, where the charge experiences gas release, phase transition and melting of the individual raw materials. The stone wool waste experiences glass transition, crystallization and finally melting. Both DSC and HSM measurements...

  14. Research activities at JAERI on core material behaviour under severe accident conditions

    International Nuclear Information System (INIS)

    Uetsuka, H.; Katanashi, S.; Ishijima, K.

    1996-01-01

    At the Japan Atomic Energy Research Institute (JAERI), experimental studies on physical phenomena under the condition of a severe accident have been conducted. This paper presents the progress of the experimental studies on fuel and core materials behaviour such as the thermal shock fracture of fuel cladding due to quenching, the chemical interaction of core materials at high temperatures and the examination of TMI-2 debris. The mechanical behaviour of fuel rod with heavily embrittled cladding tube due to the thermal shock during delayed reflooding have been investigated at the Nuclear Safety Research Reactor (NSSR) of JAERI. A test fuel rod was heated in steam atmosphere by both electric and nuclear heating using the NSSR, then the rod was quenched by reflooding at the test section. Melting of core component materials having relatively low melting points and their eutectic reaction with other materials significantly influence on the degradation and melt down of fuel bundles during severe accidents. Therefore basic information on the reaction of core materials is necessary to understand and analyze the progress of core melting and relocation. Chemical interactions have been widely investigated at high temperatures for various binary systems of core component materials including absorber materials such as Zircaloy/Inconel, Zircaloy/stainless steel, Zircaloy/(Ag-In-Cd), stainless steel B 4 C and Zircaloy/B 4 C. It was found that the reaction generally obeyed a parabolic rate law and the reaction rate was determined for each reaction system. Many debris samples obtained from the degraded core of TMI-2 were transported to JAERI for numerous examinations and analyses. The microstructural examination revealed that the most part of debris was ceramic and it was not homogeneous in a microscopic sense. The thermal diffusivity data was also obtained for the temperature range up to about 1800K. The data from the large scale integral experiments were also obtained through the

  15. Social inequalities in self-rated health in Ukraine in 2007: the role of psychosocial, material and behavioural factors.

    Science.gov (United States)

    Platts, Loretta G; Gerry, Christopher J

    2017-04-01

    Despite Ukraine's large population, few studies have examined social inequalities in health. This study describes Ukrainian educational inequalities in self-rated health and assesses how far psychosocial, material and behavioural factors account for the education gradient in health. Data were analyzed from the 2007 wave of the Ukrainian Longitudinal Monitoring Survey. Education was categorized as: lower secondary or less, upper secondary and tertiary. In logistic regressions of 5451 complete cases, stratified by gender, declaring less than average health was regressed on education, before and after adjusting for psychosocial, material and behavioural factors. In analyses adjusted for socio-demographic characteristics, compared with those educated up to lower secondary level, tertiary education was associated with lower risk of less than average health for both men and women. Including material factors (income quintiles, housing assets, labour market status) reduced the association between education and health by 55-64% in men and 35-47% in women. Inclusion of health behaviours (physical activity, smoking, alcohol consumption and body mass index) reduced the associations by 27-30% in men and 19-27% in women; in most cases including psychosocial factors (marital status, living alone, trust in family and friends) did not reduce the size of the associations. Including all potential explanatory factors reduced the associations by 68-84% in men and 43-60% in women. The education gradient in self-rated health in Ukraine was partly accounted for by material and behavioural factors. In addition to health behaviours, policymakers should consider upstream determinants of health inequalities, such as joblessness and poverty. © The Author 2016. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  16. Debonding analyses in anisotropic materials with strain- gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2012-01-01

    A unit cell approach is adopted to numerically analyze the effect of plastic anisotropy on damage evolution in a micro-reinforced composite. The matrix material exhibit size effects and a visco-plastic anisotropic strain gradient plasticity model accounting for such size effects is adopted....... A conventional cohesive law is extended such that both the average as well as the jump in plastic strain across the fiber-matrix interface are accounted for. Results are shown for both conventional isotropic and anisotropic materials as well as for higher order isotropic and anisotropic materials...... with and without debonding. Generally, the strain gradient enhanced material exhibits higher load carry capacity compared to the corresponding conventional material. A sudden stress drop occurs in the macroscopic stress-strain response curve due to fiber-matrix debonding and the results show that a change in yield...

  17. Validation of a New Elastoplastic Constitutive Model Dedicated to the Cyclic Behaviour of Brittle Rock Materials

    Science.gov (United States)

    Cerfontaine, B.; Charlier, R.; Collin, F.; Taiebat, M.

    2017-10-01

    Old mines or caverns may be used as reservoirs for fuel/gas storage or in the context of large-scale energy storage. In the first case, oil or gas is stored on annual basis. In the second case pressure due to water or compressed air varies on a daily basis or even faster. In both cases a cyclic loading on the cavern's/mine's walls must be considered for the design. The complexity of rockwork geometries or coupling with water flow requires finite element modelling and then a suitable constitutive law for the rock behaviour modelling. This paper presents and validates the formulation of a new constitutive law able to represent the inherently cyclic behaviour of rocks at low confinement. The main features of the behaviour evidenced by experiments in the literature depict a progressive degradation and strain of the material with the number of cycles. A constitutive law based on a boundary surface concept is developed. It represents the brittle failure of the material as well as its progressive degradation. Kinematic hardening of the yield surface allows the modelling of cycles. Isotropic softening on the cohesion variable leads to the progressive degradation of the rock strength. A limit surface is introduced and has a lower opening than the bounding surface. This surface describes the peak strength of the material and allows the modelling of a brittle behaviour. In addition a fatigue limit is introduced such that no cohesion degradation occurs if the stress state lies inside this surface. The model is validated against three different rock materials and types of experiments. Parameters of the constitutive laws are calibrated against uniaxial tests on Lorano marble, triaxial test on a sandstone and damage-controlled test on Lac du Bonnet granite. The model is shown to reproduce correctly experimental results, especially the evolution of strain with number of cycles.

  18. Drying and moisture resorption behaviour of various electrode materials and separators for lithium-ion batteries

    Science.gov (United States)

    Stich, Michael; Pandey, Nisrit; Bund, Andreas

    2017-10-01

    The drying behaviour and water uptake of a variety of commonly used electrode materials (graphite, LiFePO4, LiMn2O4, LiCoO2, Li(NiCoMn)O2) and separators (polyolefin, glass fibre) for lithium-ion batteries (LIBs) are investigated. The drying experiments are carried out using a coulometric Karl Fischer titrator in combination with a vaporiser. This setup leads to a highly sensitive and precise method to quantify water amounts in the microgram range in solid materials. Thereby the mass specific drying behaviour at RT and 120 °C is determined as well as the water resorption of the investigated materials in conditioned air atmosphere (T: 25 °C, RH: 40%). By extracting characteristic water detection rate curves for the investigated materials, a method is developed to predict the water detection beyond the runtime of the experiment. The results help optimising drying procedures of LIB components and thus can save time and costs. It is also shown, that water contaminations in graphite/LiFePO4 coin cells with a LiPF6 based electrolyte lead to a faster capacity fade during cycling and a significant change of the cell impedance.

  19. The effect of strain rate on the viscoplastic behavior of isotactic polypropylene at finite strains

    DEFF Research Database (Denmark)

    Drozdov, Aleksey D.; Christiansen, Jesper de Claville

    2002-01-01

    prior to testing. A constitutive model is developed for the viscoplastic behavior of isotactic polypropylene at finite strains. A semicrystalline polymer is treated as equivalent heterogeneous network of chains bridged by permanent junctions (physical cross-links and entanglements). The network...... is thought of as an ensemble of meso-regions connected with each other by links (lamellar blocks). In the sub-yield region of deformations, junctions between chains in meso-domains slide with respect to their reference positions (which reflects sliding of nodes in the amorphous phase and fine slip...... responses of non-annealed and annealed specimens: (i) necking of samples not subjected to thermal treatment precedes coarse slip and fragmentation of lamellar blocks, whereas cold-drawing of annealed specimens up to a longitudinal strain of 80% does not induce spatial heterogeneity of their deformation; (ii...

  20. Elasto-viscoplastic self consistent modeling of the ambient temperature plastic behavior of periclase deformed up to 5.4 GPa

    Science.gov (United States)

    Lin, F.; Hilairet, N.; Raterron, P.; Addad, A.; Immoor, J.; Marquardt, H.; Tomé, C. N.; Miyagi, L.; Merkel, S.

    2017-11-01

    Anisotropy has a crucial effect on the mechanical response of polycrystalline materials. Polycrystal anisotropy is a consequence of single crystal anisotropy and texture (crystallographic preferred orientation) development, which can result from plastic deformation by dislocation glide. The plastic behavior of polycrystals is different under varying hydrostatic pressure conditions, and understanding the effect of hydrostatic pressure on plasticity is of general interest. Moreover, in the case of geological materials, it is useful for understanding material behavior in the deep earth and for the interpretation of seismic data. Periclase is a good material to test because of its simple and stable crystal structure (B1), and it is of interest to geosciences, as (Mg,Fe)O is the second most abundant phase in Earth's lower mantle. In this study, a polycrystalline sintered sample of periclase is deformed at ˜5.4 GPa and ambient temperature, to a total strain of 37% at average strain rates of 2.26 × 10-5/s and 4.30 × 10-5/s. Lattice strains and textures in the polycrystalline sample are recorded using in-situ synchrotron x-ray diffraction and are modeled with Elasto-Viscoplastic Self Consistent (EVPSC) methods. Parameters such as critical resolved shear stress (CRSS) for the various slip systems, strain hardening, initial grain shape, and the strength of the grain-neighborhood interaction are tested in order to optimize the simulation. At the beginning of deformation, a transient maximum occurs in lattice strains, then lattice strains relax to a "steady-state" value, which, we believe, corresponds to the true flow strength of periclase. The "steady state" CRSS of the {" separators="| 110 } ⟨" separators="| 1 1 ¯ 0 ⟩ slip system is 1.2 GPa, while modeling the transient maximum requires a CRSS of 2.2 GPa. Interpretation of the overall experimental data via modeling indicates dominant {" separators="| 110 } ⟨" separators="| 1 1 ¯ 0 ⟩ slip with initial strain

  1. BEHAVIOUR OF BACKFILL MATERIALS FOR ELECTRICAL GROUNDING SYSTEMS UNDER HIGH VOLTAGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    S. C. LIM

    2015-06-01

    Full Text Available Backfill materials like Bentonite and cement are effective in lowering grounding resistance of electrodes for a considerable period. During lightning, switching impulses and earth fault occurrences in medium and high voltage networks, the grounding system needs to handle extremely high currents either for a short duration or prolonged period respectively. This paper investigates the behaviour of bentonite, cement and sand under impulse and alternating high voltage (50Hz conditions. Fulguritic-formation was observed in all materials under alternating high voltage. The findings reveal that performance of grounding systems under high voltage conditions may significantly change from the outcomes anticipated at design stage.

  2. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation. A new elasto-viscoplastic constitutive model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ming-Song; Li, Kuo-Kuo [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China); Lin, Y.C. [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China); Central South University, Light Alloy Research Institute, Changsha (China); Chen, Jian [Changsha University of Science and Technology, School of Energy and Power Engineering, Key Laboratory of Efficient and Clean Energy Utilization, Changsha (China)

    2016-09-15

    The nonlinear unloading behavior of a typical Ni-based superalloy is investigated by hot compressive experiments with intermediate unloading-reloading cycles. The experimental results show that there are at least four types of unloading curves. However, it is found that there is no essential difference among four types of unloading curves. The variation curves of instantaneous Young's modulus with stress for all types of unloading curves include four segments, i.e., three linear elastic segments (segments I, II, and III) and one subsequent nonlinear elastic segment (segment IV). The instantaneous Young's modulus of segments I and III is approximately equal to that of reloading process, while smaller than that of segment II. In the nonlinear elastic segment, the instantaneous Young's modulus linearly decreases with the decrease in stress. In addition, the relationship between stress and strain rate can be accurately expressed by the hyperbolic sine function. This study includes two parts. In the present part, the characters of unloading curves are discussed in detail, and a new elasto-viscoplastic constitutive model is proposed to describe the nonlinear unloading behavior based on the experimental findings. While in the latter part (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0385-0, 2016), the effects of deformation temperature, strain rate, and pre-strain on the parameters of this new constitutive model are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate, and pre-strain. (orig.)

  3. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation. A new elasto-viscoplastic constitutive model

    International Nuclear Information System (INIS)

    Chen, Ming-Song; Li, Kuo-Kuo; Lin, Y.C.; Chen, Jian

    2016-01-01

    The nonlinear unloading behavior of a typical Ni-based superalloy is investigated by hot compressive experiments with intermediate unloading-reloading cycles. The experimental results show that there are at least four types of unloading curves. However, it is found that there is no essential difference among four types of unloading curves. The variation curves of instantaneous Young's modulus with stress for all types of unloading curves include four segments, i.e., three linear elastic segments (segments I, II, and III) and one subsequent nonlinear elastic segment (segment IV). The instantaneous Young's modulus of segments I and III is approximately equal to that of reloading process, while smaller than that of segment II. In the nonlinear elastic segment, the instantaneous Young's modulus linearly decreases with the decrease in stress. In addition, the relationship between stress and strain rate can be accurately expressed by the hyperbolic sine function. This study includes two parts. In the present part, the characters of unloading curves are discussed in detail, and a new elasto-viscoplastic constitutive model is proposed to describe the nonlinear unloading behavior based on the experimental findings. While in the latter part (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0385-0, 2016), the effects of deformation temperature, strain rate, and pre-strain on the parameters of this new constitutive model are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate, and pre-strain. (orig.)

  4. Creep age forming of Al-Cu-Li alloy: Application to thick sheet forming of double curvature aircraft panel

    Directory of Open Access Journals (Sweden)

    Younes Wael

    2016-01-01

    Full Text Available Creep-age-forming of a thick Al-Cu-Li sheet is studied. An industrial stamping press is used to form a double curvature panel at a reduced scale. This forming, which includes several relaxation steps, is modelled using ABAQUS. A material model describing an elasto-viscoplastic behaviour with anisotropy effect has been identified and implemented in ABAQUS using Fortran subroutine. The numerical model is validated by comparing experiments and numerical results in terms of deformed shapes and an improved forming cycle is suggested.

  5. The effects of perturbations on the strain distribution in numerical simulations - elasto-viscoplastic modeling of boudinage as a case study

    Science.gov (United States)

    Peters, Max; Karrech, Ali; Poulet, Thomas; Herwegh, Marco; Regenauer-Lieb, Klaus

    2014-05-01

    During necking of a mechanically stiffer layer embedded in a weaker matrix, relatively large amounts of strain localize in small areas. As this deformation style appears under distinct geological conditions, necking phenomena, e.g. boudinaged veins, are associated with a variety of deformation modes. So far, there exists rather limited knowledge about the origin of instabilities and their role as precursory structures, i.e. strong localization of elastic energy affecting further plastic deformation (e.g. Regenauer-Lieb & Yuen, 1998; 2004; Karrech et al., 2011a). We applied the finite element solver ABAQUS in order to investigate the 2-D strain distribution in layers including different mechanical material properties during plane strain co-axial deformation. First, linear perturbation analyses were performed in order to evaluate the imperfection sensitivity in the elastic and viscous regimes. We perform a classical modal analysis to determine the natural mode shapes and frequencies of our geological structure during arbitrary vibrations. This analysis aims at detecting the eigenmodes of the geological structure, which are sinusoidal vibrations with geometry specific natural modal shapes and frequencies. The eigenvalues represent the nodal points where the onset of (visco)-elasto-plastic localization can initiate in the structure (Rice, 1977). The eigenmodes, eigenvalues and eigenvectors are highly sensitive to the layer-box' aspect ratio and differences in Young's moduli, or effective viscosity, respectively. Boundary effect-free strain propagation occurs for layer-box aspect ratios smaller than 1:10. Second, these preloading structures were used as seeds for imperfections in elasto-viscoplastic numerical modeling of continuous necking of a coarse-grained mineral layer embedded in a finer-grained matrix (pinch-and-swell type of boudinage), following the thermo-mechanical coupling of grain size evolutions by Herwegh et al. (in press). The evolution of symmetric necks

  6. Effects of loose housing and the provision of alternative nesting material on peri-partum sow behaviour and piglet survival

    NARCIS (Netherlands)

    Bolhuis, J.E.; Raats-van den Boogaard, A.M.E.; Hoofs, A.I.J.; Soede, N.M.

    2018-01-01

    Sows are strongly motivated to perform nestbuilding behaviour before parturition. This behaviour is often restricted in commercial systems due to confinement of the sow and lack of suitable nesting material to be used on slatted floors. This study aimed to investigate effects of loose vs. crated

  7. Influence of pH and oxygen content of buffer solutions on the corrosion behaviour of metallic materials

    International Nuclear Information System (INIS)

    Wiedemann, K.H.

    1977-05-01

    The application of solutions to the decontamination of materials in nuclear installations is based on the condition that their corrosion behaviour is clearly understood. Since electrochemical corrosion is due to cathodic and anodic partial reactions which are influenced in different ways by the pH of the solution and the oxygen content it is suggested that the results of electrochemical experiments with buffer solutions be used as a model for predicting the corrosion behaviour of materials in other solutions. In the tests described here potentio-kinetic current-potential-curves have been traced and galvanic corrosion tests have been made. The results obtained in ascorbic acid, potassium hydrogen phthalate, ammonium citrate and acetate, sodium and potassium tartrate, ammonium hydrogen phosphate, sodium carbonate, hexamethylene tetramin, ethylene diamine enable - on the basis of summarized current-potential-curves - the metals studied to be classified in four groups characterized by clear differences concerning the influence of pH on the corrosion behaviour. (Auth.)

  8. Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids

    Science.gov (United States)

    Mohan, Nisha

    Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of

  9. The shock behaviour of a SiO2-Li2O transparent glass-ceramic armour material

    International Nuclear Information System (INIS)

    Pickup, I.M.; Millett, J.C.F.; Bourne, N.K.

    2004-01-01

    The dynamic behaviour of a transparent glass-ceramic material, Transarm, developed by Alstom UK for the UK MoD has been studied. Plate impact experiments have been used to measure the materials Hugoniot characteristics and failure behaviour. Longitudinal stresses have been measured using embedded and back surface mounted Manganin gauges. Above a threshold stress of ca. 4 GPa, the longitudinal stress histories exhibit a significant secondary rise, prior to attaining their Hugoniot stress. Lateral stresses were also measured by embedding Manganin gauges in longitudinal cuts. Significant secondary rises in stress were observed when the applied longitudinal stress exceeded the 4 GPa threshold, indicating the presence of a failure front. The dynamic shear strength of the glass has been measured using the longitudinal and lateral data. Even though significant strength drops have been measured before and behind the failure front, the material has a high post-failure strength compared to non- crystalline glasses

  10. The Shock Behaviour of a SiO2-Li2O Transparent Glass-Ceramic Armour Material

    Science.gov (United States)

    Pickup, I. M.; Millett, J. C. F.; Bourne, N. K.

    2004-07-01

    The dynamic behaviour of a transparent glass-ceramic material, Transarm, developed by Alstom UK for the UK MoD has been studied. Plate impact experiments have been used to measure the materials Hugoniot characteristics and failure behaviour. Longitudinal stresses have been measured using embedded and back surface mounted Manganin gauges. Above a threshold stress of ca. 4 GPa, the longitudinal stress histories exhibit a significant secondary rise, prior to attaining their Hugoniot stress. Lateral stresses were also measured by embedding Manganin gauges in longitudinal cuts. Significant secondary rises in stress were observed when the applied longitudinal stress exceeded the 4 GPa threshold, indicating the presence of a failure front. The dynamic shear strength of the glass has been measured using the longitudinal and lateral data. Even though significant strength drops have been measured before and behind the failure front, the material has a high post-failure strength compared to non- crystalline glasses.

  11. Strength behaviour of sintered steel from the view of design-relevant material data

    International Nuclear Information System (INIS)

    Sonsino, C.M.; Esper, F.J.; Leuze, G.

    1982-01-01

    A reliable design of sintered components and an aimed material's selection requires the knowledge of designrelevant material data as Cyclic stress-strain-curves, crack propagation and fracture toughness properties as well as statistically evaluated S-N-curves, because conventional material data as tensile strength, monotonic yield strength, elongation, area reduction and impact strength can lead to a false estimation of the material's fatigue behaviour. For this reason the powder metallurgical industry began to determine design-relevant material data on the example of the porous Fe-Cu-C- and Fe-Cu-Ni-alloys. The fatigue tests with notched specimen and different modes of loading show that porous sintered parts having mechanical notches are less sensitive to external notches than wrought steel, because crack-propagation is delayed by pores. The possibility to manufacture cyclic hardening alloys, their relative notch-insensitivity and with wrought steel comparable scatter of fatigue properties show the importance of sintered alloys as alternative materials. (orig.) [de

  12. Prehistory effects on the VHCF behaviour of engineering metallic materials with different strengthening mechanisms

    International Nuclear Information System (INIS)

    Zimmermann, M; Stoecker, C; Mueller-Bollenhagen, C; Christ, H-J

    2010-01-01

    Engineering materials often undergo a plastic deformation during manufacturing, hence the effect of a predeformation on the subsequent fatigue behaviour has to be considered. The effect of a prestrain on the microstructure is strongly influenced by the strengthening mechanism. Different mechanisms are relevant in the materials applied in this study: a solid-solution hardened and a precipitation-hardened nickel-base alloy and a martensite-forming metastable austenitic steel. Prehistory effects become very important, when fatigue failure at very high number of cycles (N > 10 7 ) is considered, since damage mechanisms occur different to those observed in the range of conventional fatigue limit. With the global strain amplitude being well below the static elastic limit, only inhomogeneously distributed local plastic deformation takes place in the very high cycle fatigue (VHCF) region. The dislocation motion during cyclic loading thus depends on the effective flow stress, which is defined by the global cyclic stress-strain relation and the local stress distribution as a consequence of the interaction between dislocations and precipitates, grain boundaries, martensite phases and micro-notches. As a consequence, no significant prehistory effect was observed for the VHCF behaviour of the solid-solution hardening alloy, while the precipitation-hardening alloy shows a perceptible prehistory dependence. In the case of the austenitic steel, strain-hardening and the volume fraction of the deformation-induced martensite dominate the fatigue behaviour.

  13. Protective Behaviour of Citizens to Transport Accidents Involving Hazardous Materials: A Discrete Choice Experiment Applied to Populated Areas nearby Waterways.

    Directory of Open Access Journals (Sweden)

    Esther W de Bekker-Grob

    Full Text Available To improve the information for and preparation of citizens at risk to hazardous material transport accidents, a first important step is to determine how different characteristics of hazardous material transport accidents will influence citizens' protective behaviour. However, quantitative studies investigating citizens' protective behaviour in case of hazardous material transport accidents are scarce.A discrete choice experiment was conducted among subjects (19-64 years living in the direct vicinity of a large waterway. Scenarios were described by three transport accident characteristics: odour perception, smoke/vapour perception, and the proportion of people in the environment that were leaving at their own discretion. Subjects were asked to consider each scenario as realistic and to choose the alternative that was most appealing to them: staying, seeking shelter, or escaping. A panel error component model was used to quantify how different transport accident characteristics influenced subjects' protective behaviour.The response was 44% (881/1,994. The predicted probability that a subject would stay ranged from 1% in case of a severe looking accident till 62% in case of a mild looking accident. All three transport accident characteristics proved to influence protective behaviour. Particularly a perception of strong ammonia or mercaptan odours and visible smoke/vapour close to citizens had the strongest positive influence on escaping. In general, 'escaping' was more preferred than 'seeking shelter', although stated preference heterogeneity among subjects for these protective behaviour options was substantial. Males were less willing to seek shelter than females, whereas elderly people were more willing to escape than younger people.Various characteristics of transport accident involving hazardous materials influence subjects' protective behaviour. The preference heterogeneity shows that information needs to be targeted differently depending on

  14. Fundamental principles of the cyclic behaviour and the fatigue damage for metallic materials

    International Nuclear Information System (INIS)

    Vogt, J.B.

    2001-01-01

    The aim of this paper is a pedagogic presentation of the basic concepts concerning the cyclic behaviour and the fatigue damage of metallic materials in order to offer a better understand of mechanisms. The following aspects are taking into account: the fatigue fracture, the cyclic accommodation, the dislocations structures, the surface and bulk cracks and the influence of the medium. (A.L.B.)

  15. The Microwave Noise Behaviour Of Dual Material Gate Silicon On Insulator

    Science.gov (United States)

    Jafar, N.; Soin, N.

    2009-06-01

    This work presents the noise behaviour due to the applied Dual Material Gate (DMG) on the 75 nm n-channel Silicon On Insulator (SOI) device operating in the fully depletion mode, particularly for microwave circuit design. Influences of DMG properties namely the gate length ratio (L1:L2) and gate material workfunction difference (ΔΦM) as well as structural and operational parameters which are silicon thickness (TSi) and threshold voltage (VTH) setting variation on the noise performance were carried out on simulation basis using ATLAS 2D. Results show better noise performance in DMG as compare to the standard gate structure of FD-SOI devices. Higher VTH for DMG design is recommended for minimized noise figure in line with the advantage of inverse VTH roll-off characteristics for short channel effects suppression.

  16. Center of Excellence for Materials Research

    National Research Council Canada - National Science Library

    Khan, Akhtar

    1998-01-01

    .... The four tasks are, 'Thermomechanics of Fiber - Reinforced Elastomeric Composites', Evaluations and Modification of Constitutive Models for Finite Viscoplastic Deformation Related to Armor Design...

  17. Contribution to the study of cementitious and clayey materials behaviour in the context of deep geological disposal: transport aspect, durability and thermo-hydro-mechanical behaviour

    International Nuclear Information System (INIS)

    Galle, C.

    2011-07-01

    Deep geological formation disposal is the reference solution in France for the management of medium and high activities radioactive waste. In this context, to demonstrate the feasibility of such a disposal, it is necessary to evaluate the long-term performances and the behaviour of the materials engaged in the elaboration of engineered barrier systems (EBS) and waste package elements. The studies mentioned and synthesized in this HDR thesis focused mainly on the convective transport of gas (under pressure gradient) in cementitious matrices, by coupling microstructure aspect (porosity/pores sizes distribution) and hydric environment (water saturation). Works on physico-chemical durability allowed the description of the chemical degradation of cement-based materials in extreme conditions using ammonium nitrate, to increase the materials damaging processes in order to identify functional margins. In relationship with the interim storage management phase, studies related to the behaviour and characterization of concrete submitted to high temperatures (up to 400 C) were also described. Finally, results concerning the gas (H 2 ) overpressure resistance of engineered barriers made of compacted clays were summarized. (author)

  18. The emergence of complex behaviours in molecular magnetic materials.

    Science.gov (United States)

    Goss, Karin; Gatteschi, Dante; Bogani, Lapo

    2014-09-14

    Molecular magnetism is considered an area where magnetic phenomena that are usually difficult to demonstrate can emerge with particular clarity. Over the years, however, less understandable systems have appeared in the literature of molecular magnetic materials, in some cases showing features that hint at the spontaneous emergence of global structures out of local interactions. This ingredient is typical of a wider class of problems, called complex behaviours, where the theory of complexity is currently being developed. In this perspective we wish to focus our attention on these systems and the underlying problematic that they highlight. We particularly highlight the emergence of the signatures of complexity in several molecular magnetic systems, which may provide unexplored opportunities for physical and chemical investigations.

  19. Corrosion behaviour of container materials for geological disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Accary, A.

    1985-01-01

    The disposal of high level radioactive waste in geological formations, based on the multibarrier concept, may include the use of a container as one of the engineered barriers. In this report the requirements imposed on this container and the possible degradation processes are reviewed. Further on an overview is given of the research being carried out by various research centres in the European Community on the assessment of the corrosion behaviour of candidate container materials. The results obtained on a number of materials under various testing conditions are summarized and evaluated. As a result, three promising materials have been selected for a detailed joint testing programme. It concerns two highly corrosion resistant alloys, resp. Ti-Pd (0.2 Pd%) and Hastelloy C4 and one consumable material namely a low carbon steel. Finally the possibilities of modelling the corrosion phenomena are discussed

  20. Decoring Behaviour of Chosen Moulding Materials with Alkali Silicate Based Inorganic Binders

    Directory of Open Access Journals (Sweden)

    Conev M.

    2017-06-01

    Full Text Available This paper contains basic information about new processes for cores for cylinder heads production with alkali silicate based inorganic binders. Inorganic binders are coming back to the foreground due to their ecologically friendly nature and new technologies for cores production and new binder systems were developed. Basically these binder systems are modified alkali silicates and therefore they carry some well-known unfavourable properties with their usage. To compensate these disadvantages, the binder systems are working with additives which are most often in powder form and are added in the moulding material. This paper deals with decoring behaviour of different moulding sands as well as the influence of chosen additives on knock-out properties in laboratory terms. For this purpose, specific methods of specimen production are described. Developed methods are then used to compare decoring behaviour of chosen sands and binder systems.

  1. Laser Shock Processing of Metallic Materials: Coupling of Laser-Plasma Interaction and Material Behaviour Models for the Assessment of Key Process Issues

    International Nuclear Information System (INIS)

    Ocana, J. L.; Morales, M.; Molpeceres, C.; Porro, J. A.

    2010-01-01

    Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm 2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals. The main advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Although significant work from the experimental side has been contributed to explore the optimum conditions of application of the treatments and to assess their ultimate capability to provide enhanced mechanical behaviour to work-pieces of typical materials, only limited attempts have been developed in the way of full comprehension and predictive assessment of the characteristic physical processes and material transformations with a specific consideration of real material properties. In the present paper, a review on the physical issues dominating the development of LSP processes from a high intensity laser-matter interaction point of view is presented along with the theoretical and computational methods developed by the authors for their predictive assessment and practical results at laboratory scale on the application of the technique to different materials.

  2. Analysis of the elastic behaviour of nonclassical nonlinear mesoscopic materials in quasi-static experiments

    International Nuclear Information System (INIS)

    Ruffino, E.; Scalerandi, M.

    2000-01-01

    As discovered by recent quasi-static and dynamic resonance experiments, the classical nonlinear theory fails in describing the hysteretic behaviour of nonlinear mesoscopic materials like rocks, concrete, etc. The paper applies the local interaction simulation approach (LISA) for studying such kind of nonclassical nonlinearity. To this purpose, in the LISA treatment of ultrasonic wave propagation has been included a phenomenological model, based on the PM space approach, of the local mesoscopic features of rocks and other materials with localized damages. A quantitative comparison of simulation and experimental results in quasi-static experiments is also presented

  3. Mechanical Behaviour of Conventional Materials at Experimental Conditions of Deep Drawing Technological Process

    Science.gov (United States)

    Nikolov, N.; Pashkouleva, D.; Kavardzhikov, V.

    2012-09-01

    The paper deals with experimental investigations on the mechanical behaviour of body-centred-cubic (BCC) and face-centred-cubic (FCC)-conventionally structured sheet metalic-metalic materials under stress-strain conditions of a deep drawing process determined by a coefficient close to the limiting one for Steel 08 and punch diameter of 50 mm. The mechanical characteristics of the investigated materials are identified by one-dimensional tension tests. The materials' responses, as results of identical loading conditions, are described by the change of blank sizes and characteristics of the forming processes. The chosen deformation path ensures obtaining a qualitative steel piece and leads to failures of aluminium and brass blanks. The reported results could be useful for investigations and predictions of the mechanical responses of such type metallic structures applying microscopic instrumented observations and numerical simulations.

  4. Characterization of impact behaviour of armour plate materials

    Science.gov (United States)

    Bassim, M. N.; Bolduc, M.; Nazimuddin, G.; Delorme, J.; Polyzois, I.

    2012-08-01

    Three armour plate materials, including two steels, namely HHA and Mars 300, and an aluminium alloy 5083, were studied under impact loading to determine their behaviour and the mechanisms of deformation that lead to failure. The experimental testing was carried out using either a direct impact compression Split Hopkinson Bar or a torsion Hopkinson Bar. The impact properties and stress-strain cures were obtained as a function of the impact momentum in compression and the angle of twist in torsion. It was found that at the high strain rates developed in the specimen during the tests, the deformation occurs by the formation of adiabatic shear bands (ASBs) which may lead to the formation of cracks within the bands and the ultimate failure of the specimens. It was also found that below a certain impact momentum, the deformation is more uniform and no ASBs are formed. Also, ASBs are more likely to form in the BCC metals such as the two steels while diffuse ASBs associated with plastic flow are exhibited in the 5083 aluminum alloy. Microstructural techniques ranging from optical microscopy to atomic force microscopy (AFM) were used to study the topography of the ASBs. Also, modelling of the formation was performed. The results provide a comprehensive understanding of the role of ASBs in the failure of these materials.

  5. Characterization of impact behaviour of armour plate materials

    Directory of Open Access Journals (Sweden)

    Nazimuddin G.

    2012-08-01

    Full Text Available Three armour plate materials, including two steels, namely HHA and Mars 300, and an aluminium alloy 5083, were studied under impact loading to determine their behaviour and the mechanisms of deformation that lead to failure. The experimental testing was carried out using either a direct impact compression Split Hopkinson Bar or a torsion Hopkinson Bar. The impact properties and stress-strain cures were obtained as a function of the impact momentum in compression and the angle of twist in torsion. It was found that at the high strain rates developed in the specimen during the tests, the deformation occurs by the formation of adiabatic shear bands (ASBs which may lead to the formation of cracks within the bands and the ultimate failure of the specimens. It was also found that below a certain impact momentum, the deformation is more uniform and no ASBs are formed. Also, ASBs are more likely to form in the BCC metals such as the two steels while diffuse ASBs associated with plastic flow are exhibited in the 5083 aluminum alloy. Microstructural techniques ranging from optical microscopy to atomic force microscopy (AFM were used to study the topography of the ASBs. Also, modelling of the formation was performed. The results provide a comprehensive understanding of the role of ASBs in the failure of these materials.

  6. Formation of ridges in a stable lithosphere in mantle convection models with a viscoplastic rheology.

    Science.gov (United States)

    Rozel, A; Golabek, G J; Näf, R; Tackley, P J

    2015-06-28

    Numerical simulations of mantle convection with a viscoplastic rheology usually display mobile, episodic or stagnant lid regimes. In this study, we report a new convective regime in which a ridge can form without destabilizing the surrounding lithosphere or forming subduction zones. Using simulations in 2-D spherical annulus geometry, we show that a depth-dependent yield stress is sufficient to reach this ridge only regime. This regime occurs when the friction coefficient is close to the critical value between mobile lid and stagnant lid regimes. Maps of convective regime as a function of the parameters friction coefficients and depth dependence of viscosity are provided for both basal heating and mixed heating situations. The ridge only regime appears for both pure basal heating and mixed heating mode. For basal heating, this regime can occur for all vertical viscosity contrasts, while for mixed heating, a highly viscous deep mantle is required.

  7. Behavior and failure of fresh, hydrided and irradiated Zircaloy-4 fuel claddings under RIA conditions

    International Nuclear Information System (INIS)

    Le Saux, M.

    2008-01-01

    The purpose of this study is to characterize and simulate the mechanical behaviour and failure of fresh, hydrided and irradiated (in pressurized water reactors) cold-worked stress relieved Zircaloy-4 fuel claddings under reactivity initiated accident conditions. A model is proposed to describe the anisotropic viscoplastic mechanical behavior of the material as a function of temperature (from 20 C up to 1100 C), strain rate (from 3.10 -4 s -1 up to 5 s -1 ), fluence (from 0 up to 1026 n.m -2 ) and irradiation conditions. Axial tensile, hoop tensile, expansion due to compression and hoop plane strain tensile tests are performed at 25 C, 350 C and 480 C in order to analyse the anisotropic plastic and failure properties of the non-irradiated material hydrided up to 1200 ppm. Material strength and strain hardening depend on temperature and hydrogen in solid solution and precipitated hydride contents. Plastic anisotropy is not significantly modified by hydrogen. The material is embrittled by hydrides at room temperature. The plastic strain that leads to hydride cracking decreases with increasing hydrogen content. The material ductility, which increases with increasing temperature, is not deteriorated by hydrogen at 350 C and 480 C. Macroscopic fracture modes and damage mechanisms depend on specimen geometry, temperature and hydrogen content. A Gurson type model is finally proposed to describe both the anisotropic viscoplastic behavior and the ductile fracture of the material as a function of temperature and hydrogen content. (author) [fr

  8. Characteristics of Laminar Flow in Pipelines of Homogenous Alum Sludge Approximated with use of the Vočadlo Model for Viscoplastic Liquids

    Directory of Open Access Journals (Sweden)

    Kempiński Jan

    2014-12-01

    Full Text Available The study presents the manners of determination of the Darcy friction factor λ for a homogenous hydromixture of alum sludge of varied hydration and temperature for the laminar flow zone. The rheological evaluation of the hydromixture as a viscoplastic body has been conducted with use of measurements of viscosity. The curves of flow were approximated with use of the generalized Vočadlo model. The Darcy friction factor λ of the pipeline was determined with use of the non-dimensional criterion λ(Regen and λ(Re, He.

  9. Thermomechanical theory of materials undergoing large elastic and viscoplastic deformation (AWBA development program)

    International Nuclear Information System (INIS)

    Martin, S.E.; Newman, J.B.

    1980-11-01

    A thermomechanical theory of large deformation elastic-inelastic material behavior is developed which is based on a multiplicative decomposition of the strain. Very general assumptions are made for the elastic and inelastic constitutive relations and effects such as thermally-activated creep, fast-neutron-flux-induced creep and growth, annealing, and strain recovery are compatible with the theory. Reduced forms of the constitutive equations are derived by use of the second law of thermodynamics in the form of the Clausius-Duhem inequality. Observer invariant equations are derived by use of an invariance principle which is a generalization of the principle of material frame indifference

  10. Evaluation the homogenisation behaviour of Sm-Fe-Nb materials by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sinan, S. A.; Muryaed, Y.; Alhweg, F. A.

