WorldWideScience

Sample records for materials transportation technology

  1. Program strategy document for the Nuclear Materials Transportation Technology Center

    International Nuclear Information System (INIS)

    Jefferson, R.M.

    1979-07-01

    A multiyear program plan is presented which describes the program of the Nuclear Materials Transportation Technology Center (TIC) at Sandia Laboratories. The work element plans, along with their corresponding work breakdown structures, are presented for TTC activities in the areas of Technology and Information Center, Systems Development, Technology, and Institutional Issues for the years from 1979 to 1985

  2. Space Transportation Materials and Structures Technology Workshop. Volume 2: Proceedings

    International Nuclear Information System (INIS)

    Cazier, F.W. Jr.; Gardner, J.E.

    1993-02-01

    The Space Transportation Materials and Structures Technology Workshop was held on September 23-26, 1991, in Newport News, Virginia. The workshop, sponsored by the NASA Office of Space Flight and the NASA Office of Aeronautics and Space Technology, was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems, Propulsion Systems, and Entry Systems. Separate abstracts have been prepared for papers in this report

  3. Development of hotcell transportation system technology for high radioactive material

    International Nuclear Information System (INIS)

    Seo, K. S.; Seo, C. S.; Lee, J. C.

    2012-04-01

    In the first stage of the research, the transportation and storage characteristics analysis of the pyroprocess materials, the development of horizontal type hot cell transportation system, and the design of interim storage system for the pyroprocess material are conducted. The optimized capacity, transportation frequency and operation period of pyroprocess facility are found using the logistics analysis program developed in this project. A new hot cell transportation system was designed. Through the safety analysis and test for the hot cell transportation system, the design license has been approved. A new type hot cell docking system with superior performance has been developed with a patented rotating lid system. We have reached to a unique concept of interim storage of pyroprocess materials and selected a system through a comparative evaluation of existing ones. In the second stage of the research, transportation/storage/sealing devices for PRIDE recovered material/wastes were developed. And test model for the devices in engineering scale facility were also developed. The design requirements for a vertical docking system were evaluated and the performance assessment using a scaled mock-up was conducted. Integrated storage management technology was evaluated for an efficient management of process materials. A heat transfer simulation and characteristics analysis for the storage system were conducted. The derivation of design requirements, design and fabrication of a canister test model, and preliminary safety assessment were conducted

  4. Transports of delight how technology materializes human imagination

    CERN Document Server

    Hancock, Peter

    2017-01-01

    This inspiring book shows how the spiritual side of life, with its thoughts, feelings, and aspirations, is intimately bound up with our material technologies. From the wonder of Gothic Cathedrals, to the quiet majesty of lighter than air flight, to the ultimate in luxury of the north Atlantic steamers, Peter Hancock explores how these sequential heights of technology have enabled our dreams of being transported to new and uncharted realms to become reality. Sometimes literally, sometimes figuratively, technology has always been there to make material the visions of our imagination. This book shows how this has essentially been true for all technologies from Stonehenge to space station. But technology is far from perfect. Indeed, the author argues here that some of the most public and tragic of its failures still remain instructive, emblematic, and even inspiring. He reports on examples such as a Cathedral of the Earth (Beauvais), a Cathedral of the Seas (Titanic), and a Cathedral of the Air (Hindenburg) and t...

  5. Test facilities for radioactive materials transport packages (Transportation Technology Center Inc., Pueblo, Colorado, USA)

    International Nuclear Information System (INIS)

    Conlon, P.C.L.

    2001-01-01

    Transportation Technology Center, Inc. is capable of conducting tests on rail vehicle systems designed for transporting radioactive materials including low level waste debris, transuranic waste, and spent nuclear fuel and high level waste. Services include rail vehicle dynamics modelling, on-track performance testing, full scale structural fatigue testing, rail vehicle impact tests, engineering design and technology consulting, and emergency response training. (author)

  6. Test facilities for radioactive material transport packages (AEA Technology plc, Winfrith,UK)

    International Nuclear Information System (INIS)

    Gillard, J.E.

    2001-01-01

    Transport containers for radioactive materials are tested to demonstrate compliance with national and international standards. Transport package design, testing, assessment and approval requires a wide range of skills and facilities. The comprehensive capability of AEA Technology in these areas is described. The facilities described include drop-test cranes and targets (up to 700 tonne); pool fires, furnaces and rigs for thermal tests, including heat dissipation on prototype flasks; shielding facilities; criticality simulations and leak test techniques. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  7. Test facilities for radioactive material transport packages (AEA Technology plc, Winfrith,UK)

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, J.E

    2001-07-01

    Transport containers for radioactive materials are tested to demonstrate compliance with national and international standards. Transport package design, testing, assessment and approval requires a wide range of skills and facilities. The comprehensive capability of AEA Technology in these areas is described. The facilities described include drop-test cranes and targets (up to 700 tonne); pool fires, furnaces and rigs for thermal tests, including heat dissipation on prototype flasks; shielding facilities; criticality simulations and leak test techniques. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  8. Test facilities for radioactive material transport packages (AEA Technology, Winfrith, UK)

    International Nuclear Information System (INIS)

    Burgess, M.H.

    1991-01-01

    Transport packages for radioactive materials are tested to demonstrate compliance with national and international regulations. The involvement of AEA Technology is traced from the establishment of the early IAEA Regulations. Transport package design, testing, assessment and approval requires a wide variety of skills and facilities. The comprehensive capability of AEA Technology in these areas is described with references to practical experience in the form of a short bibliography. The facilities described include drop-test cranes and targets (up to 700te); air guns for impacts up to sonic velocities; pool fires, furnaces and rigs for thermal tests including heat dissipation on prototype flasks; shielding facilities and instruments; criticality simulations and leak test instruments. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  9. Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies.

    Science.gov (United States)

    Li, Changyi; Meckler, Stephen M; Smith, Zachary P; Bachman, Jonathan E; Maserati, Lorenzo; Long, Jeffrey R; Helms, Brett A

    2018-02-01

    Many forward-looking clean-energy technologies hinge on the development of scalable and efficient membrane-based separations. Ongoing investment in the basic research of microporous materials is beginning to pay dividends in membrane technology maturation. Specifically, improvements in membrane selectivity, permeability, and durability are being leveraged for more efficient carbon capture, desalination, and energy storage, and the market adoption of membranes in those areas appears to be on the horizon. Herein, an overview of the microporous materials chemistry driving advanced membrane development, the clean-energy separations employing them, and the theoretical underpinnings tying membrane performance to membrane structure across multiple length scales is provided. The interplay of pore architecture and chemistry for a given set of analytes emerges as a critical design consideration dictating mass transport outcomes. Opportunities and outstanding challenges in the field are also discussed, including high-flux 2D molecular-sieving membranes, phase-change adsorbents as performance-enhancing components in composite membranes, and the need for quantitative metrologies for understanding mass transport in heterophasic materials and in micropores with unusual chemical interactions with analytes of interest. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Materials and technology

    International Nuclear Information System (INIS)

    Gockel, E.; Simon, J.

    1998-01-01

    New materials and the processes for their economical fabrication and use are the factors which drive innovation in totally different fields of technology, such as energy engineering, transport, and information. But they also open up new fields of technology such as micro systems or medicine technology. Five out of a total of twelve articles are separately listed in the ENERGY database [de

  11. Transport of Radioactive Materials

    International Nuclear Information System (INIS)

    2001-01-01

    This address overviews the following aspects: concepts on transport of radioactive materials, quantities used to limit the transport, packages, types of packages, labeling, index transport calculation, tags, labeling, vehicle's requirements and documents required to authorize transportation. These requirements are considered in the regulation of transport of radioactive material that is in drafting step

  12. Transport of radioactive materials

    International Nuclear Information System (INIS)

    2013-01-01

    This ninth chapter presents de CNEN-NE--5.01 norm 'Transport of radioactive material'; the specifications of the radioactive materials for transport; the tests of the packages; the requests for controlling the transport and the responsibilities during the transport of radioactive material

  13. Transportation of nuclear materials

    International Nuclear Information System (INIS)

    Brobst, W.A.

    1977-01-01

    Twenty years of almost accident-free transport of nuclear materials is pointed to as evidence of a fundamentally correct approach to the problems involved. The increased volume and new technical problems in the future will require extension of these good practices in both regulations and packaging. The general principles of safety in the transport of radioactive materials are discussed first, followed by the transport of spent fuel and of radioactive waste. The security and physical protection of nuclear shipments is then treated. In discussing future problems, the question of public understanding and acceptance is taken first, thereafter transport safeguards and the technical bases for the safety regulations. There is also said to be a need for a new technology for spent fuel casks, while a re-examination of the IAEA transport standards for radiation doses is recommended. The IAEA regulations regarding quality assurance are said to be incomplete, and more information is required on correlations between engineering analysis, scale model testing and full scale crash testing. Transport stresses on contents need to be considered while administrative controls have been neglected. (JIW)

  14. Technology for the storage of radioactive materials packagings during maritime transport. Phase 1

    International Nuclear Information System (INIS)

    Ringot, C.; Chevalier, G.; Tomachevski, E.G.

    1989-01-01

    Following the accident of the M/S Mont Louis on August 25, 1984 carrying UF 6 cylinders, this report is a preliminary study of bibliographic data to help to define recommendations on packaging stowing for sea transport. Data on acceleration to take into account for normal or accidental transport conditions, safe areas on board that should be reserved for radioactive materials and accidents statistics are collected. Main information concerns: number of serious casualities or total losses to ships in European waters, accident causes, collision probability in function of mean distance between ships in the British Channel, selection of 8 reference accidents for future studies

  15. Innovative Technologies in Transportation

    Science.gov (United States)

    2004-12-01

    An historical overview of the transportation infrastructure of the United States and Texas is provided. Data for trends in transportation is analyzed and projections for the future are postulated. A survey of current technologies in transportation is...

  16. Radioactive materials transport

    International Nuclear Information System (INIS)

    Talbi, B.

    1996-01-01

    The development of peaceful applications of nuclear energy results in the increase of transport operations of radioactive materials. Therefore strong regulations on transport of radioactive materials turns out to be a necessity in Tunisia. This report presents the different axes of regulations which include the means of transport involved, the radiation protection of the carriers, the technical criteria of security in transport, the emergency measures in case of accidents and penalties in case of infringement. (TEC). 12 refs., 1 fig

  17. Transport of radioactive materials

    International Nuclear Information System (INIS)

    Lenail, B.

    1984-01-01

    Transport of radioactive materials is dependent of transport regulations. In practice integrated doses for personnel during transport are very low but are more important during loading or unloading a facility (reactor, plant, laboratory, ...). Risks occur also if packagings are used outside specifications. Recommendations to avoid these risks are given [fr

  18. Transport of radioactive materials

    International Nuclear Information System (INIS)

    1991-07-01

    The purpose of this Norm is to establish, relating to the TRANSPORT OF RADIOACTIVE MATERIALS, safety and radiological protection requirements to ensure an adequate control level of the eventual exposure of persons, properties and environment to the ionizing radiation comprising: specifications on radioactive materials for transport; package type selection; specification of the package design and acceptance test requirements; arrangements relating to the transport itself; administrative requirements and responsibilities. (author)

  19. Radioactive material air transportation

    International Nuclear Information System (INIS)

    Pader y Terry, Claudio Cosme

    2002-01-01

    As function of the high aggregated value, safety regulations and the useful life time, the air transportation has been used more regularly because is fast, reliable, and by giving great security to the cargo. Based on the International Atomic Energy Agency (IAEA), the IATA (International Air Transportation Association) has reproduced in his dangerous goods manual (Dangerous Goods Regulations - DGR IATA), the regulation for the radioactive material air transportation. Those documents support this presentation

  20. Transport of radioactive materials

    International Nuclear Information System (INIS)

    1988-07-01

    The norm which establishes the requirements of radiation protection and safety related to the transport of radioactive materials, aiming to keep a suitable control level of eventual exposure of personnels, materials and environment of ionizing radiation, including: specifications on radioactive materials for transport, selection of package type; specification of requirements of the design and assays of acceptance of packages; disposal related to the transport; and liability and administrative requirements, are presented. This norm is applied to: truckage, water carriage and air service; design, fabrication, assays and mantenaince of packages; preparation, despatching, handling, loading storage in transition and reception in the ultimate storage of packages; and transport of void packages which have been contained radioactive materials. (M.C.K.) [pt

  1. Nuclear materials transportation

    International Nuclear Information System (INIS)

    Ushakov, B.A.

    1986-01-01

    Various methods of nuclear materials transportation at different stages of the fuel cycle (U 3 O 8 , UF 6 production enrichment, fuel element manufacturing, storage) are considered. The advantages and drawbacks of railway, automobile, maritime and air transport are analyzed. Some types of containers are characterized

  2. Program strategy document for the nuclear materials. Transportation Technology Center (FY 80)

    International Nuclear Information System (INIS)

    Jefferson, R.M.

    1980-04-01

    The TTC's program is divided into four principal areas, Technology and Information Center, Systems Development, Technology, and Institutional Issues. These areas are broken into activities, elements, and subelements which are delineated in this document

  3. Transport of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-04-15

    The increasing use of radioactive substances, not only in reactor operations but also in medicine, industry and other fields, is making the movement of these materials progressively wider, more frequent and larger in volume. Although regulations for the safe transport of radioactive materials have been in existence for many years, it has now become necessary to modify or supplement the existing provisions on an international basis. It is essential that the regulations should be applied uniformly by all countries. It is also desirable that the basic regulations should be uniform for all modes of transport so as to simplify the procedures to be complied with by shippers and carriers

  4. Nuclear materials transport worldwide

    International Nuclear Information System (INIS)

    Stellpflug, J.

    1987-01-01

    This Greenpeace report shows: nuclear materials transport is an extremely hazardous business. There is no safe protection against accidents, kidnapping, or sabotage. Any moment of a day, at any place, a nuclear transport accident may bring the world to disaster, releasing plutonium or radioactive fission products to the environment. Such an event is not less probable than the MCA at Chernobyl. The author of the book in hand follows the secret track of radioactive materials around the world, from uranium mines to the nuclear power plants, from reprocessing facilities to the waste repositories. He explores the routes of transport and the risks involved, he gives the names of transport firms and discloses incidents and carelessness, tells about damaged waste drums and plutonium that 'disappeared'. He also tells about worldwide, organised resistance to such nuclear transports, explaining the Greenpeace missions on the open sea, or the 'day X' operation at the Gorleben site, informing the reader about protests and actions for a world freed from the threat of nuclear energy. (orig./HP) [de

  5. Transport of radioactive material

    International Nuclear Information System (INIS)

    Lombard, J.

    1996-01-01

    This work deals with the transport of radioactive materials. The associated hazards and potential hazards are at first described and shows the necessity to define specific safety regulations. The basic principles of radiological protection and of the IAEA regulations are given. The different types of authorized packages and of package labelling are explained. The revision, updating and the monitoring of the regulations effectiveness is the subject of the last part of this conference. (O.M.)

  6. Radioactive material transport

    International Nuclear Information System (INIS)

    White, M.C.

    1979-10-01

    All movements of radioactive materials in Canada are governed by a comprehensive body of regqlations, both national and international. These regulations are designed to maximize shielding to the public and transport workers, allow for heat dissipation, and to prevent criticality accidents, by prescribing specific packaging arrangements, administrative controls, labelling and storage measures. This report describes in some detail specific requirements and summarizes some incidents that occurred between 1974 and 1978

  7. Aerospace materials and material technologies

    CERN Document Server

    Wanhill, R

    2017-01-01

    This book is a comprehensive compilation of chapters on materials (both established and evolving) and material technologies that are important for aerospace systems. It considers aerospace materials in three Parts. Part I covers Metallic Materials (Mg, Al, Al-Li, Ti, aero steels, Ni, intermetallics, bronzes and Nb alloys); Part II deals with Composites (GLARE, PMCs, CMCs and Carbon based CMCs); and Part III considers Special Materials. This compilation has ensured that no important aerospace material system is ignored. Emphasis is laid in each chapter on the underlying scientific principles as well as basic and fundamental mechanisms leading to processing, characterization, property evaluation and applications. A considerable amount of materials data is compiled and presented in appendices at the end of the book. This book will be useful to students, researchers and professionals working in the domain of aerospace materials.

  8. Status of Closure Welding Technology of Canister for Transportation and Storage of High Level Radioactive Material and Waste

    International Nuclear Information System (INIS)

    Lee, H. J.; Bang, K. S.; Seo, K. S.; Seo, C. S.

    2010-10-01

    Closure seal welding is one of the key technologies in fabricating and handling the canister which is used for transportation and storage of high radioactive material and waste. Simple industrial fabrication processes are used before filling the radioactive waste into the canister. But, automatic and remote processes should be used after filling the radioactive material because the thickness of canister is not sufficient to shield the high radiation from filled material or waste. In order to simplify the welding process the closure structure of canister and the sealing method are investigated and developed properly. Two types of radioactive materials such as vitrified waste and compacted solid waste are produced in nuclear industry. Because the filling method of two types of waste is different, the shapes of closure and opening of canister and welding method is also different. The canister shape and sealing method should be standardized to standardize the handling facilities and inspection process such as leak test after closure welding. In order to improve the productivity of disposal and compatibility of the canister, the structure and shape of canister should be standardized considering the type of waste. Two kind of welding process such as arc welding and resistance welding are reported and used in the field. In the arc welding process GTAW and PAW are considered proper processes for closure welding. The closure seal welding process can be selected by considering material of canister, thickness of body, productivity, and applicable codes and rules. Because the storage time of nuclear waste in canister is very long, at least 20 years, the long-time corrosion at the weld should be estimated including mechanical integrity. Recently, the mitigation of residual stress around weld region, which causes stress corrosion cracking, is also interesting research issue

  9. Transport of radioactive materials

    International Nuclear Information System (INIS)

    Huck, W.

    1992-01-01

    The book presents a systematic survey of the legal provisions governing the transport of radioactive materials, placing emphasis on the nuclear licensing provisions of sections 4, 4b of the Atomic Energy, Act (AtG) and sections 8-10 of the Radiation Protection Ordinance (StrlSchV), also considering the provisions of the traffic law governing the carriage of hazardous goods. The author's goal is to establish a systematic basis by comparative analysis of the licensing regulations under atomic energy law, for the purpose of formulating a proposed amendment to the law, for the sake of clarity. The author furthermore looks for and develops criteria that can be of help in distinguishing the regulations governing the carriage of hazardous goods from the nuclear regulatory provisions. He also examines whether such a differentiation is detectable, particularly in those amendments to the StrlSchV which came after the Act on Carriage of Hazardous Goods. The regulations governing the transport of radioactive materials under the AtG meet with the problem of different classification systems being applied, to radioactive materials in the supervisory regulations on the one hand, and to nuclear materials in Annex 1 to the AtG on the other hand. A classification of natural, non-nuclear grade uranium e.g. by the financial security provisions is difficult as a result of these differences in the laws. The author shows that the transport regulations of the StrlSchV represent an isolated supervisory instrument that has no connecting factor to the sections 28 ff StrlSchV, as radiation protection is provided for by the regulations of the Act on Carriage of Hazardous Goods. The author suggests an amendment of existing law incorporating the legal intent of sections 8-10 StrlSchV and of sections 4, 4b AtG into two sections, and abolishing the supervisory provisions of the StrlSchV altogether. (orig./HP) [de

  10. Transportation of Hazardous Evidentiary Material.

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for the safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance being

  11. Packaging and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The presentations made at the Symposium on Packaging and Transportation of Radioactive Materials are included. The purpose of the meeting was for the interchange of information on the technology and politics of radioactive material transportation. Separate abstracts were prepared for individual items. (DC)

  12. Packaging and transportation of radioactive materials

    International Nuclear Information System (INIS)

    1978-01-01

    The presentations made at the Symposium on Packaging and Transportation of Radioactive Materials are included. The purpose of the meeting was for the interchange of information on the technology and politics of radioactive material transportation. Separate abstracts were prepared for individual items

  13. Accidents during transport of radioactive material

    International Nuclear Information System (INIS)

    Agarwal, S.P.

    2008-01-01

    Radioactive materials are a part of modern technology and life. They are used in medicine, industry, agriculture, research and electrical power generation. Tens of millions of packages containing radioactive materials are consigned for transport each year throughout the world. In India, about 80000 packages containing radioactive material are transported every year. The amount of radioactive material in these packages varies from negligible amounts used in consumer products to very large amounts in shipment of irradiator sources and spent nuclear fuel

  14. Transport regulation for radioactive materials

    International Nuclear Information System (INIS)

    Ha Vinh Phuong.

    1986-01-01

    Taking into account the specific dangers associated with the transport of radioactive materials (contamination, irradiation, heat, criticality), IAEA regulations concerning technical specifications and administrative procedures to ward off these dangers are presented. The international agreements related to the land transport, maritime transport and air transport of radioactive materials are also briefly reviewed

  15. Nuclear technology and materials science

    International Nuclear Information System (INIS)

    Olander, D.R.

    1992-01-01

    Current and expected problems in the materials of nuclear technology are reviewed. In the fuel elements of LWRs, cladding waterside corrosion, secondary hydriding and pellet-cladding interaction may be significant impediments to extended burnup. In the fuel, fission gas release remains a key issue. Materials issues in the structural alloys of the primary system include stress-corrosion cracking of steel, corrosion of steam generator tubing and pressurized thermal shock of the reactor vessel. Prediction of core behavior in severe accidents requires basic data and models for fuel liquefaction, aerosol formation, fission product transport and core-concrete interaction. Materials questions in nuclear waste management and fusion technology are briefly reviewed. (author)

  16. Transports of radioactive materials

    International Nuclear Information System (INIS)

    Sousselier, Yves

    1982-01-01

    Transport safety depends on the packaging, and the degree of safety must be adapted to the potential hazards of the substance carried. The various kinds of packagings and their strength are examined and the transport of irradiated fuels from the safety angle is taken as example and a comparison is made with the transport of conventional dangerous substances [fr

  17. Institutional issues affecting transportation of nuclear materials

    International Nuclear Information System (INIS)

    Reese, R.T.; Luna, R.E.

    1980-01-01

    The institutional issues affecting transportation of nuclear materials in the United States represent significant barriers to meeting future needs in the transport of radioactive waste materials to their ultimate repository. While technological problems which must be overcome to perform such movements seem to be within the state-of-the-art, the timely resolution of these institutional issues seems less assured. However, the definition of these issues, as attempted in this paper, together with systematic analysis of cause and possible solutions are the essential elements of the Transportation Technology Center's Institutional Issues Program

  18. Small transport aircraft technology

    Science.gov (United States)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  19. Analysis technology in the thick plate free drop impact, heat and thermal stress of the cask for radioactive material transport

    International Nuclear Information System (INIS)

    Lee, Dew Hey; Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Choi, Kyung Joo; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun; Kim, Seong Jong

    2002-03-01

    In this study, The regulatory condition and analysis condition is analyzed for thick plate free drop, heat and thermal stress analysis to develop the safety assessment technology. Analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. ANSYS, LS-DYNA3D and ABAQUS is suitable for thick plate free drop, heat and thermal stress analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS for thick plate free drop and the results of ANSYS, LS-DYNA3D and ABAQUS for heat and thermal stress analysis is completely corresponded. And the integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology

  20. Safety assessment technology on the free drop impact and puncture analysis of the cask for radioactive material transport

    International Nuclear Information System (INIS)

    Lee, Dew Hey; Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Lee, Ho Chul; Hong, Song Jin; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun

    2001-03-01

    In this study, the regulatory condition and analysis condition is analyzed for the free drop and puncture impact analysis to develop the safety assessment technology. Impact analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. LS-DYNA3D and ABAQUS is suitable for the free drop and the puncture impact analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS is completely corresponded. And The integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology

  1. Safety assessment technology on the free drop impact and puncture analysis of the cask for radioactive material transport

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dew Hey [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Lee, Ho Chul; Hong, Song Jin; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-03-15

    In this study, the regulatory condition and analysis condition is analyzed for the free drop and puncture impact analysis to develop the safety assessment technology. Impact analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. LS-DYNA3D and ABAQUS is suitable for the free drop and the puncture impact analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS is completely corresponded. And The integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology.

  2. Analysis technology in the thick plate free drop impact, heat and thermal stress of the cask for radioactive material transport

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dew Hey [Korea Institute of Nuclear and Safety, Taejon (Korea, Republic of); Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Choi, Kyung Joo; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun; Kim, Seong Jong [Chungnam National Univ., Taejon (Korea, Republic of)

    2002-03-15

    In this study, The regulatory condition and analysis condition is analyzed for thick plate free drop, heat and thermal stress analysis to develop the safety assessment technology. Analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. ANSYS, LS-DYNA3D and ABAQUS is suitable for thick plate free drop, heat and thermal stress analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS for thick plate free drop and the results of ANSYS, LS-DYNA3D and ABAQUS for heat and thermal stress analysis is completely corresponded. And the integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology.

  3. Safe transport of radioactive material

    International Nuclear Information System (INIS)

    1994-01-01

    Delivering radioactive material to where it is needed is a vital service to industry and medicine. Millions of packages are shipped all over the world by all modes of transport. The shipments pass through public places and must meet stringent safety requirements. This video explains how radioactive material is safely transported and describes the rules that carriers and handlers must follow

  4. HMPT: Basic Radioactive Material Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Hypes, Philip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    Hazardous Materials and Packaging and Transportation (HMPT): Basic Radioactive Material Transportation Live (#30462, suggested one time) and Test (#30463, required initially and every 36 months) address the Department of Transportation’s (DOT’s) function-specific [required for hazardous material (HAZMAT) handlers, packagers, and shippers] training requirements of the HMPT Los Alamos National Laboratory (LANL) Labwide training. This course meets the requirements of 49 CFR 172, Subpart H, Section 172.704(a)(ii), Function-Specific Training.

  5. Radioactive material transporting container

    International Nuclear Information System (INIS)

    Watabe, Yukio.

    1990-01-01

    As a supporting member of a sealing container for containing spent fuels, etc., a straight pipe or a cylinder has been used. However, upon dropping test, the supporting member is buckled toward the central axis of a transporting container and a shock absorber is crushed in the axial direction to prevent its pushing force to the outer side, which may possibly hinder normal shock moderating function. Then, at least more than one-half of the supporting member is protruded radially to the outer side of the sealing container beyond the fixed portion with the sealed container, so that the member has a portion extended in the radial outside of the transporting container with an angle greater than the angle formed between a line connecting the outer circumference at the bottom of an outer cylinder with the gravitational center of the transporting container and the central axis of the transporting container. As a result, buckling of the supporting member toward the central axis of the transporting container upon dropping test can be prevented and the deformation of the shock absorber is neither not prevented to exhibit normal shock absorbing effect. This can improve the reliability and reduce the amount of shock absorbers. (N.H.)

  6. Transport of nuclear materials

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    During november and december 2001, 2 events concerning nuclear transport were reported and classified on the first grade (grade 1) of the INES scale. The first event concerns a hole in a transport cask of contaminated tools. The hole seems to have been made by the fork of a handling equipment. The second event concerns the loss of a parcel containing a technetium generator, this generator represented an activity of about 141 G Becquerel of 99 Mo the day it left the premises of CIS-bio in Saclay. (A.C.)

  7. Radioactive material air transportation; Transporte aereo de material radioativo

    Energy Technology Data Exchange (ETDEWEB)

    Pader y Terry, Claudio Cosme [Varig Logistica (VARIGLOG), Sao Paulo, SP (Brazil)

    2002-07-01

    As function of the high aggregated value, safety regulations and the useful life time, the air transportation has been used more regularly because is fast, reliable, and by giving great security to the cargo. Based on the International Atomic Energy Agency (IAEA), the IATA (International Air Transportation Association) has reproduced in his dangerous goods manual (Dangerous Goods Regulations - DGR IATA), the regulation for the radioactive material air transportation. Those documents support this presentation.

  8. Radioactive materials transport experience

    International Nuclear Information System (INIS)

    Langhaar, J.W.

    1976-01-01

    This paper presents a brief review of the kinds of packaging suitable for different types of waste, the roles of highway and rail transport, restrictions imposed by political entities and carriers, and safety. The U. S. accident record is described, with some statistics given

  9. Safe transport of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-12-31

    The film shows the widespread use of radioactive materials in industry, medicine and research and explains the need for transporting nuclear material from producer to user. It shows the way in which packages containing radioactive materials are handled during transport and explains the most important provisions of the IAEA transport regulations, safety series no. 6, such as packaging design criteria and testing requirements, illustrated by various tests carried out, specimen packages and package and freight container labelling. Also illustrated are practical measures to be taken in case of an accident

  10. Dossier: transport of radioactive materials

    International Nuclear Information System (INIS)

    Mignon, H.; Brachet, Y.; Turquet de Beauregard, G.; Mauny, G.; Robine, F.; Plantet, F.; Pestel Lefevre, O.; Hennenhofer, G.; Bonnemains, J.

    1997-01-01

    This dossier is entirely devoted to the transportation of radioactive and fissile materials of civil use. It comprises 9 papers dealing with: the organization of the control of the radioactive materials transport safety (safety and security aspects, safety regulations, safety analysis and inspection, emergency plans, public information), the technical aspects of the regulation concerning the transport of radioactive materials (elaboration of regulations and IAEA recommendations, risk assessments, defense in depth philosophy and containers, future IAEA recommendations, expertise-research interaction), the qualification of containers (regulations, test facilities), the Transnucleaire company (presentation, activity, containers for spent fuels), the packages of radioactive sources for medical use (flux, qualification, safety and transport), an example of accident during radioactive materials transportation: the Apach train derailment (February 4, 1997), the sea transport of radioactive materials (international maritime organization (OMI), international maritime dangerous goods (IMDG) code, irradiated nuclear fuel (INF) safety rules), the transport of radioactive materials in Germany, and the point of view from an external observer. (J.S.)

  11. Overview of nuclear materials transportation

    International Nuclear Information System (INIS)

    Grella, A.W.

    1986-01-01

    This presentation is an overview of transportation as it relates to one specific type of material, low specific activity (LSA) material. It is the predominant type of material that fits into the low-level waste category. An attempt is made to discuss how LSA is regulated, setting forth the requirements. First the general scheme of regulations are reviewed. In addition future changes in the regulations which will affect transportation of LSA materials and, which quite likely, will have an impact on R and D needs in this area are presented

  12. The transport of hazardous materials

    International Nuclear Information System (INIS)

    Goemmel, F.

    1987-01-01

    The rapid development of all kinds of transports has been leading to a continuously increasing number of accidents involving the release and escape of hazardous materials. The risks involved for men and the environment have to be realized and reduced to a minimum. Efforts in this field have meanwhile been accumulating an enormous quantity of rules, recommendations and regulations. They comprise, among others, both national and international rail transport, maritime transport, inland shipping, air and road transport regulations adding up to a total of about 5000 pages. The publication discusses the necessity and justification of the existing quantity of regulations, it deals with their possible simplification and modified user-oriented arrangement as well as with a possible international harmonization of regulations. Apart from giving a general survey of the transport of hazardous materials the author reviews the intensive efforts which are going into the safety of the transport of hazardous materials and points out technical and legal problems which have remained unsolved so far. The publication essentially contributes to clearing up the background, perspectives and prospects of the complex regulations controlling the transport of hazardous materials. (orig./HP) [de

  13. Transport of radioactive materials

    International Nuclear Information System (INIS)

    Hamel, P.E.

    In Canada, large numbers of packages containing radioactive materials are shipped for industrial, medical and commercial purposes. The nature of the hazards and the associated risks are examined; the protection measures and regulatory requirements are indicated. The result of a survey on the number of packages being shipped is presented; a number of incidents are analyzed as a function of their consequences. Measures to be applied in the event of an emergency and the responsibility for the preparation of contingency plans are considered. (author) [fr

  14. Advanced technology for future regional transport aircraft

    Science.gov (United States)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  15. Hazardous Material Packaging and Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Hypes, Philip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-04

    This is a student training course. Some course objectives are to: recognize and use standard international and US customary units to describe activities and exposure rates associated with radioactive material; determine whether a quantity of a single radionuclide meets the definition of a class 7 (radioactive) material; determine, for a given single radionuclide, the shipping quantity activity limits per 49 Code of Federal Regulations (CFR) 173.435; determine the appropriate radioactive material hazard class proper shipping name for a given material; determine when a single radionuclide meets the DOT definition of a hazardous substance; determine the appropriate packaging required for a given radioactive material; identify the markings to be placed on a package of radioactive material; determine the label(s) to apply to a given radioactive material package; identify the entry requirements for radioactive material labels; determine the proper placement for radioactive material label(s); identify the shipping paper entry requirements for radioactive material; select the appropriate placards for a given radioactive material shipment or vehicle load; and identify allowable transport limits and unacceptable transport conditions for radioactive material.

  16. Status of radioactive material transport

    International Nuclear Information System (INIS)

    Kueny, Laurent

    2012-01-01

    As about 900.000 parcels containing radioactive materials are transported every year in France, the author recalls the main risks and safety principles associated with such transport. He indicates the different types of parcels defined by the regulation: excepted parcels, industrial non fissile parcels (type A), type B and fissile parcels, and highly radioactive type C parcels. He briefly presents the Q-system which is used to classify the parcels. He describes the role of the ASN in the control of transport safety, and indicates the different contracts existing between France or Areva and different countries (Germany, Japan, Netherlands, etc.) for the processing of used fuels in La Hague

  17. Safe transport of radioactive material

    International Nuclear Information System (INIS)

    1990-01-01

    Recently the Agency redefined its policy for education and training in radiation safety. The emphasis is now on long-term strategic planning of general education and training programmes. In line with this general policy the Agency's Standing Advisory Group for the Safe Transport of Radioactive Material (SAGSTRAM) in its 7th meeting (April 1989) agreed that increased training activity should be deployed in the area of transport. SAGSTRAM specifically recommended the development of a standard training programme on this subject area, including audio-visual aids, in order to assist Member States in the implementation of the Agency's Regulations for the Safe Transport of Radioactive Material. This training programme should be substantiated by a biennial training course which is thought to be held either as an Interregional or a Regional Course depending on demand. This training manual, issued as a first publication in the Training Course Series, represents the basic text material for future training courses in transport safety. The topic areas covered by this training manual and most of the texts have been developed from the course material used for the 1987 Bristol Interregional Course on Transport Safety. The training manual is intended to give guidance to the lecturers of a course and will be provided to the participants for retention. Refs, figs and tabs

  18. Basic transport phenomena in materials engineering

    CERN Document Server

    Iguchi, Manabu

    2014-01-01

    This book presents the basic theory and experimental techniques of transport phenomena in materials processing operations. Such fundamental knowledge is highly useful for researchers and engineers in the field to improve the efficiency of conventional processes or develop novel technology. Divided into four parts, the book comprises 11 chapters describing the principles of momentum transfer, heat transfer, and mass transfer in single phase and multiphase systems. Each chapter includes examples with solutions and exercises to facilitate students’ learning. Diagnostic problems are also provided at the end of each part to assess students’ comprehension of the material.  The book is aimed primarily at students in materials science and engineering. However, it can also serve as a useful reference text in chemical engineering as well as an introductory transport phenomena text in mechanical engineering. In addition, researchers and engineers engaged in materials processing operations will find the material use...

  19. Truck transportation of radioactive materials

    International Nuclear Information System (INIS)

    Madsen, M.M.; Wilmot, E.L.

    1983-01-01

    Analytical models in RADTRAN II are used to calculate risks to population subgroups such as people along transport routes, people at stops, and crewman. The stops model, which calculates the dose to persons adjacent to the transport vehicle while it is stopped, frequently provides the largest contribution to incident-free radiological impacts. Components such as distances from the vehicle containing radioactive material to nearby people at stops, stop duration, and number of crew members are required for the stops model as well as other incident-free models. To provide supporting data for RADTRAN II based on operational experience, selected truck shipments of radioactive material were observed from origin to destination. Other important aspects of this program were to correlate package size to effective shipment transport index (TI) using radiological surveys and to characterize population distributions and proximities of people to the shipment at a generic truck stop

  20. Uncontrolled transport of nuclear materials

    International Nuclear Information System (INIS)

    Wassermann, U.

    1985-01-01

    An account is given of international transport of plutonium, uranium oxides, uranium hexafluoride, enriched uranium and irradiated fuel for reprocessing. Referring to the sinking of the 'Mont Louis', it is stated that the International Maritime Organization has been asked by the National Union of Seamen and 'Greenpeace' to bar shipment of radioactive material until stricter international safety regulations are introduced. (U.K.)

  1. Auditors of safety in hazardous materials transportation

    International Nuclear Information System (INIS)

    Manas Lahoz, J.L.

    1993-01-01

    The author describes the methodology for safety auditory and control, prevention, risks of hazardous materials transport through ship, airplane, rail, etc. In this way, The author presents the classification of damage materials transport, characteristic damage and different transport methods

  2. Technology Roadmaps: Biofuels for Transport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Biofuels could provide up to 27% of total transport fuel worldwide by 2050. The use of transport fuels from biomass, when produced sustainably, can help cut petroleum use and reduce CO2 emissions in the transport sector, especially in heavy transport. Sustainable biofuel technologies, in particular advanced biofuels, will play an important role in achieving this roadmap vision. The roadmap describes the steps necessary to realise this ambitious biofuels target; identifies key actions by different stakeholders, and the role for government policy to adopt measures needed to ensure the sustainable expansion of both conventional and advanced biofuel production.

  3. Perspective on transporting nuclear materials

    International Nuclear Information System (INIS)

    Wymer, R.G.

    1975-01-01

    An evaluation is made of the material flow to be expected up to the year 2000 to and from the various steps in the nuclear cycle. These include the reactors, reprocessing plants, enrichment plants, U mills, U conversion plants, and fuel fabrication plants. A somewhat more-detailed discussion is given of the safety engineering that goes into the design of containers and packages and the selection of the mode of transportation. The relationship of shipping to siting and transportation accidents is considered briefly

  4. Advanced transport aircraft technology

    Energy Technology Data Exchange (ETDEWEB)

    Winblade, R L

    1980-06-01

    Various elements of the NASA aircraft energy efficiency program are described. Regarding composite structures, the development of three secondary and three medium-primary components to validate structural and fabrication technology is discussed. In laminar flow control, the design of advanced airfoils having large regions of supercritical flow with features which simplify laminarization are considered. Emphasis is placed on engine performance improvement, directed at developing advanced components to reduce fuel consumption in current production engines, and engine diagnostics aimed at identifying the sources and causes of performance deterioration in high-bypass turbofan engines. In addition, the results of propeller aerodynamic and acoustic tests have substantiated the feasibility of achieving the propeller efficiency goal of 80% and confirmed that the effect of blade sweep on reducing propeller source noise was 5-6 dB.

  5. The transportation of hazardous materials

    International Nuclear Information System (INIS)

    Hillman, J.C.

    1981-04-01

    The increasing use of dangerous chemicals and petroleum products by S.A. industry makes it necessary for some form of control to be introduced to regulate the transport of these materials before a major disaster occurs, such as has occurred overseas. This report examines all the aspects that could increase the likelihood of such a disaster occurring, including the preparedness of emergency services. It also recommends the improvements or changes required to minimize this possibility. It is apparent that the training and ability of vehicle drivers are key areas in this respect and they are discussed at length. Forthcoming regulations under the Hazardous Substances Act No. 15 of 1973 are examined and the effects of over-restrictive legislation considered. The report concludes that legislation promulgated gradually to reinforce voluntary industrial practices will ultimately restrict this type of transport to the safety-conscious and competent operator, therefore minimizing the risk as much as possible

  6. The safe transport of radioactive materials

    CERN Document Server

    Gibson, R

    1966-01-01

    The Safe Transport of Radioactive Materials is a handbook that details the safety guidelines in transporting radioactive materials. The title covers the various regulations and policies, along with the safety measures and procedures of radioactive material transport. The text first details the 1963 version of the IAEA regulation for the safe transport of radioactive materials; the regulation covers the classification of radionuclides for transport purposes and the control of external radiation hazards during the transport of radioactive materials. The next chapter deals with concerns in the im

  7. Transport containers for radioactive material

    International Nuclear Information System (INIS)

    Doroszlai, P.; Ferroni, F.

    1984-01-01

    A cylindrical container for the transportation of radioactive reactor elements includes a top end, a bottom end and a pair of removable outwardly curved shock absorbers, each including a double-shelled construction having an internal shell with a convex intrados configuration and an external shell with a convex extrados configuration, the shock absorbers being filled with a low density energy-absorbing material and mounted at the top end and the bottom end of the container, respectively, and each of the shock absorbers having a toroidal configuration, and deformable tubes disposed within the shock absorbers and extending in the axial direction of the container

  8. Transportation technology quick reference file

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, E.W. (ed.)

    1981-05-01

    This publication is a collection of items written by different authors on subjects relating to the transportation of radioactive materials. The purpose of the document is to meet the continuing need for information on specific subjects for dissemination to the public at their request. The subjects included were selected on the basis of the questions most often asked about radioactive materials and their transportation. Additional subjects are being considered and will be included in the future. The loose-leaf notebook format is used to facilitate the updating of this material. The data used in many of the papers represent the best available at time of publication and will be updated as more current information becomes available.

  9. Transportation technology quick reference file

    International Nuclear Information System (INIS)

    Shepherd, E.W.

    1981-05-01

    This publication is a collection of items written by different authors on subjects relating to the transportation of radioactive materials. The purpose of the document is to meet the continuing need for information on specific subjects for dissemination to the public at their request. The subjects included were selected on the basis of the questions most often asked about radioactive materials and their transportation. Additional subjects are being considered and will be included in the future. The loose-leaf notebook format is used to facilitate the updating of this material. The data used in many of the papers represent the best available at time of publication and will be updated as more current information becomes available

  10. Relative consequences of transporting hazardous materials

    International Nuclear Information System (INIS)

    Fullwood, R.R.; Rhyne, W.R.; Simmons, J.A.; Reese, R.T.

    1980-01-01

    The objective of this paper is to discuss methods under study at Transportation Technology Center to develop a perspective on how technical measures of hazard and risk relate to perception of hazards, harm, and risks associated with transporting hazardous materials. This paper is concerned with two major aspects of the relative hazards problem. The first aspect is the analyses of the possible effects associated with exposure to hazardous materials as contained in the following two parts: outlines of possible problems and controversies that could be encountered in the evaluation and comparisons of hazards and risks; and description of the various measures of harm (hazards or dangers) and subsequent comparisons thereof. The second aspect of this paper leads into a presentation of the results of a study which had the following purposes: to develop analytical techniques for a consistent treatment of the phenomenology of the consequences of a release of hazardous materials; to reduce the number of variables in the consequence analyses by development of transportation accident scenarios which have the same meteorological conditions, demography, traffic and population densities, geographical features and other appropriate conditions and to develop consistent methods for presenting the results of studies and analyses that describe the phenomenology and compare hazards. The results of the study are intended to provide a bridge between analytical certainty and perception of the hazards involved. Understanding the differences in perception of hazards resulting from transport of various hazardous materials is fraught with difficulties in isolating the qualitative and quantitative features of the problem. By relating the quantitative impacts of material hazards under identical conditions, it is hoped that the perceived differences in material hazards can be delineated and evaluated

  11. Mechanics for materials and technologies

    CERN Document Server

    Goldstein, Robert; Murashkin, Evgenii

    2017-01-01

    This book shows impressively how complex mathematical modeling of materials can be applied to technological problems. Top-class researchers present the theoretical approaches in modern mechanics and apply them to real-world problems in solid mechanics, creep, plasticity, fracture, impact, and friction. They show how they can be applied to technological challenges in various fields like aerospace technology, biological sciences and modern engineering materials.

  12. Transportation of radioactive materials. Safety and regulation

    International Nuclear Information System (INIS)

    Niel, Jean-Christophe

    2013-01-01

    This engineering-oriented publication first presents fluxes and risks related to the transportation of radioactive materials: fluxes, risks, in-depth defence, and parcel typology. The author then describes the elaboration process for transportation regulations: IAEA recommendations for the transportation of radioactive materials and their review process, IAEA recommendations for modal regulations. He presents the French transportation regulation framework: evolutions of IAEA recommendations, case of aerial transport, and case of maritime transport. The next part addresses the specific case of the transportation of uranium hexafluoride. The last part addresses incidents and accidents occurring during transportation: declarations to be made, brief presentations of several examples of incidents and accidents

  13. Gas transport in graphitic materials

    International Nuclear Information System (INIS)

    Hoinkis, E.

    1995-02-01

    The characterization of the gas transport properties of porous solids is of interest in several fields of science and technology. Many catalysts, adsorbents, soils, graphites and carbons are porous. The gas transport through most porous solids can be well described by the dusty gas model invented by Evans, Watson and Mason. This model includes all modes of gas tranport under steady-state conditions, which are Knudsen diffusion, combined Knudsen/continuum diffusion and continuum diffusion, both for gas pairs with equal and different molecular weights. In the absence of a pressure difference gas transport in a pore system can be described by the combined Knudsen/continuum diffusion coefficient D 1 for component 1 in the pores, the Knudsen diffusion coefficient D 1K in the pores, and the continuum diffusion coefficient D 12 for a binary mixture in the pores. The resistance to stationary continuum diffusion of the pores is characterized by a geometrical factor (ε/τ) 12 = (ε/τ)D 12 , were D 12 is the continuum diffusion coefficient for a binary mixture in free space. The Wicke-Kallenbach method was often used to measure D 1 as function of pressure. D 12 and D 1K can be derived from a plot 1/D 1 νs P, and ε/τcan be calculated since D 12 is known. D 1K and the volume of dead end pores can be derived from transient measurements of the diffusional flux at low pressures. From D 1K the expression (ε/τ c ) anti l por may be calculated, which characterizes the pore system for molecular diffusion, where collisions with the pore walls are predominant. (orig.)

  14. Proceedings of the international workshop on spallation materials technology

    International Nuclear Information System (INIS)

    Mansur, L.K.; Ullmaier, H.

    1996-01-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility

  15. Proceedings of the international workshop on spallation materials technology

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, L.K.; Ullmaier, H. [comps.

    1996-10-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

  16. Materials and technology in sport

    Science.gov (United States)

    Caine, Mike; Blair, Kim; Vasquez, Mike

    2012-08-01

    An evolution from natural to highly engineered materials has drastically changed the way in which athletes train and compete. Thanks to challenging technological problems and unconventional commercialization pathways, universities can make a direct impact on the development of sporting goods.

  17. The safe transport of radioactive materials

    International Nuclear Information System (INIS)

    Messenger, W. de L.M.

    1979-02-01

    The hazards of radioactive materials in transport are surveyed. The system whereby they are safely transported between nuclear establishments in the United Kingdom and overseas is outlined. Several popular misconceptions are dealt with. (author)

  18. Emergency Response to Radioactive Material Transport Accidents

    International Nuclear Information System (INIS)

    EL-shinawy, R.M.K.

    2009-01-01

    Although transport regulations issued by IAEA is providing a high degree of safety during transport opertions,transport accidents involving packages containing radioactive material have occurred and will occur at any time. Whenever a transport accident involving radioactive material accurs, and many will pose no radiation safety problems, emergency respnose actioms are meeded to ensure that radiation safety is maintained. In case of transport accident that result in a significant relesae of radioactive material , loss of shielding or loss of criticality control , that consequences should be controlled or mitigated by proper emergency response actions safety guide, Emergency Response Plamming and Prepardness for transport accidents involving radioactive material, was published by IAEA. This guide reflected all requirememts of IAEA, regulations for safe transport of radioactive material this guide provide guidance to the publicauthorites and other interested organziation who are responsible for establishing such emergency arrangements

  19. Radioactive materials transport: a story of steady technical improvement

    International Nuclear Information System (INIS)

    Price, M.

