International Nuclear Information System (INIS)
Marzo, M.A.S.
1986-01-01
The INSPECT software package was developed in the Pacific Northwest Laboratory for statistical calculations in nuclear material accountability. The programs apply the inspection and evaluation methodology described in Part of the Safeguards Technical Manual. In this paper the implementation of INSPECT at the Safeguards Division of CNEN, and the main characteristics of INSPECT are described. The potential applications of INSPECT to the nuclear material accountability is presented. (Author) [pt
Nuclear material statistical accountancy system
International Nuclear Information System (INIS)
Argentest, F.; Casilli, T.; Franklin, M.
1979-01-01
The statistical accountancy system developed at JRC Ispra is refered as 'NUMSAS', ie Nuclear Material Statistical Accountancy System. The principal feature of NUMSAS is that in addition to an ordinary material balance calcultation, NUMSAS can calculate an estimate of the standard deviation of the measurement error accumulated in the material balance calculation. The purpose of the report is to describe in detail, the statistical model on wich the standard deviation calculation is based; the computational formula which is used by NUMSAS in calculating the standard deviation and the information about nuclear material measurements and the plant measurement system which are required as data for NUMSAS. The material balance records require processing and interpretation before the material balance calculation is begun. The material balance calculation is the last of four phases of data processing undertaken by NUMSAS. Each of these phases is implemented by a different computer program. The activities which are carried out in each phase can be summarised as follows; the pre-processing phase; the selection and up-date phase; the transformation phase, and the computation phase
Statistical calculation of hot channel factors
International Nuclear Information System (INIS)
Farhadi, K.
2007-01-01
It is a conventional practice in the design of nuclear reactors to introduce hot channel factors to allow for spatial variations of power generation and flow distribution. Consequently, it is not enough to be able to calculate the nominal temperature distributions of fuel element, cladding, coolant, and central fuel. Indeed, one must be able to calculate the probability that the imposed temperature or heat flux limits in the entire core is not exceeded. In this paper, statistical methods are used to calculate hot channel factors for a particular case of a heterogeneous, Material Testing Reactor (MTR) and compare the results obtained from different statistical methods. It is shown that among the statistical methods available, the semi-statistical method is the most reliable one
Statistical methods and materials characterisation
International Nuclear Information System (INIS)
Wallin, K.R.W.
2010-01-01
Statistics is a wide mathematical area, which covers a myriad of analysis and estimation options, some of which suit special cases better than others. A comprehensive coverage of the whole area of statistics would be an enormous effort and would also be outside the capabilities of this author. Therefore, this does not intend to be a textbook on statistical methods available for general data analysis and decision making. Instead it will highlight a certain special statistical case applicable to mechanical materials characterization. The methods presented here do not in any way rule out other statistical methods by which to analyze mechanical property material data. (orig.)
Error calculations statistics in radioactive measurements
International Nuclear Information System (INIS)
Verdera, Silvia
1994-01-01
Basic approach and procedures frequently used in the practice of radioactive measurements.Statistical principles applied are part of Good radiopharmaceutical Practices and quality assurance.Concept of error, classification as systematic and random errors.Statistic fundamentals,probability theories, populations distributions, Bernoulli, Poisson,Gauss, t-test distribution,Ξ2 test, error propagation based on analysis of variance.Bibliography.z table,t-test table, Poisson index ,Ξ2 test
Materials Informatics: Statistical Modeling in Material Science.
Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch
2016-12-01
Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Dai, Wu-Sheng; Xie, Mi
2013-01-01
In this paper, we give a general discussion on the calculation of the statistical distribution from a given operator relation of creation, annihilation, and number operators. Our result shows that as long as the relation between the number operator and the creation and annihilation operators can be expressed as a † b=Λ(N) or N=Λ −1 (a † b), where N, a † , and b denote the number, creation, and annihilation operators, i.e., N is a function of quadratic product of the creation and annihilation operators, the corresponding statistical distribution is the Gentile distribution, a statistical distribution in which the maximum occupation number is an arbitrary integer. As examples, we discuss the statistical distributions corresponding to various operator relations. In particular, besides the Bose–Einstein and Fermi–Dirac cases, we discuss the statistical distributions for various schemes of intermediate statistics, especially various q-deformation schemes. Our result shows that the statistical distributions corresponding to various q-deformation schemes are various Gentile distributions with different maximum occupation numbers which are determined by the deformation parameter q. This result shows that the results given in much literature on the q-deformation distribution are inaccurate or incomplete. -- Highlights: ► A general discussion on calculating statistical distribution from relations of creation, annihilation, and number operators. ► A systemic study on the statistical distributions corresponding to various q-deformation schemes. ► Arguing that many results of q-deformation distributions in literature are inaccurate or incomplete
Statistical methods for nuclear material management
Energy Technology Data Exchange (ETDEWEB)
Bowen W.M.; Bennett, C.A. (eds.)
1988-12-01
This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems.
Statistical methods for nuclear material management
International Nuclear Information System (INIS)
Bowen, W.M.; Bennett, C.A.
1988-12-01
This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems
Statistical Analysis Of Failure Strength Of Material Using Weibull Distribution
International Nuclear Information System (INIS)
Entin Hartini; Mike Susmikanti; Antonius Sitompul
2008-01-01
In evaluation of ceramic and glass materials strength a statistical approach is necessary Strength of ceramic and glass depend on its measure and size distribution of flaws in these material. The distribution of strength for ductile material is narrow and close to a Gaussian distribution while strength of brittle materials as ceramic and glass following Weibull distribution. The Weibull distribution is an indicator of the failure of material strength resulting from a distribution of flaw size. In this paper, cumulative probability of material strength to failure probability, cumulative probability of failure versus fracture stress and cumulative probability of reliability of material were calculated. Statistical criteria calculation supporting strength analysis of Silicon Nitride material were done utilizing MATLAB. (author)
International Nuclear Information System (INIS)
Seeliger, D.
1993-01-01
This contribution contains a brief presentation and comparison of the different Statistical Multistep Approaches, presently available for practical nuclear data calculations. (author). 46 refs, 5 figs
Statistics of Monte Carlo methods used in radiation transport calculation
International Nuclear Information System (INIS)
Datta, D.
2009-01-01
Radiation transport calculation can be carried out by using either deterministic or statistical methods. Radiation transport calculation based on statistical methods is basic theme of the Monte Carlo methods. The aim of this lecture is to describe the fundamental statistics required to build the foundations of Monte Carlo technique for radiation transport calculation. Lecture note is organized in the following way. Section (1) will describe the introduction of Basic Monte Carlo and its classification towards the respective field. Section (2) will describe the random sampling methods, a key component of Monte Carlo radiation transport calculation, Section (3) will provide the statistical uncertainty of Monte Carlo estimates, Section (4) will describe in brief the importance of variance reduction techniques while sampling particles such as photon, or neutron in the process of radiation transport
Radiation damage calculations for compound materials
International Nuclear Information System (INIS)
Greenwood, L.R.
1989-01-01
Displacement damage calculations can be performed for 40 elements in the energy range up to 20 MeV with the SPECTER computer code. A recent addition to the code, called SPECOMP, can intermix atomic recoil energy distributions for any four elements to calculate the proper displacement damage for compound materials. The calculations take advantage of the atomic recoil data in the SPECTER libraries, which were determined by the DISCS computer code, using evaluated neutron cross section and angular distribution data in ENDF/B-V. Resultant damage cross sections for any compound can be added to the SPECTER libraries for the routine calculation of displacements in any given neutron field. Users do not require access to neutron cross section files. Results are presented for a variety of fusion materials and a new ceramic superconductor material. Future plans and nuclear data needs are discussed. 11 refs., 6 figs., 1 tab
Application of nonparametric statistic method for DNBR limit calculation
International Nuclear Information System (INIS)
Dong Bo; Kuang Bo; Zhu Xuenong
2013-01-01
Background: Nonparametric statistical method is a kind of statistical inference method not depending on a certain distribution; it calculates the tolerance limits under certain probability level and confidence through sampling methods. The DNBR margin is one important parameter of NPP design, which presents the safety level of NPP. Purpose and Methods: This paper uses nonparametric statistical method basing on Wilks formula and VIPER-01 subchannel analysis code to calculate the DNBR design limits (DL) of 300 MW NPP (Nuclear Power Plant) during the complete loss of flow accident, simultaneously compared with the DL of DNBR through means of ITDP to get certain DNBR margin. Results: The results indicate that this method can gain 2.96% DNBR margin more than that obtained by ITDP methodology. Conclusions: Because of the reduction of the conservation during analysis process, the nonparametric statistical method can provide greater DNBR margin and the increase of DNBR margin is benefited for the upgrading of core refuel scheme. (authors)
Radiation damage calculations for compound materials
International Nuclear Information System (INIS)
Greenwood, L.R.
1990-01-01
This paper reports on the SPECOMP computer code, developed to calculate neutron-induced displacement damage cross sections for compound materials such as alloys, insulators, and ceramic tritium breeders for fusion reactors. These new calculations rely on recoil atom energy distributions previously computed with the DISCS computer code, the results of which are stored in SPECTER computer code master libraries. All reaction channels were considered in the DISCS calculations and the neutron cross sections were taken from ENDF/B-V. Compound damage calculations with SPECOMP thus do not need to perform any recoil atom calculations and consequently need no access to ENDF or other neutron data bases. The calculations proceed by determining secondary displacements for each combination of recoil atom and matrix atom using the Lindhard partition of the recoil energy to establish the damage energy
Statistics of foreign trade in radioactive materials
International Nuclear Information System (INIS)
Anon.
2001-01-01
The German Federal Office for Industry and Foreign Trade Control (BAFA) keeps annual statistics of the imports and exports of radioactive materials, nuclear fuels included. The entries, some of them with precise details, cover the participating countries and the radionuclides concerned as well as all kinds of radioactive materials. The tables listed in the article represent the overall balance of the development of imports and exports of radioactive materials for the years 1983 to 2000 arranged by activity levels, including the development of nuclear fuel imports and exports. For the year 2000, an additional trade balance for irradiated and unirradiated nuclear fuels and source materials differentiated by enrichment is presented for the countries involved. In 2000, some 2446 t of nuclear fuels and source materials were imported into the Federal Republic, while approx. 2720 t were exported. The chief trading partners are countries of the European Union and Russia, South Korea, and Brazil. (orig.) [de
Subcritical calculation of the nuclear material warehouse
International Nuclear Information System (INIS)
Garcia M, T.; Mazon R, R.
2009-01-01
In this work the subcritical calculation of the nuclear material warehouse of the Reactor TRIGA Mark III labyrinth in the Mexico Nuclear Center is presented. During the adaptation of the nuclear warehouse (vault I), the fuel was temporarily changed to the warehouse (vault II) and it was also carried out the subcritical calculation for this temporary arrangement. The code used for the calculation of the effective multiplication factor, it was the Monte Carlo N-Particle Extended code known as MCNPX, developed by the National Laboratory of Los Alamos, for the particles transport. (Author)
Statistic method of research reactors maximum permissible power calculation
International Nuclear Information System (INIS)
Grosheva, N.A.; Kirsanov, G.A.; Konoplev, K.A.; Chmshkyan, D.V.
1998-01-01
The technique for calculating maximum permissible power of a research reactor at which the probability of the thermal-process accident does not exceed the specified value, is presented. The statistical method is used for the calculations. It is regarded that the determining function related to the reactor safety is the known function of the reactor power and many statistically independent values which list includes the reactor process parameters, geometrical characteristics of the reactor core and fuel elements, as well as random factors connected with the reactor specific features. Heat flux density or temperature is taken as a limiting factor. The program realization of the method discussed is briefly described. The results of calculating the PIK reactor margin coefficients for different probabilities of the thermal-process accident are considered as an example. It is shown that the probability of an accident with fuel element melting in hot zone is lower than 10 -8 1 per year for the reactor rated power [ru
Automated material accounting statistics system (AMASS)
International Nuclear Information System (INIS)
Messinger, M.; Lumb, R.F.; Tingey, F.H.
1981-01-01
In this paper the modeling and statistical analysis of measurement and process data for nuclear material accountability is readdressed under a more general framework than that provided in the literature. The result of this effort is a computer program (AMASS) which uses the algorithms and equations of this paper to accomplish the analyses indicated. The actual application of the method to process data is emphasized
Statistical approach for calculating opacities of high-Z plasmas
International Nuclear Information System (INIS)
Nishikawa, Takeshi; Nakamura, Shinji; Takabe, Hideaki; Mima, Kunioki
1992-01-01
For simulating the X-ray radiation from laser produced high-Z plasma, an appropriate atomic modeling is necessary. Based on the average ion model, we have used a rather simple atomic model for opacity calculation in a hydrodynamic code and obtained a fairly good agreement with the experiment on the X-ray spectra from the laser-produced plasmas. We have investigated the accuracy of the atomic model used in the hydrodynamic code. It is found that transition energies of 4p-4d, 4d-4f, 4p-5d, 4d-5f and 4f-5g, which are important in laser produced high-Z plasma, can be given within an error of 15 % compared to the values by the Hartree-Fock-Slater (HFS) calculation and their oscillator strengths obtained by HFS calculation vary by a factor two according to the difference of charge state. We also propose a statistical method to carry out detail configuration accounting for electronic state by use of the population of bound electrons calculated with the average ion model. The statistical method is relatively simple and provides much improvement in calculating spectral opacities of line radiation, when we use the average ion model to determine electronic state. (author)
Ab initio calculations of cross luminescence materials
International Nuclear Information System (INIS)
Kanchana, V.
2016-01-01
Abintio calculations have been performed to study the structural, electronic, and optical properties of ABX 3 (A=alkali, B=alkaline-earth, and X=halide) compounds. The ground state properties are calculated using the pseudopotential method with the inclusion of van der Waals interaction, which we find inevitable in reproducing the experimental structure properties in alkali iodides because of its layered structure. All calculations were performed using the Full-Potential Linearized Augmented Plane Wave method. The band structures are plotted with various functionals and we find the newly developed Tran and Blaha modified Becke-Johnson potential to improve the band gap significantly. The optical properties such as complex dielectric function, refractive index, and absorption spectra are calculated which clearly reveal the optically isotropic nature of these materials though being structurally anisotropic, which is the key requirement for ceramic scintillators. Cross luminescence materials are very interesting because of its fast decay. One of the major criteria for the cross luminescence to happen is the energy difference between valence band and next deeper core valence band being lesser when compared to energy gap of the compound, so that radiative electronic transition may occur between valence band and core valence band. We found this criteria to be satisfied in all the studied compounds leading to cross luminescence except for KSrI 3 , RbSrI 3 . The present study suggest that among the six compounds studied, CsSrI 3 , CsMgCl 3 , CsCaCl 3 , and CsSrCl 3 compounds are cross luminescence materials, which is well explained from the band structure, optical properties calculations. Chlorides are better scintillators that iodides and CsMgCl 3 is found to be promising one among the studied compounds. Apart from these materials we have also discussed electronic structure and optical properties of other scintillator compounds. (author)
Molecular dynamics and Monte Carlo calculations in statistical mechanics
International Nuclear Information System (INIS)
Wood, W.W.; Erpenbeck, J.J.
1976-01-01
Monte Carlo and molecular dynamics calculations on statistical mechanical systems is reviewed giving some of the more significant recent developments. It is noted that the term molecular dynamics refers to the time-averaging technique for hard-core and square-well interactions and for continuous force-law interactions. Ergodic questions, methodology, quantum mechanical, Lorentz, and one-dimensional, hard-core, and square and triangular-well systems, short-range soft potentials, and other systems are included. 268 references
Some calculations of the failure statistics of coated fuel particles
International Nuclear Information System (INIS)
Martin, D.G.; Hobbs, J.E.
1977-03-01
Statistical variations of coated fuel particle parameters were considered in stress model calculations and the resulting particle failure fraction versus burn-up evaluated. Variations in the following parameters were considered simultaneously: kernel diameter and porosity, thickness of the buffer, seal, silicon carbide and inner and outer pyrocarbon layers, which were all assumed to be normally distributed, and the silicon carbide fracture stress which was assumed to follow a Weibull distribution. Two methods, based respectively on random sampling and convolution of the variations were employed and applied to particles manufactured by Dragon Project and RFL Springfields. Convolution calculations proved the more satisfactory. In the present calculations variations in the silicon carbide fracture stress caused the greatest spread in burn-up for a given change in failure fraction; kernel porosity is the next most important parameter. (author)
The application of statistical techniques to nuclear materials accountancy
International Nuclear Information System (INIS)
Annibal, P.S.; Roberts, P.D.
1990-02-01
Over the past decade much theoretical research has been carried out on the development of statistical methods for nuclear materials accountancy. In practice plant operation may differ substantially from the idealized models often cited. This paper demonstrates the importance of taking account of plant operation in applying the statistical techniques, to improve the accuracy of the estimates and the knowledge of the errors. The benefits are quantified either by theoretical calculation or by simulation. Two different aspects are considered; firstly, the use of redundant measurements to reduce the error on the estimate of the mass of heavy metal in an accountancy tank is investigated. Secondly, a means of improving the knowledge of the 'Material Unaccounted For' (the difference between the inventory calculated from input/output data, and the measured inventory), using information about the plant measurement system, is developed and compared with existing general techniques. (author)
First-principles calculations of novel materials
Sun, Jifeng
Computational material simulation is becoming more and more important as a branch of material science. Depending on the scale of the systems, there are many simulation methods, i.e. first-principles calculation (or ab-initio), molecular dynamics, mesoscale methods and continuum methods. Among them, first-principles calculation, which involves density functional theory (DFT) and based on quantum mechanics, has become to be a reliable tool in condensed matter physics. DFT is a single-electron approximation in solving the many-body problems. Intrinsically speaking, both DFT and ab-initio belong to the first-principles calculation since the theoretical background of ab-initio is Hartree-Fock (HF) approximation and both are aimed at solving the Schrodinger equation of the many-body system using the self-consistent field (SCF) method and calculating the ground state properties. The difference is that DFT introduces parameters either from experiments or from other molecular dynamic (MD) calculations to approximate the expressions of the exchange-correlation terms. The exchange term is accurately calculated but the correlation term is neglected in HF. In this dissertation, DFT based first-principles calculations were performed for all the novel materials and interesting materials introduced. Specifically, the DFT theory together with the rationale behind related properties (e.g. electronic, optical, defect, thermoelectric, magnetic) are introduced in Chapter 2. Starting from Chapter 3 to Chapter 5, several representative materials were studied. In particular, a new semiconducting oxytelluride, Ba2TeO is studied in Chapter 3. Our calculations indicate a direct semiconducting character with a band gap value of 2.43 eV, which agrees well with the optical experiment (˜ 2.93 eV). Moreover, the optical and defects properties of Ba2TeO are also systematically investigated with a view to understanding its potential as an optoelectronic or transparent conducting material. We find
Virtual materials design using databases of calculated materials properties
International Nuclear Information System (INIS)
Munter, T R; Landis, D D; Abild-Pedersen, F; Jones, G; Wang, S; Bligaard, T
2009-01-01
Materials design is most commonly carried out by experimental trial and error techniques. Current trends indicate that the increased complexity of newly developed materials, the exponential growth of the available computational power, and the constantly improving algorithms for solving the electronic structure problem, will continue to increase the relative importance of computational methods in the design of new materials. One possibility for utilizing electronic structure theory in the design of new materials is to create large databases of materials properties, and subsequently screen these for new potential candidates satisfying given design criteria. We utilize a database of more than 81 000 electronic structure calculations. This alloy database is combined with other published materials properties to form the foundation of a virtual materials design framework (VMDF). The VMDF offers a flexible collection of materials databases, filters, analysis tools and visualization methods, which are particularly useful in the design of new functional materials and surface structures. The applicability of the VMDF is illustrated by two examples. One is the determination of the Pareto-optimal set of binary alloy methanation catalysts with respect to catalytic activity and alloy stability; the other is the search for new alloy mercury absorbers.
Augmented Automated Material Accounting Statistics System (AMASS)
International Nuclear Information System (INIS)
Lumb, R.F.; Messinger, M.; Tingey, F.H.
1983-01-01
This paper describes an extension of the AMASS methodology which was previously presented at the 1981 INMM annual meeting. The main thrust of the current effort is to develop procedures and a computer program for estimating the variance of an Inventory Difference when many sources of variability, other than measurement error, are admitted in the model. Procedures also are included for the estimation of the variances associated with measurement error estimates and their effect on the estimated limit of error of the inventory difference (LEID). The algorithm for the LEID measurement component uncertainty involves the propagated component measurement variance estimates as well as their associated degrees of freedom. The methodology and supporting computer software is referred to as the augmented Automated Material Accounting Statistics System (AMASS). Specifically, AMASS accommodates five source effects. These are: (1) measurement errors (2) known but unmeasured effects (3) measurement adjustment effects (4) unmeasured process hold-up effects (5) residual process variation A major result of this effort is a procedure for determining the effect of bias correction on LEID, properly taking into account all the covariances that exist. This paper briefly describes the basic models that are assumed; some of the estimation procedures consistent with the model; data requirements, emphasizing availability and other practical considerations; discusses implications for bias corrections; and concludes by briefly describing the supporting computer program
Calculation of sound propagation in fibrous materials
DEFF Research Database (Denmark)
Tarnow, Viggo
1996-01-01
Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements.......Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements....
International Nuclear Information System (INIS)
Fishbone, L.G.
1999-01-01
While substantial work has been performed in the Russian MPC and A Program, much more needs to be done at Russian nuclear facilities to complete four necessary steps. These are (1) periodically measuring the physical inventory of nuclear material, (2) continuously measuring the flows of nuclear material, (3) using the results to close the material balance, particularly at bulk processing facilities, and (4) statistically evaluating any apparent loss of nuclear material. The periodic closing of material balances provides an objective test of the facility's system of nuclear material protection, control and accounting. The statistical evaluation using the uncertainties associated with individual measurement systems involved in the calculation of the material balance provides a fair standard for concluding whether the apparent loss of nuclear material means a diversion or whether the facility's accounting system needs improvement. In particular, if unattractive flow material at a facility is not measured well, the accounting system cannot readily detect the loss of attractive material if the latter substantially derives from the former
Calculation Software versus Illustration Software for Teaching Statistics
DEFF Research Database (Denmark)
Mortensen, Peter Stendahl; Boyle, Robin G.
1999-01-01
As personal computers have become more and more powerful, so have the software packages available to us for teaching statistics. This paper investigates what software packages are currently being used by progressive statistics instructors at university level, examines some of the deficiencies...... of such software, and indicates features that statistics instructors wish to have incorporated in software in the future. The basis of the paper is a survey of participants at ICOTS-5 (the Fifth International Conference on Teaching Statistics). These survey results, combined with the software based papers...
EMPIRE-II statistical model code for nuclear reaction calculations
Energy Technology Data Exchange (ETDEWEB)
Herman, M [International Atomic Energy Agency, Vienna (Austria)
2001-12-15
EMPIRE II is a nuclear reaction code, comprising various nuclear models, and designed for calculations in the broad range of energies and incident particles. A projectile can be any nucleon or Heavy Ion. The energy range starts just above the resonance region, in the case of neutron projectile, and extends up to few hundreds of MeV for Heavy Ion induced reactions. The code accounts for the major nuclear reaction mechanisms, such as optical model (SCATB), Multistep Direct (ORION + TRISTAN), NVWY Multistep Compound, and the full featured Hauser-Feshbach model. Heavy Ion fusion cross section can be calculated within the simplified coupled channels approach (CCFUS). A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers (BARFIT), moments of inertia (MOMFIT), and {gamma}-ray strength functions. Effects of the dynamic deformation of a fast rotating nucleus can be taken into account in the calculations. The results can be converted into the ENDF-VI format using the accompanying code EMPEND. The package contains the full EXFOR library of experimental data. Relevant EXFOR entries are automatically retrieved during the calculations. Plots comparing experimental results with the calculated ones can be produced using X4TOC4 and PLOTC4 codes linked to the rest of the system through bash-shell (UNIX) scripts. The graphic user interface written in Tcl/Tk is provided. (author)
Statistical Model Calculations for (n,γ Reactions
Directory of Open Access Journals (Sweden)
Beard Mary
2015-01-01
Full Text Available Hauser-Feshbach (HF cross sections are of enormous importance for a wide range of applications, from waste transmutation and nuclear technologies, to medical applications, and nuclear astrophysics. It is a well-observed result that diﬀerent nuclear input models sensitively aﬀect HF cross section calculations. Less well known however are the eﬀects on calculations originating from model-specific implementation details (such as level density parameter, matching energy, back-shift and giant dipole parameters, as well as eﬀects from non-model aspects, such as experimental data truncation and transmission function energy binning. To investigate the eﬀects or these various aspects, Maxwellian-averaged neutron capture cross sections have been calculated for approximately 340 nuclei. The relative eﬀects of these model details will be discussed.