    2004-01-01

    The microstructure of cast and annealed Sm-Fe-Nb materials were investigated by Moessbauer spectroscopy. The aim of the present work is to study the effect of Nb additions upon the microstructure of Sm 2 Fe 17 material and evaluation the homogenisation behaviour of different Sm-Fe-Nb materials. The niobium free cast material consisting of the Sm 2 Fe 17 phase and significant amounts of the free iron (α -Fe). Therefore, the homogenisation process is necessary to eliminate the free iron and produce a single Sm 2 Fe 17 phase material. This process takes long annealing time, up to seven days. The Sm 9 .5 Fe 8 7.5 Nb 3 alloy contains the lowest amount of α-Fe among, the Sm-Fe-Nb materials. Thus the homogenisation step was carried out with treatment time (12 hours) smaller than the reported annealing time of Nb-free material (Sm 2 Fe 17 ). Therefore, the addition of at 3% Nb reduces the manufacturing cost of the Sm 2 Fe 17 and makes this based material for permanent magnets, more industrially desirable, due to elimination the free iron with lowest treatment time. Also it was found that the existence of the paramagnetic NbFe 2 phase becomes higher after the homogenisation process, which can be explained due to the diffusion of Nb from Sm 2 Fe 17 phase to paramagnetic NbFe 2 phase, during the annealing process. (authors)

  11. Proceedings of the international conference on irradiation behaviour of metallic materials for fast reactor core components

    International Nuclear Information System (INIS)

    Poirier, J.; Dupouy, J.M.

    In this conference are presented papers dealing with swelling of metals and alloys, (and specially ferritic steels), structural evolution and stability under irradiation, modifications of mechanical properties, consequences on the behaviour of fuel elements and the optimization of materials selection, and irradiation creep [fr

  12. Convergence in anisotropic conditions: gallery behaviour in the Callovo-Oxfordian clayey layer in North-Eastern France

    International Nuclear Information System (INIS)

    Blanco Martin, L.; Hadj-Hassen, F.; Philippe, J.C.; Boidy, E.; Colombet, G.; Armand, G.

    2010-01-01

    Document available in extended abstract form only. Coyne et Bellier (Tractebel Engineering) has been supplying geotechnical services to Andra since 1994 regarding the feasibility for developing a repository for radioactive waste in a 490 m deep clayey formation at the Meuse/Haute-Marne site. Armines/Mines-ParisTech (French engineering school) has been an Andra scientific partner for several years due to its expertise in rock creep behaviour as well as in mining technologies. Throughout the different works carried out for Andra (especially the studies concerning the enlargement of the underground research laboratory), the behaviour of the Callovo-Oxfordian clayey were computed. These studies are used mainly for predicting the long-term behaviour of this layer. Lemaitre's rheological law (or modified Norton's law) has been used for such purposes. This time-dependent law is able to model the isotropic hardening of an elastic-viscoplastic solid by taking into account a non linear viscosity (γ) which Coyne et Bellier has decided to represent by means of a cone-shaped dash-pot element (stiffness increases during creep, cf. Eric Boidy's PhD). This hypothesis, together with that standing for 'long-term incompressibility' (viscoplastic deformation occurs at constant volume), allows the law be expressed by means of the second invariants of the stress (q) and strain (ε vp ) tensors. The rheological model when the long term behaviour takes place beyond a stress threshold (σ S ) is shown. Modelling works that use this law reproduce well convergence measurements as long as radial stresses around the galleries are isotropic. When the stress field around the gallery is anisotropic, the classic Lemaitre's law no longer fits the convergence measurements. This is the case for the GMR gallery at the main level of the laboratory: the horizontal stress is 1.3 times greater than the vertical stress whilst the average vertical convergence is more than five

  13. Do material, psychosocial and behavioural factors mediate the relationship between disability acquisition and mental health? A sequential causal mediation analysis.

    Science.gov (United States)

    Aitken, Zoe; Simpson, Julie Anne; Gurrin, Lyle; Bentley, Rebecca; Kavanagh, Anne Marie

    2018-01-29

    There is evidence of a causal relationship between disability acquisition and poor mental health; however, the mechanism by which disability affects mental health is poorly understood. This gap in understanding limits the development of effective interventions to improve the mental health of people with disabilities. We used four waves of data from the Household, Income and Labour Dynamics in Australia Survey (2011-14) to compare self-reported mental health between individuals who acquired any disability (n=387) and those who remained disability-free (n=7936). We tested three possible pathways from disability acquisition to mental health, examining the effect of material, psychosocial and behavioural mediators. The effect was partitioned into natural direct and indirect effects through the mediators using a sequential causal mediation analysis approach. Multiple imputation using chained equations was used to assess the impact of missing data. Disability acquisition was estimated to cause a five-point decline in mental health [estimated mean difference: -5.3, 95% confidence interval (CI) -6.8, -3.7]. The indirect effect through material factors was estimated to be a 1.7-point difference (-1.7, 95% CI -2.8, -0.6), explaining 32% of the total effect, with a negligible proportion of the effect explained by the addition of psychosocial characteristics (material and psychosocial: -1.7, 95% CI -3.0, -0.5) and a further 5% by behavioural factors (material-psychosocial-behavioural: -2.0, 95% CI -3.4, -0.6). The finding that the effect of disability acquisition on mental health operates predominantly through material rather than psychosocial and behavioural factors has important implications. The results highlight the need for better social protection, including income support, employment and education opportunities, and affordable housing for people who acquire a disability. © The Author(s) 2018; all rights reserved. Published by Oxford University Press on behalf of the

  14. New numerical modelling of the mechanical long-term behaviour of the GMR gallery in ANDRA's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Blanco Martin, L.; Hadj-Hassen, F.; Tijani, M.; Armand, G.

    2011-01-01

    This paper deals with a new macroscopic numerical modelling of the mechanical long-term behaviour of ANDRA's Underground Research Laboratory. The study focuses on the GMR gallery, oriented along the minor horizontal principal stress and located at the main level 490 m deep. The simulations are made using the finite element method (FEM).Convergence measurements in this gallery exhibit an important dis-symmetry between the vertical and horizontal directions, as well as a significant time effect in the vertical trend. In attempts to both understand the phenomena that lie beneath such dis-symmetry and reproduce the experimental data, a modification to Lemaitre's creep law has been proposed. The new viscoplastic law takes into account the following aspects: rock transverse isotropy, creep behaviour and rock expansion. The excavation history of the GMR gallery has also been considered in the numerical modelling. The numerical results are very satisfactory for the GMR drift. However, the mechanisms of anisotropic shear and expansion on which the new law is based do not lead to an accurate reproduction of the data measured in the galleries oriented in the perpendicular direction. Therefore, a thorough insight into the mechanical behaviour of the rock mass and into the proposed new law is needed before the latter can be applied to the Callovo-Oxfordian layer. (authors)

  15. Finite element analysis of structures at high temperatures with special application to plane steel beams and frames

    International Nuclear Information System (INIS)

    Peterson, A.

    1984-01-01

    Nonlinear analysis of structures at high temperatures is studied. Both geometric and material nonlinearities are taken into account. Continuum mechanics relations are used to derive general finite element equations. An alternative formulation to Total Lagrangian (TL) and Updated Lagrangian (UL) formulations named Partially updated Lagrangian (PL) formulation is presented. An isotropic small strain constitutive model using the von Mises yield criterion is derived for high temperature conditions. The model developed can be characterized as combined elastic-plastic-viscoplastic. The strain components are treated separately but plastic strains and viscoplastic (creep)strains are allowed to interact. A new formulation of the creep behaviour is given. Both primary and secondary creep are considered. As an application of the derived finite element equations and the constitutive model steel beams and frames are studied. The theory is implemented in a computer program, CAMFEM. The program operates on a command language with possibilities to store user-defined matrices on files and to create macro commands. Comparison with experimental observation shows that the present theory well describes experimentally observed phenomena. (author)

  16. Modelling of thermo-hydro-mechanical couplings and damage of viscoplastic rocks in the context of radioactive waste storage

    International Nuclear Information System (INIS)

    Kharkhour, H.

    2002-12-01

    Trying to develop a model taking into account the complex rheology of a geologic media characterized by visco-plasticity, damage and thermo-hydro-mechanical couplings is unusual in geotechnics. This is not the case for radioactive waste storage that presents specificities from several viewpoints. Indeed, the scales of time and space concerned by this type of storage are disproportionate to those of civil engineering works or mines. Another specificity of the radioactive waste storage lies in the coupled processes involved. No effect likely to compromise the long-term security of the storage could be ignored. For example this is the case of damage, a phenomenon which does not necessarily lead to a major change of the mechanical behavior of the works but can influence the permeability of the medium in relation with a migration of radionuclides. It can be conceived that this phenomenon finds all its importance in the context of the thermo-hydro-mechanical couplings of a waste storage with high activity. However, the interaction between the damage and the THM coupled processes was the object of very few research subject up to now. This. is even more true for viscoplastic media considered as ductile, and therefore, less prone to cracking than brittle media. It is exactly in this 'original' but difficult context that took place the research presented in this report. This study was dedicated to the analysis of the phenomena and the thermal, hydraulic and mechanical couplings occurring in the near and far field of a high activity radioactive waste storage. Two examples of geological media were considered in this report: the clayey rock of Callovo-Oxfordian, called ' Argilites de l'Est ', target rock of the ANDRA project to carry out a subterranean laboratory for the study of long life radioactive waste storage; and the salt rock of the. subterranean laboratory in the old salt mine of Asse in Germany. (author)

  17. Analysis and description of the long-term creep behaviour of high-temperature gas turbine materials

    International Nuclear Information System (INIS)

    Bartsch, H.

    1985-01-01

    On a series of standard high-temperature gas turbine materials, creep tests were accomplished with the aim to obtain improved data on the long-term creep behaviour. The tests were carried out in the range of the main application temperatures of the materials and in the range of low stresses and elongations similar to operation conditions. They lasted about 5000 to 16000 h at maximum. At all important temperatures additional annealing tests lasting up to about 10000 h were carried out for the determination of a material-induced structure contraction. Thermal tension tests were effected for the description of elastoplastic short-time behaviour. As typical selection of materials the nickel investment casting alloys IN-738 LC, IN-939 and Udimet 500 for industrial turbine blades, IN-100 for aviation turbine blades and IN-713 C for integrally cast wheels of exhaust gas turbochargers were investigated, and also the nickel forge alloy Inconel 718 for industrial and aviation turbine disks and Nimonic 101 for industrial turbine blades and finally the cobalt alloy FSC 414 for guide blades and heat accumulation segments of industrial gas turbines. The creep tests were started on long-period individual creep testing machines with high strain measuring accuracy and economically continued on long-period multispecimen creep testing machines with long duration of test. The test results of this mixed test method were first subjected to a conventional evaluation in logarithmic time yield and creep diagrams which besides creep strength curves provided creep stress limit curves down to 0.2% residual strain. (orig./MM) [de

  18. Modelling of the physical behaviour of water saturated clay barriers. Laboratory tests, material models and finite element application

    International Nuclear Information System (INIS)

    Boergesson, L.; Johannesson, L.E.; Sanden, T.; Hernelind, J.

    1995-09-01

    This report deals with laboratory testing and modelling of the thermo-hydro-mechanical (THM) properties of water saturated bentonite based buffer materials. A number of different laboratory tests have been performed and the results are accounted for. These test results have lead to a tentative material model, consisting of several sub-models, which is described in the report. The tentative model has partly been adapted to the material models available in the finite element code ABAQUS and partly been implemented and incorporated in the code. The model that can be used for ABAQUS calculations agrees with the tentative model with a few exceptions. The model has been used in a number of verification calculations, simulating different laboratory tests, and the results have been compared with actual measurements. These calculations show that the model generally can be used for THM calculations of the behaviour of water saturated buffer materials, but also that there is still a lack of some understanding. It is concluded that the available model is relevant for the required predictions of the THM behaviour but that a further improvement of the model is desirable

  19. Unravelling the High-Pressure Behaviour of Dye-Zeolite L Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Lara Gigli

    2018-02-01

    Full Text Available Self-assembly of chromophores nanoconfined in porous materials such as zeolite L has led to technologically relevant host-guest systems exploited in solar energy harvesting, photonics, nanodiagnostics and information technology. The response of these hybrid materials to compression, which would be crucial to enhance their application range, has never been explored to date. By a joint high-pressure in situ synchrotron X-ray powder diffraction and ab initio molecular dynamics approach, herein we unravel the high-pressure behaviour of hybrid composites of zeolite L with fluorenone dye. High-pressure experiments were performed up to 6 GPa using non-penetrating pressure transmitting media to study the effect of dye loading on the structural properties of the materials under compression. Computational modelling provided molecular-level insight on the response to compression of the confined dye assemblies, evidencing a pressure-induced strengthening of the interaction between the fluorenone carbonyl group and zeolite L potassium cations. Our results reveal an impressive stability of the fluorenone-zeolite L composites at GPa pressures. The remarkable resilience of the supramolecular organization of dye molecules hyperconfined in zeolite L channels may open the way to the realization of optical devices able to maintain their functionality under extreme conditions.

  20. Contributions to the R-curve behaviour of ceramic materials

    International Nuclear Information System (INIS)

    Fett, T.

    1994-12-01

    Several ceramic materials show an increase in crack growth resistance with increasing crack extension. Especially, in case of coarse-grained alumina this ''R-curve effect'' is caused by crack-face interactions in the wake of the advancing crack. Similar effects occur for whisker reinforced ceramics. Due to the crack-face interactions so-called ''bridging stresses'' are generated which transfer forces between the two crack surfaces. A second reason for an increase of crack-growth resistance are stress-induced phase transformations in zirconia ceramics with the tetragonal phase changing to the monoclinic phase. These transformations will affect the stress field in the surroundings of crack tips. The transformation generates a crack-tip transformation zone and, due to the stress balance, also residual stresses in the whole crack region which result in a residual stress intensity factor. This additional stress intensity factor is also a reason for the R-curve behaviour. In this report both effects are outlined in detail. (orig.) [de

  1. The Influence of Corrosion Attack on Grey Cast Iron Brittle‑Fracture Behaviour and Its Impact on the Material Life Cycle

    Directory of Open Access Journals (Sweden)

    Jiří Švarc

    2017-01-01

    Full Text Available The paper is concerned with brittle‑fracture behaviour of grey cast iron attacked by corrosion and its impact on the life cycle of a spare part made of grey cast iron. In a corrosion chamber, outdoor climatic conditions (temperature and relative air humidity were simulated in which degradation processes, induced by material corrosion, degrading mechanical properties of a material and possibly leading to irreversible damage of a machine component, occur in the material of maintenance vehicles that are out of operation for the period of one year. The corrosion degradation of grey cast iron, which the spare parts constituting functional parts of an engine are made of grey cast iron, is described with regard to brittle‑fracture behaviour of the material. For the description of corrosion impact on grey cast iron, an instrumented impact test was employed. A corrosion degradation effect on grey cast iron was identified based on measured values of total energy, macro plastic deformation limit, initiation force of unstable crack propagation and force exerted on unstable crack arrest. In the first part of the experiment, a corrosion test of the material concerned was simulated in a condensation chamber; in the second part of the experiment, research results are provided for the measured quantities describing the material brittle‑fracture behaviour; this part is supplemented with a table of results and figures showing the changes in the values of the measured quantities in relation to test temperatures. In the discussion part, the influence of corrosion on the values of unstable crack initiation and arrest forces is interpreted. In the conclusion, an overview of the most significant research findings concerning the impact of corrosion on the life cycle of grey cast iron material is provided.

  2. Thermally activated creep and fluidization in flowing disordered materials

    Science.gov (United States)

    Merabia, Samy; Detcheverry, François

    2016-11-01

    When submitted to a constant mechanical load, many materials display power law creep followed by fluidization. A fundamental understanding of these processes is still far from being achieved. Here, we characterize creep and fluidization on the basis of a mesoscopic viscoplastic model that includes thermally activated yielding events and a broad distribution of energy barriers, which may be lowered under the effect of a local deformation. We relate the creep exponent observed before fluidization to the width of barrier distribution and to the specific form of stress redistribution following yielding events. We show that Andrade creep is accompanied by local strain hardening driven by stress redistribution and find that the fluidization time depends exponentially on the applied stress. The simulation results are interpreted in the light of a mean-field analysis, and should help in rationalizing the creep phenomenology in disordered materials.

  3. Coupling between mechanical behaviour and drying of cementing materials: experimental study on mortars

    International Nuclear Information System (INIS)

    Yurtdas, I.

    2003-10-01

    The aim of this work is to understand the desiccation effects on the mechanical behaviour of cement materials. Two mortars of ratio E/C=0.5 and 0.8 have been tested. All the tests have been implemented after a six months maturing in water. The experimental study has been carried out as follows: 1)tests characterizing the differed behaviour and the transport properties have been carried out 2)tests characterizing the short term multiaxial mechanical behaviour have been carried out. The desiccation shrinkage in terms of the weight loss presents three characteristic phases. The permeability measurement on the mortar 05 shows that the permeability of the specimens dried and crept is greater than those of the specimens dried before being crept, and the permeability of the specimens submitted to a desiccation creep and then dried is sensibly the same as the last one in spite of a very important differed deformation. The influence of the desiccation on the uniaxial and deviatoric compressions resistance depends of the binding agent: for a cement paste of good quality (E/C=0.5), the resistances increase with the desiccation because of the capillary depression and of the hydric gradients. For a cement paste of low quality (E/C=0.8), there is a competitive effect between the increase of the microcracks induced and the specimen rigidification; the microcracking becomes then the parameter controlling the rupture process. The elasto-plastic behaviour becomes a damageable elasto-plastic behaviour during desiccation which induces, as the decrease of the E/C ratio, a translation of the elastic limit surfaces and ruptures towards higher stresses. In parallel, the elastic properties and the incompressibility modulus are damaged and the volume deformations increase after the drying. At last, the decrease of the Young modulus and the passage to the third shrinkage phase in terms of the weight loss coincide. This can be attributed to the induced microcracking: this decrease of the

  4. Revisa milestones report. Task 2.1: development of material models

    International Nuclear Information System (INIS)

    Nicolas, L.

    1998-01-01

    This report is the CEA contribution to the Milestone report of the REVISA project (Task 2.1). This task is particularly devoted to the development of advanced material models. CEA uses two different constitutive concepts. The first model is a coupled damage-visco-plasticity model proposed by Lemaitre and Chaboche. The second model is a non unified visco-plasticity model proposed by Contesti and Cailletaud, where the classical decomposition of the total inelastic strain into a time independent plastic part and a time dependent creep part is assumed. The introduction of isotropic damage in this model is part of the developments presented in this report. (author)

  5. FY17 Status Report on Testing Supporting the Inclusion of Grade 91 Steel as an Acceptable Material for Application of the EPP Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Messner, Mark C. [Argonne National Lab. (ANL), Argonne, IL (United States); Sham, Sam [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This report summarizes the experiments performed in FY17 on Gr. 91 steels. The testing of Gr. 91 has technical significance because, currently, it is the only approved material for Class A construction that is strongly cyclic softening. Specific FY17 testing includes the following activities for Gr. 91 steel. First, two types of key feature testing have been initiated, including two-bar thermal ratcheting and Simplified Model Testing (SMT). The goal is to qualify the Elastic – Perfectly Plastic (EPP) design methodologies and to support incorporation of these rules for Gr. 91 into the ASME Division 5 Code. The preliminary SMT test results show that Gr. 91 is most damaging when tested with compression hold mode under the SMT creep fatigue testing condition. Two-bar thermal ratcheting test results at a temperature range between 350 to 650o C were compared with the EPP strain limits code case evaluation, and the results show that the EPP strain limits code case is conservative. The material information obtained from these key feature tests can also be used to verify its material model. Second, to provide experimental data in support of the viscoplastic material model development at Argonne National Laboratory, selective tests were performed to evaluate the effect of cyclic softening on strain rate sensitivity and creep rates. The results show the prior cyclic loading history decreases the strain rate sensitivity and increases creep rates. In addition, isothermal cyclic stress-strain curves were generated at six different temperatures, and a nonisothermal thermomechanical testing was also performed to provide data to calibrate the viscoplastic material model.

  6. Nonequilibrium Thermodynamics of Driven Disordered Materials

    Science.gov (United States)

    Bouchbinder, Eran

    2011-03-01

    We present a nonequilibrium thermodynamic framework for describing the dynamics of driven disordered solids (noncrystalline solids near and below their glass temperature, soft glassy materials such as colloidal suspensions and heavily dislocated polycrystalline solids). A central idea in our approach is that the set of mechanically stable configurations, i.e. the part of the system that is described by inherent structures, evolves slowly as compared to thermal vibrations and is characterized by an effective disorder temperature. Our thermodynamics-motivated equations of motion for the flow of energy and entropy are supplemented by coarse-grained internal variables that carry information about the relevant microscopic physics. Applications of this framework to amorphous visco-plasticity (Shear-Transformation-Zone theory), glassy memory effects (the Kovacs effect) and dislocation-mediated polycrystalline plasticity will be briefly discussed.

  7. Corrosion behaviour of container materials for the disposal of high-level waste forms in rock salt formations

    International Nuclear Information System (INIS)

    Smailos, E.; Schwarzkopf, W.; Koester, R.

    1987-05-01

    Extensive laboratory-scale experiments to evaluate the long-term corrosion behaviour of selected materials in brines and first in situ experiments were performed. In the laboratory experiments the materials Ti 99.8-Pd, Hastelloy C4 and hot-rolled low carbon steel as well cast steel, spheroidal cast iron, Si-cast iron and the Ni-Resists type D2 and D4 were investigated. The investigated parameters were: temperature, gamma-radiation and different compositions of salt brines. (orig./PW) [de

  8. Modelling the influence of water content on the mechanical behaviour of Callovo-Oxfordian argillite

    International Nuclear Information System (INIS)

    Jia, Y.; Zhang, F.; Shao, J.F.

    2010-01-01

    hydro-mechanical response of Callovo-Oxfordian argillite, a stiff, layered Mesozoic clay, located at 500 m depth in Eastern France. Thanks to its low permeability, significant retardation properties for solute transport, high mechanical strength and self-healing capacity when fracture, the Callovo-Oxfordian argillite is studied as potential geological barrier for radioactive wastes and an underground research laboratory, called M/HM URL is under construction.Various experimental studies have been performed to study the different aspects of rock behaviour. Meanwhile, different constitutive model have been proposed for this material. Among recently proposed models for argillites, the contributions Zhou et al. (2008) and Jia et al. (2009) are of direct interest to this paper. Zhou et al. (2008) have proposed a unified approach for modelling of elastic-plastic and viscoplastic behaviour coupled with induced damage in Callovo-Oxfordian argillite. Both instantaneous and differ plastic deformations are described within the unique constitutive model. Material damage induced by microcrack is coupled with plastic deformation. Jia et al. (2009) have developed a constitutive model, where the plastic deformation was considered as the principal mechanism, to consider coupling between plastic deformations and damage and evolution of mechanical properties with water content. In addition, a special attention is paid on the residual state of rocks after peak strength and the shrinkage/swelling deformation during the desaturation/re-saturation processes. However, the influence of water content on the elastic proprieties and the long term mechanical behaviour of argillite are not dealt with in these models. These two phenomena will be studied in this paper. Firstly, a synthesis of experimental study on the poro-mechanical behavior of argillites is presented. Special attention is given to the influence of water content on the long term mechanical aspects of the clay behaviour. In the second

  9. The Investigation of Knitted Materials Bonded Seams Behaviour upon Cyclical Fatigue Loading

    Directory of Open Access Journals (Sweden)

    Gita BUSILIENĖ

    2017-08-01

    Full Text Available In this research uniaxial tension behaviour of PES knitted materials with bonded seams is analysed. The objects of the investigation were two types of knitted materials, having the same fibre composition (93 % PES, 7 % EL, but different in knitting pattern, i. e. plain single jersey and rib 1 × 1. Bonded overlap seams were formed by changing the orientation of knitted materials strips, i. e. parallel/parallel, parallel/bias, parallel/perpendicular, bias/bias and bias/perpendicular. The strips of each knitted material were joined by two types of thermoplastic polyurethane (PU films different in thickness (75 mm and 150 mm. Mechanical characteristics of bonded seams were defined in longitudinal direction. During uniaxial tension such parameters as maximal force Fmax (N and maximal elongation ɛmax (% were recorded from typical tension diagrams. The changes of tested specimens strength and deformation were compared before and after cyclical fatigue tension the conditions of which were 50 cycles up to tension force F equal 24.5 N. The results have shown that changes before and after cyclical fatigue tension are mostly determined by the structure of knitted materials, the orientation of knitted materials strips in bonded seam, but not effected by thermoplastic polyurethane film. These results are opposite compared to the results of biaxial tension of the same type of specimens, which have shown that changes before and after cyclical fatigue punching are mostly determined by the type of thermoplastic film, but not effected by the orientation of knitted materials strips in bonded seams. DOI: http://dx.doi.org/10.5755/j01.ms.23.2.16065

  10. Variation of strain rate sensitivity index of a superplastic aluminum alloy in different testing methods

    Science.gov (United States)

    Majidi, Omid; Jahazi, Mohammad; Bombardier, Nicolas; Samuel, Ehab

    2017-10-01

    The strain rate sensitivity index, m-value, is being applied as a common tool to evaluate the impact of the strain rate on the viscoplastic behaviour of materials. The m-value, as a constant number, has been frequently taken into consideration for modeling material behaviour in the numerical simulation of superplastic forming processes. However, the impact of the testing variables on the measured m-values has not been investigated comprehensively. In this study, the m-value for a superplastic grade of an aluminum alloy (i.e., AA5083) has been investigated. The conditions and the parameters that influence the strain rate sensitivity for the material are compared with three different testing methods, i.e., monotonic uniaxial tension test, strain rate jump test and stress relaxation test. All tests were conducted at elevated temperature (470°C) and at strain rates up to 0.1 s-1. The results show that the m-value is not constant and is highly dependent on the applied strain rate, strain level and testing method.

  11. Internat. conference about the radiation behaviour of metallic canning and structure materials for fast breeders in Ajaccio (Korsika)

    International Nuclear Information System (INIS)

    Anderko, K.; Ehrlich, K.

    1979-01-01

    The program includes 48 plenary reports as well as 22 contributions in the form of a poster view and has the following structure: - swelling of ferritic steel - structural instability under radiation - theory of swelling - experiments about the swelling of austenitic steels - mechanical properties after radiation - fuel element behaviour and material optimization - radiation creeping. Additional to the items respecting the conference titel some material problems of the fusion reactor were discussed. (orig./RW) [de

  12. Using ABAQUS Scripting Interface for Materials Evaluation and Life Prediction

    Science.gov (United States)

    Powers, Lynn M.; Arnold, Steven M.; Baranski, Andrzej

    2006-01-01

    An ABAQUS script has been written to aid in the evaluation of the mechanical behavior of viscoplastic materials. The purposes of the script are to: handle complex load histories; control load/displacement with alternate stopping criteria; predict failure and life; and verify constitutive models. Material models from the ABAQUS library may be used or the UMAT routine may specify mechanical behavior. User subroutines implemented include: UMAT for the constitutive model; UEXTERNALDB for file manipulation; DISP for boundary conditions; and URDFIL for results processing. Examples presented include load, strain and displacement control tests on a single element model. The tests are creep with a life limiting strain criterion, strain control with a stress limiting cycle and a complex interrupted cyclic relaxation test. The techniques implemented in this paper enable complex load conditions to be solved efficiently with ABAQUS.

  13. Behaviour of Danish weaner and grower pigs is affected by the type and quantity of enrichment material provided

    DEFF Research Database (Denmark)

    Hakansson, Franziska; Lund, Vibe Pedersen; Kirchner, Marlene

    Inappropriate behaviour is known to reduce the welfare of pigs and therefore, determining factors influencing the quality of pig behaviour in commercial systems is of importance. As part of a larger project, this study investigated the effect of selected management parameters on different aspects...... and w/g pigs, were performed at each farm. Additionally, space allowance (WQ), tail biting (WQ), percentage of nursing sows, breed, weaning-age, type and amount of rooting material were collected. From the single measurements, WQ-criteria scores and the corresponding principle score for ‘Appropriate...... Behaviour’ were calculated according to the latest published version of WQ. Th e relation between selected management factors and the aggregated behaviour scores was tested with the help of Pearson correlations (*/ ** = significance at 0.05/ 0.01 level). The results of this study indicate an effect...

  14. Peltier heat measurements at a junction between materials exhibiting Fermi gas and Fermi liquid behaviour

    International Nuclear Information System (INIS)

    Kuznetsov, V L; Kuznetsova, L A; Rowe, D M

    2003-01-01

    The feasibility of improving the conversion efficiency of a thermoelectric converter by employing interfaces between materials exhibiting Fermi gas (FG) and Fermi liquid (FL) behaviour has been studied. Thermocouples consisting of a semiconductor and a strongly correlated material have been fabricated and the Peltier heat measured over the temperature range 15 deg 330 K. A number of materials possessing different types of strong electron correlation have been synthesized including the heavy fermion compound YbAl 3 , manganite La 0.7 Ca 0.3 MnO 3 and high-T c superconductor YBa 2 Cu 3 O 7δ . n- and p-Bi 2 Te 3 -based solid solutions as well as n-Bi 0.85 Sb 0.15 solid solution have also been synthesized and used as materials exhibiting FG properties. Experimental measurements of the Peltier heat were compared to the results of calculations based on preliminary measured thermoelectric properties of materials and electrical contact resistance at the interfaces. The potential of employing FG/FL interfaces in thermoelectric energy conversion is discussed

  15. Challenges in mechanical modeling of SFR fuel rod transient behavior

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L. E.

    2013-07-01

    Modeling of SFR fuel rod mechanical behavior under transient conditions entails the development of a creep law to predict cladding viscoplastic strain. In this regard, this work is focused on defining a proper clad creep law structure as the basis to set a suitable model under SFR off-normal conditions as transient overpower and loss of fluid. To do so, a review of in-codes clad creep models has been done by using SAS-SFR, SCANAIR and ASTEC. The proposed creep model has been structured in two parts: viscoplastic behaviour before the failure (primary and secondary creep) and the failure due to viscoplastic collapse (tertiary creep). In order to model the first part, Norton creep law has been proposed as a conservative option. An irradiation hardening factor should be included for best estimate calculations. The recommendation for the second part is to apply a failure criterion based on strain limit or rupture time, which allows achieving conservative results.

  16. Modeling of the re-starting of waxy crude oil flows in pipelines; Modelisation du redemarrage des ecoulements de bruts paraffiniques dans les conduites petrolieres

    Energy Technology Data Exchange (ETDEWEB)

    Vinay, G.

    2005-11-15

    Pipelining crude oils that contain large proportions of paraffins can cause many specific difficulties. These oils, known as waxy crude oils, usually exhibit high 'pour point', where this temperature is higher than the external temperature conditions surrounding the pipeline. During the shutdown, since the temperature decreases in the pipeline, the gel-like structure builds up and the main difficulty concerns the issue of restarting. This PhD attempts to improve waxy crude oil behaviour understanding thanks to experiment, modelling and numerical simulation in order to predict more accurately time and pressure required to restart the flow. Using various contributions to the literature, waxy crude oils are described as viscoplastic, thixotropic and compressible fluid. Strong temperature history dependence plays a prevailing role in the whole shutdown and restart process. Thus, waxy crude oils under flowing conditions correspond to the non-isothermal flow of a viscoplastic material with temperature-dependent rheological properties. Besides, the restart of a waxy crude oil is simulated by the isothermal transient flow of a weakly compressible thixotropic fluid in axisymmetric pipe geometry. We retain the Houska model to describe the thixotropic/viscoplastic feature of the fluid and compressibility is introduced in the continuity equation. The viscoplastic constitutive equation is involved using an augmented Lagrangian method and the resulting equivalent saddle-point problem is solved thanks to an Uzawa-like algorithm. Governing equations are discretized using a Finite Volume method and the convection terms are treated thanks to a TVD (Total Variation Diminishing) scheme. The Lagrangian functional technique usually used for incompressible viscoplastic flows, is adapted to compressible situations. Several numerical results attest the good convergence properties of the proposed transient algorithm. The non-isothermal results highlight the strong sensitivity of

  17. A physical detail relevant to the Savic-Kasanin theory of behaviour of materials under high pressure

    International Nuclear Information System (INIS)

    Celebonovic, V.

    1982-01-01

    P. Savic and R. Kasanin have proposed a theory of behaviour of materials under high pressure (Savic, 1981). Their theory can be applied to the explanation of the internal structures of planets and stars. The author proposes, a simple method for the calculation of the internal temperatures of the terrestrial planets. All the parameters needed for the application of the method can be obtained from the SK theory. (Auth.)

  18. Characterization of the mechanical properties of a new grade of ultra high molecular weight polyethylene and modeling with the viscoplasticity based on overstress.

    Science.gov (United States)

    Khan, Fazeel; Yeakle, Colin; Gomaa, Said

    2012-02-01

    Enhancements to the service life and performance of orthopedic implants used in total knee and hip replacement procedures can be achieved through optimization of design and the development of superior biocompatible polymeric materials. The introduction of a new or modified polymer must, naturally, be preceded by a rigorous testing program. This paper presents the assessment of the mechanical properties of a new filled grade of ultra high molecular weight polyethylene (UHMWPE) designated AOX(TM) and developed by DePuy Orthopaedics Inc. The deformation behavior was investigated through a series of tensile and compressive tests including strain rate sensitivity, creep, relaxation, and recovery. The polymer was found to exhibit rate-reversal behavior for certain loading histories: strain rate during creep with a compressive stress can be negative, positive, or change between the two during a test. Analogous behavior occurs during relaxation as well. This behavior lies beyond the realm of most numerical models used to computationally investigate and improve part geometry through finite element analysis of components. To address this shortcoming, the viscoplasticity theory based on overstress (VBO) has been suitably modified to capture these trends. VBO is a state variable based model in a differential formulation. Numerical simulation and prediction of all of the aforementioned tests, including good reproduction of the rate reversal behavior, is presented in this study. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  20. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2002-01-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel

  1. Research into material behaviour of the polymeric samples obtained after 3D-printing and subjected to compression test

    Science.gov (United States)

    Petrov, Mikhail A.; Kosatchyov, Nikolay V.; Petrov, Pavel A.

    2016-10-01

    The paper represents the results of the study concerning the investigation of the influence of the filling grade (material density) on the force characteristic during the uniaxial compression test of the cylindrical polymer probes produced by additive technology based on FDM. The authors have shown that increasing of the filling grate follows to the increase of the deformation forces. However, the dependency is not a linear function and characterized by soft-elastic model of material behaviour, which is typical for polymers partly crystallized structure.

  2. Sealing of boreholes using natural, compatible materials: Granular salt

    International Nuclear Information System (INIS)

    Finley, R.E.; Zeuch, D.H.; Stormont, J.C.; Daemen, J.J.K.

    1994-01-01

    Granular salt can be used to construct high performance permanent seals in boreholes which penetrate rock salt formations. These seals are described as seal systems comprised of the host rock, the seal material, and the seal rock interface. The performance of these seal systems is defined by the complex interactions between these seal system components through time. The interactions are largely driven by the creep of the host formation applying boundary stress on the seal forcing host rock permeability with time. The immediate permeability of these seals is dependent on the emplaced density. Laboratory test results suggest that careful emplacement techniques could results in immediate seal system permeability on the order of 10 -16 m 2 to 10 -18 m 2 (10 -4 darcy to 10 -6 ). The visco-plastic behavior of the host rock coupled with the granular salts ability to ''heal'' or consolidate make granular salt an ideal sealing material for boreholes whose permanent sealing is required

  3. Dynamic behaviour of “Collapsible” concrete

    Directory of Open Access Journals (Sweden)

    Caverzan Alessio

    2015-01-01

    Full Text Available In this work a particular cement composite material for protection of structures and infrastructures against accidental actions, such as blast or impact, has been investigated. An experimental procedure has been developed in order to assess static and dynamic behaviour of energy absorbing cementitious composites. The granular cementitious composite has been studied focusing attention to compressive strength, high deformation and energy dissipation capacity which are important characteristics for an absorber material. An experimental characterization of the material behaviour under compressive static and dynamic loadings has been carried out. Different deformation velocities have been studied in order to define the material behaviour in a wide range of strain rates. The velocity range up to 0.1 m/s is investigated by means of a universal servo-hydraulic MTS 50 kN testing machine. Some preliminary results have been reported and discussed in the present work.

  4. Leaching behaviour of municipal solid waste incineration bottom ash: From granular material to monolithic concrete.

    Science.gov (United States)

    Sorlini, Sabrina; Collivignarelli, Maria Cristina; Abbà, Alessandro

    2017-09-01

    The aim of this work was to assess the leaching behaviour of the bottom ash derived from municipal solid waste incineration (MSWI) used in concrete production. In particular, the release of pollutants was evaluated by the application of different leaching tests, both on granular materials and monolithic samples (concrete mixtures cast with bottom ash). The results confirmed that, according to Italian regulations, unwashed bottom ashes present critical issues for the use as alternative aggregates in the construction sector due to the excessive release of pollutants; instead, the leachate from washed bottom ashes was similar to natural aggregates. The concentration of pollutants in the leachate from concrete mixtures was lower than regulation limits for reuse. The crushing process significantly influenced the release of pollutants: this behaviour was due both to the increase in surface area and the release of contaminants from cement. Moreover, the increase in contact time (up to 64 days) involved more heavy metals to be released.

  5. Explaining the impact of poverty on old-age frailty in Europe: material, psychosocial and behavioural factors.

    Science.gov (United States)

    Stolz, Erwin; Mayerl, Hannes; Waxenegger, Anja; Freidl, Wolfgang

    2017-12-01

    Previous research found poverty to be associated with adverse health outcomes among older adults but the factors that translate low economic resources into poor physical health are not well understood. The goal of this analysis was to assess the impact of material, psychosocial, and behavioural factors as well as education in explaining the poverty-health link. In total, 28 360 observations from 11 390 community-dwelling respondents (65+) in the Survey of Health, Ageing and Retirement in Europe (2004-13, 10 countries) were analysed. Multilevel growth curve models were used to assess the impact of combined income and asset poverty risk on old-age frailty (frailty index) and associated pathway variables. In total, 61.8% of the variation of poverty risk on frailty level was explained by direct and indirect effects. Results stress the role of material and particularly psychosocial factors such as perceived control and social isolation, whereas the role of health behaviour was negligible. We suggest to strengthen social policy and public health efforts in order to fight poverty and its deleterious health effects from early age on as well as to broaden the scope of interventions with regard to psychosocial factors. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  6. ANISOTROPIC STRAIN-HARDENING IN POLYCRYSTALLINE COPPER AND ALUMINUM

    NARCIS (Netherlands)

    HESS, F

    1993-01-01

    A new viscoplastic model for the plastic stress-strain behaviour of f.c.c. metals is presented. In this model the strain hardening results from increasing dislocation densities. The observed stagnation of strain hardening after strain reversals is explained by a lowering of the increase in

  7. Long Term Behaviour of Cementitious Materials in the Korean Repository Environment

    International Nuclear Information System (INIS)

    Park, J.-W.; Kim, C.-L.