    1991-01-01

    The transport of radioactive material is a fundamental part of the nuclear industry and equally vital to the use of radioisotopes in medical diagnosis and therapy. The safety record is impressively good and this aids open discussion of the subject. An independent consultant formerly with Atomic Energy Authority Technology reports on the Second International Conference on Transportation for the Nuclear Industry. (Author)

  20. Transportation Technology: Rail Transport and Logistics

    Science.gov (United States)

    Lang, Aaron B.

    2011-01-01

    Transportation can simply be defined as the movement of goods, services, and people from one location to another. Without an efficient means to transport goods from place to place, the economy would be nothing like it is today. Throughout the history of the United States, American railroads have paved the way toward creating a nation of great…

  1. Advanced materials and technologies. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, V K; Alander, T K.R. [eds.; Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Physical Metallurgy and Materials Science

    1996-12-31

    The contents of the proceedings consist of three chapters, of which, the first discusses common megatrends, both nationally and globally, in different fields of materials technology. The second chapter is dealing with novel production and processing of base metals and, finally, the third chapter is related with current achievements and future goals of electronic, magnetic, optical and coating materials and their processing

  2. Advanced materials and technologies. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, V.K.; Alander, T.K.R. [eds.] [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Physical Metallurgy and Materials Science

    1995-12-31

    The contents of the proceedings consist of three chapters, of which, the first discusses common megatrends, both nationally and globally, in different fields of materials technology. The second chapter is dealing with novel production and processing of base metals and, finally, the third chapter is related with current achievements and future goals of electronic, magnetic, optical and coating materials and their processing

  3. The new context for transport of radioactive and nuclear material

    International Nuclear Information System (INIS)

    Anne, C.; Galtier, J.

    2002-01-01

    The transportation of radioactive and nuclear materials involves all modes of transportation with a predominance for road and for air. It is but a minute fraction dangerous good transportation. Around 10 millions of radioactive packages are shipped annually all over the world of which ninety percent total corresponds to shipments of radioisotopes. In spite of the small volume transported, experience, evolution of transport means and technologies, the trend to constantly improve security and safety and public acceptance have modified the transport environment. During the last few years, new evolutions have applied to the transport of radioactive and nuclear materials in various fields and especially: - Safety - Security - Logistics means - Public acceptance - Quality Assurance. We propose to examine the evolution of these different fields and their impact on transportation methods and means. (authors)

  4. Radioactive material accidents in the transport

    International Nuclear Information System (INIS)

    Rodrigues, D.L.; Magalhaes, M.H.; Sanches, M.P.; Sordi, G.M.A.A.

    2008-01-01

    Transport is an important part of the worldwide nuclear industry and the safety record for nuclear transport across the world is excellent. The increase in the use of radioactive materials in our country requires that these materials be moved from production sites to the end user. Despite the number of packages transported, the number of incidents and accidents in which they are involved is low. In Brazil, do not be records of victims of the radiation as a result of the transport of radioactive materials and either due to the accidents happened during the transports. The absence of victims of the radiation as result of accidents during the transports is a highly significant fact, mainly to consider that annually approximately two hundred a thousand packages containing radioactive material are consigned for transport throughout the country, of which eighty a thousand are for a medical use. This is due to well-founded regulations developed by governmental and intergovernmental organizations and to the professionalism of those in the industry. In this paper, an overview is presented of the activities related to the transport of radioactive material in the state of Sao Paulo. The applicable legislation, the responsibilities and tasks of the competent authorities are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. It also presents the packages amounts of carried and the accidents occurred during the transport of radioactive materials, in the last five years. The main occurred events are argued, demonstrating that the demanded requirements of security for any transport of radioactive material are enough to guarantee the necessary control of ionizing radiation expositions to transport workers, members of general public and the environment. (author)

  5. Nuclear materials transport in France

    International Nuclear Information System (INIS)

    Korycanek, J.

    1990-01-01

    About 1.5 million tons of uranium ore, 8000 tons of uranium concentrate, 1000 tons of UF 6 , 340 spent fuel containers, and 30 000 m 3 of nuclear wastes are transported annually by trucks, trains and ships in France. Annual costs of this transportation amount to 500-600 million FRF, and about 200 employees are engaged in this activity. Transportation of spent fuel to the La Hague and Marcoule fuel reprocessing plants, and the transport of plutonium are dealt with in detail. (Z.M.). 5 figs., 1 ref

  6. Regional risk associated with the transport of hazardous materials

    OpenAIRE

    Nardini, L.; Aparicio, L.; Bandoni, A.; Tonelli, S. M.

    2003-01-01

    An increasing concern over the level of risk associated with hazardous materials transportation has led international efforts to focus on risk assessment at regional level. Following this trend, the aim of this work is to review the latest procedures for analysing the regional risks resulting from hazardous materials transportation by means of road and rail. In particular, two methodologies are reviewed and discussed, a method recently developed at Swiss Federal Institute of Technology [1] an...

  7. Safe and secure: transportation of radioactive materials

    International Nuclear Information System (INIS)

    Howe, D.

    2015-01-01

    Western Waste Management Facility is Central Transportation Facility for Low and Intermediate waste materials. Transportation support for Stations: Reactor inspection tools and heavy water between stations and reactor components and single bundles of irradiated fuel to AECL-Chalk River for examination. Safety Track Record: 3.2 million kilometres safely travelled and no transportation accident - resulting in a radioactive release.

  8. Safe transport of radioactive material. 3. ed

    International Nuclear Information System (INIS)

    2002-01-01

    The IAEA has developed a standardized approach to transport safety training as a means of helping Member States to implement the Transport Regulations. The training manual is an anchor of this standardized approach to training: it contains all the topics presented in the sequential order recommended by the IAEA for the student to gain a thorough understanding of the body of knowledge that is needed to ensure that radioactive material ranked as Class 7 in the United Nations' nomenclature for dangerous goods - is transported safely. The explanations in the text refer, where needed, to the appropriate requirements in the IAEA's Transport Regulations; additional useful information is also provided. Thus, the training manual in addition to the Transport Regulations and their supporting documents is used by the IAEA as the basis for delivering all of its training courses on the safe transport of radioactive material. Enclosed with the training manual is a CD-ROM that contains the text of the manual as well as the visual aids that are used at the IAEA's training courses. The following topics are covered: review of radioactivity and radiation; review of radiation protection principles; regulatory terminology; basic safety concepts: materials and packages; activity limits and material restrictions; selection of optimal package type; test procedures: material and packages; requirements for transport; control of material in transport; fissile material: regulatory requirements and operational aspects; quality assurance; national competent authority; additional regulatory constraints for transport; international liability and insurance; emergency planning and preparedness; training; services provided by the IAEA

  9. Safe transport of radioactive material. 3. ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-01

    The IAEA has developed a standardized approach to transport safety training as a means of helping Member States to implement the Transport Regulations. The training manual is an anchor of this standardized approach to training: it contains all the topics presented in the sequential order recommended by the IAEA for the student to gain a thorough understanding of the body of knowledge that is needed to ensure that radioactive material ranked as Class 7 in the United Nations' nomenclature for dangerous goods - is transported safely. The explanations in the text refer, where needed, to the appropriate requirements in the IAEA's Transport Regulations; additional useful information is also provided. Thus, the training manual in addition to the Transport Regulations and their supporting documents is used by the IAEA as the basis for delivering all of its training courses on the safe transport of radioactive material. Enclosed with the training manual is a CD-ROM that contains the text of the manual as well as the visual aids that are used at the IAEA's training courses. The following topics are covered: review of radioactivity and radiation; review of radiation protection principles; regulatory terminology; basic safety concepts: materials and packages; activity limits and material restrictions; selection of optimal package type; test procedures: material and packages; requirements for transport; control of material in transport; fissile material: regulatory requirements and operational aspects; quality assurance; national competent authority; additional regulatory constraints for transport; international liability and insurance; emergency planning and preparedness; training; services provided by the IAEA.

  10. Transportation of radioactive materials - a utility view

    International Nuclear Information System (INIS)

    Futter, J.L.

    1979-01-01

    Local restrictions to transportation of radioactive materials have proliferated, and the reasons for this are described. Some of the measures which could be undertaken to counteract this trend are discussed. People should speak out on the need for nuclear power in general and for transportation of nuclear materials in particular

  11. The safety of radioactive materials transport

    International Nuclear Information System (INIS)

    Niel, J.Ch.

    1997-01-01

    Five accidents in radioactive materials transport have been studied; One transport accident by road, one by ship, one by rail, and the two last in handling materials from ships in Cherbourg port and Le Havre port. All these accidents were without any important consequences in term of radiation protection, but they were sources of lessons to improve the safety. (N.C.)

  12. Transport containers for radioactive material

    International Nuclear Information System (INIS)

    Bibby, D.

    1978-01-01

    A transport container for transporting irradiated nuclear fuel is described comprising a steel flask with detachable cover and having external heat exchange fins. The flask contains a solid annular shield comprised of discrete bodies of Pb or Fe bonded together by a solid matrix, for attenuating gamma rays and neutron emission. This may comprise lead shot bonded together by concrete or polyethylene, or alternatively iron shot bonded by concrete. (UK)

  13. Colloid transport in model fracture filling materials

    Science.gov (United States)

    Wold, S.; Garcia-Garcia, S.; Jonsson, M.

    2010-12-01

    Colloid transport in model fracture filling materials Susanna Wold*, Sandra García-García and Mats Jonsson KTH Chemical Science and Engineering Royal Institute of Technology, SE-100 44 Stockholm, Sweden *Corresponding author: E-mail: wold@kth.se Phone: +46 8 790 6295 In colloid transport in water-bearing fractures, the retardation depends on interactions with the fracture surface by sorption or filtration. These mechanisms are difficult to separate. A rougher surface will give a larger area available for sorption, and also when a particle is physically hindered, it approaches the surface and enables further sorption. Sorption can be explained by electrostatics were the strongest sorption on minerals always is observed at pH below pHpzc (Filby et al., 2008). The adhesion of colloids to mineral surfaces is related to the surface roughness according to a recent study (Darbha et al., 2010). There is a large variation in the characteristics of water-bearing fractures in bedrock in terms of aperture distribution, flow velocity, surface roughness, mineral distributions, presence of fracture filling material, and biological and organic material, which is hard to implement in modeling. The aim of this work was to study the transport of negatively charged colloids in model fracture filling material in relation to flow, porosity, mineral type, colloid size, and surface charge distribution. In addition, the impact on transport of colloids of mixing model fracture filling materials with different retention and immobilization capacities, determined by batch sorption experiments, was investigated. The transport of Na-montmorillonite colloids and well-defined negatively charged latex microspheres of 50, 100, and 200 nm diameter were studied in either columns containing quartz or quartz mixed with biotite. The ionic strength in the solution was exclusively 0.001 and pH 6 or 8.5. The flow rates used were 0.002, 0.03, and 0.6 mL min-1. Sorption of the colloids on the model fracture

  14. Anticipated development in radioactive materials packaging and transport systems

    International Nuclear Information System (INIS)

    Williams, L.D.; Rhoads, R.E.; Hall, R.J.

    1976-07-01

    Closing the light water reactor fuel cycle and the use of mixed oxide fuels will produce materials such as solidified high level waste, cladding hulls and plutonium from Pu recycle fuel that have not been transported extensively in the past. Changes in allowable gaseous emissions from fuel cycle facilities may require the collection and transportation of radioactive noble gases and tritium. Although all of these materials could be transported in existing radioactive material packaging, economic considerations will make it desirable to develop new packaging specifically designed for each material. Conceptual package designs for these materials are reviewed. Special Nuclear Material transportation safeguards are expected to have a significant impact on future fuel cycle transportation. This subject is reviewed briefly. Other factors that could affect fuel cycle transportation are also discussed. Development of new packaging for radioactive materials is not believed to require the development of new technologies. New package designs will be primarily an adaptation of existing technology to fit the changing needs of a growing nuclear power industry. 23 references

  15. Space Transportation Technology Workshop: Propulsion Research and Technology

    Science.gov (United States)

    2000-01-01

    This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.

  16. Legal aspects of radioactice materials transport

    International Nuclear Information System (INIS)

    Frejman, Eh.S.

    1986-01-01

    The main statements of the Safety rules for radioactive materials transport PBTRV-73 applied in the USSR are considered. The rules cover the whole complex of security measures at all the stages of radioactive materials transprt including requirements to packaging, radiation monitoring, measures of individual protection and personal hygiene, measures at accidents and fires. Separate rules for radioactive materials handling when using rail, air, maritime and road transports are developed on the basis of this document

  17. Ontario hydro radioactive material transportation field guide

    International Nuclear Information System (INIS)

    Howe, W.

    1987-01-01

    The recent introduction of both the AECB Transport Packaging of Radioactive Material Regulations and Transport Canada's Transportation of Dangerous Goods Regulations have significantly altered the requirements for transporting radioactive material in Canada. Extensive additional training as well as certification of several hundred Ontario Hydro employees has been necessary to ensure compliance with the additional and revised regulatory requirements. To assist in the training of personnel, an 'active' corporate Ontario Hydro Field Guide for Radioactive Material Transport document has been developed and published. The contents of this Field Guide identify current Ontario Hydro equipment and procedures as well as the updated relevant regulatory requirements within Canada. In addition, to satisfying Ontario Hydro requirements for this type of information over two thousand of these Field Guides have been provided to key emergency response personnel throughout the province of Ontario to assist in their transportation accident response training

  18. Physical protection of radioactive material in transport

    International Nuclear Information System (INIS)

    1975-01-01

    Safety in the transport of radioactive material is ensured by enclosing the material, when necessary, in packaging which prevents its dispersal and which absorbs to any adequate extent any radiation emitted by the material. Transport workers, the general public and the environment are thus protected against the harmful effects of the radioactive material. The packaging also serves the purpose of protecting its contents against the effects of rough handling and mishaps under normal transport conditions, and against the severe stresses and high temperatures that could be encountered in accidents accompanied by fires. If the radioactive material is also fissile, special design features are incorporated to prevent any possibility of criticality under normal transport conditions and in accidents. The safe transport requirements are designed to afford protection against unintentional opening of packages in normal handling and transport conditions and against damage in severe accident conditions; whereas the physical protection requirements are designed to prevent intentional opening of packages and deliberate damage. This clearly illustrates the difference in philosophical approach underlying the requirements for safe transport and for physical protection during transport. This difference in approach is, perhaps, most easily seen in the differing requirements for marking of consignments. While safety considerations dictate that packages be clearly labelled, physical protection considerations urge restraint in the use of special labels. Careful consideration must be given to such differences in approach in any attempt to harmonize the safety and physical protection aspects of transport. (author)

  19. Technology evaluation for time sensitive data transport

    DEFF Research Database (Denmark)

    Wessing, Henrik; Breach, Tony; Colmenero, Alberto

    . The NREN communities must provide underlying network infrastructures and transport technologies to facilitate ser-vices with such requirements to the network. In this paper we investigate and evaluate circuit and packet based transport technologies from classic best effort IP over MPLS flavours, Provider...... Backbone Bridging (PBB), “Transparent Interconnect of Lots of Links” (TRILL) to Optical Transport Network (OTN) and SDH. The transport technologies are evaluated theoreti-cally, using simulations and/or experimentally. Each transport technology is evaluated based on its performances and capabilities...... overhead and restoration time. Thirdly, complexity and automation possibilities for establishment of paths for high demanding applica-tions, and finally how the technologies are backed by research communities and major vendors like Ciena, Alcatel-Lucent, Nokia-Siemens and Huawei. The technologies...

  20. The Safe Transportation of Radioactive Materials

    International Nuclear Information System (INIS)

    Megrahi, Abdulhafeed; Abu-Ali, Giuma; Enhaba; Ahmed

    2008-01-01

    In this paper, we present the essential conditions that should be required for transporting the radioactive materials. We demonstrate the procedure for transporting the radioactive iodine-131 from the Centre of Renewable Energies and Desalination of Water in Tajoura, Libya to Tripoli Medical Center. The safe measures were taken during the process of the transportation of the isotope produced in the centre including dosimetry analysis and the thickness of the container. (author)

  1. Transport packages for nuclear material and waste

    International Nuclear Information System (INIS)

    1997-01-01

    The regulations and responsibilities concerning the transport packages of nuclear materials and waste are given in the guide. The approval procedure, control of manufacturing, commissioning of the packaging and the control of use are specified. (13 refs.)

  2. Electrical transport in crystalline phase change materials

    International Nuclear Information System (INIS)

    Woda, Michael

    2012-01-01

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge 2 Sb 2 Te 5 . The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  3. Electrical transport in crystalline phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Michael

    2012-01-06

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge{sub 2}Sb{sub 2}Te{sub 5}. The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  4. Alternative materials for sustainable transportation.

    Science.gov (United States)

    2012-08-01

    A shortage of asphalt and polymers is creating opportunities for engineers to utilize alternative pavement materials. Three types of bio oil, untreated bio oil (UTB), treated bio oil (TB) and polymer-modified bio oil (PMB) were studied in this resear...

  5. Plasma transport near material boundaries

    International Nuclear Information System (INIS)

    Singer, C.E.

    1985-06-01

    The fluid theory of two-dimensional (2-d) plasma transport in axisymmetric devices is reviewed. The forces which produce flow across the magnetic field in a collisional plasma are described. These flows may lead to up-down asymmetries in the poloidal rotation and radial fluxes. Emphasis is placed on understanding the conditions under which the known 2-d plasma fluid equations provide a valid description of these processes. Attempts to extend the fluid treatment to less collisional, turbulent plasmas are discussed. A reduction to the 1-d fluid equations used in many computer simulations is possible when sources or boundary conditions provide a large enough radial scale length. The complete 1-d fluid equations are given in the text, and 2-d fluid equations are given in the Appendix

  6. Land Transport Emergency Response Technology Report

    International Nuclear Information System (INIS)

    DOTSON, LORI J.; PIERCE, JIM D.

    2003-01-01

    Sandia National Laboratories was tasked by the Japan Nuclear Cycle Development Institute (JNC) to provide assistance in developing an emergency response plan for radioactive material transportation activities. Those tasks included compiling radioactive materials (RAM) transportation accident data FR-om the open literature and databases, investigating emergency response plans for radioactive materials transport in the United States, and developing specific recommendations for the JNC' nuclear material transport emergency response plan, based on information gathered during the first two tasks. These recommendations include developing a RAM database, a public transparency Internet website, an emergency response inFR-astructure designed specifically for transportation needs, and a clear set of directives to provide authority in the case of transportation accidents or incidents involving RAM

  7. Radioactive Material (Road Transport) Act 1991

    International Nuclear Information System (INIS)

    1991-01-01

    This Act came into force on 27 August 1991. It replaces earlier legislation dating from 1948 and enables the United Kingdom to give effect to the International Atomic Energy Agency's (IAEA) latest recommended Regulations for the Safe Transport of Radioactive Material. The new Act clarifies and extends the power of the Secretary of State to make regulations regarding, among other things, the design, labelling, handling, transport and delivery of packages containing radioactive material and the placarding of vehicles transporting such packages. The Act gives the Secretary of State the power to appoint inspectors to assist him in enforcing the regulations. (NEA)

  8. Storage and transport of hazardous materials

    International Nuclear Information System (INIS)

    Jaeger, P.; Haferkamp, K.

    1986-01-01

    The attempt has been made to characterise the present risk scenario, and to set out approaches or methods for remedy and risk control. For this purpose, a retrospective analysis has been made of accidents, damage and consequential damage that occurred in the past either during storage of hazardous materials, or during road transport. A risk-benefit model facilitates assessment of accident frequency. The history of accidents during storage or transport allows assessment of the dangerousness of various materials. Another important aspect discussed is the property and behaviour of containers used for storage or transport. (DG) [de

  9. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST). Research on Materials for the High Speed Civil Transport

    Science.gov (United States)

    Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Stoner, Glenn E.; Wert, John A.

    1997-01-01

    Since 1986, the NASA-Langley Research Center has sponsored the NASA-UVa Light Alloy and Structures Technology (LA2ST) Program at the University of Virginia (UVa). The fundamental objective of the LA2ST program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures. The LA2ST program has aimed to product relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The scope of the LA2ST Program is broad. Research areas include: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites, (2) Aerospace Materials Science, (3) Mechanics of materials for Aerospace Structures, and (4) Thermal Gradient Structures. A substantial series of semi-annual progress reports issued since 1987 documents the technical objectives, experimental or analytical procedures, and detailed results of graduate student research in these topical areas.

  10. Control of radioactive material transport in sodium-cooled reactors

    International Nuclear Information System (INIS)

    Brehm, W.F.

    1980-03-01

    The Radioactivity Control Technology (RCT) program was established by the Department of Energy to develop and demonstrate methods to control radionuclide transport to ex-core regions of sodium-cooled reactors. This radioactive material is contained within the reactor heat transport system with any release to the environment well below limits established by regulations. However, maintenance, repair, decontamination, and disposal operations potentially expose plant workers to radiation fields arising from radionuclides transported to primary system components. This paper deals with radioactive material generated and transported during steady-state operation, which remains after 24 Na decay. Potential release of radioactivity during postulated accident conditions is not discussed. The control methods for radionuclide transport, with emphasis on new information obtained since the last Environmental Control Symposium, are described. Development of control methods is an achievable goal

  11. The safe transport of radioactive materials

    International Nuclear Information System (INIS)

    Swindell, G.E.

    1975-01-01

    In the course of transport by road, rail, sea and air, consignments of radioactive material are in close proximity to ordinary members of the public and in most cases they are loaded and unloaded by transport workers who have no special training or experience in the handling of radioactive substances. The materials being transported cover a wide variety - ranging from small batches of short-lived radionuclides used in medical practice which can be transported in small sealed lead pots in cardboard boxes, to large, extremely radioactive consignments of irradiated nuclear fuel in flasks weighing many tons. With the growing development of nuclear power programmes the transport of irradiated fuel is likely to increase markedly. It is clear that unless adequate regulations concerning the design and assembly of the packages containing these materials are precisely set down and strictly carried out, there would be a high probability that some of the radioactive contents would be released, leading to contamination of other transported goods and the general environment, and to the delivery of a radiation dose to the transport workers and the public. An additional requirement is that the transport should proceed smoothly and without delay. This is particularly important for radioactive materials of short half-life, which would lose significant amounts of their total activity in unnecessary delays at international boundaries. Therefore, it is essential that the regulations are also enforced, to ensure that the radioactive material is contained and the surrounding radiation level reduced to a value which poses no threat to other sensitive goods such as photographic film, or to transport workers and other passengers. These regulations should be as uniform as possible on an international basis, so that consignments can move freely from one country to another with as little delay as possible at the frontiers. (author)

  12. Transportation of radioactive materials: the legislative and regulatory information system

    International Nuclear Information System (INIS)

    Fore, C.S.

    1982-03-01

    The US Department of Energy is carrying out a national program to assure the safe shipment of radioactive materials. As part of this overall effort, the Hazardous Materials Information Center of Oak Ridge National Laboratory has developed the comprehensive Legislative and Regulatory Information System, which contains information on federal-, state-, and local-level legislative and regulatory actions pertaining primarily to the shipment of radioactive materials. Specific subject areas chosen to highlight particular transportation restrictions include: (1) identification of state agency responsible for regulating transportation, (2) type of escorts required, (3) areas requiring prior notification, (4) areas requiring permits or licenses, and (5) areas totally banning transportation of all radioactive materials. Other legislative information being categorized and of immediate relevance to the transportation issues is covered under the areas of disposal, storage, and management of radioactive materials; establishment of additional regulations; emergency response regulations; moratoriums on power plant construction and siting; radiation safety and control studies; and remedial action studies. The collected information is abstracted, indexed, and input into one of the two data bases developed under this information system - Current Legislation Data Base and Historical Legislation Data Base. An appendix is included which provides a summary of the state and local laws affecting the transportation of radioactive materials throughout the United States. The Legislative and Regulatory Information System is supported by the Transportation Technology Center located at Sandia National Laboratories, Albuquerque, New Mexico

  13. Transportation of radioactive materials: the legislative and regulatory information system

    Energy Technology Data Exchange (ETDEWEB)

    Fore, C.S.

    1982-03-01

    The US Department of Energy is carrying out a national program to assure the safe shipment of radioactive materials. As part of this overall effort, the Hazardous Materials Information Center of Oak Ridge National Laboratory has developed the comprehensive Legislative and Regulatory Information System, which contains information on federal-, state-, and local-level legislative and regulatory actions pertaining primarily to the shipment of radioactive materials. Specific subject areas chosen to highlight particular transportation restrictions include: (1) identification of state agency responsible for regulating transportation, (2) type of escorts required, (3) areas requiring prior notification, (4) areas requiring permits or licenses, and (5) areas totally banning transportation of all radioactive materials. Other legislative information being categorized and of immediate relevance to the transportation issues is covered under the areas of disposal, storage, and management of radioactive materials; establishment of additional regulations; emergency response regulations; moratoriums on power plant construction and siting; radiation safety and control studies; and remedial action studies. The collected information is abstracted, indexed, and input into one of the two data bases developed under this information system - Current Legislation Data Base and Historical Legislation Data Base. An appendix is included which provides a summary of the state and local laws affecting the transportation of radioactive materials throughout the United States. The Legislative and Regulatory Information System is supported by the Transportation Technology Center located at Sandia National Laboratories, Albuquerque, New Mexico.

  14. Advanced Technology Composite Fuselage - Materials and Processes

    Science.gov (United States)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  15. Technological alternatives for plutonium transport

    International Nuclear Information System (INIS)

    1978-12-01

    This paper considers alternative transport modes (air, sea, road, rail) for moving (1) plutonium from a reprocessing plant to a store or a fuel fabrication facility, and (2) MOX fuel from the latter to a reactor. These transport modes and differing forms of plutonium are considered in terms of: their proliferation resistance and safeguards; environmental and safety aspects; and economic aspects. It is tentatively proposed that the transport of plutonium could continue by air or sea where long distances are involved and by road or rail over shorter distances; this would be acceptable from the non-proliferation, environmental impact and economic aspects - there may be advantages in protection if plutonium is transported in the form of mixed oxide

  16. INES- French application to radioactive material transport

    International Nuclear Information System (INIS)

    Sowinski, S.; Strawa, S.; Aguilar, J.

    2004-01-01

    After gaining control of radioactive material transport in June 1997, the French Nuclear Safety Authority (ASN) decided to apply the International Nuclear Event Scale (INES scale) to transport events. The Directorate General for Nuclear Safety and Radioprotection (DGSNR) requests that radioactive material package consignors declare any event occurring during transport, and has introduced the use of the INES scale adapted to classify transport events in order to inform the public and to have feedback. The INES scale is applicable to events arising in nuclear installations associated with the civil nuclear industry and events occurring during the transport of radioactive materials to and from them. The INES scale consists of seven levels. It is based on the successive application of three types of criterion (off-site impact, on-site impact and degradation of defence in depth) and uses the maximum level to determine the rating of an accident. As the transport in question takes place on public thoroughfares, only the off-site impact criteria and degradation of defence in-depth criteria apply. This paper deals with DGSNR's feedback during the past 7 years concerning the French application of the INES scale. Significant events that occurred during transport are presented. The French experience was used by the International Atomic Energy Agency (IAEA) to develop a draft guide in 2002 and the IAEA asked countries to use a new draft for a trial period in July 2004. (author)

  17. The transport of radioactive materials - Future challenges

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    2008-01-01

    The International Atomic Energy Agency (IAEA) Regulations for the Safe Transport of Radioactive Materials, TS-R-1, set the standards for the packages used in the transport of radioactive materials under both normal and accident conditions. Transport organisations are also required to implement Radiation Protection Programmes to control radiation dose exposure to both workers and the public. The industry has now operated under this regulatory regime safely and efficiently for nearly 50 years. It is vital that this record be maintained in the future when the demands on the transport industry are increasing. Nuclear power is being called upon more and more to satisfy the world's growing need for sustainable, clean and affordable electricity and there will be a corresponding demand for nuclear fuel cycle services. There will also be a growing need for other radioactive materials, notably large sources such as Cobalt 60 sources for a range of important medical and industrial uses, as well as radio-pharmaceuticals. A reliable transport infrastructure is essential to support all these industry sectors and the challenge will be to ensure that this can be maintained safely and securely in a changing world where public and political concerns are increasing. This paper will discuss the main issues which need to be addressed. The demand for uranium has led to increased exploration and the development of mines in new locations far removed from the demand centres. This inevitably leads to more transport, sometimes from areas potentially lacking in transport infrastructure, service providers, and experience. The demand for sources for medical applications will also increase, particularly from the rapidly developing regions and this will also involve new transport routes and increased traffic. This raises a variety of issues concerning the ability of the transport infrastructure to meet the future challenge, particularly in an environment where there already exists reluctance on

  18. Safe transport of radioactive material. Second edition

    International Nuclear Information System (INIS)

    1991-01-01

    The transport of radioactive material embraces the carriage of radioisotopes for industrial, medical and research uses, and the movement of waste, in addition to consignments of nuclear fuel cycle material. It has been estimated that between eighteen and thirty-eight million package shipments take place each year. On the recommendation of the Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM), which enjoys wide representations from the Agency's Member States and international organizations, the Secretariat is preparing a training kit comprising this training manual and complementary visual aids. The kit is intended to be the basis for an extensive course on the subject and can be used in whole or in part for inter-regional, regional and even national training purposes. Member States can thus benefit from the material either through training courses sponsored by the Agency, or, alternatively, organized by themselves. As a step towards achieving that goal, the current training manual was compiled using material from the first Inter-Regional Training Course on the Safe Transport of Radioactive material that was held in co-operation with the Nuclear Power Training Centre of the then Central Electricity Generating Board at Bristol, United Kingdom. This Manual was initially published in 1990. On the recommendation of the Agency's Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM), the Manual has since been expanded and updated in time for the second Inter-Regional Training Course, that will in 1991 similarly be held in Bristol. Refs, figs, tabs

  19. Space transportation propulsion USSR launcher technology, 1990

    Science.gov (United States)

    1991-01-01

    Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).

  20. Transport of radioactive material in Canada

    International Nuclear Information System (INIS)

    1997-09-01

    In this report, the Advisory Committee on Nuclear Safety (ACNS) presents the results of its study on how the system of the transport of radioactive material (TRM) in Canada is regulated, how it operates, and how it performs. The report deals with the transport of packages, including Type B packages which are used to carry large quantities of radioactive material, but not with the transport of spent nuclear fuel or with the transport of low-level historical waste. The ACNS has examined the Canadian experience in the TRM area, the regulatory framework in Canada with respect to the TRM some relevant aspects of training workers and monitoring compliance with regulatory requirements, the state of the emergency preparedness of organizations involved in the TRM and the process of updating present regulations by the Atomic Energy Control Board (AECB). As a result of this study, the ACNS concludes that the current Canadian regulatory system in the TRM is sound and that the TRM is, for the most part, conducted safely. However, improvements can be made in a number of areas, such as: determining the exposures of workers who transport radioactive material; rewording the proposed Transport Regulations in plain language; training all appropriate personnel regarding the AECB and Transport Canada (TC) Regulations; enforcing compliance with the regulations; and increasing the level of cooperation between the federal agencies and provincial authorities involved in the inspection and emergency preparedness aspects of the TRM. It is also noted that Bill C-23, the Nuclear Safety and Control Act, imposes a new requirement, subject to the Regulations, for a licence for a carrier to transport some types of radioactive material

  1. Transport of radioactive material in Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    In this report, the Advisory Committee on Nuclear Safety (ACNS) presents the results of its study on how the system of the transport of radioactive material (TRM) in Canada is regulated, how it operates, and how it performs. The report deals with the transport of packages, including Type B packages which are used to carry large quantities of radioactive material, but not with the transport of spent nuclear fuel or with the transport of low-level historical waste. The ACNS has examined the Canadian experience in the TRM area, the regulatory framework in Canada with respect to the TRM some relevant aspects of training workers and monitoring compliance with regulatory requirements, the state of the emergency preparedness of organizations involved in the TRM and the process of updating present regulations by the Atomic Energy Control Board (AECB). As a result of this study, the ACNS concludes that the current Canadian regulatory system in the TRM is sound and that the TRM is, for the most part, conducted safely. However, improvements can be made in a number of areas, such as: determining the exposures of workers who transport radioactive material; rewording the proposed Transport Regulations in plain language; training all appropriate personnel regarding the AECB and Transport Canada (TC) Regulations; enforcing compliance with the regulations; and increasing the level of cooperation between the federal agencies and provincial authorities involved in the inspection and emergency preparedness aspects of the TRM. It is also noted that Bill C-23, the Nuclear Safety and Control Act, imposes a new requirement, subject to the Regulations, for a licence for a carrier to transport some types of radioactive material.

  2. Safe transport of radioactive material. 4. ed

    International Nuclear Information System (INIS)

    2006-01-01

    The IAEA has been publishing Regulations for the Safe Transport of Radioactive Material since 1961. Meeting its statutory obligation to foster the exchange and training of scientists and experts in the field of peaceful uses of atomic energy, the IAEA has developed a standardized approach to transport safety training. This training manual is an anchor of the standardized approach to training. It is a compendium of training modules for courses related to the different aspects of safety of transport of radioactive material. Keeping in view the specific needs of the potential users, the manual includes material that can be used for a variety of training programmes of duration ranging from half-a-day to ten days, for specific audiences such as competent authority personnel, public authorities, emergency response personnel and cargo handlers

  3. Current trends in nuclear material transportation

    International Nuclear Information System (INIS)

    Ravenscroft, Norman; Oshinowo, Franchone

    1997-01-01

    The business of radioactive material transportation has evolved considerably in the past 40 years. Current practices reflect extensive international experience in handling radioactive cargo within a mature and tested regulatory framework. Nevertheless, new developments continue to have an impact on how shipments of nuclear material are planned and carried out. Entities involved in the transport of radioactive materials must keep abreast of these developments and work together to find innovative solutions to ensure that safe, smooth transport activities may continue. Several recent trends in the regulatory environment and political atmosphere require attention. There are four key trends that we'll be examining today: 1) the reduction in the pool of available commercial carriers; 2) routing restrictions; 3) package validation issues; and 4) increasing political sensitivities. Careful planning and cooperative measures are necessary to alleviate problems in each of these areas. (author)

  4. Safe transport of radioactive materials in Egypt

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.

    1994-01-01

    In Egypt the national regulations for safe transport of radioactive materials (RAM) are based on the International Atomic Energy Agency (IAEA) regulations. In addition, regulations for the safe transport of these materials through the Suez Canal (SC) were laid down by the Egyptian Atomic Energy Authority (EAEA) and the Suez Canal Authority (SCA). They are continuously updated to meet the increased knowledge and the gained experience. The technical and protective measures taken during transport of RAM through SC are mentioned. Assessment of the impact of transporting radioactive materials through the Suez Canal using the INTERTRAN computer code was carried out in cooperation with IAEA. The transported activities and empty containers, the number of vessels carrying RAM through the canal from 1963 and 1991 and their nationalities are also discussed. The protective measures are mentioned. A review of the present situation of the radioactive wastes storage facilities at the Atomic Energy site at Inshas is given along with the regulation for safe transportation and disposal of radioactive wastes. (Author)

  5. Applying RFID technology in nuclear materials management

    International Nuclear Information System (INIS)

    Tsai, H.; Chen, K.; Liu, Y.; Norair, J.P.; Bellamy, S.; Shuler, J.

    2008-01-01

    The Packaging Certification Program (PCP) of US Department of Energy (DOE) Environmental Management (EM), Office of Safety Management and Operations (EM-60), has developed a radio frequency identification (RFID) system for the management of nuclear materials. Argonne National Laboratory, a PCP supporting laboratory, and Savi Technology, a Lockheed Martin Company, are collaborating in the development of the RFID system, a process that involves hardware modification (form factor, seal sensor and batteries), software development and irradiation experiments. Savannah River National Laboratory and Argonne will soon field test the active RFID system on Model 9975 drums, which are used for storage and transportation of fissile and radioactive materials. Potential benefits of the RFID system are enhanced safety and security, reduced need for manned surveillance, real time access of status and history data, and overall cost effectiveness

  6. Radioactive materials transporting container and vehicles

    International Nuclear Information System (INIS)

    Reese, S.L.

    1980-01-01

    A container and vehicle therefor for transporting radioactive materials is provided. The container utilizes a removable system of heat conducting fins made of a light weight highly heat conductive metal, such as aluminum or aluminum alloys. This permits a substantial reduction in the weight of the container during transport, increases the heat dissipation capability of the container and substantially reduces the scrubbing operation after loading and before unloading the radioactive material from the container. The vehicle utilizes only a pair of horizontal side beams interconnecting a pair of yoke members to support the container and provide the necessary strength and safety with a minimum of weight

  7. Perception of risks in transporting radioactive materials

    International Nuclear Information System (INIS)

    Shepherd, E.W.; Reese, R.T.

    1983-01-01

    A framework for relating the variables involved in the public perception of hazardous materials transportation is presented in which perceived risk was described in six basic terms: technical feasibility, political palatability, social responsibility, benefit assessment, media interpretation, and familiarity as a function of time. Scientists, the media and public officials contribute to the discussion of risks but ultimately people will decide for themselves how they feel and what they think. It is not sufficient to consider the public of not being enlightened enough to participate in the formulation of radioactive material transport policy. The framework provides the technologist with an initial formulation to better inform the public and to understand public perception

  8. Instructions for safe transport of radioactive materials

    International Nuclear Information System (INIS)

    2005-01-01

    This entrance includes 5 chapters and tables and supplement. Chapter I contains the definitions and general provisions contained 5 materials. Chapter II contains radioactive materials packaging and permissible limits and it contains 8 materials. The provisions of Chapter III contains descriptions Missionaries. Chapter IV describes shipping instructions. As for the separation of V It contains Final provisions. The entrance contains number of tables speaks of the basic values of radioactive isotopes and radiation also limits activity and the requirements of industrial parcels and limits transactions to transport freight containers, as well as the International Classification of hazardous materials. This also includes entrance to the Supplement to some forms and Alohat

  9. Electronic Transport in Two-Dimensional Materials

    Science.gov (United States)

    Sangwan, Vinod K.; Hersam, Mark C.

    2018-04-01

    Two-dimensional (2D) materials have captured the attention of the scientific community due to the wide range of unique properties at nanometer-scale thicknesses. While significant exploratory research in 2D materials has been achieved, the understanding of 2D electronic transport and carrier dynamics remains in a nascent stage. Furthermore, because prior review articles have provided general overviews of 2D materials or specifically focused on charge transport in graphene, here we instead highlight charge transport mechanisms in post-graphene 2D materials, with particular emphasis on transition metal dichalcogenides and black phosphorus. For these systems, we delineate the intricacies of electronic transport, including band structure control with thickness and external fields, valley polarization, scattering mechanisms, electrical contacts, and doping. In addition, electronic interactions between 2D materials are considered in the form of van der Waals heterojunctions and composite films. This review concludes with a perspective on the most promising future directions in this fast-evolving field.

  10. Transport of radioactive materials by post

    International Nuclear Information System (INIS)

    1984-11-01

    The objective of the Seminar was to encourage safe and efficient carriage of radioactive material by post. Adequate, up-to-date regulations for international and domestic shipment of radioactive material by all modes of transport, including by mail, have been published by the IAEA. UPU, ICAO, IATA and other international organizations as well as a majority of the countries of the world have adopted most sections of the Agency's Regulations for the Safe Transport of Radioactive Material. Although there is an apparent need for shipping radioactive material by mail, some countries allow only domestic shipments and the postal regulations applied in these countries often differs from the international regulations. Only about 25 countries are known to allow international (as well as domestic) shipments. From the discussions and comments at the Seminar, it appears that the option of shipment by post would be advantageous to enhance both the safety and economy of transporting, as well as to increase availability of, radioactive materials. The Agency's Regulations for transport by post as adopted by the UPU and ICAO are considered to provide a high level of safety and ensure a negligible element of risk. A more uniform application of these regulations within UPU Member States should be encouraged. The competent authority for implementation of the other parts of the Agency's Regulations in each of the Member States should be invited to advise the Postal Administrators and assist in applying the requirements to national as well as international postal shipments

  11. Transportation of hazardous and nuclear materials

    International Nuclear Information System (INIS)

    Boryczka, M.; Shaver, D.

    1989-01-01

    Transportation of hazardous and radioactive materials is a vital part of the nation's economy. In recent years public concern over the relative safety of transporting hazardous materials has risen sharply. The United States has a long history of transporting hazardous and radioactive material; rocket propellants, commercial spent fuel, low-level and high-level radioactive waste has been shipped for years. While the track record for shipping these materials is excellent, the knowledge that hazardous materials are passing through communities raises the ire of citizens and local governments. Public outcry over shipments containing hazardous cargo has been especially prominent when shippers have attempted to transport rocket propellants or spent nuclear fuel. Studies of recent shipments have provided insight into the difficulties of shipping in a politically charged environment, the major issues of concern to citizens, and some of the more successful methods of dealing with public concerns. This paper focuses on lessons learned from these studies which include interviews with shippers, carriers, and regulators

  12. Expert systems for the transportation of hazardous and radioactive materials

    International Nuclear Information System (INIS)

    Luce, C.E.; Clover, J.C.; Ferrada, J.J.

    1994-01-01

    Under the supervision of the Transportation Technologies Group which is in the Chemical Technology Division at Oak Ridge National Laboratory, an expert system prototype for the transportation and packaging of hazardous and radioactive materials has been designed and developed. The development of the expert system prototype focused on using the combination of hypermedia elements and the Visual Basic trademark programming language. Hypermedia technology uses software that allows the user to interact with the computing environment through many formats: text, graphics, audio, and full-motion video. With the use of hypermedia, a user-friendly prototype has been developed to sort through numerous transportation regulations, thereby leading to the proper packaging for the materials. The expert system performs the analysis of regulations that an expert in shipping information would do; only the expert system performs the work more quickly. Currently, enhancements in a variety of categories are being made to the prototype. These include further expansion of non-radioactive materials, which includes any material that is hazardous but not radioactive; and the addition of full-motion video, which will depict regulations in terms that are easy to understand and which will show examples of how to handle the materials when packaging them

  13. RADTRAN3, Risk of Radioactive Material Transport

    International Nuclear Information System (INIS)

    Madsen, M.M.; Taylor, J.M.; Ostmeyer, R.M.; Reardon, P.C.

    2001-01-01

    1 - Description of program or function: RADTRAN3 is a flexible analytical tool for calculating both the incident-free and accident impacts of transporting radioactive materials. The consequences from incident-free shipments are apportioned among eight population sub- groups and can be calculated for several transport modes. The radiological accident risk (probability times consequence summed over all postulated accidents) is calculated in terms of early fatalities, early morbidities, latent cancer fatalities, genetic effects, and economic impacts. Ground-shine, ingestion, inhalation, direct exposure, resuspension, and cloud-shine dose pathways are modeled to calculate the radiological health risks from accidents. Economic impacts are evaluated based on costs for emergency response, cleanup, evacuation, income loss, and land use. RADTRAN3 can be applied to specific scenario evaluations (individual transport modes or specified combinations), to compare alternative modes or to evaluate generic radioactive material shipments. Unit-risk factors can easily be evaluated to aid in performing generic analyses when several options must be compared with the amount of travel as the only variable. RADTRAN4 offers advances in the handling of route-related data and in the treatment of multiple-isotope materials. 2 - Method of solution: There are several modes used in the transporting of radioactive material such as trucks, passenger vans, passenger airplanes, rail and others. With these modes of transport come several shipment scenarios. The RADTRAN4 methodology uses material, transportation, population distribution, and health effects models to treat the incident-free case. To handle the vehicle accident impacts, accident severity and package release, meteorological dispersion, and economic models are also employed. 3 - Restrictions on the complexity of the problem: There are no apparent limitations due to programming dimensions

  14. Sensor Technologies for Intelligent Transportation Systems.

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali; Contreras-Castillo, Juan

    2018-04-16

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  15. Sensor Technologies for Intelligent Transportation Systems

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali

    2018-01-01

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment. PMID:29659524

  16. Sensor Technologies for Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Juan Guerrero-Ibáñez

    2018-04-01

    Full Text Available Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  17. Legal aspects of transport of nuclear materials

    International Nuclear Information System (INIS)

    Jacobsson, Mans.

    The Paris Convention and the Brussels Supplementary Convention are briefly discussed and other conventions in the field of civil liability for nuclear damage are mentioned: the Vienna Convention, the Nuclear Ships Convention and the 1971 Convention relating to civil liability in the field of maritime carriage of nuclear material. Legislation on civil liability in the Nordic countries, which is based on the Paris Convention and the Supplementary Convention is discussed, notably the principle of channelling of liability and exceptions from that principle due to rules of liability in older transport conventions and certain problems due to the limited geographical scope of the Paris Convention and the Supplementary Convention. Insurance problems arising in connection with transport of nuclear materials are surveyed and an outline is given of the administrative provisions concerning transport (based on the IAEA transport regulations) which govern transport of radioactive materials by different means: road, rail, sea and air. Finally, the 1968 Treaty on the Non-Proliferation of Nuclear Weapons is discussed. (NEA) [fr

  18. Regulations of safe transport of radioactive material

    International Nuclear Information System (INIS)

    Patel, R.J.; Sumathi, E.

    2017-01-01

    BARC is a multi-disciplinary nuclear research organisation with facilities located at various parts of the country. The nuclear and radiological facilities in BARC include fuel fabrication facilities, nuclear research reactors, radiological laboratories, nuclear recycle facilities, waste management facilities and other associated facilities. RAdioactive Material (RAM) such as fresh nuclear fuel, irradiated fuel, radioactive sources, vitrified high level wastes, special nuclear material etc., are transported between these facilities either within the controlled premises or in public domain. In BARC the regulatory approval for the packages used for transport of RAM is issued by BARC Safety Council (BSC). Competent Authority for issuing the design approval for the BARC packages in public domain is Director, BARC. In this aspect BSC is assisted by Safety Review Committee-Transport of Radioactive Material (SRC-TRM) constituted by BSC entrusted with the mandate to ensure the packages are designed, manufactured and transported in accordance with the current regulations. This article summarizes the regulatory requirements for transport of RAM and experience in BARC facilities

  19. Materials Advance Chemical Propulsion Technology

    Science.gov (United States)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  20. Radioactive material (road transport) bill. [Third reading

    International Nuclear Information System (INIS)

    Fishburn, D.; Walley, J.; Currie, E.

    1991-01-01

    This is a private members Bill which will enable new rules to be set out that will govern the way in the which nearly 500,000 shipments of radioactive and nuclear material go by road in the United Kingdom every year. It would give the Department of Transport, which would become the enforcing authority, the powers of entry and inspection and allows penalties to be exacted from those breaking the rules. The present regulations for transport by road are those set out in 1947 and these need to be updated to comply with International Atomic Energy Authority Standards. The debate which lasted over one and a half hours is reported verbatim. The main points raised were about which emergency services if any should be notified on the transport of nuclear materials, with particular reference to Derbyshire. Nuclear power in general was also discussed. (UK)

  1. GIS risk analysis of hazardous materials transport

    International Nuclear Information System (INIS)

    Anders, C.; Olsten, J.