A statistical calculation of the β- strength function
International Nuclear Information System (INIS)
Arvieu, R.; Haq, R.U.; Touchard, J.
1976-01-01
A microscopic calculation of the Gamow-Teller strength between the 0 + ground state of 208 Pb and the 1 + particle-hole states of 208 Bi assuming the particle-hole matrix elements as random numbers with some specified distribution, is described. Under certain conditions for the two-body matrix elements, a G.T. resonance occurs. The stability of this collective state along with the accompanying low energy β - -strength tail is studied for various samples of p-h matrix elements [fr
Cleophas, Ton J
2012-01-01
The first part of this title contained all statistical tests relevant to starting clinical investigations, and included tests for continuous and binary data, power, sample size, multiple testing, variability, confounding, interaction, and reliability. The current part 2 of this title reviews methods for handling missing data, manipulated data, multiple confounders, predictions beyond observation, uncertainty of diagnostic tests, and the problems of outliers. Also robust tests, non-linear modeling , goodness of fit testing, Bhatacharya models, item response modeling, superiority testing, variab
Glass viscosity calculation based on a global statistical modelling approach
Energy Technology Data Exchange (ETDEWEB)
Fluegel, Alex
2007-02-01
A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurement and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The improved form of calculation formula for the activities of the components in binary liquids and solid alloys has been derived based on the free volume theory considering excess entropy and Miedema's model for calculating the formation heat of binary alloys. A calculation method of excess thermodynamic functions for binary alloys, the formulas of integral molar excess properties and partial molar excess properties for solid ordered or disordered binary alloys have been developed. The calculated results are in good agreement with the experimental values.
Effect of Embolization Material in the Calculation of Dose Deposition in Arteriovenous Malformations
International Nuclear Information System (INIS)
De la Cruz, O. O. Galvan; Moreno-Jimenez, S.; Larraga-Gutierrez, J. M.; Celis-Lopez, M. A.
2010-01-01
In this work it is studied the impact of the incorporation of high Z materials (embolization material) in the dose calculation for stereotactic radiosurgery treatment for arteriovenous malformations. A statistical analysis is done to establish the variables that may impact in the dose calculation. To perform the comparison pencil beam (PB) and Monte Carlo (MC) calculation algorithms were used. The comparison between both dose calculations shows that PB overestimates the dose deposited. The statistical analysis, for the quantity of patients of the study (20), shows that the variable that may impact in the dose calculation is the volume of the high Z material in the arteriovenous malformation. Further studies have to be done to establish the clinical impact with the radiosurgery result.
Statistical Inference for Porous Materials using Persistent Homology.
Energy Technology Data Exchange (ETDEWEB)
Moon, Chul [Univ. of Georgia, Athens, GA (United States); Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-12-01
We propose a porous materials analysis pipeline using persistent homology. We rst compute persistent homology of binarized 3D images of sampled material subvolumes. For each image we compute sets of homology intervals, which are represented as summary graphics called persistence diagrams. We convert persistence diagrams into image vectors in order to analyze the similarity of the homology of the material images using the mature tools for image analysis. Each image is treated as a vector and we compute its principal components to extract features. We t a statistical model using the loadings of principal components to estimate material porosity, permeability, anisotropy, and tortuosity. We also propose an adaptive version of the structural similarity index (SSIM), a similarity metric for images, as a measure to determine the statistical representative elementary volumes (sREV) for persistence homology. Thus we provide a capability for making a statistical inference of the uid ow and transport properties of porous materials based on their geometry and connectivity.
Am/Cm Vitrification Process: Pretreatment Material Balance Calculations
International Nuclear Information System (INIS)
Smith, F.G.
2001-01-01
This report documents material balance calculations for the pretreatment steps required to prepare the Americium/Curium solution currently stored in Tank 17.1 in the F-Canyon for vitrification. The material balance uses the latest analysis of the tank contents to provide a best estimate calculation of the expected plant operations during the pretreatment process. The material balance calculations primarily follow the material that directly leads to melter feed. Except for vapor products of the denitration reactions and treatment of supernate from precipitation and precipitate washing, the flowsheet does not include side streams such as acid washes of the empty tanks that would go directly to waste. The calculation also neglects tank heels. This report consolidates previously reported results, corrects some errors found in the spreadsheet and provides a more detailed discussion of the calculation basis
Statistics of ductile fracture surfaces: the effect of material parameters
DEFF Research Database (Denmark)
Ponson, Laurent; Cao, Yuanyuan; Bouchaud, Elisabeth
2013-01-01
distributed. The three dimensional analysis permits modeling of a three dimensional material microstructure and of the resulting three dimensional stress and deformation states that develop in the fracture process region. Material parameters characterizing void nucleation are varied and the statistics...... of the resulting fracture surfaces is investigated. All the fracture surfaces are found to be self-affine over a size range of about two orders of magnitude with a very similar roughness exponent of 0.56 ± 0.03. In contrast, the full statistics of the fracture surfaces is found to be more sensitive to the material...
Monte Carlo calculations of electron diffusion in materials
International Nuclear Information System (INIS)
Schroeder, U.G.
1976-01-01
By means of simulated experiments, various transport problems for 10 Mev electrons are investigated. For this purpose, a special Monte-Carlo programme is developed, and with this programme calculations are made for several material arrangements. (orig./LN) [de
Variance and covariance calculations for nuclear materials accounting using ''MAVARIC''
International Nuclear Information System (INIS)
Nasseri, K.K.
1987-07-01
Determination of the detection sensitivity of a materials accounting system to the loss of special nuclear material (SNM) requires (1) obtaining a relation for the variance of the materials balance by propagation of the instrument errors for the measured quantities that appear in the materials balance equation and (2) substituting measured values and their error standard deviations into this relation and calculating the variance of the materials balance. MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet, designed using the second release of Lotus 1-2-3, that significantly reduces the effort required to make the necessary variance (and covariance) calculations needed to determine the detection sensitivity of a materials accounting system. Predefined macros within the spreadsheet allow the user to carry out long, tedious procedures with only a few keystrokes. MAVARIC requires that the user enter the following data into one of four data tables, depending on the type of the term in the materials balance equation; the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements made during an accounting period. The user can also specify if there are correlations between transfer terms. Based on these data entries, MAVARIC can calculate the variance of the materials balance and the square root of this variance, from which the detection sensitivity of the accounting system can be determined
Variance and covariance calculations for nuclear materials accounting using 'MAVARIC'
International Nuclear Information System (INIS)
Nasseri, K.K.
1987-01-01
Determination of the detection sensitivity of a materials accounting system to the loss of special nuclear material (SNM) requires (1) obtaining a relation for the variance of the materials balance by propagation of the instrument errors for the measured quantities that appear in the materials balance equation and (2) substituting measured values and their error standard deviations into this relation and calculating the variance of the materials balance. MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet, designed using the second release of Lotus 1-2-3, that significantly reduces the effort required to make the necessary variance (and covariance) calculations needed to determine the detection sensitivity of a materials accounting system. Predefined macros within the spreadsheet allow the user to carry out long, tedious procedures with only a few keystrokes. MAVARIC requires that the user enter the following data into one of four data tables, depending on the type of the term in the materials balance equation; the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements made during an accounting period. The user can also specify if there are correlations between transfer terms. Based on these data entries, MAVARIC can calculate the variance of the materials balance and the square root of this variance, from which the detection sensitivity of the accounting system can be determined
Broek, P.L.C. van den; Egmond, J. van; Rijn, C.M. van; Takens, F.; Coenen, A.M.L.; Booij, L.H.D.J.
2005-01-01
This study assessed the feasibility of online calculation of the correlation integral (C(r)) aiming to apply C(r)-derived statistics. For real-time application it is important to reduce calculation time. It is shown how our method works for EEG time series. Methods: To achieve online calculation of
Automated Material Accounting Statistics System at Rockwell Hanford Operations
International Nuclear Information System (INIS)
Eggers, R.F.; Giese, E.W.; Kodman, G.P.
1986-01-01
The Automated Material Accounting Statistics System (AMASS) was developed under the sponsorship of the U.S. Nuclear Regulatory Commission. The AMASS was developed when it was realized that classical methods of error propagation, based only on measured quantities, did not properly control false alarm rate and that errors other than measurement errors affect inventory differences. The classical assumptions that (1) the mean value of the inventory difference (ID) for a particular nuclear material processing facility is zero, and (2) the variance of the inventory difference is due only to errors in measured quantities are overly simplistic. The AMASS provides a valuable statistical tool for estimating the true mean value and variance of the ID data produced by a particular material balance area. In addition it provides statistical methods of testing both individual and cumulative sums of IDs, taking into account the estimated mean value and total observed variance of the ID
Am/Cm Vitrification Process: Vitrification Material Balance Calculations
International Nuclear Information System (INIS)
Smith, F.G.
2000-01-01
This report documents material balance calculations for the Americium/Curium vitrification process and describes the basis used to make the calculations. The material balance calculations reported here start with the solution produced by the Am/Cm pretreatment process as described in ``Material Balance Calculations for Am/Cm Pretreatment Process (U)'', SRT-AMC-99-0178 [1]. Following pretreatment, small batches of the product will be further treated with an additional oxalic acid precipitation and washing. The precipitate from each batch will then be charged to the Am/Cm melter with glass cullet and vitrified to produce the final product. The material balance calculations in this report are designed to provide projected compositions of the melter glass and off-gas streams. Except for decanted supernate collected from precipitation and precipitate washing, the flowsheet neglects side streams such as acid washes of empty tanks that would go directly to waste. Complete listings of the results of the material balance calculations are provided in the Appendices to this report
Calculation of the dynamic air flow resistivity of fibre materials
DEFF Research Database (Denmark)
Tarnow, Viggo
1997-01-01
The acoustic attenuation of acoustic fiber materials is mainly determined by the dynamic resistivity to an oscillating air flow. The dynamic resistance is calculated for a model with geometry close to the geometry of real fibre material. The model constists of parallel cylinders placed randomly.......The second procedure is an extension to oscillating air flow of the Brinkman self-consistent procedure for dc flow. The procedures are valid for volume concentrations of cylinders less than 0.1. The calculations show that for the density of fibers of interest for acoustic fibre materials the simple self...
Feng, Sheng; Wang, Shengchu; Chen, Chia-Cheng; Lan, Lan
2011-01-21
In designing genome-wide association (GWA) studies it is important to calculate statistical power. General statistical power calculation procedures for quantitative measures often require information concerning summary statistics of distributions such as mean and variance. However, with genetic studies, the effect size of quantitative traits is traditionally expressed as heritability, a quantity defined as the amount of phenotypic variation in the population that can be ascribed to the genetic variants among individuals. Heritability is hard to transform into summary statistics. Therefore, general power calculation procedures cannot be used directly in GWA studies. The development of appropriate statistical methods and a user-friendly software package to address this problem would be welcomed. This paper presents GWAPower, a statistical software package of power calculation designed for GWA studies with quantitative traits, where genetic effect is defined as heritability. Based on several popular one-degree-of-freedom genetic models, this method avoids the need to specify the non-centrality parameter of the F-distribution under the alternative hypothesis. Therefore, it can use heritability information directly without approximation. In GWAPower, the power calculation can be easily adjusted for adding covariates and linkage disequilibrium information. An example is provided to illustrate GWAPower, followed by discussions. GWAPower is a user-friendly free software package for calculating statistical power based on heritability in GWA studies with quantitative traits. The software is freely available at: http://dl.dropbox.com/u/10502931/GWAPower.zip.
Application of nonparametric statistics to material strength/reliability assessment
International Nuclear Information System (INIS)
Arai, Taketoshi
1992-01-01
An advanced material technology requires data base on a wide variety of material behavior which need to be established experimentally. It may often happen that experiments are practically limited in terms of reproducibility or a range of test parameters. Statistical methods can be applied to understanding uncertainties in such a quantitative manner as required from the reliability point of view. Statistical assessment involves determinations of a most probable value and the maximum and/or minimum value as one-sided or two-sided confidence limit. A scatter of test data can be approximated by a theoretical distribution only if the goodness of fit satisfies a test criterion. Alternatively, nonparametric statistics (NPS) or distribution-free statistics can be applied. Mathematical procedures by NPS are well established for dealing with most reliability problems. They handle only order statistics of a sample. Mathematical formulas and some applications to engineering assessments are described. They include confidence limits of median, population coverage of sample, required minimum number of a sample, and confidence limits of fracture probability. These applications demonstrate that a nonparametric statistical estimation is useful in logical decision making in the case a large uncertainty exists. (author)
The first principle calculation of two-dimensional Dirac materials
Lu, Jin
2017-12-01
As the size of integrated device becoming increasingly small, from the last century, semiconductor industry is facing the enormous challenge to break the Moore’s law. The development of calculation, communication and automatic control have emergent expectation of new materials at the aspect of semiconductor industrial technology and science. In spite of silicon device, searching the alternative material with outstanding electronic properties has always been a research point. As the discovery of graphene, the research of two-dimensional Dirac material starts to express new vitality. This essay studied the development calculation of 2D material’s mobility and introduce some detailed information of some approximation method of the first principle calculation.
Calculations on neutron irradiation damage in reactor materials
International Nuclear Information System (INIS)
Sone, Kazuho; Shiraishi, Kensuke
1976-01-01
Neutron irradiation damage calculations were made for Mo, Nb, V, Fe, Ni and Cr. Firstly, damage functions were calculated as a function of neutron energy with neutron cross sections of elastic and inelastic scatterings, and (n,2n) and (n,γ) reactions filed in ENDF/B-III. Secondly, displacement damage expressed in displacements per atom (DPA) was estimated for neutron environments such as fission spectrum, thermal neutron reactor (JMTR), fast breeder reactor (MONJU) and two fusion reactors (The Conceptual Design of Fusion Reactor in JAERI and ORNL-Benchmark). then, damage cross section in units of dpa. barn was defined as a factor to convert a given neutron fluence to the DPA value, and was calculated for the materials in the above neutron environments. Finally, production rates of helium and hydrogen atoms were calculated with (n,α) and (n,p) cross sections in ENDF/B-III for the materials irradiated in the above reactors. (auth.)
Statistics of foreign trade in radioactive materials 2004
International Nuclear Information System (INIS)
Anon.
2006-01-01
The German Federal Office for Industry and Foreign Trade Control (BAFA) keeps annual statistics of the imports and exports of radioactive materials, nuclear fuels included. The entries, some of them with precise details, cover the participating countries and the radionuclides concerned as well as all kinds of radioactive materials. The tables listed in the article represent the overall balance of the development of imports and exports of radioactive materials for the years 1986 to 2004 arranged by activity levels, including the development of nuclear fuel imports and exports. For the year 2004, an additional trade balance for irradiated and unirradiated nuclear fuels and source materials differentiated by enrichment is presented for the countries involved. In 2004, some 2,558 t of nuclear fuels and source materials were imported into the Federal Republic, while approx. 1,971 t were exported. The chief trading partners are countries of the European Union, Canada, Russia and the USA. (orig.)
Statistics of foreign trade in radioactive materials 2002
International Nuclear Information System (INIS)
Anon.
2003-01-01
The German Federal Office for Industry and Foreign Trade Control (BAFA) keeps annual statistics of the imports and exports of radioactive materials, nuclear fuels included. The entries, some of them with precise details, cover the participating countries and the radionuclides concerned as well as all kinds of radioactive materials. The tables listed in the article represent the overall balance of the development of imports and exports of radioactive materials for the years 1983 to 2002 arranged by activity levels, including the development of nuclear fuel imports and exports. For the year 2002, an additional trade balance for irradiated and unirradiated nuclear fuels and source materials differentiated by enrichment is presented for the countries involved. In 2002, some 3 070 t of nuclear fuels and source materials were imported into the Federal Republic, while approx. 3 052 t were exported. The chief trading partners are countries of the European Union, Russia, and the USA. (orig.)
Inclusion of temperature dependence of fission barriers in statistical model calculations
International Nuclear Information System (INIS)
Newton, J.O.; Popescu, D.G.; Leigh, J.R.
1990-08-01
The temperature dependence of fission barriers has been interpolated from the results of recent theoretical calculations and included in the statistical model code PACE2. It is shown that the inclusion of temperature dependence causes significant changes to the values of the statistical model parameters deduced from fits to experimental data. 21 refs., 2 figs
Calculation of atom displacement cross section for structure material
International Nuclear Information System (INIS)
Liu Ping; Xu Yiping
2015-01-01
The neutron radiation damage in material is an important consideration of the reactor design. The radiation damage of materials mainly comes from atom displacements of crystal structure materials. The reaction cross sections of charged particles, cross sections of displacements per atom (DPA) and KERMA are the basis of radiation damage calculation. In order to study the differences of DPA cross sections with different codes and different evaluated nuclear data libraries, the DPA cross sections for structure materials were calculated with UNF and NJOY codes, and the comparisons of results were given. The DPA cross sections from different evaluated nuclear data libraries were compared. And the comparison of DPA cross sections between NJOY and Monte Carlo codes was also done. The results show that the differences among these evaluated nuclear data libraries exist. (authors)
STATISTICAL ANALYSIS OF RAW SUGAR MATERIAL FOR SUGAR PRODUCER COMPLEX
A. A. Gromkovskii; O. I. Sherstyuk
2015-01-01
Summary. In the article examines the statistical data on the development of average weight and average sugar content of sugar beet roots. The successful solution of the problem of forecasting these raw indices is essential for solving problems of sugar producing complex control. In the paper by calculating the autocorrelation function demonstrated that the predominant trend component of the growth raw characteristics. For construct the prediction model is proposed to use an autoregressive fir...
MATERIAL COMPOSITIONS AND NUMBER DENSITIES FOR NEUTRONICS CALCULATIONS
International Nuclear Information System (INIS)
D. A. Thomas
1996-01-01
The purpose of this analysis is to calculate the number densities and isotopic weight percentages of the standard materials to be used in the neutronics (criticality and radiation shielding) evaluations by the Waste Package Development Department. The objective of this analysis is to provide material number density information which can be referenced by future neutronics design analyses, such as for those supporting the Conceptual Design Report
Statistical methods in nuclear material accountancy: Past, present and future
International Nuclear Information System (INIS)
Pike, D.J.; Woods, A.J.
1983-01-01
The analysis of nuclear material inventory data is motivated by the desire to detect any loss or diversion of nuclear material, insofar as such detection may be feasible by statistical analysis of repeated inventory and throughput measurements. The early regulations, which laid down the specifications for the analysis of inventory data, were framed without acknowledging the essentially sequential nature of the data. It is the broad aim of this paper to discuss the historical nature of statistical analysis of inventory data including an evaluation of why statistical methods should be required at all. If it is accepted that statistical techniques are required, then two main areas require extensive discussion. First, it is important to assess the extent to which stated safeguards aims can be met in practice. Second, there is a vital need for reassessment of the statistical techniques which have been proposed for use in nuclear material accountancy. Part of this reassessment must involve a reconciliation of the apparent differences in philosophy shown by statisticians; but, in addition, the techniques themselves need comparative study to see to what extent they are capable of meeting realistic safeguards aims. This paper contains a brief review of techniques with an attempt to compare and contrast the approaches. It will be suggested that much current research is following closely similar lines, and that national and international bodies should encourage collaborative research and practical in-plant implementations. The techniques proposed require credibility and power; but at this point in time statisticians require credibility and a greater level of unanimity in their approach. A way ahead is proposed based on a clear specification of realistic safeguards aims, and a development of a unified statistical approach with encouragement for the performance of joint research. (author)
van den Broek, PLC; van Egmond, J; van Rijn, CM; Takens, F; Coenen, AML; Booij, LHDJ
2005-01-01
Background: This study assessed the feasibility of online calculation of the correlation integral (C(r)) aiming to apply C(r)derived statistics. For real-time application it is important to reduce calculation time. It is shown how our method works for EEG time series. Methods: To achieve online
First Principles Calculations of Electronic Excitations in 2D Materials
DEFF Research Database (Denmark)
Rasmussen, Filip Anselm
electronic transport, optical and chemical properties. On the other hand it has shown to be a great starting point for a systematic pertubation theory approach to obtain the so-called quasiparticle spectrum. In the GW approximation one considers the considers the potential from a charged excitation...... as if it is being screened by the electrons in the material. This method has been very successful for calculating quasiparticle energies of bulk materials but results have been more varying for 2D materials. The reason is that the 2D confined electrons are less able to screen the added charge and some...
On the calculation of Lorenz numbers for complex thermoelectric materials
Wang, Xufeng; Askarpour, Vahid; Maassen, Jesse; Lundstrom, Mark
2018-02-01
A first-principles informed approach to the calculation of Lorenz numbers for complex thermoelectric materials is presented and discussed. Example calculations illustrate the importance of using accurate band structures and energy-dependent scattering times. Results obtained by assuming that the scattering rate follows the density-of-states show that in the non-degenerate limit, Lorenz numbers below the commonly assumed lower limit of 2 (kB /q ) 2 can occur. The physical cause of low Lorenz numbers is explained by the shape of the transport distribution. The numerical and physical issues that need to be addressed in order to produce accurate calculations of the Lorenz number are identified. The results of this study provide a general method that should contribute to the interpretation of measurements of total thermal conductivity and to the search for materials with low Lorenz numbers, which may provide improved thermoelectric figures of merit, z T .
Statistical study on the strength of structural materials and elements
International Nuclear Information System (INIS)
Blume, J.A.; Dalal, J.S.; Honda, K.K.
1975-07-01
Strength data for structural materials and elements including concrete, reinforcing steel, structural steel, plywood elements, reinforced concrete beams, reinforced concrete columns, brick masonry elements, and concrete masonry walls were statistically analyzed. Sample statistics were computed for these data, and distribution parameters were derived for normal, lognormal, and Weibull distributions. Goodness-of-fit tests were performed on these distributions. Most data, except those for masonry elements, displayed fairly small dispersion. Dispersion in data for structural materials was generally found to be smaller than for structural elements. Lognormal and Weibull distributions displayed better overall fits to data than normal distribution, although either Weibull or lognormal distribution can be used to represent the data analyzed. (auth)
Statistical analysis and interpolation of compositional data in materials science.
Pesenson, Misha Z; Suram, Santosh K; Gregoire, John M
2015-02-09
Compositional data are ubiquitous in chemistry and materials science: analysis of elements in multicomponent systems, combinatorial problems, etc., lead to data that are non-negative and sum to a constant (for example, atomic concentrations). The constant sum constraint restricts the sampling space to a simplex instead of the usual Euclidean space. Since statistical measures such as mean and standard deviation are defined for the Euclidean space, traditional correlation studies, multivariate analysis, and hypothesis testing may lead to erroneous dependencies and incorrect inferences when applied to compositional data. Furthermore, composition measurements that are used for data analytics may not include all of the elements contained in the material; that is, the measurements may be subcompositions of a higher-dimensional parent composition. Physically meaningful statistical analysis must yield results that are invariant under the number of composition elements, requiring the application of specialized statistical tools. We present specifics and subtleties of compositional data processing through discussion of illustrative examples. We introduce basic concepts, terminology, and methods required for the analysis of compositional data and utilize them for the spatial interpolation of composition in a sputtered thin film. The results demonstrate the importance of this mathematical framework for compositional data analysis (CDA) in the fields of materials science and chemistry.
PROFESSIONAL CHALLENGES CONCERNING THE CALCULATION AND USE OF MATERIALITY
Daniel Botez
2013-01-01
Significance is an essential reference in the judgments of the economic environment. It talks about significant influence, meaningful, significant risk, significant accounting policies, and the like. In accounting and auditing is used the term "materiality" when the submit financial information, to evaluate the risk or partial information or investigating events using statistical sampling technique. Starting from the premise that the conceptual and practical approach of the threshold of signi...
International Nuclear Information System (INIS)
Kim, Kyu Tae; Kim, Oh Hwan
1999-01-01
A simplified statistical methodology is developed in order to both reduce over-conservatism of deterministic methodologies employed for PWR fuel rod internal pressure (RIP) calculation and simplify the complicated calculation procedure of the widely used statistical methodology which employs the response surface method and Monte Carlo simulation. The simplified statistical methodology employs the system moment method with a deterministic statistical methodology employs the system moment method with a deterministic approach in determining the maximum variance of RIP. The maximum RIP variance is determined with the square sum of each maximum value of a mean RIP value times a RIP sensitivity factor for all input variables considered. This approach makes this simplified statistical methodology much more efficient in the routine reload core design analysis since it eliminates the numerous calculations required for the power history-dependent RIP variance determination. This simplified statistical methodology is shown to be more conservative in generating RIP distribution than the widely used statistical methodology. Comparison of the significances of each input variable to RIP indicates that fission gas release model is the most significant input variable. (author). 11 refs., 6 figs., 2 tabs
Virial-statistic method for calculation of atom and molecule energies
International Nuclear Information System (INIS)
Borisov, Yu.A.