    2013-01-01

    The safe management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. After the selection of the final candidate site for low- and intermediate-level waste (LILW) disposal in Korea, a construction and operation license was issued for the Wolsong LILW Disposal Center (WLDC) for the first stage of disposal. Underground silo type disposal has been determined for the initial phase. The engineered barrier system of the disposal silo consists of waste packages, disposal containers, backfills, and a concrete lining. Main objective of our study in this IAEA-CRP is to investigate closure concepts and cementitious backfill materials for the closure of silos. For this purpose, characterisation of cementitious materials, development of silo closure concept, and evaluation of long-term behaviour of cementitious materials, including concrete degradation in repository environment, have been carried out. The overall implementation plan for the CRP comprises performance testing for the physic-chemical properties of cementitious materials, degradation modelling of concrete structures, comparisons of performance for silo closure options, radionuclide transport modelling (considering concrete degradation in repository conditions), and the implementation of an input parameter database and quality assurance for safety/performance assessment. In particular, the concrete degradation modelling study has been focused on the corrosion of reinforcement steel induced by chloride attack, which was of primary concern in the safety assessment of the WLDC. A series of electrochemical experiments were conducted to investigate the effect of dissolved oxygen, pH, and Cl on the corrosion rate of reinforcing steel in a concrete structure saturated with groundwater. Laboratory-scale experiments and a thermodynamic modelling were performed to understand the porosity change of cement pastes, which were prepared using

  8. Modelling of buffer material behaviour

    International Nuclear Information System (INIS)

    Boergesson, L.

    1988-12-01

    Some material models of smectite rich buffer material suited for nuclear waste isolation are accounted for in the report. The application of these models in finite element calculations of some scenarios and performance are also shown. The rock shear scenario has been closely studied with comparisons between calculated and measured results. Sensitivity analyses of the effect of changing the density of the clay and the rate of shear have been performed as well as one calculation using a hollow steel cylinder. Material models and finite element calculations of canister settlement, thermomechanical effects and swelling are also accounted for. The report shows the present state of the work to establish material models and calculation tools which can be used at the final design of the repository. (31 illustrations)

  9. Nonlocal constitutive equations of elasto-visco-plasticity coupled with damage and temperature

    Directory of Open Access Journals (Sweden)

    Liu Weijie

    2016-01-01

    Full Text Available In this paper, the nonlocal anisothermal elasto-visco-plastic constitutive equations strongly coupled with ductile isotropic damage, nonlinear isotropic hardening and kinematic hardening are developed to model the material behaviour under finite strain. The new micromorphic variable of damage is introduced into the principle of virtual power and new additional balance equations are obtained. Thermodynamically-consistent nonlocal constitutive equations are then deduced. The evolution equations are deduced from the generalized normality rule for the Norton-Hoff visco-plastic potential. This model is used to simulate various material responses under different velocities at high temperature. The micromorphic parameters of damage: micromorphic density and H moduli are studied to examine the effects of micromorphic damage. Biaxial tension is performed to make a comparison between the local damage model and the micromorphic damage model.

  10. Some aspects of the tribological behaviour of materials in sodium

    International Nuclear Information System (INIS)

    Campbell, C.S.; Lewis, M.W.J.

    1980-08-01

    The influence of boundary lubricating films formed by reaction of metallic surfaces with oxygen-containing sodium is discussed. In general, pre-existing surface metallic oxides are reduced in high-temperature low-oxygen sodium, and tribological behaviour is accordingly poor. Chromium-containing alloys, however, can react more readily with oxygen-containing sodium to form sodium chromite, NaCrO 2 , on the alloy surfaces. Such an oxide could plausibly account for significantly improved tribological behaviour at higher oxygen levels. Sodium chromite is only marginally stable at typical reactor outlet conditions and frictional behaviour of typical chromium-containing alloys has therefore been studied as a function of rig cold trap temperature for exposure temperatures ranging from 650 to 500 0 C in order to define the effective tribological boundary. The behaviour of aluminised surfaces has also been studied and results from sliding and fretting wear tests are discussed in the context of the role of a lubricating oxide, believed to be sodium aluminate (formed by reaction of aluminium and oxygen-containing sodium) which is considerably more stable than sodium chromite at reactor outlet temperatures. (author)

  11. Tribological and mechanical behaviours of rattan-fibre-reinforced friction materials under dry sliding conditions

    Science.gov (United States)

    Ma, Yunhai; Wu, Siyang; Tong, Jin; Zhao, Xiaolou; Zhuang, Jian; Liu, Yucheng; Qi, Hongyan

    2018-03-01

    This work was mainly aimed to study the physical, mechanical and tribological behaviours of the friction materials reinforced by different contents of rattan fibre. These friction materials were fabricated by a compression moulder and tested using a constant speed tester at different friction temperatures. It was found that the friction coefficients of the friction materials added with rattan fibre were relatively stable and no obvious fade was observed in comparison with specimen F-0 (containing 0 wt.% rattan fibres). The fade ratio of specimen F-5 (containing 5 wt.% rattan fibres) was 10.3% and its recovery ratio was 92.4%, indicating the excellent performances of fade resistance and recovery. And the specimen F-5 exhibited the lowest wear rate (0.541 × 10‑7 cm3(N · m)‑1 at 350 °C) among all tested specimens. The worn surface morphologies of the friction materials showed that the appropriate addition of rattan fibres effectively reduced abrasive wear and adhesion wear. The specimen F-5 had a smooth worn surface (Sa = 1.885 μm) with the superior fibre-matrix interfacial adhesion and a lot of secondary contact plateaus, which indicated the highest wear resistance property. The rattan-fibre-reinforced friction materials could be widely applied to automotive friction brake field according to their economic, environmental and social benefits.

  12. A viscoplastic shear-zone model for episodic slow slip events in oceanic subduction zones

    Science.gov (United States)

    Yin, A.; Meng, L.

    2016-12-01

    Episodic slow slip events occur widely along oceanic subduction zones at the brittle-ductile transition depths ( 20-50 km). Although efforts have been devoted to unravel their mechanical origins, it remains unclear about the physical controls on the wide range of their recurrence intervals and slip durations. In this study we present a simple mechanical model that attempts to account for the observed temporal evolution of slow slip events. In our model we assume that slow slip events occur in a viscoplastic shear zone (i.e., Bingham material), which has an upper static and a lower dynamic plastic yield strength. We further assume that the hanging wall deformation is approximated as an elastic spring. We envision the shear zone to be initially locked during forward/landward motion but is subsequently unlocked when the elastic and gravity-induced stress exceeds the static yield strength of the shear zone. This leads to backward/trenchward motion damped by viscous shear-zone deformation. As the elastic spring progressively loosens, the hanging wall velocity evolves with time and the viscous shear stress eventually reaches the dynamic yield strength. This is followed by the termination of the trenchward motion when the elastic stress is balanced by the dynamic yield strength of the shear zone and the gravity. In order to account for the zig-saw slip-history pattern of typical repeated slow slip events, we assume that the shear zone progressively strengthens after each slow slip cycle, possibly caused by dilatancy as commonly assumed or by progressive fault healing through solution-transport mechanisms. We quantify our conceptual model by obtaining simple analytical solutions. Our model results suggest that the duration of the landward motion increases with the down-dip length and the static yield strength of the shear zone, but decreases with the ambient loading velocity and the elastic modulus of the hanging wall. The duration of the backward/trenchward motion depends

  13. An incremental analysis of a deep drawing steel’s material behaviour undergoing the predeformation using drawbeads

    Science.gov (United States)

    Schmid, H.; Suttner, S.; Merklein, M.

    2017-09-01

    Nowadays lightweight design in metal forming processes leads to complex deep drawing geometries, which can cause multiple damages. Therefore, drawbeads are one way to regulate and control material flow during the forming process. Not only in research, but also in industrial practice, it could be determined that material is work hardened passing drawbead geometries. It particularly means when material is pre-deformed with tensile and alternating bending loads. This incident also gives the opportunity to utilize it in a reasonable way if examined properly. To investigate these findings, a process oriented and comprehensive analysis of the material behaviour during these forming operations is needed. In this paper, sheet metal strips are linearly drawn through a drawbead and stopped after passing the drawbead. Within this forming operation, the material undergoes non-linear straining before reaching the in-plane position again. Here, the process will be stopped to investigate a permanent strengthening local along the sheet thickness. Therefore, microhardness measurements are realized before and after passing the drawbead. Because of its common use and its wide known material data, a deep drawing steel DC will be used for these studies. Additionally, the strategy is applied to advanced high strength steel.

  14. Numerical simulation of liquefaction behaviour of granular materials ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    cles using Discrete Element Method (DEM) is used to study the liquefaction behaviour of ... studies have focussed on the stress-strain relation- ... experimentation still remains quite problematic. ... distorting the periodic cell and changing its vol-.

  15. Modelling long term rockslide displacements with non-linear time-dependent relationships

    Science.gov (United States)

    De Caro, Mattia; Volpi, Giorgio; Castellanza, Riccardo; Crosta, Giovanni; Agliardi, Federico

    2015-04-01

    Rockslides undergoing rapid changes in behaviour pose major risks in alpine areas, and require careful characterization and monitoring both for civil protection and mitigation activities. In particular, these instabilities can undergo very slow movement with occasional and intermittent acceleration/deceleration stages of motion potentially leading to collapse. Therefore, the analysis of such instabilities remains a challenging issue. Rockslide displacements are strongly conditioned by hydrologic factors as suggested by correlations with groundwater fluctuations, snowmelt, with a frequently observed delay between perturbation and system reaction. The aim of this work is the simulation of the complex time-dependent behaviour of two case studies for which also a 2D transient hydrogeological simulation has been performed: Vajont rockslide (1960 to 1963) and the recent Mt. de La Saxe rockslide (2009 to 2012). Non-linear time-dependent constitutive relationships have been used to describe long-term creep deformation. Analyses have been performed using a "rheological-mechanical" approach that fits idealized models (e.g. viscoelastic, viscoplastic, elasto-viscoplastic, Burgers, nonlinear visco-plastic) to the experimental behaviour of specific materials by means of numerical constants. Bidimensional simulations were carried out using the finite difference code FLAC. Displacements time-series, available for the two landslides, show two superimposed deformation mechanisms: a creep process, leading to movements under "steady state" conditions (e.g. constant groundwater level), and a "dynamic" process, leading to an increase in displacement rate due to changes of external loads (e.g. groundwater level). For both cases sliding mass is considered as an elasto-plastic body subject to its self-weight, inertial and seepage forces varying with time according to water table fluctuation (due to snowmelt or changing in reservoir level) and derived from the previous hydrogeological

  16. Modelling of in-vessel retention after relocation of corium into the lower plenum - Evaluation of the temperature field and of the viscoplastic deformation of the vessel wall. Reactor safety research, project No.:150 1254 - Final report; Beitrag zur Modellierung der Schmelzerueckhaltung im RDB nach Verlagerung von Corium in das untere Plenum - Berechnung des Temperaturfeldes und der viskoplastischen Verformung der Behaelterwand. Reaktorsicherheitsforschung, Vorhaben-Nr.: 150 1254 - Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Altstadt, E.; Willschuetz, H.G. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany)

    2005-01-01

    Considering the hypothetical core melt down scenario for a light water reactor (LWR) a possible failure mode of the reactor pressure vessel (RPV) and its failure time has to be investigated for a determination of the loadings on the containment. Several experiments have been performed accompanied with material properties evaluation, theoretical, and numerical work. At the Institute Of Safety Research of the FZR a finite element model has been developed simulating the thermal processes and the viscoplastic behaviour of the vessel wall. An advanced model for creep and material damage has been established and has been validated using experimental data. The thermal hydraulic and the mechanical calculations are sequentially and recursively coupled. The model is capable of evaluating fracture time and fracture position of a vessel with an internally heated melt pool. The model was applied to pre- and post test calculations for the FOREVER test series representing the RPV of a PWR in the scale of 1:10. These experiments were performed at the Royal Institute of Technology in Stockholm. The results of the calculations can be summarised as follows: The creeping process is caused by the simultaneous presence of high temperature (>600 C) and pressure (>1 MPa). The hot focus region is the most endangered zone exhibiting the highest creep strain rates. The exact level of temperature and pressure has an influence on the vessel failure time but not on the failure position. The failure time can be predicted with an uncertainty of 20 to 25%. This uncertainty is caused by the large scatter and the high temperature sensitivity of the viscoplastic properties of the RPV steel. Contrary to the hot focus region, the lower centre of the vessel head exhibits a higher strength because of the lower temperatures in this zone. The lower part moves down without significant deformation. Therefore it can be assumed, that the vessel failure can be retarded or prevented by supporting this range. The

  17. The influence of maternal self-objectification, materialism and parenting style on potentially sexualized 'grown up' behaviours and appearance concerns in 5-8year old girls.

    Science.gov (United States)

    Slater, Amy; Tiggemann, Marika

    2016-08-01

    There is widespread concern about young girls displaying 'grown up' or sexualized behaviours, as well as experiencing body image and appearance concerns that were previously thought to only impact much older girls. The present study examined the influence of three maternal attributes, self-objectification, materialism and parenting style, on sexualized behaviours and appearance concerns in young girls. A sample of 252 Australian mothers of 5-8year old girls reported on the behaviours and appearance concerns observed in their daughters and also completed measures of their own self-objectification, materialism and parenting style. It was found that a significant proportion of young girls were engaging with 'teen' culture, using beauty products and expressing some degree of appearance concern. Maternal self-objectification was related to daughters' engagement in teen culture, use of beauty products and appearance concern. Maternal materialism was related to girls' engagement in teen culture and appearance concern, while an authoritative parenting style was negatively related to girls' use of beauty products. The findings suggest that maternal self-objectification and materialism play a role in the body image and appearance concerns of young girls, and in so doing, identify these maternal attributes as novel potential targets for intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Materials damaging and rupture - Volumes 1-2. General remarks, metallic materials. Non-metallic materials and biomaterials, assemblies and industrial problems

    International Nuclear Information System (INIS)

    Clavel, M.; Bompard, P.

    2009-01-01

    The rupture and damaging of materials and structures is almost always and unwanted events which may have catastrophic consequences. Even if the mechanical failure causes can often be analyzed using a thorough knowledge of materials behaviour, the forecasting and prevention of failures remain difficult. While the macroscopic mechanical behaviour is often the result of average effects at the structure or microstructure scale, the damage is very often the result of the combination of load peaks, of localization effects and of microstructure defects. This book, presented in two volumes, takes stock of the state-of-the-art of the knowledge gained in the understanding and modelling of rupture and damaging phenomena of materials and structure, mostly of metallic type. It gives an outline of the available knowledge for other classes of materials (ceramics, biomaterials, geo-materials..) and for different types of applications (aeronautics, nuclear industry). Finally, it examines the delicate problem, but very important in practice, of the behaviour of assemblies. Content: Vol.1 - physical mechanisms of materials damaging and rupture; rupture mechanics; cyclic plasticity and fatigue crack growth; fatigue crack propagation; environment-induced cracking; contacts and surfaces. Vol.2 - glasses and ceramics; natural environments: soils and rocks; mechanical behaviour of biological solid materials: the human bone; contribution of simulation to the understanding of rupture mechanisms; assemblies damaging and rupture; industrial cases (behaviour of PWR pressure vessel steels, and thermal and mechanical stresses in turbojet engines). (J.S.)

  19. Mechanical behaviour of a creased thin strip

    Directory of Open Access Journals (Sweden)

    J. Liu

    2018-02-01

    Full Text Available In this study the mechanical behaviour of a creased thin strip under opposite-sense bending was investigated. It was found that a simple crease, which led to the increase of the second moment of area, could significantly alter the overall mechanical behaviour of a thin strip, for example the peak moment could be increased by 100 times. The crease was treated as a cylindrical segment of a small radius. Parametric studies demonstrated that the geometry of the strip could strongly influence its flexural behaviour. We showed that the uniform thickness and the radius of the creased segment had the greatest and the least influence on the mechanical behaviour, respectively. We further revealed that material properties could dramatically affect the overall mechanical behaviour of the creased strip by gradually changing the material from being linear elastic to elastic-perfect plastic. After the formation of the fold, the moment of the two ends of the strip differed considerably when the elasto-plastic materials were used, especially for materials with smaller tangent modulus in the plastic range. The deformation patterns of the thin strips from the finite element simulations were verified by physical models made of thin metal strips. The findings from this study provide useful information for designing origami structures for engineering applications using creased thin strips.

  20. Thermal stresses in a repository for ultimate storage of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Ehlert, C.

    1981-01-01

    An important factor to be considered in evaluating the suitability of a salt mine as a waste repository is the deformation behaviour of rock salt, as this is the predominant type of rock in this formation. Equations are presented and explained describing the elastic, plastic, and viscoplastic deformation mechanisms contributing to overall rock salt deformation, and use of these equations is made through a specially developed arithmetic method. As there are stratifications and discontinuties in the formation to be considered in the computation, additional criteria are to be taken into account in the integrity considerations, especially the figures of material equations for all other types of rock occurring in the formation. (DG) [de

  1. Digital signal processing for velocity measurements in dynamical material's behaviour studies

    International Nuclear Information System (INIS)

    Devlaminck, Julien; Luc, Jerome; Chanal, Pierre-Yves

    2014-01-01

    In this work, we describe different configurations of optical fiber interferometers (types Michelson and Mach-Zehnder) used to measure velocities during dynamical material's behaviour studies. We detail the algorithms of processing developed and optimized to improve the performance of these interferometers especially in terms of time and frequency resolutions. Three methods of analysis of interferometric signals were studied. For Michelson interferometers, the time-frequency analysis of signals by Short-Time Fourier Transform (STFT) is compared to a time-frequency analysis by Continuous Wavelet Transform (CWT). The results have shown that the CWT was more suitable than the STFT for signals with low signal-to-noise, and low velocity and high acceleration areas. For Mach- Zehnder interferometers, the measurement is carried out by analyzing the phase shift between three interferometric signals (Triature processing). These three methods of digital signal processing were evaluated, their measurement uncertainties estimated, and their restrictions or operational limitations specified from experimental results performed on a pulsed power machine. (authors)

  2. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    Science.gov (United States)

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam

    2017-01-01

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. PMID:28443608

  3. Viscoelastic behaviour of cold recycled asphalt mixes

    Science.gov (United States)

    Cizkova, Zuzana; Suda, Jan

    2017-09-01

    Behaviour of cold recycled mixes depends strongly on both the bituminous binder content (bituminous emulsion or foamed bitumen) and the hydraulic binder content (usually cement). In the case of cold recycled mixes rich in bitumen and with low hydraulic binder content, behaviour is close to the viscoelastic behaviour of traditional hot mix asphalt. With decreasing bituminous binder content together with increasing hydraulic binder content, mixes are characteristic with brittle behaviour, typical for concrete pavements or hydraulically bound layers. The behaviour of cold recycled mixes with low content of both types of binders is similar to behaviour of unbound materials. This paper is dedicated to analysing of the viscoelastic behaviour of the cold recycled mixes. Therefore, the tested mixes contained higher amount of the bituminous binder (both foamed bitumen and bituminous emulsion). The best way to characterize any viscoelastic material in a wide range of temperatures and frequencies is through the master curves. This paper includes interesting findings concerning the dependency of both parts of the complex modulus (elastic and viscous) on the testing frequency (which simulates the speed of heavy traffic passing) and on the testing temperature (which simulates the changing climate conditions a real pavement is subjected to).

  4. On some features of the effective behaviour of porous solids with J2- and J3-dependent yielding matrix behaviour

    Science.gov (United States)

    Benallal, Ahmed

    2018-02-01

    Some features od the constitutive behaviour of voided materials taking into account possible effects of the Lode angle in the yielding behaviour of the matrix are discussed. The Gurson approach is used to this end. After providing a parametric representation of the effective behaviour of such materials, some closed-form results are given for pure shear stress states and also at very high stress triaxialities. In the former case corresponding to a zero macroscopic mean stress, the contour of the yield domain in the π-plane has exactly the shape of the yield surface of the matrix in the deviatoric plane, but a size reduced by a factor 1 - f, with f the porosity of the voided material. In the latter, effective yield stresses for the voided material are slightly different from the Gurson result and found to be set by the yield stress at a microscopic stress Lode angle π/3 for very high positive triaxiality and by the yield stress at a microscopic stress Lode angle 0 for very high negative triaxiality. This last result is extended for porous materials with yielding depending further on the hydrostatic stress, fully exhibiting the interaction between volumetric and shear interactions on the yielding behaviour of isotropic porous materials. Applications to many usual yielding criteria for the matrix are also provided. xml:lang="fr"

  5. Dielectric and polarization behaviour of cellulose electro-active paper (EAPap)

    International Nuclear Information System (INIS)

    Yun, Gyu-Young; Kim, Joo-Hyung; Kim, Jaehwan

    2009-01-01

    Dielectric and polarization behaviour of electro-active paper (EAPap) were studied to understand the detailed material behaviour of EAPap as a novel smart material. It was revealed that the dielectric constant of EAPap was temperature and frequency dependent. The largest change in the dielectric constant was observed near 0 0 C while the highest dielectric constant was obtained at around 100 0 C, which might be related to the dipolar behaviour of the hydroxyl structure of cellulose and adsorbed or existing internal water molecules in cellulose EAPap. By thermal stimulated current measurement for polarization behaviour of cellulose EAPap, it was shown that the maximum current was observed in the temperature range 105-110 0 C. Compared with the polarization behaviour in the low temperature range, abnormal polarization was observed under an applied field mainly due to the trapped space charge in EAPap, which indicates that cellulose EAPap has a similar material behaviour to that of electret polymers. (fast track communication)

  6. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the behaviour of fusion reactor materials and components during and after irradiation. Ongoing projects include: the study of the mechanical behaviour of structural materials under neutron irradiation; the investigation of the characteristics of irradiated first wall material such as beryllium; the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; and the study of dismantling and waste disposal strategy for fusion reactors. Progress and achievements in these areas in 2000 are discussed

  7. A new method for the experimental study of fatigue behaviour of thermoplastic materials

    Directory of Open Access Journals (Sweden)

    M. Sanità

    2008-10-01

    Full Text Available Nowadays most industrial realities undergo a strong push to improve cost-effectiveness, productivity and quality of manufactured products. In particular we focussed our attention in the area of design of plastic structural components, including both optimization of existing structures and design of new ones. In this case, but the following considerations have a more general value, these needs could be translated into demanding requirements of cost-effectiveness, weight reduction, reduced time-to-market with guarantee reliability. From a material perspective this means demanding mechanical performances, attention to safety margins and need of a better control of key design parameters. To obtain these results, we need to develop a new approach and effective tools in the design of plastic materials and components aimed at tailoring part behaviour to endurance and performance requirements.The target of the project is to find effective tools for predicting life endurance and damage evolution of plastic materials and components under mechanical/thermal service loading, in order to support the development of new material formulations and the design and optimization of structural components. In a particular way, we focussed our work in the characterization and modellization of materials durability and damage mechanisms.One of the main problems related to materials durability is due to fatigue failure. Fatigue process is a progressive weakening of a component with increasing time under load such that loads to be supported satisfactorily for short duration produce failure after long durations [1, 2, 3]. Fatigue failure should not be thought only as the breaking of the specimen into two separated pieces, but as a progressive material damage accumulation [2]. Material damage during fatigue loading manifests as progressive reduction of stiffness and as creep [5].As standard fatigue testing are expensive in terms of money and time, it is essential to develop

  8. A dislocation-based crystal viscoplasticity model with application to micro-engineered plasma-facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, David; Huang, Yue; Po, Giacomo; Ghoniem, Nasr M., E-mail: ghoniem@ucla.edu

    2017-03-15

    Materials developed with special surface architecture are shown here to be more resilient to the transient thermomechanical environments imposed by intermittent exposures to high heat flux thermal loading typical of long-pulse plasma transients. In an accompanying article, we present experimental results that show the relaxation of residual thermal stresses in micro-engineered W surfaces. A dislocation-based model is extended here within the framework of large deformation crystal plasticity. The model is applied to the deformation of single crystals, polycrystals, and micro-engineered surfaces composed of a uniform density of micro-pillars. The model is utilized to design tapered surface micro-pillar architecture, composed of a Re core and W coatings. Residual stresses generated by cyclic thermomechanical loading of these architectures show that the surface can be in a compressive stress state, following a short shakedown plasma exposure, thus mitigating surface fracture. - • Materials developed with special surface architecture are shown to be more resilient to the transient thermomechanical plasma transients. • A dislocation-based model is extended within the framework of large deformation crystal plasticity. • The model is applied to the deformation of single crystals, polycrystals, and micro-engineered surfaces. • The model is utilized to design tapered surface micro-pillar architecture, composed of a Re core and W coatings. • Residual stresses generated by cyclic thermomechanical loading show that the surface can be in a compressive stress state, thus mitigating surface fracture.

  9. A dislocation-based crystal viscoplasticity model with application to micro-engineered plasma-facing materials

    International Nuclear Information System (INIS)

    Rivera, David; Huang, Yue; Po, Giacomo; Ghoniem, Nasr M.

    2017-01-01

    Materials developed with special surface architecture are shown here to be more resilient to the transient thermomechanical environments imposed by intermittent exposures to high heat flux thermal loading typical of long-pulse plasma transients. In an accompanying article, we present experimental results that show the relaxation of residual thermal stresses in micro-engineered W surfaces. A dislocation-based model is extended here within the framework of large deformation crystal plasticity. The model is applied to the deformation of single crystals, polycrystals, and micro-engineered surfaces composed of a uniform density of micro-pillars. The model is utilized to design tapered surface micro-pillar architecture, composed of a Re core and W coatings. Residual stresses generated by cyclic thermomechanical loading of these architectures show that the surface can be in a compressive stress state, following a short shakedown plasma exposure, thus mitigating surface fracture. - • Materials developed with special surface architecture are shown to be more resilient to the transient thermomechanical plasma transients. • A dislocation-based model is extended within the framework of large deformation crystal plasticity. • The model is applied to the deformation of single crystals, polycrystals, and micro-engineered surfaces. • The model is utilized to design tapered surface micro-pillar architecture, composed of a Re core and W coatings. • Residual stresses generated by cyclic thermomechanical loading show that the surface can be in a compressive stress state, thus mitigating surface fracture.

  10. Stochastic Multiscale Modeling of Polycrystalline Materials

    Science.gov (United States)

    2013-01-01

    The single-grid strategy is adopted. The crystal visco-plastic constitutive model proposed in [7] along with a Voce type hardening model described...in [97] is used with γ̇0 = 1s−1 and m = 0.1. The parameters in the Voce type hardening law are selected according to [97]: κ0 = 47.0MPa, κ1 = 86.0MPa

  11. Effect of heat treatment upon the mechanical and poro-mechanical behaviour of cement-based materials: hydraulic properties and morphological changes

    International Nuclear Information System (INIS)

    Chen, Xiao-Ting

    2009-01-01

    This work investigates the effects of morphological changes of a cement-based material subjected to heat treatment (up to 400 C). For a model W/C=0.5 mortar, we have characterized experimentally hydraulic behaviour (gas permeability), mechanical behaviour (in uniaxial compression, hydrostatic compression with or without deviatoric stress) and poro-mechanical behaviour (incompressibility moduli Kb, Ks and Biot's coefficient b) after a heating/cooling cycle. We have also developed an original experiment aimed at quantifying the accessible pore space volume under hydrostatic compression. The creation of occluded porosity under high confinement is confirmed, which justifies the observed decrease of solid matrix rigidity Ks under high confinement. A gas retention phenomenon was identified under simultaneous thermal and hydrostatic loadings for mortar, and industrial concretes (provided by CERIB and ANDRA). A predictive thermo-elasto-plastic model with isotropic damage and a micro-mechanical approach, which represents micro-cracking, are coupled in order to analyze or predict the evolution of mechanical and poro-elastic properties after heat cycling. (author)

  12. SIAM CM 09 - The SIAM method for applying cohesive models to the damage behaviour of engineering materials and structures

    International Nuclear Information System (INIS)

    Scheider, Ingo; Cornec, Alfred; Schwalbe, Karl-Heinz

    2009-01-01

    This document provides guidance on the determination of damage and fracture of ductile metallic materials and structures made thereof, based mainly on experience obtained at GKSS. The method used for the fracture prediction is the cohesive model, in which material separation is represented by interface elements and their constitutive behaviour, the so-called traction-separation law, in the framework of finite elements. Several traction-separation laws are discussed, some of which are already implemented in commercial finite element codes and therefore easy applicable. Methods are described for the determination of the cohesive parameters, using a hybrid experimental/numerical approach. (orig.)

  13. SIAM CM 09 - The SIAM method for applying cohesive models to the damage behaviour of engineering materials and structures

    Energy Technology Data Exchange (ETDEWEB)

    Scheider, Ingo; Cornec, Alfred [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung; Schwalbe, Karl-Heinz

    2009-12-19

    This document provides guidance on the determination of damage and fracture of ductile metallic materials and structures made thereof, based mainly on experience obtained at GKSS. The method used for the fracture prediction is the cohesive model, in which material separation is represented by interface elements and their constitutive behaviour, the so-called traction-separation law, in the framework of finite elements. Several traction-separation laws are discussed, some of which are already implemented in commercial finite element codes and therefore easy applicable. Methods are described for the determination of the cohesive parameters, using a hybrid experimental/numerical approach. (orig.)

  14. Energy cultures. A framework for understanding energy behaviours

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, Janet [Centre for the Study of Food, Agriculture and Environment, University of Otago, P.O. Box 56, Dunedin (New Zealand); Barton, Barry [School of Law, University of Waikato (New Zealand); Carrington, Gerry [Department of Physics, University of Otago (New Zealand); Gnoth, Daniel; Lawson, Rob [Department of Marketing, University of Otago (New Zealand); Thorsnes, Paul [Department of Economics, University of Otago (New Zealand)

    2010-10-15

    Achieving a 'step-change' in energy efficiency behaviours will require enhanced knowledge of behavioural drivers, and translation of this knowledge into successful intervention programmes. The 'Energy Cultures' conceptual framework aims to assist in understanding the factors that influence energy consumption behaviour, and to help identify opportunities for behaviour change. Building on a history of attempts to offer multi-disciplinary integrating models of energy behaviour, we take a culture-based approach to behaviour, while drawing also from lifestyles and systems thinking. The framework provides a structure for addressing the problem of multiple interpretations of 'behaviour' by suggesting that it is influenced by the interactions between cognitive norms, energy practices and material culture. The Energy Cultures framework is discussed in the context of a New Zealand case study, which demonstrates its development and application. It has already provided a basis for cross-disciplinary collaboration, and for multi-disciplinary research design, and has provided insights into behavioural change in a case study community. As the conceptual basis of a 3-year research project, the framework has further potential to identify clusters of 'energy cultures' - similar patterns of norms, practices and/or material culture - to enable the crafting of targeted actions to achieve behaviour change. (author)

  15. Energy cultures: A framework for understanding energy behaviours

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, Janet, E-mail: janet.stephenson@otago.ac.n [Centre for the Study of Food, Agriculture and Environment, University of Otago, P.O. Box 56, Dunedin (New Zealand); Barton, Barry [School of Law, University of Waikato (New Zealand); Carrington, Gerry [Department of Physics, University of Otago (New Zealand); Gnoth, Daniel; Lawson, Rob [Department of Marketing, University of Otago (New Zealand); Thorsnes, Paul [Department of Economics, University of Otago (New Zealand)

    2010-10-15

    Achieving a 'step-change' in energy efficiency behaviours will require enhanced knowledge of behavioural drivers, and translation of this knowledge into successful intervention programmes. The 'Energy Cultures' conceptual framework aims to assist in understanding the factors that influence energy consumption behaviour, and to help identify opportunities for behaviour change. Building on a history of attempts to offer multi-disciplinary integrating models of energy behaviour, we take a culture-based approach to behaviour, while drawing also from lifestyles and systems thinking. The framework provides a structure for addressing the problem of multiple interpretations of 'behaviour' by suggesting that it is influenced by the interactions between cognitive norms, energy practices and material culture. The Energy Cultures framework is discussed in the context of a New Zealand case study, which demonstrates its development and application. It has already provided a basis for cross-disciplinary collaboration, and for multi-disciplinary research design, and has provided insights into behavioural change in a case study community. As the conceptual basis of a 3-year research project, the framework has further potential to identify clusters of 'energy cultures' - similar patterns of norms, practices and/or material culture - to enable the crafting of targeted actions to achieve behaviour change.

  16. Energy cultures: A framework for understanding energy behaviours

    International Nuclear Information System (INIS)

    Stephenson, Janet; Barton, Barry; Carrington, Gerry; Gnoth, Daniel; Lawson, Rob; Thorsnes, Paul

    2010-01-01

    Achieving a 'step-change' in energy efficiency behaviours will require enhanced knowledge of behavioural drivers, and translation of this knowledge into successful intervention programmes. The 'Energy Cultures' conceptual framework aims to assist in understanding the factors that influence energy consumption behaviour, and to help identify opportunities for behaviour change. Building on a history of attempts to offer multi-disciplinary integrating models of energy behaviour, we take a culture-based approach to behaviour, while drawing also from lifestyles and systems thinking. The framework provides a structure for addressing the problem of multiple interpretations of 'behaviour' by suggesting that it is influenced by the interactions between cognitive norms, energy practices and material culture. The Energy Cultures framework is discussed in the context of a New Zealand case study, which demonstrates its development and application. It has already provided a basis for cross-disciplinary collaboration, and for multi-disciplinary research design, and has provided insights into behavioural change in a case study community. As the conceptual basis of a 3-year research project, the framework has further potential to identify clusters of 'energy cultures' - similar patterns of norms, practices and/or material culture - to enable the crafting of targeted actions to achieve behaviour change.

  17. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed

  18. Identifying Successful Learners from Interaction Behaviour

    Science.gov (United States)

    McCuaig, Judi; Baldwin, Julia

    2012-01-01

    The interaction behaviours of successful, high-achieving learners when using a Learning Management System (LMS) are different than the behaviours of learners who are having more difficulty mastering the course material. This paper explores the idea that conventional Learning Management Systems can exploit data mining techniques to predict the…

  19. Critical fatigue behaviour in brittle glasses

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The dynamic fatigue fracture behaviour in different glasses under various sub-threshold loading conditions are analysed here employing an anomalous diffusion model. Critical dynamical behaviour in the time-to-fracture and the growth of the micro-crack sizes, similar to that observed in such materials in the case.

  20. The behaviour of materials in fast reactors

    International Nuclear Information System (INIS)

    Matthews, J.R.

    1977-01-01

    Fast neutron damage in fast reactors can limit the life of structural components through the growth voids. The main features of the current theory of point defect production and condensation are surveyed. The role of metallurgical structures and radiation produced extended defects is outlined and used to demonstrate the development of volume swelling and radiation hardening. Mechanisms of radiation creep are described in the context of the preceding treatment of point defect behaviour. Finally, future trends in the field are briefly explored. (author)

  1. Modelling flow and work hardening behaviour of cold worked Zr–2.5Nb pressure tube material in the temperature range of 30–600 oC

    International Nuclear Information System (INIS)

    Dureja, A.K.; Sinha, S.K.; Pawaskar, D.N.; Seshu, P.; Chakravartty, J.K.; Sinha, R.K.

    2014-01-01

    Under a postulated accident scenario of loss of cooling medium in an Indian Pressurised Heavy Water Reactor (IPHWR), temperature of the pressure tubes can rise and lead to large deformations. In order to investigate the modes of deformation of pressure tube – calandria tube assembly, material property data defining the flow behaviour over a temperature range from room temperature (RT) to 800 o C are needed. It is of practical importance to formulate mathematical equations to describe the stress–strain relationships of a material for a variety of reasons, such as the analysis of forming operations and the assessment of component's performance in service. A number of constitutive relations of empirical nature have been proposed and they have been found very suitable to describe the behaviour of a material. Although these relations are of empirical nature, various metallurgical factors appear to decide applicability of each of these relations. For example, grain size influences mainly the friction stress while the strain hardening is governed by dislocation density. In a recent work, tensile deformation behaviour of pressure tube material of IPHWR has been carried out over a range of temperature and strain rates (Dureja et al., 2011). It has been found that the strength parameters (yield and ultimate tensile strength) vary along the length of the tube with higher strength at the trailing end as compared to the leading end. This stems from cooling of the billet during the extrusion process which results in the variation of microstructure, texture and dislocation density from the leading to the trailing end. In addition, the variation in metallurgical parameters is also expected to influence the work hardening behaviour, which is known to control the plastic instability (related to uniform strain). In the present investigation, the tensile flow and work-hardening behaviour of a cold worked Zr–2.5Nb pressure tube material of IPHWRs has been studied over the

  2. Sensitivity study of the Storegga Slide tsunami using retrogressive and visco-plastic rheology models

    Science.gov (United States)

    Kim, Jihwan; Løvholt, Finn

    2016-04-01

    Enormous submarine landslides having volumes up to thousands of km3 and long run-out may cause tsunamis with widespread effects. Clay-rich landslides, such as Trænadjupet and Storegga offshore Norway commonly involve retrogressive mass and momentum release mechanisms that affect the tsunami generation. As a consequence, the failure mechanisms, soil parameters, and release rate of the retrogression are of importance for the tsunami generation. Previous attempts to model the tsunami generation due to retrogressive landslides are few, and limited to idealized conditions. Here, a visco-plastic model including additional effects such as remolding, time dependent mass release, and hydrodynamic resistance, is employed for simulating the Storegga Slide. As landslide strength parameters and their evolution in time are uncertain, it is necessary to conduct a sensitivity study to shed light on the tsunamigenic processes. The induced tsunami is simulated using Geoclaw. We also compare our tsunami simulations with recent analysis conducted using a pure retrogressive model for the landslide, as well as previously published results using a block model. The availability of paleotsunami run-up data and detailed slide deposits provides a suitable background for improved understanding of the slide mechanics and tsunami generation. The research leading to these results has received funding from the Research Council of Norway under grant number 231252 (Project TsunamiLand) and the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE).