    1991-01-01

    The Geographic Information System (GIS) was used to assess the risks and vulnerability of transporting hazardous materials and wastes (such as gasoline, explosives, poisons, etc) on the Arizona highway system. This paper discusses the methodology that was utilized, and the application of GIS systems to risk analysis problems

  2. International transport of uranium materials from China

    International Nuclear Information System (INIS)

    Xu Chizhi; Long Xiuaowei; Achilles, G.

    1993-01-01

    An example of international cooperation is given on the transport of frontend materials from China to Europe. With the assistance of NCS, CNEIC entered into discussions and negotiations with COSCO, the national Chinese shipping line in order to make much cheaper sea transport possible. One of the difficulties to overcome was the passage through the Suez canal but CNEIC, NCS and the port authorities were present to assure smooth operation, during the first passage through the canal, CNEIC key personnels had training at the NCS office in Germany in relation to transport regulations and practice on the job. In turn, NCS personnels were introduced into site specific conditions in China by CNEIC. In the meantime, about 150 containers loaded with yellow cake and about 120 cylinders with low enriched UF6 have been smoothly transported by sea from Shanghai through the Suez canal to European ports. (E.Y.)

  3. Questions raised on transport of nuclear material

    International Nuclear Information System (INIS)

    Lubinska, A.

    1984-01-01

    Public opinion is demanding safer rules for the shipment of radioactive materials since the recent collision and sinking of a French freighter carrying uranium hexafluoride. At issue is the secrecy of the cargo, the delay in releasing information to the public and salvage crews, and the use of unmarked trucks. The nuclear industry points out that no recent incidents have led to the loss of human life, but there is concern among European Community members that a number of countries have yet to ratify international conventions and agreements on hazardous materials transport, that none of these agreements are mandatory, and that none address the transfrontier movement of waste materials

  4. Materials, critical materials and clean-energy technologies

    Directory of Open Access Journals (Sweden)

    Eggert R.

    2017-01-01

    Full Text Available Modern engineered materials, components and systems depend on raw materials whose properties provide essential functionality to these technologies. Some of these raw materials are subject to supply-chain risks, and such materials are known as critical materials. This paper reviews corporate, national and world perspectives on material criticality. It then narrows its focus to studies that assess “what is critical” to clean-energy technologies. The focus on supply-chain risks is not meant to be alarmist but rather to encourage attention to monitoring these risks and pursuing technological innovation to mitigate the risks.

  5. Materials, critical materials and clean-energy technologies

    Science.gov (United States)

    Eggert, R.

    2017-07-01

    Modern engineered materials, components and systems depend on raw materials whose properties provide essential functionality to these technologies. Some of these raw materials are subject to supply-chain risks, and such materials are known as critical materials. This paper reviews corporate, national and world perspectives on material criticality. It then narrows its focus to studies that assess "what is critical" to clean-energy technologies. The focus on supply-chain risks is not meant to be alarmist but rather to encourage attention to monitoring these risks and pursuing technological innovation to mitigate the risks.

  6. Perceptions, perspectives, proportions: Radioactive material transport

    International Nuclear Information System (INIS)

    1985-01-01

    Nearly a hundred years ago in 1893 - when railroads still monopolized land transport, the first set of international rules governing shipments of hazardous materials were issued to cover their movement by rail. Since then, more than a dozen international bodies, and scores of national regulatory agencies, have published regulations directed at the carriage of dangerous goods by road, sea, air, as well as rail. The regulatory network today covers virtually all kinds of substances and commodities that are used for beneficial purposes, but that under certain conditions are potentially harmful to people and the environment. 'The Problems Encountered by International Road Transport in Multimodal Transport Operations', by M. Marmy, paper presented at the 8th International Symposium on the Transport and Handling of Dangerous Goods by Sea and Associated Modes, Havana, Cuba, 1984. These include the chemical fertilizers farmers spread on their fields, the nuclear fuel now powering electricity plants in some two dozen countries, the drugs physicians use to diagnose and treat illnesses, and the fossil fuels, such as gasoline, routinely used in transport vehicles. All told today, about 21 different international labels are required to identify separate classes of dangerous goods among them, explosives, corrosives, and flammables. Another separate class radioactive materials is the specific subject of feature articles in this issue of the IAEA Bulletin. The evolving regulatory system reflects at once the growth in traffic of hazardous materials, essentially a post-World War II trend. Since the mid-1940s, for example, the transport of all dangerous goods just on the seas has grown 1000%. based on reports at a recent international conference. Overall, years ahead will see further increases

  7. Transport of radioactive materials. 2. rev. ed.

    International Nuclear Information System (INIS)

    Vogt, H.W.; Falkhof, W.; Heibach, K.; Ungermann, N.; Hungenberg, H.

    1991-01-01

    With the last changes in the Ordinance Concerning the Transport of Hazardous Goods two regulations which are important for the carrying trade were introduced: 1. The conveyer must train the driver. He must only employ reliable drivers. 2. The driver must participate in a training course (as of July 1, 1991). These obligations, which already existed in the past in regard to the transport of nuclear fuel, have been extended to include the transport of other radioactive materials. In part I the book deals with basic training courses for parcelled goods, and part II goes into the special knowledge which is required of drivers of radioactive materials. The parts consist of the following sections: 1. General regulations, 2, Responsibility when transporting hazardous goods, 3. General danger features, 4. Information on dangers and their designation, 5. The vehicle's equipment and carrying out the transport, 6. Measures for avoiding accidents. At the end of each section the participant in the course finds a series of questions which pertain to the subject matter just treated so that he can test his own learning performance. So as to make things easier for the trainee, the corect answers are listed in the appendix. As a supplementary section on radioactive materials, part II offers additional detailed explanations by experts in the field on the features of radioactive materials and the dangers they pose. In the margin - next to the instructory text - the key words are given so that the right place in the text of the instruction manual can be readily found. These key words are compiled in the appendix to form an index. (orig./HP) [de

  8. Levitation, coating, and transport of particulate materials

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1981-01-01

    Several processes in various fields require uniformly thick coatings and layers on small particles. The particles may be used as carriers of catalytic materials (platinum or other coatings), as laser fusion targets (various polymer or metallic coatings), or for biological or other tracer or interactive processes. We have devised both molecular beam and electro-dynamic techniques for levitation of the particles during coating and electrodynamic methods of controlling and transporting the particles between coating steps and to final use locations. Both molecular beam and electrodynamic techniques are described and several advantages and limitations of each will be discussed. A short movie of an operating electrodynamic levitation and transport apparatus will be shown

  9. Strategic Technologies for Deep Space Transport

    Science.gov (United States)

    Litchford, Ronald J.

    2016-01-01

    Deep space transportation capability for science and exploration is fundamentally limited by available propulsion technologies. Traditional chemical systems are performance plateaued and require enormous Initial Mass in Low Earth Orbit (IMLEO) whereas solar electric propulsion systems are power limited and unable to execute rapid transits. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, key deep space transport mission capability objectives are reviewed in relation to STMD technology portfolio needs, and the advanced propulsion technology solution landscape is examined including open questions, technical challenges, and developmental prospects. Options for potential future investment across the full compliment of STMD programs are presented based on an informed awareness of complimentary activities in industry, academia, OGAs, and NASA mission directorates.

  10. Safe transport of radioactive material. Second edition

    International Nuclear Information System (INIS)

    1996-01-01

    In 1991, the International Atomic Energy Agency published Training Course Series No. 1 (TCS-1), a training manual that provides in 20 chapters a detailed discussion of the background, philosophy, technical bases and requirements and implementation aspects of the Regulations for the Safe Transport of Radioactive Material. The Transport Regulations are widely implemented by the IAEA's Member States and are also used as the bases for radioactive material transport requirements of modal organisations such as the International Maritime Organization and the International Civil Aviation Organization. This document is a supplement of TCS-1 to provide additional material in the form of learning aids and new exercises, that have been developed with the use of TCS-1 at succeeding IAEA training courses. The learning aids in the first part of the supplement are hitherto unpublished material that provide detailed guidance useful in solving the exercises presented in the second part. Solutions to the exercises are on field at the IAEA Secretariat and are available by arrangement to lectures presenting IAEA training courses. 4 refs, 1 fig., 6 tabs

  11. Test for radioactive material transport package safety

    International Nuclear Information System (INIS)

    Li Guoqiang; Zhao Bing; Zhang Jiangang; Wang Xuexin; Ma Anping

    2012-01-01

    Regulations on radioactive material transport in China were introduced. Test facilities and data acquiring instruments for radioactive material package in China Institute for Radiation Protection were also introduced in this paper, which were used in drop test and thermal test. Test facilities were constructed according to the requirements of IAEA's 'Regulations for the Safe Transport of Radioactive Material' (TS-R-l) and Chinese 'Regulations for the Safe Transport of Radioactive Material' (GB 11806-2004). Drop test facilities were used in free drop test, penetration test, mechanical test (free drop test Ⅰ, free drop test Ⅱ and free drop test Ⅲ) of type A and type B packages weighing less than thirteen tons. Thermal test of type B packages can be carried out in the thermal test facilities. Certification tests of type FCo70-YQ package, type 30A-HB-01 package, type SY-I package and type XAYT-I package according to regulations were done using these facilities. (authors)

  12. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  13. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST). Supplement: Research on Materials for the High Speed Civil Transport

    Science.gov (United States)

    Gangloff, Richard P.; Starke, Edgar A., Jr.

    1997-01-01

    This report documents the progress achieved over the past 6 to 12 months on four graduate student projects conducted within the NASA-UVA Light Aerospace Alloy and Structures Technology Program. These studies were aimed specifically at light metallic alloy issues relevant to the High Speed Civil Transport. Research on Hydrogen-Enhanced Fracture of High-Strength Titanium Alloy Sheet refined successfully the high resolution R-curve method necessary to characterize initiation and growth fracture toughnesses. For solution treated and aged Low Cost Beta without hydrogen precharging, fracture is by ductile transgranular processes at 25 C, but standardized initiation toughnesses are somewhat low and crack extension is resolved at still lower K-levels. This fracture resistance is degraded substantially, by between 700 and 1000 wppm of dissolved hydrogen, and a fracture mode change is affected. The surface oxide on P-titanium alloys hinders hydrogen uptake and complicates the electrochemical introduction of low hydrogen concentrations that are critical to applications of these alloys. Ti-15-3 sheet was obtained for study during the next reporting period. Research on Mechanisms of deformation and Fracture in High-Strength Titanium Alloys is examining the microstructure and fatigue resistance of very thin sheet. Aging experiments on 0. 14 mm thick (0.0055 inch) foil show microstructural agility that may be used to enhance fatigue performance. Fatigue testing of Ti-15-3 sheet has begun. The effects of various thermo-mechanical processing regimens on mechanical properties will be examined and deformation modes identified. Research on the Effect of Texture and Precipitates on Mechanical Property Anisotropy of Al-Cu-Mg-X and Al-Cu alloys demonstrated that models predict a minor influence of stress-induced alignment of Phi, caused by the application of a tensile stress during aging, on the yield stress anisotropy of both modified AA2519 and a model Al-Cu binary alloy. This project

  14. Roadmap for Process Equipment Materials Technology

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2003-10-01

    This Technology Roadmap addresses the ever-changing material needs of the chemical and allied process industries, and the energy, economic and environmental burdens associated with corrosion and other materials performance and lifetime issues. This Technology Roadmap outlines the most critical of these R&D needs, and how they can impact the challenges facing today’s materials of construction.

  15. A guide to the suitability of elastomeric seal materials for use in radioactive material transport packages

    International Nuclear Information System (INIS)

    Vince, D.J.

    2004-01-01

    Elastomeric seals are a frequently favoured method of sealing Radioactive Material Transport (RMT) packages. The sealing technology has been proven for many years in a wide range of industrial applications. The requirements of the RMT package applications, however, are significantly different from those commonly found in other industries. This guide outlines the Regulatory performance requirements placed on an RMT package sealing system by TS-R-1, and then summarises the material, environment and geometry characteristics of elastomeric seals relevant to RMT applications. Tables in the guide list typical material properties for a range of elastomeric materials commonly used in RMT packages

  16. Determining the nature of transported material

    International Nuclear Information System (INIS)

    Wykes, J.S.; Surzyn, P.M.; Croke, G.M.; Adsley, I.

    1980-01-01

    An improved method is described of determining the nature of a coal/stone mixture, transported on a conveyor, by measuring the relative transmission of two different energy x-ray beams. Details are given of the collimation, scintillation counters and shielding required to obtain the necessary accuracy to obtain information on the mass and the nature of the material being monitored. Compensation is provided for background radioactivity. (U.K.)

  17. Provision of transport packaging for radioactive materials

    International Nuclear Information System (INIS)

    1981-04-01

    The safe transport of radioactive materials is governed by various regulations based on International Atomic Energy Agency Regulations. This code of practice is a supplement to the regulations, its objects being (a) to advise designers of packaging on the technical features necessary to conform to the regulations, and (b) to outline the requirements for obtaining approval of package designs from the competent authority. (U.K.)

  18. Perceived safety of transporting hazardous materials

    International Nuclear Information System (INIS)

    Reese, R.T.; Shepherd, E.W.

    1981-01-01

    A framework for relating the variables involved in the public perception of hazardous materials transportation was presented. The framework consisted of a conditional mathematical equation in which perceived safety was described by six basic terms (technical feasibility, political palatability, social responsibility, utility assessment, media interpretation, and familiarity as a function of time). The resulting framework provides the technologist with an initial formulation to better understand public perception

  19. 10 CFR 71.5 - Transportation of licensed material.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Transportation of licensed material. 71.5 Section 71.5 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL General Provisions § 71.5 Transportation of licensed material. (a) Each licensee who transports licensed...

  20. Radioactive materials transportation life-cycle cost

    International Nuclear Information System (INIS)

    Gregory, P.C.; Donovan, K.S.; Spooner, O.R.

    1993-01-01

    This paper discusses factors that should be considered when estimating the life-cycle cost of shipping radioactive materials and the development of a working model that has been successfully used. Today's environmental concerns have produced an increased emphasis on cleanup and restoration of production plants and interim storage sites for radioactive materials. The need to transport these radioactive materials to processing facilities or permanent repositories is offset by the reality of limited resources and ever-tightening budgets. Obtaining the true cost of transportation is often difficult because of the many direct and indirect costs involved and the variety of methods used to account for fixed and variable expenses. In order to make valid comparisons between the cost of alternate transportation systems for new and/or existing programs, one should consider more than just the cost of capital equipment or freight cost per mile. Of special interest is the cost of design, fabrication, use, and maintenance of shipping containers in accordance with the requirements of the U.S. Nuclear Regulatory Commission. A spread sheet model was developed to compare the life-cycle costs of alternate fleet configurations of TRUPACT-II, which will be used to ship transuranic waste from U.S. Department of Energy sites to the Waste Isolation Pilot Plant near Carlsbad, New Mexico

  1. Mockup of an automated material transport system for remote handling

    International Nuclear Information System (INIS)

    Porter, M.L.

    1992-01-01

    The automated material transport system (AMTS) was conceived for the transport of samples within the material and process control laboratory (MPCL), located in the plutonium processing building of the special isotope separation (SIS) facility. The MPCL was designed with a dry sample handling laboratory and a wet chemistry analysis laboratory. Each laboratory contained several processing glove boxes. The function of the AMTS was to automate the handling of materials, multiple process samples, and bulky items between process stations with a minimum of operator intervention and with a minimum of waiting periods and nonproductive activities. The AMTS design requirements, design verification mockup plan, and AMTS mockup procurement specification were established prior to cancellation of the SIS project. Due to the AMTS's flexibility, the need for technology development, and applicability to other US Department of Energy facilities, mockup of the AMTS continued. This paper discusses the system design features, capabilities, and results of initial testing

  2. Enabling technologies for demand management: Transport

    International Nuclear Information System (INIS)

    Smith, Roderick A.

    2008-01-01

    Rising transport demand is likely to be the biggest hurdle to reducing our greenhouse gas emissions. Globally and nationally, transport is consuming an ever increasing share of our total energy use. Furthermore, the bulk of energy used in transport comes from the burning of petroleum products. This brief paper summarises options arising from the two routes to reduce energy demand in transport: improved and more efficient use of existing and possible new transport modes, and the reduction of transport demand. In both areas, the prospects in the immediate and longer-term future are hedged with difficulties. Automobiles and aircraft have improved considerably in recent decades, but future improvements are likely to be incremental. The introduction of hydrogen as a fuel is appealing, but there are technical problems to be solved. Active reduction of demand for transport will require a decoupling of the link between demand and growth in gross domestic product. Globally, this will be very difficult to achieve. Various modes of public transport exist that are efficient in terms of their energy use per passenger kilometre. But they need large investments to make them more attractive than the automobile. However, population concentration in mega-cities, allied with congestion, will make such innovation essential. Policy measures can be assisted in their implementation by new technology, but will remain politically problematic

  3. Accelerating technological change. Towards a more sustainable transport system

    NARCIS (Netherlands)

    van der Vooren, A.

    2014-01-01

    This thesis provides insights into the mechanisms of technological change by capturing the complexity that characterises the current technological transition of the transport system into existing evolutionary models of technological change. The transition towards a more sustainable transport system

  4. Radioactive materials' transportation main routes in Brazil. Radiation protection aspects about radioactive materials transportation

    International Nuclear Information System (INIS)

    Vaz, Solange dos Reis e; Andrade, Fernando de Menezes; Aleixo, Luiz Claudio Martins

    2007-01-01

    The heavy transportation in Brazil is generally done by highways. The radioactive material transportation follow this same rule. Whenever a radioactive material is carried by the road, by the sea or by the air, in some cases, a kind of combination of those transportation ways, the transport manager has to create a Transportation Plan and submit it to CNEN. Only after CNEN's approval, the transportation can be done. The plan must have the main action on Radiation Protection, giving responsibilities and showing all the directing that will be take. Although, the Brazilian's highways are not in good conditions, one could say that some of them are not good enough for any kind of transportation. But we are facing radioactive material use increase but the hospitals and industries, that the reason it's much more common that kind of transportation nowadays. So, because of that, a special attention by the governments must be provide to those activities. This paper goal is to show the real conditions of some important highways in Brazil in a radioactive protection's perspective and give some suggestions to adjust some of those roads to this new reality. (author)

  5. Transport Network Technologies – Study and Testing

    DEFF Research Database (Denmark)

    Bozorgebrahimi, K.; Channegowda, M.; Colmenero, A.

    Following on from the theoretical research into Carrier Class Transport Network Technologies (CCTNTs) documented in DJ1.1.1, this report describes the extensive testing performed by JRA1 Task 1. The tests covered EoMPLS, Ethernet OAM, Synchronous Ethernet, PBB-TE, MPLS-TP, OTN and GMPLS...

  6. Green Propulsion Technologies for Advanced Air Transports

    Science.gov (United States)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.

  7. Advanced Materials and Nano technology for Sustainable Energy Development

    International Nuclear Information System (INIS)

    Huo, Z.; Wu, Ch.H.; Zhu, Z.; Zhao, Y.

    2015-01-01

    Energy is the material foundation of human activities and also the single most valuable resource for the production activities of human society. Materials play a pivotal role in advancing technologies that can offer efficient renewable energy solutions for the future. This special issue has been established as an international foremost interdisciplinary forum that aims to publish high quality and original full research articles on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The special issue covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable energy production. It brings together stake holders from universities, industries, government agents, and businesses that are involved in the invention, design, development, and implementation of sustainable technologies. The research work has already been published in this special issue which discusses comprehensive technologies for wastewater treatment, strategies for controlling gaseous pollutant releases within chemical plant, evaluation of FCC catalysis poisoning mechanism, clean technologies for fossil fuel use, new-type photo catalysis material design with controllable morphology for solar energy conversion, and so forth. These studies describe important, intriguing, and systematic investigations on advanced materials and technologies for dealing with the key technologies and important issues that continue to haunt the global energy industry. They also tie together many aspects of current energy transportation science and technology, exhibiting outstanding industrial insights that have the potential to encourage and stimulate fresh perspectives on challenges, opportunities, and solutions to energy and environmental sustainability

  8. Small Transport Aircraft Technology /STAT/ Propulsion Study

    Science.gov (United States)

    Heldenbrand, R. W.; Baerst, C. F.; Rowse, J. H.

    1980-01-01

    The NASA Small Transport Aircraft Technology (STAT) Propulsion Study was established to identify technology requirements and define the research and development required for new commuter aircraft. Interim results of the studies defined mission and design characteristics for 30- and 50-passenger aircraft. Sensitivities were defined that relate changes in engine specific fuel consumption (SFC), weight, and cost (including maintenance) to changes in the aircraft direct operating cost (DOC), takeoff gross weight, and empty weight. A comparison of performance and economic characteristics is presented between aircraft powered by 1980 production engines and those powered by a 1990 advanced technology baseline engine.

  9. Radioactive materials transportation emergency response plan

    International Nuclear Information System (INIS)

    Karmali, N.

    1987-05-01

    Ontario Hydro transports radioactive material between its nuclear facilities, Atomic Energy of Canada Limited at Chalk River Laboratories and Radiochemical Company in Kanata, on a regular basis. Ontario Hydro also occasionally transports to Whiteshell Laboratories, Hydro-Quebec and New Brunswick Electric Power Commission. Although there are stringent packaging and procedural requirements for these shipments, Ontario Hydro has developed a Radioactive Materials Transportation Emergency Response Plan in the event that there is an accident. The Transportation Emergency Response plan is based on six concepts: 1) the Province id divided into three response areas with each station (Pickering, Darlington, Bruce) having identified response areas; 2) response is activated via a toll-free number. A shift supervisor at Pickering will answer the call, determine the hazards involved from the central shipment log and provide on-line advice to the emergency worker. At the same time he will notify the nearest Ontario Hydro area office to provide initial corporate response, and will request the nearest nuclear station to provide response assistance; 3) all stations have capability in terms of trained personnel and equipment to respond to an accident; 4) all Ontario Hydro shipments are logged with Pickering NGS. Present capability is based on computerized logging with the computer located in the shift office at Pickering to allow quick access to information on the shipment; 5) there is a three tier structure for emergency public information. The local Area Manager is the first Ontario Hydro person at the scene of the accident. The responding facility technical spokesperson is the second line of Corporate presence and the Ontario Hydro Corporate spokesperson is notified in case the accident is a media event; and 6) Ontario Hydro will respond to non-Hydro shipments of radioactive materials in terms of providing assistance, guidance and capability. However, the shipper is responsible

  10. Subthreshold electrical transport in amorphous phase-change materials

    International Nuclear Information System (INIS)

    Gallo, Manuel Le; Kaes, Matthias; Sebastian, Abu; Krebs, Daniel

    2015-01-01

    Chalcogenide-based phase-change materials play a prominent role in information technology. In spite of decades of research, the details of electrical transport in these materials are still debated. In this article, we present a unified model based on multiple-trapping transport together with 3D Poole–Frenkel emission from a two-center Coulomb potential. With this model, we are able to explain electrical transport both in as-deposited phase-change material thin films, similar to experimental conditions in early work dating back to the 1970s, and in melt-quenched phase-change materials in nanometer-scale phase-change memory devices typically used in recent studies. Experimental measurements on two widely different device platforms show remarkable agreement with the proposed mechanism over a wide range of temperatures and electric fields. In addition, the proposed model is able to seamlessly capture the temporal evolution of the transport properties of the melt-quenched phase upon structural relaxation. (paper)

  11. Physics and technology of nuclear materials

    CERN Document Server

    Ursu, Ioan

    2015-01-01

    Physics and Technology of Nuclear Materials presents basic information regarding the structure, properties, processing methods, and response to irradiation of the key materials that fission and fusion nuclear reactors have to rely upon. Organized into 12 chapters, this book begins with selectively several fundamentals of nuclear physics. Subsequent chapters focus on the nuclear materials science; nuclear fuel; structural materials; moderator materials employed to """"slow down"""" fission neutrons; and neutron highly absorbent materials that serve in reactor's power control. Other chapters exp

  12. Transportation of radioactive materials: legislative and regulatory information system

    International Nuclear Information System (INIS)

    Fore, C.S.; Heiskell, M.M.

    1980-01-01

    The transportation of radioactive materials, as well as hazardous materials in general, has been an issue of ever-increasing concern and an object of numerous regulations and legislative actions worldwide. The Transportation Technology Center of the US Department of Energy's Sandia Laboratories in Albuquerque, New Mexico, is currently involved in developing a national program to assure the safe shipment of radioactive materials. At Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, this overall effort is being supported in a specialized manner. As part of the Logistics Modeling program at ORNL, the Ecological Sciences Information Center has developed comprehensive data bases containing legislative and regulatory actions relevant to the transportation of hazardous materials. The data bases are separated according to status level of the legislation. The Current Legislation Data Base includes all new legislative actions introduced during the present year (1980) or those bills carried over from the previous year's sessions. The second data file, Historical Legislation Data Base, consists of all legislative actions since 1976 that have passed and become public laws, as well as those actions that were unsuccessful and were classified as denied by law. Currently the data bases include state-, local-, and federal, level legislation, with emphasis on the transportation of radioactive materials. Because of their relevance to the transportation issues, actions involving related subject areas such as, disposal and storage of radioactive wastes, moratoriums on power plant construction, and remedial actions studies, special agencies to regulate shipment of radioactive materials, and requirements of advanced notification, permits and escorts are also included in the data bases

  13. Technologies for climate change mitigation - transport sector

    Energy Technology Data Exchange (ETDEWEB)

    Salter, R.; Newman, P. (Curtin Univ. Sustainability Policy (CUSP) Institute, Perth, WA (Australia)); Dhar, S. (UNEP Risoe Centre, Roskilde (Denmark))

    2011-03-15

    The options outlined in this guidebook are designed to assist you in the process of developing transport services and facilities in your countries and localities - transport that better serves people's needs and enhances their lives while at the same time producing fewer greenhouse gas emissions. This is a new challenge, as previously improving transport generally led to increased greenhouse gases. The challenge now is to provide transport that: 1) is cheaper, more extensive and better quality 2) reduces pollution, congestion, traffic accidents and other threats to health and wellbeing 3) is accessible to all 4) supports economic development 5) reduces greenhouse emissions overall. This can be achieved if: 1) mass transit, walking and cycling are supported and encouraged, and integrated in a way that allows seamless multimodal travel, including networks of taxis, auto-rickshaws and small buses. 2) the mass transit services - including trains, buses and light-rail - are frequent, extensive, attractive, comfortable, affordable and faster than alternatives, with features like integrated ticketing and real time information accessible through mobile phones and other sources 3) private vehicle use and air travel are discouraged through pricing and other demand management measures, and through the availability of better alternative modes 4) there is support for the adoption of cleaner, lower carbon fuels and technologies and better maintenance practices for all transport modes, including private vehicles, water transport, auto-rickshaws and freight vehicles 5) the overall need for travel is reduced through the development of denser localities with more mixed land use and better access to mass transit (which reduces overall travel in ways that will be explained) 6) travel space is better managed to give higher priority to more sustainable transport modes, to promote safety, and to prevent traffic from adversely affecting residents and businesses. As you address these

  14. Technologies for climate change mitigation - transport sector

    Energy Technology Data Exchange (ETDEWEB)

    Salter, R; Newman, P [Curtin Univ. Sustainability Policy (CUSP) Institute, Perth, WA (Australia); Dhar, S [UNEP Risoe Centre, Roskilde (Denmark)

    2011-03-15

    The options outlined in this guidebook are designed to assist you in the process of developing transport services and facilities in your countries and localities - transport that better serves people's needs and enhances their lives while at the same time producing fewer greenhouse gas emissions. This is a new challenge, as previously improving transport generally led to increased greenhouse gases. The challenge now is to provide transport that: 1) is cheaper, more extensive and better quality 2) reduces pollution, congestion, traffic accidents and other threats to health and wellbeing 3) is accessible to all 4) supports economic development 5) reduces greenhouse emissions overall. This can be achieved if: 1) mass transit, walking and cycling are supported and encouraged, and integrated in a way that allows seamless multimodal travel, including networks of taxis, auto-rickshaws and small buses. 2) the mass transit services - including trains, buses and light-rail - are frequent, extensive, attractive, comfortable, affordable and faster than alternatives, with features like integrated ticketing and real time information accessible through mobile phones and other sources 3) private vehicle use and air travel are discouraged through pricing and other demand management measures, and through the availability of better alternative modes 4) there is support for the adoption of cleaner, lower carbon fuels and technologies and better maintenance practices for all transport modes, including private vehicles, water transport, auto-rickshaws and freight vehicles 5) the overall need for travel is reduced through the development of denser localities with more mixed land use and better access to mass transit (which reduces overall travel in ways that will be explained) 6) travel space is better managed to give higher priority to more sustainable transport modes, to promote safety, and to prevent traffic from adversely affecting residents and businesses. As you address these

  15. 31 CFR 594.317 - Financial, material, or technological support.

    Science.gov (United States)

    2010-07-01

    ..., material, or technological support, as used in § 594.201(a)(4)(i) of this part, means any property, tangible or intangible, including but not limited to currency, financial instruments, securities, or any... transportation; or goods. “Technologies” as used in this definition means specific information necessary for the...

  16. Lithium mass transport in ceramic breeder materials

    International Nuclear Information System (INIS)

    Blackburn, P.E.; Johnson, C.E.

    1990-01-01

    The objective of this activity is to measure the lithium vaporization from lithium oxide breeder material under differing temperature and moisture partial pressure conditions. Lithium ceramics are being investigated for use as tritium breeding materials. The lithium is readily converted to tritium after reacting with a neutron. With the addition of 1000 ppM H 2 to the He purge gas, the bred tritium is readily recovered from the blanket as HT and HTO above 400 degree C. Within the solid, tritium may also be found as LiOT which may transport lithium to cooler parts of the blanket. The pressure of LiOT(g), HTO(g), or T 2 O(g) above Li 2 O(s) is the same as that for reactions involving hydrogen. In our experiments we were limited to the use of hydrogen. The purpose of this work is to investigate the transport of LiOH(g) from the blanket material. 8 refs., 1 fig., 3 tabs

  17. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner

    2013-01-01

    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  18. Trends in a aerospace technology advanced materials

    International Nuclear Information System (INIS)

    Ogren, J.R.

    1993-01-01

    The purpose of this presentation is to discuss recent trends in aerospace technology and to discuss as they relate to recent trends in the materials technologies. We shall do this within the framework of a large new activity that is, in fact, underway at the present, namely, MISSION TO THE PLANET EARTH. Mission requirements will be described in a hierarchical order. It will be shown that materials technology, in one form or another, is an identified critical technology for every single aspect of the mission. Other critical aspects exist, primarily in the areas of data processing and data management. International cooperation in aerospace-materials activities will be described. (author)

  19. Evaluation of issues around road materials for sustainable transport

    CSIR Research Space (South Africa)

    Steyn, WJVDM

    2009-07-01

    Full Text Available In addition to a number of other factors (social, economic, etc) sustainable transport requires the sustainable supply and use of construction materials. This includes the use of marginal materials, waste materials, novel / innovative materials...

  20. MAPPING PROVISION OF LANDSCAPE-ENVIRONMENTAL SUSTAINABILITY FOR AREAS OF PRODUCTION, PROCESSING AND TRANSPORTATION OF HYDROCARBON RAW MATERIALS WITH USING REMOTE SENSING DATA AND GIS TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    G. V. Geldieva

    2015-01-01

    Full Text Available The article describes the wide range of applications at all stages of development of hydrocarbon deposits mapping method. On the model region – Karachaganak gas condensate field to demonstrate the use of modern geoinformation technologies in creating a series of inventory and assessment of landscape-ecological maps, maps of general scientific content, maps application and purpose.

  1. IUTAM Symposium on Lubricated Transport of Viscous Materials

    CERN Document Server

    1998-01-01

    The main objective of the First International Symposium on Lubricated Transport of Viscous Materials was to bring together scientists and engineers from academia and industryto discuss current research work and exchange ideas in this newly emerging field. It is an area offluid dynamics devoted to laying bare the principlesofthe lubricated transport of viscous materials such as crude oil, concentrated oil/water emulsion, slurries and capsules. It encompasses several types of problem. Studies of migration of particulates away from walls, Segre-Silverberg effects, lubrication versus lift and shear-induced migration belong to one category. Some of the technological problems are the fluid dynamics ofcore flows emphasizing studies ofstability, problems of start-up, lift-off and eccentric flow where gravity causes the core flow to stratify. Another category of problems deals with the fouling of pipe walls with oil, with undesirable increases in pressure gradients and even blocking. This study involves subjects like ...

  2. Transportation of ions through cement based materials

    International Nuclear Information System (INIS)

    Chatterji, S.

    1994-01-01

    Transportation of ions, both anions and cations, through cement based materials is one of the important processes in their durability and as such has been studied very extensively. It has been studied from the point of view of the reinforcement corrosion, alkali-silica reaction, sulfate attack on cement and concrete, as well as in the context of the use of the cement based materials in the disposal of nuclear waste. In this paper the fundamental equations of diffusion, i.e. Fick's two equations, Nernst and Nernst-Planck equations have been collected. Attention has been drawn to the fact that Fick's two equations are valid for non-ionic diffusants and that for ions the relevant equations are those of Nernst and Nernst-Planck. The basic measurement techniques have also been commented upon

  3. Materials technology at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Betten, P.

    1989-01-01

    Argonne is actively involved in the research and development of new materials research and development (R ampersand D). Five new materials technologies have been identified for commercial potential and are presented in this paper as follows: (1) nanophase materials, (2) nuclear magnetic resonance (NMR) imaging of ceramics, (3) superconductivity developments and technology transfer mechanisms, and (4) COMMIX computer code modeling for metal castings, and (5) tribology using ion-assisted deposition (IAB). 4 refs., 7 figs., 1 tab

  4. DOE/PNC joint program on transportation technology

    International Nuclear Information System (INIS)

    Kubo, M.; Kajitani, M.; Seya, M.; Yoshimura, H.R.; Moya, J.L.; May, R.A.; Huerta, M.; Stenberg, D.R.

    1986-01-01

    This paper summarizes the work performed in a cooperative program on transportation technology between the Department of Energy (DOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. This work was performed at Sandia National Laboratories (SNL) in Albuquerque, New Mexico. The joint program emphasized the safety analysis for truck transportation of special nuclear materials (SNM) in Japan. Tasks included structural analyses and testing, thermal testing, leak rate studies and tests, and transportation risk assessments. The purpose of this paper is to present the results of full-scale structural and thermal tests conducted on a PNC development SNM transport system. Correlation of full-scale impact test results with structural analysis and scale model testing will also be reviewed

  5. From microsystems technology to the Saenger II space transportation system

    Science.gov (United States)

    Vogels, Hanns Arnt

    The role of space projects as drivers and catalysts of technology advances is discussed and illustrated from the perspective of the West German aerospace industry, summarizing a talk presented at the 1986 meeting of the German aerospace society DGLR. The history of space-transportation-system (STS) technology since the 1950s is traced, emphasizing the needs for greater payload weights and lower costs, and the design concept of Saenger II, a proposed two-stage ESA STS employing a hypersonic jet transport aircraft as its first stage, is outlined. It is argued that experience gained in developing the rocket-launched Hermes STS will be applicable to the second stage of Saenger II. Recent developments in microsystems (combining microelectronics, micromechanics, and microoptics), advanced materials (fiber-reinforced plastics, metals, and ceramics), and energy technology (hydrogen-based systems and solar cells) are surveyed, and their applicability to STSs is considered.

  6. Advanced technologies for intelligent transportation systems

    CERN Document Server

    Picone, Marco; Amoretti, Michele; Zanichelli, Francesco; Ferrari, Gianluigi

    2015-01-01

    This book focuses on emerging technologies in the field of Intelligent Transportation Systems (ITSs) namely efficient information dissemination between vehicles, infrastructures, pedestrians and public transportation systems. It covers the state-of-the-art of Vehicular Ad-hoc Networks (VANETs), with centralized and decentralized (Peer-to-Peer) communication architectures, considering several application scenarios. With a detailed treatment of emerging communication paradigms, including cross networking  and distributed algorithms. Unlike most of the existing books, this book presents a multi-layer overview of information dissemination systems, from lower layers (MAC) to high layers (applications). All those aspects are investigated considering the use of mobile devices, such as smartphones/tablets and embedded systems, i.e. technologies that during last years completely changed the current market, the user expectations, and communication networks. The presented networking paradigms are supported and validate...

  7. Materials performance in advanced fossil technologies

    International Nuclear Information System (INIS)

    Natesan, K.

    1991-01-01

    A number of advanced technologies are being developed to convert coal into clean fuels for use as a feedstock in chemical plants and for power generation. From the standpoint of component materials, the environments created by coal conversion and combustion in these technologies and their interactions with materials are of interest. This article identifies several modes of materials degradation and possible mechanisms for metal wastage. Available data on the performance of materials in several of the environments are highlighted, and examples of promising research activities to improve the corrosion resistance of materials are presented

  8. Hybrid Electric Propulsion Technologies for Commercial Transports

    Science.gov (United States)

    Bowman, Cheryl; Jansen, Ralph; Jankovsky, Amy

    2016-01-01

    NASA Aeronautics Research Mission Directorate has set strategic research thrusts to address the major drivers of aviation such as growth in demand for high-speed mobility, addressing global climate and capitalizing in the convergence of technological advances. Transitioning aviation to low carbon propulsion is one of the key strategic research thrust and drives the search for alternative and greener propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The Hybrid Gas-Electric Subproject in the Advanced Air Transportation Project is energizing the transport class landscape by accepting the technical challenge of identifying and validating a transport class aircraft with net benefit from hybrid propulsion. This highly integrated aircraft of the future will only happen if airframe expertise from NASA Langley, modeling and simulation expertise from NASA Ames, propulsion expertise from NASA Glenn, and the flight research capabilities from NASA Armstrong are brought together to leverage the rich capabilities of U.S. Industry and Academia.

  9. The safe transport of radioactive material in South Africa

    International Nuclear Information System (INIS)

    Jutle, K.K.

    1997-01-01

    An overview is presented of the activities related to the transport of radioactive material in South Africa. In particular, the applicable legislation, the scope of authority and regulatory functions of the Competent Authority are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. (Author)

  10. The safe transport of radioactive material in South Africa

    International Nuclear Information System (INIS)

    Jutle, K.K.

    2000-01-01

    An overview is presented of the activities related to the transport of radioactive material in South Africa. In particular, the applicable legislation, the scope of authority and the regulatory functions of the Competent Authority are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. (author)

  11. Transportation Beyond 2000: Technologies Needed for Engineering Design

    Science.gov (United States)

    Huebner, Lawrence D. (Compiler); Asbury, Scott C. (Compiler); Lamar, John E. (Compiler); McKinley, Robert E., Jr. (Compiler); Scott, Robert C. (Compiler); Small, William J. (Compiler); Torres, Abel O. (Compiler)

    1996-01-01

    The purpose of the workshop was to acquaint the staff of the NASA Langley Research Center with the broad spectrum of transportation challenges and concepts foreseen within the next 20 years. The hope is that material presented at the workshop and contained in this document will stimulate innovative high-payoff research directed towards the efficiency of future transportation systems. The workshop included five sessions designed to stress the factors that will lead to a revolution in the way we will travel in the 21st century. The first session provides the historical background and a general perspective for future transportation, including emerging transportation alternatives such as working at a distance. Personal travel is the subject of Session Two. The third session looks at mass transportation, including advanced rail vehicles, advanced commuter aircraft, and advanced transport aircraft. The fourth session addresses some of the technologies required for the above revolutionary transportation systems to evolve. The workshop concluded with a wrap-up panel discussion, Session Five. The topics presented herein all have viable technical components and are at a stage in their development that, with sufficient engineering research, one or more of these could make a significant impact on transportation and our social structure.

  12. Space Station technology testbed: 2010 deep space transport

    Science.gov (United States)

    Holt, Alan C.

    1993-01-01

    A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and

  13. Basic materials and structures aspects for hypersonic transport vehicles (HTV)

    Science.gov (United States)

    Steinheil, E.; Uhse, W.

    A Mach 5 transport design is used to illustrate structural concepts and criteria for materials selections and also key technologies that must be followed in the areas of computational methods, materials and construction methods. Aside from the primary criteria of low weight, low costs, and conceivable risks, a number of additional requirements must be met, including stiffness and strength, corrosion resistance, durability, and a construction adequate for inspection, maintenance and repair. Current aircraft construction requirements are significantly extended for hypersonic vehicles. Additional consideration is given to long-duration temperature resistance of the airframe structure, the integration of large-volume cryogenic fuel tanks, computational tools, structural design, polymer matrix composites, and advanced manufacturing technologies.

  14. Regulation on the transport of nuclear fuel materials by vehicles

    International Nuclear Information System (INIS)

    1984-01-01

    The regulations applying to the transport of nuclear fuel materials by vehicles, mentioned in the law for the regulations of nuclear source materials, nuclear fuel materials and reactors. The transport is for outside of the factories and the site of enterprises by such modes of transport as rail, trucks, etc. Covered are the following: definitions of terms, places of fuel materials handling, loading methods, limitations on mix loading with other cargo, radiation dose rates concerning the containers and the vehicles, transport indexes, signs and indications, limitations on train linkage during transport by rail, security guards, transport of empty containers, etc. together with ordinary rail cargo and so on. (Mori, K.)

  15. Textile materials for lightweight constructions technologies, methods, materials, properties

    CERN Document Server

    2016-01-01

    In this book, experts on textile technologies convey both general and specific informa­tion on various aspects of textile engineering, ready-made technologies, and textile chemistry. They describe the entire process chain from fiber materials to various yarn constructions, 2D and 3D textile constructions, preforms, and interface layer design. In addition, the authors introduce testing methods, shaping and simulation techniques for the characterization of and structural mechanics calculations on anisotropic, pliable high-performance textiles, including specific examples from the fields of fiber plastic composites, textile concrete, and textile membranes. Readers will also be familiarized with the potential offered by increasingly popular textile structures, for instance in the fields of composite technology, construction technology, security technology, and membrane technology. Textile materials and semi-finished products have widely varied potential characteristics, and are commonly used as essential element...

  16. Quantum Transport Simulations of Nanoscale Materials

    KAUST Repository

    Obodo, Tobechukwu Joshua

    2016-01-07

    Nanoscale materials have many potential advantages because of their quantum confinement, cost and producibility by low-temperature chemical methods. Advancement of theoretical methods as well as the availability of modern high-performance supercomputers allow us to control and exploit their microscopic properties at the atomic scale, hence making it possible to design novel nanoscale molecular devices with interesting features (e.g switches, rectifiers, negative differential conductance, and high magnetoresistance). In this thesis, state-of-the-art theoretical calculations have been performed for the quantum transport properties of nano-structured materials within the framework of Density Functional Theory (DFT) and the Nonequilibrium Green\\'s Function (NEGF) formalism. The switching behavior of a dithiolated phenylene-vinylene oligomer sandwiched between Au(111) electrodes is investigated. The molecule presents a configurational bistability, which can be exploited in constructing molecular memories, switches, and sensors. We find that protonation of the terminating thiol groups is at the origin of the change in conductance. H bonding at the thiol group weakens the S-Au bond, and thus lowers the conductance. Our results allow us to re-interpret the experimental data originally attributing the conductance reduction to H dissociation. Also examined is current-induced migration of atoms in nanoscale devices that plays an important role for device operation and breakdown. We studied the migration of adatoms and defects in graphene and carbon nanotubes under finite bias. We demonstrate that current-induced forces within DFT are non-conservative, which so far has only been shown for model systems, and can lower migration barrier heights. Further, we investigated the quantum transport behavior of an experimentally observed diblock molecule by varying the amounts of phenyl (donor) and pyrimidinyl (acceptor) rings under finite bias. We show that a tandem configuration of

  17. Rural public transportation technologies : user needs and applications : final report

    Science.gov (United States)

    1998-07-01

    The Rural Public Transportation Technologies: User Needs and Applications study was conducted as part of the U.S. Department of Transportations (DOT) overall Rural Intelligent Transportation System (ITS) Program. The study examined the opportuniti...

  18. Rural Public Transportation Technologies: User Needs and Applications. Executive Summary

    Science.gov (United States)

    1998-07-01

    The Rural Public Transportation Technologies: User Needs and Applications study was conducted as part of the U.S. Department of Transportation's (DOT) overall Rural Intelligent Transportation System (ITS) Program. The study examined the opportunities...

  19. Quantum transport through 3D Dirac materials

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, M. [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Jafari, S.A., E-mail: jafari@physics.sharif.edu [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Center of Excellence for Complex Systems and Condensed Matter (CSCM), Sharif University of Technology, Tehran 1458889694 (Iran, Islamic Republic of)

    2015-08-15

    Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.

  20. Quantum transport through 3D Dirac materials

    International Nuclear Information System (INIS)

    Salehi, M.; Jafari, S.A.

    2015-01-01

    Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect

  1. Transport of radioactive material in Bangladesh: a regulatory perspective

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2004-01-01

    Radioactive material is transported in Bangladesh in various types of packages and by different modes of transport. The transport of radioactive materials involves a risk both for the workers and members of the public. The safe transport of radioactive material is ensured in Bangladesh by compliance with Nuclear Safety and Radiation Control (NSRC) Act-93 and NSRC Rules-97. The Bangladesh Atomic Energy Commission (BAEC) is the competent authority for the enforcement of the NSRC act and rules. The competent authority has established regulatory control at each stage to ensure radiation safety to transport workers, members of general public and the environment. An overview is presented of the activities related to the transport of radioactive material in Bangladesh. In particular, the applicable legislation, the scope of authority and the regulatory functions of the competent authority are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. (author)

  2. A new tephrochronology for early diverse stone tool technologies and long-distance raw material transport in the Middle to Late Pleistocene Kapthurin Formation, East Africa.

    Science.gov (United States)

    Blegen, Nick; Jicha, Brian R; McBrearty, Sally

    2018-05-09

    The Middle to Late Pleistocene (780-10 ka) of East Africa records evidence of significant behavioral change, early fossils of Homo sapiens, and the dispersals of our species across and out of Africa. Studying human evolution in this time period thus requires an extensive and precise chronology relating behavioral evidence from archaeological sequences to aspects of hominin biology and evidence of past environments from fossils and geological sequences. Tephrochronology provides the chronostratigraphic resolution to achieve this through correlation and dating of volcanic ashes. The tephrochronology of the Kapthurin Formation presented here, based on tephra correlations and 40 Ar/ 39 Ar dates, provides new ages between 395.6 ± 3.5 ka and 465.3 ± 1.0 ka for nine sites showing diverse blade and Levallois methods of core reduction. These are >110 kyr older than previously known in East Africa. New 40 Ar/ 39 Ar dates provide a refined age of 222.5 ± 0.6 ka for early evidence of long-distance (166 km) obsidian transport at the Sibilo School Road Site. A tephra correlation between the Baringo and Victoria basins also provides a new date of ∼100 ka for the Middle Stone Age site of Keraswanin. By providing new and older dates for 11 sites containing several important aspects of hominin behavior and extending the chronology of the Kapthurin Formation forward by ∼130,000 years, the tephrochronology presented here contributes one of the longest and most refined chronostratigraphic frameworks of Middle through Late Pleistocene East Africa. This tephrochronology thus provides the foundation to understand the process of modern human behavioral evolution as it relates to biological and paleoenvironmental circumstances. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. A New Tephrochronology for Early Diverse Stone Tool Technologies and Long-Distance Raw Material Transport in the Middle-Late Pleistocene Kapthurin Formation, East Africa.