1977-01-01
A virial-statistical method has been applied to the calculation of the atomization energies of the following molecules: Mo(CO) 6 , Cr(CO) 6 , Fe(CO) 5 , MnH(CO) 5 , CoH(CO) 4 , Ni(CO) 4 . The principles of this method are briefly presented. Calculation results are given for the individual contributions to the atomization energies together with the calculated and experimental atomization energies (D). For the Mo(CO) 6 complex Dsub(calc) = 1759 and Dsub(exp) = 1763 kcal/mole. Calculated and experimental combination heat values for carbonyl complexes are presented. These values are shown to be adequately consistent [ru
A BRDF statistical model applying to space target materials modeling
Liu, Chenghao; Li, Zhi; Xu, Can; Tian, Qichen
2017-10-01
In order to solve the problem of poor effect in modeling the large density BRDF measured data with five-parameter semi-empirical model, a refined statistical model of BRDF which is suitable for multi-class space target material modeling were proposed. The refined model improved the Torrance-Sparrow model while having the modeling advantages of five-parameter model. Compared with the existing empirical model, the model contains six simple parameters, which can approximate the roughness distribution of the material surface, can approximate the intensity of the Fresnel reflectance phenomenon and the attenuation of the reflected light's brightness with the azimuth angle changes. The model is able to achieve parameter inversion quickly with no extra loss of accuracy. The genetic algorithm was used to invert the parameters of 11 different samples in the space target commonly used materials, and the fitting errors of all materials were below 6%, which were much lower than those of five-parameter model. The effect of the refined model is verified by comparing the fitting results of the three samples at different incident zenith angles in 0° azimuth angle. Finally, the three-dimensional modeling visualizations of these samples in the upper hemisphere space was given, in which the strength of the optical scattering of different materials could be clearly shown. It proved the good describing ability of the refined model at the material characterization as well.
Statistical analysis and Kalman filtering applied to nuclear materials accountancy
International Nuclear Information System (INIS)
Annibal, P.S.
1990-08-01
Much theoretical research has been carried out on the development of statistical methods for nuclear material accountancy. In practice, physical, financial and time constraints mean that the techniques must be adapted to give an optimal performance in plant conditions. This thesis aims to bridge the gap between theory and practice, to show the benefits to be gained from a knowledge of the facility operation. Four different aspects are considered; firstly, the use of redundant measurements to reduce the error on the estimate of the mass of heavy metal in an 'accountancy tank' is investigated. Secondly, an analysis of the calibration data for the same tank is presented, establishing bounds for the error and suggesting a means of reducing them. Thirdly, a plant-specific method of producing an optimal statistic from the input, output and inventory data, to help decide between 'material loss' and 'no loss' hypotheses, is developed and compared with existing general techniques. Finally, an application of the Kalman Filter to materials accountancy is developed, to demonstrate the advantages of state-estimation techniques. The results of the analyses and comparisons illustrate the importance of taking into account a complete and accurate knowledge of the plant operation, measurement system, and calibration methods, to derive meaningful results from statistical tests on materials accountancy data, and to give a better understanding of critical random and systematic error sources. The analyses were carried out on the head-end of the Fast Reactor Reprocessing Plant, where fuel from the prototype fast reactor is cut up and dissolved. However, the techniques described are general in their application. (author)
Evaluation of calculational and material models for concrete containment structures
International Nuclear Information System (INIS)
Dunham, R.S.; Rashid, Y.R.; Yuan, K.A.
1984-01-01
A computer code utilizing an appropriate finite element, material and constitutive model has been under development as a part of a comprehensive effort by the Electric Power Research Institute (EPRI) to develop and validate a realistic methodology for the ultimate load analysis of concrete containment structures. A preliminary evaluation of the reinforced and prestressed concrete modeling capabilities recently implemented in the ABAQUS-EPGEN code has been completed. This effort focuses on using a state-of-the-art calculational model to predict the behavior of large-scale reinforced concrete slabs tested under uniaxial and biaxial tension to simulate the wall of a typical concrete containment structure under internal pressure. This paper gives comparisons between calculations and experimental measurements for a uniaxially-loaded specimen. The calculated strains compare well with the measured strains in the reinforcing steel; however, the calculations gave diffused cracking patterns that do not agree with the discrete cracking observed in the experiments. Recommendations for improvement of the calculational models are given. (orig.)
Fracture statistics of brittle materials with intergranular cracks
International Nuclear Information System (INIS)
Batdorf, S.B.
1975-01-01
When brittle materials are used for structural purposes, the initial design must take their relatively large dispersion in fracture stress properly into account. This is difficult when failure probabilities must be extremely low, because empirically based statistical theories of fracture, such as that of Weibull, cannot reliably predict the stresses corresponding to failure probabilities much lower than n -1 , where n is the number of specimens tested. Recently McClintock proposed a rational method of predicting the size distribution of intergranular cracks. The method assumed that large cracks are random aggregations of cracked grain boundaries. The present paper employs this method to find the size distribution of penny-shaped cracks, and also P(f), the probability of failure of a specimen of volume V subjected to a tensile stress sigma. The present paper is a pioneering effort, which should be applicable to ceramics and related materials
Statistical theory for calculating energy spectra of β-delayed neutrons
International Nuclear Information System (INIS)
Kawano, Toshihiko; Moeller, Peter; Wilson, William B.
2008-01-01
Theoretical β-delayed neutron spectra are calculated based on the Quasi-particle Random Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after β-decay to the granddaughter residual are more accurately calculated than previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra reasonably agree with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors. (authors)
Fracture criterion for brittle materials based on statistical cells of finite volume
International Nuclear Information System (INIS)
Cords, H.; Kleist, G.; Zimmermann, R.
1986-06-01
An analytical consideration of the Weibull Statistical Analysis of brittle materials established the necessity of including one additional material constant for a more comprehensive description of the failure behaviour. The Weibull analysis is restricted to infinitesimal volume elements in consequence of the differential calculus applied. It was found that infinitesimally small elements are in conflict with the basic statistical assumption and that the differential calculus is not needed in fact since nowadays most of the stress analyses are based on finite element calculations, and these are most suitable for a subsequent statistical analysis of strength. The size of a finite statistical cell has been introduced as the third material parameter. It should represent the minimum volume containing all statistical features of the material such as distribution of pores, flaws and grains. The new approach also contains a unique treatment of failure under multiaxial stresses. The quantity responsible for failure under multiaxial stresses is introduced as a modified strain energy. Sixteen different tensile specimens including CT-specimens have been investigated experimentally and analyzed with the probabilistic fracture criterion. As a result it can be stated that the failure rates of all types of specimens made from three different grades of graphite are predictable. The accuracy of the prediction is one standard deviation. (orig.) [de
Seldam, C.A. ten; Groot, S.R. de
1952-01-01
From Jensen's and Gombás' modification of the statistical Thomas-Fermi atom model, a theory for compressed atoms is developed by changing the boundary conditions. Internal kinetic energy and polarizability of argon are calculated as functions of pressure. At 1000 atm. an internal kinetic energy of
Cluster model calculations of the solid state materials electron structure
International Nuclear Information System (INIS)
Pelikan, P.; Biskupic, S.; Banacky, P.; Zajac, A.; Svrcek, A.; Noga, J.
1997-01-01
Materials of the general composition ACuO 2 are the parent compounds of so called infinite layer superconductors. In the paper presented the electron structure of the compounds CaCuO 2 , SrCuO2, Ca 0.86 Sr 0.14 CuO2 and Ca 0.26 Sr 0.74 CuO 2 were calculated. The cluster models consisting of 192 atoms were computed using quasi relativistic version of semiempirical INDO method. The obtained results indicate the strong ionicity of Ca/Sr-O bonds and high covalency of Cu-bonds. The width of energy gap at the Fermi level increases as follows: Ca 0.26 Sr 0.74 CuO 2 0.86 Sr 0.14 CuO2 2 . This order correlates with the fact that materials of the composition Ca x Sr 1-x CuO 2 have have the high temperatures of the superconductive transition (up to 110 K). Materials partially substituted by Sr 2+ have also the higher density of states in the close vicinity at the Fermi level that ai the additional condition for the possibility of superconductive transition. It was calculated the strong influence of the vibration motions to the energy gap at the Fermi level. (authors). 1 tabs., 2 figs., 10 refs
Radiation damage calculations for the APT materials test program
International Nuclear Information System (INIS)
Corzine, R.K.; Wechsler, M.S.; Dudziak, D.J.; Ferguson, P.D.; James, M.R.
1999-01-01
A materials irradiation was performed at the Los Alamos Neutron Science Center (LANSCE) in the fall of 1996 and spring of 1997 in support of the Accelerator Production of Tritium (APT) program. Testing of the irradiated materials is underway. In the proposed APT design, materials in the target and blanket are to be exposed to protons and neutrons over a wide range of energies. The irradiation and testing program was undertaken to enlarge the very limited direct knowledge presently available of the effects of medium-energy protons (∼1 GeV) on the properties of engineering materials. APT candidate materials were placed in or near the LANSCE accelerator 800-MeV, 1-mA proton beam and received roughly the same proton current density in the center of the beam as would be the case for the APT facility. As a result, the proton fluences achieved in the irradiation were expected to approach the APT prototypic full-power-year values. To predict accurately the performance of materials in APT, radiation damage parameters for the materials experiment must be determined. By modeling the experiment, calculations for atomic displacement, helium and hydrogen cross sections and for proton and neutron fluences were done for representative samples in the 17A, 18A, and 18C areas. The LAHET code system (LCS) was used to model the irradiation program, LAHET 2.82 within LCS transports protons > 1 MeV, and neutrons >20 MeV. A modified version of MCNP for use in LCS, HMCNP 4A, was employed to tally neutrons of energies <20 MeV
Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations
International Nuclear Information System (INIS)
Garcia-Herranz, Nuria; Cabellos, Oscar; Sanz, Javier; Juan, Jesus; Kuijper, Jim C.
2008-01-01
Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files
Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations
Energy Technology Data Exchange (ETDEWEB)
Garcia-Herranz, Nuria [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain)], E-mail: nuria@din.upm.es; Cabellos, Oscar [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain); Sanz, Javier [Departamento de Ingenieria Energetica, Universidad Nacional de Educacion a Distancia, UNED (Spain); Juan, Jesus [Laboratorio de Estadistica, Universidad Politecnica de Madrid, UPM (Spain); Kuijper, Jim C. [NRG - Fuels, Actinides and Isotopes Group, Petten (Netherlands)
2008-04-15
Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files.
Surface regulated arsenenes as Dirac materials: From density functional calculations
International Nuclear Information System (INIS)
Yuan, Junhui; Xie, Qingxing; Yu, Niannian; Wang, Jiafu
2017-01-01
Highlights: • The presence of Dirac cones in chemically decorated buckled arsenene AsX (X = CN, NC, NCO, NCS, and NCSe) has been revealed. • First-principles calculations show that all these chemically decorated arsenenes are kinetically stable in defending thermal fluctuations in room temperature. - Abstract: Using first principle calculations based on density functional theory (DFT), we have systematically investigated the structure stability and electronic properties of chemically decorated arsenenes, AsX (X = CN, NC, NCO, NCS and NCSe). Phonon dispersion and formation energy analysis reveal that all the five chemically decorated buckled arsenenes are energetically favorable and could be synthesized. Our study shows that wide-bandgap arsenene would turn into Dirac materials when functionalized by -X (X = CN, NC, NCO, NCS and NCSe) groups, rendering new promises in next generation high-performance electronic devices.
Possibilities to improve the adaptation quality of calculated material substitutes
Energy Technology Data Exchange (ETDEWEB)
Geske, G.
1981-04-01
In calculating the composition of material substitutes by a system of simultaneous equations it is possible, by using a so called quality index, to find out of the set of solutions which generally exists that solution which possesses the best adaptation quality. Further improvement is often possible by describing coherent scattering and photoelectric interaction by an own material parameter for each effect. The exact formulation of these quantities as energy indepedent functions is, however, impossible. Using a set of attenuation coefficients at suitably chosen energies as coefficients for the system of equations the best substitutes are found. The solutions for the investigated example are identical with the original relative to its chemical composition. Such solutions may be of use in connection with neutrons, protons, heavy ions and negative pions. The components taken into consideration must, of course, permit such solutions. These facts are discussed in detail by two examples.
Calculations on safe storage and transportation of radioactive materials
Energy Technology Data Exchange (ETDEWEB)
Hathout, A M; El-Messiry, A M; Amin, E [National Center for Nuclear Safety and Radiation Control and AEA, Cairo (Egypt)
1997-12-31
In this work the safe storage and transportation of fresh fuel as a radioactive material studied. Egypt planned ET RR 2 reactor which is of relatively high power and would require adequate handling and transportation. Therefore, the present work is initiated to develop a procedure for safe handling and transportation of radioactive materials. The possibility of reducing the magnitude of radiation transmitted on the exterior of the packages is investigated. Neutron absorbers are used to decrease the neutron flux. Criticality calculations are carried out to ensure the achievement of subcriticality so that the inherent safety can be verified. The discrete ordinate transport code ANISN was used. The results show good agreement with other techniques. 2 figs., 2 tabs.
User manual of FUNF code for fissile material data calculation
International Nuclear Information System (INIS)
Zhang, Jingshang
2006-03-01
The FUNF code (2005 version) is used to calculate fast neutron reaction data of fissile materials with incident energies from about 1 keV up to 20 MeV. The first version of the FUNF code was completed in 1994. the code has been developed continually since that time and has often been used as an evaluation tool for setting up CENDL and for analyzing the measurements of fissile materials. During these years many improvements have been made. In this manual, the format of the input parameter files and the output files, as well as the functions of flag used in FUNF code, are introduced in detail, and the examples of the format of input parameters files are given. FUNF code consists of the spherical optical model, the Hauser-Feshbach model, and the unified Hauser-Feshbach and exciton model. (authors)
Directory of Open Access Journals (Sweden)
Pedro L. Valencia
2017-04-01
Full Text Available We provide initial rate data from enzymatic reaction experiments and tis processing to estimate the kinetic parameters from the substrate uncompetitive inhibition equation using the median method published by Eisenthal and Cornish-Bowden (Cornish-Bowden and Eisenthal, 1974; Eisenthal and Cornish-Bowden, 1974. The method was denominated the direct linear plot and consists in the calculation of the median from a dataset of kinetic parameters Vmax and Km from the Michaelis–Menten equation. In this opportunity we present the procedure to applicate the direct linear plot to the substrate uncompetitive inhibition equation; a three-parameter equation. The median method is characterized for its robustness and its insensibility to outlier. The calculations are presented in an Excel datasheet and a computational algorithm was developed in the free software Python. The kinetic parameters of the substrate uncompetitive inhibition equation Vmax, Km and Ks were calculated using three experimental points from the dataset formed by 13 experimental points. All the 286 combinations were calculated. The dataset of kinetic parameters resulting from this combinatorial was used to calculate the median which corresponds to the statistic estimator of the real kinetic parameters. A comparative statistical analyses between the median method and the least squares was published in Valencia et al. [3].
International Nuclear Information System (INIS)
Carew, John F.; Finch, Stephen J.; Lois, Lambros
2003-01-01
The calculated >1-MeV pressure vessel fluence is used to determine the fracture toughness and integrity of the reactor pressure vessel. It is therefore of the utmost importance to ensure that the fluence prediction is accurate and unbiased. In practice, this assurance is provided by comparing the predictions of the calculational methodology with an extensive set of accurate benchmarks. A benchmarking database is used to provide an estimate of the overall average measurement-to-calculation (M/C) bias in the calculations ( ). This average is used as an ad-hoc multiplicative adjustment to the calculations to correct for the observed calculational bias. However, this average only provides a well-defined and valid adjustment of the fluence if the M/C data are homogeneous; i.e., the data are statistically independent and there is no correlation between subsets of M/C data.Typically, the identification of correlations between the errors in the database M/C values is difficult because the correlation is of the same magnitude as the random errors in the M/C data and varies substantially over the database. In this paper, an evaluation of a reactor dosimetry benchmark database is performed to determine the statistical validity of the adjustment to the calculated pressure vessel fluence. Physical mechanisms that could potentially introduce a correlation between the subsets of M/C ratios are identified and included in a multiple regression analysis of the M/C data. Rigorous statistical criteria are used to evaluate the homogeneity of the M/C data and determine the validity of the adjustment.For the database evaluated, the M/C data are found to be strongly correlated with dosimeter response threshold energy and dosimeter location (e.g., cavity versus in-vessel). It is shown that because of the inhomogeneity in the M/C data, for this database, the benchmark data do not provide a valid basis for adjusting the pressure vessel fluence.The statistical criteria and methods employed in
Nomogram for sample size calculation on a straightforward basis for the kappa statistic.
Hong, Hyunsook; Choi, Yunhee; Hahn, Seokyung; Park, Sue Kyung; Park, Byung-Joo
2014-09-01
Kappa is a widely used measure of agreement. However, it may not be straightforward in some situation such as sample size calculation due to the kappa paradox: high agreement but low kappa. Hence, it seems reasonable in sample size calculation that the level of agreement under a certain marginal prevalence is considered in terms of a simple proportion of agreement rather than a kappa value. Therefore, sample size formulae and nomograms using a simple proportion of agreement rather than a kappa under certain marginal prevalences are proposed. A sample size formula was derived using the kappa statistic under the common correlation model and goodness-of-fit statistic. The nomogram for the sample size formula was developed using SAS 9.3. The sample size formulae using a simple proportion of agreement instead of a kappa statistic and nomograms to eliminate the inconvenience of using a mathematical formula were produced. A nomogram for sample size calculation with a simple proportion of agreement should be useful in the planning stages when the focus of interest is on testing the hypothesis of interobserver agreement involving two raters and nominal outcome measures. Copyright © 2014 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Murata, Isao [Osaka Univ., Suita (Japan); Mori, Takamasa; Nakagawa, Masayuki; Itakura, Hirofumi
1996-03-01
The method to calculate neutronics parameters of a core composed of randomly distributed spherical fuels has been developed based on a statistical geometry model with a continuous energy Monte Carlo method. This method was implemented in a general purpose Monte Carlo code MCNP, and a new code MCNP-CFP had been developed. This paper describes the model and method how to use it and the validation results. In the Monte Carlo calculation, the location of a spherical fuel is sampled probabilistically along the particle flight path from the spatial probability distribution of spherical fuels, called nearest neighbor distribution (NND). This sampling method was validated through the following two comparisons: (1) Calculations of inventory of coated fuel particles (CFPs) in a fuel compact by both track length estimator and direct evaluation method, and (2) Criticality calculations for ordered packed geometries. This method was also confined by applying to an analysis of the critical assembly experiment at VHTRC. The method established in the present study is quite unique so as to a probabilistic model of the geometry with a great number of spherical fuels distributed randomly. Realizing the speed-up by vector or parallel computations in future, it is expected to be widely used in calculation of a nuclear reactor core, especially HTGR cores. (author).
International Nuclear Information System (INIS)
Pontedeiro, A.C.; Camargo, C.T.M.; Galetti, M.R. da Silva.
1987-01-01
A new procedure is applied to Angra 1 NPP, which is related to DNBR calculations, considering the design parameters statistically: Improved Thermal Design Procedure (ITDP). The ITDP application leads to the determination of uncertainties in the input parameters, the sensitivity factors on DNBR. The DNBR limit and new reactor protection limits. This was done to Angra 1 with the subchannel code COBRA-IIIP. The analysis of limiting accident in terms of DNB confirmed a gain in DNBR margin, and greater operation flexibility of the plant, decreasing unnecessary trips of the reactor. (author) [pt
Statistical methods for including two-body forces in large system calculations
International Nuclear Information System (INIS)
Grimes, S.M.
1980-07-01
Large systems of interacting particles are often treated by assuming that the effect on any one particle of the remaining N-1 may be approximated by an average potential. This approach reduces the problem to that of finding the bound-state solutions for a particle in a potential; statistical mechanics is then used to obtain the properties of the many-body system. In some physical systems this approach may not be acceptable, because the two-body force component cannot be treated in this one-body limit. A technique for incorporating two-body forces in such calculations in a more realistic fashion is described. 1 figure
Optimal systematics of single-humped fission barriers for statistical calculations
International Nuclear Information System (INIS)
Mashnik, S.G.
1993-01-01
A systematic comparison of the existing phenomenological approaches and models for describing single-humped fast-computing fission barriers are given. The experimental data on excitation energy dependence of the fissility of compound nuclei are analyzed in the framework of the statistical approach by using different models for fission barriers, shell and pairing corrections and level-density parameter in order to identify their reliability and region of applicability for Monte Carlo calculations of evaporative cascades. The energy dependence of fission cross-sections for reactions induced by intermediate energy protons has been analyzed in the framework of the cascade-exiton model. 53 refs., 15 figs., 3 tabs
International Nuclear Information System (INIS)
Murata, Toru
2003-01-01
The level density parameters are determined to reproduce level structure and/or resonance level spacing of the nucleus. In the statistical compound nucleus model, cross sections to discrete levels decrease abruptly, and continuum level cross section increase strongly above the energy point where the continuum levels switched on. In the present study, for the nucleus which level scheme were well determined up to higher excitation energy more than 10 MeV, discrete level cross sections were calculated and summed up and compared with the cross section to the assumed continuum level corresponding to the discrete levels above several MeV excitation energy. Calculation of the (n, n') cross sections were made with CASTHY code of Moldauer model option using level density parameters determined with former method. It is shown that the assumed continuum cross section is fairly large compared with the summed up cross section. Origins of the discrepancy were discussed. (J.P.N.)
Second Language Experience Facilitates Statistical Learning of Novel Linguistic Materials.
Potter, Christine E; Wang, Tianlin; Saffran, Jenny R
2017-04-01
Recent research has begun to explore individual differences in statistical learning, and how those differences may be related to other cognitive abilities, particularly their effects on language learning. In this research, we explored a different type of relationship between language learning and statistical learning: the possibility that learning a new language may also influence statistical learning by changing the regularities to which learners are sensitive. We tested two groups of participants, Mandarin Learners and Naïve Controls, at two time points, 6 months apart. At each time point, participants performed two different statistical learning tasks: an artificial tonal language statistical learning task and a visual statistical learning task. Only the Mandarin-learning group showed significant improvement on the linguistic task, whereas both groups improved equally on the visual task. These results support the view that there are multiple influences on statistical learning. Domain-relevant experiences may affect the regularities that learners can discover when presented with novel stimuli. Copyright © 2016 Cognitive Science Society, Inc.
Non-parametric order statistics method applied to uncertainty propagation in fuel rod calculations
International Nuclear Information System (INIS)
Arimescu, V.E.; Heins, L.
2001-01-01
Advances in modeling fuel rod behavior and accumulations of adequate experimental data have made possible the introduction of quantitative methods to estimate the uncertainty of predictions made with best-estimate fuel rod codes. The uncertainty range of the input variables is characterized by a truncated distribution which is typically a normal, lognormal, or uniform distribution. While the distribution for fabrication parameters is defined to cover the design or fabrication tolerances, the distribution of modeling parameters is inferred from the experimental database consisting of separate effects tests and global tests. The final step of the methodology uses a Monte Carlo type of random sampling of all relevant input variables and performs best-estimate code calculations to propagate these uncertainties in order to evaluate the uncertainty range of outputs of interest for design analysis, such as internal rod pressure and fuel centerline temperature. The statistical method underlying this Monte Carlo sampling is non-parametric order statistics, which is perfectly suited to evaluate quantiles of populations with unknown distribution. The application of this method is straightforward in the case of one single fuel rod, when a 95/95 statement is applicable: 'with a probability of 95% and confidence level of 95% the values of output of interest are below a certain value'. Therefore, the 0.95-quantile is estimated for the distribution of all possible values of one fuel rod with a statistical confidence of 95%. On the other hand, a more elaborate procedure is required if all the fuel rods in the core are being analyzed. In this case, the aim is to evaluate the following global statement: with 95% confidence level, the expected number of fuel rods which are not exceeding a certain value is all the fuel rods in the core except only a few fuel rods. In both cases, the thresholds determined by the analysis should be below the safety acceptable design limit. An indirect
STATISTICAL DISTRIBUTION PATTERNS IN MECHANICAL AND FATIGUE PROPERTIES OF METALLIC MATERIALS
Tatsuo, SAKAI; Masaki, NAKAJIMA; Keiro, TOKAJI; Norihiko, HASEGAWA; Department of Mechanical Engineering, Ritsumeikan University; Department of Mechanical Engineering, Toyota College of Technology; Department of Mechanical Engineering, Gifu University; Department of Mechanical Engineering, Gifu University
1997-01-01
Many papers on the statistical aspect of materials strength have been collected and reviewed by The Research Group for Statistical Aspects of Materials Strength.A book of "Statistical Aspects of Materials Strength" was written by this group, and published in 1992.Based on the experimental data compiled in this book, distribution patterns of mechanical properties are systematically surveyed paying an attention to metallic materials.Thus one can obtain the fundamental knowledge for a reliabilit...