  3. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  4. An example of coupling behaviour-damage-environment in polycrystals. Application to Pellet-Cladding Interaction

    International Nuclear Information System (INIS)

    Diard, Olivier

    2001-01-01

    Zircaloy-4 cladding is the first containment barrier for fission products, and its integrity must therefore be ensured in nominal and accidental situations. However, stress corrosion induced cracks may appear due to a strong pellet-cladding interaction. It is therefore important to model this interaction and crack growth and propagation to establish non-damage criteria. Thus, this research thesis aims at developing a modelling covering both issues (pellet-cladding interaction, and stress corrosion cracking) and allowing macroscopic and microscopic scales to be coupled. After a bibliographical synthesis on iodine-induced stress corrosion cracking and similar phenomena, the author presents the model proposed for the pellet-cladding interaction: phenomena to be taken into account, phenomenological and macroscopic behaviour laws used respectively for pellet and cladding. An extended version of an existing cladding viscoplastic model is proposed. Stress and strain fields in the cladding are obtained, notably in the contact zone. In the next part, the author presents various numerical tools developed or used to model multi-crystalline aggregates, and the model of crystalline plasticity used to simulate cladding behaviour at the microstructure scale. Effects of mesh density, element types and anisotropic elasticity are also discussed. The next chapter addresses the mechanical-chemical coupling. Some coupling formulas are presented for simple cases in order to define the effective diffusion coefficient. The last part reports the modelling of intergranular damage: definition of a damage criterion at the granular scale, assessment of stresses at grain boundaries, and effect of crystallographic neighbouring. A model of grain boundary damage is also proposed. This model is assessed on Failure Mechanics test samples and on simple microstructures. The application of the whole numerical model is reported [fr

  5. Corrosion behaviour of container materials for the disposal of high-level wastes in rock salt formations

    International Nuclear Information System (INIS)

    Smailos, E.; Schwarzkopf, W.; Koester, R.

    1986-01-01

    In 1983-84 extensive laboratory-scale experiments (immersion tests) to evaluate the long-term corrosion behaviour of selected materials in salt brines and first in situ experiments were performed. In the laboratory experiments the materials Ti 99.8-Pd, Hastelloy C4 and hot-rolled low carbon steel (reference materials in the joint European corrosion programme) as well as cast steel, spheoroidal cast iron, Si-cast iron and the Ni-Resists type D2 and D4 were investigated. The investigated parameters were: temperature (90 0 C; 170 0 C, 200 0 C), gamma-radiation (10 5 rad/h) and different compositions of salt brines. The results obtained show that, in addition to Ti 99.8-Pd, also Hastelloy C4 and unalloyed steels are in principle suitable for being used for long-term stable HLW-containers if the gamma dose rate is reduced by suitable shielding. Furthermore, the susceptibility of Hastelloy C4 to crevice corrosion must be taken into account. Further studies will be necessary to provide final evidence of the suitability of the materials examined. These will mainly involve clarification of questions related to hydrogen embrittlement (Ti 99.8-Pd, unalloyed steels) and to the influence of pressure and saline impurities (e.g. antiJ, antiBr) on corrosion

  6. Design of steel-liners and their anchorage with regard to non-linear behaviour of liner-material and anchorage

    International Nuclear Information System (INIS)

    Oberpichler, R.

    1979-01-01

    The thin steel liner attached by studs or rib-type anchors to the interior wall of a Prestressed Concrete Reactor Pressure Vessel (PCRV) or a Concrete Containment Vessel (PCCV) has to provide the leak-tightness of the vessel. The liner also may serve as internal shuttering for placing concrete as well as a support for the cooling system or thermal isolation. Mainly strained by self-limited loads imposed on the liner by deformations of the vessel-wall or by heatup inside the vessel the liner predominantly will function in a compressive biaxially strained state like a membrane. The vessel-wall is assumed to be a rigid boundary without reactions caused by the liner-anchor-restraints. Furthermore it is assumed that the liner supported in a close-spaced pattern to the concrete with respect to self-limited loads and all effects of non-linear behaviour of liner-material and non-linear anchor-characteristics will not fail by instability, especially not by an effect of snapthrough. Only one essential mode of failure, the shear connector failure is assumed to be basis for all liner investigations. Design of the liner and its anchorage therefore is based on the analysis of large deformations with regard to elastic-plastic behaviour of liner-material and non-linear anchor characteristics. By this method both economical and safe sizing and spacing of the anchors can be calculated. (orig.)

  7. Effect of strain rate and temperature on mechanical properties of selected building Polish steels

    Directory of Open Access Journals (Sweden)

    Moćko Wojciech

    2015-01-01

    Full Text Available Currently, the computer programs of CAD type are basic tool for designing of various structures under impact loading. Application of the numerical calculations allows to substantially reduce amount of time required for the design stage of such projects. However, the proper use of computer aided designing technique requires input data for numerical software including elastic-plastic models of structural materials. This work deals with the constitutive model developed by Rusinek and Klepaczko (RK applied for the modelling of mechanical behaviour of selected grades structural St0S, St3SX, 18GS and 34GS steels and presents here results of experimental and empirical analyses to describe dynamic elastic-plastic behaviours of tested materials at wide range of temperature. In order to calibrate the RK constitutive model, series of compression tests at wide range of strain rates, including static, quasi-static and dynamic investigations at lowered, room and elevated temperatures, were carried out using two testing stands: servo-hydraulic machine and split Hopkinson bar. The results were analysed to determine influence of temperature and strain rate on visco-plastic response of tested steels, and show good correlation with experimental data.

  8. Parameters identification in strain-rate and thermal sensitive visco-plastic material model for an alumina dispersion strengthened copper

    CERN Document Server

    Scapin, M; Peroni, M

    2011-01-01

    The main objective of this paper is getting strain-hardening, thermal and strain-rate parameters for a material model in order to correctly reproduce the deformation process that occurs in high strain-rate scenario, in which the material reaches also high levels of plastic deformation and temperature. In particular, in this work the numerical inverse method is applied to extract material strength parameters from experimental data obtained via mechanical tests at different strain-rates (from quasi-static loading to high strain-rate) and temperatures (between 20 C and 1000 C) for an alumina dispersion strengthened copper material, which commercial name is GLIDCOP. Thanks to its properties GLIDCOP finds several applications in particle accelerator technologies, where problems of thermal management, combined with structural requirements, play a key role. Currently, it is used for the construction of structural and functional parts of the particle beam collimation system. Since the extreme condition in which the m...

  9. Library of Advanced Materials for Engineering (LAME) 4.48.

    Energy Technology Data Exchange (ETDEWEB)

    Plews, Julia A.; Crane, Nathan K; de Frias, Gabriel Jose; Le, San; Littlewood, David John; Merewether, Mark Thomas; Mosby, Matthew David; Pierson, Kendall H.; Porter, Vicki L.; Shelton, Timothy; Thomas, Jesse David; Tupek, Michael R.; Veilleux, Michael; Xavier, Patrick G.

    2018-03-01

    Accurate and efficient constitutive modeling remains a cornerstone issues for solid mechanics analysis. Over the years, the LAME advanced material model library has grown to address this challenge by implement- ing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting imple- mentation. Therefore, to enhance confidence and enable the utilization of the LAME library in application, this effort seeks to document and verify the various models in the LAME library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verifi- cation tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.

  10. A framework for understanding culture and its relationship to information behaviour: Taiwanese aborigines' information behaviour

    OpenAIRE

    Nei-Ching Yeh

    2007-01-01

    Introduction. This article proposes a model of culture and its relationship to information behaviour based on two empirical studies of Taiwanese aborigines' information behaviour. Method. The research approach is ethnographic and the material was collected through observations, conversations, questionnaires, interviews and relevant documents. In 2003-2004, the author lived with two Taiwan aboriginal tribes, the Yami tribe and the Tsau tribe and conducted forty-two theme-based interviews. An...

  11. Flexural Behaviour of Precast Aerated Concrete Panel (PACP with Added Fibrous Material: An Overview

    Directory of Open Access Journals (Sweden)

    Abdul Rahim Noor Hazlin

    2017-01-01

    Full Text Available The usage of precast aerated concrete panel as an IBS system has become the main alternative to conventional construction system. The usage of this panel system contributes to a sustainable and environmental friendly construction. This paper presents an overview of the precast aerated concrete panel with added fibrous material (PACP. PACP is fabricated from aerated foamed concrete with added Polypropylene fibers (PP. The influence of PP on the mechanical properties of PACP are studied and reviewed from previous research. The structural behaviour of precast concrete panel subjected to flexure load is also reviewed. It is found that PP has significant affects on the concrete mixture’s compressive stregth, tensile strength and flexural strength. It is also found that PP manage to control the crack propagation in the concrete panel.

  12. Electromagnetic Behaviour of Metallic Wire Structures

    CERN Document Server

    Chui, S T

    2013-01-01

    Despite the recent development and interest in the photonics of metallic wire structures, the relatively simple concepts and physics often remain obscured or poorly explained to those who do not specialize in the field. Electromagnetic Behaviour of Metallic Wire Structures provides a clear and coherent guide to understanding these phenomena without excessive numerical calculations.   Including both background material and detailed derivations of the various different formulae applied, Electromagnetic Behaviour of Metallic Wire Structures describes how to extend basic circuit theory relating to voltages, currents, and resistances of metallic wire networks to include situations where the currents are no longer spatially uniform along the wire. This lays a foundation for a deeper understanding of the many new phenomena observed in meta-electromagnetic materials.   Examples of applications are included to support this new approach making Electromagnetic Behaviour of Metallic Wire Structures a comprehensive and ...

  13. Failure behaviour of carbon/carbon composite under compression

    Energy Technology Data Exchange (ETDEWEB)

    Tushtev, K.; Grathwohl, G. [Universitaet Bremen, Advanced Ceramics, Bremen (Germany); Koch, D. [Deutsches Zentrum fuer Luft- und Raumfahrt, Institut fuer Bauweisen- und Konstruktionsforschung, Keramische Verbundstrukturen, Stuttgart (Germany); Horvath, J.

    2012-11-15

    In this work the properties of Carbon/Carbon-material are investigated under quasi-static compression and model-like characterized. The investigated material was produced by pyrolysis of a Carbon/Carbon - composite of bidirectionally reinforced fabric layers. For the compression tests, a device to prevent additional bending stress was made. The stress-strain behaviour of this material has been reproduced in various publications. This will be discussed on the fracture behaviour and compared the experimental results from the compression tests with the characteristics of tensile and shear tests. The different compression and tensile properties of stiffness, poisson and strength were assessed. Differences between the tensile and compression behaviour resulting from on-axis tests by micro buckling and crack closure and off-axis experiments by superimposed pressure normal stresses that lead to increased shear friction. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Application of trilinear softening functions based on a cohesive crack approach to the simulation of the fracture behaviour of fibre reinforced cementitious materials.

    Science.gov (United States)

    Enfedaque, A.; Alberti, M. G.; Gálvez, J. C.

    2017-09-01

    The relevance of fibre reinforced cementitious materials (FRC) has increased due to the appearance of regulations that establish the requirements needed to take into account the contribution of the fibres in the structural design. However, in order to exploit the properties of such materials it is a key aspect being able to simulate their behaviour under fracture conditions. Considering a cohesive crack approach, several authors have studied the suitability of using several softening functions. However, none of these functions can be directly applied to FRC. The present contribution analyses the suitability of multilinear softening functions in order to obtain simulation results of fracture tests of a wide variety of FRC. The implementation of multilinear softening functions has been successfully performed by means of a material user subroutine in a commercial finite element code obtaining accurate results in a wide variety of FRC. Such softening functions were capable of simulating a ductile unloading behaviour as well as a rapid unloading followed by a reloading and afterwards a slow unloading. Moreover, the implementation performed has been proven as versatile, robust and efficient from a numerical point of view.

  15. Creep behaviour and microstructure of the ferritic material No. 1-6770 under irradiation

    International Nuclear Information System (INIS)

    Herschbach, K.; Ehrlich, K.; Materna, E.

    Creep behaviour under irradiation of the ferritic steel-DIN-1-6770 is quite different of austenitic steel behaviour, in particular temperature sensitivity is important and response to stress is non linear. The microstructure stays unchanged

  16. ANDRA - Referential Materials. Volume 1: Context and scope; Volume 2: Argillaceous materials; Volume 3: Cementitious materials; Volume 4: The corrosion of metallic materials

    International Nuclear Information System (INIS)

    2001-01-01

    This huge document gathers four volumes. The first volume presents some generalities about materials used in the storage of radioactive materials (definition, design principle, current choices and corresponding storage components, general properties of materials and functions of the corresponding storage components, physical and chemical solicitations experienced by materials in a storage), and the structure and content of the other documents. The second volume addresses argillaceous materials. It presents some generalities about these materials in the context of a deep geological storage, and about their design. It presents and comments the crystalline and chemical, and physical and chemical characteristics of swelling argillaceous materials and minerals, describes how these swelling argillaceous materials are shaped and set up, presents and comments physical properties (hydraulic, mechanical and thermal properties) of these materials, comments and discusses the modelling of the geo-chemical behaviour, and their behaviour in terms of containment and transport of radionuclides. The third volume addresses cementitious materials. It presents some generalities about these materials in the context of a deep geological storage, and about their definition and specifications. It presents some more detailed generalities (cement definition and composition, hydration, microstructure of hydrated cements, adjuvants), presents and comments their physical properties (fresh concrete structure and influence of composition, main aimed properties in the hardened status, transfer, mechanical, and thermal properties, shaping and setting up of these materials, technical solutions for hydraulic works). The fourth volume addresses the corrosion of metallic materials. It presents some generalities about these materials in the context of a deep geological storage of radioactive materials. It presents metallic materials and discusses their corrosion behaviour. It describes the peculiarities

  17. Methodology of long term behaviour study of containment materials

    International Nuclear Information System (INIS)

    Vernaz, E.; Godon, N.

    1994-01-01

    Here is the presentation of the papers shown in the colloquium on environment and ceramics; the Atomic Energy Commissariat (Cea) have been working for fifteen years on the long term behaviour of fission products glasses on very long periods, about several millions years. The method of studies is detailed. 2 refs

  18. Anomalous spreading behaviour of polyethyleneglycoldistearate ...

    Indian Academy of Sciences (India)

    Unknown

    Anomalous behaviour; polythyleneglycoldistearate; air/water interface; ... distinguished these monolayer states in terms of molecular ordering, including the .... It has been found that the compressibilities of the materials in the condensed phase.

  19. Flow behaviour of autoclaved, 20% cold worked, Zr-2.5Nb alloy pressure tube material in the temperature range of room temperature to 800 deg. C

    International Nuclear Information System (INIS)

    Dureja, A.K.; Sinha, S.K.; Srivastava, Ankit; Sinha, R.K.; Chakravartty, J.K.; Seshu, P.; Pawaskar, D.N.

    2011-01-01

    Pressure tube material of Indian Heavy Water Reactors is 20% cold-worked and stress relieved Zr-2.5Nb alloy. Inherent variability in the process parameters during the fabrication stages of pressure tube and also along the length of component have their effect on micro-structural and texture properties of the material, which in turn affect its strength parameters (yield strength and ultimate tensile strength) and flow characteristics. Data of tensile tests carried out in the temperature range from room temperature to 800 deg. C using the samples taken out from a single pressure tube have been used to develop correlations for characterizing the strength parameters' variation as a function of axial location along length of the tube and the test temperature. Applicability of Ramberg-Osgood, Holloman and Voce's correlations for defining the post yield behaviour of the material has been investigated. Effect of strain rate change on the deformation behaviour has also been studied.

  20. Materials 2014: a great success for materials sector

    International Nuclear Information System (INIS)

    Isnard, Olivier; Crepin, Jerome

    2014-01-01

    In this work are presented the summaries of the 19 symposiums presented at the conference: 'Materials 2014' and whose topics were: eco-materials, materials for energy storage and conversion, strategic materials, rare elements and recycling, surfaces functionalization and physico-chemical characterization, interfaces and coatings, corrosion, aging, durability, damage mechanical behaviours, disordered materials, glasses and their functionalization, materials and health, functional materials, porous, granular and with a high surface area materials, nano-materials, nano-structured systems, assembling processes, carbonaceous materials, great instruments and studies of materials, materials in severe conditions, powder forming processes, metallic materials and structures lightening. (O.M.)

  1. Understanding and modelling of the aniso-thermal cyclic mechanical behaviour of the AISI 316LN austenitic stainless steel

    International Nuclear Information System (INIS)

    Gentet, D.

    2009-11-01

    The main subject of this report consists in proposing a mechanical model of the viscoplastic behaviour of an austenitic stainless steel under isothermal and aniso-thermal low cycle fatigue loadings at high temperatures (550-900 K). In this domain, numerous phenomena linked to dynamic strain ageing (DSA) and to dipolar dislocation structure formation may appear. Isothermal and aniso-thermal low cycle fatigue tension-compression tests were performed in order to verify some aspects about the effect of temperature on the mechanical behaviour. The study of the hysteresis loops and the observation of dislocation structures carried on transmission electron microscopy establish two different DSA mechanisms during isothermal tests. The effect of temperature history is shown for for particular temperature sequences. It is demonstrated that the stress amplitude increase when the sample is submitted to cycles at 'high temperature' is linked to the second mechanism of DSA. It comes from the increase of short range interaction between dislocations (chromium segregation), but it is also the consequence of the lack of dipolar structure annihilation at low temperature. From the experimental analysis of DSA mechanisms and dipolar restoration, a macroscopic aniso-thermal model is developed using physical internal variables (densities of dislocations). The equations of a polycrystalline model are rewritten with the aim of getting a simple multi-scale approach which can be used on finite elements analysis software. Between 550 and 873 K, the simulation results are in good accordance with the macroscopic and microscopic observations of low cycle fatigue, relaxation, and 2D-ratchetting tests. (author)

  2. Numerical experiments in finite element analysis of thermoelastoplastic behaviour of materials. Further developments of the PLASTEF code

    International Nuclear Information System (INIS)

    Basombrio, F.G.; Sarmiento, G.S.

    1980-01-01

    In a previous paper the finite element code PLASTEF for the numerical simulation of thermoelastoplastic behaviour of materials was presented in its general outline. This code employs an initial stress incremental procedure for given histories of loads and temperature. It has been formulated for medium sized computers. The present work is an extension of the previous paper to consider additional aspects of the variable temperature case. Non-trivial tests of this type of situation are described. Finally, details are given of some concrete applications to the prediction of thermoelastoplastic collapse of nuclear fuel element cladding. (author)

  3. Problems to be solved about inelastic behaviour of materials and inelastic analysis of structures at elevated temperature

    International Nuclear Information System (INIS)

    Ledermann, P.; Escatha, Y. d'.

    1981-01-01

    At elevated temperature, ASME CODE CASE N 47 demands, in its design and analysis part to demonstrate that none of eight damages, related to the monotonic and cyclic inelastic behaviour of the material and structure, will happen during the whole life of the reactor. However this demonstration, for strain limits and creep fatigue failure, using a purely elastic analysis as in the ASME CODE Section III, is usually impossible. Inelastic analysis is then necessary. We review some of the research work (theorical and experimental) which is being done to qualify methods for an inelastic analysis of structures at elevated temperature [fr

  4. Large Engine Technology (LET) Short Haul Civil Tiltrotor Contingency Power Materials Knowledge and Lifing Methodologies

    Science.gov (United States)

    Spring, Samuel D.

    2006-01-01

    This report documents the results of an experimental program conducted on two advanced metallic alloy systems (Rene' 142 directionally solidified alloy (DS) and Rene' N6 single crystal alloy) and the characterization of two distinct internal state variable inelastic constitutive models. The long term objective of the study was to develop a computational life prediction methodology that can integrate the obtained material data. A specialized test matrix for characterizing advanced unified viscoplastic models was specified and conducted. This matrix included strain controlled tensile tests with intermittent relaxtion test with 2 hr hold times, constant stress creep tests, stepped creep tests, mixed creep and plasticity tests, cyclic temperature creep tests and tests in which temperature overloads were present to simulate actual operation conditions for validation of the models. The selected internal state variable models where shown to be capable of representing the material behavior exhibited by the experimental results; however the program ended prior to final validation of the models.

  5. NUMERICAL MODELLING OF THE SOIL BEHAVIOUR BY USING NEWLY DEVELOPED ADVANCED MATERIAL MODEL

    Directory of Open Access Journals (Sweden)

    Jan Veselý

    2017-02-01

    Full Text Available This paper describes a theoretical background, implementation and validation of the newly developed Jardine plastic hardening-softening model (JPHS model, which can be used for numerical modelling of the soils behaviour. Although the JPHS model is based on the elasto-plastic theory, like the Mohr-Coulomb model that is widely used in geotechnics, it contains some improvements, which removes the main disadvantages of the MC model. The presented model is coupled with an isotopically hardening and softening law, non-linear elastic stress-strain law, non-associated elasto-plastic material description and a cap yield surface. The validation of the model is done by comparing the numerical results with real measured data from the laboratory tests and by testing of the model on the real project of the tunnel excavation. The 3D numerical analysis is performed and the comparison between the JPHS, Mohr-Coulomb, Modified Cam-Clay, Hardening small strain model and monitoring in-situ data is done.

  6. Report on the studies on the corrosion behaviour of the constructional materials for the gate cooling system

    International Nuclear Information System (INIS)

    Elayathu, N.S.D.; Balachandra, J.

    1974-01-01

    The gate cooling system of the Trombay R-5 reactor, now under construction, is proposed to be a laminated gate designed to operate with 50 % KBO 2 solution within the temperature limits 30 deg C and 50 deg C. With a view to find suitable constructional materials for the gate, the corrosion behaviour of stainless steel 304 L(ASTM 240-69), lead (ASTM B-29), aluminium (as Boral), neoprene, perspex and carbon steel (ASTM A 302 grade B) has been investigated in 50 % KBO 2 solution at 45 deg C. After definite periods of exposure, their coupons were examined metallographically at different magnifications to assess the nature and extent of sub-surface attack. The results show that out of the materials studied, carbon steel, lead and aluminium are more liable to corrosion in the borate solution and hence their use should be avoided. (M.G.B.)

  7. The summer thermal behaviour of 'skin' materials for vertical surfaces in Athens, Greece, as a decisive parameter for their selection

    Energy Technology Data Exchange (ETDEWEB)

    Bougiatioti, F.; Evangelinos, E.; Poulakos, G.; Zacharopoulos, E. [National Technical University of Athens, School of Architecture, Department of Architectural Technology, 42, Patission Street, 10682 Athens (Greece)

    2009-04-15

    This paper analyses the thermal behaviour of the materials, which are widely used on the vertical surfaces of Greek cities. This analysis is based on surface temperatures measurements, which were carried out both in situ in various buildings of Athens, Greece and experimentally on samples of building materials exposed to solar radiation on a building's flat roof. The study includes surfacing materials, which are usually applied on building facades around Greece. The study leads to a number of conclusions concerning the effect of colour and orientation on the summer surface temperatures of materials, used on vertical city surfaces. These conclusions indicate how surfacing materials should be chosen in order to help mitigate the urban heat island and improve thermal comfort conditions in the outdoor spaces of Greek cities during the overheated summer period. (author)

  8. A framework for understanding culture and its relationship to information behaviour: Taiwanese aborigines' information behaviour

    Directory of Open Access Journals (Sweden)

    Nei-Ching Yeh

    2007-01-01

    Full Text Available Introduction. This article proposes a model of culture and its relationship to information behaviour based on two empirical studies of Taiwanese aborigines' information behaviour. Method. The research approach is ethnographic and the material was collected through observations, conversations, questionnaires, interviews and relevant documents. In 2003-2004, the author lived with two Taiwan aboriginal tribes, the Yami tribe and the Tsau tribe and conducted forty-two theme-based interviews. Analysis. Data were analysed with the help of software for qualitative analysis (NVivo, where all sentences from both interviews and field notes were coded. The conceptual framework used is the sociology of knowledge. Results. The model of culture and its relationship to information behaviour can show us how to think about the relationship between culture and human information behaviour. This model also identifies elements of the model, which are habitus, tradition and prejudice and suggests how we can apply the concepts of information fullness and emptiness to view the relationship between culture and human information behaviour. Conclusion. . Theoretically, this research puts forward a new model of information behaviour and focuses on the role and the importance of culture when thinking about and studying human information behaviour. Methodologically, this study demonstrates how an ethnographic research method can contribute to exploring the influence that culture has on human life and the details of the human life world and information behaviour.

  9. Modelling of the mechanical behaviour of the single-crystal turbine alloy CMSX-4 during thermomechanical loading

    Science.gov (United States)

    Schubert, F.; Fleury, G.; Steinhaus, T.

    2000-11-01

    Turbine blades in gas turbine engines are subjected during operation to triaxial stress fields. For the description of the deformation behaviour of anisotropic single-crystal blades, constitutive equations are required which take account of modifications to the deformation processes caused by evolution of the γ/γ' microstructure during service (γ' rafting). A microstructure-dependent, orthotropic Hills potential, whose anisotropy coefficients are connected to the edge length of γ' particles, has been applied. The shape of γ' particles remains cubic below exposures at 700 °C. At high temperatures (above 850 °C) the γ' particles coalesce to rafts, and the viscoplastic response of the superalloy is continuously modified. This reduces the creep resistance of orientated specimen. After tensile loading of the -orientated specimens at 1000 °C, the rafting of γ' in the (100) plane was observed as expected, whereas the specimens did not reveal γ' rafting. Torsionally loaded specimens exhibited rafting only in the near -orientated surface regions of the specimen. The deformation in the tensile and torsion specimens occurred by octahedral slip of dislocations and not by cubic slip, as expected from theoretical considerations. Rafting did not occur in the -orientated specimens. This anisotropy change is simulated successfully by the microstructure-dependent model.

  10. Materialism and Well-Being in Children

    OpenAIRE

    Hebben Wadey, A.

    2011-01-01

    Past research on materialism has focussed on adults and adolescents, with very little attention paid to younger children. In older populations, materialism has been linked to low self-esteem, increased aggression and delinquency, low prosocial behaviour and increased narcissism. This study aimed to identify whether these results could be replicated in pre-teen children, with particular attention paid to the impact of materialism-narcissism interactions on behavioural outcomes. Seventy-five ch...

  11. Critical analyses on the localized corrosion behaviour in materials of energetic interests: Inconcel 600 CSM and Deltacogne

    International Nuclear Information System (INIS)

    Borello, A.; Frangini, S.; Masci, D.

    1989-06-01

    Concerning the two commonly observed phenomena of localized corrosion of Inconel 600 in high temperature caustic environments normally encountered in steam generators of PWR nuclear reactors, the aim of this work is to investigate the intergranular and the stress corrosion cracking behaviour of two heats of Alloy 600, having different origin. In fact one heat was produced by Centro Sviluppo Materiali (CSM) in laboratory scale; the other one was manufactured by Deltacogne following conventional industrial practices. The evaluation of intergranular corrosion susceptibility has been performed by means of the modified Huey test and the Electrochemical Potentiokinetic Reactivation (EPR). The stress corrosion cracking susceptibility was determined by the slow strain rate technique. The results of the present study show that the CSM heat has a better behaviour than the Deltacogne one as for the stress corrosion cracking susceptibility. On the contrary, concerning the intergranular corrosion resistance, both used tests point out that the Deltacogne material has a lower susceptibility to this type of localized corrosion. The sensitization areas in the TTS diagram, depend, even for the same heat, on the type of the test used for the evaluation. (author)

  12. HYDRAULIC AND LEACHING BEHAVIOUR OF BELITE CEMENTS PRODUCED WITH ELECTRIC ARC FURNACE STEEL SLAG AS RAW MATERIAL

    Directory of Open Access Journals (Sweden)

    Iacobescu R. I.

    2013-06-01

    Full Text Available Three belite-rich cements consisting of a clinker made with 0 (BC, 5 (BC5 and 10 wt. % (BC10 electric arc furnace steel slag (EAFS as raw material, were studied for their hydraulic and leaching behaviour. Hydration behaviour was studied by FTIR, TG/DTG and SEM analyses. The cements with EAFS resulted in a higher C2S/C3S and C4AF/C3A ratio compared to the reference body. As a result, the rate of hydration was low at early days whereas the structure was porous with scattered AFm and C–S–H crystals. At 28 days, a comparable dense microstructure consisting largely of C–S–H is observed in all mortars. Leaching was studied for V and Cr by means of tank test according to standard NEN 7345. The results showed V release below 2 μg/l. Chromium release calculated per 24 h was 1.4 μg/l in BC5 and 2.4 μg/l in BC10, which is much lower than the parametric value of 50 μg/l specified by the European Directive for drinking water (98/83/EC.

  13. Materials with complex behaviour II properties, non-classical materials and new technologies

    CERN Document Server

    Oechsner, Andreas

    2012-01-01

    This book reviews developments and trends in advanced materials and their properties; modeling and simulation of non-classical materials and new technologies for joining materials. Offers tools for characterizing and predicting properties and behavior.

  14. Hydro-mechanical behaviour of bentonite-based materials used for high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Wang, Q.

    2012-01-01

    This study deals with the hydro-mechanical behaviour of compacted bentonite-based materials used as sealing materials in high-level radioactive waste repositories. The pure MX80 bentonite, mixtures of MX80/crushed clay-stone and MX80/sand were used in the investigation. An experimental study on the swelling pressure of the bentonite-based materials was first performed. The results evidenced the effects of water chemistry, hydration procedure and duration, pre-existing technological void and experimental methods. Emphasis was put on the relationship between the swelling pressure and the final dry density of bentonite. Afterwards, the water retention test, hydration test and suction controlled oedometer test were conducted on samples with different voids including the technological void and the void inside the soil. By introducing the parameters as bentonite void ratio and water volume ratio, an overall analysis of the effects of voids on the hydro-mechanical response of the compacted material was performed. To get better insight into the seal evolution in case of technological void, the effects of final dry density and hydration time on the microstructure features were also characterized. Then, the hydraulic properties under unsaturated state were investigated by carrying out water retention test and infiltration test as well as the microstructure observation. The results obtained allowed relating the variation of hydraulic conductivity to the microstructure changes. A small scale (1/10) mock up test of the SEALEX in situ experiment was also performed to study the recovery capacity of bentonite-based material with consideration of a technological void. The results were used for interpreting the in-situ observations. With a reduced time scale, it provides useful information for estimating the saturation duration and sealing effectiveness of the field design. Finally, the experimental data obtained in the laboratory on bentonite/sand mixture were interpreted in the

  15. Leaching behaviour of different scrap materials at recovery and recycling companies: full-, pilot- and lab-scale investigation.

    Science.gov (United States)

    Blondeel, E; Chys, M; Depuydt, V; Folens, K; Du Laing, G; Verliefde, A; Van Hulle, S W H

    2014-12-01

    Scrap material recovery and recycling companies are confronted with waste water that has a highly fluctuating flow rate and composition. Common pollutants, such as COD, nutrients and suspended solids, potentially toxic metals, polyaromatic hydrocarbons and poly chlorinated biphenyls can exceed the discharge limits. An analysis of the leaching behaviour of different scrap materials and scrap yard sweepings was performed at full-scale, pilot-scale and lab-scale in order to find possible preventive solutions for this waste water problem. The results of these leaching tests (with concentrations that frequently exceeded the Flemish discharge limits) showed the importance of regular sweeping campaigns at the company, leak proof or covered storage of specific scrap materials and oil/water separation on particular leachates. The particulate versus dissolved fraction was also studied for the pollutants. For example, up to 98% of the polyaromatic hydrocarbons, poly chlorinated biphenyls and some metals were in the particulate form. This confirms the (potential) applicability of sedimentation and filtration techniques for the treatment of the majority of the leachates, and as such the rainwater run-off as a whole. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Biaxial deformation behaviour of poly-ether-ether-ketone

    Science.gov (United States)

    Turner, Josh; Menary, Gary; Martin, Peter

    2018-05-01

    The biaxial tensile properties of thin poly-ether-ether-ketone (PEEK) films are presented. Investigation into the biaxial mechanical behaviour of PEEK films will provide a preliminary insight into the anticipated stress/strain response, and potential suitability, to the possible fabrication of thin walled parts through stretch blow moulding and thermoforming processes - with the multi-axial state of strain imposed onto the heated thermoplastic sheet representative of the expected strain history experienced during these material forming processes. Following identification of the prospective forming temperature window, the biaxial mechanical behaviour of the material is characterized under differing modes of deformation, at a nominal strain rate of 1 s-1. The temperature dependence is outlined within - with an appreciable increase in flow behaviour correlated with specimen temperature exceeding its glass transition temperature (Tg).

  17. Creep and damage in argillaceous rocks: microstructural change and phenomenological modeling; Fluage et endommagement des roches argileuses: evolution de la microstructure et modelisation phenomenologique

    Energy Technology Data Exchange (ETDEWEB)

    Fabre, G

    2005-06-15

    The underground radioactive waste disposal far exceeds the period of exploitation of common civil engineering works. These specific projects require to predict the irreversible deformations over a large time scale (several centuries) in order to assess the extension and to forecast the evolution of the EDZ (Excavation Damage Zone) around the cavity. In this study, the viscosity of three sedimentary argillaceous rocks has been studied under different conditions of uniaxial compression: static or cyclic creep tests, monotonic and quasistatic tests, performed across various strata orientations. Argillaceous rocks are studied as a possible host layer for radioactive waste disposals. Indeed, they present some of the physical characteristics and mechanical properties, which are essential for being a natural barrier: low permeability, high creep potential and important holding capacity of radioactive elements. The purpose of the experimental study was to shed some light over the mechanisms governing the development of delayed deformations and damage of argillaceous rocks. It relates three rocks: an argillite from East of France, a Tournemire argillite and a marl from Jurassic Mountains. On atomic scale, viscoplastic deformations are due to irreversible displacements of crystalline defects, called dislocations. The experimental study was also supplemented with observations on thin sections extracted from the argillite and marl samples using a SEM. The aim was to identify the mechanisms responsible for the time-dependent behaviour on a microstructural scale. Analytical simulations of the mechanical behaviour of the three rocks gave parameters used in different viscoplastic models. The best modeling was obtained with the viscoplastic model which takes account of the development of volumetric strains and of the damage anisotropy. (author)

  18. Numerical study of the influence of material parameters on the mechanical behaviour of a rehabilitated edentulous mandible.

    Science.gov (United States)

    Favot, Louis-Marc; Berry-Kromer, Valérie; Haboussi, Mohamed; Thiebaud, Frédéric; Ben Zineb, Tarak

    2014-03-01

    The study dealt with full dental prosthetic reconstruction on four implants. The aim was to analyse the influence of material parameters on the mechanical behaviour of the restored mandible compared to the natural mandible. A finite element model of an edentulous mandible with prosthetic rehabilitation was established. Four materials were investigated for the framework of the prosthesis (zirconia, titanium, gold and nickel-titanium (NiTi)), as well as three cortical bone thicknesses. Various muscles were employed to simulate the main stages of mastication. Three distinct phases of mastication were modelled: maximum intercuspation, incisal clench and unilateral molar clench. The zirconia framework demonstrated the highest stresses and NiTi the weakest. The highest stresses in the framework were obtained during maximum intercuspation. The highest stresses at the bone-implant interface were recorded on the working axial implant during unilateral molar clench and on tilted implants during maximum intercuspation. The influence of the framework's material stiffness on the stresses at the bone-implant interface was insignificant for axial implants (except the right implant during unilateral molar clench) and slightly more significant for tilted implants. Mandibular flexion decreased with an increase of the cortical bone thickness and the stiffness of the prosthetic framework's material. Among all materials, NiTi allowed a better preservation of the mandibular flexure, during all the mastication stages. Compared to stiffer materials, NiTi also permitted physiological mechanical conditions at the bone/implant interface, in almost all mastication stages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Computational materials science: Nanoscale plasticity

    DEFF Research Database (Denmark)

    Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2002-01-01

    How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour.......How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour....

  20. Household waste behaviours among a community sample in Iran: an application of the theory of planned behaviour.

    Science.gov (United States)

    Pakpour, Amir H; Zeidi, Isa Mohammadi; Emamjomeh, Mohammad Mahdi; Asefzadeh, Saeed; Pearson, Heidi

    2014-06-01

    Understanding the factors influencing recycling behaviour can lead to better and more effective recycling programs in a community. The goal of this study was to examine factors associated with household waste behaviours in the context of the theory of planned behaviour (TPB) among a community sample of Iranians that included data collection at time 1 and at follow-up one year later at time 2. Study participants were sampled from households under the coverage of eight urban health centers in the city of Qazvin. Of 2000 invited households, 1782 agreed to participate in the study. A self-reported questionnaire was used for assessing socio-demographic factors and the TPB constructs (i.e. attitude, subjective norms, perceived behavioural control, and intention). Furthermore, questions regarding moral obligation, self-identity, action planning, and past recycling behaviour were asked, creating an extended TPB. At time 2, participants were asked to complete a follow-up questionnaire on self-reported recycling behaviours. All TPB constructs had positive and significant correlations with each other. Recycling behaviour at time 1 (past behaviour) significantly related to household waste behaviour at time 2. The extended TPB explained 47% of the variance in household waste behaviour at time 2. Attitude, perceived behavioural control, intention, moral obligation, self-identity, action planning, and past recycling behaviour were significant predictors of household waste behaviour at time 2 in all models. The fact that the expanded TPB constructs significantly predicted household waste behaviours holds great promise for developing effective public campaigns and behaviour-changing interventions in a region where overall rates of household waste reduction behaviours are low. Our results indicate that educational materials which target moral obligation and action planning may be particularly effective. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Non-fossil reduction materials in the silicon process - properties and behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Myrhaug, Edin Henrik

    2003-07-01

    The purpose of this work has been to clarify the effect of using biocarbon as a reduction material in the silicon process. It was decided to compare the biocarbon with fossil carbon and find possible differences both on process performance and eventually on product quality. The elements in the raw materials added to the silicon process goes into three different products: silicon metal, silica dust and into open air. Based on analysis of raw materials and of produced silicon metal and microsilica extensive material balances have been established. One important result from these are the distribution factors that indicate how much of the trace elements that goes into each medium. Another result is that the boiling point of an element or a compound gives a good indication of were it ends. A high boiling point indicates that the element ends up in the silicon metal, while a low boiling point indicates that the element goes with off-gas into air. With an intermediate boiling point, the element goes into the silica dust. The SiO-reactivity of the reduction materials are commonly acknowledged to affect strongly the productivity and consumption figures of the silicon process. Based on data from thermogravimetric experiments with chemical reaction between carbonaceous spheres and SiO-gas, kinetic parameters have been estimated from the shrinking core model for some selected reduction materials of various sizes and spanning a wide range of SiO-reactivity figures. This model describes the degree of conversion versus time for a single sphere where the chemical reaction progresses in a topochemical manner from the outer surface of the solid towards the centre forming a porous product layer around an unreacted shrinking core. This behaviour is for the selected reduction materials to a large extent supported by an investigation of cross section pictures of fully and 50% converted spheres obtained with a microprobe. The estimated kinetic parameters obtained from the

  2. Properties of structural materials in liquid metal environment

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1991-12-01

    The proceedings contain 16 contributions to the following topics: 1. Creep-Rupture Behaviour of Structural Materials in Liquid Metal Environment; 2. Behaviour of Materials in Liquid Metal Environment under Off-Normal Conditions; 3. Fatigue and Creep-Fatigue of Structural Materials in Liquid Metal Environment; and 4. Crack Propagation in Liquid Sodium. (MM)

  3. Microstructure-Sensitive Notch Root Analysis for Ni-Base Superalloys (Preprint)

    National Research Council Canada - National Science Library

    Tjiptowidjojo, Yustianto; Shenoy, Mahesh; Przybyla, Craig; McDowell, David

    2007-01-01

    .... An Artificial Neural Network (ANN) is used to correlate the material parameters in an internal state variable cyclic viscoplasticity model with these microstructure plasticity calculations performed on other microstructures...