    Science.gov (United States)

    Blegen, N.; Jicha, B.

    2017-12-01

    The Middle to Late Pleistocene (780-10 ka) of East Africa records significant behavioral change, the earliest fossils of Homo sapiens and the dispersals of our species across and out of Africa. Studying human evolution in the Middle to Late Pleistocene thus requires an extensive and precise chronology relating the appearances of various behaviors preserved in archaeological sequences to aspects of hominin biology and evidence of past environments preserved in the fossils and geological sequences. Tephrochronology provides the chronostratigraphic resolution to achieve this through correlation and dating of volcanic ashes. The tephrochronology of the Kapthurin Formation presented here, based on tephra correlations and 40Ar/ 39Ar dates, provides new ages between 396.3 ± 3.4 ka and 465.3 ± 1.0 ka for nine sites showing some of the earliest evidence of diverse blade and Levallois methods of core reduction. These are >110 kyr older than previously known in East Africa. New 40Ar/ 39Ar dates provide a refined age of 222.5 ± 0.6 ka for early evidence of long-distance obsidian transport at the Sibilo School Road Site. Long-distance tephra correlation between the Baringo and Lake Victoria basins also provides a new date of 100 ka for the Middle Stone Age site of Keraswanin. By providing new or older dates for 11 sites containing several important aspects of hominin behavior and extending the chronology of the Kapthurin Formation forward by 130,000 years, the tephrochronology presented here contributes one of the longest and most refined chronostratigraphic frameworks relevant to modern human evolution. In conjunction with recent archaeological and paleoenvironmental data, this tephrochronology provides the foundation to understand the process of modern human behavioral evolution through the East African Middle and Late Pleistocene as it relates to biological and paleoenvironmental circumstances.

  4. Transportation of hazardous materials (hazmat) a literature survey

    OpenAIRE

    Zafer YILMAZ; Serpil EROL; Hakan Soner APLAK

    2016-01-01

    ransportation has a great role in logistics. Many researchers have studied on transportation and vehicle routing problems. Transportation of hazardous materials (hazmat) is a special subject for logistics. Causalities due to the accidents caused by trucks carrying hazardous materials will be intolerable. Many researchers have studied on risk assessment of hazmat transportation to find ways for reducing hazardous material transportation risks. Some researchers have studied routing of hazmat tr...

  5. Surface physics of materials materials science and technology

    CERN Document Server

    Blakely, J M

    2013-01-01

    Surface Physics of Materials presents accounts of the physical properties of solid surfaces. The book contains selected articles that deal with research emphasizing surface properties rather than experimental techniques in the field of surface physics. Topics discussed include transport of matter at surfaces; interaction of atoms and molecules with surfaces; chemical analysis of surfaces; and adhesion and friction. Research workers, teachers and graduate students in surface physics, and materials scientist will find the book highly useful.

  6. Transportation of radioactive materials in Sweden

    International Nuclear Information System (INIS)

    Ericsson, A.M.

    1979-06-01

    This report is designed to calculate the total risk due to shipping radioactive materials in Sweden. The base case developed is the shipment model that is used now or the best estimate for expected shipments. The model for the calculations and the computer program used has been developed at the Sandia Laboratories, Albuquerque, N.M., USA and is the same that was used for the NUREG-0170 study. The results from the calculations show an annual expected population dose of 30 person-rem due to normal transport conditions. The annual expected dose from accidents were calculated to be between 2.3-20.8 person rem. The higher figure represents the case where plutonium is shipped back to Sweden from reprocessing plants abroad in the form of PuO2 and the lower figure represent the case when plutonium is shipped back in the form of mixed oxide fuel. The total additional population dose in Sweden due to both normal and accident conditions in the transportation of radioactive materials will be 30 - 50 person rem/year. Compared to the natural background radiation that is 8x10 5 person rem per year in Sweden, this figure is very low. If converted to latent cancer fatalities this population dose will add approximately 3.5x10 3 cancers each year. The consequences due to accidents have been calculated and are discussed separately from their probabilities. The most severe accident that was found was an accident involving PuO 2 . This accident would give 82 400 rem as a maximum individual dose and 8.1x10 5 person rem as a population dose. (Auth.)

  7. Innovative technology summary report: Transportable vitrification system

    International Nuclear Information System (INIS)

    1998-09-01

    At the end of the cold war, many of the Department of Energy's (DOE's) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned

  8. Technology transfer and international development: Materials and manufacturing technology

    Science.gov (United States)

    1982-01-01

    Policy oriented studies on technological development in several relatively advanced developing countries were conducted. Priority sectors defined in terms of technological sophistication, capital intensity, value added, and export potential were studied in Brazil, Venezuela, Israel, and Korea. The development of technological policy alternatives for the sponsoring country is assessed. Much emphasis is placed on understanding the dynamics of the sectors through structured interviews with a large sample of firms in the leading manufacturing and materials processing sectors.

  9. Regulations for the safe transport of radioactive materials

    International Nuclear Information System (INIS)

    Kgogo, Obonye

    2016-04-01

    The report provides insight and investigates whether Transport Regulations in Botswana follow international standards for transport of radioactive material. Radioactive materials are very useful in most of our activities and are manufactured in different countries, therefore end up traversing from one country to another and being transported in national roads .The IAEA regulation for the Transport of radioactive material is used as the reference guideline in this study. The current Regulations for Transport of radioactive material in Botswana do not cover all factors which need to be considered when transporting radioactive although they refer to IAEA regulations. Basing on an inadequacy of the regulations and category of radioactive materials in the country recommendations were made concerning security, packaging and worker training's. The regulations for the Transport of radioactive material in Botswana need to be reviewed and updated so that they can relate to international standard. (au)

  10. Radiological impact of radioactive materials transport in France

    International Nuclear Information System (INIS)

    Hamard, J.

    1987-01-01

    Radiation doses of personnel and populations are estimated between 1983 and 1985 during road transport of radiopharmaceuticals, spent fuels, wastes and other radioactive materials. Dose equivalent received by air transport and others are difficult to know. Results are summed up in 8 tables. Radioactive materials transport represents less than 1% of exposures related to the fuel cycle [fr

  11. Reducing Weight for Transportation Applications: Technology Challenges and Opportunities

    Science.gov (United States)

    Taub, Alan I.

    Today's land, sea and air transportation industries — as a business necessity — are focused on technology solutions that will make vehicles more sustainable in terms of energy, the environment, safety and affordability. Reducing vehicle weight is a key enabler for meeting these challenges as well as increasing payload and improving performance. The potential weight reductions from substituting lightweight metals (advanced high-strength steels, aluminum, magnesium and titanium alloys) are well established. For magnesium castings, weight savings of 60% have been reported [1]. The value of weight reduction depends on the transportation sector and ranges from about 5/kg saved for automobiles to over 500/kg saved for aircraft [2]. The challenge is to optimize the material properties and develop robust, high volume, manufacturing technologies and the associated supply chain to fabricate components and subsystems at the appropriate cost for each application.

  12. Emerging Materials Technologies That Matter to Manufacturers

    Science.gov (United States)

    Misra, Ajay K.

    2015-01-01

    A brief overview of emerging materials technologies. Exploring the weight reduction benefit of replacing Carbon Fiber with Carbon Nanotube (CNT) in Polymer Composites. Review of the benign purification method developed for CNT sheets. The future of manufacturing will include the integration of computational material design and big data analytics, along with Nanomaterials as building blocks.

  13. Frontiers in Materials Science and Technology

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Tailored materials and innovative designs of products are the key drivers in many modern ... affordable multistage processing and manufacturing technologies. ..... large-scale production of micro components of a wide range of materials are described in ... rapid prototyping with accurate and flexible ceramic manufacture by ...

  14. Workshop on technology issues of superconducting Maglev transportation systems

    International Nuclear Information System (INIS)

    Wegrzyn, J.E.; Shaw, D.T.

    1991-01-01

    There exists a critical need in the United States to improve its ground transportation system. One suggested system that offers many advantages over the current transportation infrastructure is Maglev. Maglev represents the latest evolution in very high and speed ground transportation, where vehicles are magnetically levitated, guided, and propelled over elevated guideways at speeds of 300 miles per hour. Maglev is not a new concept but is, however, receiving renewed interest. The objective of this workshop was to further promote these interest by bringing together a small group of specialists in Maglev technology to discuss Maglev research needs and to identify key research issues to the development of a successful Maglev system. The workshop was organized into four sessions based on the following technical areas: Materials, Testing, and Shielding; Magnet Design and Cryogenic Systems; Propulsion and Levitation Systems; and, System Control and Integration

  15. Some issues on environmental impact report of radioactive material transport

    International Nuclear Information System (INIS)

    Wang Jiaming

    2001-01-01

    The author puts forward some issues which should be paid attention to when compiling a environmental impact report of radioactive material transport. The main issues discussed are as follows: (1) Optimization analysis for transport routes. (2) Source terms under accident conditions in transport. (3) Precautions against accidents and emergency preparedness. (4) Quality assurance of transport, etc

  16. New technologies for monitoring nuclear materials

    International Nuclear Information System (INIS)

    Moran, B.W.

    1993-01-01

    This paper describes new technologies for monitoring the continued presence of nuclear materials that are being evaluated in Oak Ridge, Tennessee, to reduce the effort, cost, and employee exposures associated with conducting nuclear material inventories. These technologies also show promise for the international safeguarding of process systems and nuclear materials in storage, including spent fuels. The identified systems are based on innovative technologies that were not developed for safeguards applications. These advanced technologies include passive and active sensor systems based on optical materials, inexpensive solid-state radiation detectors, dimensional surface characterization, and digital color imagery. The passive sensor systems use specialized scintillator materials coupled to optical-fiber technologies that not only are capable of measuring radioactive emissions but also are capable of measuring or monitoring pressure, weight, temperature, and source location. Small, durable solid-state gamma-ray detection devices, whose components are estimated to cost less than $25 per unit, can be implemented in a variety of configurations and can be adapted to enhance existing monitoring systems. Variations in detector design have produced significantly different system capabilities. Dimensional surface characterization and digital color imaging are applications of developed technologies that are capable of motion detection, item surveillance, and unique identification of items

  17. Hydrogen storage technology materials and applications

    CERN Document Server

    Klebanoff, Lennie

    2012-01-01

    Zero-carbon, hydrogen-based power technology offers the most promising long-term solution for a secure and sustainable energy infrastructure. With contributions from the world's leading technical experts in the field, Hydrogen Storage Technology: Materials and Applications presents a broad yet unified account of the various materials science, physics, and engineering aspects involved in storing hydrogen gas so that it can be used to provide power. The book helps you understand advanced hydrogen storage materials and how to build systems around them. Accessible to nonscientists, the first chapt

  18. Radioactive Dry Process Material Treatment Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Hung, I. H.; Kim, K. K. (and others)

    2007-06-15

    The project 'Radioactive Dry Process Material Treatment Technology Development' aims to be normal operation for the experiments at DUPIC fuel development facility (DFDF) and safe operation of the facility through the technology developments such as remote operation, maintenance and pair of the facility, treatment of various high level process wastes and trapping of volatile process gases. DUPIC Fuel Development Facility (DFDF) can accommodate highly active nuclear materials, and now it is for fabrication of the oxide fuel by dry process characterizing the proliferation resistance. During the second stage from march 2005 to February 2007, we carried out technology development of the remote maintenance and the DFDF's safe operation, development of treatment technology for process off-gas, and development of treatment technology for PWR cladding hull and the results was described in this report.

  19. Materials of 13. conference: ATM'92 - Advanced materials and technologies

    International Nuclear Information System (INIS)

    1992-01-01

    13th conference on metal science, modern materials and technologies (ATM'92) has been held in Popowo near Warsaw, Poland in September 1992. The conference has been divided into 9 sections. There are: Plenary section (7 lectures); Functional materials (12 lectures); Methods of material microstructure shaping (5 lectures and 14 posters); Surface engineering (5 lectures and 27 posters); Composites (5 lectures and 9 posters); Iron alloys A (7 lectures and 8 posters); Iron alloys B (7 lectures and 18 posters); Non-ferrous metal alloys (7 lectures and 11 posters) and Methods for materials research (5 lectures and 23 posters). The new materials preparation, their properties and structure as well as a methods for obtaining a desirable properties of material or their surface have been broadly referred and discussed

  20. Nonlinear Ballistic Transport in an Atomically Thin Material.

    Science.gov (United States)

    Boland, Mathias J; Sundararajan, Abhishek; Farrokhi, M Javad; Strachan, Douglas R

    2016-01-26

    Ultrashort devices that incorporate atomically thin components have the potential to be the smallest electronics. Such extremely scaled atomically thin devices are expected to show ballistic nonlinear behavior that could make them tremendously useful for ultrafast applications. While nonlinear diffusive electron transport has been widely reported, clear evidence for intrinsic nonlinear ballistic transport in the growing array of atomically thin conductors has so far been elusive. Here we report nonlinear electron transport of an ultrashort single-layer graphene channel that shows quantitative agreement with intrinsic ballistic transport. This behavior is shown to be distinctly different than that observed in similarly prepared ultrashort devices consisting, instead, of bilayer graphene channels. These results suggest that the addition of only one extra layer of an atomically thin material can make a significant impact on the nonlinear ballistic behavior of ultrashort devices, which is possibly due to the very different chiral tunneling of their charge carriers. The fact that we observe the nonlinear ballistic response at room temperature, with zero applied magnetic field, in non-ultrahigh vacuum conditions and directly on a readily accessible oxide substrate makes the nanogap technology we utilize of great potential for achieving extremely scaled high-speed atomically thin devices.

  1. Structure and transport properties of nanostructured materials.

    Science.gov (United States)

    Sonwane, C G; Li, Q

    2005-03-31

    In the present manuscript, we have presented the simulation of nanoporous aluminum oxide using a molecular-dynamics approach with recently developed dynamic charge transfer potential using serial/parallel programming techniques (Streitz and Mintmire Phys. Rev. B 1994, 50, 11996). The structures resembling recently invented ordered nanoporous crystalline material, MCM-41/SBA-15 (Kresge et al. Nature 1992, 359, 710), and inverted porous solids (hollow nanospheres) with up to 10 000 atoms were fabricated and studied in the present work. These materials have been used for separation of gases and catalysis. On several occasions including the design of the reactor, the knowledge of surface diffusion is necessary. In the present work, a new method for estimating surface transport of gases based on a hybrid Monte Carlo method with unbiased random walk of tracer atom on the pore surface has been introduced. The nonoverlapping packings used in the present work were fabricated using an algorithm of very slowly settling rigid spheres from a dilute suspension into a randomly packed bed. The algorithm was modified to obtain unimodal, homogeneous Gaussian and segregated bimodal porous solids. The porosity of these solids was varied by densification using an arbitrary function or by coarsening from a highly densified pellet. The surface tortuosity for the densified solids indicated an inverted bell shape curve consistent with the fact that at very high porosities there is a reduction in the connectivity while at low porosities the pores become inaccessible or dead-end. The first passage time distribution approach was found to be more efficient in terms of computation time (fewer tracer atoms needed for the linearity of Einstein's plot). Results by hybrid discrete-continuum simulations were close to the discrete simulations for a boundary layer thickness of 5lambda.

  2. Sustainable ground transportation – review of technologies, challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States)

    2013-07-01

    Currently there are nearly 750 million ground vehicles in service worldwide. They are responsible for 50% of petroleum (oil) consumption and 60% of all greenhouse gas (GHG) emissions worldwide. The number of vehicles is forecasted to double by 2050. Therefore the environmental issues such as noise, emissions and fuel burn have become important for energy and environmental sustainability. This paper provides an overview of specific energy and environmental issues related to ground transportation. The technologies related to reduction in energy requirements such as reducing the vehicle mass by using the high strength low weight materials and reducing the viscous drag by active flow control and smoothing the operational profile, and reducing the contact friction by special tire materials are discussed along with the portable energy sources for reducing the GHG emissions such as low carbon fuels (biofuels), Lithium-ion batteries with high energy density and stability, and fuel cells. The technological challenges and opportunities for innovations are discussed.

  3. Preparing technicians for engineering materials technology

    Science.gov (United States)

    Jacobs, James A.; Metzloff, Carlton H.

    1990-01-01

    A long held principle is that for every engineer and scientist there is a need for ten technicians to maximize the efficiency of the technology team for meeting needs of industry and government. Developing an adequate supply of technicians to meet the requirements of the materials related industry will be a challenge and difficult to accomplish. A variety of agencies feel the need and wish to support development of engineering materials technology programs. In a joint effort among Battelle Laboratories, the Department of Energy (DOE) and Northwest College and University Association for Science (NORCUS), the development of an engineering materials technology program for vocational programs and community colleges for the Pacific Northwest Region was recently completed. This effort has implications for a national model. The model Associate of Applied Science degree in Engineering Materials Technology shown provides a general structure. It purposely has course titles which need delimiting while also including a core of courses necessary to develop cognitive, affective and psychomotor skills with the underlining principles of math, science and technology so students have job entry skills, and so that students can learn about and adapt to evolving technology.

  4. Packaging and transportation of radioactive materials

    International Nuclear Information System (INIS)

    1978-01-01

    The following topics are discussed in this volume: shielding and criticality; transportation accidents; physical security in transit; transport forecasting and logistics; transportation experience, operations and planning; regulation; standards and quality assurance; risk analysis; and environmental impacts. Separate abstracts are prepared for individual items

  5. Packaging and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The following topics are discussed in this volume: shielding and criticality; transportation accidents; physical security in transit; transport forecasting and logistics; transportation experience, operations and planning; regulation; standards and quality assurance; risk analysis; and environmental impacts. Separate abstracts are prepared for individual items. (DC)

  6. OCRWM Science and Technology Program Cementitious Materials Technologies

    International Nuclear Information System (INIS)

    DOE

    2004-01-01

    This potential project will develop and test cost effective cementitious materials for construction of Yucca Mountain (YM) inverts, drift liners, and bulkheads. These high silica cementitious materials will be designed to buffer the pH and Eh of the groundwater, to slow corrosion of waste packages (WP), and to retard radionuclide migration. While being compatible with YM repository systems, these materials are expected to be less expensive to produce, and as strong, and more durable than ordinary Portland Cement (OPC). Therefore, building out the repository with these cementitious materials may significantly reduce these costs and reduce uncertainty in short-( 10,000 yr) repository performance. Both laboratory development and natural analog studies are anticipated using a unique combination of expertise at ORNL, UT, UC Berkeley, and Minatom to develop and test high-silica hydraulic, cementitious binders for use at YM. The major tasks of this project are to (1) formulate and make candidate cementitious materials using high-silica hydraulic hinders, (2) measure the physical and chemical properties of these materials, (3) expose combinations of these materials and WP materials to static and flowing YM groundwater at temperatures consistent with the expected repository conditions, (4) examine specimens of both the cementitious materials and WP materials periodically for chemical and mineralogical changes to determine reaction mechanisms and kinetics, and (5) predict the long-term performance of the material by thermodynamic and transport modeling and by comparisons with natural analogs

  7. Regulations related to the transport of radioactive material in Brazil

    International Nuclear Information System (INIS)

    Sahyun, Adelia; Sordi, Gian-Maria A.A.; Sanches, Matias P.

    2001-01-01

    The transport of radioactive material has raised great interest on the part of national regulatory authorities, thus resulting in a safety measures improvement for all kinds of transportation. The transport of radioactive material is regulated by safety criteria much more than those applied to conventional hazardous material. All radioactive material transportation run in Brazilian territory must be in accordance with what is established by the CNEN-NE 5.01 - Transport of Radioactive Material. There are other national and international regulations for radioactive material transportation, which have to be accomplished with and adopted during the operation of radioactive material transportation. The aim of this paper is to verify the criteria set up in the existing regulations and propose a consensus for all the intervening organizations in the regulation process for land, air or sea transportation. This kind of transportation can not depend on the efforts of only one person, a group of workers or even any governmental body, but must be instead a shared responsibility among workers, transport firms and all regulative transportation organizations. (author)

  8. Regulations related to the transport of radioactive material in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Sahyun, Adelia; Sordi, Gian-Maria A.A. [ATOMO Radioprotecao e Seguranca Nuclear, Sao Paulo, SP (Brazil)]. E-mail: atomo@atomo.com.br; Sanches, Matias P. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: msanches@net.ipen.br

    2001-07-01

    The transport of radioactive material has raised great interest on the part of national regulatory authorities, thus resulting in a safety measures improvement for all kinds of transportation. The transport of radioactive material is regulated by safety criteria much more than those applied to conventional hazardous material. All radioactive material transportation run in Brazilian territory must be in accordance with what is established by the CNEN-NE 5.01 - Transport of Radioactive Material. There are other national and international regulations for radioactive material transportation, which have to be accomplished with and adopted during the operation of radioactive material transportation. The aim of this paper is to verify the criteria set up in the existing regulations and propose a consensus for all the intervening organizations in the regulation process for land, air or sea transportation. This kind of transportation can not depend on the efforts of only one person, a group of workers or even any governmental body, but must be instead a shared responsibility among workers, transport firms and all regulative transportation organizations. (author)

  9. Radiation doses from the transport of radioactive materials

    International Nuclear Information System (INIS)

    Shaw, K.B.; Holyoak, B.

    1983-01-01

    A summary is given of a study on radiation exposure resulting from the transport of radioactive materials within the United Kingdom. It was concluded that the transport of technetium generators for hospital use accounts for about 49% of the occupational exposure for the normal transport of radioactive materials. Other isotopes for medical and industrial use contribute about 38% of the occupational exposure and the remainder can be attributed to transportation as a result of the nuclear fuel cycle including the transport of irradiated nuclear fuel. The occupational collective dose for all modes of transport is estimated at 1 man Sv y -1 . (UK)

  10. Procedures for the Safe Transport of Radioactive Material

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jang Lyul; Chung, K. K.; Lee, J. I.; Chang, S. Y.; Lee, T. Y

    2007-11-15

    This technical report describes the procedure and work responsibility along with the regulation and standard necessary for the safe transport of radioactive or contaminated materials. This report, therefore, can be effectively used to secure the public safety as well as to prevent the disastrous event which might be resulted from the transport process of radioactive materials by establishing a procedure and method on the safe packing, handling and transport of radioactive materials.

  11. Transportation of hazardous materials (hazmat a literature survey

    Directory of Open Access Journals (Sweden)

    Zafer YILMAZ

    2016-02-01

    Full Text Available ransportation has a great role in logistics. Many researchers have studied on transportation and vehicle routing problems. Transportation of hazardous materials (hazmat is a special subject for logistics. Causalities due to the accidents caused by trucks carrying hazardous materials will be intolerable. Many researchers have studied on risk assessment of hazmat transportation to find ways for reducing hazardous material transportation risks. Some researchers have studied routing of hazmat trucks. The emergency response models and network design problems for hazmat transportation were also studied by some researchers. The transportation of hazmats can also be classified according to the mode of transport. Mainly roads are used for hazmat transportation but some shipments are intermodal. There has been a great amount of effort spent to find convenient ways for hazmat transportation. In this study, a literature survey for the articles about hazmat transportation is prepared. After pointing out the importance of hazmat transportation by the example of US hazmat transportation data, the studies on hazmat transportation since 2005 have been examined. Totally 88 articles are classified as risk, routing, routing and scheduling, emergency response, network design and accident analysis. What can be studied in future researches is pointed out.Keywords: Hazardous materials, Network design, Transportation, Routing, Risk assessment

  12. Transport phenomena and drying of solids and particulate materials

    CERN Document Server

    Lima, AG

    2014-01-01

    The purpose of this book, Transport Phenomena and Drying of Solids and Particulate Materials, is to provide a collection of recent contributions in the field of heat and mass transfer, transport phenomena, drying and wetting of solids and particulate materials. The main benefit of the book is that it discusses some of the most important topics related to the heat and mass transfer in solids and particulate materials. It includes a set of new developments in the field of basic and applied research work on the physical and chemical aspects of heat and mass transfer phenomena, drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional c...

  13. Materials Science and Technology Teachers Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  14. Technology strategy for subsea processing and transport; Technology Target Areas; TTA6 - Subsea processing and transportation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    OG21 (www.OG21.org) Norway's official technology strategy for the petroleum sector issued a revised strategy document in November 2005 (new strategy planned in 2009). In this document 'Subsea processing and transport' was identified as one of the eight new technology target areas (TTAs). The overall OG21 strategy document is on an aggregated level, and therefore the Board of OG21 decided that a sub-strategy for each TTA was needed. This document proposes the sub-strategy for the technology target area 'Subsea processing and transport' which covers the technology and competence necessary to effectively transport well stream to a platform or to onshore facilities. This includes multiphase flow modelling, flow assurance challenges to avoid problems with hydrates, asphaltenes and wax, subsea or downhole fluid conditioning including bulk water removal, and optionally complete water removal, and sand handling. It also covers technologies to increase recovery by pressure boosting from subsea pumping and/or subsea compression. Finally it covers technologies to facilitate subsea processing such as control systems and power supply. The vision of the Subsea processing and transport TTA is: Norway is to be the leading international knowledge- and technology cluster in subsea processing and transport: Sustain increased recovery and accelerated production on the NCS by applying subsea processing and efficient transport solutions; Enable >500 km gas/condensate multiphase well stream transport; Enable >200 km oil-dominated multiphase well stream transport; Enable well stream transport of complex fluids; Enable subsea separation, boosting compression, and water injection; Enable deepwater developments; Enable environmentally friendly and energy efficient field development. Increase the export of subsea processing and transport technology: Optimize technology from the NCS for application worldwide; Develop new technology that can meet the challenges found in

  15. Safety of transport of radioactive material. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Radioactive material has been transported for decades within and between countries as the use of radioactive material to benefit mankind has expanded. The transport can involve many types of materials (radionuclides and radiation sources for applications in agriculture, energy production, industry, and medicine) and all modes of transport (road, rail, sea and waterways, and air). Among the organizations in the United Nations system, the International Atomic Energy Agency (IAEA) has the statutory function to establish or adopt standards of safety for protection of health against exposure to ionizing radiation. Within its statutory mandate and pursuant to this request, in 1961, the IAEA issued Regulations for the Safe Transport of Radioactive Material (the IAEA Transport Regulations). The Transport Regulations were periodically reviewed and, as appropriate, have been amended or revised. The latest version of the Transport Regulations was issued in 2000 by the IAEA as Publication TS-R-1 (ST-1, Revised). In addition, the IAEA is entrusted by its Statute to provide for the application of its standards at the request of States. The objective of the Conference is to foster the exchange of information on issues related to the safety of transport of radioactive material by providing an opportunity for representatives from sponsoring international organizations and their Member States and from other co-operating and participating organizations to discuss critical issues relating to the safety of transport of radioactive material by all modes and to formulate recommendations, as appropriate, regarding further international co-operation in this area. The following topics have been identified by the Technical Programme Committee as the subjects to be covered in the background briefing sessions: History and Status of the IAEA Transport Regulation Development; Experience in adoption of the IAEA Transport Regulations at the international level; Implementation of the IAEA Transport

  16. Materials technology applied to nuclear accelerator targets

    International Nuclear Information System (INIS)

    Barthell, B.L.

    1986-01-01

    The continuing requests for both shaped and flat, very low areal density metal foils have led to the development of metallurgical quality, high strength products. Intent of this paper is to show methods of forming structures on various substrates using periodic vapor interruptions, alternating anodes, and mechanical peening to alter otherwise unacceptable grain morphology which both lowers tensile strength and causes high stresses in thin films. The three technologies, physical vapor deposition, electrochemistry, and chemical vapor deposition and their thin film products can benefit from the use of laminate technology and control of grain structure morphology through the use of materials research and technology

  17. Rapid Prototyping: Technologies, Materials and Advances

    Directory of Open Access Journals (Sweden)

    Dudek P.

    2016-06-01

    Full Text Available In the context of product development, the term rapid prototyping (RP is widely used to describe technologies which create physical prototypes directly from digital data. Recently, this technology has become one of the fastest-growing methods of manufacturing parts. The paper provides brief notes on the creation of composites using RP methods, such as stereolithography, selective laser sintering or melting, laminated object modelling, fused deposition modelling or three-dimensional printing. The emphasis of this work is on the methodology of composite fabrication and the variety of materials used in these technologies.

  18. Integral management of hazardous materials transport

    International Nuclear Information System (INIS)

    Moran, M.

    2002-01-01

    As a result of outsourcing transport operations and complementary services on the part of the producers and shippers, there is a growing demand for global services that integrate the whole external logistics value chain, the latter being understood to signify the process that includes the storage, transport (monomodal or bi-multi-modal) and delivery to destination. This circumstance has obliged transport firms to undertake a process of internal transformation: from offering an activity purely of transport to becoming logistics operators. Express Truck, S. a. (hereinafter ETSA) could not ignore this market requirement. We will explain the evolutionary process of ETSA in this sense. (Author)

  19. Transport of radioactive materials: the need for radiation protection programmes

    International Nuclear Information System (INIS)

    Masinza, S.A.

    2004-01-01

    The increase in the use of radioactive materials worldwide requires that these materials be moved from production sites to the end user or in the case of radioactive waste, from the waste generator to the repository. Tens of millions of packages containing radioactive material are consigned for transport each year throughout the world. The amount of radioactive material in these packages varies from negligible quantities in shipments of consumer products to very large quantities of shipments of irradiated nuclear fuel. Transport is the main way in which the radioactive materials being moved get into the public domain. The public is generally unaware of the lurking danger when transporting these hazardous goods. Thus radiation protection programmes are important to assure the public of the certainty of their safety during conveyance of these materials. Radioactive material is transported by land (road and rail), inland waterways, sea/ocean and air. These modes of transport are regulated by international 'modal' regulations. The international community has formulated controls to reduce the number of accidents and mitigate their consequences should they happen. When accidents involving the transport of radioactive material occur, it could result in injury, loss of life and pollution of the environment. In order to ensure the safety of people, property and the environment, national and international transport regulations have been developed. The appropriate authorities in each state utilise them to control the transport of radioactive material. Stringent measures are required in these regulations to ensure adequate containment, shielding and the prevention of criticality in all spheres of transport, i.e. routine, minor incidents and accident conditions. Despite the extensive application of these stringent safety controls, transport accidents involving packages containing radioactive material have occurred and will continue to occur. When a transport accident occurs, it

  20. PATRAM '83: 7th international symposium on packaging and transportation of radioactive materials

    International Nuclear Information System (INIS)

    1983-01-01

    Papers were presented at the following sessions: international regulations; materials, fracture toughness of ferritic steels; risk analysis techniques; storage in packagings; packaging design considerations; monolithic cast iron casks; risk analysis; facility/transportation system interface; research and development programs; UF 6 packagings; national regulations; transportation operations and traffic; containment, seals, and leakage; radiation risk experience; emergency response; structural modeling and testing; transportation system planning; institutional issues and public response; packaging systems; thermal analysis and testing; systems analysis; structural analyses; quality assurance; packaging and transportation systems; physical protection; criticality and shielding; transportation operations and experience; standards; shock absorber technology; and information and training for regulatory compliance. Individual summaries are title listed

  1. Rural Public Transportation Technologies: User Needs and Applications. Final Report

    Science.gov (United States)

    1998-08-01

    The Rural Public Transportation Technologies: User Needs and Applications Study was conducted as part of the U.S. DOT's overall Rural Intelligent Transportation System (ITS) Program. The study examined the opportunities and challenges of planning and...

  2. Onsite transportation of radioactive materials at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, R.

    2015-03-03

    The Savannah River Site (SRS) Transportation Safety Document (TSD) defines the onsite packaging and transportation safety program at SRS and demonstrates its compliance with Department of Energy (DOE) transportation safety requirements, to include DOE Order 460.1C, DOE Order 461.2, Onsite Packaging and Transfer of Materials of National Security Interest, and 10 CFR 830, Nuclear Safety Management (Subpart B).

  3. Mesoporous materials for clean energy technologies.

    Science.gov (United States)

    Linares, Noemi; Silvestre-Albero, Ana M; Serrano, Elena; Silvestre-Albero, Joaquín; García-Martínez, Javier

    2014-11-21

    Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.

  4. Report on the Audit of Materials Technology

    Science.gov (United States)

    1990-01-25

    We are providing this report on the Audit of Materials Technology for your information and use. No comments were required or received on the draft...report. The audit was made from July through September 1989. The objectives of the audit were to evaluate the missions and functions assigned to DOD

  5. Radiation safety in sea transport of radioactive material in Japan

    International Nuclear Information System (INIS)

    Odano, N.; Yanagi, H.

    2004-01-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured

  6. Radiation safety in sea transport of radioactive material in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Odano, N. [National Maritime Research Inst., Tokyo (Japan); Yanagi, H. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan)

    2004-07-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured.

  7. Radiation technology of improved quality materials production

    International Nuclear Information System (INIS)

    Zajkin, Yu.A.; Nadirov, N.K.; Zajkina, R.F.

    1997-01-01

    The technology of materials production from metals and alloys with high operational properties is developed. The technology is based on use of radiation methods in powder metallurgy. Use of radiation processing allows to improve technological conditions of sintering. It is established, that in certain regimes the sintering temperature is decreasing from 1200 deg C up to 950 deg C in the result of radiation processing of stainless steel powders . According to the processing regimes it is possible load reduction by powder pressing on 15-20 % and sintering time in to 1,5 - 2 times . The radiation methods give possibility to produce high qualitative goods from cheap powder materials without use energy-intensive processes and prolonged processing of finished products

  8. Transportation legislative data base : state radioactive materials transportation statute compilation, 1989-1993

    Science.gov (United States)

    1994-04-30

    The Transportation Legislative Data Base (TLDB) is a computer-based information service containing summaries of federal, state and certain local government statutes and regulations relating to the transportation of radioactive materials in the United...

  9. US perspective of transporting radioactive materials by sea

    International Nuclear Information System (INIS)

    Chitwood, R.B.

    1978-01-01

    The reason for the US interest in transportation of radioactive materials by sea is discussed. The national and international institutional considerations related to this subject are covered. Some economic aspects in transporting these materials, particularly spent fuels, by sea are also presented

  10. Framework for assessing the effects of radioactive materials transportation

    International Nuclear Information System (INIS)

    Zoller, J.N.

    1996-01-01

    Radioactive materials transport may result in environmental effects during both incident-free and accident conditions. These effects may be caused by radiation exposure, pollutants, or physical trauma. Recent environmental impact analyses involving the transportation of radioactive materials are cited to provide examples of the types of activities which may be involved as well as the environmental effects which can be estimated

  11. State summary of radioactive material transport sector in Brazil

    International Nuclear Information System (INIS)

    Heilbron Filho, P.F.L.; Xavier, A.M.

    1991-07-01

    The main aim of this work is the scientific cooperation with the CNEA (Argentina) in the area of safe transport of radioactive materials, intending to find solutions to some rural problems and, also, to standardize the transport of radioactive materials between Brazil and Argentina. (E.O.)

  12. International regulatory control of the transport of radioactive materials

    International Nuclear Information System (INIS)

    Swindell, G.E.

    1979-01-01

    The development of the IAEA regulations on the transport of radioactive materials and the background for the adoption of these regulations by the various international organizations responsible for regulating the different modes of international transport of hazardous materials is briefly discussed

  13. Additive manufacturing of metals the technology, materials, design and production

    CERN Document Server

    Yang, Li; Baughman, Brian; Godfrey, Donald; Medina, Francisco; Menon, Mamballykalathil; Wiener, Soeren

    2017-01-01

    This book offers a unique guide to the three-dimensional (3D) printing of metals. It covers various aspects of additive, subtractive, and joining processes used to form three-dimensional parts with applications ranging from prototyping to production. Examining a variety of manufacturing technologies and their ability to produce both prototypes and functional production-quality parts, the individual chapters address metal components and discuss some of the important research challenges associated with the use of these technologies. As well as exploring the latest technologies currently under development, the book features unique sections on electron beam melting technology, material lifting, and the importance this science has in the engineering context. Presenting unique real-life case studies from industry, this book is also the first to offer the perspective of engineers who work in the field of aerospace and transportation systems, and who design components and manufacturing networks. Written by the leadin...

  14. BWR mechanics and materials technology update

    International Nuclear Information System (INIS)

    Kiss, E.

    1983-01-01

    This paper discusses technical results obtained from a variety of important programs underway at General Electric's Nuclear Engineering Division. The principal objective of these programs is to qualify and improve BWR product related technologies that fall broadly under the disciplines of Applied Mechanics and Materials Engineering. The paper identifies and deals with current technical issues that are of general importance to the LWR industry albeit the specific focus is directed to the development and qualification of analytical predictive methods and criteria, and improved materials for use in the design of the BWR. In this paper, specific results and accomplishments are summarized to provide a braod perspective of technology advances. Results are presented in sections which discuss: dynamic analysis and modeling; fatigue and fracture evaluation; materials engineering advances; and flow induced vibration. (orig.)

  15. Thermoelectric and thermospintronic transport in Dirac material-based nanostructures

    Science.gov (United States)

    Chang, Po-Hao

    The growing need for power due to the rapid developments of the technologies has urged both engineers and scientists to study more sustainable types of energy. On the other hand, the improvement of our abilities although enable us, for example, to double the number of transistors in a dense integrated circuit approximately every two years (Moore's law), comes with side effect due to overheating. Taking advantage of thermoelectric effect has thus become one of the obvious solutions for the problems. But due to the poor efficiency of electricity-heat conversion, there are still challenges to be overcome in order to fully utilize the idea. In the past few years, the realization of graphene along with the discoveries of topological insulators (TI) which are both considered as Dirac material (DM) have offer alternative routs for improving the energy conversion efficiency through different approaches as well as novel quantum effects of materials themselves for investigation. The aim of this thesis is to present contributions to improving the efficiency of thermoelectric conversion as well as analyzing spin transport phenomena that occur in nano-devices. This thesis spans the areas of thermoelectric (TE) effect, spin-Seebeck effect (SSE) and the spin transport on the 3D topological insulator (TI). The different methods have been applied ranging from tight-binding (TB) approximation to density function theory (DFT) combined with non-equilibrium function (NEGF) techniques.

  16. Transport of nuclear material (Part II)

    International Nuclear Information System (INIS)

    Staake, Theo; Schmidt, Thomas

    1983-01-01

    Providing a complete back-end service for MTR reactors is one of the fundamental and traditional tasks of TRANSNUKLEAR GmbH (TN). TN's services in this field cover everything from supplying the ideal transport cask, providing technical assistance during the loading operation, obtaining the necessary package approval and transport licenses, providing the required insurance cover, carrying out the transport, right thru to settling the reprocessing contract. Up until 1976, TN carried out transports of MTR fuel elements to the European reprocessing plants at Mol in Belgium and Marcoule in France. In all, some 1000 fuel elements were transported in this p e ri od. However, following the decision by these plants not to reprocess these elements anymore, subsequent transports had to be made to the US-DOE reprocessing plants. TN pooled together the interests of all her MTR customers and signed a reprocessing contract with the US-DOE, which ensured a complete back-end service for these reactors well into the future. In close cooperation with our associated company, Transnuclear Inc. in New York and Washington, a new transport concept was developed, which proved itself to be both economic and reliable. Up to now, a total of about 2050 MTR fuel elements have been transported by TN-Germany to the USA in 65 separate shipments. The total number of shipments performed by the TN group is 165 shipments. All shipments were carried out routinely without any incident. In March this year, the US-DOE made use of a clause in the contract, in which 90 days' notice was given of a change in reprocessing plant. Whereas previously all elements had been taken to the Savannah River Plant (SRP) in South Carolina, in future all elements have to go to the Idaho Chemical Processing Plant (ICPP) near Idaho Falls. This change presented TN with the not inconsiderable problem of finding a suitable transport route. Due to the large number of influencing factors, the TN-group carried out a special

  17. Proposal of risk evaluation methodology for hazardous materials transportation

    International Nuclear Information System (INIS)

    Hartman, Luiz Carlos

    2009-01-01

    The increasing concern with the level of risk associated with the transportation of hazardous materials took some international institutions to pledge efforts in the evaluation of risk in regional level. Following this trend, the objective of this work was to analyze the most recent processes of analysis of risks from road transportation of hazardous materials. In the present work 21 methodologies of analysis of risks, developed by some authors and for diverse localities have been evaluated. Two of them, in special, have been reviewed and discussed: a method recently developed by the Swiss Federal Institute of Technology (Nicolet-Monnier and Gheorghe, 1996) and the strategy delineated by the Center for Chemical Process Safety CCPS (1995), taking into consideration the estimate of the individual and social risk. Also, the models of Harwood et al. (1990) and of Ramos (1997), adapted by Hartman (2003) have been applied to the reality of the roads of the state of Sao Paulo. The extension of these methodologies was explored, in order to find its advantages and disadvantages. As a study case the present work considered the ammonia transportation throughout two routes evaluating the reality of the roads of the state of Sao Paulo, including a significant parcel of evaluation in a densely populated area, getting the results using risk, at least, one of the methodologies mentioned above. The innovation proposed by this work was the research, the development and the introduction of two variables to the model considered by Harwood et al. (1990). These variables that influence in the value of the risk are: the age of the driver of truck and the zone of impact that is function type of product, period of the day where the transport was carried and the volume that has been transported. The aim of the proposed modifications is to let the value of the risk more sensible in relation to the type of the product carried and the age of the truck driver. The main related procedural stages

  18. RADTRAN: a computer code to analyze transportation of radioactive material

    International Nuclear Information System (INIS)

    Taylor, J.M.; Daniel, S.L.

    1977-04-01

    A computer code is presented which predicts the environmental impact of any specific scheme of radioactive material transportation. Results are presented in terms of annual latent cancer fatalities and annual early fatility probability resulting from exposure, during normal transportation or transport accidents. The code is developed in a generalized format to permit wide application including normal transportation analysis; consideration of alternatives; and detailed consideration of specific sectors of industry

  19. Radioactive materials transportation; Pengangkutan bahan radioaktif

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-31

    The chapter briefly discussed the following subjects: packaging and it`s procedures and requirements, extra requirement for large sources, rules and guides of packaging and transportation, classification of packages before delivery.

  20. Regulations concerning the transport of nuclear fuel materials outside the works or the enterprise

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and the order for execution of the law. Basic concepts and terms are explained, such as: vehicle transport; easy transport; nuclear fuel material load, exclusive loading, employee, accumulative dose and exposure dose. Technical standards of vehicle transport are specified in detail on nucler fuel materials as nuclear fuel load, L,A, EM and BU type of load, nuclear fuel load of fission substances, the second and third type of fission load and materials contaminated by nuclear fuel substances to be carried not as nuclear fuel loads. Special exceptional measures to such transport and technical standards of easy transport are also designated. The application for confirmation of the transport shall be filed to the Director General of Science and Technology Agency according to the form attached with documents explaining nuclear fuel materials to be transferred, the vessel of such materials and construction, material and method of production of such a vessel, safety of nuclear materials contained, etc. Measures in dangerous situations shall be taken to fight a fire or prohibit the entrance of persons other than the staff concerned. Reports shall be presented in 10 days to the Director, when theft, loss or irregular leaking of nuclear fuel materials or personal troubles occur on the way. (Okada, K.)

  1. State statutes and regulations on radioactive materials transportation

    International Nuclear Information System (INIS)

    Foster, B.

    1981-11-01

    The transport of radioactive material is controlled by numerous legislative and regulatory actions at the federal, state, and local levels. This document is a compilation of the state level laws and regulations. The collected material is abstracted and indexed by states. Each state section contains three divisions: (1) abstracts of major statutes, (2) legislative rules, and (3) photocopies of relevant paragraphs from the law or regulation. This document was prepared for use by individuals who are involved in the radioactive material transportation process. This document will not be updated. The legislative rules section contains the name of the state agency primarily responsible for monitoring the transport of radioactive materials

  2. Transportation accidents/incidents involving radioactive materials (1971--1991)

    International Nuclear Information System (INIS)

    Cashwell, C.E.; McClure, J.D.

    1992-01-01

    The Radioactive Materials Incident Report (RMIR) database contains information on transportation-related accidents and incidents involving radioactive materials that have occurred in the United States. The RMIR was developed at Sandia National Laboratories (SNL) to support its research and development program efforts for the US Department of Energy (DOE). This paper will address the following topics: background information on the regulations and process for reporting a hazardous materials transportation incident, overview data of radioactive materials transportation accidents and incidents, and additional information and summary data on how packagings have performed in accident conditions

  3. Hole-Transporting Materials for Printable Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Paola Vivo

    2017-09-01

    Full Text Available Perovskite solar cells (PSCs represent undoubtedly the most significant breakthrough in photovoltaic technology since the 1970s, with an increase in their power conversion efficiency from less than 5% to over 22% in just a few years. Hole-transporting materials (HTMs are an essential building block of PSC architectures. Currently, 2,2’,7,7’-tetrakis-(N,N’-di-p-methoxyphenylamine-9,9’-spirobifluorene, better known as spiro-OMeTAD, is the most widely-used HTM to obtain high-efficiency devices. However, it is a tremendously expensive material with mediocre hole carrier mobility. To ensure wide-scale application of PSC-based technologies, alternative HTMs are being proposed. Solution-processable HTMs are crucial to develop inexpensive, high-throughput and printable large-area PSCs. In this review, we present the most recent advances in the design and development of different types of HTMs, with a particular focus on mesoscopic PSCs. Finally, we outline possible future research directions for further optimization of the HTMs to achieve low-cost, stable and large-area PSCs.

  4. Hole-Transporting Materials for Printable Perovskite Solar Cells

    Science.gov (United States)

    Salunke, Jagadish K.; Priimagi, Arri

    2017-01-01

    Perovskite solar cells (PSCs) represent undoubtedly the most significant breakthrough in photovoltaic technology since the 1970s, with an increase in their power conversion efficiency from less than 5% to over 22% in just a few years. Hole-transporting materials (HTMs) are an essential building block of PSC architectures. Currently, 2,2’,7,7’-tetrakis-(N,N’-di-p-methoxyphenylamine)-9,9’-spirobifluorene), better known as spiro-OMeTAD, is the most widely-used HTM to obtain high-efficiency devices. However, it is a tremendously expensive material with mediocre hole carrier mobility. To ensure wide-scale application of PSC-based technologies, alternative HTMs are being proposed. Solution-processable HTMs are crucial to develop inexpensive, high-throughput and printable large-area PSCs. In this review, we present the most recent advances in the design and development of different types of HTMs, with a particular focus on mesoscopic PSCs. Finally, we outline possible future research directions for further optimization of the HTMs to achieve low-cost, stable and large-area PSCs. PMID:28914823

  5. Development of an expert system for transportation of hazardous and radioactive materials

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Michelhaugh, R.D.; Rawl, R.R.

    1994-01-01

    Under the sponsorship of the US Department of Energy's (DOE's) Transportation Management Division (EM-261), the Transportation Technologies Group at Oak Ridge National Laboratory (ORNL) has designed and developed an expert system prototype application of the hazardous materials transportation regulations. The objective of this task was to provide a proof-of-concept for developing a computerized expert system that will ensure straightforward, consistent, and error-free application of the hazardous materials transportation regulations. The expert system prototype entailed the analysis of what an expert in hazardous materials shipping information could/should do. From the analysis of the different features required for the expert system prototype, it was concluded that the developmental efforts should be directed to a Windows trademark 3.1 hypermedia environment. Hypermedia technology usually works as an interactive software system that gives personal computer users the ability to organize, manage, and present information in a number of formats--text, graphics, sound, and full-motion video

  6. Materials technologies of light water reactors

    International Nuclear Information System (INIS)

    Begley, R.