International Nuclear Information System (INIS)
Suzuki, Mitsutoshi; Hori, Masato; Asou, Ryoji; Usuda, Shigekazu
2006-01-01
The multiscale statistical process control (MSSPC) method is applied to clarify the elements of material unaccounted for (MUF) in large scale reprocessing plants using numerical calculations. Continuous wavelet functions are used to decompose the process data, which simulate batch operation superimposed by various types of disturbance, and the disturbance components included in the data are divided into time and frequency spaces. The diagnosis of MSSPC is applied to distinguish abnormal events from the process data and shows how to detect abrupt and protracted diversions using principle component analysis. Quantitative performance of MSSPC for the time series data is shown with average run lengths given by Monte-Carlo simulation to compare to the non-detection probability β. Recent discussion about bias corrections in material balances is introduced and another approach is presented to evaluate MUF without assuming the measurement error model. (author)
Non-Poissonian photon statistics from macroscopic photon cutting materials
De Jong, Mathijs; Meijerink, A; Rabouw, Freddy T.
2017-01-01
In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and
Earthquake statistics and plastic events in soft-glassy materials
Benzi, Roberto; Kumar, Pinaki; Toschi, Federico; Trampert, Jeannot
2016-01-01
We propose a new approach for generating synthetic earthquakes based on the physics of soft glasses. The continuum approach produces yield-stress materials based on Lattice–Boltzmann simulations. We show that if the material is stimulated below yield stress, plastic events occur, which have strong
Non-Poissonian photon statistics from macroscopic photon cutting materials.
de Jong, Mathijs; Meijerink, Andries; Rabouw, Freddy T
2017-05-24
In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and 'cutting' them into multiple low-energy excitations that can subsequently be extracted. The occurrence of photon cutting or quantum cutting has been demonstrated in a variety of materials, including semiconductor quantum dots, lanthanides and organic dyes. Here we show that photon cutting results in bunched photon emission on the timescale of the excited-state lifetime, even when observing a macroscopic number of optical centres. Our theoretical derivation matches well with experimental data on NaLaF 4 :Pr 3+ , a material that can cut deep-ultraviolet photons into two visible photons. This signature of photon cutting can be used to identify and characterize new photon-cutting materials unambiguously.
Statistical approach for collaborative tests, reference material certification procedures
International Nuclear Information System (INIS)
Fangmeyer, H.; Haemers, L.; Larisse, J.
1977-01-01
The first part introduces the different aspects in organizing and executing intercomparison tests of chemical or physical quantities. It follows a description of a statistical procedure to handle the data collected in a circular analysis. Finally, an example demonstrates how the tool can be applied and which conclusion can be drawn of the results obtained
Solenopsis ant magnetic material: statistical and seasonal studies
International Nuclear Information System (INIS)
Abraçado, Leida G; Esquivel, Darci M S; Wajnberg, Eliane
2009-01-01
In this paper, we quantify the magnetic material amount in Solenopsis ants using ferromagnetic resonance (FMR) at room temperature. We sampled S. interrupta workers from several morphologically indistinguishable castes. Twenty-five oriented samples of each body part of S. interrupta (20 units each) showed that FMR line shapes are reproducible. The relative magnetic material amount was 31 ± 12% (mean ± SD) in the antennae, 27 ± 13% in the head, 21 ± 12% in the thorax and 20 ± 10% in the abdomen. In order to measure variation in the magnetic material from late summer to early winter, ants were collected each month between March and July. The amount of magnetic material was greatest in all four body parts in March and least in all four body parts in June. In addition, S. richteri majors presented more magnetic material than minor workers. Extending these findings to the genera Solenopsis, the reduction in magnetic material found in winter could be explained by our sampling fewer foraging major ants
Criticality calculation of the nuclear material warehouse of the ININ
International Nuclear Information System (INIS)
Garcia, T.; Angeles, A.; Flores C, J.
2013-10-01
In this work the conditions of nuclear safety were determined as much in normal conditions as in the accident event of the nuclear fuel warehouse of the reactor TRIGA Mark III of the Instituto Nacional de Investigaciones Nucleares (ININ). The warehouse contains standard fuel elements Leu - 8.5/20, a control rod with follower of standard fuel type Leu - 8.5/20, fuel elements Leu - 30/20, and the reactor fuel Sur-100. To check the subcritical state of the warehouse the effective multiplication factor (keff) was calculated. The keff calculation was carried out with the code MCNPX. (Author)
Tools for Assessing Readability of Statistics Teaching Materials
Lesser, Lawrence; Wagler, Amy
2016-01-01
This article provides tools and rationale for instructors in math and science to make their assessment and curriculum materials (more) readable for students. The tools discussed (MSWord, LexTutor, Coh-Metrix TEA) are readily available linguistic analysis applications that are grounded in current linguistic theory, but present output that can…
Calculation of radiation dose rate arisen from radionuclide contained in building materials
International Nuclear Information System (INIS)
Lai Tien Thinh; Nguyen Hao Quang
2008-01-01
This paper presents some results that we used MCNP5 program to calculate radiation dose rate arisen from radionuclide in building materials. Since then, the limits of radionuclide content in building materials are discussed. The calculation results by MCNP are compared with those calculated by analytical method. (author)
Effective Permittivity for FDTD Calculation of Plasmonic Materials
Directory of Open Access Journals (Sweden)
James B. Cole
2012-03-01
Full Text Available We present a new effective permittivity (EP model to accurately calculate surface plasmons (SPs using the finite-difference time-domain (FDTD method. The computational representation of physical structures with curved interfaces causes inherent errors in FDTD calculations, especially when the numerical grid is coarse. Conventional EP models improve the errors, but they are not effective for SPs because the SP resonance condition determined by the original permittivity is changed by the interpolated EP values. We perform FDTD simulations using the proposed model for an infinitely-long silver cylinder and gold sphere, and the results are compared with Mie theory. Our model gives better accuracy than the conventional staircase and EP models for SPs.
International Nuclear Information System (INIS)
Kawasaki, Keiichi; Ishii, Kenji; Saito, Yoko; Oda, Keiichi; Kimura, Yuichi; Ishiwata, Kiichi
2008-01-01
In clinical cerebral 2-[ 18 F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) studies, we sometimes encounter hyperglycemic patients with diabetes mellitus or patients who have not adhered to the fasting requirement. The objective of this study was to investigate the influence of mild hyperglycemia (plasma glucose range 110-160 mg/dl) on the cerebral FDG distribution patterns calculated by statistical parametric mapping (SPM). We studied 19 healthy subjects (mean age 66.2 years). First, all the subjects underwent FDG-PET scans in the fasting condition. Then, 9 of the 19 subjects (mean age 64.3 years) underwent the second FDG-PET scans in the mild hyperglycemic condition. The alterations in the FDG-PET scans were investigated using SPM- and region of interest (ROI)-based analyses. We used three reference regions: SPM global brain (SPMgb) used for SPM global mean calculation, the gray and white matter region computed from magnetic resonance image (MRIgw), and the cerebellar cortex (Cbll). The FDG uptake calculated as the standardized uptake value (average) in SPMgb, MRIgw, and Cbll regions in the mild hyperglycemic condition was 42.7%, 41.3%, and 40.0%, respectively, of that observed in the fasting condition. In SPM analysis, the mild hyperglycemia was found to affect the cerebral distribution patterns of FDG. The FDG uptake was relatively decreased in the gray matter, mainly in the frontal, temporal, and parietal association cortices, posterior cingulate, and precuneus in both SPMgb- and MRIgw-reference-based analyses. When Cbll was adopted as the reference region, those decrease patterns disappeared. The FDG uptake was relatively increased in the white matter, mainly in the centrum semiovale in all the reference-based analyses. It is noteworthy that the FDG distribution patterns were altered under mild hyperglycemia in SPM analysis. The decreased uptake patterns in SPMgb- (SPM default) and MRIgw-reference-based analyses resembled those observed in
Laminated materials with plastic interfaces: modeling and calculation
International Nuclear Information System (INIS)
Sandino Aquino de los Ríos, Gilberto; Castañeda Balderas, Rubén; Diaz Diaz, Alberto; Duong, Van Anh; Chataigner, Sylvain; Caron, Jean-François; Ehrlacher, Alain; Foret, Gilles
2009-01-01
In this paper, a model of laminated plates called M4-5N and validated in a previous paper is modified in order to take into account interlaminar plasticity by means of displacement discontinuities at the interfaces. These discontinuities are calculated by adapting a 3D plasticity model. In order to compute the model, a Newton–Raphson-like method is employed. In this method, two sub-problems are considered: one is linear and the other is non-linear. In the linear problem the non-linear equations of the model are linearized and the calculations are performed by making use of a finite element software. By iterating the resolution of each sub-problem, one obtains after convergence the solution of the global problem. The model is then applied to the problem of a double lap, adhesively bonded joint subjected to a tensile load. The adhesive layer is modeled by an elastic–plastic interface. The results of the M4-5N model are compared with those of a commercial finite element software. A good agreement between the two computation techniques is obtained and validates the non-linear calculations proposed in this paper. Finally, the numerical tool and a delamination criterion are applied to predict delamination onset in composite laminates
Semianalytical and Seminumerical Calculations of Optimum Material Distributions
Energy Technology Data Exchange (ETDEWEB)
Andersson, Gunnar
1963-06-15
Perturbation theory applied to the multigroup diffusion equations gives a general condition for optimum distribution of reactor materials. A certain function of the material densities and the fluxes, here called the W (eight) function, must thus be constant where the variable material density is larger than zero if changes in this density affect only the group constants where the changes occur. The weight function is, however, generally a complicated function and complete solutions have therefore previously been presented only for the special case when constant weight function implies constant thermal flux. It is demonstrated that the condition of constant weight function can be used together with well known methods for numerical solution of the multigroup diffusion equations to obtain optimum material distributions also when the thermal flux varies over the core. Solution of the minimum fuel mass problem for two reflected reactors thus shows that an effective reflector such as D{sub 2}O gives a peak in the optimum fuel distribution at the core-reflector interface, while an ineffective reflector such as a breeder blanket or a steel tank wall 'pushes' the fuel away from the strongly absorbing zone. It is also interesting to compare the effective reflector case with analytically obtained solutions corresponding to flat power density, flat thermal flux and flat fuel density.
Calculation of Void in the Fort Saint Vrain Material
Energy Technology Data Exchange (ETDEWEB)
Potter, David Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Taylor, Craig Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Coons, James Elmer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-05-11
The percent void of the Fort Saint Vrain (FSV) material is estimated to be 21.1% based on the volume of the gap at the top of the drums, the volume of the coolant channels in the FSV fuel element, and the volume of the fuel handling channel in the FSV fuel element.
Calculations to support design of a nuclear material tracking system
International Nuclear Information System (INIS)
Carter, L.L.; Eggers, R.F.; Williams, T.L.
1991-01-01
The Westinghouse Hanford Company is developing a nuclear material tracking system called NTRAK for the US Department of Energy at the Savannah River site. The NTRAK system is designed to determine the position and approximate magnitude of packages of special nuclear material (SNM) moving through a nuclear plant. The NTRAK accomplishes this by using special assemblies of detectors called modules to measure the gamma radiation emitted by the SNM. After measurement, raw data are processed to determine the direction to and position of the gamma-ray source. In order for the NTRAK method of SNM tracking to work, the gamma-ray signal at the detector modules must be at least four standard deviations above background. This paper addresses the use of the Monte Carlo computer code for neutron and photon transport (MCNP) to (a) predict the radiation emitted by plutonium oxide sources and (b) predict the counting rate of NaI detectors measuring those sources
Calculation of crack stress density of cement base materials
Directory of Open Access Journals (Sweden)
Chun-e Sui
2018-01-01
Full Text Available In this paper, the fracture load of cement paste with different water cement ratio, different mineral admixtures, including fly ash, silica fume and slag, is obtained through experiments. the three-dimensional fracture surface is reconstructed and the three-dimensional effective area of the fracture surface is calculated. the effective fracture stress density of different cement paste is obtained. The results show that the polynomial function can accurately describe the relationship between the three-dimensional total area and the tensile strength
Multivariate statistical analysis - an application to lunar materials
International Nuclear Information System (INIS)
Deb, M.
1978-01-01
The compositional characteristics of clinopyroxenes and spinels - two minerals considered to be very useful in deciphering lunar history, have been studied using the multivariate statistical method of principal component analysis. The mineral-chemical data used are from certain lunar rocks and fines collected by Apollo 11, 12, 14 and 15 and Luna 16 and 20 missions, representing mainly the mare basalts and also non-mare basalts, breccia and rock fragments from the highland regions, in which a large number of these minerals have been analyzed. The correlations noted in the mineral compositions, indicating substitutional relationships, have been interpreted on the basis of available crystal-chemical and petrological informations. Compositional trends for individual specimens have been delineated and compared by producing ''principal latent vector diagrams''. The percent variance of the principal components denoted by the eigenvalues, have been evaluated in terms of the crystallization history of the samples. Some of the major petrogenetic implications of this study concern the role of early formed cumulate phases in the near-surface fractionation of mare basalts, mixing of mineral compositions in the highland regolith and the subsolidus reduction trends in lunar spinels. (auth.)
Calculating the movement speed of a contaminated material in soil
International Nuclear Information System (INIS)
Lopez G, D.
2014-01-01
The present work describes the project which consisted in the development of an application to facilitate and display a graphic where the displacement and behavior of radioactive contaminants in soil could be observed. Once the data are introduced to the system, this makes the necessary calculations to display a graphic where the displacement of the substance is displayed in a given time. Through the graphs resulting from the program, we can quickly see the behavior and movement of a contaminant substance, but by numerical simulation, it can determine the possible impact caused by a supposition spills of a radioactive substance in soil and thus able to take the appropriate measures to control or avoid an impact resulting highly harmful to health and the environment, so as to determine the distance and time in which the substance already change or transform into another. (Author)
Statistical equilibrium calculations for silicon in early-type model stellar atmospheres
International Nuclear Information System (INIS)
Kamp, L.W.
1976-02-01
Line profiles of 36 multiplets of silicon (Si) II, III, and IV were computed for a grid of model atmospheres covering the range from 15,000 to 35,000 K in effective temperature and 2.5 to 4.5 in log (gravity). The computations involved simultaneous solution of the steady-state statistical equilibrium equations for the populations and of the equation of radiative transfer in the lines. The variables were linearized, and successive corrections were computed until a minimal accuracy of 1/1000 in the line intensities was reached. The common assumption of local thermodynamic equilibrium (LTE) was dropped. The model atmospheres used also were computed by non-LTE methods. Some effects that were incorporated into the calculations were the depression of the continuum by free electrons, hydrogen and ionized helium line blocking, and auto-ionization and dielectronic recombination, which later were found to be insignificant. Use of radiation damping and detailed electron (quadratic Stark) damping constants had small but significant effects on the strong resonance lines of Si III and IV. For weak and intermediate-strength lines, large differences with respect to LTE computations, the results of which are also presented, were found in line shapes and strengths. For the strong lines the differences are generally small, except for the models at the hot, low-gravity extreme of the range. These computations should be useful in the interpretation of the spectra of stars in the spectral range B0--B5, luminosity classes III, IV, and V
New Light-Harvesting Materials Using Accurate and Efficient Bandgap Calculations
DEFF Research Database (Denmark)
Castelli, Ivano Eligio; Hüser, Falco; Pandey, Mohnish
2014-01-01
Electronic bandgap calculations are presented for 2400 experimentally known materials from the Materials Project database and the bandgaps, obtained with different types of functionals within density functional theory and (partial) self-consistent GW approximation, are compared for 20 randomly...
Hayslett, H T
1991-01-01
Statistics covers the basic principles of Statistics. The book starts by tackling the importance and the two kinds of statistics; the presentation of sample data; the definition, illustration and explanation of several measures of location; and the measures of variation. The text then discusses elementary probability, the normal distribution and the normal approximation to the binomial. Testing of statistical hypotheses and tests of hypotheses about the theoretical proportion of successes in a binomial population and about the theoretical mean of a normal population are explained. The text the
Institute of Scientific and Technical Information of China (English)
张寅平; 梁新刚; 江忆; 狄洪发; 宁志军
2000-01-01
Degree of mixing of composite material is defined and the condition of using the effective thermal diffusivity for calculating the transient thermal performance of composite material is studied. The analytical result shows that for a prescribed precision of temperature, there is a condition under which the transient temperature distribution in composite material can be calculated by using the effective thermal diffusivity. As illustration, for the composite material whose temperatures of both ends are constant, the condition is presented and the factors affecting the relative error of calculated temperature of composite materials by using effective thermal diffusivity are discussed.
Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.
International Nuclear Information System (INIS)
Streibl, B.; Mukherjee, S.
1989-11-01
This is a summary of the TF-magnet calculation results for the 1984 phase-II proposal including supplements (also considering disturbances) of the performance of ASDEX Upgrade. Calculation results are as reliable as the assumptions incorporated, so that investigations of materials and design components were always used to complete the calculations. (orig.) [de
Statistical calculation of complete events in medium-energy nuclear collisions
International Nuclear Information System (INIS)
Randrup, J.
1984-01-01
Several heavy-ion accelerators throughout the world are presently able to deliver beams of heavy nuclei with kinetic energies in the range from tens to hundreds of MeV per nucleon, the so-called medium or intermediate energy range. At such energies a large number of final channels are open, each consisting of many nuclear fragments. The disassembly of the collision system is expected to be a very complicated process and a detailed dynamical description is beyond their present capability. However, by virtue of the complexity of the process, statistical considerations may be useful. A statistical description of the disassembly yields the least biased expectations about the outcome of a collision process and provides a meaningful reference against which more specific dynamical models, as well as the data, can be discussed. This lecture presents the essential tools for formulating a statistical model for the nuclear disassembly process. The authors consider the quick disassembly (explosion) of a hot nuclear system, a so-called source, into multifragment final states, which complete according to their statistical weight. First some useful notation is introduced. Then the expressions for exclusive and inclusive distributions are given and the factorization of an exclusive distribution into inclusive ones is carried out. In turn, the grand canonical approximation for one-fragment inclusive distributions is introduced. Finally, it is outlined how to generate a statistical sample of complete final states. On this basis, a model for statistical simulation of complete events in medium-energy nuclear collisions has been developed
Statistical model calculation of fission isomer excitation functions in (n,n') and (n,γ) reactions
International Nuclear Information System (INIS)
Chatterjee, A.; Athougies, A.L.; Mehta, M.K.
1977-01-01
A statistical model developed by Britt and others (1971, 1973) to analyze isomer excitation functions in spallation type reactions like (α,2n) has been adopted in fission isomer calculations for (n,n') and (n,γ) reactions. Calculations done for 235 U(n,n')sup(238m)U and 235 U(n,γ)sup(236m)U reactions have been compared with experimental measurements. A listing of the computer program ISOMER using FORTRAN IV to calculate the isomer to prompt ratios is given. (M.G.B.)
International Nuclear Information System (INIS)
Dumonteil, E.; Diop, C.M.
2011-01-01
External linking scripts between Monte Carlo transport codes and burnup codes, and complete integration of burnup capability into Monte Carlo transport codes, have been or are currently being developed. Monte Carlo linked burnup methodologies may serve as an excellent benchmark for new deterministic burnup codes used for advanced systems; however, there are some instances where deterministic methodologies break down (i.e., heavily angularly biased systems containing exotic materials without proper group structure) and Monte Carlo burn up may serve as an actual design tool. Therefore, researchers are also developing these capabilities in order to examine complex, three-dimensional exotic material systems that do not contain benchmark data. Providing a reference scheme implies being able to associate statistical errors to any neutronic value of interest like k(eff), reaction rates, fluxes, etc. Usually in Monte Carlo, standard deviations are associated with a particular value by performing different independent and identical simulations (also referred to as 'cycles', 'batches', or 'replicas'), but this is only valid if the calculation itself is not biased. And, as will be shown in this paper, there is a bias in the methodology that consists of coupling transport and depletion codes because Bateman equations are not linear functions of the fluxes or of the reaction rates (those quantities being always measured with an uncertainty). Therefore, we have to quantify and correct this bias. This will be achieved by deriving an unbiased minimum variance estimator of a matrix exponential function of a normal mean. The result is then used to propose a reference scheme to solve Boltzmann/Bateman coupled equations, thanks to Monte Carlo transport codes. Numerical tests will be performed with an ad hoc Monte Carlo code on a very simple depletion case and will be compared to the theoretical results obtained with the reference scheme. Finally, the statistical error propagation
International Nuclear Information System (INIS)
2005-01-01
For the years 2004 and 2005 the figures shown in the tables of Energy Review are partly preliminary. The annual statistics published in Energy Review are presented in more detail in a publication called Energy Statistics that comes out yearly. Energy Statistics also includes historical time-series over a longer period of time (see e.g. Energy Statistics, Statistics Finland, Helsinki 2004.) The applied energy units and conversion coefficients are shown in the back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes, precautionary stock fees and oil pollution fees
Image Statistics and the Representation of Material Properties in the Visual Cortex.
Baumgartner, Elisabeth; Gegenfurtner, Karl R
2016-01-01
We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images.
Energy Technology Data Exchange (ETDEWEB)
Gerasimenko, B.F. [V.G. Khlopin Radium Inst., Saint Peterburg (Russian Federation)
1997-03-01
The calculations of integral spectra of prompt neutrons of spontaneous fission of {sup 244}Cm and {sup 246}Cm were carried out. The calculations were done by the Statistical Computer Code Complex SCOFIN applying the Hauser-Feschbach method as applied to the description of the de-excitation of excited fission fragments by means of neutron emission. The emission of dipole gamma-quanta from these fragments was considered as a competing process. The average excitation energy of a fragment was calculated by two-spheroidal model of tangent fragments. The density of levels in an excited fragment was calculated by the Fermi-gas model. The quite satisfactory agreement was reached between theoretical and experimental results obtained in frames of Project measurements. The calculated values of average multiplicities of neutron number were 2,746 for {sup 244}Cm and 2,927 for {sup 246}Cm that was in a good accordance with published experimental figures. (author)
International Nuclear Information System (INIS)
2001-01-01
For the year 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions from the use of fossil fuels, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in 2000, Energy exports by recipient country in 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
2000-01-01
For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g., Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-March 2000, Energy exports by recipient country in January-March 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
1999-01-01
For the year 1998 and the year 1999, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 1999, Energy exports by recipient country in January-June 1999, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
Young, P.G.; Arthur, E.D.
1977-11-01
A new multistep Hauser--Feshbach code that includes corrections for preequilibrium effects is described. The code can calculate up to 60 decay reactions (cross sections and energy spectra) in one computation, and thereby provide considerable flexibility for handling processes with complicated reaction chains. Input parameter setup, problem output, and subroutine descriptions are given along with a sample problem calculation. A brief theoretical description is also included. 8 figures, 3 tables
In vivo Comet assay--statistical analysis and power calculations of mice testicular cells.
Hansen, Merete Kjær; Sharma, Anoop Kumar; Dybdahl, Marianne; Boberg, Julie; Kulahci, Murat
2014-11-01
The in vivo Comet assay is a sensitive method for evaluating DNA damage. A recurrent concern is how to analyze the data appropriately and efficiently. A popular approach is to summarize the raw data into a summary statistic prior to the statistical analysis. However, consensus on which summary statistic to use has yet to be reached. Another important consideration concerns the assessment of proper sample sizes in the design of Comet assay studies. This study aims to identify a statistic suitably summarizing the % tail DNA of mice testicular samples in Comet assay studies. A second aim is to provide curves for this statistic outlining the number of animals and gels to use. The current study was based on 11 compounds administered via oral gavage in three doses to male mice: CAS no. 110-26-9, CAS no. 512-56-1, CAS no. 111873-33-7, CAS no. 79-94-7, CAS no. 115-96-8, CAS no. 598-55-0, CAS no. 636-97-5, CAS no. 85-28-9, CAS no. 13674-87-8, CAS no. 43100-38-5 and CAS no. 60965-26-6. Testicular cells were examined using the alkaline version of the Comet assay and the DNA damage was quantified as % tail DNA using a fully automatic scoring system. From the raw data 23 summary statistics were examined. A linear mixed-effects model was fitted to the summarized data and the estimated variance components were used to generate power curves as a function of sample size. The statistic that most appropriately summarized the within-sample distributions was the median of the log-transformed data, as it most consistently conformed to the assumptions of the statistical model. Power curves for 1.5-, 2-, and 2.5-fold changes of the highest dose group compared to the control group when 50 and 100 cells were scored per gel are provided to aid in the design of future Comet assay studies on testicular cells. Copyright © 2014 Elsevier B.V. All rights reserved.
de Jong, Maarten; Chen, Wei; Notestine, Randy; Persson, Kristin; Ceder, Gerbrand; Jain, Anubhav; Asta, Mark; Gamst, Anthony
2016-10-03
Materials scientists increasingly employ machine or statistical learning (SL) techniques to accelerate materials discovery and design. Such pursuits benefit from pooling training data across, and thus being able to generalize predictions over, k-nary compounds of diverse chemistries and structures. This work presents a SL framework that addresses challenges in materials science applications, where datasets are diverse but of modest size, and extreme values are often of interest. Our advances include the application of power or Hölder means to construct descriptors that generalize over chemistry and crystal structure, and the incorporation of multivariate local regression within a gradient boosting framework. The approach is demonstrated by developing SL models to predict bulk and shear moduli (K and G, respectively) for polycrystalline inorganic compounds, using 1,940 compounds from a growing database of calculated elastic moduli for metals, semiconductors and insulators. The usefulness of the models is illustrated by screening for superhard materials.