  4. Conducting single-molecule magnet materials.

    Science.gov (United States)

    Cosquer, Goulven; Shen, Yongbing; Almeida, Manuel; Yamashita, Masahiro

    2018-05-11

    Multifunctional molecular materials exhibiting electrical conductivity and single-molecule magnet (SMM) behaviour are particularly attractive for electronic devices and related applications owing to the interaction between electronic conduction and magnetization of unimolecular units. The preparation of such materials remains a challenge that has been pursued by a bi-component approach of combination of SMM cationic (or anionic) units with conducting networks made of partially oxidized (or reduced) donor (or acceptor) molecules. The present status of the research concerning the preparation of molecular materials exhibiting SMM behaviour and electrical conductivity is reviewed, describing the few molecular compounds where both SMM properties and electrical conductivity have been observed. The evolution of this research field through the years is discussed. The first reported compounds are semiconductors in spite being able to present relatively high electrical conductivity, and the SMM behaviour is observed at low temperatures where the electrical conductivity of the materials is similar to that of an insulator. During the recent years, a breakthrough has been achieved with the coexistence of high electrical conductivity and SMM behaviour in a molecular compound at the same temperature range, but so far without evidence of a synergy between these properties. The combination of high electrical conductivity with SMM behaviour requires not only SMM units but also the regular and as far as possible uniform packing of partially oxidized molecules, which are able to provide a conducting network.

  5. Financial insight and behaviour of household consumers in Port ...

    African Journals Online (AJOL)

    of this study was to investigate the financial insight and behaviour of household .... investigated the influence of quantitative literacy and material values on personal financial behaviour. .... Analysis of variance (ANOVA) was also conducted to determine ..... 'The financial literacy of micro enterprises in South Africa', Journal of.

  6. Effect of nano-ZrO2 addition on microstructure, mechanical property and thermal shock behaviour of dense chromic oxide refractory material

    International Nuclear Information System (INIS)

    Lu, Lixia; Ding, Chunhui; Zhanga, Chi; Yanga, De'an; Di, Lizhi

    2015-01-01

    To obtain a good performance hot-face lining material in gasifier, nano-ZrO 2 , up to 5 wt %, was added into chromic oxide powder with 3 wt % TiO 2 followed by sintering at 1500°C for 2.5 h. The effect of nano-ZrO 2 addition on microstructure, mechanical property and thermal shock behaviour was studied. ZrO 2 promoted densification at contents higher than 1 wt %. Microcracks and phase transformation toughened the dense chromic oxide refractory material. The main reason for decrease of strength was the existence microcracks in specimens and weakening of intergranular fracture. Dense chromic oxide refractory material with 2∼3 wt % nano-ZrO 2 possessed good densification, uniform microstructure, normal mechanical property and proper thermal shock resistance. The rupture strength retention ratio was nearly twice than that of chromic oxide material without ZrO 2 after three cycles of quenching test from 950°C to cold water. (author)

  7. Behaviour of glued fibre composite sandwich structure in flexure: Experiment and Fibre Model Analysis

    International Nuclear Information System (INIS)

    Manalo, Allan; Aravinthan, Thiru

    2012-01-01

    Highlights: ► Fibre Model Analysis is used to examine the flexural behaviour of sandwich beams. ► Theoretical prediction using FMA is in good agreement with the experiment. ► Using the constituent materials in FMA predicted accurately the beam’s behaviour. ► FMA can be used for analysing sandwich beams with high-strength core in flexure. -- Abstract: The behaviour of glued composite sandwich beams in flexure was investigated with a view of using this material for structural and civil engineering applications. The building block of this glue-laminated beam is a new generation composite sandwich structure made up of glass fibre reinforced polymer skins and a high strength phenolic core material. A simplified Fibre Model Analysis (FMA) usually used to analyse a concrete beam section is adopted to theoretically describe the flexural behaviour of the innovative sandwich beam structure. The analysis included the flexural behaviour of the glued sandwich beams in the flatwise and the edgewise positions. The FMA accounted for the non-linear behaviour of the phenolic core in compression, the cracking of the core in tension and the linear elastic behaviour of the fibre composite skin. The results of the FMA showed a good agreement with the experimental data showing the efficiency and practical applications of the simplified FMA in analysing and designing sandwich structures with high strength core material.

  8. Characterising the thermoforming behaviour of glass fibre textile reinforced thermoplastic composite materials

    Science.gov (United States)

    Kuhtz, M.; Maron, B.; Hornig, A.; Müller, M.; Langkamp, A.; Gude, M.

    2018-05-01

    Textile reinforced thermoplastic composites are predestined for highly automated medium- and high-volume production processes. The presented work focusses on experimental studies of different types of glass fibre reinforced polypropylene (GF-PP) semi-finished thermoplastic textiles to characterise the forming behaviour. The main deformation modes fabric shear, tension, thought-thickness compression and bending are investigated with special emphasis on the impact of the textile structure, the deformation temperature and rate dependency. The understanding of the fundamental forming behaviour is required to allow FEM based assessment and improvement of thermoforming process chains.

  9. Study on behaviour in long term of vitrified materials

    International Nuclear Information System (INIS)

    Vernaz, E.

    1993-01-01

    In collaboration with EDF (Electricite de France), after testing fusion of Refiom (Residus d'Epuration des Fumees d'Incineration d'Ordures Menageres), residues from purification of incineration smokes of household rubbish, realised at Porcheville and at the Laboratory of Renardieres with experimental processing of vitrification by plasma, CEA (Centre d'Etudes Atomiques), atomic center of research, began study on resistance in long term of vitrified products. From about thirty five years, CEA carries out research to confine radioactive waste of high activity in stable materials. Glass was the first best one which allowed to incorporate about thirty different chemical elements found in fission products solutions into a stable die with a good chemical durability; three vitrification shops raised, one at Marcoule ('AVM', 1978) in the south of France, the two other ones at La Hague ('R7', 1989 and 'T7', 1992) in Normandy. To determine a possible impact of a deep radioactive waste disposal on human and environment, several studies began. In particular, studies on aqueous corrosion of glasses to determine behaviour in long term of glass package (first barrier of confinement) and to estimate kinetics of releasing confined toxical elements on periods of several thousands years. Principal results are exposed in this conference. Experience shows that safety analysis cannot be based on long term extrapolation of a simple lixiviation result. This analysis must include: a sufficient knowledge in basic mechanisms of alteration to predict the kinetic evolution in a long term. To take in account environment conditions with a normal or accidental scheme (acidity, clay, organic compounds,...). This knowledge broadly developed by CEA for nuclear glasses seems to be easily transposable to different wastes (industrial ones or from hospitals) and takes place in a contract of research CEA/EDF to valorize vitrified products. 9 figs. 4 refs

  10. Stress analysis of liners for prestressed concrete reactor pressure vessels with regard to non-linear behaviour of liner material and of anchor-characteristics

    International Nuclear Information System (INIS)

    Oberpichler, R.; Schnellenbach, G.

    1975-01-01

    The thin liner attached by anchors like a membrane to the interior wall of a prestressed concrete reactor pressure vessel (PCRV) has to provide the leak-tightness of the vessel. Furthermore the liner may serve as internal shuttering for placing of concrete as well as a support for the cooling system. The two-dimensional behaviour of the liner is investigated with regard to non-linear anchor-characteristics and non-linear material behaviour of the liner. The analysis is based on a plane stress model under the assumption of a membrane state of the liner. Calculations are performed by the dynamic relaxation method. With the aid of available non-linear stress-strain diagrams, describing the post-buckling behaviour, individual panels are considered as buckled ones. The adjacent unbuckled panels are calculated on other non-linear diagrams. Strains and stresses in the liner and additional shear loads in the anchors can be calculated with arbitrary sizing and spacing of the anchors. With respect to the parameters they are easily controlled. Since actual loads on the liner are defined by the PCRV-behaviour, an economical and safe design is possible. Finally an extreme case is calculated to assess the maximum value of the shear-forces assuming zero post-buckling capacity for the buckled panel. (Auth.)

  11. Representative volumes and multi-scale modelling of quasi-brittle materials

    NARCIS (Netherlands)

    Gitman, I.M.

    2006-01-01

    Several different approaches are available in order to describe material behaviour. Considering material on the higher (macro) level of observation constitutes the macroscopic approach. However, the key to understand a macro materials behaviour lies in its mesostructure. As such the mesoscopic

  12. Studies on gamma irradiated rubber materials

    Science.gov (United States)

    Lungu, I. B.; Stelescu, M. D.; Cutrubinis, M.

    2018-01-01

    Due to the increase in use and production of polymer materials, there is a constant pressure of finding a solution to more environmental friendly composites. Beside the constant effort of recycling used materials, it seems more appropriate to manufacture and use biodegradable and renewable row materials. Natural polymers like starch, cellulose, lignin etc are ideal for preparing biodegradable composites. Some of the dynamic markets that use polymer materials are the food and pharmaceutical industries. Because of their desinfastation and sometimes sterility requirements, different treatment processes are applied, one of it being radiation treatment. The scope of this paper is to analyze the mechanical behaviour of rubber based materials irradiated with gamma rays at four medium doses, 30.1 kGy, 60.6 kGy, 91 kGy and 121.8 kGy. The objectives are the following: to identify the optimum radiation dose in order to obtain a good mechanical behaviour and to identify the mechanical behaviour of the material when adding different quantities of natural filler (20 phr, 60 phr and 100 phr).

  13. A multi-physics modelling framework to describe the behaviour of nano-scale multilayer systems undergoing irradiation damage

    International Nuclear Information System (INIS)

    Villani, Aurelien

    2015-01-01

    Radiation damage is known to lead to material failure and thus is of critical importance to lifetime and safety within nuclear reactors. While mechanical behaviour of materials under irradiation has been the subject of numerous studies, the current predictive capabilities of such phenomena appear limited. The clustering of point defects such as vacancies and self interstitial atoms gives rise to creep, void swelling and material embrittlement. Nano-scale metallic multilayer systems have be shown to have the ability to evacuate such point defects, hence delaying the occurrence of critical damage. In addition, they exhibit outstanding mechanical properties. The objective of this work is to develop a thermodynamically consistent continuum framework at the meso and nano-scales, which accounts for the major physical processes encountered in such metallic multilayer systems and is able to predict their microstructural evolution and behavior under irradiation. Mainly three physical phenomena are addressed in the present work: stress-diffusion coupling and diffusion induced creep, the void nucleation and growth in multilayer systems under irradiation, and the interaction of dislocations with the multilayer interfaces. In this framework, the microstructure is explicitly modeled, in order to account accurately for their effects on the system behavior. The diffusion creep strain rate is related to the gradient of the vacancy flux. A Cahn-Hilliard approach is used to model void nucleation and growth, and the diffusion equations for vacancies and self interstitial atoms are complemented to take into account the production of point defects due to irradiation cascades, the mutual recombination of defects and their evacuation through grain boundaries. In metallic multilayers, an interface affected zone is defined, with an additional slip plane to model the interface shearable character, and where dislocations cores are able to spread. The model is then implemented numerically

  14. Fatigue crack growth behaviour of carbon steel piping material subjected to single overload/under-load

    International Nuclear Information System (INIS)

    Arora, Punit; Tripathi, R.; Singh, P.K.; Bhasin, V.; Vijayan, P.K.

    2016-01-01

    The objective of the present study is to understand the Fatigue Crack Growth Rate (FCGR) behaviour after single over-load/ under-load event on carbon steel piping material. The tests have been carried out on standard Compact Tension (CT) specimens. The effect of different crack length to width ratio (a/W) of specimen and overload/under-load ratios on FCGR have been studied. The studies have shown significant reduction in FCG rate after overload event. The strain field has been measured using Digital Image Correlation (DIC) technique ahead of the crack tip to quantify the plastic zone size due to overload and constant amplitude load. In addition, plastic zone calculations have also been carried out using 3D finite element analyses for the prediction of post overload FCGR/ life. The predicted FCGR are in agreement with experimentally determined FCGR. (author)

  15. In-core instrumentation and in-situ measurement in connection with fuel behaviour. Working material

    International Nuclear Information System (INIS)

    1996-01-01

    The subject of this meeting has been touched on briefly in most of the Specialist's and topical meetings related to fuel behaviour. On the basis of the conclusions and recommendations of these meetings the International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) recommended the Agency to organize a dedicated Specialist's Meeting on the subject. The twenty one papers covered the instrumentation, sensors, methods and computer codes currently used in Material Test Reactor (MTR) and power reactors as well as improved instrumentation and methods. The meeting acknowledged the fast development of fuel modelling and therefore the growing need of dedicated high burnup fuel experiments carried out in MTR reactors on refabricated rods from power reactors. In order to reduce safety margins in power reactors, thus improving economics, the necessity to develop more sophisticated on-line calculations, based on improved sensors, was recognized, although this development is limited by insufficient knowledge of the mechanisms involved. Refs, figs, tabs

  16. Thermo-mechanical modelling of salt caverns due to fluctuating loading conditions.

    Science.gov (United States)

    Böttcher, N.

    2015-12-01

    This work summarizes the development and application of a numerical model for the thermo-mechanical behaviour of salt caverns during cyclic gas storage. Artificial salt caverns are used for short term energy storage, such as power-to-gas or compressed air energy storage. Those applications are characterized by highly fluctuating operation pressures due to the unsteady power levels of power plants based on renewable energy. Compression and expansion of the storage gases during loading and unloading stages lead to rapidly changing temperatures in the host rock of the caverns. This affects the material behaviour of the host rock within a zone that extends several meters into the rock mass adjacent to the cavern wall, and induces thermo-mechanical stresses and alters the creep response.The proposed model features the thermodynamic behaviour of the storage medium, conductive heat transport in the host rock, as well as temperature dependent material properties of rock salt using different thermo-viscoplastic material models. The utilized constitutive models are well known and state-of-the-art in various salt mechanics applications. The model has been implemented into the open-source software platform OpenGeoSys. Thermal and mechanical processes are solved using a finite element approach, coupled via a staggered coupling scheme. The simulation results allow the conclusion, that the cavern convergence rate (and thus the efficiency of the cavern) is highly influenced by the loading cycle frequency and the resulting gas temperatures. The model therefore allows to analyse the influence of operation modes on the cavern host rock or on neighbouring facilities.

  17. The behaviour of free-flowing granular intruders

    Directory of Open Access Journals (Sweden)

    Wyburn Edward

    2017-01-01

    Full Text Available Particle shape affects both the quasi-static and dynamic behaviour of granular media. There has been significant research devoted to the flowability of systems of irregularly shaped particles, as well as the flow of grains around fixed intruders, however the behaviour of free flowing intruders within granular flows remains comparatively unexplored. Here, the effect of the shape of these intruder particles is studied, looking at the kinematic behaviour of the intruders and in particular their tendency of orientation. Experiments are carried out within the Stadium Shear Device, which is a novel apparatus able to continuously apply simple shear conditions to two-dimensional grain analogues. It is found that the intruder shows different behaviour to that of the bulk flow, and that this behaviour is strongly shape dependent. These insights could lead to the development of admixtures that alter the flowability of granular materials.

  18. Adiabatic Shear Bands in Simple and Dipolar Viscoplastic Materials

    Science.gov (United States)

    1991-08-01

    d Engineering Mechanics. University of Missouri-Holla. Holla. MO 65401-0249. C S.A Mace -r. Germam .Maxirr. Cork. - DrucK GmbH Carl-i -0&sset7«v...iaxirn Gorki - Druck GmoH Car:- -Ossietzk^ -Str 30 11 7400 Auenöurs I _LL 1+ Xf . . M „ .,Mqon ACTA MECHANICA Acta Mechamca 86, .31—.1...points 13, 14, 15 and 17 becomes clear from the results plotted in Fig. 3d . The plots of the temperature rise at other points con- sidered are not

  19. Modelling of the Vajont rockslide displacements by delayed plasticity of interacting sliding blocks

    Science.gov (United States)

    Castellanza, riccardo; Hedge, Amarnath; Crosta, Giovanni; di Prisco, Claudio; Frigerio, Gabriele

    2015-04-01

    In order to model complex sliding masses subject to continuous slow movements related to water table fluctuations it is convenient to: i) model the time-dependent mechanical behaviour of the materials by means of a viscous-plastic constitutive law; ii) assume the water table fluctuation as the main input to induce displacement acceleration; iii) consider, the 3D constrains by maintaining a level of simplicity such to allow the implementation into EWS (Early Warning System) for risk management. In this work a 1D pseudo-dynamic visco-plastic model (Secondi et al. 2011), based on Perzyna's delayed plasticity theory is applied. The sliding mass is considered as a rigid block subject to its self weight, inertial forces and seepage forces varying with time. All non-linearities are lumped in a thin layer positioned between the rigid block and the stable bedrock. The mechanical response of this interface is assumed to be visco-plastic. The viscous nucleus is assumed to be of the exponential type, so that irreversible strains develop for both positive and negative values of the yield function; the sliding mass is discretized in blocks to cope with complex rockslide geometries; the friction angle is assumed to reduce with strain rate assuming a sort of strain - rate law (Dietrich-Ruina law). To validate the improvements introduced in this paper the simulation of the displacements of the Vajont rockslide from 1960 to the failure, occurred on October the 9th 1963, is perfomed. It will be shown that, in its modified version, the model satisfactorily fits the Vajont pre-collapse displacements triggered by the fluctuation of the Vajont lake level and the associated groundwater level. The model is able to follow the critical acceleration of the motion with a minimal change in friction properties.The discretization in interacting sliding blocks confirms its suitability to model the complex 3D rockslide behaviour. We are currently implementing a multi-block model capable to include

  20. Effect of material variation on the biomechanical behaviour of orthodontic fixed appliances: a finite element analysis.

    Science.gov (United States)

    Papageorgiou, Spyridon N; Keilig, Ludger; Hasan, Istabrak; Jäger, Andreas; Bourauel, Christoph

    2016-06-01

    Biomechanical analysis of orthodontic tooth movement is complex, as many different tissues and appliance components are involved. The aim of this finite element study was to assess the relative effect of material alteration of the various components of the orthodontic appliance on the biomechanical behaviour of tooth movement. A three-dimensional finite element solid model was constructed. The model consisted of a canine, a first, and a second premolar, including the surrounding tooth-supporting structures and fixed appliances. The materials of the orthodontic appliances were alternated between: (1) composite resin or resin-modified glass ionomer cement for the adhesive, (2) steel, titanium, ceramic, or plastic for the bracket, and (3) β-titanium or steel for the wire. After vertical activation of the first premolar by 0.5mm in occlusal direction, stress and strain calculations were performed at the periodontal ligament and the orthodontic appliance. The finite element analysis indicated that strains developed at the periodontal ligament were mainly influenced by the orthodontic wire (up to +63 per cent), followed by the bracket (up to +44 per cent) and the adhesive (up to +4 per cent). As far as developed stresses at the orthodontic appliance are concerned, wire material had the greatest influence (up to +155 per cent), followed by bracket material (up to +148 per cent) and adhesive material (up to +8 per cent). The results of this in silico study need to be validated by in vivo studies before they can be extrapolated to clinical practice. According to the results of this finite element study, all components of the orthodontic fixed appliance, including wire, bracket, and adhesive, seem to influence, to some extent, the biomechanics of tooth movement. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Improvement of turbine materials

    International Nuclear Information System (INIS)

    Jakobeit, W.; Pfeifer, J.P.

    1982-01-01

    Materials for turbine blades and rotors are discussed with a view to the following subjects: Long period creep behaviour, gas/metal reactions, fatigue behaviour in long-term and creep strength testing, fracture mechanics testing, creep/fatigue interactions, development of a turbine blade of TZM, jointing of TZM, decontamination. (orig./IHOE) [de

  2. Numerical modelling of the long term mechanical behaviour of a storage cell for high level nuclear wastes

    International Nuclear Information System (INIS)

    Bian, H.B.; Jia, Y.; Duveau, G.; Shao, J.F.; Poutrel, A.

    2010-01-01

    the various important processes in the storage structures, the coupling between the corrosion/strain processes and the Callovo-Oxfordian clay formation is death with in this study. The principal objective is to establish a numerical method capable to reproduce correctly the evolutionary interface between the metallic container and clay formation taking into account the decrease of mechanical resistance and the generated supplementary volume. Special attention is paid on the evolution of the interface of steel and rock, the amplitude of possible overpressure and stress and the evolution of the EDZ (Excavation Damaged Zone). In the numerical analyses, different materials are taken into account: limestone, argillite, steel and air. Firstly, a brief presentation of the constitutive models for the Callovo-Oxfordian clay is given. For the sake of simplicity, a poro-elastic model is used for limestone and an elasto-plasticity model using a Mises type criterion is applied to the steel. Then a series of parametric studies is performed in order to study the mechanical resistance of corroded steel.. Finally, a storage cell of High-Level Wastes is simulated. In the numerical model, the wastes cell is taken as a circular borehole. The loading path is composed of the following three steps: the excavation phase, the waiting phase for the installation of waste package, and the evolution phase after the backfilling of the storage cell. The proposed model is able to describe the main features of poro-mechanical behaviour for the clay formation: such as plastic deformation, material damage by microcracks, transition of volumetric compressibility/dilatancy and the viscoplastic strain. In spite of the simplifications used, the numerical results allow us to obtain some quantitative results describing the mechanical behaviour and the coupled thermo-hydro-mechanical processes for a short and long-term in the storage cell. (authors)

  3. (Project 14-6770) An Investigation to Establish Multiphysical Property Dataset of Nuclear Materials Based on in-situ Observations and Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States); Haque, Aman [Pennsylvania State Univ., University Park, PA (United States). Dept of Physics; Hattar, Khalid [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-10

    In-core nuclear materials including fuel pins and cladding materials fail due to issues including corrosion, mechanical wear, and pellet cladding interaction. In most such scenario microstructure dependent and corrosioninduced chemistry dependent property changes significantly affect performance of cladding, pellet, and housing. Emphasis of this work was on replace conventional pellet-cladding material models with a new straingradient viscoplasticity model that is informed by transmission electron microscopy (TEM) based measurements and by nanomechanical Raman spectroscopy (NMRS) based measurements. The TEM measurements are quantitative in nature and therefore reveal stress-strain relations with simultaneous insights into mechanisms of deformation at nanoscale. The NMRS measurements reveal the similar information at mesoscale along with additional information on relating local microstructural stresses with applied stresses. The resulting information is used to fit constants in the strain gradient viscoplasticity model as well as to validate one. During TEM measurements, a micro-electro-mechanical system based setup was developed with mechanical actuation, sensing, heating, and electrical loading. Contrary to post-mortem analysis or qualitative visualization, this setup combines direct visualization of the mechanisms behind deformation with measurement of stress, strain, thermal and electrical properties. The unique research philosophy of visualizing the microstructure at high resolution while measuring the properties led to fundamental understanding in grain size and temperature effects on measured mechanical properties such as fracture toughness. A key contribution is the role of mechanical loading boundary conditions to deconvolute the insitu TEM based nanoscale and NMRS based mesoscale data to bulk behavior. First the literature based pellet cladding mechanical interaction model based on the work of Retel’s and Williamson’s in literature work to predict

  4. Meiotic chromosome behaviour and sexual sterility in two Nigerian ...

    African Journals Online (AJOL)

    The behaviour of meiotic chromosomes and the subsequent behaviour of the meiotic products were investigated in two Nigerian species of Aloe, namely Aloe keayi and Aloe macrocarpa var major with a view to uncovering the cause of their inability to reproduce sexually. The two plant materials used in this study were ...

  5. The role of elasticity in simulating long-term tectonic extension

    Science.gov (United States)

    Olive, Jean-Arthur; Behn, Mark D.; Mittelstaedt, Eric; Ito, Garrett; Klein, Benjamin Z.

    2016-05-01

    and hanging wall bending. This behaviour produces unrealistic deformation patterns that can hinder the geological relevance of long-term rifting models that assume a viscoplastic rheology.

  6. Numerical modelling of the time-dependent mechanical behaviour of softwood

    DEFF Research Database (Denmark)

    Engelund, Emil Tang

    2010-01-01

    When using wood as a structural material it is important to consider its time-dependent mechanical behaviour and to predict this behaviour for decades ahead. For this purpose, several rheological mathematical models, spanning from fairly simple to very complex ones, have been developed over...

  7. Experimental investigations of visco-plastic properties of the aluminium and tungsten alloys used in KE projectiles

    Science.gov (United States)

    Kruszka, L.; Magier, M.

    2012-08-01

    The main aim of studies on dynamic behaviour of construction materials at high strain rates is to determine the variation of mechanical properties (strength, plasticity) in function of the strain rate and temperature. On the basis of results of dynamic tests on the properties of constructional materials the constitutive models are formulated to create numerical codes applied to solve constructional problems with computer simulation methods. In the case of military applications connected with the phenomena of gunshot and terminal ballistics it's particularly important to develop a model of strength and armour penetration with KE projectile founded on reliable results of dynamic experiments and constituting the base for further analyses and optimization of projectile designs in order to achieve required penetration depth. Static and dynamic results of strength investigations of the EN AW-7012 aluminium alloy (sabot) and tungsten alloy (penetrator) are discussed in this paper. Static testing was carried out with the INSTRON testing machine. Dynamic tests have been conducted using the split Hopkinson pressure bars technique at strain rates up to 1,2 ṡ 104s-1 (for aluminium alloy) and 6 ṡ 103s-1 (for tungsten alloy).

  8. Experimental investigations of visco-plastic properties of the aluminium and tungsten alloys used in KE projectiles

    Directory of Open Access Journals (Sweden)

    Magier M.

    2012-08-01

    Full Text Available The main aim of studies on dynamic behaviour of construction materials at high strain rates is to determine the variation of mechanical properties (strength, plasticity in function of the strain rate and temperature. On the basis of results of dynamic tests on the properties of constructional materials the constitutive models are formulated to create numerical codes applied to solve constructional problems with computer simulation methods. In the case of military applications connected with the phenomena of gunshot and terminal ballistics it’s particularly important to develop a model of strength and armour penetration with KE projectile founded on reliable results of dynamic experiments and constituting the base for further analyses and optimization of projectile designs in order to achieve required penetration depth. Static and dynamic results of strength investigations of the EN AW-7012 aluminium alloy (sabot and tungsten alloy (penetrator are discussed in this paper. Static testing was carried out with the INSTRON testing machine. Dynamic tests have been conducted using the split Hopkinson pressure bars technique at strain rates up to 1,2 ⋅ 104s−1 (for aluminium alloy and 6 ⋅ 103s−1 (for tungsten alloy.

  9. Experimental Investigation of the Fracture Behaviour of Reinforced Ultra High Strength Concrete

    DEFF Research Database (Denmark)

    Ulfkjær, J. P.; Henriksen, M. S.; Aarup, B.

    the structural behaviour of a very high strength cement based material with and without steel fibres is investigated. A simple structural geometry has been tested, namely a beam subjected to three point bending. The results shows that the increase of ductility of the material also gives a more ductile behaviour......In the last fifteen years new types of cement based materials have been developed in Denmark at the Aalborg Portland Cement Factory. These types of new materials are characterized by very high strength even when mixed at room temperature and using conventional mixing techniques. In this paper...

  10. Mechanical Behaviour of Sisal Fibre Reinforced Cement Composites

    OpenAIRE

    M. Aruna

    2014-01-01

    Emphasis on the advancement of new materials and technology has been there for the past few decades. The global development towards using cheap and durable materials from renewable resources contributes to sustainable development. An experimental investigation of mechanical behaviour of sisal fibre-reinforced concrete is reported for making a suitable building material in terms of reinforcement. Fibre reinforced Composite is one such material, which has reformed the concept of high strength. ...

  11. High temperature mechanical behavior of tube stackings – Part I: Microstructural and mechanical characterization of Inconel® 600 constitutive material

    Energy Technology Data Exchange (ETDEWEB)

    Marcadon, V., E-mail: Vincent.Marcadon@onera.fr [Onera – The French Aerospace Lab, F-92322 Châtillon (France); Davoine, C.; Lévêque, D.; Rafray, A.; Popoff, F.; Horezan, N.; Boivin, D. [Onera – The French Aerospace Lab, F-92322 Châtillon (France)

    2016-11-20

    This paper is the first part of a set of two papers dedicated to the mechanical behavior of cellular materials at high temperatures. For that purpose, cellular materials made of brazed tube stacking cores have been considered here. This paper addresses the characterization of the elasto-viscoplastic properties of the constitutive material of the tubes, Inconel®600, by means of tensile tests. Various temperatures and strain rates were investigated, from room temperature to 800 °C, in order to study the influence of both the brazing heat treatment and the test temperature on the mechanical properties of Inconel®600. Whereas the heat treatment drastically decreases the strength of the tubes, a significant viscous effect is revealed at 800 °C. Electron backscattered diffraction analyses carried out post-mortem on samples showed that both dynamic recrystallization and recovery occurred during tensile tests performed at 800 °C, especially at lower strain rates. In contrast, a highly deformed and textured microstructure was observed for the tubes loaded at lower temperatures.

  12. Numerical simulation of the cladding of a ferritic block with a stainless steel. Study of post-weld heat treatment

    International Nuclear Information System (INIS)

    Dupas, P.; Carayol, R.

    1994-06-01

    This report presents the calculation results of post-weld heat treatment, using the SYSWELD finite element program. Starting from the metallurgical and mechanical states obtained after welding, we performed a numerical heat treatment over the clad block. The principle is to relieve residual stresses by transforming elastic energy into plastic or viscoplastic energy. Increasing the temperature may lead to this result by decreasing yield stress, by creep or by changes of material properties due to structural transformations. Another way of relieving stresses is the transformation plasticity, but we don't use it in our simulation. Some experimental results lead us to believe we should have stresses from 200 to 300 MPa in the weld metal and from - 100 to 100 MPa in the HAZ, whatever are the stresses before heat treatment. Moreover, transverse and longitudinal stresses should have similar values and profile in depth. As in welding simulation, heat treatment calculations are two dimensional. They can be split in a thermo-metallurgical calculation followed by a mechanical one. The following parameters are studied : metallurgy, plastic and viscoplastic behaviour, plane strain or generalized plane strain model. The creep model used in SYSWELD has been more particularly studied. We also study the possibility to simplify calculations by simulating only the cooling, starting from no stresses at 610 deg C, which is a usual method in crack assessment. (authors). 23 refs., 52 figs., 3 annexes

  13. Thermodynamic modelling of shape memory behaviour: some examples

    International Nuclear Information System (INIS)

    Stalmans, R.; Humbeeck, J. van; Delaey, L.

    1995-01-01

    This paper gives a general view of a recently developed thermodynamic model of the thermoelastic martensitic transformation. Unlike existing empirical, mathematical or thermodynamic models, this generalised thermodynamic model can be used to understand and describe quantitatively the overall thermomechanical behaviour of polycrystalline shape memory alloys. Important points of difference between this and previous thermodynamic models are that the contributions of the stored elastic energy and of the crystal defects are also included. In addition, the mathematical approach and the assumptions in this model are selected in such a way that the calculations yield close approximations of the real behaviour and that the final mathematical equations are relatively simple. Several illustrations indicate that this model, in contrast to other models, can be used to understand the shape memory behaviour of complex cases. As an example of quantitative calculations, it is shown that this modelling can be an effective tool in the ''design'' of multifunctional materials consisting of shape memory elements embedded in matrix materials. (orig.)

  14. Modelling of the mechanical behaviour of the single-crystal turbine alloy CMSX-4 during thermomechanical loading

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F.; Steinhaus, T. [Research Centre Juelich, Inst. for Materials and Processes in Energy Systems (IWV-2), Juelich (Germany); Fleury, G. [ECIX, Audincourt, 25 (France)

    2000-11-01

    Turbine blades in gas turbine engines are subjected during operation to triaxial stress fields. For the description of the deformation behaviour of anisotropic single-crystal blades, constitutive equations are required which take account of modifications to the deformation processes caused by evolution of the {gamma}/{gamma}' microstructure during service ({gamma}' rafting). A microstructure-dependent, orthotropic Hills potential, whose anisotropy coefficients are connected to the edge length of {gamma}' particles, has been applied. The shape of {gamma}' particles remains cubic below exposures at 700degC. At high temperatures (above 850degC the {gamma}') particles coalesce to rafts, and the viscoplastic response of the superalloy is continuously modified. This reduces the creep resistance of (001) orientated specimen. After tensile loading of the (001) -orientated specimens at 1000degC, the rafting of {gamma}' in the (100) plane was observed as expected, whereas the (111) specimens did not reveal {gamma}' rafting. Torsionally loaded specimens exhibited rafting only in the near (100) - orientated surface regions of the specimen. The deformation in the (111) tensile and (001) torsion specimens occurred by octahedral slip of dislocations and not by cubic slip, as expected from theoretical considerations. Rafting did not occur in the (111) - orientated specimens. This anisotropy change is simulated successfully by the microstructure-dependent model. (Author)

  15. Investigation of the behaviour of impact limiting devices of transport casks for radioactive materials in the package approval and risk analysis

    International Nuclear Information System (INIS)

    Neumann, Martin

    2009-01-01

    Transport casks for radioactive materials with a Type-B package certificate have to ensure that even under severe accident scenarios the radioactive content remains safely enclosed, in an undercritical arrangement and that ionising radiation is sufficiently shielded. The impact limiter absorbs in an accident scenario the major part of the impact energy and reduces the maximum force applied on the cask body. Therefore the simulation of the behaviour of impact limiting devices of transport casks for nuclear material is of great interest for the design assessment in the package approval as well as for risk analysis in the field of transport of radioactive materials. The behaviour of the impact limiter is influenced by a number of parameters like impact limiter construction, material properties and loading conditions. Uncertainties exist for the application of simplified numerical tools for calculations of impact limiting devices. Uncertainities exist when applying simplified numerical tools. A model describing the compression of wood in axial direction of wood under large deformations for simulation with complex numerical procedures like dynamic Finite Element Methods has not been developed yet. Therefore this thesis concentrates on deriving a physical model for the behaviour of wood and analysing the applicability of different modeling techniques. A model describing the compression of wood in axial direction under large deformations was developed on the basis of an analysis of impact limiter of prototypes of casks for radioactive materials after a 9-m-drop-test and impact tests with wooden specimens. The model describes the softening, which wood under large deformation exhibits, as a function of the lateral strain constraint. The larger the lateral strain restriction, the more energy wood can absorb. The energy absorption capacity of impact limiter depends therefore on the ability of the outer steel sheet structure to prevent wood from evading from the main

  16. Elution behaviour of solid residues from thermal waste treatment and disposal

    International Nuclear Information System (INIS)

    Vetter, G.

    1992-01-01

    In the research part carried through so far, the leaching behaviour of residues of different waste combustion methods was compared with that of other materials frequently deposited at landfills as regards heavy metals and anions. Furthermore, specifically residues from different types of waste subjected to the Siemens semicoking process were investigated. The leaching behaviour of well vitrified slags approaches very much the favourable values of melting-chamber granulate from a black-coal-fired power plant. By contrast, poorly vitrified slags or slags from an ordinary waste combustion plant yield eluate concentrations exceeding in part the limiting values applicable to landfilling material. With vitrified slags, the type of waste burnt has no recognizable influence on leaching behaviour. (orig.) [de

  17. Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel

    International Nuclear Information System (INIS)

    Mella, R.; Wenman, M.R.

    2013-01-01

    Thermo-mechanical contributions to pellet–clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS’s well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used

  18. Softening behaviour of concrete : numerical research

    NARCIS (Netherlands)

    Bongers, J.P.W.; Rutten, H.S.; Fijneman, H.J.

    1994-01-01

    Experimental research shows, apart from the influence of multiaxial loading conditions, that softening of concrete loaded in compression is accompanied by localization of deformations. Therefore, numerical modelling of concrete material behaviour has to take this effect into account. This implies

  19. INTERWELD - European project to determine irradiation induced material changes in the heat affected zones of austenitic stainless steel welds that influence the stress corrosion behaviour in high-temperature water

    International Nuclear Information System (INIS)

    Roth, A.; Schaaf, Bob van der; Castano, M.L.; Ohms, C.; Gavillet, D.; Dyck, S. van

    2003-01-01

    PWR and BWR RPV internals have experienced stress corrosion cracking in service. The objective of the INTERWELD project is to determine the radiation induced material changes that promote stress corrosion cracking in the heat affected zone of austenitic stainless steel welds. To achieve this goal, welds in austenitic stainless steel types AISI 304/347 have been fabricated, respectively. Stress-relief annealing was applied optionally. The pre-characterisation of both the as-welded and stress relieved material conditions comprises the examination of the weld residual stresses by the ring-core-technique and neutron diffraction, the degree of sensitisation by EPR, and the stress corrosion behaviour by SSRT testing in high-temperature water. The weldments will be irratiated to 2 neutron fluence levels and a postirradiation examination will determine micromechanical, microchemical and microstructural changes in the materials. In detail, the evolution of the residual stress levels and the stress corrosion behaviour after irradiation will be determined. Neutron diffraction will be utilized for the first time with respect to neutron irradiated material. In this paper, the current state of the project will be described and discussed. (orig.)