    1984-01-01

    Satisfactory materials performance is a key element in achieving reliable operation of light water reactors. Outstanding performance under rigorous operational conditions has been exhibited by pressure boundary components, core internals, fuel cladding, and other critical components of these systems. Corrosion and stress corrosion phenomena have, however, had an impact on plant availability, most notably relating to pipe cracking in BWR systems and steam generator corrosion in PWR systems. These experiences have stimulated extensive development activities by the nuclear industry in improved NDE techniques, investigation of corrosion phenomena, as well as improved materials and repair processes. This paper reviews key materials performance aspects of light water reactors with particular emphasis on the progress which has been made in modeling of corrosion phenomena, control of the plant operating environment, advanced material development, and application of sophisticated repair procedures. Implementation of this technology provides the basis for improved plant availability

  7. Risks in U.S. energy material transportation

    International Nuclear Information System (INIS)

    Franklin, A.L.; Rhoads, R.E.; Andrews, W.B.

    1982-01-01

    For the past five years, the Pacific Northwest Laboratory has been conducting a programme to study the safety of transporting energy materials. The overall objectives of the programme are to develop information on the safety of transporting hazardous materials required to support the major energy cycles in the USA. This information was developed for use in making energy policy decisions; in designing and developing new or improved transportation systems for these materials; to help establish research priorities; and as an aid in developing effective transportation safety regulations. Risk analysis was selected as the methodology for performing these studies. This methodology has been applied to rail and highway shipments of nuclear fuel cycle materials and liquid and gaseous fossil fuels. Studies of the risks of transporting spent nuclear fuel by train and uranium ore concentrates (yellow cake) by truck were expected to be issued early in 1981. Analyses of the risks of transporting reactor waste and transuranic wastes are in progress. The work completed to date for nuclear material transportation makes it possible to estimate the transportation risks for the entire fuel cycle in the USA. Results of the assessment are presented in this paper. Because the risk analysis studies for the transportation of gasoline, propane and chlorine have been performed using a methodology, basic assumptions and data that are consistent with the studies that have been performed for nuclear materials, comparisons between the risks for nuclear materials and these materials can also be made. It should be noted that it is not the intention of these comparisons to judge the safety of one industry in comparison with another. These comparisons can, however, provide some insights into the regulatory philosophy for hazardous materials transportation. The remaining sections of the paper briefly review the risk-analysis methodology used in these studies, provide an overview of the systems

  8. HA and MAVL technical dialogue - Seminar - Transports of radioactive materials

    International Nuclear Information System (INIS)

    Charron, Sylvie; Eckert, Benoit; Lizot, Marie-Therese; Moutarde, Marianne; Mermaz, Frederic; Brisson, Nicolas; Sene, Monique; Demet, Michel; Jacquet, Benoit; Tran-Thien, Vivien; Ferran, Ghislain; Michel, Maurice; Barbey, Pierre; Miquel, Thierry-Paul; Monot, Bernard; Syren, Julien; Quintin, Christophe; Gilbert, Alain; Lhuillier, Daniel; Domeneghetti, Bertrand; LOURTIE, Guy; Manessier, Joffray

    2016-03-01

    This document gathers the content of a debate and Power Point presentations as contributions to this seminar on transports of nuclear materials. After an introduction, the different sessions addressed the actors of the transport of nuclear materials (regulation, parcel design, organisation on the shipper side and on the transporter side), transport safety and radiation protection (returns on experience by different actors and on event follow-up), the follow-up and safety of transports of nuclear materials (protection against malevolent acts, operational follow-up, case of rail transport), and issues related to crisis management (organisation in case of crisis, means of intervention implemented by the IRSN, return on experience for two accidents)

  9. Novel Materials for Photovoltaic Technologies: Preprint

    International Nuclear Information System (INIS)

    Alivisatos, P.; Carter, S.; Ginley, D.; Nozik, A.; Meyer, G.; Rosenthal, S.

    1999-01-01

    While existing photovoltaic technologies continue to advance, there are still many exciting opportunities in the area of novel materials. These opportunities arise because there is a substantial need for reducing the costs associated with the preparation and processing of photovoltaics, and because the theoretically possible photovoltaic efficiencies have yet to be achieved in practical devices. Thus it remains reasonable to continue photovoltaic research activity aimed at entirely new approaches to processing and at entirely new materials as the active media. This group identified three areas for further consideration: (a) Nano/molecular composites and hierarchical structures; (b) Organic semiconductors; and (c) Hot carrier devices

  10. Transportation of nuclear material in France: regulatory and technical aspects

    International Nuclear Information System (INIS)

    Flory, D.; Renard, C.

    1995-01-01

    Legislative and regulatory documentation define responsibilities in the field of security and physical protection for transportation of nuclear material. Any transportation activity has to conform to an advance authorization regime delivered by the Ministry of Industry. Responsibility for physical protection of nuclear material rests with the carrier under control of the public authority. Penalties reinforce this administrative regime. Operational responsibility for management and control of transport operations has been entrusted by the ministry to the operational transport unit (Echelon Operationnel des Transports - EOT) of IPSN (Institute for Nuclear Protection and Safety). To guarantee en efficient protection of transport operations, the various following means are provided for: -specialized transport means; - devices for real time tracking of road vehicles; - administrative authorization and declaration procedures; -intervention capacities in case of sabotage... This set of technical means and administrative measures is completed by the existence of a body of inspectors who may control every step of the operations. (authors). 3 tabs

  11. Applications of superconductor technologies to transportation

    Science.gov (United States)

    Rote, D. M.; Herring, J. S.; Sheahen, T. P.

    1989-06-01

    This report assesses transportation applications of superconducting devices, such as rotary motors and generators, linear synchronous motors, energy storage devices, and magnets. Among conventional vehicles, ships appear to have the greatest potential for maximizing the technical benefits of superconductivity, such as smaller, lighter, and more-efficient motors and, possibly, more-efficient generators. Smaller-scale applications include motors for pipeline pumps, all-electric and diesel-electric locomotives, self-propelled rail cars, and electric highway vehicles. For diesel-electric locomotives, superconducting units would eliminate space limitations on tractive power. Superconducting magnetic energy storage devices appear most suitable for regenerative braking or power assistance in grade climbing, rather than for long-term energy storage. With toroidal devices (especially for onboard temporary energy storage), external fields would be eliminated. With regard to new vehicle technologies, the use of superconducting devices would only marginally enhance the benefits of inductive-power-coupled vehicles over conventional electric vehicles, but could enable magnetically levitated (maglev) vehicles to obtain speeds of 520 km/h or more. This feature, together with the quiet, smooth ride, might make maglev vehicles an attractive alternative to intercity highway-vehicle or airlane trips in the range of 100 to 600 miles. Electromagnetic airport applications are not yet feasible.

  12. Transport of proximity nuclear radioactive materials

    International Nuclear Information System (INIS)

    2010-01-01

    This brief publication gives an overview of the international and national regulatory framework for the transport of radioactive substances, outlines progress orientations identified by the French Nuclear Safety Authority (ASN), indicates the parcel classification and shipment radiological criteria, and how to declare events occurring during the transport of radioactive substances, which number to phone in case of a radiological incident. Finally, the role of the ASN and its field of activity in matters of control are briefly presented with a table of its office addresses in France

  13. Photocatalytic materials and technologies for air purification.

    Science.gov (United States)

    Ren, Hangjuan; Koshy, Pramod; Chen, Wen-Fan; Qi, Shaohua; Sorrell, Charles Christopher

    2017-03-05

    Since there is increasing concern for the impact of air quality on human health, the present work surveys the materials and technologies for air purification using photocatalytic materials. The coverage includes (1) current photocatalytic materials for the decomposition of chemical contaminants and disinfection of pathogens present in air and (2) photocatalytic air purification systems that are used currently and under development. The present work focuses on five main themes. First, the mechanisms of photodegradation and photodisinfection are explained. Second, system designs for photocatalytic air purification are surveyed. Third, the photocatalytic materials used for air purification and their characteristics are considered, including both conventional and more recently developed photocatalysts. Fourth, the methods used to fabricate these materials are discussed. Fifth, the most significant coverage is devoted to materials design strategies aimed at improving the performance of photocatalysts for air purification. The review concludes with a brief consideration of promising future directions for materials research in photocatalysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Transport of radioactive material in Sudan practice and regulations

    International Nuclear Information System (INIS)

    Abdalla, M. K. E.

    2010-12-01

    In the last couple of decades there has been an impressive increase in applications of radioactive material. Such an extensive and widely spread usage of radioactive materials demands safe transportation of radioactive material from the production site to the application location, as well as quick and effective response in a case of an unexpected transportation event according to Sudan Atomic Energy Commission (SAEC) regulation. The thesis described the local practice for transport of radioactive material as compared to the international standards for radiation protection, and also discussed the emergency procedures that must be follow in case of accident during transport of radioactive material. Furthermore, the objective of this study was also to set proposals for how to cope in the event of a radiological accident. The study methods included survey of current literature on safe transport of radioactive material, survey of national regulations on the subjects in additional to case studies aimed at investigating the practical issues pertinent to transport of radioactive materials in Sudan. A comprehensive review was presented on how to classification of radioactive packages and general requirement for all packaging and packages according to international standard. transport of number of radioactive sources from Khartoum airport to the field was evaluated with regard transport index, category of source, type of package, dose rate around the source, time to destination and means of transport of doses to public, worker are be made. All results were within the limit specified in the national as well as international regulation. The study has addressed for the first time the practice of transport of radioactive material in Sudan. It is anticipated that the results will encourage national organizational and professional bodies to enhance radiation protection and safety of radioactive sources. (Author)

  15. Transport Technologies and Policy Scenarios to 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    As part of the major WEC study on Scenarios to 2050, a specific investigation was undertaken on measures required in the transport sector to secure sustainable energy and sustainable mobility in the future. This report outlines the results conducted by a study group of international WEC transport experts and gives concrete policy recommendations to develop sustainable transport systems.

  16. Regulations relevant to the transport of radioactive materials in Switzerland

    International Nuclear Information System (INIS)

    Smith, L.

    1996-01-01

    As is the case in many countries, the transport of radioactive materials in Switzerland is primarily regulated by the national regulations for the transport of dangerous goods. Currently these regulations, in the case of radioactive material, incorporate the 1985 IAEA Safety Series 6 Regulations for the Safe Transport of Radioactive Material (As amended 1990). However, as is also the case in some other countries, consignors, shippers and carriers of radioactive materials must also comply with additional laws when shipping radioactive materials. The most important of these other laws and their accompanying regulations are those concerned with radiation protection (import, export and carriers licences) and nuclear power (import, export, inland transport and transit licences). This paper sets out to describe the collective requirements resulting from all three of these sets of regulations. (Author)

  17. Strategies and technologies for nuclear materials stewardship

    International Nuclear Information System (INIS)

    Cunningham, P.T.; Arthur, E.D.; Wagner, R.L. Jr.; Hanson, E.M.

    1997-01-01

    A strategy for future nuclear materials management and utilization from proliferation and long-term waste perspectives is described. It is aimed at providing flexible and robust responses to foreseeable nuclear energy scenarios. The strategy also provides for a smooth transition, in terms of technology development and facility implementation, to possible future use of breeder reactor technology. The strategy incorporates features that include minimization of stocks of separated plutonium; creation of a network of secure interim, retrievable storage facilities; and development and implementation of a system of Integrated Actinide Conversion Systems (IACS) aimed at near and far-term management of plutonium and other actinides. Technologies applicable to such IACS concepts are discussed as well as a high-level approach for implementation. (author)

  18. Strategies and technologies for nuclear materials stewardship

    International Nuclear Information System (INIS)

    Cunningham, P.T.; Arthur, E.D.; Wagner, R.L. Jr.; Hanson, E.M.

    1997-01-01

    A strategy for future nuclear materials management and utilization from proliferation and long-term waste perspectives is described. It is aimed at providing flexible and robust responses to foreseeable nuclear energy scenarios. The strategy also provides for a smooth transition, in terms of technology development and facility implementation, to possible future use of breeder reactor technology. The strategy incorporates features that include minimization of stocks of separated plutonium; creation of a network of secure interim, retrievable storage facilities; and development and implementation of a system of Integrated Actinide Conversion Systems (IACS) aimed at near and far-term management of plutonium and other actinides. Technologies applicable to such IACS concepts are discussed as well as a high-level approach for implementation

  19. A historical summary of transportation accidents and incidents involving radioactive materials (1971-1988)

    International Nuclear Information System (INIS)

    Cashwell, C.E.; McClure, J.D.

    1989-01-01

    The Radioactive Materials Incident Report (RMIR) Database is a compilation of transportation events that have occurred during the shipment of radioactive materials. The database was developed in 1971 at the Transportation Technology Center (TTC) at Sandia National Laboratories (SNL) to support its research and development efforts for the US Department of Energy (DOE). Currently, RMIR resides on TRANSNET, an interactive computer network that allows an outside user to access transportation risk and systems analysis models and their associated databases. Within the last few months, the RMIR database has been modified so that the menu-driven format expedites database searches, particularly for the infrequent user

  20. An historical summary of transportation accidents and incidents involving radioactive materials (1971--1988)

    International Nuclear Information System (INIS)

    Cashwell, C.E.; McClure, J.D.

    1989-01-01

    The Radioactive Materials Incident Report (RMIR) Database is a compilation of transportation events that have occurred during the shipment of radioactive materials. The database was developed in 1971 at the Transportation Technology Center (TTC) AT Sandia National Laboratories (SNL) to support its research and development efforts for the US Department of Energy (DOE). Currently RMIR resides on TRANSNET, an interactive computer network that allows an outside user to access transportation risk and systems analysis models and their associated databases. Within the last few months, the RMIR database has been modified so that the menu-driven format expedites database searches, particularly for the infrequent user. 2 refs

  1. Experience of air transport of nuclear fuel material in Japan

    International Nuclear Information System (INIS)

    Yamashita, T.; Toguri, D.; Kawasaki, M.

    2004-01-01

    Certified Reference Materials (hereafter called as to CRMs), which are indispensable for Quality Assurance and Material Accountability in nuclear fuel plants, are being provided by overseas suppliers to Japanese nuclear entities as Type A package (non-fissile) through air transport. However, after the criticality accident at JCO in Japan, special law defining nuclear disaster countermeasures (hereafter called as to the LAW) has been newly enforced in June 2000. Thereafter, nuclear fuel materials must meet not only to the existing transport regulations but also to the LAW for its transport

  2. 75 FR 24773 - Research and Innovative Technology Administration Advisory Council on Transportation Statistics...

    Science.gov (United States)

    2010-05-05

    ... DEPARTMENT OF TRANSPORTATION Bureau of Transportation Statistics Research and Innovative Technology Administration Advisory Council on Transportation Statistics; Notice of Meeting AGENCY: Research... Transportation, Research and Innovative Technology Administration, Bureau of Transportation Statistics, Attention...

  3. Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology

    Science.gov (United States)

    Griffin, D. E. (Editor); Stanley, D. C. (Editor)

    2001-01-01

    The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining US leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environmental Technology Conference (AMPET) provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.

  4. Radiological environmental impacts from transportation of nuclear materials

    International Nuclear Information System (INIS)

    Shuai Zhengqing

    1994-01-01

    The author describes radiological impacts from transportation of nuclear materials. RADTRAN 4.0 supplied by IAEA was adopted to evaluate radiological consequence of incident-free transportation as well as the radiological risks from vehicular accidents occurring during transportation. The results of calculation show that the collective effective dose equivalent of incident-free transportation to the public and transportation workers is 7.94 x 10 -4 man·Sv. The calculated data suggest that the environmental impacts under normal and assumed accidental conditions are acceptable

  5. Transport of biologically active material in laser cutting.

    Science.gov (United States)

    Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P

    1988-01-01

    The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.

  6. International Regulations for Transport of Radioactive Materials, History and Security

    International Nuclear Information System (INIS)

    EL-Shinawy, R.M.K.

    2013-01-01

    International Regulations for the transport of radioactive materials have been published by International Atomic Energy Agency (IAEA) since 1961. These Regulations have been widely adopted into national Regulations. Also adopted into different modal Regulations such as International Air Transport Association (IATA) and International Martime Organization (IMO). These Regulations provide standards for insuring a high level of safety of general public, transport workers, property and environment against radiation, contamination, criticality hazard and thermal effects associated with the transport of radioactive wastes and materials. Several reviews conducted in consultation with Member States (MS) and concerned international organizations, resulted in comprehensive revisions till now. Radioactive materials are generally transported by specialized transport companies and experts. Shippers and carriers have designed their transport operations to comply with these international Regulations. About 20 million consignments of radioactive materials take place around the world each year. These materials were used in different fields such as medicine, industry, agriculture, research, consumer product and electric power generation. After September 11,2001, the IAEA and MS have worked together to develop a new guidance document concerning the security in the transport of radioactive materials. IAEA have initiated activities to assist MS in addressing the need for transport security in a comprehensive manner. The security guidance and measures were mentioned and discussed. The transport security becomes more developed and integrated into national Regulations of many countries beside the safety Regulations. IAEA and other International organizations are working with MS to implement transport security programs such as guidance, training, security assessments and upgrade assistance in these fields.

  7. Regulatory requirements for the transport of radioactive materials in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Garg, R. [Canadian Nuclear Safety Commission, Ottawa (Canada)

    2004-07-01

    Canada is a major producer and shipper of radioactive material. Each year more than a million packages are transported in Canada. The safety record with the transport of RAM in Canada has historically been excellent. There have never been any serious injuries, overexposure or fatality or environmental consequences attributable to the radioactive nature of such material being transported or being involved in a transport accident. In Canada, the Canadian Nuclear Safety Commission (CNSC) is the prime agency of the federal government entrusted with regulating all activities related to the use of nuclear energy and nuclear substances including the packaging and transport of nuclear substances. The mission of the CNSC is to regulate the use of nuclear energy and materials to protect health, safety, security of the person and the environment and to respect Canada's international commitments on the peaceful use of nuclear energy. The division of responsibility for the regulation of transport of radioactive material has been split between Transport Canada and the CNSC. The governing Transport Canada's regulations are Transport of Dangerous Goods (TDG) Regulations and the CNSC regulations are Packaging and Transport of Nuclear Substances Regulations (PTNSR). Canada has actively participated in the development of the IAEA regulations for the safe transport of radioactive material since 1960. As an IAEA member state, Canada generally follows the requirements of IAEA regulations with few deviations. The Nuclear Safety and Control Act (NSCA) strongly supports Canada's international obligations to ensure safe packaging, transport, storage and disposal of nuclear substances, prescribed equipment and prescribed information. Prescribed equipment and prescribed information are defined in the CNSC General Nuclear Safety and Control Regulations. This paper presents the current CNSC regulatory requirements and initiatives taken by the CNSC to improve its effectiveness and

  8. Regulatory requirements for the transport of radioactive materials in Canada

    International Nuclear Information System (INIS)

    Garg, R.

    2004-01-01

    Canada is a major producer and shipper of radioactive material. Each year more than a million packages are transported in Canada. The safety record with the transport of RAM in Canada has historically been excellent. There have never been any serious injuries, overexposure or fatality or environmental consequences attributable to the radioactive nature of such material being transported or being involved in a transport accident. In Canada, the Canadian Nuclear Safety Commission (CNSC) is the prime agency of the federal government entrusted with regulating all activities related to the use of nuclear energy and nuclear substances including the packaging and transport of nuclear substances. The mission of the CNSC is to regulate the use of nuclear energy and materials to protect health, safety, security of the person and the environment and to respect Canada's international commitments on the peaceful use of nuclear energy. The division of responsibility for the regulation of transport of radioactive material has been split between Transport Canada and the CNSC. The governing Transport Canada's regulations are Transport of Dangerous Goods (TDG) Regulations and the CNSC regulations are Packaging and Transport of Nuclear Substances Regulations (PTNSR). Canada has actively participated in the development of the IAEA regulations for the safe transport of radioactive material since 1960. As an IAEA member state, Canada generally follows the requirements of IAEA regulations with few deviations. The Nuclear Safety and Control Act (NSCA) strongly supports Canada's international obligations to ensure safe packaging, transport, storage and disposal of nuclear substances, prescribed equipment and prescribed information. Prescribed equipment and prescribed information are defined in the CNSC General Nuclear Safety and Control Regulations. This paper presents the current CNSC regulatory requirements and initiatives taken by the CNSC to improve its effectiveness and efficiency

  9. The regulation concerning transportation of radioactive materials by vehicles

    International Nuclear Information System (INIS)

    1978-01-01

    The Regulation is established on the basis of The law for the regulations of nuclear source materials, nuclear fuel materials and reactors'' and the ''Law for the prevention of radiation injuries due to radioisotopes.'' The prescriptions cover the transport of radioactive materials by railway, street rail way, ropeway, trolley buses, motorcars and light vehicles. Terms are explained, such as nuclear fuel materials, radioisotopes, radioactive substances, transported radioactive things, transported fissile things, vehicles, containers, exclusive loading, surrounding inspection area. Four types of transported radioactive things are specified, L and A types being less dangerous and BM and BU being more dangerous. Transported fissile things are classified to three kinds according to the safety to criticality of such things. Transported radioactive things except those of L type and containers with transported fissile things shall not be loaded or unloaded at the places where persons other than those concerned come in usually. Loading and unloading of such things shall be carried out so that the safety of such things is not injured. The maximum dose rate of radiation of the containers with transported radioactive things shall not be more than 200 millirem per hour on the surface and 10 millirem per hour at the distance of 1 meter. Specified transported radioactive things shall be particularly marked by the letter of ''radioactive'' or other signs indicating as such. (Okada, K.)

  10. Emergency preparedness and response in transport of radioactive material

    International Nuclear Information System (INIS)

    Takani, Michio

    2008-01-01

    Nuclear power has been providing clean, affordable electricity in many parts of the world for nearly half a century. The national and international transport of nuclear fuel cycle materials is essential to support this activity. To sustain the nuclear power industry, fuel cycle materials have to be transported safely and efficiently. The nature of the industry is such that most countries with large-scale nuclear power industries cannot provide all the necessary fuel services themselves and consequently nuclear fuel cycle transport activities are international. The radioactive material transport industry has an outstanding safety record spanning over 45 years; however the transport of radioactive materials cannot and most not be taken for granted. Efficient emergency preparedness and response in the transport of radioactive material is an important element to ensure the maximum safety in accident conditions. The World Nuclear Transport Institute (WNTI), founded by International Nuclear Services (INS) of the United Kingdom, AREVA of France an the Federation of Electric Power Companies (FEPC) of Japan, represents the collective interest of the radioactive material transport sector, and those who rely on safe, effective and reliable transport. As part of its activities, WNTI has conducted two surveys through its members on emergency preparedness and response in the transport of radioactive material and emergency exercises. After recalling the International Atomic Energy Agency approach on emergency response, this paper will be discussing the main conclusion of surveys, in particular the national variations in emergency response and preparedness on the national and local levels of regulations, the emergency preparedness in place, the emergency response organisation (who and how), communication and exercises. (author)

  11. Material Technologies Developments for Solar Hydrogen

    International Nuclear Information System (INIS)

    Agrafiotis, C.; Pagkoura, C.; Lorentzou, S.; Hoguet, J.C.; Konstandopoulos, A.G.

    2006-01-01

    The present work presents recent activities of our Laboratory in the field of solar-aided hydrogen production materials and reactor technologies that can be fully integrated into solar thermal power plants. Emphasis is given on structured monolithic solar reactors where ceramic supports optimized to absorb solar radiation and develop sufficiently high temperatures, are coated with active materials to perform a variety of 'solar-aided' reactions such as water splitting or natural gas reforming. Particular examples discussed include properties'' assessment of monolithic ceramic honeycombs used as volumetric solar thermal reactors/receivers, synthesis of active water-splitting redox materials for the production of hydrogen and their tailored deposition upon porous supports and design, operation simulation and performance optimization of structured monolithic solar hydrogen production reactors. (authors)

  12. Legislative developments in radioactive materials transportation, September 1993--June 1994

    International Nuclear Information System (INIS)

    Worthley, J.A.; Reed, J.B.; Cummins, J.

    1994-07-01

    This is the eighth report prepared by the National Conference of State Legislatures (NCSL) on developments in radioactive materials transportation. It updates information contained in the September 1993 report on Legislative Developments in Radioactive Materials Transportation and describes activities for the period September 1, 1993--June 30, 1994. NCSL currently is updating an on-line data base that contains abstracts of federal, state and local laws and regulations relating to the transportation of radioactive materials. The data base will be operated by NCSL under a cooperative agreement with the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management. Availability of on-line capability is anticipated by the end of August 1994. Users approved by DOE and NCSL will have access to the data base. This report contains the current status of legislation introduced in the 1993 and 1994 state legislative sessions, not previously reviewed in past reports. Bills that address nuclear materials transportation and the broader area of hazardous materials transportation are grouped by state according to their status--enacted, pending or failed. In addition, bills that deal with emergency preparedness are described. (General nuclear waste legislation with no transportation element is no longer tracked.) Also included are Federal Register notices and changes in federal regulations pertinent to radioactive waste and hazardous materials transportation

  13. Legislative developments in radioactive materials transportation, April 1993--August 1993

    International Nuclear Information System (INIS)

    Reed, J.B.; Cummins, J.

    1993-09-01

    This is the seventh report prepared by the National Conference of State Legislatures (NCSL) on developments in radioactive materials transportation. It updates information contained in the April 1993 report on Legislative Developments in Radioactive Materials Transportation and describes activities for the period April 1, 1993--August 31, 1993. NCSL currently is updating an on-line data base that contains abstracts of federal, state and local laws and regulations relating to the transportation of radioactive materials. The data base will be operated by NCSL under a cooperative agreement with the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management. Limited availability of on-line capability is anticipated by the end of 1993. Users approved by DOE and NCSL will have access to the data base. A copy of any legislation listed in this report can be obtained by contacting the people listed below. This report contains the current status of legislation introduced in the 1993 state legislative sessions, not previously reviewed in past reports. Bills that address nuclear materials transportation and the broader area of hazardous materials transportation are grouped by state according to their status--enacted, pending or failed. In addition, bills that deal with emergency preparedness are described. (General nuclear waste legislation with no transportation element is no longer tracked.) Also included are Federal Register notices pertinent to radioactive waste and hazardous materials transportation

  14. Hazardous materials transportation and emergency response programs

    International Nuclear Information System (INIS)

    Joy, D.S.; Fore, C.S.

    1983-01-01

    This presentation consists of the following visual aids; (1) detailed routing capabilities of truck, rail, barge; (2) legislative data base for hazardous materials; and (3) emergency response of accident site Eddyville, Kentucky (airports in vicinity of Eddyville, KY)

  15. Quality assurance for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    1994-01-01

    All activities related to the safe transport of radioactive material should be covered by a quality assurance programme. This publication recognizes that a single transport operation often involves several different organizations, each having specific responsibilities. Hence, it is unlikely that the operation will be covered by a single quality assurance programme. Each quality assurance programme should be tailored to the specific organizational structure for which the programme is prepared, with account taken of the particular transport activities of that organization and the interfaces with other organizations. The aim of this publication is to give a detailed interpretation of what must be done by whom to produce a quality assurance programme for radioactive material transport. This publication provides guidance on methods and practical examples to develop QA programmes for the safe transport of radioactive material. It provides information on how to develop the programme, the standards and the common features of a QA programme

  16. Sea transport of radioactive materials in Egypt (invited paper)

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.; Gomaa, M.A.

    1998-01-01

    In Egypt the national regulations for safe transport of radioactive materials (RAM) are based on the International Atomic Energy Agency (IAEA) regulations. In addition, regulations for the safe transport of these materials through the Suez Canal (SC) were laid down by the Egyptian Atomic Energy Authority (EAEA) and the Suez Canal Authority (SCA). They are continuously updated to meet the increased knowledge and the experience gained. The technical and protective measures taken during transport of RAM through SC are mentioned. Assessment of the impact of transporting radioactive materials through the Suez Canal using the INTERTRAN computer code was carried out in cooperation with IAEA. The transported activities and empty containers, the number of vessels carrying RAM through the Canal from 1963 to 1996 and their nationalities are also discussed. The protective measures are mentioned. (author)

  17. Competent authority regulatory control of the transport of radioactive material

    International Nuclear Information System (INIS)

    1987-04-01

    The purpose of this guide is to assist competent authorities in regulating the transport of radioactive materials and to assist users of transport regulations in their interactions with competent authorities. The guide should assist specifically those countries which are establishing their regulatory framework and further assist countries with established procedures to harmonize their application and implementation of the IAEA Regulations. This guide specifically covers various aspects of the competent authority implementation of the IAEA Regulations for the Safe Transport of Radioactive Material. In addition, physical protection and safeguards control of the transport of nuclear materials as well as third party liability aspects are briefly discussed. This is because they have to be taken into account in overall transport regulatory activities, especially when establishing the regulatory framework

  18. 2015 International Conference on Information Technology and Intelligent Transportation Systems

    CERN Document Server

    Jain, Lakhmi; Zhao, Xiangmo

    2017-01-01

    This volume includes the proceedings of the 2015 International Conference on Information Technology and Intelligent Transportation Systems (ITITS 2015) which was held in Xi’an on December 12-13, 2015. The conference provided a platform for all professionals and researchers from industry and academia to present and discuss recent advances in the field of Information Technology and Intelligent Transportation Systems. The presented information technologies are connected to intelligent transportation systems including wireless communication, computational technologies, floating car data/floating cellular data, sensing technologies, and video vehicle detection. The articles focusing on intelligent transport systems vary in the technologies applied, from basic management systems to more application systems including topics such as emergency vehicle notification systems, automatic road enforcement, collision avoidance systems and some cooperative systems. The conference hosted 12 invited speakers and over 200 part...

  19. Transport and STM measurements of HCI modified materials

    International Nuclear Information System (INIS)

    Pomeroy, J.M.; Grube, H.; Perrella, A.C.; Sosolik, C.E.; Gillaspy, J.D.

    2007-01-01

    While more than a decade of work has provided glimpses into the physics of highly charged ion (HCI) neutralization on surfaces, two prominent objectives remain unfulfilled: (1) a unified, quantitative model for separating the kinetic energy response of a wide range of materials classes from the effects of HCIs' potential energy effects and (2) insertion of HCI technology(s) as a cost-effective processing tool in a high-volume market sector. The National Institute of Standards and Technology (NIST) electron beam ion trap (EBIT) facility has recently incorporated tools for preparing clean, atomically flat surfaces of single crystals from gold to tungsten to silicon and for depositing and patterning thin films that range from high resistivity oxides to transition metals like cobalt and nickel. Current activities are focused on utilizing this unique capability to simultaneously address both of the objectives above by employing technologically important magnetic multi-layer systems to perform transport measurements that provide new insight into the fundamental processes that occur during HCI-surface neutralization. Specifically, we are producing Magnetic Tunnel Junctions (MTJs) critical to both magnetic devices and incorporating HCIs in the processing recipe to adjust critical electronic properties that are currently inhibiting their advancement. In return, the electrical response of the tunnel junction to the HCI processing provides a novel approach to performing ensemble measurements of HCI-surface interactions. By varying the construction of the tunnel junction, critical tests of the role of electron density, densities of states and electronic structure in the HCI-surface charge exchange can be performed

  20. Transportation of nuclear materials: the nuclear focus of the 80's

    International Nuclear Information System (INIS)

    Meyers, S.; Hardin, E.C. Jr.; Jefferson, R.M.

    1980-01-01

    The transport of radioactive material has been carried out since the inception of the nuclear age (over 30 years) with an unparralled safety record. Despite these achievements, there is a need to strive for improvements, to develop safer and more efficient transportation systems, moreover to perform these tasks in a highly visible manner so that public concern can be allayed. But, in the same vein that the past record is not of itself sufficient, neither is public participation the solution to all the issues surrounding the transportation of radioactive materials. The solutions to the problems facing the nuclear transport industry involve many disciplines, much of which rest on a foundation of sound technology. This conference is built around a core of papers on the developing technology of nuclear transportation: on systems, their design and development, their manufacturing processes, their operation and the methodologies of quality assurance in each of these activities. The role of IAEA in the collecting of data to compile information on the flow of radioactive materials, the mode of transport and the corresponding accident/incident experience, as well as its role in initiating a program to develop a worldwide uniform methodology to address the risks of transporting radioactive materials are covered in this symposium

  1. Regulations for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    1995-01-01

    Regulations and rules for the safe transport of radioactive materials by all kinds of conveyance are offered. Different types of packages and the conditions associated with the methods of safe packaging are given

  2. Furthering the good safety record in materials transport

    International Nuclear Information System (INIS)

    Price, M.

    1983-01-01

    Topics raised by the international symposium on Packaging and Transportation of Radioactive Materials (Patram), held in New Orleans in May 1983, including risk analysis, seals and leakage and the effects of increased traffic are discussed. (U.K.)

  3. Packaging and transportation of radioactive materials: summary program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    This document contains summaries or abstracts of reports presented at the Symposium on Packaging and Transportation of Radioactive Materials. Separate indexing has been performed on individual items presented at this conference. (DC)

  4. Environmental effects associated with the transportation of radioactive material

    International Nuclear Information System (INIS)

    McClure, J.D.; Pope, R.B.; Yoshimura, H.R.

    1979-01-01

    The primary aim of this paper has been to describe some of the background information concerning nuclear materials transportation systems, accident statistics, accident severities, and test information - all of which when combined yield an environmental statement of the risks associated with the transportation of radioactive materials. The results of the ultimate risk analysis are expressed in terms of numbers of fatalities and, in that sense at least, tend to be an absolute measure of risk. When these risks are compared with other accepted societal risks, the relative risks associated with radioactive material transportation can be established. This information can be used to make decisions at the governmental level and to inform an interested public about these risks. It can be concluded that the risks associated with the transportation of radioactive material are low relative to the other risks that society has already accepted

  5. Transport of radioactive materials and equipment. Requirements. (Provisional)

    International Nuclear Information System (INIS)

    1983-01-01

    This standard is aimed at establishing the procedures that must be followed when transporting radioactive materials and equipment in Venezuelan Territory. The ''Consejo Nacional para el Desarrollo de la Industria Nuclear'' is responsible for their fulfillment and control

  6. Quality management in the regulation of radioactive material transport

    International Nuclear Information System (INIS)

    Barenghi, Leonardo; Capadona, Nancy M.; Lopez Vietri, Jorge R.; Panzino, Marina; Ceballos, Jorge

    2006-01-01

    The paper describes the quality management procedure used by the Argentine Nuclear Regulatory Authority to establish the regulations concerning the safe transport of radioactive materials. The quality management system is based on the family of the ISO 9000 norms [es

  7. Packaging requirements and procedures for the transport of radioactive materials

    International Nuclear Information System (INIS)

    White, M.C.

    1980-01-01

    Canadian regulations on the transportation of radioactive materials are based on those formulated by the IAEA. A synopsis of these regulations is presented, and the background to certain key provisions is explained. (LL)

  8. An optimization model for transportation of hazardous materials

    International Nuclear Information System (INIS)

    Seyed-Hosseini, M.; Kheirkhah, A. S.

    2005-01-01

    In this paper, the optimal routing problem for transportation of hazardous materials is studied. Routing for the purpose of reducing the risk of transportation of hazardous materials has been studied and formulated by many researcher and several routing models have been presented up to now. These models can be classified into the categories: the models for routing a single movement and the models for routing multiple movements. In this paper, according to the current rules and regulations of road transportations of hazardous materials in Iran, a routing problem is designed. In this problem, the routs for several independent movements are simultaneously determined. To examine the model, the problem the transportations of two different dangerous materials in the road network of Mazandaran province in the north of Iran is formulated and solved by applying Integer programming model

  9. Handbook for structural analysis of radioactive material transport casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1991-04-01

    This paper described structural analysis method of radioactive material transport casks for use of a handbook of safety analysis and evaluation. Safety analysis conditions, computer codes for analyses and stress evaluation method are also involved in the handbook. (author)

  10. Regulations for the safe transport of radioactive material. 1996 ed.

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is the revised version of the IAEA's Regulations for the Safe Transport of Radioactive Materials as approved by the Board of Governors in September 1996. It establishes standards of safety which provide an acceptable level of control of the radiation, criticality and thermal hazards to persons, property and the environment that are associated with the transport of radioactive material. After an introductory section, the publication is structured as follows: Section 2 defines the terms that are required for the purposes of the Regulations; Section 3 provides general provisions; Section 4 gives the activity limits and material restrictions used throughout these Regulations; Section 5 provides requirements and controls for transport; Section 6 provides requirements for radioactive materials and for packagings and packages; Section 7 provides requirements for test procedures; Section 8 provides approval and administrative requirements. The requirements for the transport of specified types of consignments are included in an abbreviated form as Schedules. Refs, figs, tabs

  11. Packaging and transportation of radioactive materials: summary program

    International Nuclear Information System (INIS)

    1978-01-01

    This document contains summaries or abstracts of reports presented at the Symposium on Packaging and Transportation of Radioactive Materials. Separate indexing has been performed on individual items presented at this conference

  12. Raising students and educators awareness of radioactive materials transport through creative classroom materials and exhibits

    International Nuclear Information System (INIS)

    Holm, J.; Sandoz, C.; Dickenson, J.; Lee, J.C.; Smith, A.M.

    1994-01-01

    The public is concerned about how the shipping and handling of radioactive materials affects them and their environment. Through exhibit showings doing professional education conferences and smaller, focussed workshops, the United States Department of Energy (DOE) has found teachers and students to be an especially interested audience for hazardous and radioactive materials transportation information. DOE recognizes the importance of presenting educational opportunities to students about scientific and societal issues associated with planning for and safely transporting these types of materials. Raising students' and educators' awareness of hazardous and radioactive materials transport through creative classroom materials and exhibits may help them make informed decisions as adults about this often controversial and difficult issue

  13. Advances in superconducting materials and electronics technologies

    International Nuclear Information System (INIS)

    Palmer, D.N.

    1990-01-01

    Technological barriers blocking the early implementation of ceramic oxide high critical temperature [Tc] and LHe Nb based superconductors are slowly being dismantled. Spearheading these advances are mechanical engineers with diverse specialties and creative interests. As the technology expands, most engineers have recognized the importance of inter-disciplinary cooperation. Cooperation between mechanical engineers and material and system engineers is of particular importance. Recently, several problems previously though to be insurmountable, has been successfully resolved. These accomplishment were aided by interaction with other scientists and practitioners, working in the superconductor research and industrial communities, struggling with similar systems and materials problems. Papers published here and presented at the 1990 ASME Winter Annual Meeting held in Dallas, Texas 25-30 November 1990 can be used as a bellwether to gauge the progress in the development of both ceramic oxide and low temperature Nb superconducting device and system technologies. Topics are focused into two areas: mechanical behavior of high temperature superconductors and thermal and mechanical problems in superconducting electronics

  14. Small transport aircraft technology propeller study

    Science.gov (United States)

    Black, B. M.; Magliozzi, B.; Rohrbach, C.

    1983-01-01

    A study to define potential benefits of advanced technology propeller for 1985-1990 STAT commuter airplanes was completed. Two baselines, a Convair, 30 passenger, 0.47 Mach number airplane and a Lockheed, 50 passenger, 0.70 Mach number airplane, were selected from NASA-Ames sponsored airframe contracts. Parametric performance, noise level, weight and cost trends for propellers with varying number of blades, activity factor, camber and diameter incorporating blade sweep, tip proplets, advanced composite materials, advanced airfoils, advanced prevision synchrophasing and counter-rotation are presented. The resulting DOC, fuel burned, empty weight and acquisition cost benefits are presented for resizings of the two baseline airplanes. Six-bladed propeller having advanced composite blades, advanced airfoils, tip proplets and advanced prevision synchrophasers provided the maximum DOC improvements for both airplanes. DOC and fuel burned were reduced by 8.3% and 17.0% respectively for the Convair airplane and by 24.9% and 41.2% respectively for the Lockheed airplane. The larger reductions arose from a baseline definition with very heavy fuselage acoustic treatment. An alternate baseline, with a cabin noise 13dB in excess of the objective, was also studied.

  15. The new context for transport of radioactive nuclear material

    International Nuclear Information System (INIS)

    Anne, Catherine; Galtier, Jerome

    2001-01-01

    The transportation of radioactive and nuclear materials, involves all modes of transportation (road, air, sea, rail) with predominance for road and for air (air for radioisotopes). In this paper we examine the impact of new evolutions in the fields of safety, security, logistics means, public acceptance and quality assurance

  16. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program

  17. New basic safety regulations of radioactive material transport in Russia

    International Nuclear Information System (INIS)

    Ananiev, V.V.; Ershov, V.N.; Shvedov, M.O.

    2004-01-01

    In the paper the system of normative regulation of radioactive material transport in Russia, basic principles and provisions of the new Russian regulations, available deviations from rules IAEA regulations are briefly considered. The problems, connected with putting in force of the new regulations in practice of transport, including problems of usage earlier designed and manufactured packages are considered as well

  18. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    2000-02-28

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program.

  19. 77 FR 21714 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2012-04-11

    ...: Transportation of Lithium Batteries AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT... cells and batteries that have been adopted into the 2013-2014 International Civil Aviation Organization...) to address the air transportation risks posed by lithium cells and batteries. Some of the proposals...

  20. 75 FR 9147 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2010-03-01

    ...: Transportation of Lithium Batteries AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT... transport of lithium cells and batteries. PHMSA and FAA will hold a public meeting on March 5, 2010, in... will be attending the Lithium Battery Public Meeting and wait to be escorted to the Conference Center...

  1. 78 FR 1119 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2013-01-07

    ...: Transportation of Lithium Batteries AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT... lithium cells and batteries that have been adopted into the 2013-2014 International Civil Aviation... edition, when transporting batteries domestically by air. Incorporation by reference of the 2013-2014...

  2. Growth of molybdenum disulphide using iodine as transport material

    Indian Academy of Sciences (India)

    In the present paper an attempt has been made to describe the chemical vapor transport (CVT) technique used for the growth of molybdenum disulphide (MoS2) single crystals. Iodine (I2) is used as transporting material for this purpose. The energy dispersive analysis by X-ray (EDAX) confirmed the stoichiometry of the ...

  3. Transportation of hazardous materials emergency preparedness hazards assessment

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program

  4. The Transport of Radioactive Materials under special arrangement

    International Nuclear Information System (INIS)

    Biaggio, A.L.; Vietri, J.R.L.

    1993-01-01

    The Agency's Regulations for the Safe Transport of Radioactive Material rule the international transport of these materials and provide the basis of national and regional regulations. The Regulations establish the technical, operational and administrative requirements which shall be accomplished to carry out the transport of radioactive materials (RAM). They also allow the transport in different conditions of those currently applicable and, in such cases, establish that the transport shall be made under special arrangement. To approve a transport under special arrangement the involved Competent Authority shall be satisfied that the alternative provisions are adequate to ensure that the overall level of safety in transport and in-transit storage is at least equivalent to that which would be provided if all the applicable requirements had been met (para. 2ll of the International Atomic Energy Agency Safety Series No. 6). This paper explains some difficulties the Argentine Competent. Authority has experienced trying by comparing the equivalence between the level of safety resulting from the compliance with current requirements and the overall level of safety which is provided by the application of alternative provisions. As most of the experience gained come from the transport of RAM by road, only this mode of transport is considered. (J.P.N.)

  5. Implications for the management of R A materials transport

    International Nuclear Information System (INIS)

    Devine, I.R.

    1997-01-01

    This paper attempts to describe some Exclusions and Exemptions from the current and proposed transport regulations and describes those requirements applicable to low active material. It concludes that Clearance is the dominant issue and that within the UK nuclear sector, the current (1985 as amended 1990) transport regulations have no significant impact on the management of low active materials. Nor will the proposed (1996) Regulations. (author)

  6. Transportation incidents involving Canadian shipments of radioactive material

    International Nuclear Information System (INIS)

    Jardine, J.M.

    1979-06-01

    This paper gives a brief statement of the legislation governing the transportation of radioactive materials in Canada, reviews the types of shipments made in Canada in 1977, and surveys the transportation incidents that have been reported to the Atomic Energy Control Board over the period 1947-1978. Some of the more significant incidents are described in detail. A totAl of 135 incidents occurred from 1947 to 1978, during which time there were 644750 shipments of radioactive material in Canada

  7. Transparency and dialogue: the keys of radioactive material transportation

    International Nuclear Information System (INIS)

    Neau, H.J.; Hartenstein, M.

    2004-01-01

    Today, public opinion, local actors, organizations and associations are expecting a transparent information on nuclear activities. The fact is, a great number already has daily instant access to information and is able to share it very quickly, thanks to new technologies. Public opinion's sensitiveness is a key element, as risk remains at the center of public concerns. The discrepancy between objectively assessed risks and perceived risks is a permanent challenge for acceptance of nuclear energy. The opponents are also using it, to build their misleading strategy. When anti-nuclear groups claim for an increasing involvement in the decision-making processes, they also get there the most efficient means to hamper our activities, namely operational information on the nuclear transport activities. In order to tackle this challenging issue, COGEMA and its parent company AREVA are engaged in improving their information policy. It has been extended to international and national transports commissioned by COGEMA LOGISTICS. Regarding the most recent transport operations, specific information policy has been implemented at the national and local level through media, information committees, trade unions. But, on the one hand, this policy is facing limits: transparency and openness stop where sensitivity and confidentiality start. On the other hand, opponents are building a challenging process, which is ''more and more''. Whatever the industry efforts are, opponents will remain unsatisfied as they cannot afford otherwise.Consequently, we need to assume a proactive policy in the field of the information on safety of radioactive material transportation. But above all, this policy must be dedicated to the public opinion. It must not be a way to answer to opponent's attacks. The industry's transparency and information must support public opinion's understanding of the important issues which are on progress: global access to the energy, preservation of the environment, providing

  8. Transparency and dialogue: the keys of radioactive material transportation

    Energy Technology Data Exchange (ETDEWEB)

    Neau, H.J.; Hartenstein, M. [COGEMA Logistics (AREVA Group) (France)

    2004-07-01

    Today, public opinion, local actors, organizations and associations are expecting a transparent information on nuclear activities. The fact is, a great number already has daily instant access to information and is able to share it very quickly, thanks to new technologies. Public opinion's sensitiveness is a key element, as risk remains at the center of public concerns. The discrepancy between objectively assessed risks and perceived risks is a permanent challenge for acceptance of nuclear energy. The opponents are also using it, to build their misleading strategy. When anti-nuclear groups claim for an increasing involvement in the decision-making processes, they also get there the most efficient means to hamper our activities, namely operational information on the nuclear transport activities. In order to tackle this challenging issue, COGEMA and its parent company AREVA are engaged in improving their information policy. It has been extended to international and national transports commissioned by COGEMA LOGISTICS. Regarding the most recent transport operations, specific information policy has been implemented at the national and local level through media, information committees, trade unions. But, on the one hand, this policy is facing limits: transparency and openness stop where sensitivity and confidentiality start. On the other hand, opponents are building a challenging process, which is ''more and more''. Whatever the industry efforts are, opponents will remain unsatisfied as they cannot afford otherwise.Consequently, we need to assume a proactive policy in the field of the information on safety of radioactive material transportation. But above all, this policy must be dedicated to the public opinion. It must not be a way to answer to opponent's attacks. The industry's transparency and information must support public opinion's understanding of the important issues which are on progress: global access to the energy

  9. Transport phenomena in materials processing---1990

    International Nuclear Information System (INIS)

    Bishop, B.J.; Lior, N.; Lavine, A.; Flik, M.; Karwe, M.V.; Bergman, T.L.; Beckermann, C.; Charmchi, M.