Statistical analysis of simulation calculation of sputtering for two interaction potentials
International Nuclear Information System (INIS)
Shao Qiyun
1992-01-01
The effects of the interaction potentials (Moliere potential and Universal potential) are presented on computer simulation results of sputtering via Monte Carlo simulation based on the binary collision approximation. By means of Wilcoxon two-Sample paired sign rank test, the statistically significant difference for the above results is obtained
Using Microsoft Excel[R] to Calculate Descriptive Statistics and Create Graphs
Carr, Nathan T.
2008-01-01
Descriptive statistics and appropriate visual representations of scores are important for all test developers, whether they are experienced testers working on large-scale projects, or novices working on small-scale local tests. Many teachers put in charge of testing projects do not know "why" they are important, however, and are utterly convinced…
International Nuclear Information System (INIS)
2003-01-01
For the year 2002, part of the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot 2001, Statistics Finland, Helsinki 2002). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supply and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees on energy products
International Nuclear Information System (INIS)
2004-01-01
For the year 2003 and 2004, the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot, Statistics Finland, Helsinki 2003, ISSN 0785-3165). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-March 2004, Energy exports by recipient country in January-March 2004, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees
International Nuclear Information System (INIS)
2000-01-01
For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy also includes historical time series over a longer period (see e.g., Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 2000, Energy exports by recipient country in January-June 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
Roth, D.J.; Swickard, S.M.; Stang, D.B.; Deguire, M.R.
1990-03-01
A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semi-empirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produced predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis for fully-dense materials are in good agreement with those calculated from elastic properties
International Nuclear Information System (INIS)
Bertagnolli, H.
1978-01-01
For the case of special molecular models representing the acetonitrile molecule the expansion coefficients of the molecular par distribution function are calculated by use of pertubation theory. These results are used to get theoretical access to scattering intensities in the frame of several approximations. The first model describes the molecule by three hard spheres and uses a hard sphere liquid as reference. In the second cast the calculations are based on an anisotropic Lennard-Jones potential by application of a model of overlapping ellipsoids and by use of a Lennard-Jones liquid as a reference system. In the third model dipolar attractive forces are taken into account with an anisotropic hard-sphere liquid as a reference. In the third model dipolar attractive forces are taken into account with an anisotropic hard-sphere liquid as a reference. Finally all the calculations with different intermolecular potentials are compared with neutron scattering experiments. (orig.) 891 HK [de
Comparison of statistical evaluation of criticality calculations for reactors VENUS-F and ALFRED
Directory of Open Access Journals (Sweden)
Janczyszyn Jerzy
2017-01-01
Full Text Available Limitations of correct evaluation of keff in Monte Carlo calculations, claimed in literature, apart from the nuclear data uncertainty, need to be addressed more thoroughly. Respective doubts concern: the proper number of discarded initial cycles, the sufficient number of neutrons in a cycle and the recognition and dealing with the keff bias. Calculations were performed to provide more information on these points with the use of the MCB code, solely for fast cores. We present applied methods and results, such as: calculation results for stability of variance, relation between standard deviation reported by MCNP and this from the dispersion of multiple independent keff values, second order standard deviations obtained from different numbers of grouped results. All obtained results for numbers of discarded initial cycles from 0 to 3000 were analysed leading for interesting conclusions.
Fishnet statistics for probabilistic strength and scaling of nacreous imbricated lamellar materials
Luo, Wen; Bažant, Zdeněk P.
2017-12-01
Similar to nacre (or brick masonry), imbricated (or staggered) lamellar structures are widely found in nature and man-made materials, and are of interest for biomimetics. They can achieve high defect insensitivity and fracture toughness, as demonstrated in previous studies. But the probability distribution with a realistic far-left tail is apparently unknown. Here, strictly for statistical purposes, the microstructure of nacre is approximated by a diagonally pulled fishnet with quasibrittle links representing the shear bonds between parallel lamellae (or platelets). The probability distribution of fishnet strength is calculated as a sum of a rapidly convergent series of the failure probabilities after the rupture of one, two, three, etc., links. Each of them represents a combination of joint probabilities and of additive probabilities of disjoint events, modified near the zone of failed links by the stress redistributions caused by previously failed links. Based on previous nano- and multi-scale studies at Northwestern, the strength distribution of each link, characterizing the interlamellar shear bond, is assumed to be a Gauss-Weibull graft, but with a deeper Weibull tail than in Type 1 failure of non-imbricated quasibrittle materials. The autocorrelation length is considered equal to the link length. The size of the zone of failed links at maximum load increases with the coefficient of variation (CoV) of link strength, and also with fishnet size. With an increasing width-to-length aspect ratio, a rectangular fishnet gradually transits from the weakest-link chain to the fiber bundle, as the limit cases. The fishnet strength at failure probability 10-6 grows with the width-to-length ratio. For a square fishnet boundary, the strength at 10-6 failure probability is about 11% higher, while at fixed load the failure probability is about 25-times higher than it is for the non-imbricated case. This is a major safety advantage of the fishnet architecture over particulate
DEFF Research Database (Denmark)
Tataru, Paula Cristina; Hobolth, Asger
2011-01-01
past evolutionary events (exact times and types of changes) are unaccessible and the past must be inferred from DNA sequence data observed in the present. RESULTS: We describe and implement three algorithms for computing linear combinations of expected values of the sufficient statistics, conditioned......BACKGROUND: Continuous time Markov chains (CTMCs) is a widely used model for describing the evolution of DNA sequences on the nucleotide, amino acid or codon level. The sufficient statistics for CTMCs are the time spent in a state and the number of changes between any two states. In applications...... of the algorithms is available at www.birc.au.dk/~paula/. CONCLUSIONS: We use two different models to analyze the accuracy and eight experiments to investigate the speed of the three algorithms. We find that they have similar accuracy and that EXPM is the slowest method. Furthermore we find that UNI is usually...
Czech Academy of Sciences Publication Activity Database
Netopilík, Miloš; Kratochvíl, Pavel
2006-01-01
Roč. 55, č. 2 (2006), s. 196-203 ISSN 0959-8103 R&D Projects: GA AV ČR IAA100500501; GA AV ČR IAA4050403; GA AV ČR IAA4050409; GA ČR GA203/03/0617 Institutional research plan: CEZ:AV0Z40500505 Keywords : statistical branching * tetrafunctional branch points * molecular-weight distribution Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.475, year: 2006
The nuclear heating calculation scheme for material testing in the future Jules Horowitz Reactor
International Nuclear Information System (INIS)
Huot, N.; Aggery, A.; Blanchet, D.; Courcelle, A.; Czernecki, S.; Di-Salvo, J.; Doederlein, C.; Serviere, H.; Willermoz, G.
2004-01-01
An innovative nuclear heating calculation scheme for materials testing carried out in in the future Jules Horowitz reactor (JHR) is described. A heterogeneous gamma source calculation is first performed at assembly level using the deterministic code APOLLO2. This is followed by a Monte Carlo gamma transport calculation in the whole core using the TRIPOLI4 code. The calculated gamma sources at the assembly level are applied in the whole core simulation using a weighting based on power distribution obtained from the neutronic core calculation. (authors)
In vivo Comet assay – statistical analysis and power calculations of mice testicular cells
DEFF Research Database (Denmark)
Hansen, Merete Kjær; Sharma, Anoop Kumar; Dybdahl, Marianne
2014-01-01
is to provide curves for this statistic outlining the number of animals and gels to use. The current study was based on 11 compounds administered via oral gavage in three doses to male mice: CAS no. 110-26-9, CAS no. 512-56-1, CAS no. 111873-33-7, CAS no. 79-94-7, CAS no. 115-96-8, CAS no. 598-55-0, CAS no. 636....... A linear mixed-effects model was fitted to the summarized data and the estimated variance components were used to generate power curves as a function of sample size. The statistic that most appropriately summarized the within-sample distributions was the median of the log-transformed data, as it most...... consistently conformed to the assumptions of the statistical model. Power curves for 1.5-, 2-, and 2.5-fold changes of the highest dose group compared to the control group when 50 and 100 cells were scored per gel are provided to aid in the design of future Comet assay studies on testicular cells....
International Nuclear Information System (INIS)
Son, In Ho; An, Deuk Man
2012-01-01
In fracture mechanics, the weight function can be used for calculating stress intensity factors. In this paper, a two dimensional electroelastic analysis is performed on a transversely isotropic piezoelectric material with an open crack. A plane strain formulation of the piezoelectric problem is solved within the Leknitskii formalism. Weight function theory is extended to piezoelectric materials. The stress intensity factors and electric displacement intensity factor are calculated by the weight function theory
International fusion materials irradiation facility and neutronic calculations for its test modules
International Nuclear Information System (INIS)
Sokcic-Kostic, M.
1997-01-01
The International Fusion Material Irradiation Facility (IFMIF) is a projected high intensity neutron source for material testing. Neutron transport calculations for the IFMIF project are performed for variety of here explained reasons. The results of MCNP neutronic calculations for IFMIF test modules with NaK and He cooled high flux test cells are presented in this paper. (author). 3 refs., 2 figs., 3 tabs
International Nuclear Information System (INIS)
Abbate, P.
1990-01-01
The CONVEC program developed for the thermohydraulic calculation under a natural convection regime for MTR type reactors is presented. The program is based on a stationary, one dimensional model of finite differences that allow to calculate the temperatures of cooler, cladding and fuel as well as the flow for a power level specified by the user. This model has been satisfactorily validated by a water cooling (liquid phase) and air system. (Author) [es
International Nuclear Information System (INIS)
Zhu Zhenghe; Luo Deli; Feng Kaiming
2013-01-01
The present work is to calculate the magnetic thermodynamically functions, i.e. energy, the intensity of magnetization, enthalpy, entropy and Gibbs function for nuclear magnetic moments of T, D and neutron n at 2 T and 1, 50, 100 and 150 K from partition functions. It is shown that magnetic saturation of thermonuclear plasma does not easily occur for nuclear magneton is only of 10 -3 of Bohr magneton. The work done by magnetic field is considerable. (authors)
Optical and statistical model calculation of the americium 242m capture cross section
International Nuclear Information System (INIS)
Tellier, Henry.
1981-04-01
The capture cross sections of Am 242m can be deduced from resonances analysis at low energy and computed with theoretical models at high energy. In this work, a coherent set of cross sections which reproduced the experimental values of the fission cross sections is computed. These calculations were performed for an energy of the incoming neutron between 1 keV and 1 MeV
International Nuclear Information System (INIS)
Vasil'ev, A.P.; Krepkij, A.S.; Lukin, A.V.; Mikhal'kova, A.G.; Orlov, A.I.; Perezhogin, V.D.; Samojlova, L.Yu.; Sokolov, Yu.A.; Terekhin, V.A.; Chernukhin, Yu.I.
1991-01-01
Critical mass experiments were performed using assemblies which simulated one-dimensional lattice consisting of shielding containers with metal fissile materials. Calculations of the criticality of the above assemblies were carried out using the KLAN program with the BAS neutron constants. Errors in the calculations of the criticality for one-, two-, and three-dimensional lattices are estimated. 3 refs.; 1 tab
International Nuclear Information System (INIS)
1984-02-01
This report presents a method of calculating the availability of buried radioactive and nonradioactive materials via an inhalation pathway. Availability is the relationship between the concentration of a substance in the soil and the dose rate to a human receptor. Algorithms presented for calculating availabiliy of elemental inorganic substances are based on atmospheric enrichment factors; those presented for calculating availability of organic substances are based on vapor pressures. The basis, use, and limitations of the developed equations are discussed. 32 references, 5 tables
Tataru, Paula; Hobolth, Asger
2011-12-05
Continuous time Markov chains (CTMCs) is a widely used model for describing the evolution of DNA sequences on the nucleotide, amino acid or codon level. The sufficient statistics for CTMCs are the time spent in a state and the number of changes between any two states. In applications past evolutionary events (exact times and types of changes) are unaccessible and the past must be inferred from DNA sequence data observed in the present. We describe and implement three algorithms for computing linear combinations of expected values of the sufficient statistics, conditioned on the end-points of the chain, and compare their performance with respect to accuracy and running time. The first algorithm is based on an eigenvalue decomposition of the rate matrix (EVD), the second on uniformization (UNI), and the third on integrals of matrix exponentials (EXPM). The implementation in R of the algorithms is available at http://www.birc.au.dk/~paula/. We use two different models to analyze the accuracy and eight experiments to investigate the speed of the three algorithms. We find that they have similar accuracy and that EXPM is the slowest method. Furthermore we find that UNI is usually faster than EVD.
Directory of Open Access Journals (Sweden)
Tataru Paula
2011-12-01
Full Text Available Abstract Background Continuous time Markov chains (CTMCs is a widely used model for describing the evolution of DNA sequences on the nucleotide, amino acid or codon level. The sufficient statistics for CTMCs are the time spent in a state and the number of changes between any two states. In applications past evolutionary events (exact times and types of changes are unaccessible and the past must be inferred from DNA sequence data observed in the present. Results We describe and implement three algorithms for computing linear combinations of expected values of the sufficient statistics, conditioned on the end-points of the chain, and compare their performance with respect to accuracy and running time. The first algorithm is based on an eigenvalue decomposition of the rate matrix (EVD, the second on uniformization (UNI, and the third on integrals of matrix exponentials (EXPM. The implementation in R of the algorithms is available at http://www.birc.au.dk/~paula/. Conclusions We use two different models to analyze the accuracy and eight experiments to investigate the speed of the three algorithms. We find that they have similar accuracy and that EXPM is the slowest method. Furthermore we find that UNI is usually faster than EVD.
International Nuclear Information System (INIS)
Al-Ghorabie, F.H.H.
2003-01-01
In this paper a computer model based on the use of the well-known Monte Carlo simulation code EGS4 was developed to simulate the scattering of polyenergetic X-ray beams through some materials. These materials are: lucite, polyethylene, polypropylene and aluminium. In particular, the ratio of the scattered to total X-ray fluence (scatter fraction) has been calculated for X-ray beams in the energy region 30-120 keV. In addition scatter fractions have been determined experimentally using a polyenergetic superficial X-ray unit. Comparison of the measured and the calculated results has been performed. The Monte Carlo calculations have also been carried out for water, bakelite and bone to examine the dependence of scatter fraction on the density of the scatterer. Good agreement (estimated statistical error < 5%) was obtained between the measured and the calculated values of the scatter fractions for materials with Z < 20 that were studied in this paper. Copyright (2003) Australasian College of Physical Scientists and Engineers in Medicine
International Nuclear Information System (INIS)
Wang Huaiyu; Long Yao; Chen Nanxian
2006-01-01
In this paper, the solution of Chebyshev equation with its argument being greater than 1 is obtained. The initial value of the derivative of the solution is the expression of magnetization, which is valid for any spin quantum number S. The Chebyshev equation is transformed from an ordinary differential equation obtained when we dealt with Heisenberg model, in order to calculate all three components of magnetization, by many-body Green's function under random phase approximation. The Chebyshev functions with argument being greater than 1 are discussed. This paper shows that the Chebyshev polynomials with their argument being greater than 1 have their physical application.
Assessment of uncertainty in full core reactor physics calculations using statistical methods
International Nuclear Information System (INIS)
McEwan, C.
2012-01-01
The best estimate method of safety analysis involves choosing a realistic set of input parameters for a proposed safety case and evaluating the uncertainty in the results. Determining the uncertainty in code outputs remains a challenge and is the subject of a benchmarking exercise proposed by the Organization for Economic Cooperation and Development. The work proposed in this paper will contribute to this benchmark by assessing the uncertainty in a depletion calculation of the final nuclide concentrations for an experiment performed in the Fukushima-2 reactor. This will be done using lattice transport code DRAGON and a tool known as DINOSAUR. (author)
Assessment of uncertainty in full core reactor physics calculations using statistical methods
Energy Technology Data Exchange (ETDEWEB)
McEwan, C., E-mail: mcewac2@mcmaster.ca [McMaster Univ., Hamilton, Ontario (Canada)
2012-07-01
The best estimate method of safety analysis involves choosing a realistic set of input parameters for a proposed safety case and evaluating the uncertainty in the results. Determining the uncertainty in code outputs remains a challenge and is the subject of a benchmarking exercise proposed by the Organization for Economic Cooperation and Development. The work proposed in this paper will contribute to this benchmark by assessing the uncertainty in a depletion calculation of the final nuclide concentrations for an experiment performed in the Fukushima-2 reactor. This will be done using lattice transport code DRAGON and a tool known as DINOSAUR. (author)
Version E2 from Dimco-System for the statistical calculation of components
International Nuclear Information System (INIS)
Moreno Gonzalez, A.
1981-01-01
A short description of the general system Dimco, together with a detailed description of E2 version are presented. E2 version is a two-dimensional finite element structural code. To illustrate the posibilities of E2 version, some results obtained with this new version are presented. These results are related with the following behaviour of the material: a) elastic, b) thermo-elastic, c) Plastic and d) creep. (author)
International Nuclear Information System (INIS)
Fleury, W.H.; Rosinger, H.E.; Ritchie, I.G.
1975-09-01
A set of computer programs for the calculation of the flexural and torsional resonant frequencies of rectangular section bars of materials of orthotropic or higher symmetry are described. The calculations are used in the experimental determination and verification of the elastic constants of anisotropic materials. The simple finite element technique employed separates the inertial and elastic properties of the beam element into station and field transfer matrices respectively. It includes the Timoshenko beam corrections for flexure and Lekhnitskii's theory for torsion-flexure coupling. The programs also calculate the vibration shapes and surface nodal contours or Chladni figures of the vibration modes. (author)
On the calculation of lattice sums arising in Bose-Einstein statistics of quasiparticle excitations
International Nuclear Information System (INIS)
Millev, Y.; Faehnle, M.
1994-05-01
A new method for the calculations of the average occupation number of bosonic quasi-particle excitations valid for any type of lattice is proposed. The method is based on the recognition of the connection with lattice Green's functions and generalized Watson integrals, on one hand, and on a very simple differentiation technique which renders unnecessary and artificial to this problem more sophisticated Laplace transform summation procedures. The mean-field approximation to Green's function theories of ferromagnetism arises naturally as the zeroth term in the obtained summation formulae. The results have been specified completely for the three cubic lattices. They are new for the simple cubic and face-centred cases, whereas certain redundancy is removed form the known body-centred cubic results. Applications of the method to more complex sums as, for instance, the thermodynamic sum for the total energy of the quasiparticles, are straightforward. There has also been found a new three-position recursion relation for the calculation of frequently occurring triple geometric integrals in the face-centred cubic case. It originates form a corresponding relation for a relevant Heun function. (author). 29 refs, 1 tab
Statistics and integral experiments in the verification of LOCA calculations models
International Nuclear Information System (INIS)
Margolis, S.G.
1978-01-01
The LOCA (loss of coolant accident) is a hypothesized, low-probability accident used as a licensing basis for nuclear power plants. Computer codes which have been under development for at least a decade have been the principal tools used to assess the consequences of the hypothesized LOCA. Models exist in two versions. In EM's (Evaluation Models) the basic engineering calculations are constrained by a detailed set of assumptions spelled out in the Code of Federal Regulations (10 CFR 50, Appendix K). In BE Models (Best Estimate Models) the calculations are based on fundamental physical laws and available empirical correlations. Evaluation models are intended to have a pessimistic bias; Best Estimate Models are intended to be unbiased. Because evaluation models play a key role in reactor licensing, they must be conservative. A long-sought objective has been to assess this conservatism by combining Best Estimate Models with statisticallly established error bounds, based on experiment. Within the last few years, an extensive international program of LOCA experiments has been established to provide the needed data. This program has already produced millions of measurements of temperature, density, and flow and millions of more measurements are yet to come
International Nuclear Information System (INIS)
Avrigeanu, M.; Avrigeanu, V.
1992-02-01
A systematic study on effects of statistical model parameters and semi-classical pre-equilibrium emission models has been carried out for the (n,p) reactions on the 56 Fe and 60 Co target nuclei. The results obtained by using various assumptions within a given pre-equilibrium emission model differ among them more than the ones of different models used under similar conditions. The necessity of using realistic level density formulas is emphasized especially in connection with pre-equilibrium emission models (i.e. with the exciton state density expression), while a basic support could be found only by replacement of the Williams exciton state density formula with a realistic one. (author). 46 refs, 12 figs, 3 tabs
International Nuclear Information System (INIS)
Mohmmadnia, Meysam; Pazirandeh, Ali; Sedighi, Mostafa; Bahabadi, Mohammad Hassan Jalili; Tayefi, Shima
2013-01-01
Highlights: ► The atomic densities of light and heavy materials are calculated. ► The solution is obtained using Runge–Kutta–Fehlberg method. ► The material depletion is calculated for constant flux and constant power condition. - Abstract: The present work investigates an appropriate way to calculate the variations of nuclides composition in the reactor core during operations. Specific Software has been designed for this purpose using C#. The mathematical approach is based on the solution of Bateman differential equations using a Runge–Kutta–Fehlberg method. Material depletion at constant flux and constant power can be calculated with this software. The inputs include reactor power, time step, initial and final times, order of Taylor Series to calculate time dependent flux, time unit, core material composition at initial condition (consists of light and heavy radioactive materials), acceptable error criterion, decay constants library, cross sections database and calculation type (constant flux or constant power). The atomic density of light and heavy fission products during reactor operation is obtained with high accuracy as the program outputs. The results from this method compared with analytical solution show good agreements
International Nuclear Information System (INIS)
Takaya, Shigeru; Sasaki, Naoto; Tomobe, Masato
2015-03-01
Many efforts have been made to implement the System Based Code concept of which objective is to optimize margins dispersed in several codes and standards. Failure probability is expected to be a promising quantitative index for optimization of margins, and statistical information for random variables is needed to evaluate failure probability. Material strength like tensile strength is an important random variable, but the statistical information has not been provided enough yet. In this report, statistical properties of material strength such as creep rupture time, steady creep strain rate, yield stress, tensile stress, flow stress, fatigue life and cyclic stress-strain curve, were estimated for SUS304 and 316FR steel, which are typical structural materials for fast reactors. Other austenitic stainless steels like SUS316 were also used for statistical estimation of some material properties such as fatigue life. These materials are registered in the JSME code of design and construction of fast reactors, so test data used for developing the code were used as much as possible in this report. (author)
Directory of Open Access Journals (Sweden)
L. Boeckli
2012-07-01
Full Text Available The objective of this study is the production of an Alpine Permafrost Index Map (APIM covering the entire European Alps. A unified statistical model that is based on Alpine-wide permafrost observations is used for debris and bedrock surfaces across the entire Alps. The explanatory variables of the model are mean annual air temperatures, potential incoming solar radiation and precipitation. Offset terms were applied to make model predictions for topographic and geomorphic conditions that differ from the terrain features used for model fitting. These offsets are based on literature review and involve some degree of subjective choice during model building. The assessment of the APIM is challenging because limited independent test data are available for comparison and these observations represent point information in a spatially highly variable topography. The APIM provides an index that describes the spatial distribution of permafrost and comes together with an interpretation key that helps to assess map uncertainties and to relate map contents to their actual expression in the terrain. The map can be used as a first resource to estimate permafrost conditions at any given location in the European Alps in a variety of contexts such as research and spatial planning.
Results show that Switzerland likely is the country with the largest permafrost area in the Alps, followed by Italy, Austria, France and Germany. Slovenia and Liechtenstein may have marginal permafrost areas. In all countries the permafrost area is expected to be larger than the glacier-covered area.
Behr, Guilherme A; Patel, Jay P; Coote, Marg; Moreira, Jose C F; Gelain, Daniel P; Steiner, Meir; Frey, Benicio N
2017-05-01
Previous studies have reported that salivary concentrations of certain hormones correlate with their respective serum levels. However, most of these studies did not control for potential blood contamination in saliva. In the present study we developed a statistical method to test the amount of blood contamination that needs to be avoided in saliva samples for the following hormones: cortisol, estradiol, progesterone, testosterone and oxytocin. Saliva and serum samples were collected from 38 healthy, medication-free women (mean age=33.8±7.3yr.; range=19-45). Serum and salivary hormonal levels and the amount of transferrin in saliva samples were determined using enzyme immunoassays. Salivary transferrin levels did not correlate with salivary cortisol or estradiol (up to 3mg/dl), but they were positively correlated with salivary testosterone, progesterone and oxytocin (phormones in order to determine the level of blood contamination that might affect specific hormonal salivary concentrations. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Lin, S.; Li, Y.; Liu, C.; Wang, H.; Zhang, N.; Cui, W.; Neuber, A.