  20. On the High Temperature Deformation Behaviour of 2507 Super Duplex Stainless Steel

    Science.gov (United States)

    Mishra, M. K.; Balasundar, I.; Rao, A. G.; Kashyap, B. P.; Prabhu, N.

    2017-02-01

    High temperature deformation behaviour of 2507 super duplex stainless steel was investigated by conducting isothermal hot compression tests. The dominant restoration processes in ferrite and austenite phases present in the material were found to be distinct. The possible causes for these differences are discussed. Based on the dynamic materials model, processing map was developed to identify the optimum processing parameters. The microstructural mechanisms operating in the material were identified. A unified strain-compensated constitutive equation was established to describe the high temperature deformation behaviour of the material under the identified processing conditions. Standard statistical parameter such as correlation coefficient has been used to validate the established equation.

  1. Behaviour of fibre reinforced polymer confined reinforced concrete columns under fire condition

    Science.gov (United States)

    Chowdhury, Ershad Ullah

    In recent years, fibre reinforced polymer (FRP) materials have demonstrated enormous potential as materials for repairing and retrofitting concrete bridges that have deteriorated from factors such as electro-chemical corrosion and increased load requirements. However, concerns associated with fire remain an obstacle to applications of FRP materials in buildings and parking garages due to FRP's sensitivity to high temperatures as compared with other structural materials and to limited knowledge on their thermal and mechanical behaviour in fire. This thesis presents results from an ongoing study on the fire performance of FRP materials, fire insulation materials and systems, and FRP wrapped reinforced concrete columns. The overall goal of the study is to understand the fire behaviour of FRP materials and FRP strengthened concrete columns and ultimately, provide rational fire safety design recommendations and guidelines for FRP strengthened concrete columns. A combined experimental and numerical investigation was conducted to achieve the goals of this research study. The experimental work consisted of both small-scale FRP material testing at elevated temperatures and full-scale fire tests on FRP strengthened columns. A numerical model was developed to simulate the behaviour of unwrapped reinforced concrete and FRP strengthened reinforced concrete square or rectangular columns in fire. After validating the numerical model against test data available in literature, it was determined that the numerical model can be used to analyze the behaviour of concrete axial compressive members in fire. Results from this study also demonstrated that although FRP materials experience considerable loss of their mechanical and bond properties at temperatures somewhat below the glass transition temperature of the resin matrix, externally-bonded FRP can be used in strengthening concrete structural members in buildings, if appropriate supplemental fire protection system is provided over

  2. Thermo-Mechanical Behaviour of Flax-Fibre Reinforced Epoxy Laminates for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Giuseppe Pitarresi

    2015-11-01

    Full Text Available The present work describes the experimental mechanical characterisation of a natural flax fibre reinforced epoxy polymer composite. A commercial plain woven quasi-unidirectional flax fabric with spun-twisted yarns is employed in particular, as well as unidirectional composite panels manufactured with three techniques: hand-lay-up, vacuum bagging and resin infusion. The stiffness and strength behaviours are investigated under both monotonic and low-cycle fatigue loadings. The analysed material has, in particular, shown a typical bilinear behaviour under pure traction, with a knee yield point occurring at a rather low stress value, after which the material tensile stiffness is significantly reduced. In the present work, such a mechanism is investigated by a phenomenological approach, performing periodical loading/unloading cycles, and repeating tensile tests on previously “yielded” samples to assess the evolution of stiffness behaviour. Infrared thermography is also employed to measure the temperature of specimens during monotonic and cyclic loading. In the first case, the thermal signal is monitored to correlate departures from the thermoelastic behaviour with the onset of energy loss mechanisms. In the case of cyclic loading, the thermoelastic signal and the second harmonic component are both determined in order to investigate the extent of elastic behaviour of the material.

  3. Behaviour of Masonry Walls under Horizontal Shear in Mining Areas

    Science.gov (United States)

    Kadela, Marta; Bartoszek, Marek; Fedorowicz, Jan

    2017-12-01

    The paper discusses behaviour of masonry walls constructed with small-sized elements under the effects of mining activity. It presents some mechanisms of damage occurring in such structures, its forms in real life and the behaviour of large fragments of masonry walls subjected to specific loads in FEM computational models. It offers a constitutive material model, which enables numerical analyses and monitoring of the behaviour of numerical models as regards elastic-plastic performance of the material, with consideration of its degradation. Results from the numerical analyses are discussed for isolated fragments of the wall subjected to horizontal shear, with consideration of degradation, impact of imposed vertical load as well as the effect of weakening of the wall, which was achieved by introducing openings in it, on the performance and deformation of the wall.

  4. Thermal development of the laminar flow of a Bingham fluid between two plane plates with viscous dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Boualit, A.; Boualit, S. [Unite de recherche appliquee en energies renouvelables, Ghardaia (Algeria); Zeraibi, N. [Universite de Boumerdes, Faculte des hydrocarbures dept. Transport et equipement, Boumerdes (Algeria); Amoura, M. [Universite des Sciences et de la Technologie Houari Boumedienne, Faculte de Physique, Dept. Energetique, Alger (Algeria)

    2011-01-15

    The thermal development of the hydrodynamically developing laminar flow of a viscoplastic fluid (fluid of Bingham) between two plane plates maintained at a constant temperature has been studied numerically. This analysis has shown the effect caused by inertia and the rheological behaviour of the fluid on the velocity, pressure and temperature fields. The effects of Bingham and Peclet numbers on the Nusselt values with the inclusion of viscous dissipation are also discussed. (authors)

  5. Comparison of ALE finite element method and adaptive smoothed finite element method for the numerical simulation of friction stir welding

    NARCIS (Netherlands)

    van der Stelt, A.A.; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Quak, W.; Akkerman, Remko; Huetink, Han; Menary, G

    2011-01-01

    In this paper, the material flow around the pin during friction stir welding (FSW) is simulated using a 2D plane strain model. A pin rotates without translation in a disc with elasto-viscoplastic material properties and the outer boundary of the disc is clamped. Two numerical methods are used to

  6. A multi-scale homogenization model for fine-grained porous viscoplastic polycrystals: I - Finite-strain theory

    Science.gov (United States)

    Song, Dawei; Ponte Castañeda, P.

    2018-06-01

    We make use of the recently developed iterated second-order homogenization method to obtain finite-strain constitutive models for the macroscopic response of porous polycrystals consisting of large pores randomly distributed in a fine-grained polycrystalline matrix. The porous polycrystal is modeled as a three-scale composite, where the grains are described by single-crystal viscoplasticity and the pores are assumed to be large compared to the grain size. The method makes use of a linear comparison composite (LCC) with the same substructure as the actual nonlinear composite, but whose local properties are chosen optimally via a suitably designed variational statement. In turn, the effective properties of the resulting three-scale LCC are determined by means of a sequential homogenization procedure, utilizing the self-consistent estimates for the effective behavior of the polycrystalline matrix, and the Willis estimates for the effective behavior of the porous composite. The iterated homogenization procedure allows for a more accurate characterization of the properties of the matrix by means of a finer "discretization" of the properties of the LCC to obtain improved estimates, especially at low porosities, high nonlinearties and high triaxialities. In addition, consistent homogenization estimates for the average strain rate and spin fields in the pores and grains are used to develop evolution laws for the substructural variables, including the porosity, pore shape and orientation, as well as the "crystallographic" and "morphological" textures of the underlying matrix. In Part II of this work has appeared in Song and Ponte Castañeda (2018b), the model will be used to generate estimates for both the instantaneous effective response and the evolution of the microstructure for porous FCC and HCP polycrystals under various loading conditions.

  7. Advancing Material Models for Automotive Forming Simulations

    International Nuclear Information System (INIS)

    Vegter, H.; An, Y.; Horn, C.H.L.J. ten; Atzema, E.H.; Roelofsen, M.E.

    2005-01-01

    Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path.The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary.Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials.Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations prior

  8. Aspects of similitude theory in solid mechanics. Pt. 1. Deformation behaviour

    International Nuclear Information System (INIS)

    Malmberg, T.

    1995-12-01

    The core melt down and the subsequent steam explosion in a Light Water Reactor is an accident scenario under discussion. Here the resulting impact loading of the vessel head and its integrity is of primary concern. In the part I the analysis is resctricted to the deformation behavior. Using the 'method of differential equations', similarity laws are derived and size effecs are discussed for two important phenomena: - Motion and deformation of an elastic-viscoplastic continuum with isotropic hardening; - motion and deformation of an elastic-time independent plastic continuum with isotropic hardening. The presence of gravitational forces is discussed. (orig./HP) [de

  9. Preliminary analysis of the creep behaviour of nuclear fuel-waste container materials

    International Nuclear Information System (INIS)

    Dutton, R.; Leitch, B.W.; Crosthwaite, J.L.; Kasprick, G.R.

    1996-12-01

    In the Canadian Nuclear Fuel Waste Management Program, it is proposed that nuclear fuel waste be placed in a durable container and disposed of in a deep underground vault. Consideration of various disposal-container designs has identified either titanium or copper as the material suitable for constructing the container shell. As part of the R and D program to examine the structural integrity of the container, creep tests are being conducted on commercially pure titanium and oxygen-free copper. This report presents the preliminary data obtained. It also describes the evaluation of various constitutive equations to represent the creep curves, thus providing the basis for extrapolation of the creep behaviour over the design lifetime of the container. In this regard, a specific focus is placed on equations derived from the 0-Projection Concept. Recognizing that the container lifetime will be determined by the onset of tertiary creep leading to creep rupture, we present the results of the metallographic examination of creep damage. This shows that the tertiary stage in titanium is associated with the formation of transgranular cavities within the region of localized necking of the creep specimens. In contrast, creep damage in copper is in the form of intergranular cavities uniformly distributed throughout the gauge length. These results are analyzed within the context of the extant literature, and their implications for future container design are discussed. (author)

  10. Reinforced concrete treatment as composite material

    International Nuclear Information System (INIS)

    Oller, S.; Onate, E.; Miguel, J.

    1995-01-01

    This paper presents the general mixing theory applied to the numerical simulation of multiphase composite material behaviour as reinforced concrete materials. This theory is based on the mixture of that composite basic substances and allows to evaluate the inter-dependence behaviour between the different compounding constitutive models. If it would be necessary to consider the initial anisotropy of each compound it could be done by mean of the mapped isotropic plastic formulation. The approach is a generalization of the classic isotropic plasticity theory to be applied to either ortho tropic or anisotropic materials such as reinforced concrete. The existence of a stress and strain real anisotropic spaces, and the respective fictitious isotropic spaces are assumed, where a mapped fictitious problem is solved. Those spaces are relating by means of two fourth order transformation tensors. Both formulation are joined establishing a powerful work tool for the treatment of bulk-fiber composite materials. The induced anisotropy behaviour is take into account by each compounding constitutive formulation. (author). 24 refs., 3 figs

  11. Analysis of long-term behaviour of nuclear reactor containment

    Energy Technology Data Exchange (ETDEWEB)

    Hora, Z. [Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics, Thakurova 7, 166 29 Prague 6 (Czech Republic)]. E-mail: Zbynek.Hora@fsv.cvut.cz; Patzak, B. [Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics, Thakurova 7, 166 29 Prague 6 (Czech Republic)

    2007-02-15

    For assessment of safety and durability of a nuclear power plant (NPP), knowledge of the containment behaviour under various service and extreme conditions is crucial. To perform reliable analysis of such a large-scale structure, a sufficiently realistic but still feasible numerical model must be used, in which the relevant physical phenomena are reflected. Therefore, a constitutive model for concrete including effects of moisture and heat transfer, cement hydration, creep, shrinkage and optionally microcracking of concrete should be chosen. The present paper focuses on the simulation of the service life of NPP containment, aiming to determine the material and model parameters to enable reliable prediction of structural behaviour under various conditions. The purpose of the work is to provide a numerical model calibrated using existing measurements to predict the long-term behaviour reliably. Extensive in situ measurements are used to calibrate the model and to check the validity of the model hypotheses. Moreover, the material model parameters are systematically re-calibrated based on the continuous monitoring of the structure. The structural integrity test is reanalysed numerically to show the model capability of predicting behaviour of the structure under given loading and climate conditions.

  12. Abrasive wear behaviour of bio-active glass ceramics containing ...

    Indian Academy of Sciences (India)

    In this study, abrasive wear behaviour of bio-active glass ceramic materials produced with two different processes is studied. Hot pressing process and conventional casting and controlled crystallization process were used to produce bio-active ceramics. Fracture toughness of studied material was calculated by fracture ...

  13. Mathematics and Mechanics of Granular Materials

    CERN Document Server

    Hill, James M

    2005-01-01

    Granular or particulate materials arise in almost every aspect of our lives, including many familiar materials such as tea, coffee, sugar, sand, cement and powders. At some stage almost every industrial process involves a particulate material, and it is usually the cause of the disruption to the smooth running of the process. In the natural environment, understanding the behaviour of particulate materials is vital in many geophysical processes such as earthquakes, landslides and avalanches. This book is a collection of current research from some of the major contributors in the topic of modelling the behaviour of granular materials. Papers from every area of current activity are included, such as theoretical, numerical, engineering and computational approaches. This book illustrates the numerous diverse approaches to one of the outstanding problems of modern continuum mechanics.

  14. A study of parental presence/absence technique for child dental behaviour management

    NARCIS (Netherlands)

    Boka, V.; Arapostathis, K.; Charitoudis, G.; Veerkamp, J.; van Loveren, C.; Kotsanos, N.

    2017-01-01

    Aim: To examine the effectiveness of parental presence/absence (PPA) technique on the dental behaviour management of children. Materials and methods: This randomised control study recruited 61 child dental patients with uncooperative behaviour (Frankl 1 or 2) managed with AAPD-endorsed

  15. The Investigation of Soft Furniture Upholstery Deformational Behaviour

    Directory of Open Access Journals (Sweden)

    Donata ZUBAUSKIENE

    2012-12-01

    Full Text Available Textile materials, which are different in fibre content, weave type, density and thickness, as well as multi-layered synthetic leathers, are used in soft furniture upholstery production. Deformation - relaxation behaviour, which depends on mechanical properties of such materials differs significantly, also. From this standpoint substantial problem exists in soft furniture production, because the dimensions of its upholstery patterns, i.e. initial pretention must be adjusted taking into account the differences of applied materials mechanical properties. Otherwise external view and quality of upholstery may be unacceptable due to obvious visual material excess on soft furniture surfaces, which is called pull-on ease. The aim of this investigation was to determine the dependencies between three different levels of soft furniture upholstery pre-tension and corresponding values of pull-on ease. New testing method presented in this study allows defining soft furniture upholstery deformational behaviour and its regularities in respect to the initial dimensions of upholstery patterns.DOI: http://dx.doi.org/10.5755/j01.ms.18.4.3099

  16. An aging elasto-viscoplastic model for ceramics

    International Nuclear Information System (INIS)

    Soulacroix, Julian; Michel, Bruno; Gatt, Jean-Marie; Kubler, Regis; Barrallier, Laurent

    2014-01-01

    A model reproducing strain softening behavior in ceramic materials is proposed. This model is base on a critical treatment of previous mechanical experimental results, mainly on uranium dioxide. The main hypothesis is that the strain softening phenomenon is related to an aging process, where some point defects move towards the dislocations and modify their velocity. This is different from most of models used up to now, as they were based on the hypothesis that only the initial lack of dislocations was responsible of the strain softening behavior. A model is first developed in a simple 1D framework. Evolution of the mechanical behavior with strain rate and temperature is well reproduced by this model. Then, the 1D model is extended to a 3D mechanical model, and mechanical compressive tests on UO 2 pellets are simulated. The 3D model well reproduces the observed asymmetrical shape of the compressed pellet if one considers that the material is not initially perfectly homogeneous, which highlights the importance of accounting for spatial heterogeneity of materials in models. (authors)

  17. Low temperature behaviour of elastomers in seals; Tieftemperaturverhalten von Elastomeren im Dichtungseinsatz

    Energy Technology Data Exchange (ETDEWEB)

    Jaunich, Matthias

    2012-04-25

    Elastomeric seals are of high importance as machine parts and construction elements, but in spite of this the low temperature limit for the use of a seal was not fully understood. Hence, the required safety relevant evaluation of the lowest acceptable operating seal temperature is difficult. Therefore the presented work was aimed to understand the temperature dependent material behaviour of representative elastomers and to conclude from this knowledge the low temperature limit down to which such seals could safely fulfil the desired requirements. Starting with the published statement that a seal can safely work below its glass transition temperature the influence of the glass-rubber-transition was investigated. At first the glass-rubber-transition temperatures of the selected elastomers were determined applying several techniques to allow a comparison with the behaviour of the seals during component tests. Furthermore a new method to characterise the low temperature behaviour of elastomers was developed that emulates the key features of the standardised compression set test used for seal materials. In comparison to the standardized test this new method allows a much faster measurement that can be automatically performed. Using a model based data analysis an extrapolation of the results to different temperatures can be performed and therefore the necessary measuring expenditure can be additionally reduced. For the temperature dependent characterisation of the failure process of real seals a measurement setup was designed and the materials behaviour was investigated. By use of the results of all applied characterisation techniques the observed dependence of the failure temperature on the degree of compression could be explained for the investigated seals under static load. Additionally information about the behaviour of such seals under dynamic load could be gained from the time dependent material behaviour by use of the time temperature superposition relationship

  18. Perceptions of Deviant Behaviour in the Workplace

    Directory of Open Access Journals (Sweden)

    Daniela de Carvalho Wilks

    2012-01-01

    Full Text Available Employee misconduct in the workplace is relatively common and may be counterproductivein social and material terms. To identify which undesirable behavioursare considered acceptable is the first step to develop ways to reducedeviance in organizational settings. The purpose of this study was to examinethe perceived acceptability of deviant behaviour in the workplace, and to analysethe relation between the degree of such acceptance with organizationalcommitment, job satisfaction, and organizational tenure. Data was obtainedfrom 223 adults employed full-time. Results suggest a positive relationshipbetween the degree of acceptability of certain forms of deviant behaviour andorganizational commitment, but not with job satisfaction. They further indicatethat tenure was the factor having the most impact on the acceptanceof deviant behaviours. Implications of the findings for the management arediscussed.

  19. To better know the biological behaviour of future nuclear materials: a need to maintain a good level of protection against ionising radiation

    International Nuclear Information System (INIS)

    Guillaumont, R.; Metivier, H.

    2007-01-01

    An important program of research, called 'Generation IV' is currently developed at an international level to prepare the launching of reactors for the future. Its objective is to satisfy the growing needs in electric power within the framework for a sustainable development. One of the major aspects of this program is the search and the development for new nuclear materials containing fissile/fertile isotopes. Unfortunately, one realizes today that for many compounds considered to be used to manufacture these materials, there are no radio-toxicologic data, allowing to the occupational physicist to evaluate the real risk in the event of contaminations and to prescribe adapted therapeutic de-corporation. An emergency revival of 'workplace' studies, where are or will be handled these compounds or materials is mandatory. The lesson of the past showed that the prevision in radioprotection was rather difficult and that an experimental validation of the behaviour of hazardous heavy elements both in vitro and in vivo was necessary. (authors)

  20. Thermal shock behaviour of mullite-cordierite refractory materials

    Czech Academy of Sciences Publication Activity Database

    Boccaccini, D. N.; Leonelli, C.; Romagnoli, M.; Pellacani, G. C.; Veronesi, P.; Dlouhý, Ivo; Boccaccini, A. R.

    2007-01-01

    Roč. 106, č. 3 (2007), s. 142-148 ISSN 1743-6753 R&D Projects: GA AV ČR IAA200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : refraktory materials * thermal shock * fracutre toughness Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.074, year: 2007

  1. Design of a forging processing route for a gas turbine compressor disc in IMI 834

    International Nuclear Information System (INIS)

    Clark, G.S.

    1993-01-01

    The microstructure in all parts of a modern gas turbine compressor disc must be carefully controlled to give the optimum balance for resistance to creep and fatigue. This is particularly true for advanced titanium alloys such as IMI834. Dynamic recrystallisation during high temperature deformation and static recrystallisation and grain growth during heat treatment, all have a profound effect on the grain structure of the disc. These processes are affected by temperature, rate of deformation and various microstructural features. These may include the size and volume fraction of primary alpha particles and current beta grain size. The construction of a computer model to simulate the forging process must therefore take all these factors into account to fully simulate the mechanical and microstructural behaviour of the material during processing. This requires a complete characterisation of the material to formulate mechanical and microstructural constitutive equations for use in a visco-plastic finite element forging model. Similarly the forging equipment must be fully characterised so that forging processes can be accurately simulated. (orig.)

  2. Structure, properties and wear behaviour of multilayer coatings consisting of metallic and covalent hard materials, prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Schier, V.

    1995-12-01

    Novel multilayer coatings with metallic and covalent layer materials were prepared by magnetron sputtering and characterised concerning structure, properties and application behaviour. At first single layer coatings were deposited for the determination of the material properties. To evaluate relations between structure and properties of the multilayer coatings, different multilayer concepts were realised: - coatings consisting of at most 7 layers of metallic hard materials, - 100-layer coatings consisting of metallic and covalent hard materials, - TiN-TiC multilayer coatings with different numbers of layers (between 10 and 1000), - 150-layer coatings, based on TiN-TiC multilayers, with thin ( 4 C, AlN, SiC, a:C, Si 3 N 4 , SiAlON). X-rays and electron microscopic analysis indicate in spite of nonstoichiometric compositions single phase crystalline structures for nonreactively and reactively sputtered metastable single layer Ti(B,C)-, Ti(B,N)- and Ti(B,C,N)-coatings. These single layer coatings show excellent mechanical properties (e.g. hardness values up to 6000 HV0,05), caused by lattice stresses as well as by atomic bonding conditions similar to those in c:BN and B 4 C. The good tribological properties shown in pin-on-disk-tests can be attributed to the very high hardness of the coatings. The coatings consisting of at most 7 layers of metallic hard materials show good results mainly for the cutting of steel Ck45, due to the improved mechanical properties (e.g. hardness, toughness) of the multilayers compared to the single layer coatings. This improvement is caused by inserting the hard layer materials and the coherent reinforcement of the coatings. (orig.)

  3. Creep of uranium dioxide: bending test and mechanical behaviour; Etude du fluage du dioxyde d'uranium: caracterisation par essais de flexion et modelisation mecanique

    Energy Technology Data Exchange (ETDEWEB)

    Colin, Ch

    2003-09-01

    These PhD work in the frame of Pellet-Cladding Interactions studies, in the fuel assemblies of nuclear plants. Electricite de France (EDF) must well demonstrate and insure the integrity of the cladding. For that purpose, the viscoplastic behaviour of the nuclear fuel has to be known and, if possible, controlled. This PhD work aimed to characterize the creep of uranium dioxide, in conditions of transient power regime. First, a literature survey on mechanical behaviour of UO{sub 2} revealed that the ceramic was essentially studied with compressive tests, and that its creep behaviour is characterized by two domains, depending on the stress level. To estimate the loadings in a fuel pellet, EDF and CEA developed specific global codes. A simulation during a power ramp allowed the order of magnitude of the loadings in the pellet to be determined (temperature, thermal gradients, strains, strain rate...). The stress calculation using a finite element simulation requires the identification of behaviour laws, able to describe the behaviour under small strains, low strain rates, and under tensile stresses. Starting from this observation, three point bending method has been chosen to test the uranium dioxide. As, for representativeness reasons, testing specimens cut in actual fuel pads was required in our study; a ten millimeters span has been used. For this study, a specific three-point testing device has been developed, that can tests specimens up to 2 000 C in a controlled atmosphere (Ar + 5% H{sub 2}). A special care has been taken for the measurement of the deflexion of the sample, which is measured using a laser beam, that allow an accuracy of {+-}2{mu}m to be reached at high temperature. Specimens with 0,5 to 1 mm thickness have been tested using this jig. A Norton's law describe, with respective stress exponent and activation energy values of 1.73 and 540 kJ.mole-1, provided a good description of the stationary creep rate. Then, the mechanical behaviour of the fuel

  4. Study of corrosion-erosion behaviour of stainless alloys in industrial phosphoric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Guenbour, Abdellah [Laboratory of Electrochemistry-Corrosion, Av. Ibn Batouta, BP1014-Faculty of Science, Rabat (Morocco)]. E-mail: guenbour@fsr.ac.ma; Hajji, Mohamed-Adil [Group Corrosion and Protection of Materials, ENIM, Rabat (Morocco); Jallouli, El Miloudi [Group Corrosion and Protection of Materials, ENIM, Rabat (Morocco); Bachir, Ali Ben [Laboratory of Electrochemistry-Corrosion, Av. Ibn Batouta, BP1014-Faculty of Science, Rabat (Morocco)

    2006-12-30

    The corrosion and corrosion-abrasion resistance of some stainless steels in industrial phosphoric acid 30% P{sub 2}O{sub 5} has been studied using electrochemical techniques. The corrosion rate of materials increases with the increase of temperature. Alloys which contain chromium, molybdenum and nitrogen in sufficient quantities present the best behaviour. In the abrasion-corrosion conditions, the experimental device set up allowed to follow continually samples electrochemical behaviour. Under dynamic conditions and without solid particles, the increase of acid projection speed has no effect on the alloys corrosion behaviour. The adding of abrasive leads to a general increase of corrosion rate and to a decrease of material resistance. Under these conditions, materials attack is controlled by synergistic effect between the abrasion and the impurities. The cast 30% Cr shows good resistance according to his high chromium content.

  5. Study of corrosion-erosion behaviour of stainless alloys in industrial phosphoric acid medium

    International Nuclear Information System (INIS)

    Guenbour, Abdellah; Hajji, Mohamed-Adil; Jallouli, El Miloudi; Bachir, Ali Ben

    2006-01-01

    The corrosion and corrosion-abrasion resistance of some stainless steels in industrial phosphoric acid 30% P 2 O 5 has been studied using electrochemical techniques. The corrosion rate of materials increases with the increase of temperature. Alloys which contain chromium, molybdenum and nitrogen in sufficient quantities present the best behaviour. In the abrasion-corrosion conditions, the experimental device set up allowed to follow continually samples electrochemical behaviour. Under dynamic conditions and without solid particles, the increase of acid projection speed has no effect on the alloys corrosion behaviour. The adding of abrasive leads to a general increase of corrosion rate and to a decrease of material resistance. Under these conditions, materials attack is controlled by synergistic effect between the abrasion and the impurities. The cast 30% Cr shows good resistance according to his high chromium content

  6. Behaviour as a Lever of Ecological Transition? Understanding and Acting on Individual Behaviour and Collective Dynamics

    International Nuclear Information System (INIS)

    Martin, Solange; Gaspard, Albane

    2017-01-01

    Beyond broad policy declarations, the implementation of ecological transition - which consists mainly in curbing consumption of energy and raw materials in our societies - requires substantial behavioural change at the collective, but also, quite obviously, the individual level. Yet, though there is general consensus around the principle of embarking on the path to transition, things get more complicated when it comes to changing our practices and habits. Can we act on individual behaviour and collective dynamics in respect of this particular aim of ecological transition, and, if so, how are we to go about it? Solange Martin and Albane Gaspard have examined this question for the French Environment and Energy Management Agency (ADEME) and offer us the fruit of their labours here. They show, for example, how the social and human sciences help to understand behaviour both at the individual level and in its collective dimensions, and they outline different possible lines of action to modify it. But, given the entanglement between various levels, it is essential, if we are to act effectively on behaviour, to combine approaches, tools and actors, and to analyse and understand social practices thoroughly before implementing political projects or measures

  7. Elastic-plastic behaviour of thick-walled containers considering plastic compressibility

    International Nuclear Information System (INIS)

    Betten, J.; Frosch, H.G.

    1983-01-01

    In this paper the elastic-plastic behaviour of thick-walled pressure vessels with internal and external pressure is studied. To describe the mechanical behaviour of isotropic, plastic compressible materials we use a plastic potential which is a single-valued function of the principle stresses. For cylinders and spheres an analytic expression for the computation of stresses and residual stresses is specified. Afterwards the strains are calculated by using the finite difference method. Some examples will high-light the influence of the plastic compressibility on the behaviour of pressure vessels. (orig.) [de

  8. On the identification of behavior laws parameters of argillaceous rocks

    International Nuclear Information System (INIS)

    Lecampion, Brice

    2002-01-01

    This work aims to develop methods for identification of constitutive parameters of argillaceous rocks. Under the proposed underground research laboratory of the ANDRA, it is necessary to develop such methods for the interpretation of many steps to be performed on site. We focused on two major aspects of the rheological behavior of this type of rock: poro-elastic behavior on the one hand and the elasto-viscoplastic other. The first part focuses on the identification of poro-elastic parameters. Chapter 2 refers to the direct problem and discusses a number of important points concerning the inverse problem of identification. The third chapter is dedicated to the formulation of techniques for calculating gradient for linear poro-elastic case. The numerical finite element is discussed. The methods of direct differentiation and adjoint state are validated on a two-dimensional numerical example using the code of finite element Cast3M. Identification of poro-elastic coefficients argillaceous rocks of the Meuse Haute-Marne from laboratory tests is discussed in detail in Chapter 4. The use of semi-explicit approximate solution of problems provides a direct method for quick identification. The second part of the dissertation on the identification of elasto-viscoplastic parameters. The features of visco-plastic behaviours argillaceous rocks Meuse Haute-Marne are discussed in Chapter 5 on the basis of experimental results. Modeling this behavior is considered. It proposes a model isotropic nonlinear viscoplastic strain hardening to duplicate tests. The parameters of this law of behavior are identified on a creep test unidimensional drained conditions. The deformations arise when poro-elastic and viscoplastic behavior of the rock. We show that it is possible to separate these two phenomena. All parameters are identified poro-elastic viscoplastic, a semi-explicit solution of the creep test is used. Chapter 6 presents a method for identifying parameters elasto-viscoplastic in the

  9. Construction materials, monuments and environment

    Science.gov (United States)

    Prikryl, R.; Siegesmund, S.; Török, A.; Brimblecombe, P.; Gomez-Heras, M.

    2012-04-01

    Construction materials (natural stone, aggregates, bricks, cement, lime, mortar, etc.) form a wide and heterogeneous group both from the genetic and technological point of view. These materials deserve attention from the scientific community due to their long-term use, importance for society and sensitivity to the environment. Most geomaterials have also been used in important monuments designated as a part of the World Cultural Heritage and/or make part of national monuments. Despite of the wide-ranges of studies and our rapidly increasing understanding of material behaviour, our knowledge is still rather limited in many aspects. This concerns the characterisation of traditional raw materials, the knowledge of their processing and use, and/or durability and compatibility assessment. The exploitation and sustainable use of these materials are also new and emerging challenges in the modern society. The use of local materials for monuments can be considered as a part of our cultural and technological heritage, which has, however, significantly deteriorated during the past several decades. This paper summarizes the general topics related to a modern analysis of traditional construction materials derived from the Earth, and on the characteristic aspects of the behaviour of these materials on selected monuments.

  10. Consumer behaviour analysis and the behavioural perspective model.

    OpenAIRE

    Foxall, G.R.; Oliveira-Castro, J.M.; James, V.K.; Schrezenmaier, T.C.

    2011-01-01

    This is the FIRST of TWO linked articles on consumer behavioural analysis. Cognitive theories have dominated the field of consumer behaviour for the last few decades, however, an observed lack of consistency between attitudes and behaviour has suggested the need to investigate more thoroughly situational and behavioural variables. Consumer behaviour analysis can be viewed as an alternative theoretical approach that emphasizes situational variables and measures of behaviour. Within consumer be...

  11. From polycrystal to multi-crystal: ''numerical meso-scope'' development for a local analysis in the elasto-viscoplastic field; Du polycristal au multicristal: elaboration d'un mesoscope numerique pour une analyse locale en elastoviscoplasticite

    Energy Technology Data Exchange (ETDEWEB)

    Heraud, St

    2000-07-01

    The knowledge of the local mechanical fields over several adjacent grains is needed for a better understanding of damage initiation and intergranular. failure in metallic polycrystals. This thesis aimed at the derivation of such fields through a 'numerical meso-scope': this simulation tool relies on the finite element analysis of a multi-crystalline pattern embedded in a large matrix whose mechanical behaviour is derived experimentally from classical tests performed on the studied metal. First, we derived macroscopic elastic-viscoplastic constitutive equations from tensile and creep tests on a AIS1316 stainless steel and we inferred from them the general form of similar, but crystallographic equations to be used for the single crystals; the corresponding parameters were determined by fitting the computed overall response of an aggregate made of 1000 grains with the macroscopic experimental one. We then investigated a creep-damaged area of the same steel and we simulated the same grain ensemble in the 'numerical meso-scope' so as to compare the computed normal stress on all grain boundaries with the observed de-bonded boundaries: this showed the most damaged boundaries to sustain the largest normal stress. Another application was concerned with the understanding of the origin of intergranular damage of aged AIS321 stainless steel. A similar approach was adopted with help of the meso-scope: it showed that observations could not be explained by a sole intragranular hardening as it is currently proposed in the literature. Thus the pertinence of the 'numerical meso-scope' concept can now be demonstrated, which opens on a number of new interesting perspectives. (author)

  12. Corrosion behaviour of materials selected for FMIT lithium system

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, G.D.; Brehm, W.F.

    1983-09-01

    The corrosion behavior of selected materials in a liquid lithium environment was studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. Testing conditions ranged from about 3700 to about6500 hours of exposure to flowing lithium at temperatures from 230/sup 0/ to 270/sup 0/C and static lithium at temperatures from 200/sup 0/ to 500/sup 0/C. Principal areas of investigation included lithium corrosion/erosion effects on FMIT lithium system baseline and candidate materials. Material coupons and full-size prototypic components were evaluated to determine corrosion rates, fatigue crack growth rates, structural compatibility, and component acceptability for the lithium system. Based on the results of these studies, concerns regarding system materials and component designs were satisfactorily resolved to support a 20-year design life requirement for the FMIT lithium system.

  13. Corrosion behaviour of materials selected for FMIT lithium system

    International Nuclear Information System (INIS)

    Bazinet, G.D.; Brehm, W.F.

    1983-01-01

    The corrosion behavior of selected materials in a liquid lithium environment was studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. Testing conditions ranged from about 3700 to about6500 hours of exposure to flowing lithium at temperatures from 230 0 to 270 0 C and static lithium at temperatures from 200 0 to 500 0 C. Principal areas of investigation included lithium corrosion/erosion effects on FMIT lithium system baseline and candidate materials. Material coupons and full-size prototypic components were evaluated to determine corrosion rates, fatigue crack growth rates, structural compatibility, and component acceptability for the lithium system. Based on the results of these studies, concerns regarding system materials and component designs were satisfactorily resolved to support a 20-year design life requirement for the FMIT lithium system

  14. The health of adolescents: beliefs and behaviour.

    Science.gov (United States)

    Friedman, H L

    1989-01-01

    Adolescence is a period of transition from childhood to adulthood in which interlocking changes in the body, mind and social relationship take place. Healthy development depends on both a propitious environment and the action of adolescents themselves. A stable family, peace, material conditions for physical health, and educational, social and vocational opportunities with a chance to make use of them before marriage, are necessary environment conditions. However, within this context the adolescent must experiment with new behaviours and relationships inevitably courting some risks. Adolescent health is especially linked to behaviour. If the environment is inadequate or dangerous and the adolescent lacks self-esteem, behaviours dangerous to health are more likely to occur. These include: precocious and unprotected sexual behaviour sometimes resulting in too early or unwanted pregnancy and sexually transmitted diseases; the use of tobacco, alcohol and other drugs; injuries arising accidentally from risk taking behaviours especially when combined with alcohol or drugs; intentional injury whether self-inflicted or inflicted by others; and poor eating and habits of hygiene leading to obesity, or emaciation, acne and poor teeth and gums. Adolescent behaviour is often governed by their beliefs about what others think. Two way communication in a trusting atmosphere will reduce myths and misinformation and encourage healthy behaviour. The promotion of health, the prevention of problems, and their treatment and rehabilitation when they arise can best be accomplished with the active co-operation of young people.

  15. Corrosion behaviour of boiler tube materials during combustion of fuels containing Zn and Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bankiewicz, D.

    2012-11-01

    Many power plants burning challenging fuels such as waste-derived fuels experience failures of the superheaters and/or increased waterwall corrosion due to aggressive fuel components already at low temperatures. To minimize corrosion problems in waste-fired boilers, the steam temperature is currently kept at a relatively low level which drastically limits power production efficiency. The elements found in deposits of waste and waste-derived fuels burning boilers that are most frequently associated with high-temperature corrosion are: Cl, S, and there are also indications of Br; alkali metals, mainly K and Na, and heavy metals such as Pb and Zn. The low steam pressure and temperature in waste-fired boilers also influence the temperature of the waterwall steel which is nowadays kept in the range of 300 deg C - 400 deg C. Alkali chloride (KCl, NaCl) induced high-temperature corrosion has not been reported to be particularly relevant at such low material temperatures, but the presence of Zn and Pb compounds in the deposits have been found to induce corrosion already in the 300 deg C - 400 deg C temperature range. Upon combustion, Zn and Pb may react with Cl and S to form chlorides and sulphates in the flue gases. These specific heavy metal compounds are of special concern due to the formation of low melting salt mixtures. These low melting, gaseous or solid compounds are entrained in the flue gases and may stick or condense on colder surfaces of furnace walls and superheaters when passing the convective parts of the boiler, thereby forming an aggressive deposit. A deposit rich in heavy metal (Zn, Pb) chlorides and sulphates increases the risk for corrosion which can be additionally enhanced by the presence of a molten phase. The objective of this study was to obtain better insight into high-temperature corrosion induced by Zn and Pb and to estimate the behaviour and resistance of some boiler superheater and waterwall materials in environments rich in those heavy metals

  16. Analysis of viscoplastic plates with material degradation using influence functions

    International Nuclear Information System (INIS)

    Fotiu, P.; Irschik, H.