    1990-01-01

    The papers contained in this volume represent a wide range of current research interests in processes such as food and polymer processing, casting, welding, machining, laser cutting, and superconductor processing. This volume includes papers presented in four sessions: Heat Transfer in Materials Processing; Thermal Phenomena in Superconductor Processing; Heat Transfer in Food and Polymer Processing; Heat Transfer in CAsting and Welding

  10. Battery Materials Synthesis | Transportation Research | NREL

    Science.gov (United States)

    thin-film. NREL's development of inexpensive, high-energy-density electrode materials is challenging introduction of metal oxide and hybrid inorganic-organic surface modification via atomic layer deposition has method for applying conformal thin film coatings to highly textured surfaces. These coatings have been

  11. Legislative developments in radioactive materials transportation, November 1992--March 1993

    International Nuclear Information System (INIS)

    Reed, J.B.; Cummins, J.

    1993-04-01

    This is the sixth report prepared by the National Conference of State Legislatures (NCSL) on developments in radioactive materials transportation. It updates information contained in the November 1992 Legislative and Legal Developments in Radioactive Materials Transportation report and describes activities for the period November 1, 1992--March 31, 1993. NCSL is working to bring on-line a data base that contains abstracts of state laws and regulations relating to the transportation of radioactive materials. The data base will be operated by NCSL under a cooperative agreement with the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management. Limited availability of on-line capability is anticipated by the end of July 1993. Users approved by DOE and NCSL will have access to the data base. Hard copy of any legislation listed in this report can be obtained by contacting the people listed below. This report contains summaries of legislation introduced in the 1993 state legislative sessions. Bills that address nuclear materials transportation and the broader area of hazardous materials transportation are grouped by state according to their status--enacted, pending or failed. In addition, bills that deal with emergency preparedness and general nuclear waste issues are described. Also included are Federal Register notices pertinent to radioactive waste and hazardous materials transportation. A recent court decision is also summarized

  12. High-speed civil transport issues and technology program

    Science.gov (United States)

    Hewett, Marle D.

    1992-01-01

    A strawman program plan is presented, consisting of technology developments and demonstrations required to support the construction of a high-speed civil transport. The plan includes a compilation of technology issues related to the development of a transport. The issues represent technical areas in which research and development are required to allow airframe manufacturers to pursue an HSCT development. The vast majority of technical issues presented require flight demonstrated and validated solutions before a transport development will be undertaken by the industry. The author believes that NASA is the agency best suited to address flight demonstration issues in a concentrated effort. The new Integrated Test Facility at NASA Dryden Flight Research Facility is considered ideally suited to the task of supporting ground validations of proof-of-concept and prototype system demonstrations before night demonstrations. An elaborate ground hardware-in-the-loop (iron bird) simulation supported in this facility provides a viable alternative to developing an expensive fill-scale prototype transport technology demonstrator. Drygen's SR-71 assets, modified appropriately, are a suitable test-bed for supporting flight demonstrations and validations of certain transport technology solutions. A subscale, manned or unmanned flight demonstrator is suitable for flight validation of transport technology solutions, if appropriate structural similarity relationships can be established. The author contends that developing a full-scale prototype transport technology demonstrator is the best alternative to ensuring that a positive decision to develop a transport is reached by the United States aerospace industry.

  13. Disruptive technologies and transportation : final report.

    Science.gov (United States)

    2016-06-01

    Disruptive technologies refer to innovations that, at first, may be considered unproven, lacking refinement, relatively unknown, or even impractical, but ultimately they supplant existing technologies and/or applications. In general, disruptive techn...

  14. Development of an expert system for radioactive material transportation

    International Nuclear Information System (INIS)

    Tamanoi, K.; Ishitobi, M.; Shinohara, Y.

    1990-01-01

    An expert system to deal with radioactive material transportation was developed. This expert system is based on 'Regulations for the Safe Transport of Radioactive Material' by IAEA issued 1985. IAEA published the regulations under such environments that safety transportation has become increasingly being focused as uses of radioactive materials are more pervasive, not only in nuclear field but also in non-nuclear purposes. Attentions are payed for operators and environment to establish safety in handling radioactive materials. In the 1985 regulations, detailed categorization of radioactive materials and, correspondingly, new classification of packages are introduced. This categorization is more complicated than old regulations, leading us to develop an expert system to evaluate easily the packages categorization. (author)

  15. 75 FR 38168 - Hazardous Materials: International Regulations for the Safe Transport of Radioactive Material (TS...

    Science.gov (United States)

    2010-07-01

    ... may also provide contact information, such as a telephone number and/or e-mail address. PHMSA and the.... PHMSA-2010-0130 (Notice No.10-2)] Hazardous Materials: International Regulations for the Safe Transport... (IAEA) ``Regulations for the Safe Transport of Radioactive Material'' (TS-R-1), which is scheduled for...

  16. Lessons learned by southern states in transportation of radioactive materials

    International Nuclear Information System (INIS)

    1992-03-01

    This report has been prepared under a cooperative agreement with DOE's Office of Civilian Radioactive Waste Management (OCRWM) and is a summary of the lessons learned by southern states regarding the transportation of radioactive materials including High-Level Radioactive Wastes (HLRW) and Spent Nuclear Fuel (SNF). Sources used in this publication include interviews of state radiological health and public safety officials that are members of the Southern States Energy Board (SSEB) Advisory Committee on Radioactive Materials Transportation, as well as the Board's Transuranic (TRU) Waste Transportation Working Group. Other sources include letters written by the above mentioned committees concerning various aspects of DOE shipment campaigns

  17. Vulnerability Analysis Considerations for the Transportation of Special Nuclear Material

    International Nuclear Information System (INIS)

    Nicholson, Lary G.; Purvis, James W.

    1999-01-01

    The vulnerability analysis methodology developed for fixed nuclear material sites has proven to be extremely effective in assessing associated transportation issues. The basic methods and techniques used are directly applicable to conducting a transportation vulnerability analysis. The purpose of this paper is to illustrate that the same physical protection elements (detection, delay, and response) are present, although the response force plays a dominant role in preventing the theft or sabotage of material. Transportation systems are continuously exposed to the general public whereas the fixed site location by its very nature restricts general public access

  18. Safety in transport and storage of radioactive materials

    International Nuclear Information System (INIS)

    Mezrahi, A.; Xavier, A.M.

    1987-01-01

    The increasing utilization of radioisotopes in Industrial, Medical and Research Facilities as well as the processing of Nuclear Materials involve transport activities in a routine basis. The present work has the following main objectives: I) the identification of the safety aspects related to handling, transport and storage of radioactive materials; II) the orientation of the personnel responsible for the radiological safety of Radioactive Installations viewing the elaboration and implementation of procedures to minimize accidents; III) the report of case-examples of accidents that have occured in Brazil due to non-compliance with Transport Regulations. (author) [pt

  19. Transportation accidents/incidents involving radioactive materials (1971-1991)

    International Nuclear Information System (INIS)

    Cashwell, C.E.; McClure, J.D.

    1993-01-01

    In 1981, Sandia National Laboratories developed the Radioactive Materials Incident Report (RMIR) database to support its research and development activities for the U.S. Department of Energy (DOE). The RMIR database contains information on transportation accidents/incidents with radioactive materials that have occurred since 1971. The RMIR classifies a transportation accident/incident in one of six ways: as a transportation accident, a handling accident, a reported incident, missing or stolen, cask weeping, or other. This paper will define these terms and provide detailed examples of each. (J.P.N.)

  20. Transport of hazardous materials in the Amazon area; Transporte de produtos perigosos na regiao Amazonica

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Wallace de Castro [FURNAS Centrais Eletricas S.A., Rio de Janeiro, RJ (Brazil); Fernandes, Elton; Nassi, Carlos David [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE)

    2008-07-01

    Amongst several exploratory sources of the subject 'hazardous materials transport', it is distinguished: 'the threat to the environment'. This paper presents an exploratory investigation of this subject line in the Amazon region. In view of the diversity of 'existing hazardous materials' and the raised dimension of the oil transport and its derivatives in this context, this paper focused in these products. Regarding to the geographic region, the approach was given to the State of Amazon, considering the amplitude of this State in the Amazon region and the availability of data. Therefore, this work explores and analyzes macro aspects inherent to the State of Amazon pertinent to the oil transport and its derivatives. In the macro context, it is observed the necessity of a higher control in the transport of hazardous materials in the region. The absence of registered data and the unfamiliarity on the risks related to the transport of hazardous materials by authorities and transporters indicate a relative absence of qualification in the region to deal with the monitoring of the transport of hazardous materials. So far, it is not possible up till now to make any evaluation of the environment threats of accidents with transport of hazardous materials in the Amazon region.(author)

  1. Transport of hazardous materials in the Amazon area; Transporte de produtos perigosos na regiao Amazonica

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Wallace de Castro [FURNAS Centrais Eletricas S.A., Rio de Janeiro, RJ (Brazil); Fernandes, Elton; Nassi, Carlos David [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE)

    2008-07-01

    Amongst several exploratory sources of the subject 'hazardous materials transport', it is distinguished: 'the threat to the environment'. This paper presents an exploratory investigation of this subject line in the Amazon region. In view of the diversity of 'existing hazardous materials' and the raised dimension of the oil transport and its derivatives in this context, this paper focused in these products. Regarding to the geographic region, the approach was given to the State of Amazon, considering the amplitude of this State in the Amazon region and the availability of data. Therefore, this work explores and analyzes macro aspects inherent to the State of Amazon pertinent to the oil transport and its derivatives. In the macro context, it is observed the necessity of a higher control in the transport of hazardous materials in the region. The absence of registered data and the unfamiliarity on the risks related to the transport of hazardous materials by authorities and transporters indicate a relative absence of qualification in the region to deal with the monitoring of the transport of hazardous materials. So far, it is not possible up till now to make any evaluation of the environment threats of accidents with transport of hazardous materials in the Amazon region.(author)

  2. Education and training in transport of radioactive material

    International Nuclear Information System (INIS)

    Carvalho, Bruno Natanael; Pastura, Valeria da Fonseca e Silva; Mattar, Patricia; Dias, Carlos R.

    2013-01-01

    This paper presents the approach adopted by the Department of Transportation of the Brazilian National Nuclear Energy Commission - CNEN, in the creation of the course of education and training distance for transport companies, as well as for national institutions directly involved with the theme transportation of radioactive materials. The course will consist of 20 modules containing exercises and further assessment of learning, and enable participants to understand the regulatory terminology, assimilating the philosophy of nuclear and radiation safety, prepare the shipment and identify and fill the complete documents required in an operation transport

  3. A global renewable mix with proven technologies and common materials

    International Nuclear Information System (INIS)

    García-Olivares, Antonio; Ballabrera-Poy, Joaquim; García-Ladona, Emili; Turiel, Antonio

    2012-01-01

    A global alternative mix to fossil fuels is proposed, based on proven renewable energy technologies that do not use scarce materials. The mix consists of a combination of onshore and offshore wind turbines, concentrating solar power stations, hydroelectricity and wave power devices attached to the offshore turbines. Solar photovoltaic power could contribute to the mix if its dependence on scarce materials is solved. The most adequate deployment areas for the power stations are studied, as well as the required space. Material requirements are studied for the generation, power transport and for some future transport systems. The order of magnitude of copper, aluminium, neodymium, lithium, nickel, zinc and platinum that may be required for the proposed solution is obtained and compared with available reserves. Overall, the proposed global alternative to fossil fuels seems technically feasible. However, lithium, nickel and platinum could become limiting materials for future vehicles fleet if no global recycling systems were implemented and rechargeable zinc–air batteries would not be developed; 60% of the current copper reserves would have to be employed in the implementation of the proposed solution. Altogether, they may become a long-term physical constraint, preventing the continuation of the usual exponential growth of energy consumption. - Highlights: ▶ A global renewable mix with proven energy technologies and common materials. ▶ Wind turbines, concentrating solar power, hydroelectricity and wave attenuators. ▶ Mix technically feasible. Lithium, nickel and platinum may limit vehicles fleet. ▶ Sixty per cent of copper reserves used in the mix and in societal electrification. ▶ Power cannot growth exponentially. Future “spaceship economy” scenario expected.

  4. Liability and insurance aspects of international transport of nuclear materials

    International Nuclear Information System (INIS)

    van Gijn, S.H.

    1985-01-01

    The Paris and Vienna Conventions do not affect the application of any international transport agreement already in force. However, in certain circumstances both the nuclear operator and the carrier may be held liable for nuclear damage which arises during international transports of nuclear materials. The ensuing cumulation of liabilities under the Nuclear and Transport Conventions may cause serious problems in obtaining adequate insurance cover for such transports. The 1971 Brussels Convention seeks to solve this problem by exonerating any person who might be held liable for nuclear damage under an international maritime convention or national law. Similar difficulties are encountered in the case of transports of nuclear materials between states which have and states which have not ratified the Paris and Vienna Conventions. (NEA) [fr

  5. Specialized equipment needs for the transportation of radioactive material

    International Nuclear Information System (INIS)

    Condrey, D.; Lambert, M.

    1998-01-01

    To ensure the safe and reliable transportation of radioactive materials and components, from both the front and back-end of the nuclear fuel cycle, a transport management company needs three key elements: specialized knowledge, training and specialized equipment. These three elements result, in part, from national and international regulations which require specialized handling of all radioactive shipments. While the reasons behind the first two elements are readily apparent, the role of specialized equipment is often not considered until too late shipment process even though it plays an integral part of any radioactive material transport. This paper will describe the specialized equipment needed to transport three of the major commodities comprising the bulk of international nuclear transports: natural uranium (UF6), low enriched uranium (UF6) and fresh nuclear fuel. (authors)

  6. INES scale: French application to radioactive material transport

    International Nuclear Information System (INIS)

    Sowinski, S.; Strawa, S.; Aguilar, J.

    2004-01-01

    After getting the control of radioactive material transport in June 1997, the French safety Authority (ASN) decided to apply the INES scale to transport events. DGSNR (Directorate General for Nuclear Safety and Radioprotection) requests that radioactive material package consignors declare any event occurring during transportation, and has introduced the use of the INES scale adapted to classify transport events in order to inform the public and to have feedback. This paper deals with DGSNR's feedback during the past seven years concerning the french application of the INES scale. Significant events that occurred during transportation are presented. The French experience was used by IAEA to develop a draft guide in 2002 and IAEA asked countries to use a new draft for a trial period in July 2004

  7. 30 years of experience in safe transportation of nuclear materials

    International Nuclear Information System (INIS)

    Kaneko, K.

    2004-01-01

    In April 2003, Nuclear Fuel Transport Co., Ltd. (NFT) marked the 30 th anniversary of its founding. NFT was established in 1973 and in 1978, commenced SF transport to the reprocessing plant in Tokai-mura. And then, after making preparations to transport nuclear materials to the various facilities at the Nuclear Fuel Cycle Center in Rokkasho-mura, NFT successfully started transportation of LLW (low level waste) to Rokksho-mura's LLW disposal center in 1992, domestic land transportation of HLW returned from overseas to the HLW storage center in 1995, domestic land transportation of natural hexafluoride delivered from overseas to the uranium enrichment plant in 1996, and transportation of SF to the reprocessing plant in 2000. NFT has realized an annual SF transportation capacity of 300 MTU and is currently making great company wide efforts to meet the Rokkasho Reprocessing Plant's future SF annual reprocessing capacity of 800MTU. At the end of FY2003, NFT had successfully transported 560 casks (about 1,730 MTU) of SF in more than 200 voyages in total, about 160,000 drums of LLW in around 100 voyages in total. This paper introduces the record of safe transport and its experience over the past 30 years and prospect for future transport business

  8. 30 years of experience in safe transportation of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, K. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan)

    2004-07-01

    In April 2003, Nuclear Fuel Transport Co., Ltd. (NFT) marked the 30{sup th} anniversary of its founding. NFT was established in 1973 and in 1978, commenced SF transport to the reprocessing plant in Tokai-mura. And then, after making preparations to transport nuclear materials to the various facilities at the Nuclear Fuel Cycle Center in Rokkasho-mura, NFT successfully started transportation of LLW (low level waste) to Rokksho-mura's LLW disposal center in 1992, domestic land transportation of HLW returned from overseas to the HLW storage center in 1995, domestic land transportation of natural hexafluoride delivered from overseas to the uranium enrichment plant in 1996, and transportation of SF to the reprocessing plant in 2000. NFT has realized an annual SF transportation capacity of 300 MTU and is currently making great company wide efforts to meet the Rokkasho Reprocessing Plant's future SF annual reprocessing capacity of 800MTU. At the end of FY2003, NFT had successfully transported 560 casks (about 1,730 MTU) of SF in more than 200 voyages in total, about 160,000 drums of LLW in around 100 voyages in total. This paper introduces the record of safe transport and its experience over the past 30 years and prospect for future transport business.

  9. Sensor technology for hazardous cargo transportation safety.

    Science.gov (United States)

    2013-08-01

    The overall goal of this research project was to develop oxidant vapor detection devices that can be : used to ensure the safety of hazardous freight transportation systems. Two nanotechnology-based : systems originally developed for improvised explo...

  10. Working together : transportation opportunities for technology reinvestment

    Science.gov (United States)

    1993-05-10

    On May 10, 1993, nearly 100 representatives of the major defense companies, federal agencies, national laboratories, universities, and state governments met at the U.S. Department of Trans;pportation's Volpe National Transportation Systems Center, Ca...

  11. Assessment of Transportation Risk of Radioactive Materials in Uganda

    International Nuclear Information System (INIS)

    Richard, Menya; Kim, Jonghyun

    2014-01-01

    Radioactive materials refer to any materials that spontaneously emit ionizing radiation and of which the radioactivity per gram is greater than 0.002 micro-curie. They include: spent nuclear fuel, nuclear wastes, medical sources i.e. Co-60, industrial sources i.e. Cs-137, Am-241:Be, Ra-226, and sources for research. In view of the rising reported cancer cases in Uganda, which might be as a result of radiation exposure due to constant transportation of radioactive materials i.e. industrial sources, a risk analysis was thought of and undertaken for the country's safety evaluation and improvement. It was therefore important to undertake a risk assessment of the actual and potential radiation exposure during the transportation process. This paper explains a study undertaken for transport risk assessment of the impact on the environment and the people living in it, from exposure to radioactivity during transportation of the industrial sources in Uganda. It provides estimates of radiological risks associated with visualized transport scenarios for the highway transport mode. This is done by calculating the human health impact and radiological risk from transportation of the sources along Busia transport route to Hoima. Busia is the entry port for the sources whilst Hoima, where various industrial practices that utilize sources like oil explorations are centered. During the study, a computer code RADTRAN-6 was used. The overall collective dose for population and package transport crew are 3.72E-4 and 1.69E-4 person-sievert respectively. These are less than the exemption value recommended by the IAEA and Uganda Regulatory Authority for public implying that no health effects like cancer are to be expected. Hence the rising cancer cases in the country are not as a result of increased transportation of radioactive materials in the Industrial sector

  12. Assessment of Transportation Risk of Radioactive Materials in Uganda

    Energy Technology Data Exchange (ETDEWEB)

    Richard, Menya; Kim, Jonghyun [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    Radioactive materials refer to any materials that spontaneously emit ionizing radiation and of which the radioactivity per gram is greater than 0.002 micro-curie. They include: spent nuclear fuel, nuclear wastes, medical sources i.e. Co-60, industrial sources i.e. Cs-137, Am-241:Be, Ra-226, and sources for research. In view of the rising reported cancer cases in Uganda, which might be as a result of radiation exposure due to constant transportation of radioactive materials i.e. industrial sources, a risk analysis was thought of and undertaken for the country's safety evaluation and improvement. It was therefore important to undertake a risk assessment of the actual and potential radiation exposure during the transportation process. This paper explains a study undertaken for transport risk assessment of the impact on the environment and the people living in it, from exposure to radioactivity during transportation of the industrial sources in Uganda. It provides estimates of radiological risks associated with visualized transport scenarios for the highway transport mode. This is done by calculating the human health impact and radiological risk from transportation of the sources along Busia transport route to Hoima. Busia is the entry port for the sources whilst Hoima, where various industrial practices that utilize sources like oil explorations are centered. During the study, a computer code RADTRAN-6 was used. The overall collective dose for population and package transport crew are 3.72E-4 and 1.69E-4 person-sievert respectively. These are less than the exemption value recommended by the IAEA and Uganda Regulatory Authority for public implying that no health effects like cancer are to be expected. Hence the rising cancer cases in the country are not as a result of increased transportation of radioactive materials in the Industrial sector.

  13. Neutron transport in Eulerian coordinates with bulk material motion

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Randal S., E-mail: rsb@lanl.gov [Los Alamos National Laboratory, Computational Physics Group, Los Alamos, NM (United States); Dahl, Jon A., E-mail: dahl@lanl.gov [Los Alamos National Laboratory, Computational Physics Group, Los Alamos, NM (United States); Fichtl, Erin J., E-mail: efichtl@lanl.gov [Los Alamos National Laboratory, Computational Physics Group, Los Alamos, NM (United States); Morel, Jim E., E-mail: morel@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX (United States)

    2015-12-15

    A consistent, numerically stable algorithm for the solution of the neutron transport equation in the presence of a moving material background is presented for one-dimensional spherical geometry. Manufactured solutions are used to demonstrate the correctness and stability of our numerical algorithm. The importance of including moving material corrections is shown for the r-process in proto-neutron stars.

  14. Regulation of Transportation of Radioactive Material in Indonesia

    International Nuclear Information System (INIS)

    Nirwono, Muttaqin Margo; Choi, Kwang Sik

    2011-01-01

    1.1. Background Indonesia is a biggest archipelago country with 17,508 islands in 33 provinces. In transportation Indonesia has large number of airports, railways, roadways, waterways, and merchant marines. Since nuclear and radiation utilizations are expanding on whole country, the mobilization of these is usually placed outside of controlled facilities, in the public domain, and often entails movement between countries. The Indonesian Nuclear Energy Regulatory Agency (BAPETEN) is responsible for supervision and also authorization of the transport of radioactive material (TRM). TRM is the specific movement of a radioactive material consignment from origin to destination by public transportation (road or rail, water and air). This study aims to determine whether national regulation is harmonized with international practice in ensuring safety and security of TRM. The finding of this study will provide recommendation for enhancement of regulation on TRM. 1.2. Regulation of TRM in Indonesia Government Regulation (GR) No. 26, 2002 on the Safe Transport of Radioactive Material is implemented pursuant to Act 10, 1997 on Nuclear Energy. This GR was repealed GR 13, 1975 on TRM. The GR 26 consist of 16 chapters and 39 articles, included licensing: authority and responsibilities: packaging: radiation protection programme; training: quality assurance programme: type and activity limit of radioactive materials: radioactive materials with other dangerous properties: emergency preparedness: administrative sanction: and penal provisions. Principally, this GR adopted IAEA-TS-R-1, 'Regulations for the Safe Transport of Radioactive Material', 1996's Edition

  15. Safe Transport of Radioactive Material, Philosophy and Overview

    Energy Technology Data Exchange (ETDEWEB)

    EL-Shinawy, R M.K. [Radiation Protection Dept., Nuclear Rasearch Center, Atomic Energy Authority, Cairo (Egypt)

    2008-07-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international and national regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1(ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series Nos 7and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series Nos 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS no.113), compliance assurance (SS no. 112), the training manual and others.

  16. Safe Transport of Radioactive Material, Philosophy and Overview

    International Nuclear Information System (INIS)

    EL-Shinawy, R.M.K.

    2008-01-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international and national regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1(ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series Nos 7and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series Nos 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS no.113), compliance assurance (SS no. 112), the training manual and others

  17. Impact of carbonation on water transport properties of cementitious materials

    International Nuclear Information System (INIS)

    Auroy, Martin

    2014-01-01

    Carbonation is a very well-known cementitious materials pathology. It is the major cause of reinforced concrete structures degradation. It leads to rebar corrosion and consequent concrete cover cracking. In the framework of radioactive waste management, cement-based materials used as building materials for structures or containers would be simultaneously submitted to drying and atmospheric carbonation. Although scientific literature regarding carbonating is vast, it is clearly lacking information about the influence of carbonation on water transport properties. This work then aimed at studying and understanding the change in water transport properties induced by carbonation. Simultaneously, the representativeness of accelerated carbonation (in the laboratory) was also studied. (author) [fr

  18. Study on tracking system for radioactive material transport

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, F.; Igarashi, M.; Nomura, T. [Nuclear Emergency Assistance and Training Center, Japan Nuclear Cycle Development Inst., Ibaraki (Japan); Nakagome, Y. [Research Reactor Inst., Kyoto Univ., Osaka (Japan)

    2004-07-01

    When a transportation accident occurs, all entities including the shipper, the transportation organization, local governments, and emergency response organizations must have organized and planned for civil safety, property, and environmental protection. When a transportation accident occurs, many related organizations will be involved, and their cooperation determines the success or failure of the response. The point where the accident happens cannot be pinpointed in advance. Nuclear fuel transportation also requires a quick response from a viewpoint of security. A tracking system for radioactive material transport is being developed for use in Japan. The objective of this system is, in the rare event of an accident, for communication capabilities to share specific information among relevant organizations, the transporter, and so on.

  19. Study on tracking system for radioactive material transport

    International Nuclear Information System (INIS)

    Watanabe, F.; Igarashi, M.; Nomura, T.; Nakagome, Y.

    2004-01-01

    When a transportation accident occurs, all entities including the shipper, the transportation organization, local governments, and emergency response organizations must have organized and planned for civil safety, property, and environmental protection. When a transportation accident occurs, many related organizations will be involved, and their cooperation determines the success or failure of the response. The point where the accident happens cannot be pinpointed in advance. Nuclear fuel transportation also requires a quick response from a viewpoint of security. A tracking system for radioactive material transport is being developed for use in Japan. The objective of this system is, in the rare event of an accident, for communication capabilities to share specific information among relevant organizations, the transporter, and so on

  20. The space technology demand on materials and processes

    Science.gov (United States)

    Dauphin, J.

    1983-01-01

    Space technology requires a rational and accurate policy of materials and processes selection. This paper examines some areas of space technology where materials and process problems have occurred in the past and how they can be solved in the future.

  1. The recent international situation on the transport of radioactive material and IAEA 2003 transport conference

    International Nuclear Information System (INIS)

    Tani, Hiroshi

    2003-01-01

    Since the creation of the United Nations, the international community initiated efforts to harmonize international practices for the safe transport of hazardous goods, including radioactive material. And, IAEA is playing a key role in fostering the establishment of transport regulations on radioactive material. This current worldwide system of regulatory control has achieved an excellent safety record. However, some concerns still remain regarding the transport of radioactive material, as the discussion of this topic at IAEA General Conferences in the last few years. IAEA Transport conference planed as a forum in which to better understand these concerns, and to answer relevant underlying questions. At the same time, outside these technical areas, discussions also covered related issues such as liability resulting from an accident during the transport and communication between concerned governments, and between these governments and the public at large. The International Conference on the Safety of Transport of Radioactive Material took place in Vienna, Austria, from 7 to 11 July 2003. There were 534 nominated participants from 82 States, 9 intergovernmental organizations (IGOs), and 5 non-governmental organizations (NGOs), and there were 132 contributed and invited papers. By this report, I report the recent international situation on the transport of radioactive material and result of the IAEA 2003 Transport Conference. (author)

  2. A contribution to problems of clean transport of bulk materials

    Directory of Open Access Journals (Sweden)

    Fedora Jaroslav

    1996-03-01

    Full Text Available The lecture analyses the problem of development of the pipe conveyor with a rubber belt, the facitities of its application in the practice and environmental aspects resulting from its application. The pipe conveyor is a new perspective transport system. It enables ransporting bulk materials (coal, crushed, rock, coke, plant ash, fertilisers, limestones, time in a specific operations (power plants, heating plants.cellulose, salt, sugar, wheat and other materials with a minimum effect on the environment. The transported material is enclosed in the pipeline so that there is no escape of dust, smell or of the transported material itself. The lecture is aimed at: - the short description of the operating principle and design of the pipe conveyor which was developed in the firm Matador Púchov in cooperation with the firm TEDO, - the analysis of experiencie in working some pipe conveyors which were under operation for a certain

  3. Dossier: transport of radioactive materials; Dossier: le transport des matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Mignon, H. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Direction du Cycle du Combustible; Niel, J.Ch. [CEA Centre d`Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Canton, H. [CEA Cesta, 33 - Bordeaux (France); Brachet, Y. [Transnucleaire, 75 - Paris (France); Turquet de Beauregard, G.; Mauny, G. [CIS bio international, France (France); Robine, F.; Plantet, F. [Prefecture de la Moselle (France); Pestel Lefevre, O. [Ministere de l`Equipement, des transports et du logement, (France); Hennenhofer, G. [BMU, Ministere de l`environnement, de la protection de la nature et de la surete des reacteurs (Germany); Bonnemains, J. [Association Robin des Bois (France)

    1997-12-01

    This dossier is entirely devoted to the transportation of radioactive and fissile materials of civil use. It comprises 9 papers dealing with: the organization of the control of the radioactive materials transport safety (safety and security aspects, safety regulations, safety analysis and inspection, emergency plans, public information), the technical aspects of the regulation concerning the transport of radioactive materials (elaboration of regulations and IAEA recommendations, risk assessments, defense in depth philosophy and containers, future IAEA recommendations, expertise-research interaction), the qualification of containers (regulations, test facilities), the Transnucleaire company (presentation, activity, containers for spent fuels), the packages of radioactive sources for medical use (flux, qualification, safety and transport), an example of accident during radioactive materials transportation: the Apach train derailment (February 4, 1997), the sea transport of radioactive materials (international maritime organization (OMI), international maritime dangerous goods (IMDG) code, irradiated nuclear fuel (INF) safety rules), the transport of radioactive materials in Germany, and the point of view from an external observer. (J.S.)

  4. Progress in III-V materials technology

    Science.gov (United States)

    Grant, Ian R.

    2004-12-01

    Compound semiconductors, in the form of GaAs and InP have achieved major commercial significance in areas of application such as mobile communications, displays and telecoms and offer a versatility of function beyond the capabilities of Si. III-V compounds, and in particular GaAs, have since their early development been the subject of defence related interest. Support from this sector established the basic materials technologies and nurtured development up until their commercial breakthrough into consumer products. GaAs, for example, now provides essential components for mobile phones and CD / DVD players. An overview is presented of the crystal growth and processing methods used in the manufacture of these materials. Current state of the art characteristics on crystal form and quality are discussed, together with the evolution of single crystal growth techniques. Consideration is given to how these principal compounds together with the minor materials, InSb, GaSb and InAs are employed in diverse applications over a broad spectral range, together with information on markets and future perspectives.

  5. Composite materials from new textile technologies

    Directory of Open Access Journals (Sweden)

    Jiménez, M. A.

    1997-12-01

    Full Text Available The present paper describes in a general way the most important of the advanced textile technologies which are oriented to the manufacturing of organic matrix composite materials, the paper presents their applications and the possibilities of future development. The use of these advanced weaving techniques allows the production of near-net-shaped preforms, which results in important savings in processing costs; moreover, these textile processes offer the possibility of introducing out-of plane reinforcing fibres, so there is an important increment of the impact strength and the damage tolerance of the final material.

    En el presente artículo se describen, de forma genérica, las más importantes de las tejedurías avanzadas destinadas a la fabricación de materiales compuestos de matriz orgánica, presentándose sus aplicaciones y futuras posibilidades de desarrollo. La utilización de estos procesos de tejeduría avanzados permite la elaboración de preformas cercanas a la forma final de la pieza, lo que se traduce en importantes reducciones en los costes de fabricación; además, estos procesos textiles ofrecen la posibilidad de introducir fibras de refuerzo fuera del plano, aumentando de forma considerable la resistencia a impacto y la tolerancia al daño del material final.

  6. Feasibility Study of Cargo Airship Transportation Systems Powered by New Green Energy Technologies

    Science.gov (United States)

    Skuza, Jonathan R.; Park, Yeonjoon; Kim, Hyun Jung; Seaman, Shane T.; King, Glen C.; Choi, Sang H.; Song, Kyo D.; Yoon, Hargsoon; Lee, Kunik

    2014-01-01

    The development of transportation systems that use new and sustainable energy technologies is of utmost importance due to the possible future shortfalls that current transportation modes will encounter because of increased volume and costs. The introduction and further research and development of new transportation and energy systems by materials researchers at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) and the Department of Transportation are discussed in this Technical Memorandum. In this preliminary study, airship concepts were assessed for cargo transportation using various green energy technologies capable of 24-hour operation (i.e., night and day). Two prototype airships were successfully constructed and tested at LaRC to demonstrate their feasibility: one with commercially available solar cells for operation during the daytime and one with microwave rectennas (i.e., rectifying antennas) developed in-house for night-time operation. The test results indicate the feasibility of a cargo transportation airship powered by new green energy sources and wireless power technology. Future applications will exploit new green energy sources that use materials and devices recently developed or are in the process of being developed at LaRC. These include quantum well SiGe solar cells; low, mid-, and high temperature thermoelectric modules; and wireless microwave and optical rectenna devices. This study examines the need and development of new energy sources for transportation, including the current status of research, materials, and potential applications.

  7. Risk management of onsite transportation of hazardous materials

    International Nuclear Information System (INIS)

    Wang, O.S.; Field, J.G.

    1992-10-01

    The US Department of Energy's (DOE) Hanford Site has recently undergone a significant change in its mission. The focus of site-wide operations has been shifted from production to environmental restoration. As a result, there is a significant increase in quantities of the radioactive wastes and other hazardous materials to be packaged and transported onsite. In response to the elevated transportation activities, the operations and engineering contractor for the Hanford Site, Westinghouse Hanford Company (Westinghouse Hanford), is proposing an integrated risk assessment methodology and risk management strategy to further enhance the safe operations of the onsite packaging and transportation activities involving radioactive and other hazardous materials. This paper summarizes Westinghouse Hanford's proposed risk assessment and risk management methodology for onsite transportation of hazardous materials. The proposed Westinghouse Hanford risk assessment and management methodology for onsite packaging and transportation has three integral parts: risk assessment, risk acceptance criteria, and risk minimization process. The purposes are to ensure that the risk for each ongoing transportation activity is acceptable, and to further reduce the overall risk for current and future onsite transportation activities

  8. Training of personnel in the field of radioactive materials transport

    International Nuclear Information System (INIS)

    Fasten, Ch.

    1997-01-01

    Training of personnel in the whole nuclear fuel cycle and also in the other fields of the use of radioactivity is one of the essentials with respect to compliance assurance. The transport of radioactive material is the only activity that takes place outside a facility: on roads, on railways, on the sea or in the air. A high level of safety is therefore an absolute requirement for all transport operations. To ensure this high level the training of the personnel involved in these activities plays an important role. Many studies show that most of the incidents in radioactive materials transport are caused by man-made errors: even so there have been no events with serious radiological consequences anywhere worldwide. There are many requirements in the various national and international regulations for the safe transport of radioactive material with regard to training. An overview is given of the special regulations, e.g. for road transport drivers, for safety advisers in the whole field of the transport of dangerous goods, for specially educated personnel in sea and air transports. In addition, the newest developments in the European Community in this field are discussed. An evaluation of the present regulations and proposals for further rules are also given. (Author)

  9. Sustainable transportation : technology, engineering, and science - summer camp instructor's guide.

    Science.gov (United States)

    2014-03-01

    This document reproduces the instructors guide for a ten day transportation engineering summer camp that was held at the University of Idaho in July 2013. The instructors guide is split into three units: Unit 1: Vehicle Technology, Unit 2: Traf...

  10. Economic and environmental impacts of alternative transportation technologies.

    Science.gov (United States)

    2013-04-01

    This project has focused on comparing alternative transportation technologies in terms of their : environmental and economic impacts. The research is data-driven and quantitative, and examines the : dynamics of impact. We have developed new theory an...

  11. Changing technology in transportation : automated vehicles in freight.

    Science.gov (United States)

    2017-06-27

    The world of transportation is on the verge of undergoing an impactful transformation. Over the past decade, automotive computing technology has progressed far more rapidly than anticipated. Most major auto manufacturers integrated automated features...

  12. Investigations into a potential laser-NASP transport technology

    Science.gov (United States)

    1990-01-01

    Laser propelled flight/transport technology is surveyed. A detailed conceptual design is presented for an on-place Mercury-Lightcraft: other designs are briefly explored for larger, 15-place Executive Lightcraft, and 150 to 350 passenger Jumbo Lightcraft.

  13. Accessible transportation technologies research initiative (ATTRI) : online dialogue.

    Science.gov (United States)

    2014-08-01

    In coordination with Easter Seals Project ACTION (ESPA) and with support from Noblis, ATTRI held an online dialogue from May 15-June 6, 2014 to garner input on : mobility and transportation technology for travelers with disabilities. Participants wer...

  14. Technology assessments in transportation: survey of recent literature

    Energy Technology Data Exchange (ETDEWEB)

    LaBelle, S.J.

    1980-03-01

    A survey and an evaluation of recent studies of transportation systems done in a technology-assessment framework were undertaken as the basis for a detailed statement of work for a US Department of Energy technology assessment of transportation energy-conservation strategies. Several bibliographies were searched and numerous professionals in the field of technology assessment were contacted regarding current work. Detailed abstracts were prepared for studies judged to be sufficiently broad in coverage of impacts assessed, yet detailed in coverage of all or part of the nation's transportation systems. Some studies were rich in data but not comprehensive in their analytical approach; brief abstracts were prepared for these. An explanation of the criteria used to screen the studies, as well as abstracts of 37 reports, are provided in this compendium of transportation-technology-assessment literature.

  15. 2015 OST-R Transportation Technology Scan : A Look Ahead.

    Science.gov (United States)

    2015-12-01

    This report identifies emerging technologies and innovative applications that may begin to have significant impact on our transportation systems within three to five years. They represent several industries and disciplines and could affect all major ...

  16. Ordinance concerning the filing of transport of nuclear fuel materials

    International Nuclear Information System (INIS)

    1979-01-01

    The ordinance is defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and the order for execution of the law. Any person who reports the transport of nuclear fuel materials shall file four copies of a notification according to the form attached to the public safety commission of the prefecture in charge of the dispatching place. When the transportation extends over the area in charge of another public safety commission, the commission which has received the notice shall report without delay date and route of the transport, kind and quantity of nuclear fuel materials and other necessary matters to the commission concerned and hear from the latter opinions on the items informed. The designation by the ordinance includes speed of the vehicle loaded with nuclear fuel materials, disposition of an accompanying car, arrangement of the line of the loaded vehicle and accompanying and other escorting cars, location of the parking, place of unloading and temporary storage, etc. Reports concerning troubles and measures taken shall be filed in ten days to the public safety commission which has received the notification, when accidents occur on the way, such as: theft or loss of nuclear fuel materials; traffic accident; irregular leaking of nuclear fuel materials and personal trouble by the transport. (Okada, K.)

  17. Technical regulations for road transport of radioactive materials

    International Nuclear Information System (INIS)

    Juul-Jensen, P.; Ulbak, K.

    1990-01-01

    The technical regulations for the transport of radioactive materials in Denmark are set down by the (Danish) National Board of Health in collaboration with the (Danish) National Institute for Radiation Hygiene in accordance with paragraph 3 of the Danish Ministry of Justice's Executive Order no. 2 of 2, January 1985 on the national road transport of dangerous goods by road, as amended by exutive order no. 251 of April 29th 1987 and no. 704 of November 1989. These regulations are presented here. They are almost identical, with only very few exceptions indicated in the publication, with the rules for Class 7 of the European convention on international transport of dangerous goods by road (ADR). In addition to the aforementioned regulations for national road transport of radioactive materials the general rules for the transport of radioactive materials found in the National Board of Health's executive order no. 721 of November 27th 1989 on the transport of radioactive materials are valid. The abovementioned executive orders, with the exception of certain supplements which are not part of the technical regulations, are also contained in this publication. (AB)

  18. The transport of fuel assemblies. New containers for transport the used nuclear material in Juzbado factory

    International Nuclear Information System (INIS)

    2005-01-01

    Juzbado Manufacturing Facility is designed to be versatile and flexible. It is manufactured different kind of fuel assemblies PWR, BWR and VVER, beginning by the uranium oxide coming from the conversion facilities. The transport of these products (radioactive material fissile) requires the availability of different kind of packages; our models variety is similar to the big manufacturers. It is required a depth knowledge of the licensing process, approvals, manufacturing and handling instruction to be confident. Moreover, the recently changes on the Transport Regulations and the demands for the approval by the Competent Authorities have required the renovation of most of the package designs for the transport of radioactive material fissile worldwide. ENUSA assumed time ago this renovation and it is nowadays in the pick moment of this process. If we also consider the complexity on the management of multimodal international transportations, the Logistic task for the transport of nuclear material associated to the Juzbado factory results in a real changeling area. (Author)

  19. Containers for the transport of radioactive materials

    International Nuclear Information System (INIS)

    Bochard, C.

    1975-01-01

    The container for heat evolving radioactive materials has a metallic outer casing formed with outwardly projecting heat dissipating or cooling members, such as pins or fins, while each of its ends is formed with a flat flange which extends radially beyond the outer ends of the cooling members. A perforated wall extends between the flanges to define with same and with the periphery of the outer casing an annular space within which the cooling members are enclosed. This perforated wall is adapted to support a flexible covering sleeve the ends of which are clamped by inflatable seals between the periphery of the flanges and outer rings removably secured to the latter. Spraying means are provided within the aforesaid space to permit of projecting an uncontaminated liquid on the cooling members to cool the container before and/or while the latter is immersed in a loading and unloading pond with the sleeve mounted in position. The lower flange is provided with liquid collecting and evacuating means and compressed air may be injected into the said space to force the collected liquid outwardly. (auth)

  20. Transport of bundles and equipment which contain radioactive material

    International Nuclear Information System (INIS)

    1987-01-01

    This norm settles down: 1) The requirements that should be completed in relation to safety precautions and protection against ionizing radiations during the transport radioactive material and/or equipment containing it, in order to avoid risks to the collective and the environment. 2) The basic information on procedures that will be completed in the event of happening accidents during the transport or the transit storage of radioactive material and/or equipment that contain it. 3) The measures of security and physical protection during the transport of radioactive material and/or equipment containing it. This norm is applied: 1) To all the ways of transport (by air, by ground and by ship, fluvial and marine) of radioactive material and/or equipment that contain it. 2) To all natural or legal, public or private person, devoted to install, produce, trade, market, import or export radioactive materials and/or equipment containing it, and that needs to transport them as main or secondary activity [es

  1. Brittle fracture tests at low temperature for transport cask materials

    International Nuclear Information System (INIS)

    Kosaki, Akio; Ito, Chihiro; Arai, Taku; Saegusa, Toshiari

    1993-01-01

    The IAEA Regulations for the Safe Transport of Radioactive Material were revised in 1985, and brittle fracture assessment at low temperature for transport packages are now required. This report discusses the applicability of the actual method for brittle fracture assessment of type-B transport cask materials used in JAPAN. The necessity of brittle fracture assessment at low temperature was estimated for each material of type-B transport casks used in Japan and the applicability was investigated. Dynamic fracture toughness values, K Id (J Id ), and RT NDT values of Low-Mn Carbon Steels, that are SA 350 Gr.LF1 Modify and SA 516 Gr.70 material which used in type-B transport cask body, were also obtained to check whether or not an easier and conventional test method, that prescribed in ASME CODE SECTION III, can be substituted for the dynamic fracture test method. And for bolt materials, which include 1.8Ni-0.8Cr-0.3Mo Carbon Steel and type 630 H Stainless Steel, toughness data were obtained for reference. (J.P.N.)

  2. Training and improvement of professional person: multimedia training for radioactive material transport

    International Nuclear Information System (INIS)

    Sahyun, A.; Sordi, G.M.; Ghobril, C.N.

    2013-01-01

    The international transport of radioactive materials depends on national regulations of different countries, through which they pass. Therefore, it is necessary to learn the international recommendations in order to avoid contradictions among each country own regulations that can make radioactive materials transport impracticable. Information Technology and Communication has grown in Brazil and abroad, increasing demand for long distance learning, since it allows simultaneous training and education of a large number of geographically distant people in short time. The development of this first web-based course of transport for radioactive materials considered many advantages when compared to traditional courses, such as: agility in developing, translating and updating courses; facility of access and compatibility with various educational platforms all over the world. The course covers five topics. It presents regulations for transportation of dangerous materials and categorizes radioactive materials; it discusses the requirements and classification of radioactive material packing; ir discusses different risk labels and when they should be used; it presents responsibility and administrative requirements. Furthermore, considering the increasing use of mobile computing, the content is supposed to be automatically adjusted to different devices, allowing the user to make use of multiple access points without losing the sequence of the course. Initially developed in Portuguese and Spanish, this technology allows the dissemination of knowledge in Portuguese and Spanish spoken countries. It is our target to expand this Project, translating the course to other languages. The monitoring of access profiles and users feedback will guide the development of the next courses for the sector. (author)

  3. Application of radiation protection programmes to transport of radioactive material

    International Nuclear Information System (INIS)

    Lopez Vietri, Jorge; Capadona, Nancy; Barenghi, Leonardo

    2008-01-01

    Full text: The principles for implementing radiation protection programmes (RPP) are detailed in the draft IAEA safety guide TS-G-1.5 'Radiation protection programmes for transport of radioactive material'. The document is described in this paper and analysis is made for typical applications to current operations carried out by consignors, carriers and consignees. Systematic establishment and application of RPPs is a way to control radiological protection during different steps of transport activity. The most widely transported packages in the world are radiopharmaceuticals by road. It is described an application of RPP for an organization involved in road transport of Type A packages containing radiopharmaceuticals. Considerations based on the radionuclides, quantities and activities transported are the basis to design and establish the scope of the RPP for the organizations involved in transport. Next stage is the determination of roles and responsibilities for each activity related to transport of radioactive materials. An approach to the dose received by workers is evaluated considering the type, category and quantity of packages, the radionuclides, the frequency of consignments and how long are the storages. The average of transports made in the last years must be taken into account and special measures intended to optimize the protection are evaluated. Tasks like monitoring, control of surface contamination and segregation measures, are designed based on the dose evaluation and optimization. The RPP also indicates main measures to follow in case of emergency during transport taking account of radionuclides, activities and category of packages for different accident scenarios. Basis for training personnel involved in handling of radioactive materials to insure they have appropriate knowledge about preparing packages, measuring dose rates, calculating transport index, labelling, marking and placarding, transport documents, etc, are considered. The RPP is a part

  4. The safety of radioactive materials transport; La surete des transports de matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The rule of the radioactive materials transport contains two different objectives: the safety, or physical protection, consists in preventing the losses, the disappearances, the thefts and the diversions of the nuclear materials (useful materials for weapons); the high civil servant of defence near the Minister of Economy, Finance and Industry is the responsible authority; the safety consists in mastering the risks of irradiation, contamination and criticality presented by the radioactive and fissile materials transport, in order that man and environment do not undergo the nuisances. The control of the safety is within the competence of the Asn. (N.C.)