2015-01-01
This paper presents a statistical theory for the initial onset of multipactor breakdown in coaxial transmission lines, taking both the nonuniform electric field and random electron emission velocity into account. A general numerical method is first developed to construct the joint probability density function based on the approximate equation of the electron trajectory. The nonstationary dynamics of the multipactor process on both surfaces of coaxial lines are modelled based on the probability of various impacts and their corresponding secondary emission. The resonant assumption of the classical theory on the independent double-sided and single-sided impacts is replaced by the consideration of their interaction. As a result, the time evolutions of the electron population for exponential growth and absorption on both inner and outer conductor, in response to the applied voltage above and below the multipactor breakdown level, are obtained to investigate the exact mechanism of multipactor discharge in coaxial lines. Furthermore, the multipactor threshold predictions of the presented model are compared with experimental results using measured secondary emission yield of the tested samples which shows reasonable agreement. Finally, the detailed impact scenario reveals that single-surface multipactor is more likely to occur with a higher outer to inner conductor radius ratio
Directory of Open Access Journals (Sweden)
Yuan-Hao Hsu
2010-03-01
Full Text Available Regulation of Pak2 activity involves at least two mechanisms: (i phosphorylation of the conserved Thr(402 in the activation loop and (ii interaction of the autoinhibitory domain (AID with the catalytic domain. We collected 482 human protein kinase sequences from the kinome database and globally mapped the evolutionary interactions of the residues in the catalytic domain with Thr(402 by sequence-based statistical coupling analysis (SCA. Perturbation of Thr(402 (34.6% suggests a communication pathway between Thr(402 in the activation loop, and Phe(387 (DeltaDeltaE(387F,402T = 2.80 in the magnesium positioning loop, Trp(427 (DeltaDeltaE(427W,402T = 3.12 in the F-helix, and Val(404 (DeltaDeltaE(404V,402T = 4.43 and Gly(405 (DeltaDeltaE(405G,402T = 2.95 in the peptide positioning loop. When compared to the cAMP-dependent protein kinase (PKA and Src, the perturbation pattern of threonine phosphorylation in the activation loop of Pak2 is similar to that of PKA, and different from the tyrosine phosphorylation pattern of Src. Reciprocal coupling analysis by SCA showed the residues perturbed by Thr(402 and the reciprocal coupling pairs formed a network centered at Trp(427 in the F-helix. Nine pairs of reciprocal coupling residues crucial for enzymatic activity and structural stabilization were identified. Pak2, PKA and Src share four pairs. Reciprocal coupling residues exposed to the solvent line up as an activation groove. This is the inhibitor (PKI binding region in PKA and the activation groove for Pak2. This indicates these evolutionary conserved residues are crucial for the catalytic activity of PKA and Pak2.
The role of ab initio electronic structure calculations in studies of the strength of materials
International Nuclear Information System (INIS)
Sob, M.; Friak, M.; Legut, D.; Fiala, J.; Vitek, V.
2004-01-01
In this paper we give an account of applications of quantum-mechanical (first-principles) electronic structure calculations to the problem of theoretical tensile strength in metals and intermetallics. First, we review previous as well as ongoing research on this subject. We then describe briefly the electronic structure calculational methods and simulation of the tensile test. This approach is then illustrated by calculations of theoretical tensile strength in iron and in the intermetallic compound Ni 3 Al. The anisotropy of calculated tensile strength is explained in terms of higher-symmetry structures encountered along the deformation paths studied. The table summarizing values of theoretical tensile strengths calculated up to now is presented and the role of ab initio electronic structure calculations in contemporary studies of the strength of material is discussed
When did HIV incidence peak in Harare, Zimbabwe? Back-calculation from mortality statistics.
Directory of Open Access Journals (Sweden)
Ben Lopman
2008-03-01
Full Text Available HIV prevalence has recently begun to decline in Zimbabwe, a result of both high levels of AIDS mortality and a reduction in incident infections. An important component in understanding the dynamics in HIV prevalence is knowledge of past trends in incidence, such as when incidence peaked and at what level. However, empirical measurements of incidence over an extended time period are not available from Zimbabwe or elsewhere in sub-Saharan Africa. Using mortality data, we use a back-calculation technique to reconstruct historic trends in incidence. From AIDS mortality data, extracted from death registration in Harare, together with an estimate of survival post-infection, HIV incidence trends were reconstructed that would give rise to the observed patterns of AIDS mortality. Models were fitted assuming three parametric forms of the incidence curve and under nine different assumptions regarding combinations of trends in non-AIDS mortality and patterns of survival post-infection with HIV. HIV prevalence was forward-projected from the fitted incidence and mortality curves. Models that constrained the incidence pattern to a cubic spline function were flexible and produced well-fitting, realistic patterns of incidence. In models assuming constant levels of non-AIDS mortality, annual incidence peaked between 4 and 5% between 1988 and 1990. Under other assumptions the peak level ranged from 3 to 8% per annum. However, scenarios assuming increasing levels of non-AIDS mortality resulted in implausibly low estimates of peak prevalence (11%, whereas models with decreasing underlying crude mortality could be consistent with the prevalence and mortality data. HIV incidence is most likely to have peaked in Harare between 1988 and 1990, which may have preceded the peak elsewhere in Zimbabwe. This finding, considered alongside the timing and location of HIV prevention activities, will give insight into the decline of HIV prevalence in Zimbabwe.
Density functional theory and pseudopotentials: A panacea for calculating properties of materials
International Nuclear Information System (INIS)
Cohen, M.L.; Lawrence Berkeley Lab., CA
1995-09-01
Although the microscopic view of solids is still evolving, for a large class of materials one can construct a useful first-principles or ''Standard Model'' of solids which is sufficiently robust to explain and predict many physical properties. Both electronic and structural properties can be studied and the results of the first-principles calculations can be used to predict new materials, formulate empirical theories and simple formulae to compute material parameters, and explain trends. A discussion of the microscopic approach, applications, and empirical theories is given here, and some recent results on nanotubes, hard materials, and fullerenes are presented
Energy Technology Data Exchange (ETDEWEB)
Piepel, Gregory F.; Matzke, Brett D.; Sego, Landon H.; Amidan, Brett G.
2013-04-27
This report discusses the methodology, formulas, and inputs needed to make characterization and clearance decisions for Bacillus anthracis-contaminated and uncontaminated (or decontaminated) areas using a statistical sampling approach. Specifically, the report includes the methods and formulas for calculating the • number of samples required to achieve a specified confidence in characterization and clearance decisions • confidence in making characterization and clearance decisions for a specified number of samples for two common statistically based environmental sampling approaches. In particular, the report addresses an issue raised by the Government Accountability Office by providing methods and formulas to calculate the confidence that a decision area is uncontaminated (or successfully decontaminated) if all samples collected according to a statistical sampling approach have negative results. Key to addressing this topic is the probability that an individual sample result is a false negative, which is commonly referred to as the false negative rate (FNR). The two statistical sampling approaches currently discussed in this report are 1) hotspot sampling to detect small isolated contaminated locations during the characterization phase, and 2) combined judgment and random (CJR) sampling during the clearance phase. Typically if contamination is widely distributed in a decision area, it will be detectable via judgment sampling during the characterization phrase. Hotspot sampling is appropriate for characterization situations where contamination is not widely distributed and may not be detected by judgment sampling. CJR sampling is appropriate during the clearance phase when it is desired to augment judgment samples with statistical (random) samples. The hotspot and CJR statistical sampling approaches are discussed in the report for four situations: 1. qualitative data (detect and non-detect) when the FNR = 0 or when using statistical sampling methods that account
International Nuclear Information System (INIS)
Asai, Kiyoshi; Shinozawa, Naohisa; Ishikawa, Hirohiko; Chino, Masamichi; Hayashi, Takashi
1983-02-01
Three computer codes MATHEW, ADPIC of LLNL and GAMPUL of JAERI for prediction of wind field, concentration and external exposure rate of airborne radioactive materials are vectorized and the results are presented. Using the continuous equation of incompressible flow as a constraint, the MATHEW calculates the three dimensional wind field by a variational method. Using the particle-in -cell method, the ADPIC calculates the advection and diffusion of radioactive materials in three dimensional wind field and terrain, and gives the concentration of the materials in each cell of the domain. The GAMPUL calculates the external exposure rate assuming Gaussian plume type distribution of concentration. The vectorized code MATHEW attained 7.8 times speedup by a vector processor FACOM230-75 APU. The ADPIC and GAMPUL are estimated to attain 1.5 and 4 times speedup respectively on CRAY-1 type vector processor. (author)
Bowden, Peter; Beavis, Ron; Marshall, John
2009-11-02
A goodness of fit test may be used to assign tandem mass spectra of peptides to amino acid sequences and to directly calculate the expected probability of mis-identification. The product of the peptide expectation values directly yields the probability that the parent protein has been mis-identified. A relational database could capture the mass spectral data, the best fit results, and permit subsequent calculations by a general statistical analysis system. The many files of the Hupo blood protein data correlated by X!TANDEM against the proteins of ENSEMBL were collected into a relational database. A redundant set of 247,077 proteins and peptides were correlated by X!TANDEM, and that was collapsed to a set of 34,956 peptides from 13,379 distinct proteins. About 6875 distinct proteins were only represented by a single distinct peptide, 2866 proteins showed 2 distinct peptides, and 3454 proteins showed at least three distinct peptides by X!TANDEM. More than 99% of the peptides were associated with proteins that had cumulative expectation values, i.e. probability of false positive identification, of one in one hundred or less. The distribution of peptides per protein from X!TANDEM was significantly different than those expected from random assignment of peptides.
International Nuclear Information System (INIS)
Zachar, Matej; Necas, Vladimir; Daniska, Vladimir
2011-01-01
The activities performed during nuclear installation decommissioning process inevitably lead to the production of large amount of radioactive material to be managed. Significant part of materials has such low radioactivity level that allows them to be released to the environment without any restriction for further use. On the other hand, for materials with radioactivity slightly above the defined unconditional clearance level, there is a possibility to release them conditionally for a specific purpose in accordance with developed scenario assuring that radiation exposure limits for population not to be exceeded. The procedure of managing such decommissioning materials, mentioned above, could lead to recycling and reuse of more solid materials and to save the radioactive waste repository volume. In the paper an a implementation of the process of conditional release to the OMEGA Code is analyzed in details; the Code is used for calculation of decommissioning parameters. The analytical approach in the material parameters assessment, firstly, assumes a definition of radiological limit conditions, based on the evaluation of possible scenarios for conditionally released materials, and their application to appropriate sorter type in existing material and radioactivity flow system. Other calculation procedures with relevant technological or economical parameters, mathematically describing e.g. final radiation monitoring or transport outside the locality, are applied to the OMEGA Code in the next step. Together with limits, new procedures creating independent material stream allow evaluation of conditional material release process during decommissioning. Model calculations evaluating various scenarios with different input parameters and considering conditional release of materials to the environment are performed to verify the implemented methodology. Output parameters and results of the model assessment are presented, discussed and conduced in the final part of the paper
International Nuclear Information System (INIS)
Koski, J.A.; Wix, S.D.; Cole, J.K.
1997-09-01
Shipboard fires both in the same ship hold and in an adjacent hold aboard a break-bulk cargo ship are simulated with a commercial finite-volume computational fluid mechanics code. The fire models and modeling techniques are described and discussed. Temperatures and heat fluxes to a simulated materials package are calculated and compared to experimental values. The overall accuracy of the calculations is assessed
International Nuclear Information System (INIS)
Choi, Jiyoung; Kang, Dong-Goo; Kang, Sunghoon; Sung, Younghun; Ye, Jong Chul
2013-01-01
Purpose: Material decomposition using multienergy photon counting x-ray detectors (PCXD) has been an active research area over the past few years. Even with some success, the problem of optimal energy selection and three material decomposition including malignant tissue is still on going research topic, and more systematic studies are required. This paper aims to address this in a unified statistical framework in a mammographic environment.Methods: A unified statistical framework for energy level optimization and decomposition of three materials is proposed. In particular, an energy level optimization algorithm is derived using the theory of the minimum variance unbiased estimator, and an iterative algorithm is proposed for material composition as well as system parameter estimation under the unified statistical estimation framework. To verify the performance of the proposed algorithm, the authors performed simulation studies as well as real experiments using physical breast phantom and ex vivo breast specimen. Quantitative comparisons using various performance measures were conducted, and qualitative performance evaluations for ex vivo breast specimen were also performed by comparing the ground-truth malignant tissue areas identified by radiologists.Results: Both simulation and real experiments confirmed that the optimized energy bins by the proposed method allow better material decomposition quality. Moreover, for the specimen thickness estimation errors up to 2 mm, the proposed method provides good reconstruction results in both simulation and real ex vivo breast phantom experiments compared to existing methods.Conclusions: The proposed statistical framework of PCXD has been successfully applied for the energy optimization and decomposition of three material in a mammographic environment. Experimental results using the physical breast phantom and ex vivo specimen support the practicality of the proposed algorithm
DEFF Research Database (Denmark)
Puthumana, Govindan
2018-01-01
This paper presents a statistical study of the erosion of material from the tool electrode in a micro-electrical discharge machining process. The work involves analysis of variance and analysis of means approaches on the results of the tool electrode wear rate obtained based on design...... current (Id) and discharge frequency (fd) control the erosion of material from the tool electrode. The material erosion from the tool electrode (Me) increases linearly with the discharge frequency. As the current index increases from 20 to 35, the Me decreases linearly by 29%, and then increases by of 36......%. The current index of 35 gives the minimum material erosion from the tool. It is observed that none of the two-factor interactions are significant in controlling the erosion of the material from the tool....
Geant4 calculations for space radiation shielding material Al2O3
Capali, Veli; Acar Yesil, Tolga; Kaya, Gokhan; Kaplan, Abdullah; Yavuz, Mustafa; Tilki, Tahir
2015-07-01
Aluminium Oxide, Al2O3 is the most widely used material in the engineering applications. It is significant aluminium metal, because of its hardness and as a refractory material owing to its high melting point. This material has several engineering applications in diverse fields such as, ballistic armour systems, wear components, electrical and electronic substrates, automotive parts, components for electric industry and aero-engine. As well, it is used as a dosimeter for radiation protection and therapy applications for its optically stimulated luminescence properties. In this study, stopping powers and penetrating distances have been calculated for the alpha, proton, electron and gamma particles in space radiation shielding material Al2O3 for incident energies 1 keV - 1 GeV using GEANT4 calculation code.
Geant4 calculations for space radiation shielding material Al2O3
Directory of Open Access Journals (Sweden)
Capali Veli
2015-01-01
Full Text Available Aluminium Oxide, Al2O3 is the most widely used material in the engineering applications. It is significant aluminium metal, because of its hardness and as a refractory material owing to its high melting point. This material has several engineering applications in diverse fields such as, ballistic armour systems, wear components, electrical and electronic substrates, automotive parts, components for electric industry and aero-engine. As well, it is used as a dosimeter for radiation protection and therapy applications for its optically stimulated luminescence properties. In this study, stopping powers and penetrating distances have been calculated for the alpha, proton, electron and gamma particles in space radiation shielding material Al2O3 for incident energies 1 keV – 1 GeV using GEANT4 calculation code.
Forecast of Piezoelectric Properties of Crystalline Materials from First Principles Calculation
International Nuclear Information System (INIS)
Zheng Yanqing; Shi Erwei; Chen Jianjun; Zhang Tao; Song Lixin
2006-01-01
In this paper, forecast of piezoelectric tensors are presented. Piezo crystals including quartz, quartz-like crystals, known and novel crystals of langasite-type structure are treated with density-functional perturb theory (DFPT) using plane-wave pseudopotentials method, within the local density approximation (LDA) to the exchange-correlation functional. Compared with experimental results, the ab initio calculation results have quantitative or semi-quantitative accuracy. It is shown that first principles calculation opens a door to the search and design of new piezoelectric material. Further application of first principles calculation to forecast the whole piezoelectric properties are also discussed
Cormack, John; Shearer, Jane
1998-03-01
Spreadsheet templates which calculate cumulative exposures to other persons from patients to whom radioactive materials have been administered have been developed by the authors. Calculations can be based on any specified single-, bi- or tri-exponential whole-body clearance rate and a diurnal (or any other periodic) contact pattern. The time (post-administration) during which close contact should be avoided in order to constrain the radiation exposure and exposure rates to selected limits is also calculated using an iterative technique (Newton's method), and the residual activity at the time when contact can resume is also calculated. These templates find particular application in the calculation of exposures to persons who are in contact with patients who have received for therapeutic purposes. The effect of changing dose limits, contact patterns and using individually derived clearance rates may be readily modelled.
Calculating Parameters of Chip Formation and Cutting Forces of Plastic Materials
Directory of Open Access Journals (Sweden)
S. V Grubyi
2017-01-01
Full Text Available In addition to the kinematics and geometric parameters of the tool, parameters of chip formation and cutting forces lay the groundwork for theoretical analysis of various types of machining.The objective of research activities is to develop a calculation technique to evaluate parameters of chip formation and cutting forces when machining such plastic materials as structural carbon and alloy steels, and aluminum alloys. The subject of research activities is directly a cutting process, algorithms and calculation methods in the field under consideration. A theoretical (calculated method to analyse parameters was used. The results of qualitative and quantitative calculations were compared with the published experimental data.As to the chip formation and cutting forces, a model with a single shear plane is analyzed, which allows a quantitative evaluation of the parameters and of the process factors. Modern domestic and foreign authors’ publications of cutting metals use this model on the reasonable grounds. The novelty of the proposed technique is that calculation of parameters and cutting forces does not require experimental research activities and is based on using the known mechanical characteristics of machined and tool materials. The calculation results are parameters, namely the shear angle, velocity factor of the chip, relative shift, friction coefficient at the front surface, cutting forces, etc. Calculation of these parameters will allow us to pass on to the thermo-physical problems, analysis of tool wear and durability, accuracy, quality and performance rate.The sequence of calculations is arranged in the developed user program in an algorithmic programming language with results in graphical or tabulated view. The calculation technique is a structural component of the cutting theory and is to be used in conducting research activities and engineering calculations in this subject area.
Raw material consumption of the European Union--concept, calculation method, and results.
Schoer, Karl; Weinzettel, Jan; Kovanda, Jan; Giegrich, Jürgen; Lauwigi, Christoph
2012-08-21
This article presents the concept, calculation method, and first results of the "Raw Material Consumption" (RMC) economy-wide material flow indicator for the European Union (EU). The RMC measures the final domestic consumption of products in terms of raw material equivalents (RME), i.e. raw materials used in the complete production chain of consumed products. We employed the hybrid input-output life cycle assessment method to calculate RMC. We first developed a highly disaggregated environmentally extended mixed unit input output table and then applied life cycle inventory data for imported products without appropriate representation of production within the domestic economy. Lastly, we treated capital formation as intermediate consumption. Our results show that services, often considered as a solution for dematerialization, account for a significant part of EU raw material consumption, which emphasizes the need to focus on the full production chains and dematerialization of services. Comparison of the EU's RMC with its domestic extraction shows that the EU is nearly self-sufficient in biomass and nonmetallic minerals but extremely dependent on direct and indirect imports of fossil energy carriers and metal ores. This implies an export of environmental burden related to extraction and primary processing of these materials to the rest of the world. Our results demonstrate that internalizing capital formation has significant influence on the calculated RMC.
International Nuclear Information System (INIS)
Wechsler, M.S.; Mansur, L.K.
1996-01-01
Radiation damage in target, container, and window materials for spallation neutron sources is am important factor in the design of target stations for accelerator-driver transmutation technologies. Calculations are described that use the LAHET and SPECTER codes to obtain displacement and helium production rates in tungsten, 316 stainless steel, and Inconel 718, which are major target, container, and window materials, respectively. Results are compared for the three materials, based on neutron spectra for NSNS and ATW spallation neutron sources, where the neutron fluxes are normalized to give the same flux of neutrons of all energies
Barr, Jordan A.; Lin, Fang-Yin; Ashton, Michael; Hennig, Richard G.; Sinnott, Susan B.
2018-02-01
High-throughput density functional theory calculations are conducted to search through 1572 A B O3 compounds to find a potential replacement material for lead zirconate titanate (PZT) that exhibits the same excellent piezoelectric properties as PZT and lacks both its use of the toxic element lead (Pb) and the formation of secondary alloy phases with platinum (Pt) electrodes. The first screening criterion employed a search through the Materials Project database to find A -B combinations that do not form ternary compounds with Pt. The second screening criterion aimed to eliminate potential candidates through first-principles calculations of their electronic structure, in which compounds with a band gap of 0.25 eV or higher were retained. Third, thermodynamic stability calculations were used to compare the candidates in a Pt environment to compounds already calculated to be stable within the Materials Project. Formation energies below or equal to 100 meV/atom were considered to be thermodynamically stable. The fourth screening criterion employed lattice misfit to identify those candidate perovskites that have low misfit with the Pt electrode and high misfit of potential secondary phases that can be formed when Pt alloys with the different A and B components. To aid in the final analysis, dynamic stability calculations were used to determine those perovskites that have dynamic instabilities that favor the ferroelectric distortion. Analysis of the data finds three perovskites warranting further investigation: CsNb O3 , RbNb O3 , and CsTa O3 .
Predicted phototoxicities of carbon nano-material by quantum mechanical calculations
The purpose of this research is to develop a predictive model for the phototoxicity potential of carbon nanomaterials (fullerenols and single-walled carbon nanotubes). This model is based on the quantum mechanical (ab initio) calculations on these carbon-based materials and compa...
Decay heat measurement on fusion reactor materials and validation of calculation code system
Energy Technology Data Exchange (ETDEWEB)
Maekawa, Fujio; Ikeda, Yujiro; Wada, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
Decay heat rates for 32 fusion reactor relevant materials irradiated with 14-MeV neutrons were measured for the cooling time period between 1 minute and 400 days. With using the experimental data base, validity of decay heat calculation systems for fusion reactors were investigated. (author)
Specification of materials Data for Fire Safety Calculations based on ENV 1992-1-2
DEFF Research Database (Denmark)
Hertz, Kristian Dahl
1997-01-01
of constructions of any concrete exposed to any time of any fire exposure can be calculated.Chapter 4.4 provides information on what should be observed if more general calculation methods are used.Annex A provides some additional information on materials data. This chapter is not a part of the code......The part 1-2 of the Eurocode on Concrete deals with Structural Fire Design.In chapter 3, which is partly written by the author of this paper, some data are given for the development of a few material parameters at high temperatures. These data are intended to represent the worst possible concrete...... to experience form tests on structural specimens based on German siliceous concrete subjected to Standard fire exposure until the time of maximum gas temperature.Chapter 4.3, which is written by the author of this paper, provides a simplified calculation method by means of which the load bearing capacity...
The simulation calculation of acoustics energy transfer through the material structure
Directory of Open Access Journals (Sweden)
Zvolenský Peter
2016-01-01
Full Text Available The paper deals with the modification of the rail passenger coach floor design aimed at improvement of sound reduction index. Refurbishing was performed by using a new acoustic material with a filamentary microstructure. The materials proposed in research were compared by simulation calculation of acoustic energy transfer trough porous microstructure of filamentary material, and the effect of material porosity on sound reduction index and sound absorption coefficient were observed. This proposed filamentary material can be used in the railway bed structure, too. High degree of noise absorbing, resistance to climate conditions, low specific mass, enable to choose a system of low anti-noise barriers having similar properties as standard high anti-noise walls..
Directory of Open Access Journals (Sweden)
Xing Liang
2018-06-01
Full Text Available In this data, the statistical analyses of vanadium oxide microspheres cathode materials are presented for the research article entitled “Statistical analyses on hollow and core-shell structured vanadium oxides microspheres as cathode materials for Lithium ion batteries” (Liang et al., 2017 [1]. This article shows the statistical analyses on N2 adsorption-desorption isotherm and morphology vanadium oxide microspheres as cathode materials for LIBs. Keywords: Adsorption-desorption isotherm, Pore size distribution, SEM images, TEM images
Directory of Open Access Journals (Sweden)
Thomas Weidinger
2016-01-01
Full Text Available This work proposes a dedicated statistical algorithm to perform a direct reconstruction of material-decomposed images from data acquired with photon-counting detectors (PCDs in computed tomography. It is based on local approximations (surrogates of the negative logarithmic Poisson probability function. Exploiting the convexity of this function allows for parallel updates of all image pixels. Parallel updates can compensate for the rather slow convergence that is intrinsic to statistical algorithms. We investigate the accuracy of the algorithm for ideal photon-counting detectors. Complementarily, we apply the algorithm to simulation data of a realistic PCD with its spectral resolution limited by K-escape, charge sharing, and pulse-pileup. For data from both an ideal and realistic PCD, the proposed algorithm is able to correct beam-hardening artifacts and quantitatively determine the material fractions of the chosen basis materials. Via regularization we were able to achieve a reduction of image noise for the realistic PCD that is up to 90% lower compared to material images form a linear, image-based material decomposition using FBP images. Additionally, we find a dependence of the algorithms convergence speed on the threshold selection within the PCD.