    1987-01-01

    Influence functions are well-known from the computational analysis of linear elastic plates. For inelastic plates, unfortunately, this convenient Green's function method does not apply in its classical sense, because superposition of imposed loadings is not possible. However, following a complete elastic-inelastic analogy for small deflections of beams and plates, the inelastic part of strain may be treated as an additional source of self-stress in the linear elastic structure with fixed (initial) stiffness. Hence, the inelastic plate is analogous to the linear elastic one, but subjected to the imposed loadings as well as to fictitious additional sources of self-stress, likewise to a given thermal loading. (orig./GL)

  17. EPR-based material modelling of soils

    Science.gov (United States)

    Faramarzi, Asaad; Alani, Amir M.

    2013-04-01

    In the past few decades, as a result of the rapid developments in computational software and hardware, alternative computer aided pattern recognition approaches have been introduced to modelling many engineering problems, including constitutive modelling of materials. The main idea behind pattern recognition systems is that they learn adaptively from experience and extract various discriminants, each appropriate for its purpose. In this work an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR). EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial tests are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well-known conventional material models and it is shown that EPR-based models can provide a better prediction for the behaviour of soils. The main benefits of using EPR-based material models are that it provides a unified approach to constitutive modelling of all materials (i.e., all aspects of material behaviour can be implemented within a unified environment of an EPR model); it does not require any arbitrary choice of constitutive (mathematical) models. In EPR-based material models there are no material parameters to be identified. As the model is trained directly from experimental data therefore, EPR-based material models are the shortest route from experimental research (data) to numerical modelling. Another advantage of EPR-based constitutive model is that as more experimental data become available, the quality of the EPR prediction can be improved by learning from the additional data, and therefore, the EPR model can become more effective and robust. The developed EPR-based material models can be incorporated in finite element (FE) analysis.

  18. Testing the Fracture Behaviour of Chocolate

    Science.gov (United States)

    Parsons, L. B.; Goodall, R.

    2011-01-01

    In teaching the materials science aspects of physics, mechanical behaviour is important due to its relevance to many practical applications. This article presents a method for experimentally examining the toughness of chocolate, including a design for a simple test rig, and a number of experiments that can be performed in the classroom. Typical…

  19. Leak-before-break behaviour of nuclear piping systems

    International Nuclear Information System (INIS)

    Bartholome, G.; Wellein, R.

    1992-01-01

    The general concept for break preclusion of nuclear piping systems in the FRG consists of two main prerequisites: Basic safety; independent redundancies. The leak-before-break behaviour is open of these redundancies and will be verified by fracture mechanics. The following items have to be evaluated: The growth of detected and postulated defects must be negligible in one life time of the plant; the growth behaviour beyond design (i.e. multiple load collectives are taken into account) leads to a stable leak; This leakage of the piping must be detected by an adequate leak detection system long before the critical defect size is reached. The fracture mechanics calculations concerning growth and instability of the relevant defects and corresponding leakage areas are described in more detail. The leak-before-break behaviour is shown for two examples of nuclear piping systems in pressurized water reactors: main coolant line of SIEMENS-PWR 1300 MW (ferritic material, diameter 800 mm); surge line of Russian WWER 440 (austenitic material, diameter 250 mm). The main results are given taking into account the relevant leak detection possibilities. (author). 9 refs, 9 figs

  20. Moderators of the intention-behaviour and perceived behavioural control-behaviour relationships for leisure-time physical activity

    Directory of Open Access Journals (Sweden)

    Godin Gaston

    2008-02-01

    Full Text Available Abstract Background Intention is a key determinant of action. However, there is a gap between intention and behavioural performance that remains to be explained. Therefore, the aim of this study was to identify moderators of the intention-behaviour and perceived behavioural control (PBC- behaviour relationships for leisure-time physical activity. Method This was tested in reference to Ajzen's Theory of Planned Behaviour. A sample of 300 volunteers, 192 women and 108 men, aged 18 to 55, participated in the study. At baseline, the participants completed a self-administrated psychosocial questionnaire assessing Ajzen's theory variables (i.e., intention and perceived behavioural control. The behavioural measure was obtained by mail three months later. Results Multiple hierarchical regression analyses indicated that age and annual income moderated the intention-behaviour and PBC-behaviour relationships. However, in the final model predicting behaviour (R2 = .46, only the interaction term of PBC by annual income (β = .24, p = 0.0003 significantly contributed to the prediction of behaviour along with intention (β = .49, p = 0.0009 and past behaviour (β = .44, p Conclusion Physical activity promotion programs would benefit not only from focusing on increasing the intention of low intenders, but also from targeting factors that moderate the perceived behavioural control-behaviour relationships.

  1. Multi-scale modelling of the hydro-mechanical behaviour of argillaceous rocks

    International Nuclear Information System (INIS)

    Van den Eijnden, Bram

    2015-01-01

    Feasibility studies for deep geological radioactive waste disposal facilities have led to an increased interest in the geomechanical modelling of its host rock. In France, a potential host rock is the Callovo-Oxfordian clay-stone. The low permeability of this material is of key importance, as the principle of deep geological disposal strongly relies on the sealing capacity of the host formation. The permeability being coupled to the mechanical material state, hydro-mechanical coupled behaviour of the clay-stone becomes important when mechanical alterations are induced by gallery excavation in the so-called excavation damaged zone (EDZ). In materials with microstructure such as the Callovo-Oxfordian clay-stone, the macroscopic behaviour has its origin in the interaction of its micromechanical constituents. In addition to the coupling between hydraulic and mechanical behaviour, a coupling between the micro (material microstructure) and macro scale will be made. By means of the development of a framework of computational homogenization for hydro-mechanical coupling, a double-scale modelling approach is formulated, for which the macro-scale constitutive relations are derived from the microscale by homogenization. An existing model for the modelling of hydro-mechanical coupling based on the distinct definition of grains and intergranular pore space is adopted and modified to enable the application of first order computational homogenization for obtaining macro-scale stress and fluid transport responses. This model is used to constitute a periodic representative elementary volume (REV) that allows the representation of the local macroscopic behaviour of the clay-stone. As a response to deformation loading, the behaviour of the REV represents the numerical equivalent of a constitutive relation at the macro-scale. For the required consistent tangent operators, the framework of computational homogenization by static condensation is extended to hydro-mechanical coupling. The

  2. Fuels and auxiliary materials

    International Nuclear Information System (INIS)

    Svab, V.

    A brief survey is given of the problems of fuels, fuel cans, absorption and moderator materials proceeding from the papers presented at the 1971 4th Geneva Conference on the Peaceful Uses of Nuclear Energy and the 1970 IAEA Conference in New York. Attention is focused on the behaviour of fuel and fuel can materials for thermal and fast reactors during irradiation, radiation stability of absorption materials and the effects of radiation on concrete and on moderator materials. (Z.M.)

  3. Numerical simulation of gasket behaviour during severe accidents (ATHERMIP project)

    International Nuclear Information System (INIS)

    Castro Lopez, Fernando; Orden Martinez, Alfredo

    1998-01-01

    This paper summarises the work carried out to numerically simulate the thermo-mechanical behaviour of sealing gasket in large containment penetrations during a severe accident. The gasket material is an elastomeric material and the thermo-mechanical characterization was based on experimentation. The difficulty of numerical simulation lies in the high non-linearity of the analysis, due on one hand, to the high strain levels reached, and on the other, to stiffness changes introduced by contact/takeoff indicators. Also, the stiffness parameters of the gasket material are not constant, but are subject to changes, both regarding the strain level and the environmental conditions (temperature, radiation). The results obtained allow presenting a calculation model capable of simulating and explaining the behaviour of the sealing gasket during a severe accident. Also, the failure hypothesis numerically obtained was environmentally validated. (author)

  4. Properties of structural materials in liquid metal environment. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Borgstedt, H U [ed.

    1991-12-15

    The International Working Group on Fast Reactors (IWGFR) Specialists Meeting on Properties of Structural Materials in Liquid Metal Environment was held during June 18 to June 20, 1991, at the Nuclear Research Centre (Kernforschungszentrum) in Karlsruhe, Germany. The Specialists Meeting was divided into five technical sessions which addressed topics as follows: Creep-Rupture Behaviour of Structural Materials in Liquid Metal Environment; Behaviour of Materials in Liquid Metal Environments under Off-Normal Conditions;Fatigue and Creep-Fatigue of Structural Materials in Liquid Metal Environment; Crack Propagation in Liquid Sodium; and Conclusions and recommendations. Individual papers have been cataloged separately.

  5. On impact by a hard cone on elasto-viscoplastic material, leading to the generation of a conical crack

    Science.gov (United States)

    Verveiko, N. D.; Shashkin, A. I.; Krupenko, S. E.

    2018-03-01

    The destruction of solid physical objects is a complex process in which mechanical, chemical, thermobaric and other matter transformations take place. Under mechanical destruction is understood the violation of the integrity of the object due to the occurrence of cracks. High-speed impact of a solid body on deformable materials is accompanied by the spread of cracks and is of a wave nature. This article presents an analysis of the dynamic stress-strain state in an elastoviscoplastic (EVP) material near the leading edge of a moving crack, approximated by a zone of continuous deformation. An analysis of the distribution of the intensity of tangential stresses and plastic deformations that occur behind the front of the longitudinal and shear head waves of a spherical shape generated by the impact of the vertex of the solid cone is carried out on the model EVP of the medium by the ray method. It is shown that the presence of a maximum of the jump of the tangential velocity component on the shear wave leads to a development with time of a jump in the displacements of the tangents to the front of the shear wave. This can be interpreted as the moment of initiation of the head part of a crack running along with the front of the elastic wave with the velocity of shear waves.

  6. Behaviour of fiber reinforced concrete slabs under impact loading

    International Nuclear Information System (INIS)

    Huelsewig, M.; Stilp, A.; Pahl, H.

    1982-01-01

    The behaviour of steel fiber reinforced concrete slabs under impact loads has been investigated. The results obtained show that fracturing and spallation effects are reduced to a large extend due to the high energy absorption and the increased yield strength of this material. Crater depths are comparable to those obtained using normal concrete targets. Systematic tests using different fiber types and dimensions show that the terminal ballistic behaviour is strongly dependent on these parameters. (orig.) [de

  7. PARENTING AND ITS INFLUENCE ON CHILD BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Jiji Mary Antony

    2017-12-01

    Full Text Available BACKGROUND Parenting is the process of giving care to the young and preparing them to face the challenges of life. Diana Baumrind introduced the models of parenting, authoritative, authoritarian and permissive depending on the level of demandingness and responsiveness. Defective parenting is associated with problem behaviours in children. This study was undertaken to find out which parenting style is least associated with behavioural problems and what are the problems associated with the different parenting style. MATERIALS AND METHODS 46 children who were admitted with minor illness at the institute of Child Health, Kottayam from January 2017 to Oct 2017 were enrolled after getting informed consent and IRB clearance. Purposive sampling method were used for the study. Demographic data was entered into a proforma. The PSDQ and CBCL 1½ -5 questionnaire was given to mothers to assess the parenting style and behavioural problems in their children. Data was analysed with statistical tests. The t test, one way ANOVA, Pearson correlation coefficient and regression analyses were used for the analyses. RESULTS The parenting styles of the mothers and the behavioural problems seen in their children were studied in this research. There was no significant difference in behavioural problems between the different age group studied and there was no difference in problem behaviours between male children and female children. Authoritative parenting style was least associated with problem behaviour. Authoritarian parenting style is associated with internalizing problems and permissive parenting is associated with externalizing problems. CONCLUSION Since the behaviour problems tends to linger through adolescence and adulthood, parental education regarding the positive parenting style and interventions can be given from early childhood during routine child care and structured programs.

  8. Who is reducing their material consumption and why? A cross-cultural analysis of dematerialisation behaviours

    OpenAIRE

    Whitmarsh, Lorraine; Capstick, Stuart; Nash, Nicholas

    2017-01-01

    The environmental and economic imperatives to dematerialise economies, or ‘do more with less’, have\\ud been established for some years. Yet, to date little is known about the personal drivers associated with\\ud dematerialising. This paper explores the prevalence and profile of those who are taking action to reduce\\ud consumption in different cultural contexts (UK and Brazil) and considers influences on dematerialisation\\ud behaviours. We find exemplar behaviours (avoiding buying new things an...

  9. Finite element simulation of the micromagnetic behaviour of nanoelements

    International Nuclear Information System (INIS)

    Ridley, P.H.W.

    2000-06-01

    Over recent years the investigation into the magnetic behaviour of nanostructured permalloy has become more advanced due to improvements in numerical micromagnetic methods on the theoretical side and high accuracy electron-beam lithography methods experimentally. The interest in such structures of magnetic material is increasing mainly due to the possible potential use in future high-density magnetic storage media applications. When the material is discretized into a nanoelement structure at the sub micron level theoretical micromagnetic techniques may be employed in order to investigate the magnetization behaviour. This thesis describes a theoretical study of the hysteresis and domain behaviour in thin film permalloy nanoelements. To carry out our investigations we have developed a dynamical micromagnetic model based on the use of the finite element method. The results presented in this thesis begin with a test of the performance of our model. We then proceed with an investigation into the effect of size, elongation and geometry on the transition states for single nanoelements. The investigation is then extended to look at the magnetization behaviour of arrays of interacting nanoelements in relation to their separation and material properties. The reversal mechanism of the arrays is very sensitive to the degree of disorder. In the case of an aligned uniaxial anisotropy a highly symmetric cooperative switching mechanism is observed. A large anisotropy has the effect of stabilizing states during the reversal process leading to distinctive switching. A random anisotropy breaks this high symmetry sufficiently to reduce the cooperative switching leading to a relatively random reversal of individual elements. The theoretical predictions are compared with experimental observations. (author)

  10. On Identification of Critical Material Attributes for Compression Behaviour of Pharmaceutical Diluent Powders

    Directory of Open Access Journals (Sweden)

    Jianyi Zhang

    2017-07-01

    anticipated that the expansion was induced by elastic recovery to a limited extent, while the shrinkage was primarily due to the solidification during storage. It was also found that, for all powders considered, the powder compressibility and the elastic recovery depended significantly on the particle breakage tendency: a decrease in the particle breakage tendency led to a slight decrease in the powder compressibility and a significant drop in immediate elastic recovery. This implies that the particle breakage tendency is a critical material attribute in controlling the compression behaviour of pharmaceutical powders.

  11. Plasticity - a limiting case of creep

    International Nuclear Information System (INIS)

    Cords, H.; Kleist, G.; Zimmermann, R.

    1986-11-01

    The present work is an attempt to develop further the so-called unified theory for viscoplastic constitutive equations as used for metals or metal alloys. Typically, in similar approaches creep strains and plastic strains are derived from one common stress-strain relationship for inelastic strain rates employing an internal stress function as a back stress. Some novel concepts concerning the definition of the internal stress, plastic yielding and material hardening have been introduced, formulated mathematically and tested for correspondence with a standard type of materials behaviour. As a result of the investigations a system of simultaneous differential equations is defined which has been used to elaborate a common view on a number of different material effects observed in creep and plasticity i.e. normal and inverted primary creep, recoverable creep, incubation time and anelasticity in stress reduction, negative stress relaxation, plastic yielding, perfect plasticity, negative strain rate sensitivity, serrated flow, strain hardening in monotonic and cyclic loading. The theoretical approach is mainly based on a lateral contraction movement not following rigidly the longitudinal extension of the material specimen by a prescribed constant value of Poisson's ratio as usual, but following the axial extension in a process of drag which allows for retardation and which simultaneously impedes the longitudinal straining. (orig.) [de

  12. A prediction of rate-dependent behaviour in ferroelectric polycrystals

    International Nuclear Information System (INIS)

    Kim, Sang-Joo

    2007-01-01

    Rate-dependent behaviour of a polycrystalline ferroelectric material is predicted based on thermal activation theory and a representative volume element model. First, the behaviour of a ferroelectric single crystal is calculated from a recently proposed three-dimensional free energy model [S.J. Kim, S. Seelecke, Int. J. Solids Struct. 44 (2007) 1196-1209]. Then, from the calculated single crystal responses, poling behaviour of a ferroelectric polycrystal is obtained in three different ways, two representative volume element models and Gaussian integration method. It is found that a dodecahedron representative volume element consisting of 210 crystallites is the best choice among the three methods. Finally, the behaviour of a ferroelectric polycrystal under various electric and stress loads is calculated using the chosen RVE model. The calculated responses are compared qualitatively with experimental observations, and the effects of crystal orientation and polycrystallinity are discussed

  13. Long-time aging behaviour of the alloy Al-2024 characterized by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Nicht, E.-M.; Brauer, G; Tempus, G.

    2001-01-01

    The reconstruction of the precipitation structure after solution treatment has been investigated by positron annihilation spectroscopy. In this study the behaviour of samples taken from the aircraft A irbus 300', being in operation for 18 years, is compared to a reference material supplied by Alcoa. The results of positron annihilation spectroscopy show that there are no significant differences in both materials. This finding is in agreement with the results obtained from other methods within the scope of the general research program which points to a materials behaviour as predicted for a safe operation of this type of aircraft. (author)

  14. Polymorphic ethyl alcohol as a model system for the quantitative study of glassy behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H E; Schober, H; Gonzalez, M A [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Bermejo, F J; Fayos, R; Dawidowski, J [Consejo Superior de Investigaciones Cientificas, Madrid (Spain); Ramos, M A; Vieira, S [Universidad Autonoma de Madrid (Spain)

    1997-04-01

    The nearly universal transport and dynamical properties of amorphous materials or glasses are investigated. Reasonably successful phenomenological models have been developed to account for these properties as well as the behaviour near the glass-transition, but quantitative microscopic models have had limited success. One hindrance to these investigations has been the lack of a material which exhibits glass-like properties in more than one phase at a given temperature. This report presents results of neutron-scattering experiments for one such material ordinary ethyl alcohol, which promises to be a model system for future investigations of glassy behaviour. (author). 8 refs.

  15. Creep behaviour of thin walled composite tubes

    International Nuclear Information System (INIS)

    Thiebaud, F.; Muzic, B.; Perreux, D.; Varchon, D.; Oytana, C.; Lebras, J.

    1993-01-01

    Fiber reinforced composites are more and more employed in high performance structure for nuclear power plant, mainly as water piping tubes. The increase of the use of composites is due to the advantages that they give : high stiffness, large ultimate strength, corrosion resistance. This last advantage is sought for the pieces in contact with water, and it's one of the reason why the composite can be preferred to metal. However the mechanical behaviour of composite is actually poorly known. The high anisotropy is the main difficulty to obtain a realistic model of behaviour. This problem implies that the safety factor used in the design of structure is often too large. In this article a general overview of the mechanical behaviour of tube made in glass epoxy material is proposed. We discuss especially the creep behaviour under biaxial loadings. The form of the proposed model presently allows predicting a nonlinearity of the behaviour and provides a good correlation with the experimental data of several tests not described in this paper. It accounts for the change of the Poisson ratio during creep and cyclic tests. However the complete identification requires long time testings and consequently the model must be corrected to take into account the damage which occurs in these cases

  16. Critical Behaviour of a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1976-01-01

    A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....

  17. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 26; Issue 5. Issue front cover thumbnail. Volume 26, Issue 5. August 2003, pages 461-568. pp 461-464 Sensor Materials. Preparation, characterization and dielectric behaviour of some yttrium doped strontium stannates · P K Bajpai Kuldeep Ratre Mukul Pastor T P ...

  18. Matter and materials

    International Nuclear Information System (INIS)

    Lefevre, J.

    1997-01-01

    This paper is an introduction to the materials used in nuclear engineering from the uranium (extraction, processing, ultimate use) to all radioactive products encountered in nuclear processes and more particularly those having particular applications or presenting particular risks in their ultimate disposal. This introduction gives a general presentation of the different topics which are developed in other chapters: nuclear materials and fuel cycle (fuel fabrication, actinides and recycling, direct storage and reprocessing of spent fuels, management of radioactive wastes, transport of radioactive materials, production and use of radioelements in the industry and medicine), moderators and coolants, other materials used in reactors (fuel cladding materials, special steels, zircaloy, neutron absorbent materials), and the mechanical behaviour of materials (steels, concretes). (J.S.)

  19. The Investigation of Soft Furniture Upholstery Deformational Behaviour

    OpenAIRE

    Donata ZUBAUSKIENE; Eugenija STRAZDIENE; Virginijus URBELIS; Virginija SACEVICIENE

    2012-01-01

    Textile materials, which are different in fibre content, weave type, density and thickness, as well as multi-layered synthetic leathers, are used in soft furniture upholstery production. Deformation - relaxation behaviour, which depends on mechanical properties of such materials differs significantly, also. From this standpoint substantial problem exists in soft furniture production, because the dimensions of its upholstery patterns, i.e. initial pretention must be adjusted taking into accoun...

  20. Activation and Radiation Damage Behaviour of Russian Structural Materials for Fusion Reactors in the Fission and Fusion Reactors

    International Nuclear Information System (INIS)

    Blokhin, A.; Demin, N.; Chernov, V.; Leonteva-Smirnova, M.; Potapenko, M.

    2006-01-01

    Various structural low (reduced) activated materials have been proposed as a candidate for the first walls-blankets of fusion reactors. One of the main problems connected with using these materials - to minimise the production of long-lived radionuclides from nuclear transmutations and to provide with good technological and functional properties. The selection of materials and their metallurgical and fabrication technologies for fusion reactor components is influenced by this factor. Accurate prediction of induced radioactivity is necessary for the development of the fusion reactor materials. Low activated V-Ti-Cr alloys and reduced activated ferritic-martensitic steels are a leading candidate material for fusion first wall and blanket applications. At the present time a range of compositions and an impurity level are still being investigated to better understand the sensitive of various functional and activation properties to small compositional variations and impurity level. For the two types of materials mentioned above (V-Ti-Cr alloys and 9-12 % Cr f/m steels) and manufactured in Russia (Russia technologies) the analysis of induced activity, hydrogen and helium-production as well as the accumulation of such elements as C, N, O, P, S, Zn and Sn as a function of irradiation time was performed. Materials '' were irradiated '' by fission (BN-600, BOR-60) and fusion (Russian DEMO-C Reactor Project) typical neutron spectra with neutron fluency up to 10 22 n/cm 2 and the cooling time up to 1000 years. The calculations of the transmutation of elements and the induced radioactivity were carried out using the FISPACT inventory code, and the different activation cross-section libraries like the ACDAM, FENDL-2/A and the decay data library FENDL-2/D. It was shown that the level of impurities controls a long-term behaviour of induced activity and contact dose rate for materials. From this analysis the concentration limits of impurities were obtained. The generation of gas

  1. Intergranular and inter-phased boundaries in the materials

    International Nuclear Information System (INIS)

    Aslanides, A.; Backhaus-Ricoult, M.; Bayle-Guillemaud, P.

    2000-01-01

    This document collects the abstracts of the talks presented during the colloquium J2IM on the intergranular and inter-phased boundaries in the materials. Around the themes of the interfaces behaviour and grain boundaries defects in materials, these days dealt with the microstructure behaviour in many domains such as the interfaces in batteries, the irradiation damages and the special case of the fuel-cladding interactions, the stressed interfaces, the alumina or silicon carbides substrates. (A.L.B.)

  2. Analysis of writing and erasing behaviours in phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Hyot, B. E-mail: bhyot@cea.fr; Poupinet, L.; Gehanno, V.; Desre, P.J

    2002-09-01

    An understanding of the process involved in writing and erasing of phase-change optical recording media is vital to the development of new, and the improvement of existing, products. The present work investigates both experimental and theoretical laser-induced fast structural transformations of GeSbTe thin films. Optical and microstructural changes are correlated using both a static tester and transmission electron microscopy. In the second part of this paper we try to elucidate the physics underlying the amorphous-to-crystalline phase transformation under short-pulse laser excitation. Both thermal and thermodynamical behaviours must be taken into account to illustrate real processes.

  3. Analysis of writing and erasing behaviours in phase change materials

    International Nuclear Information System (INIS)

    Hyot, B.; Poupinet, L.; Gehanno, V.; Desre, P.J.

    2002-01-01

    An understanding of the process involved in writing and erasing of phase-change optical recording media is vital to the development of new, and the improvement of existing, products. The present work investigates both experimental and theoretical laser-induced fast structural transformations of GeSbTe thin films. Optical and microstructural changes are correlated using both a static tester and transmission electron microscopy. In the second part of this paper we try to elucidate the physics underlying the amorphous-to-crystalline phase transformation under short-pulse laser excitation. Both thermal and thermodynamical behaviours must be taken into account to illustrate real processes

  4. Material-Point-Method Analysis of Collapsing Slopes

    DEFF Research Database (Denmark)

    Andersen, Søren; Andersen, Lars

    2009-01-01

    To understand the dynamic evolution of landslides and predict their physical extent, a computational model is required that is capable of analysing complex material behaviour as well as large strains and deformations. Here, a model is presented based on the so-called generalised-interpolation mat......To understand the dynamic evolution of landslides and predict their physical extent, a computational model is required that is capable of analysing complex material behaviour as well as large strains and deformations. Here, a model is presented based on the so-called generalised......, a deformed material description is introduced, based on time integration of the deformation gradient and utilising Gauss quadrature over the volume associated with each material point. The method has been implemented in a Fortran code and employed for the analysis of a landslide that took place during...

  5. Material Properties at Low Temperature

    International Nuclear Information System (INIS)

    Duthil, P

    2014-01-01

    From ambient down to cryogenic temperatures, the behaviour of materials changes greatly. Mechanisms leading to variations in electrical, thermal, mechanical, and magnetic properties in pure metals, alloys, and insulators are briefly introduced from a general engineering standpoint. Data sets are provided for materials commonly used in cryogenic systems for design purposes

  6. Material Properties at Low Temperature

    CERN Document Server

    Duthil, P

    2014-07-17

    From ambient down to cryogenic temperatures, the behaviour of materials changes greatly. Mechanisms leading to variations in electrical, thermal, mechanical, and magnetic properties in pure metals, alloys, and insulators are briefly introduced from a general engineering standpoint. Data sets are provided for materials commonly used in cryogenic systems for design purposes.

  7. Material Properties at Low Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Duthil, P [Orsay, IPN (France)

    2014-07-01

    From ambient down to cryogenic temperatures, the behaviour of materials changes greatly. Mechanisms leading to variations in electrical, thermal, mechanical, and magnetic properties in pure metals, alloys, and insulators are briefly introduced from a general engineering standpoint. Data sets are provided for materials commonly used in cryogenic systems for design purposes.

  8. 3-D analysis of fatigue crack behaviour in a shot peened steam turbine blade material

    Energy Technology Data Exchange (ETDEWEB)

    He, B.Y., E-mail: Binyan.he@soton.ac.uk [Engineering Materials, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Katsamenis, O.L. [muVIS X-ray Imaging Centre, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Mellor, B.G.; Reed, P.A.S. [Engineering Materials, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-08-26

    Serial mechanical sectioning and high resolution X-ray tomography have been used to study the three-dimensional morphology of small fatigue cracks growing in a 12 Cr tempered martensitic steam turbine blade material. A range of surface conditions has been studied, namely polished and shot peened (with varying levels of intensity). In the polished (unpeened) condition, inclusions (alumina and manganese sulphide) played an important role in initiating and controlling early fatigue crack behaviour. When fatigue cracks initiated from an alumina stringer, the crack morphology was normally dominated by single stringers, which were always in the centre of the fatigue crack, indicating its primary role in initiation. Manganese sulphide inclusion groups however seemed to dominate and affect the crack path along both the surface and depth crack growth directions. The more intensely shot peened condition did not however evidence inclusion or stringer affected fatigue crack initiation or growth behaviour; sub-surface crack coalescence being clearly observed by both serial sectioning and computed tomography (CT) imaging techniques at a depth of about 150–180 μm. These sub-surface crack coalescences can be linked to both the extent of the compressive residual stress as well as the depth of the plastic deformation arising from the intense shot peening process. Shot peening appears to provide a different defect population that initiates fatigue cracks and competes with the underlying metallurgical defect populations. The most beneficial shot peening process would in this case appear to “deactivate” the original metallurgical defect population and substitute a known defect distribution from the shot peening process from which fatigue cracks grow rather slowly in the strain hardened surface layer which also contains compressive residual stresses. A benefit to fatigue life in bending, even under Low Cycle Fatigue (LCF) conditions, has been observed in these tests if a

  9. Critical survey of the neutron-induced creep behaviour of steel alloys for the fusion reactor materials programme

    International Nuclear Information System (INIS)

    Hausen, H.

    1985-01-01

    The differences between the irradiation environment of a fission reactor and that of a fusion reactor are respectively described in relation to the radiation damage found and expected in the two types of nuclear reactor. It is shown that the microstructure developing for instance in stainless steel alloys is almost invariant to whether the production rate of helium is high or low. The finding is valid up to neutron doses corresponding to about 60 dpa. For this reason, irradiation creep data obtained in fission reactors may be used, with caution, for predicting creep behaviour in fusion reactors.It was further recognized that irradiation creep performed with high energy particles from an accelerator, yields results which are comparable to those obtained in fission reactors. For this reason, simulation creep experiments are found to be valuable for the development of irradiation creep resistant materials using, for example, high energy electrons or protons. Such kind of experiments are performed in many laboratories. For irradiation doses larger than 60 dpa, predictions with respect to creep rates in fission and fusion reactors are difficult. In end-of-life tests, which concern swelling, ductility, tensile properties, rupture, fatigue and embrittlement, the presence of helium, due to its production rate being much higher in most materials exposed to 14 MeV neutrons than to fission neutrons, may be of great importance

  10. Corrosion behaviour of zirconium alloys in the autoclaves of Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Bordoni, Roberto A.; Olmedo, Ana M.; Villegas, Marina; Miyagusuku, Marcela; Maroto, Alberto J. G.; Sainz, Ricardo A.; Fernandez, Alberto N.; Allemandi, Walter D.

    1999-01-01

    The corrosion behaviour of zirconium alloys coupons attached to the holders of the autoclaves located out of core in the primary circuit of Embalse nuclear power plant is described. The Zr-2.5 Nb coupons of the autoclaves at the higher temperature (305 C degrees) and the Zry-4 coupons of the autoclaves at 265 and 305 C degrees installed in 1988 had a normal corrosion behaviour, after 3500 of full power days. While, the Zr-2.5 Nb coupons, at 265 C degrees, showed the presence of white oxide nuclei and a weight gain indicating an abnormal corrosion behaviour which might be attributed to the material microstructure. Complementary tests, made in the period September 1991-April 1993, showed that the abnormal corrosion behaviour observed for the Canadian coupons installed in 1983 was due to a surface contamination of the Zry-4 coupons and due to the microstructure of the Zr-2.5 Nb coupons. The normal corrosion behaviour for both alloys installed in 1986, showed that the resin ingress to the primary circuit that occurred in 1988, do not affect the performance of these materials. (author)

  11. Materials Science Division progress report 1986-1988

    International Nuclear Information System (INIS)

    Kumar, Vijay; Vasumathi, D.; Chandra Sekhar, N.V.

    1990-01-01

    This is a report on the various Research and Developmental (R and D) activities carried out in the Materials Science Division during the period 1986-88. Most contributions have been presented in the form of abstracts and wherever possible results of several contributions on a related problem have been consolidated into one. The R and D activities covered the following areas: (1) quasicrystalline phase, (2) high temperature superconducting behaviour in metal oxides, (3) physics of colloidal suspensions, (4) behaviour of materials under high pressure, (5) radiation effects in complex alloy systems, (6) inert gas behaviour in metals, and production of crystals, particularly of volatile semiconducting compounds. The lists of publications by the members of the Division and seminars held during 1986-88 are given at the end of the report. (a uthor)

  12. Behaviour Centred Design: towards an applied science of behaviour change.

    Science.gov (United States)

    Aunger, Robert; Curtis, Valerie

    2016-12-01

    Behaviour change has become a hot topic. We describe a new approach, Behaviour Centred Design (BCD), which encompasses a theory of change, a suite of behavioural determinants and a programme design process. The theory of change is generic, assuming that successful interventions must create a cascade of effects via environments, through brains, to behaviour and hence to the desired impact, such as improved health. Changes in behaviour are viewed as the consequence of a reinforcement learning process involving the targeting of evolved motives and changes to behaviour settings, and are produced by three types of behavioural control mechanism (automatic, motivated and executive). The implications are that interventions must create surprise, revalue behaviour and disrupt performance in target behaviour settings. We then describe a sequence of five steps required to design an intervention to change specific behaviours: Assess, Build, Create, Deliver and Evaluate. The BCD approach has been shown to change hygiene, nutrition and exercise-related behaviours and has the advantages of being applicable to product, service or institutional design, as well as being able to incorporate future developments in behaviour science. We therefore argue that BCD can become the foundation for an applied science of behaviour change.

  13. Modelling time-dependent mechanical behaviour of softwood using deformation kinetics

    DEFF Research Database (Denmark)

    Engelund, Emil Tang; Svensson, Staffan

    2010-01-01

    The time-dependent mechanical behaviour (TDMB) of softwood is relevant, e.g., when wood is used as building material where the mechanical properties must be predicted for decades ahead. The established mathematical models should be able to predict the time-dependent behaviour. However, these models...... are not always based on the actual physical processes causing time-dependent behaviour and the physical interpretation of their input parameters is difficult. The present study describes the TDMB of a softwood tissue and its individual tracheids. A model is constructed with a local coordinate system that follows...... macroscopic viscoelasticity, i.e., the time-dependent processes are to a significant degree reversible....

  14. Magnetocaloric effect and its implementation in critical behaviour ...

    Indian Academy of Sciences (India)

    Model; manganites; magnetization; magnetocaloric effect; critical exponent. 1. Introduction. Large number of magnetocaloric effect (MCE) materials have attracted much ... external magnetic field, which is advantageous for applica- tion as magnetic ... of the magnetic phase transition and critical behaviour can be obtained by ...

  15. Finite element simulation of texture evolution and Swift effect in NiAl under torsion

    Science.gov (United States)

    Böhlke, Thomas; Glüge, Rainer; Klöden, Burghardt; Skrotzki, Werner; Bertram, Albrecht

    2007-09-01

    The texture evolution and the Swift effect in NiAl under torsion at 727 °C are studied by finite element simulations for two different initial textures. The material behaviour is modelled by an elastic-viscoplastic Taylor model. In order to overcome the well-known shortcomings of Taylor's approach, the texture evolution is also investigated by a representative volume element (RVE) with periodic boundary conditions and a compatible microstructure at the opposite faces of the RVE. Such a representative volume element takes into account the grain morphology and the grain interaction. The numerical results are compared with experimental data. It is shown that the modelling of a finite element based RVE leads to a better prediction of the final textures. However, the texture evolution path is not accounted for correctly. The simulated Swift effect depends much more on the initial orientation distribution than observed in experiment. Deviations between simulation and experiment may be due to continuous dynamic recrystallization.

  16. Effect of metallic silver nanoparticles on the alignment and relaxation behaviour of liquid crystalline material in smectic C* phase

    Science.gov (United States)

    Vimal, Tripti; Kumar Gupta, Swadesh; Katiyar, Rohit; Srivastava, Atul; Czerwinski, Michal; Krup, Katarzyna; Kumar, Sandeep; Manohar, Rajiv

    2017-09-01

    The influence of silver nanoparticles dispersed in a Ferroelectric Liquid Crystal (FLC) on the properties of the resultant composite system has been investigated by thermal, electro-optical, and dielectric methods. We show that the concentration of thiol capped silver nanoparticles is a critical factor in governing the alignment of nanoparticles (NPs) in the host FLC. The orientation of NPs in composite samples affects the ordering of the LC (Liquid Crystal) phase and consequently changes the various phase transition temperatures of the host LC. Formation of self-assembled 2D (two dimensional) arrays of nanoparticles is observed for high concentration of dopant in the LC, oriented perpendicular to the direction of rubbing. We propose that the molecular interaction between the thiol capped NPs and LC molecules is the key factor behind such an arrangement of NPs. Orientation of NPs has affected the relaxation behaviour and various other material parameters, significantly. A noteworthy change in DC conductivity articulates our proposed idea of the formation of 2D array of NPs perpendicular to the direction of rubbing. This comprehensive study endorses the importance of dopant concentration in modifying the properties of the host LC material.

  17. Fundamental structure of steady plastic shock waves in metals

    Science.gov (United States)

    Molinari, A.; Ravichandran, G.

    2004-02-01

    The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic-plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large deformations. The material response is characterized by a quasistatic tensile (compression) test (providing the isothermal strain hardening law). In addition the elastic response is determined up to second order elastic constants by ultrasonic measurements. Based on this simple information, it is shown that the shock kinetics can be quite well described for moderate shocks in aluminum with stress amplitude up to 10 GPa. Under the later assumption, the elastic response is assumed to be isentropic, and thermomechanical coupling is neglected. The model material considered here is aluminum, but the analysis is general and can be applied to any viscoplastic material subjected to moderate amplitude shocks. Comparisons with experimental data are made for the shock velocity, the particle velocity and the shock structure. The shock structure is obtained by quadrature of a first order differential equation, which provides analytical results under certain simplifying assumptions. The effects of material parameters and loading conditions on the shock kinetics and shock structure are discussed. The shock width is characterized by assuming an overstress formulation for the viscoplastic response. The effects on the shock structure of strain rate sensitivity are analyzed and the rationale for the J. W. Swegle and D. E. Grady [J. Appl. Phys. 58, 692 (1985)] universal scaling law for homogeneous materials is explored. Finally, the ability to deduce information on the viscoplastic response of

  18. Fundamental structure of steady plastic shock waves in metals

    International Nuclear Information System (INIS)

    Molinari, A.; Ravichandran, G.