  5. Calculations on safe storage and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Hathout, A M; El-Messiry, A M; Amin, E [National Center for Nuclear Safety and Radiation Control and AEA, Cairo (Egypt)

    1997-12-31

    In this work the safe storage and transportation of fresh fuel as a radioactive material studied. Egypt planned ET RR 2 reactor which is of relatively high power and would require adequate handling and transportation. Therefore, the present work is initiated to develop a procedure for safe handling and transportation of radioactive materials. The possibility of reducing the magnitude of radiation transmitted on the exterior of the packages is investigated. Neutron absorbers are used to decrease the neutron flux. Criticality calculations are carried out to ensure the achievement of subcriticality so that the inherent safety can be verified. The discrete ordinate transport code ANISN was used. The results show good agreement with other techniques. 2 figs., 2 tabs.

  6. Permissible state permit/fee systems for radioactive materials transportation

    International Nuclear Information System (INIS)

    Friel, L.

    1987-01-01

    Many state permit/fee systems for radioactive materials transportation have been ruled inconsistent with federal law invalidated by the courts. As the date for repository operation, and its associated transportation, draws near, more states can be expected to adopt permit/fee systems. Examination of the U.S. Department of Transportation's advisory rulings and federal court cases on previous permit/fee systems gives general guidance on the type of permit/fee systems most likely to withstand challenges. Such a system would: have a simplified permit application with minimal information requirements; address a federally-defined class of hazardous or radioactive materials; allow access to all shipments conducted in compliance with federal law; charge a fee reasonably related to the costs imposed on the state by the transportation; and minimize the potential for re-directing shipments to other jurisdictions

  7. STM and transport measurements of highly charged ion modified materials

    International Nuclear Information System (INIS)

    Pomeroy, J.M.; Grube, H.; Perrella, A.C.; Gillaspy, J.D.

    2007-01-01

    Careful measurements of highly charged ions (HCIs) colliding with gases and surfaces have provided glimpses of intense electronic interactions, but a comprehensive model for the interaction mechanisms, time scales, and resultant nano-features that bridges materials systems is yet to be realized. At the National Institute of Standards and Technology (NIST) electron beam ion trap (EBIT) facility, new apparatus is now connected to the HCI beamline to allow preparation of clean, atomically flat surfaces of single crystals, e.g. gold, tungsten and silicon, and deposition and patterning of thin films, e.g. high resistivity oxides, ferromagnetic metals, normal metals and superconductors. Experiments reported here focus on the electronic and morphological structure of HCI induced nano-features. Current activities are focused on using in situ scanning tunneling microscope (STM) on Au(1 1 1) and (separately) ex situ transport measurements to study electronic properties within HCI modified magnetic multilayer systems. Specifically, we are fabricating magnetic multilayers similar to magnetic tunnel junctions (MTJs) (important in advanced magnetic field sensors and superconducting Josephson junction devices) and using HCIs to adjust critical electronic properties. The electrical response of the tunnel junction to HCIs provides a novel approach to performing HCI-induced nanostructure ensemble measurements

  8. Connected Vehicle Technologies for Efficient Urban Transportation

    Science.gov (United States)

    2016-10-24

    Connected vehicle technology is employed to optimize the vehicle's control system in real-time to reduce congestion, improve fuel economy, and reduce emissions. This project's goal was to develop a two-way communication system to upload vehicle data ...

  9. Overview of Advanced Technology Transportation, 2004 Update

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Zuboy, J.

    2004-08-01

    Document offers a ''snapshot'' of current vehicle technologies and trends. DOE program managers use this document to plan test and evaluation activities that focus resources where they have the greatest impact.

  10. Supporting system in emergency response plan for nuclear material transport accidents

    International Nuclear Information System (INIS)

    Nakagome, Y.; Aoki, S.

    1993-01-01

    As aiming to provide the detailed information concerning nuclear material transport accidents and to supply it to the concerned organizations by an online computer, the Emergency Response Supporting System has been constructed in the Nuclear Safety Technology Center, Japan. The system consists of four subsystems and four data bases. By inputting initial information such as name of package and date of accident, one can obtain the appropriate initial response procedures and related information for the accident immediately. The system must be useful for protecting the public safety from nuclear material transport accidents. But, it is not expected that the system shall be used in future. (J.P.N.)

  11. Application of BIM technology in green building material management system

    Science.gov (United States)

    Zhineng, Tong

    2018-06-01

    The current green building materials management system in China's construction industry is not perfect, and there are still many shortcomings. Active construction of green building materials management system based on BIM technology, combined with the characteristics of green building materials and its relationship with BIM technology application, is urgently needed to better realize the scientific management of green building materials.

  12. Radiological transport aspects of radioactive materials in Brazil

    International Nuclear Information System (INIS)

    Arrieta, C.M.A.; Guimaraes, C.A.; Meldonian, N.L.

    1986-01-01

    Many different types of radioactive materials are transported annually throughout the country, mainly those related with the nuclear fuel cycle and with the use in medicine, industry, agriculture and research fields. Considering the high number of packages that are transported by air and road a study is presented in order to assess their radiological aspects. For this purpose, data concerning the most significant radioisotopes are pointed out, including their activities and doses incurred by workers. (Author) [pt

  13. UK experience of managing a radioactive materials transport event database

    International Nuclear Information System (INIS)

    Barton, N.J.; Barrett, J.A.

    1999-01-01

    A description is given of the transport event database RAMTED and the related annual accident and incident reports. This database covers accidents and incidents involving the transport of radioactive material in the UK from 1958 to the present day. The paper discusses the history and content of the database, the origin of event data contained in it, the criteria for inclusion and future developments. (author)

  14. Revised legislation affecting the transport of radioactive materials

    International Nuclear Information System (INIS)

    Rowlands, R.P.

    1976-01-01

    The revised edition of the model Regulations for the safe transport of radioactive materials (1973, Vienna, International Atomic Energy Agency Safety Series no.6) has acted as the basis for the conditions of carriage and regulatory requirements in Great Britain. The changes introduced in this revised edition are discussed, and the current Regulations and Codes of Practice covering U.K. and international transport by road, sea, rail and air reviewed. (U.K.)

  15. Fifth international symposium on the packaging and transportation of radioactive materials

    International Nuclear Information System (INIS)

    Allen, G.C. Jr.; Kent, D.C.; Pope, R.B.

    1980-01-01

    This article is a brief review of the Fifth Interantional Symposium on the Packaging and Transportation of Radioactive Materials held at Las Vegas, Nev., May 7-12, 1978. This symposium was sponsored by Sandia Laboratories under the auspices of the Department of Energy. Highlighting the meeting were papers on regulations, legal issues, logistics and planning, risk assessment, ad various technology- and systems-related topics. It is apparent that, although transportation of radioactive materials has received much attention in the past, even more attention will be required in the future or transportation may become a limiting factor in the nuclear power option. Areas requiring special attention include: (1) the continued evaluation and updating of regulations and the coordination of this effort on an international level; (2) the use of risk analysis not only to establish, modify, or verify regulations but also to lend credence to the regulations in the public view; (3) the development of technology to provide cost-effective and more easily used packaging and transportation systems; (4) the expansion of effort to provide accurate information to legislative and other rule-making bodies and to the public to aid in making rational decisions relative to transportation; (5) the evaluation of large-scale international transfer of spent fuel; and (6) the commitment to, and fabrication of, the large fleets of shipping systems that will soon be required to transport the growing quantities of spent fuel, nuclear waste, and other radioactive materials

  16. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  17. Public and media acceptance of nuclear materials transport

    International Nuclear Information System (INIS)

    Lindeman, E.

    1999-01-01

    Transport is absolutely essential to the continued existence of a nuclear industry that includes large-scale power generation, sophisticated research, and medicine. Indeed, transport of nuclear materials is hardly a new business. What is new is the public's awareness and distrust of this transport - a distrust fuelled by the well-funded and skilled manipulation of the nuclear industry's detractors. The nuclear industry itself has only recently begun to acknowledge the importance and the implications of transport. This paper looks at the public and media response to the European-Japanese and the US Department of Energy's transport campaigns and quotes from several telling newspaper articles. It emphasizes the need for the nuclear industry to continue to be vigilant in its efforts to reach the public, media and governments with good science, openness and well-communicated facts. (author)

  18. Radiation doses arising from the air transport of radioactive materials

    International Nuclear Information System (INIS)

    Gelder, R.; Shaw, K.B.; Wilson, C.K.

    1989-01-01

    There is a compelling need for the transport of radioactive material by air because of the requirement by hospitals throughout the world for urgent delivery for medical purposes. Many countries have no radionuclide-producing capabilities and depend on imports: a range of such products is supplied from the United Kingdom. Many of these are short lived, which explains the need for urgent delivery. The only satisfactory method of delivery on a particular day to a particular destination is often by the use of scheduled passenger air service. The International Civil Aviation Organization's Technical Instructions for the Safe Transport of Dangerous Goods by Air (ICAO 1987-1988), prescribe the detailed requirements applicable to the international transport of dangerous goods by air. Radioactive materials are required to be separated from persons and from undeveloped photographic films or plates: minimum distances as a function of the total sum of transport indexes are given in the Instructions. A study, which included the measurement and assessment of the radiation doses resulting from the transport of radioactive materials by air from the UK, has been performed by the National Radiological Protection Board (NRPB) on behalf of the Civil Aviation Authority (CAA) and the Department of Transport (DTp)

  19. Modelling the Transport Process in Marine Container Technology

    Directory of Open Access Journals (Sweden)

    Serđo Kos

    2003-01-01

    Full Text Available The paper introduces a mathematical problem that occursin marine container technology when programming the transportof a beforehand established number of ISO containers effectedby a full container ship from several ports of departure toseveral ports of destination at the minimum distance (time innavigation or at minimum transport costs. The application ofthe proposed model may have an effect on cost reduction incontainer transport thereby improving the operation process inmarine transport technology. The model has been tested by usinga numerical example with real data. In particular, it describesthe application of the dual variables in the analysis ofoptimum solution.

  20. Investigation of transport properties of colossal magnetoresistive materials

    International Nuclear Information System (INIS)

    Kaurav, Netram

    2006-01-01

    The transport properties, i.e. resistivity, heat capacity, thermal conductivity and optical conductivity have been theoretically analysed for colossal magnetoresistive materials within the framework of double exchange mechanism. Following an effective interaction potential, we deduce acoustic (optical) phonon modes, coupling strength for electron-phonon and phonon-impurities, the phonon (magnon) scattering rate and constants characterise the scattering of charge and heat carriers with various disorders in the crystal. The theoretical models have been developed to account the anomalies observed in the transport phenomenon. It is noticed that electron-electron, electron-phonon and electron-magnon interactions are essential in discussing the transport behaviour of doped magnetites. (author)

  1. Powder Materials and Energy Efficiency in Transportation: Opportunities and Challenges

    Science.gov (United States)

    Marquis, Fernand D. S.

    2012-03-01

    The transportation industry accounts for one quarter of global energy use and has by far the largest share of global oil consumption. It used 51.5% of the oil worldwide in 2003. Mobility projections show that it is expected to triple by 2050 with associated energy use. Considerable achievements recently have been obtained in the development of powder and powder-processed metallic alloys, metal matrix composites, intermetallics, and carbon fiber composites. These achievements have resulted in their introduction to the transportation industry in a wide variety of transportation components with significant impact on energy efficiency. A significant number of nano, nanostructured, and nanohybrid materials systems have been deployed. Others, some of them incorporating carbon nanotubes and graphene, are under research and development and exhibit considerable potential. Airplane redesign using a materials and functional systems integration approach was used resulting in considerable system improvements and energy efficiency. It is expected that this materials and functional systems integration soon will be adopted in the design and manufacture of other advanced aircrafts and extended to the automotive industry and then to the marine transportation industry. The opportunities for the development and application of new powder materials in the transportation industry are extensive, with considerable potential to impact energy utilization. However, significant challenges need to be overcome in several critical areas.

  2. Considerations concerning the secure transport of radioactive materials in Romania

    International Nuclear Information System (INIS)

    Vieru, Gheorghe

    2002-01-01

    As UNO member and founding member of the IAEA, Romania has implemented national regulations concerning the transport of radioactive materials in complete safety, complying with recommendations by IAEA and other international organizations. Accordingly, the National Commission for Nuclear Activities Control, CNCAN, issued the Directive no. 374/October 2001 which provides the rules for secure radioactive material transport in Romania on roads, rail ways, sea/fluvial and air ways. The paper presents the main sources of producing radioactive materials focussing the following: mining of natural uranium ore, nuclear fuel fabrication plants, nuclear power plants operation, nuclear research reactors, industrial use of radioactive sources (as gamma radiography), use of radioisotope in scientific, educational or medical units. The paper pays attention to the special routes and containers adopted for most secure transport of radioactive waste. Finally, one presents specific issues relating to identification and evaluation of the risk factors occurring at the transport of radioactive waste, as well as the potential radiological consequences upon population and environment. Estimated are the collective risk doses for different categories of populations from areas adjacent to the routes of radioactive materials transportation. It is stressed that the annual collective dose which the population is exposed to in case of accident is comparable with the dose from the natural (cosmic radiation background)

  3. Quality assurance in the transport and packaging of radioactive material

    International Nuclear Information System (INIS)

    Hale, J.

    1995-01-01

    Quality Assurance (QA) is a requirement of the International Atomic Energy Agency (IAEA) Safety Series No. 6 ''Regulations for Safe Transport of Radioactive Materials.'' It is also, increasingly, a customer requirement. British Nuclear Fuels plc (BNFL) Transport Division has established an integrated management system (including quality and safety) which is being extended to cover environmental aspects. The management system covers the design, procurement, manufacture, testing, documentation, use, maintenance, inspection and decommissioning of all packages used for the transport of radioactive materials and for interim storage. It also covers planning, programming and transport operations. These arrangements cover all modes of transport by road, rail, sea and air. The QA arrangements developed enable Transport Division to demonstrate to Competent Authorities, customers and the general public that the systems in place meet all regulatory requirements. This paper discusses what quality assurance is, why QA arrangements should be introduced and how they were established within Transport Division. Finally, the further developments in the Division's quality arrangements using the tools and techniques of Total Quality Management (TQM) and the European Foundation for Quality Management Model for Self Assessment are described

  4. The issue of safety in the transports of radioactive materials

    International Nuclear Information System (INIS)

    Pallier, Lucien

    1961-01-01

    This report addresses and discusses the various hazards associated with transports of radioactive materials, their prevention, intervention measures, and precautions to be taken by rescuers, notably how these issues are addressed in regulations. For each of these issues, this report proposes guidelines, good practices, or procedures to handle the situation. The author first addresses hazards related to a transport of radioactive products: multiplicity of hazards, different hazards due to radioactivity, hazards due to transport modes, scale of dangerous doses. The second part addresses precautionary measures: for road transports, for air transports, for maritime transports, control procedures. The third part addresses the intervention in case of accident: case of a road accident with an unhurt or not vehicle crew, role of the first official rescuers, other kinds of accidents. The fourth part briefly addresses the case of transport of fissile materials. The fifth part discusses the implications of safety measures. Appendices indicate standards, and give guidelines for the construction of a storage building for radioactive products, for the control and storage of parcels containing radioactive products, and for the establishment of instructions for the first aid personnel

  5. Physics and technology of nuclear materials

    International Nuclear Information System (INIS)

    Ursu, I.

    1985-01-01

    The subject is covered in chapters, entitled; elements of nuclear reactor physics; structure and properties of materials (including radiation effects); fuel materials (uranium, plutonium, thorium); structural materials (including - aluminium, zirconium, stainless steels, ferritic steels, magnesium alloys, neutron irradiation induced changes in the mechanical properties of structural materials); moderator materials (including - nuclear graphite, natural (light) water, heavy water, beryllium, metal hydrides); materials for reactor reactivity control; coolant materials; shielding materials; nuclear fuel elements; nuclear material recovery from irradiated fuel and recycling; quality control of nuclear materials; materials for fusion reactors (thermonuclear fusion reaction, physical processes in fusion reactors, fuel materials, materials for blanket and cooling system, structural materials, materials for magnetic devices, specific problems of material irradiation). (U.K.)

  6. National Space Transportation System (NSTS) technology needs

    Science.gov (United States)

    Winterhalter, David L.; Ulrich, Kimberly K.

    1990-01-01

    The National Space Transportation System (NSTS) is one of the Nation's most valuable resources, providing manned transportation to and from space in support of payloads and scientific research. The NSTS program is currently faced with the problem of hardware obsolescence, which could result in unacceptable schedule and cost impacts to the flight program. Obsolescence problems occur because certain components are no longer being manufactured or repair turnaround time is excessive. In order to achieve a long-term, reliable transportation system that can support manned access to space through 2010 and beyond, NASA must develop a strategic plan for a phased implementation of enhancements which will satisfy this long-term goal. The NSTS program has initiated the Assured Shuttle Availability (ASA) project with the following objectives: eliminate hardware obsolescence in critical areas, increase reliability and safety of the vehicle, decrease operational costs and turnaround time, and improve operational capability. The strategy for ASA will be to first meet the mandatory needs - keep the Shuttle flying. Non-mandatory changes that will improve operational capability and enhance performance will then be considered if funding is adequate. Upgrade packages should be developed to install within designated inspection periods, grouped in a systematic approach to reduce cost and schedule impacts, and allow the capability to provide a Block 2 Shuttle (Phase 3).

  7. Effect of truck and rail economic deregulation on radioactive material transportation

    International Nuclear Information System (INIS)

    Allen, G.C. Jr.

    1984-01-01

    An evaluation of the effect of truck and rail economic deregulation on radioactive material transportation is presented in this document. The evaluation is based on expected market performance that would be consistent with fundamental economic theories. The issues of transport safety, commodity discrimination and rates are addressed. Relative to transport safety, deregulation should not have any significant impact. While deregulation should not change commodity acceptance and may lower rates for motor carriage, it may allow increased discrimination by rail carriers in addition to raising rates. Consequently, it is likely that the radioactive material transportation industry will continue to place greater reliance on the competitive motor carrier industry. Positive steps that shippers can take are to maintain credible options to ship by alternate modes, to address issues that result in the perceived need for special risk premiums, and to reduce the cost of handling truck shipments by improvements in technology or procedures. 28 references, 3 figures, 6 tables

  8. Multipurpose containers for the transport of nuclear material: The example of transport flask CF6

    International Nuclear Information System (INIS)

    Gualdrini, G.F.; Borgia, M.G.

    1989-03-01

    The present paper summarizes the design and licensing activity carried out in the frame work of an ENEA working group which was set up with the aim of developing transport flasks for radioactive and non radioactive dangerous materials. In particular the nuclear design of the multipurpose transport flask CF6 is described. The paper was presented at the seminar on 'Nuclear wastes and transport of radioactive materials' held in Bologna on June 4th and 5th 1987 under the aegis of the Department of Physics of the University of Bologna. (author)

  9. An update on Lab Rover: A hospital material transporter

    Science.gov (United States)

    Mattaboni, Paul

    1994-01-01

    The development of a hospital material transporter, 'Lab Rover', is described. Conventional material transport now utilizes people power, push carts, pneumatic tubes and tracked vehicles. Hospitals are faced with enormous pressure to reduce operating costs. Cyberotics, Inc. developed an Autonomous Intelligent Vehicle (AIV). This battery operated service robot was designed specifically for health care institutions. Applications for the AIV include distribution of clinical lab samples, pharmacy drugs, administrative records, x-ray distribution, meal tray delivery, and certain emergency room applications. The first AIV was installed at Lahey Clinic in Burlington, Mass. Lab Rover was beta tested for one year and has been 'on line' for an additional 2 years.

  10. Aspects of safety in the transport of radioactive materials

    International Nuclear Information System (INIS)

    Ruiz C, M.A.

    1991-01-01

    The transport of radioactive materials behaves to the equal that other chemical products, certain risks that its are necessary to know how to evaluate and to minimize, adopting all kinds of measures technician-administrative, with object of being able to guarantee that this risks stay in an acceptable level for the population potentially affected for the workers of the one sector and for the environment. To be able to evaluate the risk acceptable it is a difficult task, for that, national and international organizations have established a commitment to develop standards of radiological protection, to make every day but sure the transport of radioactive materials

  11. Proceedings of the 2008 transportation technologies and fuels forum

    International Nuclear Information System (INIS)

    2008-01-01

    As a large emitter of pollutants, the transportation industry is now seeking to develop a sustainable transportation plan for the future by developing methods of reducing emissions and improving the fuel efficiency of vehicles. This forum discussed recent innovations in vehicle transportation technologies. Industry leaders, government representatives, and researchers discussed methods of reducing greenhouse gases (GHGs) and air pollution in the transportation sector. Advanced combustion technologies were outlined, and recent developments in hybrid electric-powered vehicles were discussed. Research related to fuel cells, hydrogen fuels and biofuels was presented. The impacts of polluting vehicles on public health were also discussed. The forum was divided into the following 5 sessions: (1) setting the scene, (2) future fuels, (3) emissions, (4) EVs now, and (5) the road to the future. The sessions were followed by a panel on technology roadmaps. The forum featured 14 presentations, of which 4 have been catalogued separately for inclusion in this database. tabs., figs.

  12. Molecular simulation of adsorption and transport in hierarchical porous materials.

    Science.gov (United States)

    Coasne, Benoit; Galarneau, Anne; Gerardin, Corine; Fajula, François; Villemot, François

    2013-06-25

    Adsorption and transport in hierarchical porous solids with micro- (~1 nm) and mesoporosities (>2 nm) are investigated by molecular simulation. Two models of hierarchical solids are considered: microporous materials in which mesopores are carved out (model A) and mesoporous materials in which microporous nanoparticles are inserted (model B). Adsorption isotherms for model A can be described as a linear combination of the adsorption isotherms for pure mesoporous and microporous solids. In contrast, adsorption in model B departs from adsorption in pure microporous and mesoporous solids; the inserted microporous particles act as defects, which help nucleate the liquid phase within the mesopore and shift capillary condensation toward lower pressures. As far as transport under a pressure gradient is concerned, the flux in hierarchical materials consisting of microporous solids in which mesopores are carved out obeys the Navier-Stokes equation so that Darcy's law is verified within the mesopore. Moreover, the flow in such materials is larger than in a single mesopore, due to the transfer between micropores and mesopores. This nonzero velocity at the mesopore surface implies that transport in such hierarchical materials involves slippage at the mesopore surface, although the adsorbate has a strong affinity for the surface. In contrast to model A, flux in model B is smaller than in a single mesopore, as the nanoparticles act as constrictions that hinder transport. By a subtle effect arising from fast transport in the mesopores, the presence of mesopores increases the number of molecules in the microporosity in hierarchical materials and, hence, decreases the flow in the micropores (due to mass conservation). As a result, we do not observe faster diffusion in the micropores of hierarchical materials upon flow but slower diffusion, which increases the contact time between the adsorbate and the surface of the microporosity.

  13. Environmental risk analysis of hazardous material rail transportation

    International Nuclear Information System (INIS)

    Saat, Mohd Rapik; Werth, Charles J.; Schaeffer, David; Yoon, Hongkyu; Barkan, Christopher P.L.

    2014-01-01

    Highlights: • Comprehensive, nationwide risk assessment of hazardous material rail transportation. • Application of a novel environmental (i.e. soil and groundwater) consequence model. • Cleanup cost and total shipment distance are the most significant risk factors. • Annual risk varies from $20,000 to $560,000 for different products. • Provides information on the risk cost associated with specific product shipments. -- Abstract: An important aspect of railroad environmental risk management involves tank car transportation of hazardous materials. This paper describes a quantitative, environmental risk analysis of rail transportation of a group of light, non-aqueous-phase liquid (LNAPL) chemicals commonly transported by rail in North America. The Hazardous Materials Transportation Environmental Consequence Model (HMTECM) was used in conjunction with a geographic information system (GIS) analysis of environmental characteristics to develop probabilistic estimates of exposure to different spill scenarios along the North American rail network. The risk analysis incorporated the estimated clean-up cost developed using the HMTECM, route-specific probability distributions of soil type and depth to groundwater, annual traffic volume, railcar accident rate, and tank car safety features, to estimate the nationwide annual risk of transporting each product. The annual risk per car-mile (car-km) and per ton-mile (ton-km) was also calculated to enable comparison between chemicals and to provide information on the risk cost associated with shipments of these products. The analysis and the methodology provide a quantitative approach that will enable more effective management of the environmental risk of transporting hazardous materials

  14. Environmental risk analysis of hazardous material rail transportation

    Energy Technology Data Exchange (ETDEWEB)

    Saat, Mohd Rapik, E-mail: mohdsaat@illinois.edu [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1243 Newmark Civil Engineering Laboratory, 205 North Mathews Avenue, Urbana, IL 61801 (United States); Werth, Charles J.; Schaeffer, David [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1243 Newmark Civil Engineering Laboratory, 205 North Mathews Avenue, Urbana, IL 61801 (United States); Yoon, Hongkyu [Sandia National Laboratories, Albuquerque, NM 87123 (United States); Barkan, Christopher P.L. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1243 Newmark Civil Engineering Laboratory, 205 North Mathews Avenue, Urbana, IL 61801 (United States)

    2014-01-15

    Highlights: • Comprehensive, nationwide risk assessment of hazardous material rail transportation. • Application of a novel environmental (i.e. soil and groundwater) consequence model. • Cleanup cost and total shipment distance are the most significant risk factors. • Annual risk varies from $20,000 to $560,000 for different products. • Provides information on the risk cost associated with specific product shipments. -- Abstract: An important aspect of railroad environmental risk management involves tank car transportation of hazardous materials. This paper describes a quantitative, environmental risk analysis of rail transportation of a group of light, non-aqueous-phase liquid (LNAPL) chemicals commonly transported by rail in North America. The Hazardous Materials Transportation Environmental Consequence Model (HMTECM) was used in conjunction with a geographic information system (GIS) analysis of environmental characteristics to develop probabilistic estimates of exposure to different spill scenarios along the North American rail network. The risk analysis incorporated the estimated clean-up cost developed using the HMTECM, route-specific probability distributions of soil type and depth to groundwater, annual traffic volume, railcar accident rate, and tank car safety features, to estimate the nationwide annual risk of transporting each product. The annual risk per car-mile (car-km) and per ton-mile (ton-km) was also calculated to enable comparison between chemicals and to provide information on the risk cost associated with shipments of these products. The analysis and the methodology provide a quantitative approach that will enable more effective management of the environmental risk of transporting hazardous materials.

  15. Determination of standards for transportation of radioactive material by aircrafts

    International Nuclear Information System (INIS)

    1978-01-01

    These provisions are established on the basis of the Enforcement Regulation for the Law on Aviation. Terms are explained, such as exclusive loading and containers. Spontaneously ignitable liquid radioactive materials and the radioactive substances required to be contained in special vessels and others particularly operated during the transport, are excluded from the radioactive materials permissible for transport. The radioactive substances required to be transported as radioactive loadings don't include empty vessels used to contain radioactive materials and other things contaminated by such materials, when they conform to the prescriptions. The technical standards on radioactive loadings are defined, such as maximum radiation dose rate of 0.5 millirem per hour on the surface of L type loadings, 200 millirem per hour for A, and 1000 millirem per hour at the distance of 1 m for BM and BU types, respectively. Confirmation of the safeness of radioactive loadings may be made through the written documents prepared by the competent persons acknowledged by the Minister of Transport. The requisite of fissile loadings is that such loadings shall not reach critical state during the transport in the specified cases. Radioactive loadings or the containers with such loadings shall be loaded so that the safeness of such loadings is not injured by movement, overturn and fall during the transport. The maximum radiation dose rate of the containers with radioactive loadings shall not be more than 200 millirem per hour on the surface. The written documents describing the handling method and other matters for attention and the measures to be taken on accidents shall be carried with for the transport of radioactive loadings. (Okada, K.)

  16. Tourism Transport, Technology, and Carbon Dioxide Emissions

    NARCIS (Netherlands)

    Peeters, P.M.

    2010-01-01

    Technological development from horse-drawn carriages to the new Airbus A380 has led to a remarkable increase in both the capacity and speed of tourist travel. This development has an endogenous systemic cause and will continue to increase carbon dioxide emissions/energy consumption if left

  17. Information-communications technologies (ICT) and transport

    NARCIS (Netherlands)

    Cohen, G.; Salomon, I.; Nijkamp, P.

    2002-01-01

    Cities around the world attempt to imitate the Silicon Valley model by adopting public policies aimed at attracting new high-tech industries and Research and Development activities. The adoption of Information and Communications Technologies (ICT) as elements in a public policy is based on the

  18. Urban risks of truck transport of radioactive material

    International Nuclear Information System (INIS)

    Mills, G.S.; Neuhauser, K.S.

    1998-01-01

    Truck transport of radioactive material (RAM), e.g., spent nuclear fuel (SNF), normally maximizes use of Interstate highways, which are safer and more efficient for truck transport in general. In the estimation of transportation risks, population bordering a route is a direct factor in determining consequences and an indirect factor in determining exposure times, accident probabilities and severities, and other parameters. Proposals to transport RAM may draw intense resistance from stakeholders based on concern for population concentrations along urban segments but the length of a route segment is also a determinative factor in estimating the transport risks. To quantify the relative importance of these two factors, a potential route for transport of SNF (strict use of Interstate highways) was selected and compared with a modified version that bypassed urban areas. The RADTRAN 4 code for transportation risk assessment, which was developed at Sandia National Laboratories, was used in the present study to assess the relative risks of SNF transportation for alternative routes. The results suggest that emphasis on Interstate highways minimizes total route and urban segment risks

  19. The role of transportation technologies in reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Anon.

    1995-11-01

    The potential role of passenger transportation technologies in reducing greenhouse gas emissions was discussed. The technologies considered in the report were those that affect ground transportation of passengers and were in at least the early stages of development in 1995. They were: (1) technologies to improve the fuel efficiency of cars and light trucks, (2) alternative fuels for internal combustion engines, (3) electric hybrid vehicles, (4) advanced technology transit buses, (5) intelligent transportation systems, (6) high speed rail, and (7) bicycles. For each option, the advantages and disadvantages were described. The feasibility of establishing a high-speed rail system serving Canada's most densely populated region, the Windsor to Quebec City corridor, was discussed. Economic and environmental studies of such a proposal are underway. tabs

  20. Traffic and transport technology-road, railway, and water-borne transportation

    Science.gov (United States)

    1990-01-01

    This is "Part 2: Case Studies - Chapter 9" of the book, "The Japanese Experience in Technology", and includes the following subsections: Modernization and the railway; The transportation network; Issues in railway policy; Original design and producti...

  1. Review of US accident/incident experience involving the transportation of radioactive material (RAM) 1971-1980

    International Nuclear Information System (INIS)

    McClure, J.D.; Emerson, E.L.

    1980-01-01

    This paper analyzes the transportation accidents and incidents which have occurred in the United States in the period 1971-1980 based upon the information in the Radioactive Material Transportation Accident/Incident Data Base developed by the Transportation Technology Center (TTC) at Sandia National Laboratories. The accident/incident data base incorporates the files of the Hazardous Material Incident Report (HMIR) system operated by the Material Transportation Bureau of the US Department of Transportation (DOT) with additional information obtained from the files of the US Nuclear Regulatory Commission (NRC). A principal objective of this paper is to summarize US accident/incident experience for the past ten years, providing a concise statement of radioactive material (RAM) package failure description for the transport modes of truck, rail and air

  2. First response to transportation emergencies involving radioactive materials

    International Nuclear Information System (INIS)

    1994-01-01

    This FEMA/DOE/DOT videocourse describes the basis for procedures to be used by emergency first responders for transportation accidents which involve radioactive materials. Various commercial and government sector radioactive materials shipment programs will be described and will include information about hazards and the elements of safety, proper first response actions, notification procedures, and state or federal assistance during emergencies. Primary audience: fire service and emergency management personnel

  3. APPLICATION OF NFC TECHNOLOGY IN PASSENGER RAIL TRANSPORT

    Directory of Open Access Journals (Sweden)

    Henryk KOMSTA

    2016-09-01

    Full Text Available The article discusses the possibility of the application of the NFC technology as a system of selling tickets in passenger rail transport. The NFC (Near Field Communication technology is a wireless and contactless technology of transmission of radio data over short distances (max. 5 cm. This technology is very similar to the RFID (Radio Frequency Identification technology. It is assumed that this technology will spread rapidly and that already in 2015 around 85% of the payments in the EU will be made via mobile phones. This paper presents a research of passenger interest in this method of payment for tickets in the passenger rail transport in Slovakia. Further, an analysis of the applications of the NFC technology as a system of selling tickets in passenger rail transport, including the protection of data in mobile phones, the processes in case of losing a mobile phone and ensuring the communication between both parties was presented in the article. The last part of this analysis shows the possibility of purchasing tickets regardless of the carrier and the transport type.

  4. United States experience in the transportation of radioactive materials

    International Nuclear Information System (INIS)

    Platt, A.M.; Rhoads, R.E.; Hall, R.J.; Williams, L.D.; Brobst, W.A.; Shappert, L.B.; Jefferson, R.M.

    1977-01-01

    The transport of radioactive material forms a vital link in the nuclear fuel cycle in the United States. Actual U.S. experience and practice with such systems for the packaging and transport of uranium ore concentrates, uranium hexafluoride, fresh fuel, irradiated fuel, non-high-level waste, and plutonium with low heat generation rates are described. Specific shipping systems in current use for these services are illustrated. A comparison will be made of shipping requirements for nuclear parks versus dispersed facilities. Shipping systems for other fuel cycle materials (e.g., high-level waste and cladding hulls) have not been developed because there has been no need to transport these materials commercially. However, conceptual designs for packaging and transport of such materials have been developed. Selected systems are reviewed and summarized. Transport safety in the U.S. is regulated by the U.S. Department of Transportation and the Nuclear Regulatory Commission. Key regulations defining packaging requirements, allowable radiation dose rates, and handling procedures are reviewed. Although the radioactive material shipping industry has an outstanding safety record, opposition to nuclear fuel cycle shipments has surfaced in several areas. The U.S. congressional ban on the shipment of plutonium by air, the actions of New York City to prohibit certain shipments within the city limits, and the requirement of U.S. railroads to ship spent fuel casks only in dedicated trains are reviewed. In an attempt to provide information on the safety margins inherent in the design of radioactive materials packages, ERDA has undertaken a series of accident studies and full scale crash tests that stress the packages beyond the levels expected in severe accidents. In addition, the level of total risk associated with radioactive materials shipments is being evaluated. Current ERDA crash test and transportation risk assessment studies are reviewed. Concern about the possibility of

  5. Future Vehicle Technologies : high performance transportation innovations

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, T. [Future Vehicle Technologies Inc., Maple Ridge, BC (Canada)

    2010-07-01

    Battery management systems (BMS) were discussed in this presentation, with particular reference to the basic BMS design considerations; safety; undisclosed information about BMS; the essence of BMS; and Future Vehicle Technologies' BMS solution. Basic BMS design considerations that were presented included the balancing methodology; prismatic/cylindrical cells; cell protection; accuracy; PCB design, size and components; communications protocol; cost of manufacture; and expandability. In terms of safety, the presentation addressed lithium fires; high voltage; high voltage ground detection; crash/rollover shutdown; complete pack shutdown capability; and heat shields, casings, and impact protection. BMS bus bar engineering considerations were discussed along with good chip design. It was concluded that FVTs advantage is a unique skillset in automotive technology and the development of speed and cost effectiveness. tabs., figs.

  6. Risk analysis methodologies for the transportation of radioactive materials

    International Nuclear Information System (INIS)

    Geffen, C.A.

    1983-05-01

    Different methodologies have evolved for consideration of each of the many steps required in performing a transportation risk analysis. Although there are techniques that attempt to consider the entire scope of the analysis in depth, most applications of risk assessment to the transportation of nuclear fuel cycle materials develop specific methodologies for only one or two parts of the analysis. The remaining steps are simplified for the analyst by narrowing the scope of the effort (such as evaluating risks for only one material, or a particular set of accident scenarios, or movement over a specific route); performing a qualitative rather than a quantitative analysis (probabilities may be simply ranked as high, medium or low, for instance); or assuming some generic, conservative conditions for potential release fractions and consequences. This paper presents a discussion of the history and present state-of-the-art of transportation risk analysis methodologies. Many reports in this area were reviewed as background for this presentation. The literature review, while not exhaustive, did result in a complete representation of the major methods used today in transportation risk analysis. These methodologies primarily include the use of severity categories based on historical accident data, the analysis of specifically assumed accident sequences for the transportation activity of interest, and the use of fault or event tree analysis. Although the focus of this work has generally been on potential impacts to public groups, some effort has been expended in the estimation of risks to occupational groups in transportation activities

  7. Priorities for technology development and policy to reduce the risk from radioactive materials

    International Nuclear Information System (INIS)

    Duggan, Ruth Ann

    2010-01-01

    The Standing Committee on International Security of Radioactive and Nuclear Materials in the Nonproliferation and Arms Control Division conducted its fourth annual workshop in February 2010 on Reducing the Risk from Radioactive and Nuclear Materials. This workshop examined new technologies in real-time tracking of radioactive materials, new risks and policy issues in transportation security, the best practices and challenges found in addressing illicit radioactive materials trafficking, industry leadership in reducing proliferation risk, and verification of the Nuclear Nonproliferation Treaty, Article VI. Technology gaps, policy gaps, and prioritization for addressing the identified gaps were discussed. Participants included academia, policy makers, radioactive materials users, physical security and safeguards specialists, and vendors of radioactive sources and transportation services. This paper summarizes the results of this workshop with the recommendations and calls to action for the Institute of Nuclear Materials Management (INMM) membership community.

  8. Nuclear materials transportation workshops: USDOE outreach to local governments

    International Nuclear Information System (INIS)

    1987-01-01

    To provide direct outreach to local governments, the Transportation Management Division of the United States Department of Energy asked the Urban Consortium and its Energy Task Force to assemble representatives for two workshops focusing on the transport of nuclear materials. The first session, for jurisdictions east of the Mississippi River, was held in New Orleans on May 5--6, 1988; the second was conducted on June 6--7, 1988 in Denver for jurisdictions to the west. Twenty local government professionals with management or operational responsibility for hazardous materials transportation within their jurisdictions were selected to attend each workshop. The discussions identified five major areas of concern to local government professionals; coordination; training; information resources; marking and placarding; and responder resources. Integrated federal, state, and local levels of government emerged as a priority coordination issue along with the need for expanded availability of training and training resources for first-reponders

  9. Non-isothermal Moisture Transport Through Insulation Materials

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele; Rode, Carsten; Hansen, Kurt Kielsgaard

    2008-01-01

    An experimental investigation was conducted in order to draw some conclusions on the magnitude of moisture transport due to temperature gradient on a range of porous light-weight building materials. A special constructed non-isothermal set-up allowed the creation of a temperature gradient of 10K...... and given humidity gradient over the sample. The resulting moisture ux as well as the hygrothermal states around and within the material were monitored. The hypothesis of relative humidity being a driving force for non-isothermal moisture transport already in the hygroscopic range could not be confirmed....... On the contrary, indications exist that the temperature gradient itself is driving the moisture from the warm side towards the cold side. An attempt to identify and quantify the single contributions of the different transport forms involved is also presented. The diferent results gave, however, diverging...

  10. Requirements applied in Cuba to the transport of radioactive materials

    International Nuclear Information System (INIS)

    Ouevedo Garcia, J.R.; Lopez Forteza, Y.

    1998-01-01

    The objective of this paper is to comment the supplementary requirements imposed by the Competent Authority to the operations of the main importing/delivering enterprise of unsealed sources for approvals and administration since the establishment, in 1987, of the legal framework on transport of radioactive materials. The paper summarizes the achieved results in this field in over 11 years operation. (author)

  11. Qualification test of packages for transporting radioactive materials and wastes

    International Nuclear Information System (INIS)

    Oliveira Santos, P. de; Miaw, S.T.W.

    1990-01-01

    Since 1979 the Waste Treatment Division of Nuclear Tecnology Development Center has been developed and tested packagings for transporting radioactive materials and wastes. The Division has designed facilities for testing Type A packages in accordance with the adopted regulations. The Division has tested several packages for universities, research centers, industries, INB, FURNAS, etc. (author) [pt

  12. Prediction of Thermal Transport Properties of Materials with Microstructural Complexity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Youping

    2017-10-10

    This project aims at overcoming the major obstacle standing in the way of progress in dynamic multiscale simulation, which is the lack of a concurrent atomistic-continuum method that allows phonons, heat and defects to pass through the atomistic-continuum interface. The research has led to the development of a concurrent atomistic-continuum (CAC) methodology for multiscale simulations of materials microstructural, mechanical and thermal transport behavior. Its efficacy has been tested and demonstrated through simulations of dislocation dynamics and phonon transport coupled with microstructural evolution in a variety of materials and through providing visual evidences of the nature of phonon transport, such as showing the propagation of heat pulses in single and polycrystalline solids is partially ballistic and partially diffusive. In addition to providing understanding on phonon scattering with phase interface and with grain boundaries, the research has contributed a multiscale simulation tool for understanding of the behavior of complex materials and has demonstrated the capability of the tool in simulating the dynamic, in situ experimental studies of nonequilibrium transient transport processes in material samples that are at length scales typically inaccessible by atomistically resolved methods.

  13. Japan's regulatory and safety issues regarding nuclear materials transport

    International Nuclear Information System (INIS)

    Saito, T.; Yamanaka, T.

    2004-01-01

    This paper focuses on the regulatory and safety issues on nuclear materials transport which the Government of Japan (GOJ) faces and needs to well handle. Background information about the status of nuclear power plants (NPP) and nuclear fuel cycle (NFC) facilities in Japan will promote a better understanding of what this paper addresses

  14. 75 FR 1302 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2010-01-11

    ... of Lithium Batteries AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT... transportation of lithium cells and batteries, including lithium cells and batteries packed with or contained in equipment. The proposed changes are intended to enhance safety by ensuring that all lithium batteries are...

  15. Regulatory philosophy and intent of radioactive material transport

    International Nuclear Information System (INIS)

    Carlson, R.W.; Fischer, L.E.; Chou, C.K.

    1990-01-01

    This book contains papers presented at the 1990 Pressure Vessels and Piping Conference. Included are the following papers: Thermal testing of solid neutron shielding materials, Collapse analysis of toroidal shell, Decision process involved in preparing the Shippingport reactor pressure vessel for transport

  16. Radioactive materials transportation by motorbike in entire Brazil territory

    International Nuclear Information System (INIS)

    2006-09-01

    This Regulation refers to the interpretation of the term vehicle in the Chapter 3 of the CNEN-NE.5.01 'Vehicle: road vehicle (including articulated vehicle, i.e., combination of tractor and semi-trailer), car or railway wagon. Each wagon should be considered a separate vehicle'. This definition does not include the possibility of radioactive material transportation by motorbike

  17. Ductile fracture behaviour of primary heat transport piping material ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Design of primary heat transport (PHT) piping of pressurised heavy water reactors (PHWR) has to ensure implementation of leak-before-break con- cepts. In order to be able to do so, the ductile fracture characteristics of PHT piping material have to be quantified. In this paper, the fracture resistance of SA333, Grade.

  18. Transportation of fissile materials and the danger of criticity

    International Nuclear Information System (INIS)

    Haon, D.; Leclerc, J.; Maubert, L.

    1981-01-01

    The authors examine the risk of criticity that can arise during the transportation of fissile matter. They then outline the regulations and studies made in the field of criticity-safety and the computation methods used. They discuss the applications that are reflected in the concept and design of fissile material packagings [fr

  19. Compendium of Material Composition Data for Radiation Transport Modeling

    International Nuclear Information System (INIS)

    Williams, Ralph G.; Gesh, Christopher J.; Pagh, Richard T.

    2006-01-01

    Computational modeling of radiation transport problems including homeland security, radiation shielding and protection, and criticality safety all depend upon material definitions. This document has been created to serve two purposes: (1) to provide a quick reference of material compositions for analysts and (2) a standardized reference to reduce the differences between results from two independent analysts. Analysts are always encountering a variety of materials for which elemental definitions are not readily available or densities are not defined. This document provides a location where unique or hard to define materials will be located to reduce duplication in research for modeling purposes. Additionally, having a common set of material definitions helps to standardize modeling across PNNL and provide two separate researchers the ability to compare different modeling results from a common materials basis.

  20. Base technology development of new materials for FBR performance innovations

    International Nuclear Information System (INIS)

    Kano, Shigeki; Koyama, Masahiro; Nomura, Shigeo; Morikawa, Satoru; Ueno, Fumiyoshi

    1989-01-01

    This paper describes the base technology development of new materials for FBR performance innovations at the Power Reactor and Nuclear Fuel Development Corporation. The contents are as follows: (1) development of sodium and radiation resistant new materials, (2) development of high performance shielding material, (3) development of high performance control material, (4) development of new functional materials for reactor instrumentation. (author)

  1. Contribution to fissile materials transportation in transit storage

    International Nuclear Information System (INIS)

    Silva, Teresinha de Moraes da

    2005-01-01

    The national and international standards for the transportation of fissile materials establish two indexes: Transport Index (Tl) and Criticality Safety Index (ISC). Besides, in non-exclusive transit, the largest of these indexes cannot overtake the value 50. Considering several groups to be transported, the sum of the transportation indexes cannot overtake 200 and the distance between them should be 6 meters This work aimed, as a primary target, to verify when an index is superior to another, in relation to the fissile materials studied, i.e., uranium oxides UO 2 , U 3 O 8 and uranium silicide U 3 Si 2 , taking into account the different enrichment grades. The result found is that the criticality safety index is always greater. As a second goal, it was tried to verify if there is any alteration in the case of these compounds aging process, i.e., alteration in transport index (Tl) due to gamma radiation of daughters radioisotopes in secular equilibrium. No alteration, was verified as the daughters contribution although considerable related to the transport index is very small concerning the criticality safety index. As a third target, it was tried to justify a distance equal to 6 meters, between each group of fissile material. The result showed that, in air media, the distance of 1 meter is sufficient, except for the UO 2 compound at 100% of enrichment, which reaches 2 meter while in the water means the distance of 40cm is enough for the compounds studied. This fact is of great importance when the cost of the necessary area in the transportation and storage is taken into consideration. (author)

  2. Emergency response arrangements for the transport of radioactive materials

    International Nuclear Information System (INIS)

    Morgan-Warren, E.