Calculation of the major material parameters of heat carriers for cryogenic heat pipes
International Nuclear Information System (INIS)
Molt, W.
1976-07-01
In order to make predictions on the efficiency of cryogenic heat pipes, the material parameters of the heat carrier such as surface tension, viscosity, evaporation heat and density of the liquid should be known. The author therefore investigates suitable interpolation methods and equations which enable the calculation of the desired material parameter at a certain temperature from other known quantities or which require that 1 to 3 material parameters at different temperatures are known. The calculations are limited to the temperature between critical temperature and triple point, since this is the only temperature region in which the heat carrier is in its liquid phase. The applicability and exactness of the equations is tested using known experimental data on N 2 , O 2 , CH 4 and partly on CF 4 . (orig./TK) [de
Liu, Ying; Zhao, Kun; Drew, Michael G. B.; Liu, Yue
2018-01-01
Reflection loss is usually calculated and reported as a function of the thickness of microwave absorption material. However, misleading results are often obtained since the principles imbedded in the popular methods contradict the fundamental facts that electromagnetic waves cannot be reflected in a uniform material except when there is an interface and that there are important differences between the concepts of characteristic impedance and input impedance. In this paper, these inconsistencies have been analyzed theoretically and corrections provided. The problems with the calculations indicate a gap between the background knowledge of material scientists and microwave engineers and for that reason a concise review of transmission line theory is provided along with the mathematical background needed for a deeper understanding of the theory of reflection loss. The expressions of gradient, divergence, Laplacian, and curl operators in a general orthogonal coordinate system have been presented including the concept of reciprocal vectors. Gauss's and Stokes's theorems have been related to Green's theorem in a novel way.
Kline, Joshua C.
2014-01-01
Over the past four decades, various methods have been implemented to measure synchronization of motor-unit firings. In this work, we provide evidence that prior reports of the existence of universal common inputs to all motoneurons and the presence of long-term synchronization are misleading, because they did not use sufficiently rigorous statistical tests to detect synchronization. We developed a statistically based method (SigMax) for computing synchronization and tested it with data from 17,736 motor-unit pairs containing 1,035,225 firing instances from the first dorsal interosseous and vastus lateralis muscles—a data set one order of magnitude greater than that reported in previous studies. Only firing data, obtained from surface electromyographic signal decomposition with >95% accuracy, were used in the study. The data were not subjectively selected in any manner. Because of the size of our data set and the statistical rigor inherent to SigMax, we have confidence that the synchronization values that we calculated provide an improved estimate of physiologically driven synchronization. Compared with three other commonly used techniques, ours revealed three types of discrepancies that result from failing to use sufficient statistical tests necessary to detect synchronization. 1) On average, the z-score method falsely detected synchronization at 16 separate latencies in each motor-unit pair. 2) The cumulative sum method missed one out of every four synchronization identifications found by SigMax. 3) The common input assumption method identified synchronization from 100% of motor-unit pairs studied. SigMax revealed that only 50% of motor-unit pairs actually manifested synchronization. PMID:25210152
Multi-scale calculation based on dual domain material point method combined with molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Dhakal, Tilak Raj [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-02-27
This dissertation combines the dual domain material point method (DDMP) with molecular dynamics (MD) in an attempt to create a multi-scale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically non-equilibrium state, and conventional constitutive relations are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a MD simulation of a group of atoms surrounding the material point. Rather than restricting the multi-scale simulation in a small spatial region, such as phase interfaces, or crack tips, this multi-scale method can be used to consider non-equilibrium thermodynamic e ects in a macroscopic domain. This method takes advantage that the material points only communicate with mesh nodes, not among themselves; therefore MD simulations for material points can be performed independently in parallel. First, using a one-dimensional shock problem as an example, the numerical properties of the original material point method (MPM), the generalized interpolation material point (GIMP) method, the convected particle domain interpolation (CPDI) method, and the DDMP method are investigated. Among these methods, only the DDMP method converges as the number of particles increases, but the large number of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the
International Nuclear Information System (INIS)
McCormack, J.; Shearer, J.
1998-01-01
Spreadsheet templates have been developed by the authors to calculate radiation exposures to others from patients to whom radioactive materials have been administered (or, indeed, from any source of radiation exposure) to be readily calculated. The time during which contact should be avoided, along with the residual activity at resumption of contact is also calculated using an iterative technique. These spreadsheets allow a great deal of flexibility in the specification of clearance rates and close contact patterns for individual patients. Estimates of doses, restriction times and residual activities for 131 l thyrotoxic therapy, for various contact patterns and group of patients, were calculated. The spreadsheets are implemented using Microsoft EXCEL for both PC and Macintosh computers, and are readily available from the authors
Statistical models for thermal ageing of steel materials in nuclear power plants
International Nuclear Information System (INIS)
Persoz, M.
1996-01-01
Some category of steel materials in nuclear power plants may be subjected to thermal ageing, whose extent depends on the steel chemical composition and the ageing parameters, i.e. temperature and duration. This ageing affects the 'impact strength' of the materials, which is a mechanical property. In order to assess the residual lifetime of these components, a probabilistic study has been launched, which takes into account the scatter over the input parameters of the mechanical model. Predictive formulae for estimating the impact strength of aged materials are important input data of the model. A data base has been created with impact strength results obtained from an ageing program in laboratory and statistical treatments have been undertaken. Two kinds of model have been developed, with non linear regression methods (PROC NLIN, available in SAS/STAT). The first one, using a hyperbolic tangent function, is partly based on physical considerations, and the second one, of an exponential type, is purely statistically built. The difficulties consist in selecting the significant parameters and attributing initial values to the coefficients, which is a requirement of the NLIN procedure. This global statistical analysis has led to general models that are unction of the chemical variables and the ageing parameters. These models are as precise (if not more) as local models that had been developed earlier for some specific values of ageing temperature and ageing duration. This paper describes the data and the methodology used to build the models and analyses the results given by the SAS system. (author)
Hafner, Jürgen
2010-09-29
During the last 20 years computer simulations based on a quantum-mechanical description of the interactions between electrons and atomic nuclei have developed an increasingly important impact on materials science, not only in promoting a deeper understanding of the fundamental physical phenomena, but also enabling the computer-assisted design of materials for future technologies. The backbone of atomic-scale computational materials science is density-functional theory (DFT) which allows us to cast the intractable complexity of electron-electron interactions into the form of an effective single-particle equation determined by the exchange-correlation functional. Progress in DFT-based calculations of the properties of materials and of simulations of processes in materials depends on: (1) the development of improved exchange-correlation functionals and advanced post-DFT methods and their implementation in highly efficient computer codes, (2) the development of methods allowing us to bridge the gaps in the temperature, pressure, time and length scales between the ab initio calculations and real-world experiments and (3) the extension of the functionality of these codes, permitting us to treat additional properties and new processes. In this paper we discuss the current status of techniques for performing quantum-based simulations on materials and present some illustrative examples of applications to complex quasiperiodic alloys, cluster-support interactions in microporous acid catalysts and magnetic nanostructures.
International Nuclear Information System (INIS)
Odano, N.; Ohnishi, S.; Sawamura, H.; Tanaka, Y.; Nishimura, K.
2004-01-01
A modified code system based on the point kernel method was developed to use in evaluation of shielding performance for maritime transport of radioactive material. For evaluation of shielding performance accurately in the case of accident, it is required to preciously model the structure of transport casks and shipping vessel, and source term. To achieve accurate modelling of the geometry and source term condition, we aimed to develop the code system by using equivalent information regarding structure and source term used in the Monte Carlo calculation code, MCNP. Therefore, adding an option to use point kernel method to the existing Monte Carlo code, MCNP4C, the code system was developed. To verify the developed code system, dose rate distribution in an exclusive shipping vessel to transport the low level radioactive wastes were calculated by the developed code and the calculated results were compared with measurements and Monte Carlo calculations. It was confirmed that the developed simple calculation method can obtain calculation results very quickly with enough accuracy comparing with the Monte Carlo calculation code MCNP4C
International Nuclear Information System (INIS)
Shakespeare, T.P.; Mukherjee, R.K.; Gebski, V.J.
2003-01-01
Confidence levels, clinical significance curves, and risk-benefit contours are tools improving analysis of clinical studies and minimizing misinterpretation of published results, however no software has been available for their calculation. The objective was to develop software to help clinicians utilize these tools. Excel 2000 spreadsheets were designed using only built-in functions, without macros. The workbook was protected and encrypted so that users can modify only input cells. The workbook has 4 spreadsheets for use in studies comparing two patient groups. Sheet 1 comprises instructions and graphic examples for use. Sheet 2 allows the user to input the main study results (e.g. survival rates) into a 2-by-2 table. Confidence intervals (95%), p-value and the confidence level for Treatment A being better than Treatment B are automatically generated. An additional input cell allows the user to determine the confidence associated with a specified level of benefit. For example if the user wishes to know the confidence that Treatment A is at least 10% better than B, 10% is entered. Sheet 2 automatically displays clinical significance curves, graphically illustrating confidence levels for all possible benefits of one treatment over the other. Sheet 3 allows input of toxicity data, and calculates the confidence that one treatment is more toxic than the other. It also determines the confidence that the relative toxicity of the most effective arm does not exceed user-defined tolerability. Sheet 4 automatically calculates risk-benefit contours, displaying the confidence associated with a specified scenario of minimum benefit and maximum risk of one treatment arm over the other. The spreadsheet is freely downloadable at www.ontumor.com/professional/statistics.htm A simple, self-explanatory, freely available spreadsheet calculator was developed using Excel 2000. The incorporated decision-making tools can be used for data analysis and improve the reporting of results of any
Ul Haq, Bakhtiar
2014-06-01
By employing the state of art first principles approaches, comprehensive investigations of a very promising hydrogen storage material, Mg 2FeH6 hydride, is presented. To expose its hydrogen storage capabilities, detailed structural, elastic, electronic, optical and dielectric aspects have been deeply analysed. The electronic band structure calculations demonstrate that Mg2FeH6 is semiconducting material. The obtained results of the optical bandgap (4.19 eV) also indicate that it is a transparent material for ultraviolet light, thus demonstrating its potential for optoelectronics application. The calculated elastic properties reveal that Mg2FeH6 is highly stiff and stable hydride. Finally, the calculated hydrogen (H2) storage capacity (5.47 wt.%) within a reasonable formation energy of -78 kJ mol-1, at room temperature, can be easily achievable, thus making Mg2FeH6 as potential material for practical H2 storage applications. Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Thykier-Nielsen, S.
1980-07-01
A brief description is given of the model used at Risoe for calculating the consequences of releases of radioactive material to the atmosphere. The model is based on the Gaussian plume model, and it provides possibilities for calculation of: doses to individuals, collective doses, contamination of the ground, probability distribution of doses, and the consequences of doses for give dose-risk relationships. The model is implemented as a computer program PLUCON2, written in ALGOL for the Burroughs B6700 computer at Risoe. A short description of PLUCON2 is given. (author)
Scheraga, H A; Paine, G H
1986-01-01
We are using a variety of theoretical and computational techniques to study protein structure, protein folding, and higher-order structures. Our earlier work involved treatments of liquid water and aqueous solutions of nonpolar and polar solutes, computations of the stabilities of the fundamental structures of proteins and their packing arrangements, conformations of small cyclic and open-chain peptides, structures of fibrous proteins (collagen), structures of homologous globular proteins, introduction of special procedures as constraints during energy minimization of globular proteins, and structures of enzyme-substrate complexes. Recently, we presented a new methodology for predicting polypeptide structure (described here); the method is based on the calculation of the probable and average conformation of a polypeptide chain by the application of equilibrium statistical mechanics in conjunction with an adaptive, importance sampling Monte Carlo algorithm. As a test, it was applied to Met-enkephalin.
Canning, Andrew
2013-03-01
Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.
International Nuclear Information System (INIS)
Ondra, Frantisek; Vasko, Marek; Necas, Vladimir
2012-01-01
The article presents methodology of external exposure calculation for reuse of conditional released materials from decommissioning using VISIPLAN 3D ALARA planning tool. Production of rails has been used as an example application of proposed methodology within the CONRELMAT project. The article presents a methodology for determination of radiological, material, organizational and other conditions for conditionally released materials reuse to ensure that workers and public exposure does not breach the exposure limits during scenario's life cycle (preparation, construction and operation of scenario). The methodology comprises a proposal of following conditions in the view of workers and public exposure: - radionuclide limit concentration of conditionally released materials for specific scenarios and nuclide vectors, - specific deployment of conditionally released materials eventually shielding materials, workers and public during the scenario's life cycle, - organizational measures concerning time of workers or public stay in the vicinity on conditionally released materials for individual performed scenarios and nuclide vectors. The above mentioned steps of proposed methodology have been applied within the CONRELMAT project. Exposure evaluation of workers for rail production is introduced in the article as an example of this application. Exposure calculation using VISIPLAN 3D ALARA planning tool was done within several models. The most exposed profession for scenario was identified. On the basis of this result, an increase of radionuclide concentration in conditional released material was proposed more than two times to 681 Bq/kg without no additional safety or organizational measures being applied. After application of proposed safety and organizational measures (additional shielding, geometry changes and limitation of work duration) it is possible to increase concentration of radionuclide in conditional released material more than ten times to 3092 Bq/kg. Storage
DEFF Research Database (Denmark)
Tryggestad, Kjell
2004-01-01
The study aims is to describe how the inclusion and exclusion of materials and calculative devices construct the boundaries and distinctions between statistical facts and artifacts in economics. My methodological approach is inspired by John Graunt's (1667) Political arithmetic and more recent work...... within constructivism and the field of Science and Technology Studies (STS). The result of this approach is here termed reversible statistics, reconstructing the findings of a statistical study within economics in three different ways. It is argued that all three accounts are quite normal, albeit...... in different ways. The presence and absence of diverse materials, both natural and political, is what distinguishes them from each other. Arguments are presented for a more symmetric relation between the scientific statistical text and the reader. I will argue that a more symmetric relation can be achieved...
International Nuclear Information System (INIS)
Sone, Kazuho; Shiraishi, Kensuke
1975-04-01
The depth distribution of displacement damage expressed in displacements per atom (DPA) in reactor materials such as Mo, Nb, V, Fe and Ni bombarded by energetic nitrogen, argon and self ions with incident energy below 2 MeV was calculated following the theory developed by Lindhard and co-workers for the partition of energy as an energetic ion slowing down. In this calculation, energy loss due to electron excitation was taken into account for the atomic collision cascade after the primary knock-on process. Some parameters indispensable for the calculation such as energy loss rate, damage efficiency, projected range and its straggling were tabulated as a function of incident ion energy of 20 keV to 2 MeV. The damage and parameters were also calculated for 2 MeV nickel ions bombarding Fe targets. In this case, the DPA value is of 40--75% overestimated in a calculation disregarding electronic energy loss for primary knock-on atoms. The formula proposed in this report is significant for calculations on displacement damage produced by heavy ion bombardment as a simulation of high fluence fast neutron damage. (auth.)
Energy Technology Data Exchange (ETDEWEB)
Sone, K; Shiraishi, K
1975-04-01
The depth distribution of displacement damage expressed in displacements per atom (DPA) in reactor materials such as Mo, Nb, V, Fe and Ni bombarded by energetic nitrogen, argon and self ions with incident energy below 2 MeV was calculated following the theory developed by Lindhard and co-workers for the partition of energy as an energetic ion slowing down. In this calculation, energy loss due to electron excitation was taken into account for the atomic collision cascade after the primary knock-on process. Some parameters indispensable for the calculation such as energy loss rate, damage efficiency, projected range and its straggling were tabulated as a function of incident ion energy of 20 keV to 2 MeV. The damage and parameters were also calculated for 2 MeV nickel ions bombarding Fe targets. In this case, the DPA value is of 40--75% overestimated in a calculation disregarding electronic energy loss for primary knock-on atoms. The formula proposed in this report is significant for calculations on displacement damage produced by heavy ion bombardment as a simulation of high fluence fast neutron damage.
Preserved statistical learning of tonal and linguistic material in congenital amusia.
Omigie, Diana; Stewart, Lauren
2011-01-01
Congenital amusia is a lifelong disorder whereby individuals have pervasive difficulties in perceiving and producing music. In contrast, typical individuals display a sophisticated understanding of musical structure, even in the absence of musical training. Previous research has shown that they acquire this knowledge implicitly, through exposure to music's statistical regularities. The present study tested the hypothesis that congenital amusia may result from a failure to internalize statistical regularities - specifically, lower-order transitional probabilities. To explore the specificity of any potential deficits to the musical domain, learning was examined with both tonal and linguistic material. Participants were exposed to structured tonal and linguistic sequences and, in a subsequent test phase, were required to identify items which had been heard in the exposure phase, as distinct from foils comprising elements that had been present during exposure, but presented in a different temporal order. Amusic and control individuals showed comparable learning, for both tonal and linguistic material, even when the tonal stream included pitch intervals around one semitone. However analysis of binary confidence ratings revealed that amusic individuals have less confidence in their abilities and that their performance in learning tasks may not be contingent on explicit knowledge formation or level of awareness to the degree shown in typical individuals. The current findings suggest that the difficulties amusic individuals have with real-world music cannot be accounted for by an inability to internalize lower-order statistical regularities but may arise from other factors.
Preserved Statistical Learning of Tonal and Linguistic Material in Congenital Amusia
Directory of Open Access Journals (Sweden)
Diana eOmigie
2011-06-01
Full Text Available Congenital amusia is a lifelong disorder whereby individuals have pervasive difficulties in perceiving and producing music. In contrast, typical individuals display a sophisticated understanding of musical structure, even in the absence of musical training. Previous research has shown that they acquire this knowledge implicitly, through exposure to music’s statistical regularities. The present study tested the hypothesis that congenital amusia may result from a failure to internalize statistical regularities - specifically, lower-order transitional probabilities. To explore the specificity of any potential deficits to the musical domain, learning was examined with both tonal and linguistic material. Participants were exposed to structured tonal and linguistic sequences and, in a subsequent test phase, were required to identify items which had been heard in the exposure phase, as distinct from foils comprising elements that had been present during exposure, but presented in a different temporal order. Amusic and control individuals showed comparable learning, for both tonal and linguistic material, even when the tonal stream included pitch intervals around one semitone. However analysis of binary confidence ratings revealed that amusic individuals have less confidence in their abilities and that their performance in learning tasks may not be contingent on explicit knowledge formation or level of awareness to the degree shown in typical individuals. The current findings suggest that the difficulties amusic individuals have with real-world music cannot be accounted for by an inability to internalize lower-order statistical regularities but may arise from other factors.
International Nuclear Information System (INIS)
SANDGREN, K.R.
2006-01-01
This document quantifies the offsite radiological consequence of the bounding mixing of incompatible materials accident for comparison with the 25 rem Evaluation Guideline established in Appendix A of DOE-STD-3009. The bounding accident is an inadvertent addition of acid to a waste tank. The calculated offsite dose does not challenge the Evaluation Guideline. Revision 4 updates the analysis to consider bulk chemical additions to single shell tanks (SSTs)
International Nuclear Information System (INIS)
Picton, D.J.; Harris, R.G.; Randle, K.; Weaver, D.R.
1995-01-01
This paper describes a simple, accurate and efficient technique for the calculation of materials perturbation effects in Monte Carlo photon transport calculations. It is particularly suited to the application for which it was developed, namely the modelling of a dual detector density tool as used in borehole logging. However, the method would be appropriate to any photon transport calculation in the energy range 0.1 to 2 MeV, in which the predominant processes are Compton scattering and photoelectric absorption. The method enables a single set of particle histories to provide results for an array of configurations in which material densities or compositions vary. It can calculate the effects of small perturbations very accurately, but is by no means restricted to such cases. For the borehole logging application described here the method has been found to be efficient for a moderate range of variation in the bulk density (of the order of ±30% from a reference value) or even larger changes to a limited portion of the system (e.g. a low density mudcake of the order of a few tens of mm in thickness). The effective speed enhancement over an equivalent set of individual calculations is in the region of an order of magnitude or more. Examples of calculations on a dual detector density tool are given. It is demonstrated that the method predicts, to a high degree of accuracy, the variation of detector count rates with formation density, and that good results are also obtained for the effects of mudcake layers. An interesting feature of the results is that relative count rates (the ratios of count rates obtained with different configurations) can usually be determined more accurately than the absolute values of the count rates. (orig.)
Bieber, Frederick R; Buckleton, John S; Budowle, Bruce; Butler, John M; Coble, Michael D
2016-08-31
The evaluation and interpretation of forensic DNA mixture evidence faces greater interpretational challenges due to increasingly complex mixture evidence. Such challenges include: casework involving low quantity or degraded evidence leading to allele and locus dropout; allele sharing of contributors leading to allele stacking; and differentiation of PCR stutter artifacts from true alleles. There is variation in statistical approaches used to evaluate the strength of the evidence when inclusion of a specific known individual(s) is determined, and the approaches used must be supportable. There are concerns that methods utilized for interpretation of complex forensic DNA mixtures may not be implemented properly in some casework. Similar questions are being raised in a number of U.S. jurisdictions, leading to some confusion about mixture interpretation for current and previous casework. Key elements necessary for the interpretation and statistical evaluation of forensic DNA mixtures are described. Given the most common method for statistical evaluation of DNA mixtures in many parts of the world, including the USA, is the Combined Probability of Inclusion/Exclusion (CPI/CPE). Exposition and elucidation of this method and a protocol for use is the focus of this article. Formulae and other supporting materials are provided. Guidance and details of a DNA mixture interpretation protocol is provided for application of the CPI/CPE method in the analysis of more complex forensic DNA mixtures. This description, in turn, should help reduce the variability of interpretation with application of this methodology and thereby improve the quality of DNA mixture interpretation throughout the forensic community.
International Nuclear Information System (INIS)
Daunys, Mykolas; Sniuolis, Raimondas
2006-01-01
About 300 welded joint materials that are used in nuclear power energy were tested under monotonous tension and low cycle loading in Kaunas University of Technology together with St. Peterburg Central Research Institute of Structural Materials in 1970-2000. The main mechanical, low cycle loading and fracture characteristics of base metals, weld metals and some heat-affected zones of welded joints metals were determined during these experiments. Analytical dependences of low cycle fatigue parameters on mechanical characteristics of structural materials were proposed on the basis of a large number of experimental data, obtained by the same methods and testing equipment. When these dependences are used, expensive low cycle fatigue tests may be omitted and it is possible to compute low cycle loading curves parameters and lifetime for structural materials according to the main mechanical characteristics given in technical manuals. Dependences of low cycle loading curves parameters on mechanical characteristics for several groups of structural materials used in Russian nuclear power energy are obtained by statistical methods and proposed in this paper
Multivariate statistical analysis of electron energy-loss spectroscopy in anisotropic materials
International Nuclear Information System (INIS)
Hu Xuerang; Sun Yuekui; Yuan Jun
2008-01-01
Recently, an expression has been developed to take into account the complex dependence of the fine structure in core-level electron energy-loss spectroscopy (EELS) in anisotropic materials on specimen orientation and spectral collection conditions [Y. Sun, J. Yuan, Phys. Rev. B 71 (2005) 125109]. One application of this expression is the development of a phenomenological theory of magic-angle electron energy-loss spectroscopy (MAEELS), which can be used to extract the isotropically averaged spectral information for materials with arbitrary anisotropy. Here we use this expression to extract not only the isotropically averaged spectral information, but also the anisotropic spectral components, without the restriction of MAEELS. The application is based on a multivariate statistical analysis of core-level EELS for anisotropic materials. To demonstrate the applicability of this approach, we have conducted a study on a set of carbon K-edge spectra of multi-wall carbon nanotube (MWCNT) acquired with energy-loss spectroscopic profiling (ELSP) technique and successfully extracted both the averaged and dichroic spectral components of the wrapped graphite-like sheets. Our result shows that this can be a practical alternative to MAEELS for the study of electronic structure of anisotropic materials, in particular for those nanostructures made of layered materials
International Nuclear Information System (INIS)
Greenwood, L.R.