    2004-01-01

    The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic-plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large deformations. The material response is characterized by a quasistatic tensile (compression) test (providing the isothermal strain hardening law). In addition the elastic response is determined up to second order elastic constants by ultrasonic measurements. Based on this simple information, it is shown that the shock kinetics can be quite well described for moderate shocks in aluminum with stress amplitude up to 10 GPa. Under the later assumption, the elastic response is assumed to be isentropic, and thermomechanical coupling is neglected. The model material considered here is aluminum, but the analysis is general and can be applied to any viscoplastic material subjected to moderate amplitude shocks. Comparisons with experimental data are made for the shock velocity, the particle velocity and the shock structure. The shock structure is obtained by quadrature of a first order differential equation, which provides analytical results under certain simplifying assumptions. The effects of material parameters and loading conditions on the shock kinetics and shock structure are discussed. The shock width is characterized by assuming an overstress formulation for the viscoplastic response. The effects on the shock structure of strain rate sensitivity are analyzed and the rationale for the J. W. Swegle and D. E. Grady [J. Appl. Phys. 58, 692 (1985)] universal scaling law for homogeneous materials is explored. Finally, the ability to deduce information on the viscoplastic response of

  19. Fe and Fe-P Foam for Biodegradable Bone Replacement Material: Morphology, Corrosion Behaviour, and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Monika Hrubovčáková

    2016-01-01

    Full Text Available Iron and iron-phosphorus open-cell foams were manufactured by a replica method based on a powder metallurgical approach to serve as a temporary biodegradable bone replacement material. Iron foams alloyed with phosphorus were prepared with the aim of enhancing the mechanical properties and manipulating the corrosion rate. Two different types of Fe-P foams containing 0.5 wt.% of P were prepared: Fe-P(I foams from a phosphated carbonyl iron powder and Fe-P(II foams from a mixture of carbonyl iron and commercial Fe3P. The microstructure of foams was analyzed using scanning electron microscopy. The mechanical properties and the corrosion behaviour were studied by compression tests and potentiodynamic polarization in Hank’s solution and a physiological saline solution. The results showed that the manufactured foams exhibited an open, interconnected, microstructure similar to that of a cancellous bone. The presence of phosphorus improved the mechanical properties of the foams and decreased the corrosion rate as compared to pure iron foams.

  20. Mechanical behaviour of new zirconia-hydroxyapatite ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, J.A.; Morejon, L. [La Habana Univ. (Cuba). Centro de Biomateriales; Martinez, S. [Barcelona Univ. (Spain). Dept. Cristallografia, Mineralogia; Ginebra, M.P.; Carlsson, N.; Fernandez, E.; Planell, J.A. [Universidad Politecnica de Cataluna, Barcelona (Spain). CREB; Clavaguera-Mora, M.T.; Rodriguez-Viejo, J. [Universitat Autonoma de Barcelona (Spain). Dept. de Fisica

    2001-07-01

    In this work a new zirconia-hydroxyapatite ceramic material was obtained by uniaxial pressing and sintering in humid environment. The powder X-ray diffraction (XRD) patterns and infrared spectra (FT-IR) showed that the hydroxyapatite (HA) is the only calcium phosphate phase present. The fracture toughness for HA with 20 wt.% of magnesia partially stabilised zirconia (Mg-PSZ) was around 2.5 times higher than those obtained for HA pure, also the highest value of bending strength (160 MPa) was obtained for material reinforced with Mg-PSZ. For the MgPSZ-HA (20%) the fracture mechanism seems to be less transgranular. (orig.)

  1. Polycrystalline models for the calculation of residual stresses in zirconium alloys tubes

    International Nuclear Information System (INIS)

    Signorelli, J.W.; Turner, P.A.; Lebensohn, R.A.; Pochettino, A.A.

    1995-01-01

    Tubes made of different Zirconium alloys are used in various types of reactors. The final texture of tubes as well as the distribution of residual stresses depend on the mechanical treatments done during their manufacturing process. The knowledge and prediction of both the final texture and the distribution of residual stresses in a tube for nuclear applications are of outstanding importance in relation with in-reactor performance of the tube, especially in what concerns to its irradiation creep and growth behaviour. The viscoplastic and the elastoplastic self consistent polycrystal models are used to investigate the influence of different mechanical treatments, performed during rolling processes on the final distribution of intergranular residual stresses of zirconium alloys tubes. The residual strains predictions with both formulations show a non linear dependence with the orientation, but they are qualitatively different. This discrepancy could be explain in terms of the relative plastic activity between the -type and -type deformation modes predicted with the viscoplastic and elastoplastic models. (author). 10 refs., 4 figs., 1 tab

  2. Analysis of material flow in metal forming processes by using computer simulation and experiment with model material

    International Nuclear Information System (INIS)

    Kim, Heon Young; Kim, Dong Won

    1993-01-01

    The objective of the present study is to analyze material flow in the metal forming processes by using computer simulation and experiment with model material, plasticine. A UBET program is developed to analyze the bulk flow behaviour of various metal forming problems. The elemental strain-hardening effect is considered in an incremental manner and the element system is automatically regenerated at every deforming step in the program. The material flow behaviour in closed-die forging process with rib-web type cavity are analyzed by UBET and elastic-plastic finite element method, and verified by experiments with plasticine. There were good agreements between simulation and experiment. The effect of corner rounding on material flow behavior is investigated in the analysis of backward extrusion with square die. Flat punch indentation process is simulated by UBET, and the results are compared with that of elastic-plastic finite element method. (Author)

  3. Microstructural influence on the local behaviour of 16MND5 steel

    International Nuclear Information System (INIS)

    Sekfali, S.

    2004-06-01

    16MND5 Steel or A508 Cl3 is used for manufacture by forging of nuclear reactor vessels. This material presents a good compromise in term of tenacity and yield stress, its microstructure is mainly bainitic tempered. Because of the chemical composition local variation and process of development, this material presents microstructural heterogeneities which can locally modify the properties of damage. In particular, some zones present a martensitic microstructure. The goal of this thesis is to bring some explanations on the influence of the microstructure; more particularly, size of the crystallographic entities and their spatial distribution on the local behaviour of 16MND5 steel. Two microstructures were elaborated for this purpose, a tempered bainitic microstructure and a tempered martensitic microstructure. An experimental characterization was carried out on the two microstructures in order to determine morphology, spatial distribution of the crystallographic orientations and tensile behaviour. A deposit of micro grid was carried out on tensile specimens to determine the experimental deformation field on a beforehand EBSD analyzed zone. The determination of the tensile behaviour allowed the identification of a multi crystalline behaviour law by a reverse method using the density of dislocation on each system of slip. This behaviour law was used in simulations with a finite element method to simulate the local mechanical field of the two microstructures and to compare with the obtained experimental deformation fields. It results, a good adequacy between simulations and experiments and the description of the influence of the neighbor grain's orientation on the local behaviour. (author)

  4. Creep equations for gas turbine materials

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Preussler, T.

    1988-01-01

    The long-term high-temperature deformation behaviour of typical gas turbine materials can be described on the basis of a differentiated evaluation which takes the results from thermal tension tests, short-term creep tests with continuous extension measurement, long-term creep tests with discontinuous extension measurement as well as annealing tests with contraction measurement into account. By this, especially the 'negative creeping' can be controlled. Equations were developed for individual materials of the type IN-738 LC, IN-939, IN-100 and FSX-414, which describe the high-temperature deformation behaviour with consideration to the primary and secondary creeping and partly the tertiary creeping. The equations are valid in the entire application-relevant range, i.e. up to 100 000 h in the case of industrial turbine materials. (orig.) [de

  5. Behaviour Centred Design: towards an applied science of behaviour change

    Science.gov (United States)

    Aunger, Robert; Curtis, Valerie

    2016-01-01

    ABSTRACT Behaviour change has become a hot topic. We describe a new approach, Behaviour Centred Design (BCD), which encompasses a theory of change, a suite of behavioural determinants and a programme design process. The theory of change is generic, assuming that successful interventions must create a cascade of effects via environments, through brains, to behaviour and hence to the desired impact, such as improved health. Changes in behaviour are viewed as the consequence of a reinforcement learning process involving the targeting of evolved motives and changes to behaviour settings, and are produced by three types of behavioural control mechanism (automatic, motivated and executive). The implications are that interventions must create surprise, revalue behaviour and disrupt performance in target behaviour settings. We then describe a sequence of five steps required to design an intervention to change specific behaviours: Assess, Build, Create, Deliver and Evaluate. The BCD approach has been shown to change hygiene, nutrition and exercise-related behaviours and has the advantages of being applicable to product, service or institutional design, as well as being able to incorporate future developments in behaviour science. We therefore argue that BCD can become the foundation for an applied science of behaviour change. PMID:27535821

  6. Mechanical behaviour of dental composite filling materials using digital holography

    OpenAIRE

    Monteiro, J.M.; Lopes, H.; Vaz, M.A.P.; Campos, J.C. Reis

    2010-01-01

    One of the most common clinical problems in dentistry is tooth decay. Among the dental filling materials used to repair tooth structure that has been destroyed by decay are dental amalgam and composite materials based on acrylics. Dental amalgam has been used by dentists for the past 150 years as a dental restorative material due to its low cost, ease of application, strength, durability, and bacteriostatic effects. However its safety as a filling material has been questioned due to th...

  7. On size-effects in single crystal wedge indentation

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2012-01-01

    constitutive length parameters to model sizeeffects. The problem is studied numerically using a strain gradient crystal visco-plasticity theory formulated along the lines proposed by Fleck andWillis (2009). It is shown how the force-indentation relation is affected due to size-dependence in the material. Size...

  8. Relaxation of a precipitate misfit stress state by creep in the matrix

    Czech Academy of Sciences Publication Activity Database

    Fischer, F. D.; Svoboda, Jiří; Antretter, T.; Kozeschnik, E.

    2015-01-01

    Roč. 64, JAN (2015), s. 164-176 ISSN 0749-6419 R&D Projects: GA ČR(CZ) GA14-24252S Institutional support: RVO:68081723 Keywords : Creep * Voids and inclusions * Elastic-viscoplastic material * Numerical algorithms Subject RIV: BJ - Thermodynamics Impact factor: 5.623, year: 2015

  9. Molecular transport behaviour of organic solvents through halloysite ...

    Indian Academy of Sciences (India)

    Micro and Nano Materials Laboratory, Department of Chemistry, Institute of Technical ... The transport behaviour of three organic solvents (benzene, toluene and xylene) through halloysite nan- ... ena play important roles in different areas of engineering and ... their blends by an equilibrium swelling method has been.

  10. Behavioural and Cognitive-Behavioural Treatments of Parasomnias

    Directory of Open Access Journals (Sweden)

    Andrea Galbiati

    2015-01-01

    Full Text Available Parasomnias are unpleasant or undesirable behaviours or experiences that occur predominantly during or within close proximity to sleep. Pharmacological treatments of parasomnias are available, but their efficacy is established only for few disorders. Furthermore, most of these disorders tend spontaneously to remit with development. Nonpharmacological treatments therefore represent valid therapeutic choices. This paper reviews behavioural and cognitive-behavioural managements employed for parasomnias. Referring to the ICSD-3 nosology we consider, respectively, NREM parasomnias, REM parasomnias, and other parasomnias. Although the efficacy of some of these treatments is proved, in other cases their clinical evidence cannot be provided because of the small size of the samples. Due to the rarity of some parasomnias, further multicentric researches are needed in order to offer a more complete account of behavioural and cognitive-behavioural treatments efficacy.

  11. Contemporary girlhood: maternal reports on sexualized behaviour and appearance concern in 4-10 year-old girls.

    Science.gov (United States)

    Tiggemann, Marika; Slater, Amy

    2014-09-01

    It is widely accepted that the sexualization of girls has increased markedly over time. The overall aim of the present study was to offer a description of the behaviours of young girls, with a particular focus on potentially sexualized behaviours and appearance concern. A sample of 815 mothers of 4-10 year-old girls completed a questionnaire about a range of behaviours exhibited by their daughters, in addition to measures of their own self-objectification and material concern. It was found that many girls engaged with teen culture and used a variety of beauty products, but few exhibited more overtly sexualized behaviours. Involvement with teen culture, using beauty products, attention to clothes, and personal grooming were all associated with the measure of appearance concern, as were maternal self-objectification and material concern. It was concluded that young girls do engage in 'grown up' behaviours and that such engagement is not benign for their development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Homogenization in thermoelasticity: application to composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Peyroux, R [Lab. de Mecanique et Genie Civil, Univ. Montpellier 2, 34 Montpellier (France); Licht, C [Lab. de Mecanique et Genie Civil, Univ. Montpellier 2, 34 Montpellier (France)

    1993-11-01

    One of the obstacles to the industrial use of metal matrix composite materials is the damage they rapidly undergo when they are subjected to cyclic thermal loadings; local thermal stresses of high level can develop, sometimes nearby or over the elastic limit, due to the mismatch of elastic and thermal coefficients between the fibers and the matrix. For the same reasons, early cracks can appear in composites like ceramic-ceramic. Therefore, we investigate the linear thermoelastic behaviour of heterogeneous materials, taking account of the isentropic coupling term in the heat conduction equation. In the case of periodic materials, recent results, using the homogenization theory, allowed us to describe macroscopic and microscopic behaviours of such materials. This paper is concerned with the numerical simulation of this problem by a finite element method, using a multiscale approach. (orig.).

  13. High temperature oxidation behaviour of mullite coated C/C composites in air

    International Nuclear Information System (INIS)

    Fritze, H.; Borchardt, G.; Weber, S.; Scherrer, S.; Weiss, R.

    1997-01-01

    Based on thermogravimetric measurements on Si-SiC-mullite coated C/C material the temperature dependence of the overall rate constant is interpreted in the temperature range 400 C 1400 C), however, the oxidation behaviour of SiC limits long term application. In this temperature range, additional outer mullite coatings produced by pulsed laser deposition improve the oxidation behaviour. (orig.)

  14. Multi-scale modeling of the mechanical behavior of polycrystalline ice under transient creep.

    OpenAIRE

    Suquet , Pierre; Moulinec , Hervé; Castelnau , O.; Montagnat , Maurine; Lahellec , Noël; Grennerat , Fanny; Duval , Paul; Brenner , Renald

    2012-01-01

    International audience; Ice is a challenging material for understanding the overall behavior of polycrystalline materials and more specifically the coupling between elastic and viscous effects during transient creep. At the single crystal level, ice is an hexagonal material with a rather weak elastic anisotropy but with a strong viscoplastic anisotropy. The strain-stress curve of ice single crystals shows a softening behavior depending on the strain-rate. The strong viscous anisotropy of ice ...

  15. The influence of shrinkage-cracking on the drying behaviour of White Portland cement using Single-Point Imaging (SPI).

    Science.gov (United States)

    Beyea, S D; Balcom, B J; Bremner, T W; Prado, P J; Cross, A R; Armstrong, R L; Grattan-Bellew, P E

    1998-11-01

    The removal of water from pores in hardened cement paste smaller than 50 nm results in cracking of the cement matrix due to the tensile stresses induced by drying shrinkage. Cracks in the matrix fundamentally alter the permeability of the material, and therefore directly affect the drying behaviour. Using Single-Point Imaging (SPI), we obtain one-dimensional moisture profiles of hydrated White Portland cement cylinders as a function of drying time. The drying behaviour of White Portland cement, is distinctly different from the drying behaviour of related concrete materials containing aggregates.

  16. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: The science of chemical thermodynamics has substantially contributed to the understanding of the many problems encountered in nuclear and reactor technology. These problems include reaction of materials with their surroundings and chemical and physical changes of fuels. Modern reactor technology, by its very nature, has offered new fields of investigations for the scientists and engineers concerned with the design of nuclear fuel elements. Moreover, thermodynamics has been vital in predicting the behaviour of new materials for fission as well as fusion reactors. In this regard, the Symposium was organized to provide a mechanism for review and discussion of recent thermodynamic investigations of nuclear materials. The Symposium was held in the Juelich Nuclear Research Centre, at the invitation of the Government of the Federal Republic of Germany. The International Atomic Energy Agency has given much attention to the thermodynamics of nuclear materials, as is evidenced by its sponsorship of four international symposia in 1962, 1965, 1967, and 1974. The first three meetings were primarily concerned with the fundamental thermodynamics of nuclear materials; as with the 1974 meeting, this last Symposium was primarily aimed at the thermodynamic behaviour of nuclear materials in actual practice, i.e., applied thermodynamics. Many advances have been made since the 1974 meeting, both in fundamental and applied thermodynamics of nuclear materials, and this meeting provided opportunities for an exchange of new information on this topic. The Symposium dealt in part with the thermodynamic analysis of nuclear materials under conditions of high temperatures and a severe radiation environment. Several sessions were devoted to the thermodynamic studies of nuclear fuels and fission and fusion reactor materials under adverse conditions. These papers and ensuing discussions provided a better understanding of the chemical behaviour of fuels and materials under these

  17. The ancient materials speak volumes for the future

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    Study the ancient materials inform us not only for the processes used at the time but also for their possible behaviour in the future. The archaeo-materials and alteration anticipation laboratory (LAPA, CEA Saclay) is engaged each day in studying these materials. (O.M.)

  18. Overall viscoplastic behavior of non-irradiated porous nuclear ceramics

    International Nuclear Information System (INIS)

    Monerie, Yann; Gatt, Jean-Marie

    2006-01-01

    This paper deals with the overall behavior of nonlinear viscous and porous nuclear ceramics. Bi-viscous isotropic porous materials are considered: the matrix is subjected to two power-law viscosities with different exponents related to two stationary temperature-activated creeping mechanisms (scattering-creep and dislocation-creep), and this matrix contains a low porosity volume fraction. The overall behavior of these types of composite materials is obtained with the help of quadratic strain-rate potentials combined with experimental-based coupling function depending on stress and temperature. For each creeping mechanism, the hollow sphere model of [Michel, J.-C., Suquet, P., 1992. The constitutive law of nonlinear viscous and porous materials. Journal of the Mechanics and Physics of Solids 40, 783-812] is used. Mechanical parameters of the resulting model are identified and validated in the particular case of non-irradiated uranium dioxide nuclear ceramics. This model predicts, under pure thermo-mechanical loading, a variation of the material volume and a variation of the porosity volume fraction (the so-called densification or swelling). (authors)

  19. Constructions, geo-materials and interactions

    International Nuclear Information System (INIS)

    Petit, C.; Pijaudier-Cabot, G.; Reynouard, J.M.

    1998-01-01

    The development of methods for the evaluation of the functioning safety of buildings and structures during all their service life represents one of the major research goals in civil engineering. The energy production, the industrial development and the management of wastes have led to new safety research problems to ensure the environment and populations protection. The mechanics of geo-materials (soils, concretes, rocks) is the central part of the predictive tools developed to satisfy these socio-economical stakes. The functioning analysis of buildings cover huge size and time scales, from the micro-meter to the kilometer and from the second to the century, and requires various relevant models and multi-subject methods. This volume is divided in 3 parts dealing with: the in-service safety of buildings, the accidental situations, and the behaviour of geo-materials. Five papers dealing with the long-term, seismic and thermal behaviour of concretes were selected for INIS and one paper dealing with the effect of time on a natural clay and on the behaviour of a dam foundations was selected for ETDE. (J.S.)

  20. Oral health related knowledge and behaviour among nursing ...

    African Journals Online (AJOL)

    Aim: To investigate oral health knowledge and behaviour amongst nursing students in a Nigerian tertiary hospital. Materials and methods: The study was conducted at University of Nigeria Teaching Hospital on respondents aged 17 to 40 years, using self administered structured questionnaire. Result: From oral health ...

  1. Blades and discs in gas turbines. Behaviour of material and components. Project department A-C. Final report; Schaufeln und Scheiben in Gasturbinen. Werkstoff- und Bauteilverhalten. Projektbereiche A bis C. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The special research area 339 `Blades and discs in gas turbines, behaviour of material and components` was carried on from 1988 to the end of 1196. This final report deals with the work in the years 1994, 1995 and 1996. In the project area A `Development of material` manufacturing processes both for metallic and ceramic high temperature materials were developed, tested and optimised. In the area of optimising casting structure, it was shown that the making grains finer up to the medium temperature range can be a suitable means for significantly raising the resistance to LCF loading with nearly unchanged heat and creep strength properties. Another main point was the characterisation and optimisation of sprayed ceramic layers on metallic substrates (heat insulating layers) and compound ceramic materials. In project area B `Material behaviour` the mechanisms were studied, which, particularly in metallic high temperature materials such as nickel-based superalloys, lead to failure of the material under thermo-mechanical stresses. In project area C `Component design`, on the one hand models for estimating service life for metallic high temperature materials under different thermo-mechanical stresses were developed. [Deutsch] Der Sonderforschungsbereich 339, `Schaufeln und Scheiben in Gasturbinen - Werkstoff- und Bauteilverhalten` wurde von 1988 bis Ende 1996 gefoerdert. Dieser Abschlussbericht behandelt die Arbeiten der Jahre 1994, 1995 und 1996. Im Projektbereich A `Werkstoffentwicklung` wurden Herstellungsverfahren sowohl fuer metallische als auch fuer keramische Hochtemperaturwerkstoffe entwickelt, erprobt und optimiert. Auf dem Gebiet der Gussgefuegeoptimierung konnte gezeigt werden, dass die Kornfeinung bis in den mittleren Temperaturbereich ein geeignetes Mittel sein kann, um den Widerstand gegen LCF-Belastung bei annaehernd unveraenderten Warm- und Kriechfestigkeitseigenschaften signifikant zu erhoehen. Einen weiteren Schwerpunkt bildete die Charakterisierung und

  2. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised

  3. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  4. Borehole closure in salt

    International Nuclear Information System (INIS)

    Fuenkajorn, K.; Daemen, J.J.K.

    1988-12-01

    Constitutive law parameters are determined from salt behavior characterization experiments. The results are applied to predict creep (time-dependent) closure of boreholes in salt specimens subjected to various loading configurations. Rheological models (linear and nonlinear viscoelastic and viscoplastic models), empirical models, and physical theory models have been formulated from the results of uniaxial creep tests, strain and stress rate controlled uniaxial tests, constant strain rate triaxial tests, cyclic loading tests, and seismic velocity measurements. Analytical solutions for a thick-walled cylinder subjected to internal and external pressures and for a circular hole in an infinite plate subjected to a biaxial or uniaxial stressfield have been derived from each of the linear viscoelastic models and from one of the empirical laws. The experimental results indicate that the salt samples behave as an elastic-viscoplastic material. The elastic behavior tends to be linear and time-independent. The plastic deformation is time-dependent. The stress increment to strain rate increment ratio gradually decreases as the stress level increases. The transient potential creep law seems to give the simplest satisfactory governing equation describing the viscoplastic behavior of salt during the transient phase. 204 refs., 27 figs., 29 tabs

  5. Predicting People's Environmental Behaviour: Theory of Planned Behaviour and Model of Responsible Environmental Behaviour

    Science.gov (United States)

    Chao, Yu-Long

    2012-01-01

    Using different measures of self-reported and other-reported environmental behaviour (EB), two important theoretical models explaining EB--Hines, Hungerford and Tomera's model of responsible environmental behaviour (REB) and Ajzen's theory of planned behaviour (TPB)--were compared regarding the fit between model and data, predictive ability,…

  6. Behaviour of organic materials in radiation environment

    CERN Document Server

    Tavlet, M

    2000-01-01

    Radiation effects in polymers are reminded together with the ageing factors. Radiation-ageing results are mainly discussed about thermosetting insulators, structural composites and cable-insulating materials. Some hints are given about high-voltage insulations, cooling fluids, organic scintillators and light-guides. Some parameters to be taken into account for the estimate of the lifetime of components in radiation environment are also shown. (23 refs).

  7. Comparative analysis of graphite oxidation behaviour based on microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Badenhorst, Heinrich, E-mail: heinrich.badenhorst@up.ac.za; Focke, Walter

    2013-11-15

    Two unidentified powdered graphite samples, from a natural and a synthetic origin respectively, were examined. These materials are intended for use in nuclear applications, but have an unknown treatment history since they are considered proprietary. In order to establish a baseline for comparison, the samples were compared to two commercial flake natural graphite samples with varying impurity levels. The samples were characterized by conventional techniques such as powder X-ray diffraction, Raman spectroscopy and X-ray fluorescence. The results indicated that all four samples were very similar, with low impurity levels and good crystallinity, yet they exhibit remarkably different oxidation behaviours. The oxidized microstructures of the materials were examined using high-resolution scanning electron microscopy at low acceleration voltages. The relative influence of each factor affecting the oxidation was established, enabling a structured comparison of the different oxidative behaviours. Based on this analysis, it was possible to account for the measured differences in oxidative reactivity. The material with the lowest reactivity was a flake natural graphite which was characterized as having highly visible crystalline perfection, large particles with a high aspect ratio and no traces of catalytic activity. The second sample, which had an identical inherent microstructure, was found to have an increased reactivity due to the presence of small catalytic impurities. This material also exhibited a more gradual reduction in the oxidation rate at higher conversion, caused by the accumulation of particles which impede the oxidation. The sample with the highest reactivity was found to be a milled, natural graphite material, despite its evident crystallinity. The increased reactivity was attributable to a smaller particle size, the presence of catalytic impurities and extensive damage to the particle structure caused by jet milling. Despite displaying the lowest levels of

  8. Early age mechanical behaviour of 3D printed concrete : Numerical modelling and experimental testing

    NARCIS (Netherlands)

    Wolfs, R.J.M.; Bos, F.P.; Salet, T.A.M.

    2018-01-01

    A numerical model was developed to analyse the mechanical behaviour of fresh, 3D printed concrete, in the range of 0 to 90 min after material deposition. The model was based on a time-dependent Mohr-Coulomb failure criterion and linear stress-strain behaviour up to failure. An experimental program,

  9. Cell behaviour on chemically microstructured surfaces

    International Nuclear Information System (INIS)

    Magnani, Agnese; Priamo, Alfredo; Pasqui, Daniela; Barbucci, Rolando

    2003-01-01

    Micropatterned surfaces with different chemical topographies were synthesised in order to investigate the influence of surface chemistry and topography on cell behaviour. The microstructured materials were synthesised by photoimmobilising natural Hyaluronan (Hyal) and its sulphated derivative (HyalS), both adequately functionalised with a photorective moiety, on glass substrates. Four different grating patterns (10, 25, 50 and 100 μm) were used to pattern the hyaluronan. The micropatterned samples were analysed by Secondary Ions Mass Spectrometry, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy to investigate the chemistry and the topography of the surfaces. The spectroscopic and microscopic analysis of the microstructured surfaces revealed that the photoimmobilisation process was successful, demonstrating that the photomask patterns were well reproduced on the sample surface. The influence of chemical topographies on the cell behaviour was then analysed. Human and 3T3 fibroblasts, bovine aortic and human (HGTFN line) endothelial cells were used and their behaviour on the micropatterned surfaces was analysed in terms of adhesion, proliferation, locomotion and orientation. Both chemical and topographical controls were found to be important for cell guidance. By decreasing the stripe dimensions, a more fusiform shape of cell was observed. At the same time, the cell locomotion and orientation parallel to the structure increased. However, differences in cell behaviour were detected according to both cell type and micropattern dimensions

  10. The need for a behavioural analysis of behavioural addictions.

    Science.gov (United States)

    James, Richard J E; Tunney, Richard J

    2017-03-01

    This review discusses research on behavioural addictions (i.e. associative learning, conditioning), with reference to contemporary models of substance addiction and ongoing controversies in the behavioural addictions literature. The role of behaviour has been well explored in substance addictions and gambling but this focus is often absent in other candidate behavioural addictions. In contrast, the standard approach to behavioural addictions has been to look at individual differences, psychopathologies and biases, often translating from pathological gambling indicators. An associative model presently captures the core elements of behavioural addiction included in the DSM (gambling) and identified for further consideration (internet gaming). Importantly, gambling has a schedule of reinforcement that shows similarities and differences from other addictions. While this is more likely than not applicable to internet gaming, it is less clear whether it is so for a number of candidate behavioural addictions. Adopting an associative perspective, this paper translates from gambling to video gaming, in light of the existing debates on this matter and the nature of the distinction between these behaviours. Finally, a framework for applying an associative model to behavioural addictions is outlined, and it's application toward treatment. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Reliability of structural materials in nuclear industry

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1996-01-01

    The reliability of nuclear installations is a fundamental point for the exploitation of nuclear energy. It requires an extensive knowledge of the behaviour of materials in the operating conditions and during the expected service life of the installations. In nuclear power plants multiple risks of failure can exist and are expressed by corrosion and deformation phenomena or by modification in the mechanical characteristics of materials. The knowledge of the evolution with time of a given material requires to take into account the data relative to the material itself, to its environment and to the physical conditions of this environment. The study of materials aging needs a more precise knowledge of the kinetics of phenomena at any scale and of their interactions, and a micro- or macro-modeling of their behaviour during long periods of time. This paper gives an overview of the aging phenomena that occur in the structural materials involved in PWR and fast neutron reactors: thermal aging, generalized corrosion, corrosion under constraint, intergranular corrosion, crack growth under loading, wear, irradiation etc.. (J.S.)

  12. Burning behaviour of surgical materials; Brandverhalten von chirurgischen textilen Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, W.; Weinberg, L.; Grossewinkelmann, A.; Berlien, H.P. [Klinikum Neukoelln (Germany). Klinik fuer Lasermedizin

    2004-07-01

    Besides other energy driven devices like electrocautery and endoscopic light sources, also medical laser has the risk to induce operating theatre fire. On the market several so called laser safe materials, based on different technical solutions, are available. Materials which are not at the same time resistant against penetration and perforation by the laser beam have the risk of secondary ignition and combustion of underlaying materials. This should be kept in mind, when using a laser. With a standard for testing we irradiated several typical surgical materials from different suppliers with an CO{sub 2}-laser, observing their perforation, ignition or combustion behavior. (orig.)

  13. Oral health knowledge, perceptions and behaviour among nursing ...

    African Journals Online (AJOL)

    Aim: The purpose of the study was to investigate oral health knowledge, perceptions and behaviour amongst nursing students in a Nigerian tertiary hospital. Materials and methods: The study was conducted at University of Nigeria Teaching Hospital on 244 respondents aged 17 to 40 years, using self administered ...

  14. A Conceptual Framework of Consumers’ Pro-environmental Attitudes and Behaviours in the Tourism Context

    Directory of Open Access Journals (Sweden)

    Untaru E. N.

    2014-12-01

    Full Text Available The paper carries out an analysis of the literature that takes into account consumers’ pro-environmental attitudes and behaviours, with emphasis on the particular situation of the consumption of tourist services. The study of the bibliographic materials reveals the existence of significant differences between the consumers’ pro-environmental attitudes and behaviours at home and on vacation, as well as the increase in their preference for "green" hotels. Among the methods of studying the interrelationship between pro-environmental attitude and behaviour, the present paper describes the Theory of Planned Behaviour as the most commonly used one.

  15. Electric nets and sticky materials for analysing oviposition behaviour of gravid malaria vectors

    Directory of Open Access Journals (Sweden)

    Dugassa Sisay

    2012-11-01

    Full Text Available Abstract Background Little is known about how malaria mosquitoes locate oviposition sites in nature. Such knowledge is important to help devise monitoring and control measures that could be used to target gravid females. This study set out to develop a suite of tools that can be used to study the attraction of gravid Anopheles gambiae s.s. towards visual or olfactory cues associated with aquatic habitats. Methods Firstly, the study developed and assessed methods for using electrocuting nets to analyse the orientation of gravid females towards an aquatic habitat. Electric nets (1m high × 0.5m wide were powered by a 12V battery via a spark box. High and low energy settings were compared for mosquito electrocution and a collection device developed to retain electrocuted mosquitoes when falling to the ground. Secondly, a range of sticky materials and a detergent were tested to quantify if and where gravid females land to lay their eggs, by treating the edge of the ponds and the water surface. A randomized complete block design was used for all experiments with 200 mosquitoes released each day. Experiments were conducted in screened semi-field systems using insectary-reared An. gambiae s.s. Data were analysed by generalized estimating equations. Results An electric net operated at the highest spark box energy of a 400 volt direct current made the net spark, creating a crackling sound, a burst of light and a burning smell. This setting caught 64% less mosquitoes than a net powered by reduced voltage output that could neither be heard nor seen (odds ratio (OR 0.46; 95% confidence interval (CI 0.40-0.53, p Conclusion A square of four e-nets with yellow sticky boards as a collection device can be used for quantifying the numbers of mosquitoes approaching a small oviposition site. Shiny sticky surfaces attract gravid females possibly because they are visually mistaken as aquatic habitats. These materials might be developed further as gravid traps

  16. Contribution to numerical and mechanical modelling of pellet-cladding interaction in nuclear reactor fuel rod

    International Nuclear Information System (INIS)

    Retel, V.

    2002-12-01

    Pressurised water reactor fuel rods (PWR) are the place of nuclear fission, resulting in unstable and radioactive elements. Today, the mechanical loading on the cladding is harder and harder and is partly due to the fuel pellet movement. Then, the mechanical behaviour of the cladding needs to be simulated with models allowing to assess realistic stress and strain fields for all the running conditions. Besides, the mechanical treatment of the fuel pellet needs to be improved. The study is part of a global way of improving the treatment of pellet-cladding interaction (PCI) in the 1D finite elements EDF code named CYRANO3. Non-axisymmetrical multidirectional effects have to be accounted for in a context of unidirectional axisymmetrical finite elements. The aim of this work is double. Firstly a model simulating the effect of stress concentration on the cladding, due to the opening of the radial cracks of fuel, had been added in the code. Then, the fragmented state of fuel material has been taken into account in the thermomechanical calculation, through a model which led the strain and stress relaxation in the pellet due to the fragmentation, be simulated. This model has been implemented in the code for two types of fuel behaviour: elastic and viscoplastic. (author)

  17. Teaching materials physics

    International Nuclear Information System (INIS)

    Quere, Y.

    1997-01-01

    The important role of materials and their behaviour under radiation exposure, for nuclear research and industry, is pointed out, and the development of nuclear applied metallurgy research at the Cea and in French Universities is reviewed. The teaching policy at the Cea in the field of materials science involved four action types: laboratory courses and theses, teaching outside and inside the Cea, summer schools, which allowed for a synergetic cooperation between the Cea, Universities and research centers, since the 50's

  18. Behaviour of neutron moderator materials at high temperatures in CASTOR registered -casks: qualification and assessment

    International Nuclear Information System (INIS)

    Krietsch, T.; Wolff, D.; Knopp, U.; Brocke, H.D.

    2004-01-01

    The Federal Institute for Materials Research and Testing (BAM) is the responsible German authority for the assessment of mechanical and thermal designs of transport and storage casks for radioactive materials. BAM checks up the proofs of the applicants in their safety reports and assesses the conformity to the Regulations for the Safe Transport of Radioactive Material. One applicant is the Gesellschaft fuer Nuklear-Behaelter mbH (GNB) with a new generation of transport and storage casks of CASTOR registered -design. GNB typically uses ultra high molecular weight Polyethylene (UHMW-PE) for the moderation of free neutrons. Rods made of UHMW-PE are positioned in axial bore holes in the wall of the cask and plates of UHMW-PE are in free spaces between primary and secondary lid and between the bottom of the cask and an outer plate (Figure 1). Because of the heat generated by the radioactive inventory and because of a strained spring at the bottom of every bore hole, UHMW-PE is subjected to permanent thermal and mechanical loads as well as loads from gamma and neutron radiation. UHMW-PE has been used under routine- and normal conditions of transport for maximum temperatures up to 130 C. For new generations of CASTOR registered -design maximum temperatures will be increased up to 160 C. That means a permanent use of UHMW-PE at temperatures within and above the melting region of the crystallites. In this paper, some results of special investigations for the proofs of usability of UHMW-PE at temperatures up to 160 C under real conditions of transport and storage in CASTOR registered -casks are given. For that, investigations on temperature dependent expansion behaviour under laboratory conditions as well as in large scale experiments, especially in the case of multiple heating and cooling, were done. Besides, geometrical creep strength for long-term loading by temperatures and pressures with regard to the chemical and physical stability properties of UHMW-PE above the

  19. Creep behaviour of polyurethanes applied in the offshore industry under dynamic service conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Fabio G.; Sheldrake, Terry; Clevelario, Judimar; Pires, Fabio S. [Wellstream International S/A - Rio de Janeiro, RJ (Brazil)], e-mail: fabio.aquino@wellstream.com; Souza, Miguel L. [Newtech Ltda, Sao Carlos, SP (Brazil)

    2011-07-01

    The oil industry commonly uses flexible pipes to convey oil and gas from wells to platforms that move constantly due to weather and tidal conditions. In this scenario, polymeric components are required to transitioning between the flexible material of the pipelines to the rigid material of the platform; polyurethanes are versatile polymers suitable for performing such services. As this material is subjected to constant loading during working conditions, and it its durability is to be maintained for several decades, it is important to determine the material's creep properties that relate to deformation caused by constant loading, which can represent an indirect measurement of the material's lifetime. In this study, creep behaviour data on the polyurethane samples was collected and an asymmetrical and nonlinear behaviour was observed. Additionally the material presented a creep fracture line with points only above 150% of deformation, considerably exceeding maximum values for its service conditions, which is limited to 10% of deformation considering the worst loading case for design premises of the final artifact. (author)

  20. Analytical filtration model for nonlinear viscoplastic oil in the theory of oil production stimulation and heating of oil reservoir in a dual-well system

    Science.gov (United States)

    Ivanovich Astafev, Vladimir; Igorevich Gubanov, Sergey; Alexandrovna Olkhovskaya, Valeria; Mikhailovna Sylantyeva, Anastasia; Mikhailovich Zinovyev, Alexey

    2018-02-01

    Production of high-viscosity oil and design of field development systems for such oil is one of the most promising directions in the development of world oil industry. The ability of high-viscosity oil to show in filtration process properties typical for non-Newtonian systems is proven by experimental studies. Nonlinear relationship between the pressure gradient and the rate of oil flow is due to interaction of high-molecular substances, in particular, asphaltenes and tars that form a plastic structure in it. The authors of this article have used the analytical model of stationary influx of nonlinear viscoplastic oil to the well bottom in order to provide rationale for the intensifying impact on a reservoir. They also have analyzed the method of periodic heating of productive reservoir by means of dual-wells. The high-temperature source is placed at the bottom of the vertical well, very close to the reservoir; at the same time the side well, located outside the zone of expected rock damage, is used for production. Suggested method of systemic treatment of reservoirs with dual wells can be useful for small fields of high-viscosity oil. The effect is based on the opportunity to control the structural and mechanical properties of high-viscosity oil and to increase depletion of reserves.