    2004-01-01

    Response arrangements are required for the transport of radioactive materials, under both transport and health and safety legislation, to safeguard persons, property and the environment in the event of incidents and emergencies. Responsibilities fall on both government and industry: government is responsible for ensuring public safety and providing information and reassurance. This responsibility is discharged for each type of incident by a nominated ''lead department'', supported as appropriate by other government departments and agencies; for their part, operators are obliged to have arrangements in place for dealing with the practicalities of any reasonably foreseeable incident, including recovery and onward transport of a package, and any required clean-up or restoration of the environment. This paper outlines both the government and industry arrangements in Great Britain. The principles of response and intervention are discussed, together with the lead department concept, regulatory requirements, and the plans developed by the transport industry to ensure a nation-wide response capability

  3. Radiation technology for immobilization of bioactive materials

    International Nuclear Information System (INIS)

    1988-12-01

    Within the framework of the Agency's coordinated research programme on ''Application of Radiation Technology in Immobilization of Bioactive Materials'', the third and final research coordination meeting was held at Beijing University, Beijing, People's Republic of China, 15-18 June 1987. The present publication compiles all presentations made at the meeting. Fundamental processes for the immobilization of enzymes, antibodies, cells and drugs were developed and established using gamma radiation, electron beams and plasma discharge. Applications of various biofunctional components, immobilized by radiation techniques in different processes, were studied. A range of backbone polymers has been examined together with various monomers. Coupling procedures have been developed which are relevant to our particular requirements. Enzymes of various types and characteristics have been immobilized with considerable efficiency. The immobilized biocatalysts have been shown to possess significant activity and retention of activity on storage. There appears to be a high degree of specificity associated with the properties of the immobilised biocatalysts, their activity and the ease of their preparation. Novel additives which lower the total radiation dose in grafting have been discovered and their value in immobilization processes assessed. Potential applications include: medical (diagnostic, therapeutic), and industrial processes (fermentation, bioseparation, etc.). Refs, figs and tabs

  4. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  5. Ordinance concerning the filing of transport of nuclear fuel materials

    International Nuclear Information System (INIS)

    1987-01-01

    This Order provides provisions concerning nuclear fuel substances requiring notification (nuclear fuel substance, material contaminated with nuclear fuel substances, fissionable substances, etc.), procedure for notification (to prefectural public safety commission), certificate of transpot (issued via public safety commission), instructions (speed of vehicle for transporting nuclear fuel substances, parking of vehicle, place for loading and unloading of nuclear fuel substances, method for loading and unloading, report to police, measures for disaster prevention during transport, etc.), communication among members of public safety commission (for smooth transport), notification of alteration of data in transport certificate (application to be submitted to public safety commission), application of reissue of transport certificate, return of transport certificate, inspection concerning transport (to be performed by police), submission of report (to be submitted by refining facilities manager, processing facilities manager, nuclear reactor manager, master of foreign nuclear powered ship, reprocessing facilities manager, waste disposal facilities manager; concerning stolen or missing nuclear fuel substances, traffic accident, unusual leakage of nuclear fuel substances, etc.). (Nogami, K.)

  6. Bioinspired one-dimensional materials for directional liquid transport.

    Science.gov (United States)

    Ju, Jie; Zheng, Yongmei; Jiang, Lei

    2014-08-19

    One-dimensional materials (1D) capable of transporting liquid droplets directionally, such as spider silks and cactus spines, have recently been gathering scientists' attention due to their potential applications in microfluidics, textile dyeing, filtration, and smog removal. This remarkable property comes from the arrangement of the micro- and nanostructures on these organisms' surfaces, which have inspired chemists to develop methods to prepare surfaces with similar directional liquid transport ability. In this Account, we report our recent progress in understanding how this directional transport works, as well our advances in the design and fabrication of bioinspired 1D materials capable of transporting liquid droplets directionally. To begin, we first discuss some basic theories on droplet directional movement. Then, we discuss the mechanism of directional transport of water droplets on natural spider silks. Upon contact with water droplets, the spider silk undergoes what is known as a wet-rebuilt, which forms periodic spindle-knots and joints. We found that the resulting gradient of Laplace pressure and surface free energy between the spindle-knots and joints account for the cooperative driving forces to transport water droplets directionally. Next, we discuss the directional transport of water droplets on desert cactus. The integration of multilevel structures of the cactus and the resulting integration of multiple functions together allow the cactus spine to transport water droplets continuously from tip to base. Based on our studies of natural spider silks and cactus spines, we have prepared a series of artificial spider silks (A-SSs) and artificial cactus spines (A-CSs) with various methods. By changing the surface roughness and chemical compositions of the artificial spider silks' spindle-knots, or by introducing stimulus-responsive molecules, such as thermal-responsive and photoresponsive molecules, onto the spindle-knots, we can reversibly manipulate

  7. A thermodynamic, environmental and material flow analysis of the Italian highway and railway transport systems

    International Nuclear Information System (INIS)

    Federici, M.; Ulgiati, S.; Basosi, R.

    2008-01-01

    The goal of this work is to provide a multi-method multi-scale comparative picture of selected terrestrial transport modalities. This is achieved by investigating the Italian transportation system by means of four different evaluation methods: material flow accounting (MFA), embodied energy analysis (EEA), exergy analysis (EXA) and emergy synthesis (ES). The case study is the main Italian transportation infrastructure, composed by highways, railways, and high-speed railways (high-speed trains, HST) sub-systems supporting both passengers and freight transport. All the analyses have been performed based on a common database of material, labor, energy and fuel input flows used in the construction, maintenance and yearly use of roads, railways and vehicles. Specific matter and energy intensities of both passenger and freight transportation services were calculated factors affecting results as well as strength and weakness points of each transportation modality were also stressed. Results pointed out that the most important factors in determining the acceptability of a transportation system are not only the specific fuel consumption and the energy and material costs of vehicles, as it is common belief, but also the energy and material costs for infrastructure construction as well as its intensity of use (with special focus on load factor of vehicles). The latter become the dominant factors in HST modality, due to technological and safety reasons that require high energy-cost materials and low intensity of traffic. This translates into very high thermodynamic and environmental costs for passenger and freight transported, among which an embodied energy demand up to 1.44 MJ/p-km and 3.09 MJ/t-km, respectively

  8. CLEAN HYDROGEN TECHNOLOGY FOR 3-WHEEL TRANSPORTATION IN INDIA

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Sapru

    2005-11-15

    Hydrogen is a clean burning, non-polluting transportation fuel. It is also a renewable energy carrier that can be produced from non-fossil fuel resources such as solar, wind and biomass. Utilizing hydrogen as an alternative fuel for vehicles will diversify the resources of energy, and reduce dependence on oil in the transportation sector. Additionally, clean burning hydrogen fuel will also alleviate air pollution that is a very severe problem in many parts of world, especially major metropolitan areas in developing countries, such as India and China. In our efforts to foster international collaborations in the research, development, and demonstration of hydrogen technologies, through a USAID/DOE cost-shared project, Energy Conversion Devices, Inc.,(www.ovonic.com) a leading materials and alternative energy company, in collaboration with Bajaj Auto Limited, India's largest three-wheeler taxi manufacturer, has successfully developed and demonstrated prototype hydrogen ICE three-wheelers in the United States and India. ECD's proprietary Ovonic solid-state hydrogen storage technology is utilized on-board to provide a means of compact, low pressure, and safe hydrogen fuel. These prototype hydrogen three-wheelers have demonstrated comparable performance to the original CNG version of the vehicle, achieving a driving range of 130 km. The hydrogen storage system capable of storing 1 kg hydrogen can be refilled to 80% of its capacity in about 15 minutes at a pressure of 300 psi. The prototype vehicles developed under this project have been showcased and made available for test rides to the public at exhibits such as the 16th NHA annual meeting in April 2005, Washington, DC, and the SIAM (Society of Indian Automotive Manufacturers) annual conference in August 2005, New Delhi, India. Passengers have included members of the automotive industry, founders of both ECD and Bajaj, members of the World Bank, the Indian Union Minister for Finance, the President of the Asia

  9. Dust prevention in bulk material transportation and handling

    Science.gov (United States)

    Kirichenko, A. V.; Kuznetsov, A. L.; Pogodin, V. A.

    2017-10-01

    The environmental problem of territory and atmosphere pollution caused by transportation and handling of dust-generating bulk cargo materials is quite common for the whole world. The reducing of weight of fine class coal caused by air blowing reaches the level of 0.5-0.6 t per railcar over the 500 km transportation distance, which is equal to the loss of 1 % of the total weight. The studies showed that all over the country in the process of the railroad transportation, the industry loses 3-5 metric tonnes of coal annually. There are several common tactical measurers to prevent dust formation: treating the dust-producing materials at dispatch point with special liquid solutions; watering the stacks and open handling points of materials; frequent dust removing and working area cleaning. Recently there appeared several new radical measures for pollution prevention in export of ore and coal materials via sea port terminals, specifically: wind-dust protection screens, the container cargo handling system of delivery materials to the hold of the vessels. The article focuses on the discussion of these measures.

  10. Radioactive materials and nuclear fuel transport requirements in Poland in the light of international regulations

    International Nuclear Information System (INIS)

    Musialowicz, T.

    1977-01-01

    National regulations for the transport of radioactive materials and nuclear fuel in Poland are discussed. Basic transport requirements and regulations, transport experience including transport accidents and emergency service are described. The comparison with international regulations is given

  11. Materials Development Program: Ceramic Technology Project bibliography, 1984--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

  12. Compendium of federal and state radioactive materials transportation laws and regulations: Transportation Legislative Database (TLDB)

    International Nuclear Information System (INIS)

    1989-10-01

    The Transportation Legislative Database (TLDB) is an on-line information service containing detailed information on legislation and regulations regarding the transportation of radioactive materials in the United States. The system is dedicated to serving the legislative and regulatory information needs of the US Department of Energy and other federal agencies; state, tribal, and local governments; the hazardous materials transportation industry; and interested members of the general public. In addition to the on-line information service, quarterly and annual Legal Developments Reports are produced using information from the TLDB. These reports summarize important changes in federal and state legislation, regulations, administrative agency rulings, and judicial decisions over the reporting period. Information on significant legal developments at the tribal and local levels is also included on an as-available basis. Battelle's Office of Transportation Systems and Planning (OTSP) will also perform customized searches of the TLDB and produce formatted printouts in response to specific information requests

  13. Management system for regulating transport of radioactive material

    International Nuclear Information System (INIS)

    Lopez Vietri, Jorge; Capadona, Nancy; Barenghi, Leonardo

    2008-01-01

    Full text: The objective of this paper is to describe the main characteristics and fundamentals of the Nuclear regulatory Authority's (Autoridad Regulatoria Nuclear, ARN) management system applied to the regulation of transport of radioactive material, in Argentina. In the frame of ARN's quality policy, 'Protection against ionizing radiation on transport of radioactive materials' was selected as one of the regulatory processes, named TRM process from now on. ARN's quality management system is integrally based on ISO 9000 system addressed to help organizations in designing and implementing their quality management systems. TRM process was split into five sub processes in order to facilitate the implementation of quality system. Such sub processes were defined taking account of the main functions developed by ARN in the branch of safe transport of radioactive materials and are listed below: 1) Development and updating of standards and regulatory guides; 2) Licensing of packages, special radioactive materials and consignments of radioactive materials; 3) Compliance assurance during the transport of radioactive materials, and 4) Training, advising and communications. For each of these sub processes were specified their objectives, inputs, activities and outputs, the clients and stakeholders, responsibilities, supporting documents, control of documents and records, control of non-conformances, monitoring and measurements, audits, feedback and improvement. It was decided to develop a quality plan to organize and manage activities to meet quality requirements, to optimize the use of limited resources of the organization and to be used as a basis for monitoring and assessing compliance with the requirements, both internal and external. Supporting documents for sub processes were issued, validated, reviewed and improved as an essential point to implement continuous improving. Simultaneously, some indexes were defined to monitor and measure the sub processes as a way to show

  14. Investigation of air transportation technology at Princeton University, 1986

    Science.gov (United States)

    Stengel, Robert F.

    1988-01-01

    The Air Transportation Technology Program at Princeton proceeded along four avenues: Guidance and control strategies for penetration of microbursts and wind shear; Application of artificial intelligence in flight control systems; Computer aided control system design; and Effects of control saturation on closed loop stability and response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of prime concern.

  15. An Integrated Safety Analysis Methodology for Emerging Air Transport Technologies

    Science.gov (United States)

    Kostiuk, Peter F.; Adams, Milton B.; Allinger, Deborah F.; Rosch, Gene; Kuchar, James

    1998-01-01

    The continuing growth of air traffic will place demands on NASA's Air Traffic Management (ATM) system that cannot be accommodated without the creation of significant delays and economic impacts. To deal with this situation, work has begun to develop new approaches to providing a safe and economical air transportation infrastructure. Many of these emerging air transport technologies will represent radically new approaches to ATM, both for ground and air operations.

  16. Materials with complex behaviour II properties, non-classical materials and new technologies

    CERN Document Server

    Oechsner, Andreas

    2012-01-01

    This book reviews developments and trends in advanced materials and their properties; modeling and simulation of non-classical materials and new technologies for joining materials. Offers tools for characterizing and predicting properties and behavior.

  17. Route selection for the transport of hazardous materials

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, F A

    1988-12-01

    The factors governing the risk-weighted selection of routes for transport of hazardous materials are analyzed. Starting from a formulation for the total risk of these transports that assumes complete information, approximations for the more realistic case of partial and uncertain information are discussed. These approximations involve well-known risk assessment techniques and mathematical methods; among the latter, Monte Carlo calculations hold the most promise. The actual route selection is based on an index of total societal cost, evaluated for a set of potential routes. (author)

  18. Transportation and information trends in technology and policy

    CERN Document Server

    Piyushimita

    2013-01-01

    Transformations in wireless connectivity and location-aware technologies hold the promise of bringing a sea-change in the way transportation information is generated and used in the future. Sensors in the transportation system, when integrated with those in other sectors (for example, energy, utility and health) have the potential to foster novel new ways of improving livability and sustainability.The end-result of these developments has been somewhat contradictory. Although automation in the transportation environment has become increasingly widespread, the level of involvement and active par

  19. Analytical and numerical models of transport in porous cementitious materials

    International Nuclear Information System (INIS)

    Garboczi, E.J.; Bentz, D.P.

    1990-01-01

    Most chemical and physical processes that degrade cementitious materials are dependent on an external source of either water or ions or both. Understanding the rates of these processes at the microstructural level is necessary in order to develop a sound scientific basis for the prediction and control of the service life of cement-based materials, especially for radioactive-waste containment materials that are required to have service lives on the order of hundreds of years. An important step in developing this knowledge is to understand how transport coefficients, such as diffusivity and permeability, depend on the pore structure. Fluid flow under applied pressure gradients and ionic diffusion under applied concentration gradients are important transport mechanisms that take place in the pore space of cementitious materials. This paper describes: (1) a new analytical percolation-theory-based equation for calculating the permeability of porous materials, (2) new computational methods for computing effective diffusivities of microstructural models or digitized images of actual porous materials, and (3) a new digitized-image mercury intrusion simulation technique

  20. Transporting radioactive materials: Q ampersand A to your questions

    International Nuclear Information System (INIS)

    1993-04-01

    Over 2 million packages of radioactive materials are shipped each year in the United States. These shipments are carried by trucks, trains, ships, and airplanes every day just like other commodities. Compliance with Federal regulations ensures that radioactive materials are transported safely. Proper packaging is the key to safe shipment. Package designs for radioactive materials must protect the public and the environment even in case of an accident. As the level of radioactivity increases, packaging design requirements become more stringent. Radioactive materials have been shipped in this country for more than 40 years. As with other commodities, vehicles carrying these materials have been involved in accidents. However, no deaths or serious injuries have resulted from exposure to the radioactive contents of these shipments. People are concerned about how radioactive shipments might affect them and the environment. This booklet briefly answers some of the commonly asked questions about the transport of radioactive materials. More detailed information is available from the sources listed at the end of this booklet

  1. Resolution 2/2004 Guidelines for the implementation of regulations for the safe transport of radioactive materials

    International Nuclear Information System (INIS)

    2004-01-01

    This guide is intended to supplement the provisions of Resolution no. 121/2000 of the Ministry of Science Technology and Environment Regulations the Security of Radioactive Materials Transport, hereinafter Regulation, Regarding the administrative requirements for the application process Certificates of Approval for the shipments of radioactive material and for Special arrangements.

  2. Low technology tissue culture materials for initiation and ...

    African Journals Online (AJOL)

    Low technology tissue culture materials for initiation and multiplication of banana plants. ... African Crop Science Journal ... locally available macronutrients, micronutrients, sugar, equipment and facility reduced the cost of consumable material

  3. 78 FR 60755 - Hazardous Materials: Enhanced Enforcement Procedures-Resumption of Transportation

    Science.gov (United States)

    2013-10-02

    ... material,'' we envisioned etiological agents, such as biological products, infectious substances, medical... accidents or incidents involving the transportation of hazardous material. In order to achieve a uniform... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part...

  4. Technology and equipment to improve reliability of pipeline transport

    Science.gov (United States)

    Suleimanov, D. F.; Shulayev, N. S.; Bondar, K. E.; Laponov, S. V.; Uzinger, A. A.

    2017-10-01

    The article is dedicated to development of technology and hardware design of method pipeline transport reliability improving by improving the isolated coating properties modified by microwave radiation. The article describes the technology of the modification process of the coating and instrumentation production, which allows improving operational properties not only in stationary conditions in the manufacture of the insulation coating, but also during its replacement in the field.

  5. Upgrading of waste oils into transportation fuels using hydrotreating technologies

    OpenAIRE

    Sudipta De; Rafael Luque

    2014-01-01

    The generation of organic waste continues to increase, causing severe environmental pollution. Waste valorization is currently an emerging technology that can address this problem with an extra benefit of producing a range of valued products. In this contribution, we report the current developments in hydrotreating technologies for upgrading waste oil fractions into usable transportation fuels. Particular focus is given on the catalysts selection for a general hydroprocessing technique as wel...

  6. Development of a container for the transportation and storage of plutonium bearing materials

    International Nuclear Information System (INIS)

    Ammerman, D.; Geinitz, R.; Thorp, D.; Rivera, M.

    1998-03-01

    There is a large backlog of plutonium contaminated materials at the Rocky Flats Environmental Technology Site near Denver, Colorado, USA. The clean-up of this site requires this material to be packaged in such a way as to allow for efficient transportation to other sites or to a permanent geologic repository. Prior to off-site shipment of the material, it may be stored on-site for a period of time. For this reason, it is desirable to have a container capable of meeting the requirements for storage as well as the requirements for transportation. Most of the off-site transportation is envisioned to take place using the TRUPACT-II Type B package, with the Waste Isolation Pilot Plant (WIPP) as the destination. Prior to the development of this new container, the TRUPACT-II had a limit of 325 FGE (fissile gram equivalents) of plutonium due to criticality control concerns. Because of the relatively high plutonium content in the material to be transported, transporting 325 FGE per TRUPACT-II is uneconomical. Thus, the purpose of the new containers is to provide criticality control to increase the allowed TRUPACT-II payload and to provide a safe method for on-site storage prior to transport. This paper will describe the analysis and testing used to demonstrate that the Pipe Overpack Container provides safe on-site storage of plutonium bearing materials in unhardened buildings and provides criticality control during transportation within the TRUPACT-II. Analyses included worst-case criticality analyses, analyses of fork-lift time impacts, and analyses of roof structure collapse onto the container. Testing included dynamic crush tests, bare pipe impact tests, a 30-minute totally engulfing pool-fire test, and multiple package impact tests in end-on and side-on orientations

  7. The impact of the new IAEA transport regulations for the safe transport of radioactive materials on package design and transport

    International Nuclear Information System (INIS)

    Schneider, K.

    1989-01-01

    In April 1985 the 1985 Edition of the IAEA Safety Series No. 6, Regulations for the Safe Transport of Radioactive Materials, was issued. This is a completely revised edition which shall come into force internationally in the late eighties. This edition will supersede the 1973 (As Amended, 1979) edition. A paragraph by paragraph comparison is carried through, followed by a consideration on the impact on general requirements for packaging and transport. A detailed estimate on packaging design and transport is performed for typical products of the nuclear fuel cycle. The major practical consequences likely to be encountered are presented

  8. 5th Conference on Aerospace Materials, Processes, and Environmental Technology

    Science.gov (United States)

    Cook, M. B. (Editor); Stanley, D. Cross (Editor)

    2003-01-01

    Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.

  9. Nano-Bio Quantum Technology for Device-Specific Materials

    Science.gov (United States)

    Choi, Sang H.

    2009-01-01

    The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.

  10. Reducing global NOx emissions: developing advanced energy and transportation technologies.

    Science.gov (United States)

    Bradley, Michael J; Jones, Brian M

    2002-03-01

    Globally, energy demand is projected to continue to increase well into the future. As a result, global NOx emissions are projected to continue on an upward trend for the foreseeable future as developing countries increase their standards of living. While the US has experienced improvements in reducing NOx emissions from stationary and mobile sources to reduce ozone, further progress is needed to reduce the health and ecosystem impacts associated with NOx emissions. In other parts of the world, (in developing countries in particular) NOx emissions have been increasing steadily with the growth in demand for electricity and transportation. Advancements in energy and transportation technologies may help avoid this increase in emissions if appropriate policies are implemented. This paper evaluates commercially available power generation and transportation technologies that produce fewer NOx emissions than conventional technologies, and advanced technologies that are on the 10-year commercialization horizon. Various policy approaches will be evaluated which can be implemented on the regional, national and international levels to promote these advanced technologies and ultimately reduce NOx emissions. The concept of the technology leap is offered as a possibility for the developing world to avoid the projected increases in NOx emissions.

  11. Charge transport in metal oxide nanocrystal-based materials

    Science.gov (United States)

    Runnerstrom, Evan Lars

    There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and

  12. Practical reasons for investigating ion transport in high temperature insulating materials

    International Nuclear Information System (INIS)

    Sonder, E.

    1976-01-01

    Practical problems encountered in a number of advanced technology appliations, particularly those related to energy conversion, are discussed. Refractory ionic compounds which are abundant and of high melting point are listed, and technological problems are discussed in terms of specific materials problems. The argument is made that basic information concerning transport properties in refractory compounds is lacking to such an extent that it is difficult to design and assess advanced energy generation systems. Technology applications include: a) ceramic nuclear fuels for high temperature fission reactors, b) high temperature gas turbine blades, c) insulators in controlled thermonuclear reactors, and d) magnetohydrodynamic generators. Some of the difficulties inherent in making transport property measurements at high temperatures are also listed

  13. Compendium of Material Composition Data for Radiation Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A.; Williams III, Robert

    2011-03-04

    Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its use and feedback, the compendium would need to be revised to correct errors or inconsistencies in the data for the original 121 materials, as well as to increase (per users suggestions) the number of materials listed. This 2010 revision of the compendium has accomplished both of those objectives. The most obvious change is the increased number of materials from 121 to 372. The not-so-obvious change is the mechanism used to produce the data listed here. The data listed in the 2006 document were compiled, evaluated, entered, and error-checked by a group of individuals essentially by hand, providing no library

  14. Transport of nuclear used fuel and waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Neau, H.J. [World Nuclear Transport Institute, London (United Kingdom)

    2015-07-01

    20 millions consignments of radioactive materials are routinely transported annually on public roads, railways and ships. 5% of these are nuclear fuel cycle related. International Atomic Energy Agency Regulations have been in force since 1961. The sector has an excellent safety record spanning over 50 years. Back end transport covers the operations concerned with spent fuel that leaves reactors and wastes. Since 1971, there have been 70,000 shipments of used fuel (i.e. over 80,000 tonnes) with no damage to property or person. The excellent safety record spanning over 50 years praised every year by the General Conference of the International Atomic Energy Agency. More than 200 sea voyages over a distance of more than 8 million kilometres of transport of used fuel or high-level wastes.

  15. Notification determining technical details concerning measures for transportation of nuclear fuel materials

    International Nuclear Information System (INIS)

    1977-01-01

    These provisions are established on the basis of and to enforce ''The regulation for installation and operation of reactor'', ''The regulation concerning the fabricating business of nuclear fuel'' and ''The regulations concerning the reprocessing business of spent fuel''. The terms used hereinafter are according to those used in such regulations. The limit of radioactivity concentration of things contaminated by the nuclear fuel materials which are not required to be enclosed in vessels is defined in the lists attached. In the applications for the approval of the measures concerning the transport of things remarkably difficult to be enclosed in vessels, the name and the address of the applicant, the kind, quantity, form and constitution of the thing contaminated by the nuclear fuel materials to be transported, the date and route of the transport and the measures for the prevention of injuries during the transport must be written. The limit of quantity of nuclear fuel materials classifying the performance of vessels is defined respectively in the lists attached. The radiation dose rates provided for by the Director General of the Science and Technology Agency concerning transported things and transporting apparatuses are 200 millirem per hour on the surfaces of such things and containers. The nuclear fission materials specified, for which the measures for the prevention of criticality are especially required, include uranium 233, uranium 235, plutonium 238, plutonium 239, plutonium 241, and the chemical compounds of such substances, and the nuclear fuel materials containing one or two and more of such substances, excluding the nuclear fuel materials with less than 15 grams of such uranium and plutonium. (Okada, K.)

  16. Plasma Interactions with Mixed Materials and Impurity Transport

    Energy Technology Data Exchange (ETDEWEB)

    Rognlien, T. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beiersdorfer, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chernov, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frolov, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Magee, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rudd, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Umansky, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-28

    The project brings together three discipline areas at LLNL to develop advanced capability to predict the impact of plasma/material interactions (PMI) on metallic surfaces in magnetic fusion energy (MFE) devices. These areas are (1) modeling transport of wall impurity ions through the edge plasma to the core plasma, (2) construction of a laser blow-off (LBO) system for injecting precise amounts of metallic atoms into a tokamak plasma, and (3) material science analysis of fundamental processes that modify metallic surfaces during plasma bombardment. The focus is on tungsten (W), which is being used for the ITER divertor and in designs of future MFE devices. In area (1), we have worked with the University of California, San Diego (UCSD) on applications of the UEDGE/DUSTT coupled codes to predict the influx of impurity ions from W dust through the edge plasma, including periodic edge-plasma oscillations, and revived a parallel version of UEDGE to speed up these simulations. In addition, the impurity transport model in the 2D UEDGE code has been implemented into the 3D BOUT++ turbulence/transport code to allow fundamental analysis of the impact of strong plasma turbulence on the impurity transport. In area (2), construction and testing of the LBO injection system has been completed. The original plan to install the LBO on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton and its use to validate the impurity transport simulations is delayed owing to NSTX-U being offline for substantial magnetic coil repair period. In area (3), an analytic model has been developed to explain the growth of W tendrils (or fuzz) observed for helium-containing plasmas. Molecular dynamics calculations of W sputtering by W and deuterium (D) ions shows that a spatial blending of interatomic potentials is needed to describe the near-surface and deeper regions of the material.

  17. Plasma Interactions with Mixed Materials and Impurity Transport

    International Nuclear Information System (INIS)

    Rognlien, T. D.; Beiersdorfer, Peter; Chernov, A.; Frolov, T.; Magee, E.; Rudd, R.; Umansky, M.

    2016-01-01

    The project brings together three discipline areas at LLNL to develop advanced capability to predict the impact of plasma/material interactions (PMI) on metallic surfaces in magnetic fusion energy (MFE) devices. These areas are (1) modeling transport of wall impurity ions through the edge plasma to the core plasma, (2) construction of a laser blow-off (LBO) system for injecting precise amounts of metallic atoms into a tokamak plasma, and (3) material science analysis of fundamental processes that modify metallic surfaces during plasma bombardment. The focus is on tungsten (W), which is being used for the ITER divertor and in designs of future MFE devices. In area (1), we have worked with the University of California, San Diego (UCSD) on applications of the UEDGE/DUSTT coupled codes to predict the influx of impurity ions from W dust through the edge plasma, including periodic edge-plasma oscillations, and revived a parallel version of UEDGE to speed up these simulations. In addition, the impurity transport model in the 2D UEDGE code has been implemented into the 3D BOUT++ turbulence/transport code to allow fundamental analysis of the impact of strong plasma turbulence on the impurity transport. In area (2), construction and testing of the LBO injection system has been completed. The original plan to install the LBO on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton and its use to validate the impurity transport simulations is delayed owing to NSTX-U being offline for substantial magnetic coil repair period. In area (3), an analytic model has been developed to explain the growth of W tendrils (or fuzz) observed for helium-containing plasmas. Molecular dynamics calculations of W sputtering by W and deuterium (D) ions shows that a spatial blending of interatomic potentials is needed to describe the near-surface and deeper regions of the material.

  18. Towards CFD modeling of turbulent pipeline material transportation

    Science.gov (United States)

    Shahirpour, Amir; Herzog, Nicoleta; Egbers, Cristoph

    2013-04-01

    Safe and financially efficient pipeline transportation of carbon dioxide is a critical issue in the developing field of the CCS Technology. In this part of the process, carbon dioxide is transported via pipes with diameter of 1.5 m and entry pressure of 150 bar, with Reynolds number of 107 and viscosity of 8×10(-5) Pa.s as dense fluid [1]. Presence of large and small scale structures in the pipeline, high Reynolds numbers at which CO2 should be transferred, and 3 dimensional turbulence caused by local geometrical modifications, increase the importance of simulation of turbulent material transport through the individual components of the CO2 chain process. In this study, incompressible turbulent channel flow and pipe flow have been modeled using OpenFoam, an open source CFD software. In the first step, simulation of a turbulent channel flow has been considered using LES for shear Reynolds number of 395. A simple geometry has been chosen with cyclic fluid inlet and outlet boundary conditions to simulate a fully developed flow. The mesh is gradually refined towards the wall to provide values close enough to the wall for the wall coordinate (y+). Grid resolution study has been conducted for One-Equation model. The accuracy of the results is analyzed with respect to the grid smoothness in order to reach an optimized resolution for carrying out the next simulations. Furthermore, three LES models, One-Equation, Smagorinsky and Dynamic Smagorinsky are applied for the grid resolution of (60 × 100 × 80) in (x, y, z) directions. The results are then validated with reference to the DNS carried out by Moser et al.[2] for the similar geometry using logarithmic velocity profile (U+) and Reynolds stress tensor components. In the second step the similar flow is modeled using Reynolds averaged method. Several RANS models, like K-epsilon and Launder-Reece-Rodi are applied and validated against DNS and LES results in a similar fashion. In the most recent step, it has been intended

  19. Materials science and technology strained-layer superlattices materials science and technology

    CERN Document Server

    Pearsall, Thomas P; Willardson, R K; Pearsall, Thomas P

    1990-01-01

    The following blurb to be used for the AP Report and ATI only as both volumes will not appear together there.****Strained-layer superlattices have been developed as an important new form of semiconducting material with applications in integrated electro-optics and electronics. Edited by a pioneer in the field, Thomas Pearsall, this volume offers a comprehensive discussion of strained-layer superlattices and focuses on fabrication technology and applications of the material. This volume combines with Volume 32, Strained-Layer Superlattices: Physics, in this series to cover a broad spectrum of topics, including molecular beam epitaxy, quantum wells and superlattices, strain-effects in semiconductors, optical and electrical properties of semiconductors, and semiconductor devices.****The following previously approved blurb is to be used in all other direct mail and advertising as both volumes will be promoted together.****Strained-layer superlattices have been developed as an important new form of semiconducting ...

  20. Advisory material for the IAEA regulations for the safe transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    Since the first edition in 1961, the Regulations for the Safe Transport of Radioactive Material of the IAEA (IAEA Regulations) have served as the basis of safety for the transport of radioactive material worldwide. In the discussions leading to the first edition of the IAEA Regulations, it was realized that there was need for a publication to supplement the Regulations which could give information of individual provisions as to their purpose, their scientific background and how to apply them in practice. In response, the Agency published Safety Series No. 7, entitled, in its first edition in 1961, 'Notes on Certain Aspects of the Regulations'. An additional source of information on the Regulations, providing advice on 'how' the user should comply with them which could be augmented from time to time in the light of latest experience, was provided by the Agency, initially in relation to the 1973 edition of the Regulations. This was entitled 'Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material' and designated Safety Series No. 37. This document is the result of combining the two Safety Series in a single publication. Thus the primary purpose of this publication is to provide guidance to users on proven and acceptable ways of complying with the Regulations. This Advisory Material is not a stand-alone text and it only has significance when used as a companion to the IAEA Safety Standards Series No. ST-1, Regulations for the Safe Transport of Radioactive Material (1996 edition)

  1. Materializing morality. Design ethics and technological mediation.

    NARCIS (Netherlands)

    Verbeek, Peter P.C.C.

    2006-01-01

    During the past decade, the "script" concept, indicating how technologies prescribe human actions, has acquired a central place in STS. Until now, the concept has mainly functioned in descriptive settings. This article will deploy it in a normative setting. When technologies coshape human actions,

  2. 2. International workshop on spallation materials technology

    International Nuclear Information System (INIS)

    Carsughi, F.; Mansur, L.K.; Sommer, W.F.; Ullmaier, H.

    1997-11-01

    This document contains 25 papers consisting an abstract prepared by the authors, followed by copies of the presentation viewgraphs used by speakers. The topics were: Target options for SINQ; Overview of the NSNS target system; ISIS target and moderator materials; Trispal project; JHF N-ARENA; Design, load conditions and manufacturing aspect of the ESS MERCURY TARGET unit; Radiation damage simulatiion to measure recoil spectra distribution; Radiation damage calculation to spallation neutron source materials; Hadron-induced neutron production in Pb and U targets from 1-5 GeV; Proton beam effects on W rods, surface cooled by water; Corrosion and fatigue behavior of metals and alloys in high radiation fields; compability of materials with mercury for NSNS target system; Research activities at PSI on structural materials for spallation neutron source; The accelerator production of tritium materials reserach program and Los Alamos National Laboratory; Experimental program on irradiation effects in structural materials of the Trispal project; First pulsed power materials test at Livermore; Plan of thermal shock fracture test at JAERI; Is there a hydrogen problem in target materials in high-power spatllation source?; Materials consideration for the NSNS target; Materials durability issures in spallation neutron source applications; Post-irradiation investigations at the FZJ; Microstructure and hardening of steels containing high helium concentrations; Tensile properties and microstructure of the F82H ferritic-martensitic steel after irradiation in the PIREX facility

  3. Trasmar: automated vehicle for transport of radioactive materials

    International Nuclear Information System (INIS)

    Segovia R, J.A.; Martinez J, L.

    2001-01-01

    Traditionally robots have been used for industrial applications, even though area in which these devices had a deep impact is in the nuclear industry. The ININ is an Institute that must to manage and to work with radioactive substances. The ININ is also responsible of the storage and supervision of radioactive wastes in the country, therefore the applications of the automated systems in the Institute have as the main objective to reduce the exposure and the contact of personnel with the radioactive material. Here to, it has been proposed the project called Assisted Transportation of Radioactive Material (TRASMAR). (Author)

  4. Risk assessment for transportation of radioactive materials and nuclear explosives

    International Nuclear Information System (INIS)

    Clauss, D.B.; Wilson, R.K.; Hartman, W.F.

    1991-01-01

    Sandia National Laboratories has the lead technical role for probabilistic risk assessments of transportation of nuclear weapons, components, and special nuclear material in support of the US Department of Energy. The emphasis of the risk assessments is on evaluating the probability of inadvertent disposal of radioactive material and the consequences of such a release. This paper will provide an overview of the methodology being developed for the risk assessment and will discuss the interpretation and use of the results. The advantages and disadvantages of using risk assessment as an alternative to performance-based criteria for packaging will be described. 2 refs., 1 fig

  5. 49 CFR 176.76 - Transport vehicles, freight containers, and portable tanks containing hazardous materials.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport vehicles, freight containers, and... TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL General Handling and Stowage § 176.76 Transport... paragraphs (b) through (f) of this section, hazardous materials authorized to be transported by vessel may be...

  6. Emergency response planning for transport accidents involving radioactive materials

    International Nuclear Information System (INIS)

    1982-03-01

    The document presents a basic discussion of the various aspects and philosophies of emergency planning and preparedness along with a consideration of the problems which might be encountered in a transportation accident involving a release of radioactive materials. Readers who are responsible for preparing emergency plans and procedures will have to decide on how best to apply this guidance to their own organizational structures and will also have to decide on an emergency planning and preparedness philosophy suitable to their own situations

  7. 49 CFR 176.166 - Transport of Class 1 (explosive) materials on passenger vessels.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials on....166 Transport of Class 1 (explosive) materials on passenger vessels. (a) Only the following Class 1 (explosive) materials may be transported as cargo on passenger vessels: (1) Division 1.4 (explosive...

  8. 49 CFR 176.170 - Transport of Class 1 (explosive) materials in freight containers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.170 Transport of Class 1 (explosive) materials in freight containers. (a...

  9. 49 CFR 176.174 - Transport of Class 1 (explosive) materials in shipborne barges.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.174 Transport of Class 1 (explosive) materials in shipborne barges. (a...

  10. Management System for Regulating Transport of Radioactive Material

    International Nuclear Information System (INIS)

    Lopez Vietri, J.R.; Capadona, N.M.; Barenghi, L.G.

    2011-01-01

    The objective of this paper is to describe the main characteristics of the Nuclear Regulatory Authority (Autoridad Regulatoria Nuclear - ARN) management system applied to the transport of radioactive material, in Argentina. In the frame of ARN's quality policy, 'Protection against ionizing radiation on transport of radioactive materials' was selected as one of the regulatory processes, named TMR from now on. ARN's management system is integrally based on ISO 9000 system addressed to help organizations in designing and implementing their quality management systems. TMR process was split into five sub processes in order to facilitate the implementation of the system. Such sub processes were defined taking into account of the main functions developed by ARN in the branch of safe transport of radioactive materials. For each of this processes were specified their objectives, inputs, activities and outputs, clients and stakeholders, responsibilities, supporting documents, control of documents and records, control of non-conformances, monitoring and measurements, audits, feedback and improvement. Supporting documents for sub processes were issued, validated, reviewed and improved as an essential point to achieve continuous improving. Simultaneously, some indexes were defined to monitor and measures sub processes as a way to show objective evidence of conformity with objectives. Finally, as conclusions of this paper, they will be showed the main obstacles and troubleshooting found in the design and implementation of management system as well as their solutions and state of advance. (authors)

  11. Development of alpha radioactivity monitor using ionized air transport technology

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki

    2008-01-01

    A novel alpha radioactivity monitor using ionized air transport technology has been developed for future constitution of 'Clearance Level' for uranium and TRU radioactive waste. We carried out optimum design and realized two kinds of practical alpha activity monitor, combining with radiation detector technology, ionized air physics and computational fluid dynamics. The results will bring paradigm shift on the alpha-ray measurement such as converting 'closely contacting and scanning measurement' to 'remotely measurement in the block', and drastically improve the efficiency of measurement operation. We hope that this technology will be widely endorsed as the practical method for the alpha clearance measurement in future. (author)

  12. Composites materials: the technology of future

    International Nuclear Information System (INIS)

    Ahmed, M.N.; Memon, I.R.; Ahmad, F.; Zafar, N.

    2001-01-01

    Composite materials have a long history of usage. Their precise beginnings are not known; however all recorded history contains references to some form of composite material. e.g. straw was used by man to strengthen mud bricks thousands of years ago. This article presents the use of advanced composites materials in aircraft and space industry. Its brief history, use in military and civil aviation, use in space program, future usage, advantages in terms of cost, weight and strength. Use of composites in unmanned aerial vehicles and problems associated with usage of composites materials are also discussed. (author)

  13. Materials with engineered mesoporosity for programmed mass transport

    Science.gov (United States)

    Gough, Dara V.

    Transport in nanostructured materials is of great interest for scientists in various fields, including molecular sequestration, catalysis, artificial photosynthesis and energy storage. This thesis will present work on the transport of molecular and ionic species in mesoporous materials (materials with pore sizes between 2 and 50 nm). Initially, discussion will focus on the synthesis of mesoporous ZnS nanorattles and the size selected mass transport of small molecules through the mesopores. Discussion will then shift of exploration of cation exchange and electroless plating of metals to alter the mesoporous hollow sphere (MHS) materials and properties. The focus of discussion will then shift to the transport of ions into and out of a hierarchically structured gold electrode. Finally, a model gamma-bactiophage was developed to study the electromigration of charged molecules into and out of a confined geometry. A catalytically active biomolecular species was encapsulated within the central cavity of ZnS MHS. Both the activity of the encapsulated enzyme and the size-selective transport through the wall of the MHS were verified through the use of a common fluorogen, hydrogen peroxide, and sodium azide. Additionally, the protection of the enzyme was shown through size-selected blocking of a protease. The mesoporous hollow sphere system introduces size-selectivity to catalyzed chemical reactions; future work may include variations in pore sizes, and pore wall chemical functionalization. The pore size in ZnS mesoporous hollow spheres is controlled between 2.5 and 4.1 nm through swelling of the lyotropic liquid crystal template. The incorporation of a swelling agent is shown to linearly vary the hexagonal lyotropic liquid crystalline phase, which templates the mesopores, while allowing the high fidelity synthesis of mesoporous hollow spheres. Fluorescnently labeled ssDNA was utilized as a probe to explore the change in mesopore permeability afforded by the swollen template

  14. Transfer of radioactive materials in the fuel cycle. Transportation systems, transportation volume and radiation protection

    International Nuclear Information System (INIS)

    Schwarz, G.

    1997-01-01

    No other aspect of the carriage of hazardous goods has been provoking such long-lived concern in the general public and in the press during the last few years as the transport of spent nuclear fuels and high-level radioactive wastes to the storage facility at Gorleben. One reason for this controversy, besides clear-cut opposition in principal against such transfer activities, is the fact that there is an information gap, so that large parts of the population are not well informed about the relevant legal safety requirements and obligations governing such transports. The article therefore tries to fill this gap, presenting information on the number and necessity of transports of radioactive materials in the nuclear fuel cycle, the relevant scenarios, the transportation systems and packing and shielding requirements, as well as information on the radiological classification and hazardousness of waste forms. (Orig.) [de

  15. Textile Visual Materials: Appropriate Technology in Action.

    Science.gov (United States)

    Donoghue, Beverly Emerson

    An innovative educational medium--screenprinted visual aids on cloth--is one alternative to conventional media in Africa, where visual materials are important communication tools but conventional media and materials are often scarce. A production process for cloth visual aids was developed and evaluated in Ghana and Sudan through the…

  16. Synthetic building materials for transport buildings and structures

    Science.gov (United States)

    Gerasimova, Vera

    2017-10-01

    The most effective building materials account for the highest growth not only in construction of residential and public buildings, but also other capital projects including roadways, bridges, drainage, communications and other engineering projects. Advancement in the technology of more efficient and ecologically responsible insulation materials have been a priority for safety, minimal maintenance and longevity of finished construction projects. The practical use of modern building materials such as insulation, sound reduction and low energy consumption are a benefit in cost and application compared to the use of outdated heavier and labor-intensive materials. The most efficient way for maximizing insolation and sound proofing should be done during the design stages of the project according to existing codes and regulations that are required by Western Government. All methods and materials that are used need to be optimized in order to reach a high durability and low operational and maintenance cost exceeding more than 50 years of the life of the building, whether it is for public, industrial or residential use. Western construction techniques and technologies need to be applied and adapted by the Russian Federation to insure the most productive successful methods are being implemented. The issues of efficient insulation materials are outlined in this article.

  17. Mockup of an automated material transport system for remote handling

    International Nuclear Information System (INIS)

    Porter, M.L.

    1992-01-01

    An Automated Material Transport System (AMTS) was identified for transport of samples within a Material and Process Control Laboratory (MPCL). The MPCL was designed with a dry sample handling laboratory and a wet chemistry analysis laboratory. Each laboratory contained several processing gloveboxes. The function of the AMTS was to automate the handling of materials, multiple process samples, and bulky items between process stations with a minimum of operator intervention and with minimum o[ waiting periods and nonproductive activities. This paper discusses the system design features, capabilities and results of initial testing. The overall performance of the AMTS is very good. No major problems or concerns were identified. System commands are simple and logical making the system user friendly. Operating principle and design of individual components is simple. With the addition of various track modules, the system can be configured in most any configuration. The AMTS lends itself very well for integration with other automated systems or products. The AMTS is suited for applications involving light payloads which require multiple sample and material handling, lot tracking, and system integration with other products

  18. Legal aspects of the maritime transport of radioactive materials: its regulation in Mexico

    International Nuclear Information System (INIS)

    Aguilar M, S.

    2001-01-01

    This work has the object to analyse the International as much as National legal frameworks, the scopes and limits of the instruments which form it as well as the congruous that exist between them and the situation which actually prevails in the maritime transport field of radioactive materials in worldwide level and in Mexico taking into account the technical advances, the operational experience and radiological protection principles. In the chapter 1, the background on the uses of nuclear energy are described and its development by more of fifty years. The chapter 2 analyses about the establishment of nuclear technologies in Mexico as well as their evolution in medicine, agriculture, research and electric power generation areas. In chapter 3 it was analysed the role what the International Organizations have been playing for the establish of an International legal framework in the maritime transport of radioactive materials field. In the chapter 4, the International legal framework was analysed which is applied to the transport of radioactive materials. Finally, the chapter 5 analyses and poses the requirements and necessities which lead Mexico to legislate broadly the transport of radioactive materials taking as basis International instruments from which the state is part also from some other agreements is analysed its adhesion to them. (Author)

  19. Doses to road transport workers from radioactive materials

    International Nuclear Information System (INIS)

    Lawrence, B.E.; van der Vooren, A.

    1988-12-01

    Each year approximately 750,000 packages of radioactive materials are shipped throughout Canada. Regulatory controls on these shipments are designed to keep radiation doses received by transport workers well within acceptable limits. Since many of these workers are not monitored for radiation exposure, however, little factual information has been available in Canada to support theoretical estimates. A study to document actual radiation doses received by a select group of transport workers that is actively involved in the shipment of radioactive materials, was carried out in 1987 and 1988. This study involved the monitoring of 31 candidates from nine transport companies from across the country that handle medical isotopes, industrial isotopes, uranium fuel cycle materials and associated radioactive wastes. Each of the candidates (consisting of driver, dock workers, sorters, and supervisors) was issued personal thermoluminescent dosimeter (TLD) badges that were worn each day during the six month monitoring period. Some of the candidates were also issued cab or area dosimeters that were left in the cabs of the vehicles or in work areas so that the dose received in these areas could be differentiated from total personal exposure. During the monitoring program, the candidates filled out reporting sheets at the end of each working day to document information such as the quantity of materials handled, handling times and vehicle size. This information and the dosimetry data were used in the development of correlations between materials handled and doses reported so that doses for other handling similar materials could be estimated. Based on the results of the study, it was learned that while most of the transport workers receive doses that are at or near background levels, other (particularly those handling medical isotopes) are exposed to levels of radiation that may result in their receiving doses above the 5 mSv per annum limit set for members of the general public. On

  20. Refuses and delays in the transportation by ship of radioactive material; Recusas e demoras no transporte maritimo de material radioativo

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, Clarice; Sobreira, Ana Celia [REM Industria e Comercio Ltda., Sao Paulo, SP (Brazil)

    2011-10-26

    Some Class 7 materials can only be transported by ship, making that load and unload activities can be done in a port. In the Brazil, the port of Santos posses the most volume of cargo manipulation, and cargoes which contain radioactive material are always present with all manipulation requisites according to applicable regulations. The transport and manipulation operations of radioactive material are performed in accordance with national and international requisites but, some individuals posses yet a high risk perception according to our experience, involving members of Brazilian port authorities, the Navy and cargoes handlers at the ports. So, exist yet a high quantity of refuses and delays during the transport by ship. Therefore, a communication strategy was developed and applied, to inform the risk perception, supplying information on the very principles of ionizing radiation, legislation and uses of radiation, and so, diminishing the quantity of refuses and delays. From that initial communication strategy on, it becomes evident the necessity of training and conscience making a movement for the problem of refuses and delays be diminished