1983-01-01
This paper is intended as an overview of activities designed to characterize neutron irradiation facilities in terms of neutron flux and energy spectrum and to use these data to calculate atomic displacements, gas production, and transmutation during fusion materials irradiations. A new computerized data file, called DOSFILE, has recently been developed to record dosimetry and damage data from a wide variety of materials test facilities. At present data are included from 20 different irradiations at fast and mixed-spectrum reactors, T(d,n) 14 MeV neutron sources, Be(d,n) broad-spectrum sources, and spallation neutron sources. Each file entry includes activation data, adjusted neutron flux and spectral data, and calculated atomic displacements and gas production. Such data will be used by materials experimenters to determine the exposure of their samples during specific irradiations. This data base will play an important role in correlating property changes between different facilities and, eventually, in predicting materials performance in fusion reactors. All known uncertainties and covariances are listed for each data record and explicit references are given to nuclear decay data and cross sections
Calculation of coal power plant cost on agricultural and material building impact of emission
International Nuclear Information System (INIS)
Mochamad Nasrullah; Wiku Lulus Widodo
2016-01-01
Calculation for externally cost of Coal Power Plant (CPP) is very important. This paper is focus on CPP appear SO 2 impact on agricultural plant and material building. AGRIMAT'S model from International Atomic Energy Agency is model one be used to account environmental damage for air impact because SO 2 emission. Analysis method use Impact Pathways Assessment: Determining characteristic source, Exposure Response Functions (ERF), Impacts and Damage Costs, and Monetary Unit Cost. Result for calculate shows that SO 2 that issued CPP, if value of SO 2 is 19,3 μg/m3, damage cost begins valuably positive. It shows that the land around CPP has decrease prosperity, and it will disadvantage for agricultural plant. On material building, SO 2 resulting damage cost. The increase humidity price therefore damage cost on material building will increase cost. But if concentration SO 2 increase therefore damage cost that is appear on material building decrease. Expected this result can added with external cost on health impact of CPP. External cost was done at developed countries. If it is done at Indonesia, therefore generation cost with fossil as more expensive and will get implication on issue cut back gases greenhouse. On the other side, renewable energy and also alternative energy as nuclear have opportunity at national energy mix system. (author)
Ab Initio Calculation of XAFS Debye-Waller Factors for Crystalline Materials
Dimakis, Nicholas
2007-02-01
A direct an accurate technique for calculating the thermal X-ray absorption fine structure (XAFS) Debye-Waller factors (DWF) for materials of crystalline structure is presented. Using the Density Functional Theory (DFT) under the hybrid X3LYP functional, a library of MnO spin—optimized clusters are built and their phonon spectrum properties are calculated; these properties in the form of normal mode eigenfrequencies and eigenvectors are in turn used for calculation of the single and multiple scattering XAFS DWF. DWF obtained via this technique are temperature dependent expressions and can be used to substantially reduce the number of fitting parameters when experimental spectra are fitted with a hypothetical structure without any ad hoc assumptions. Due to the high computational demand a hybrid approach of mixing the DFT calculated DWF with the correlated Debye model for inner and outer shells respectively is presented. DFT obtained DWFs are compared with corresponding values from experimental XAFS spectra on manganosite. The cluster size effect and the spin parameter on the DFT calculated DWFs are discussed.
International Nuclear Information System (INIS)
Vlasichev, G.N.
1994-01-01
Methods for calculating one-dimensional nonstationary temperature distribution in a system of physically coupled materials are described. Six computer programs developed for calculating accident processes for fast reactor core melt are described in the article. The methods and computer programs take into account melting, solidification, and, in some cases, vaporization of materials. The programs perform calculations for heterogeneous systems consisting of materials with arbitrary but constant composition and heat transfer conditions at material boundaries. Additional modules provide calculations of specific conditions of heat transfer between materials, the change in these conditions and configuration of the materials as a result of coolant boiling, melting and movement of the fuel and structural materials, temperature dependences of thermophysical properties of the materials, and heat release in the fuel. 11 refs., 3 figs
Directory of Open Access Journals (Sweden)
J A F O. Correia
2017-10-01
Full Text Available In Portugal there is a number of old metallic riveted railway and highway bridges that were erected by the end of the 19th century and beginning of the 20th century, and are still in operation, requiring inspections and remediation measures to overcome fatigue damage. Residual fatigue life predictions should be based on actual fatigue data from bridge materials which is scarce due to the material specificities. Fatigue crack propagation data of materials from representative Portuguese riveted bridges, namely the Pinh�o and Luiz I road bridges, the Viana road/railway bridge, the F�o road bridge and the Trez�i railway bridge were considered in this study. The fatigue crack growth rates were correlated using the Pariss law. Also, a statistical analysis of the pure mode I fatigue crack growth (FCG data available for the materials from the ancient riveted metallic bridges is presented. Based on this analysis, design FCG curves are proposed and compared with BS7910 standard proposal, for the Paris region, which is one important fatigue regime concerning the application of the Fracture Mechanics approaches, to predict the remnant fatigue life of structural details
A Statistics-Based Material Property Analysis to Support TPS Characterization
Copeland, Sean R.; Cozmuta, Ioana; Alonso, Juan J.
2012-01-01
Accurate characterization of entry capsule heat shield material properties is a critical component in modeling and simulating Thermal Protection System (TPS) response in a prescribed aerothermal environment. The thermal decomposition of the TPS material during the pyrolysis and charring processes is poorly characterized and typically results in large uncertainties in material properties as inputs for ablation models. These material property uncertainties contribute to large design margins on flight systems and cloud re- construction efforts for data collected during flight and ground testing, making revision to existing models for entry systems more challenging. The analysis presented in this work quantifies how material property uncertainties propagate through an ablation model and guides an experimental test regimen aimed at reducing these uncertainties and characterizing the dependencies between properties in the virgin and charred states for a Phenolic Impregnated Carbon Ablator (PICA) based TPS. A sensitivity analysis identifies how the high-fidelity model behaves in the expected flight environment, while a Monte Carlo based uncertainty propagation strategy is used to quantify the expected spread in the in-depth temperature response of the TPS. An examination of how perturbations to the input probability density functions affect output temperature statistics is accomplished using a Kriging response surface of the high-fidelity model. Simulations are based on capsule configuration and aerothermal environments expected during the Mars Science Laboratory (MSL) entry sequence. We identify and rank primary sources of uncertainty from material properties in a flight-relevant environment, show the dependence on spatial orientation and in-depth location on those uncertainty contributors, and quantify how sensitive the expected results are.
Evaluation of electronic states of implanted materials by molecular orbital calculation
International Nuclear Information System (INIS)
Saito, Jun-ichi; Kano, Shigeki
1997-07-01
In order to understand the effect of implanted atom in ceramics and metals on the sodium corrosion, the electronic structures of un-implanted and implanted materials were calculated using DV-Xα cluster method which was one of molecular orbital calculations. The calculated materials were β-Si 3 N 4 , α-SiC and β-SiC as ceramics, and f.c.c. Fe, b.c.c. Fe and b.c.c. Nb as metals. An Fe, Mo and Hf atom for ceramics, and N atom for metals were selected as implanted atoms. Consequently, it is expected that the corrosion resistance of β-Si 3 N 4 is improved, because the ionic bonding reduced by the implantation. When the implanted atom is occupied at interstitial site in α-SiC and β-SiC, the ionic bonding reduced. Hence, there is a possibility to improve the corrosion resistance of α-SiC and β-SiC. It is clear that Hf is most effective element among implanted atoms in this study. As the covalent bond between N atom and surrounding Fe atoms increased largely in f.c.c. Fe by N implantation, it was expected that the corrosion resistance of f.c.c. Fe improved in liquid sodium. (J.P.N.)
International Nuclear Information System (INIS)
Akdim, Brahim; Pachter, Ruth; Naik, Rajesh R.
2015-01-01
In this letter, we report on the evaluation of diphenylalanine (FF), dityrosine (YY), and phenylalanine-tryptophan (FW) self-assembled peptide nanotube structures for electronics and photonics applications. Realistic bulk peptide nanotube material models were used in density functional theory calculations to mimic the well-ordered tubular nanostructures. Importantly, validated functionals were applied, specifically by using a London dispersion correction to model intertube interactions and a range-separated hybrid functional for accurate bandgap calculations. Bandgaps were found consistent with available experimental data for FF, and also corroborate the higher conductance reported for FW in comparison to FF peptide nanotubes. Interestingly, the predicted bandgap for the YY tubular nanostructure was found to be slightly higher than that of FW, suggesting higher conductance as well. In addition, the band structure calculations along the high symmetry line of nanotube axis revealed a direct bandgap for FF. The results enhance our understanding of the electronic properties of these material systems and will pave the way into their application in devices
Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials
Energy Technology Data Exchange (ETDEWEB)
MacDonald, M. J., E-mail: macdonm@umich.edu [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Vorberger, J. [Helmholtz Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Gamboa, E. J.; Glenzer, S. H.; Fletcher, L. B. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Drake, R. P. [Climate and Space Sciences and Engineering, Applied Physics, and Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)
2016-06-07
Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit [Higginbotham, J. Appl. Phys. 115, 174906 (2014)]. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate lattice strains for all initial crystallite orientations, enabling elastic anisotropy and sample texture effects to be modeled directly. The effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.
Calculation of DPA in the Reactor Internal Structural Materials of Nuclear Power Plant
International Nuclear Information System (INIS)
Kim, Yong Deong; Lee, Hwan Soo
2014-01-01
The embrittlement is mainly caused by atomic displacement damage due to irradiations with neutrons, especially fast neutrons. The integrity of the reactor internal structural materials has to be ensured over the reactor life time, threatened by the irradiation induced displacement damage. Accurate modeling and prediction of the displacement damage is a first step to evaluate the integrity of the reactor internal structural materials. Traditional approaches for analyzing the displacement damage of the materials have relied on tradition model, developed initially for simple metals, Kinchin and Pease (K-P), and the standard formulation of it by Norgett et al. , often referred to as the 'NRT' model. An alternative and complementary strategy for calculating the displacement damage is to use MCNP code. MCNP uses detailed physics and continuous-energy cross-section data in its simulations. In this paper, we have performed the evaluation of the displacement damage of the reactor internal structural materials in Kori NPP unit 1 using detailed Monte Carlo modeling and compared with predictions results of displacement damage using the classical NRT model. The evaluation of the displacement damage of the reactor internal structural materials in Kori NPP unit 1 using detailed Monte Carlo modeling has been performed. The maximum value of the DPA rate was occurred at the baffle side of the reactor internal where the node has the maximum neutron flux
Abs-initio, Predictive Calculations for Optoelectronic and Advanced Materials Research
Bagayoko, Diola
2010-10-01
Most density functional theory (DFT) calculations find band gaps that are 30-50 percent smaller than the experimental ones. Some explanations of this serious underestimation by theory include self-interaction and the derivative discontinuity of the exchange correlation energy. Several approaches have been developed in the search for a solution to this problem. Most of them entail some modification of DFT potentials. The Green function and screened Coulomb approximation (GWA) is a non-DFT formalism that has led to some improvements. Despite these efforts, the underestimation problem has mostly persisted in the literature. Using the Rayleigh theorem, we describe a basis set and variational effect inherently associated with calculations that employ a linear combination of atomic orbitals (LCAO) in a variational approach of the Rayleigh-Ritz type. This description concomitantly shows a source of large underestimation errors in calculated band gaps, i.e., an often dramatic lowering of some unoccupied energies on account of the Rayleigh theorem as opposed to a physical interaction. We present the Bagayoko, Zhao, and Williams (BZW) method [Phys. Rev. B 60, 1563 (1999); PRB 74, 245214 (2006); and J. Appl. Phys. 103, 096101 (2008)] that systematically avoids this effect and leads (a) to DFT and LDA calculated band gaps of semiconductors in agreement with experiment and (b) theoretical predictions of band gaps that are confirmed by experiment. Unlike most calculations, BZW computations solve, self-consistently, a system of two coupled equations. DFT-BZW calculated effective masses and optical properties (dielectric functions) also agree with measurements. We illustrate ten years of success of the BZW method with its results for GaN, C, Si, 3C-SIC, 4H-SiC, ZnO, AlAs, Ge, ZnSe, w-InN, c-InN, InAs, CdS, AlN and nanostructures. We conclude with potential applications of the BZW method in optoelectronic and advanced materials research.
Calculating the optical properties of defects and surfaces in wide band gap materials
Deák, Peter
2018-04-01
The optical properties of a material critically depend on its defects, and understanding that requires substantial and accurate input from theory. This paper describes recent developments in the electronic structure theory of defects in wide band gap materials, where the standard local or semi-local approximations of density functional theory fail. The success of the HSE06 screened hybrid functional is analyzed in case of Group-IV semiconductors and TiO2, and shown that it is the consequence of error compensation between semi-local and non-local exchange, resulting in a proper derivative discontinuity (reproduction of the band gap) and a total energy which is a linear function of the fractional occupation numbers (removing most of the electron self-interaction). This allows the calculation of electronic transitions with accuracy unseen before, as demonstrated on the single-photon emitter NV(-) center in diamond and on polaronic states in TiO2. Having a reliable tool for electronic structure calculations, theory can contribute to the understanding of complicated cases of light-matter interaction. Two examples are considered here: surface termination effects on the blinking and bleaching of the light-emission of the NV(-) center in diamond, and on the efficiency of photocatalytic water-splitting by TiO2. Finally, an outlook is presented for the application of hybrid functionals in other materials, as, e.g., ZnO, Ga2O3 or CuGaS2.
Energy Technology Data Exchange (ETDEWEB)
Galván de la Cruz, Olga Olinca [Unidad de Radioneurocirugía, Instituto Nacional de Neurología y Neurocirugía (Mexico); Lárraga-Gutiérrez, José Manuel, E-mail: jlarraga@innn.edu.mx [Unidad de Radioneurocirugía, Instituto Nacional de Neurología y Neurocirugía (Mexico); Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía (Mexico); Moreno-Jiménez, Sergio [Unidad de Radioneurocirugía, Instituto Nacional de Neurología y Neurocirugía (Mexico); García-Garduño, Olivia Amanda [Unidad de Radioneurocirugía, Instituto Nacional de Neurología y Neurocirugía (Mexico); Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía (Mexico); Celis, Miguel Angel [Unidad de Radioneurocirugía, Instituto Nacional de Neurología y Neurocirugía (Mexico)
2013-07-01
It is reported in the literature that the material used in an embolization of an arteriovenous malformation (AVM) can attenuate the radiation beams used in stereotactic radiosurgery (SRS) up to 10% to 15%. The purpose of this work is to assess the dosimetric impact of this attenuating material in the SRS treatment of embolized AVMs, using Monte Carlo simulations assuming clinical conditions. A commercial Monte Carlo dose calculation engine was used to recalculate the dose distribution of 20 AVMs previously planned with a pencil beam dose calculation algorithm. Dose distributions were compared using the following metrics: average, minimal and maximum dose of AVM, and 2D gamma index. The effect in the obliteration rate was investigated using radiobiological models. It was found that the dosimetric impact of the embolization material is less than 1.0 Gy in the prescription dose to the AVM for the 20 cases studied. The impact in the obliteration rate is less than 4.0%. There is reported evidence in the literature that embolized AVMs treated with SRS have low obliteration rates. This work shows that there are dosimetric implications that should be considered in the final treatment decisions for embolized AVMs.
International Nuclear Information System (INIS)
Galván de la Cruz, Olga Olinca; Lárraga-Gutiérrez, José Manuel; Moreno-Jiménez, Sergio; García-Garduño, Olivia Amanda; Celis, Miguel Angel
2013-01-01
It is reported in the literature that the material used in an embolization of an arteriovenous malformation (AVM) can attenuate the radiation beams used in stereotactic radiosurgery (SRS) up to 10% to 15%. The purpose of this work is to assess the dosimetric impact of this attenuating material in the SRS treatment of embolized AVMs, using Monte Carlo simulations assuming clinical conditions. A commercial Monte Carlo dose calculation engine was used to recalculate the dose distribution of 20 AVMs previously planned with a pencil beam dose calculation algorithm. Dose distributions were compared using the following metrics: average, minimal and maximum dose of AVM, and 2D gamma index. The effect in the obliteration rate was investigated using radiobiological models. It was found that the dosimetric impact of the embolization material is less than 1.0 Gy in the prescription dose to the AVM for the 20 cases studied. The impact in the obliteration rate is less than 4.0%. There is reported evidence in the literature that embolized AVMs treated with SRS have low obliteration rates. This work shows that there are dosimetric implications that should be considered in the final treatment decisions for embolized AVMs
Barabash, Sergey V.; Pramanik, Dipankar
2015-03-01
Development of low-leakage dielectrics for semiconductor industry, together with many other areas of academic and industrial research, increasingly rely upon ab initio tunneling and transport calculations. Complex band structure (CBS) is a powerful formalism to establish the nature of tunneling modes, providing both a deeper understanding and a guided optimization of materials, with practical applications ranging from screening candidate dielectrics for lowest ``ultimate leakage'' to identifying charge-neutrality levels and Fermi level pinning. We demonstrate that CBS is prone to a particular type of spurious ``phantom'' solution, previously deemed true but irrelevant because of a very fast decay. We demonstrate that (i) in complex materials, phantom modes may exhibit very slow decay (appearing as leading tunneling terms implying qualitative and huge quantitative errors), (ii) the phantom modes are spurious, (iii) unlike the pseudopotential ``ghost'' states, phantoms are an apparently unavoidable artifact of large numerical basis sets, (iv) a presumed increase in computational accuracy increases the number of phantoms, effectively corrupting the CBS results despite the higher accuracy achieved in resolving the true CBS modes and the real band structure, and (v) the phantom modes cannot be easily separated from the true CBS modes. We discuss implications for direct transport calculations. The strategy for dealing with the phantom states is discussed in the context of optimizing high-quality high- κ dielectric materials for decreased tunneling leakage.
Directory of Open Access Journals (Sweden)
Ying Liu
2018-01-01
Full Text Available Reflection loss is usually calculated and reported as a function of the thickness of microwave absorption material. However, misleading results are often obtained since the principles imbedded in the popular methods contradict the fundamental facts that electromagnetic waves cannot be reflected in a uniform material except when there is an interface and that there are important differences between the concepts of characteristic impedance and input impedance. In this paper, these inconsistencies have been analyzed theoretically and corrections provided. The problems with the calculations indicate a gap between the background knowledge of material scientists and microwave engineers and for that reason a concise review of transmission line theory is provided along with the mathematical background needed for a deeper understanding of the theory of reflection loss. The expressions of gradient, divergence, Laplacian, and curl operators in a general orthogonal coordinate system have been presented including the concept of reciprocal vectors. Gauss’s and Stokes’s theorems have been related to Green’s theorem in a novel way.
Shi, Guangsha
Solar electricity is a reliable and environmentally friendly method of sustainable energy production and a realistic alternative to conventional fossil fuels. Moreover, thermoelectric energy conversion is a promising technology for solid-state refrigeration and efficient waste-heat recovery. Predicting and optimizing new photovoltaic and thermoelectric materials composed of Earth-abundant elements that exceed the current state of the art, and understanding how nanoscale structuring and ordering improves their energy conversion efficiency pose a challenge for materials scientists. I approach this challenge by developing and applying predictive high-performance computing methods to guide research and development of new materials for energy-conversion applications. Advances in computer-simulation algorithms and high-performance computing resources promise to speed up the development of new compounds with desirable properties and significantly shorten the time delay between the discovery of new materials and their commercial deployment. I present my calculated results on the extraordinary properties of nanostructured semiconductor materials, including strong visible-light absorbance in nanoporous silicon and few-layer SnSe and GeSe. These findings highlight the capability of nanoscale structuring and ordering to improve the performance of Earth-abundant materials compared to their bulk counterparts for solar-cell applications. I also successfully identified the dominant mechanisms contributing to free-carrier absorption in n-type silicon. My findings help evaluate the impact of the energy loss from this absorption mechanism in doped silicon and are thus important for the design of silicon solar cells. In addition, I calculated the thermoelectric transport properties of p-type SnSe, a bulk material with a record thermoelectric figure of merit. I predicted the optimal temperatures and free-carrier concentrations for thermoelectric energy conversion, as well the
International Nuclear Information System (INIS)
Barrett, B.R.; Shlomo, S.; Weidenmueller, H.A.
1978-01-01
Agassi, Ko, and Weidenmueller have recently developed a transport theory of deeply inelastic heavy-ion collisions based on a random-matrix model. In this work it was assumed that the reduced form factors, which couple the relative motion with the intrinsic excitation of either fragment, represent a Gaussian stochastic process with zero mean and a second moment characterized by a few parameters. In the present paper, we give a justification of the statistical assumptions of Agassi, Ko, and Weidenmueller and of the form of the second moment assumed in their work, and calculate the input parameters of their model for two cases: 40 Ar on 208 Pb and 40 Ar on 120 Sn. We find values for the strength, correlation length, and angular momentum dependence of the second moment, which are consistent with those estimated by Agassi, Ko, and Weidenmueller. We consider only inelastic excitations (no nucleon transfer) caused by the penetration of the single-particle potential well of the light ion into the mass distribution of the heavy one. This is combined with a random-matrix model for the high-lying excited states of the heavy ion. As a result we find formulas which relate simply to those of Agassi, Ko, and Weidenmueller, and which can be evaluated numerically, yielding the results mentioned above. Our results also indicate for which distances of closest approach the Agassi-Ko-Weidenmueller theory breaks down
Energy Technology Data Exchange (ETDEWEB)
Kong, Ki-jeong [Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of)]. E-mail: kong@krict.re.kr; Choi, Youngmin [Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of); Ryu, Beyong-Hwan [Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of); Lee, Jeong-O [Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of); Chang, Hyunju [Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of)
2006-07-15
The potential of carbon-related materials, such as carbon nanotubes (CNTs) and graphite nanofibers (GNFs), supported metal catalysts as an electrode for fuel cell application was investigated using the first-principle electronic structure calculations. The stable binding geometries and energies of metal catalysts are determined on the CNT surface and the GNF edge. The catalyst metal is more tightly bound to the GNF edge than to the CNT surface because of the existence of active dangling bonds of edge carbon atoms. The diffusion barrier of metal atoms on the surface and edge is also obtained. From our calculation results, we have found that high dispersity is achievable for GNF due to high barrier against the diffusion of metal atoms, while CNT appears less suitable. The GNF with a large edge-to-wall ratio is more suitable for the high-performance electrode than perfect crystalline graphite or CNT.
International Nuclear Information System (INIS)
Kong, Ki-jeong; Choi, Youngmin; Ryu, Beyong-Hwan; Lee, Jeong-O; Chang, Hyunju
2006-01-01
The potential of carbon-related materials, such as carbon nanotubes (CNTs) and graphite nanofibers (GNFs), supported metal catalysts as an electrode for fuel cell application was investigated using the first-principle electronic structure calculations. The stable binding geometries and energies of metal catalysts are determined on the CNT surface and the GNF edge. The catalyst metal is more tightly bound to the GNF edge than to the CNT surface because of the existence of active dangling bonds of edge carbon atoms. The diffusion barrier of metal atoms on the surface and edge is also obtained. From our calculation results, we have found that high dispersity is achievable for GNF due to high barrier against the diffusion of metal atoms, while CNT appears less suitable. The GNF with a large edge-to-wall ratio is more suitable for the high-performance electrode than perfect crystalline graphite or CNT
International Nuclear Information System (INIS)
Kim, In Chan; Cule, Dinko; Torquato, Salvatore
2000-01-01
In a recent paper [C. DeW. Van Siclen, Phys. Rev. E 59, 2804 (1999)], a random-walk algorithm was proposed as the best method to calculate transport properties of composite materials. It was claimed that the method is applicable both to discrete and continuum systems. The limitations of the proposed algorithm are analyzed. We show that the algorithm does not capture the peculiarities of continuum systems (e.g., ''necks'' or ''choke points'') and we argue that it is the stochastic analog of the finite-difference method. (c) 2000 The American Physical Society
American Society for Testing and Materials. Philadelphia
1988-01-01
1.1 This practice describes the calculation of luminous (photometric) transmittance and reflectance of materials from spectral radiant transmittance and reflectance data obtained from Test Method E 903. 1.2 Determination of luminous transmittance by this practice is preferred over measurement of photometric transmittance by methods using the sun as a source and a photometer as detector except for transmitting sheet materials that are inhomogeneous, patterned, or corrugated. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
Shi, Renhai
Organic polyalcohol and amine globular molecular crystal materials as phase change materials (PCMs) such as Pentaglycerine (PG-(CH3)C(CH 2OH)3), Tris(hydroxymethyl)aminomethane (TRIS-(NH2)C(CH 2OH)3), 2-amino-2methyl-1,3-propanediol (AMPL-(NH2)(CH3)C(CH2OH)2), and neopentylglycol (NPG-(CH3)2C(CH2OH) 2) can be considered to be potential candidates for thermal energy storage (TES) applications such as waste heat recovery, solar energy utilization, energy saving in buildings, and electronic device management during heating or cooling process in which the latent heat and sensible heat can be reversibly stored or released through solid state phase transitions over a range of temperatures. In order to understand the polymorphism of phase transition of these organic materials and provide more choice of materials design for TES, binary systems have been studied to lower the temperature of solid-state phase transition for the specific application. To our best knowledge, the study of ternary systems in these organic materials is limited. Based on this motivation, four ternary systems of PG-TRIS-AMPL, PG-TRIS-NPG, PG-AMPL-NPG, and TRIS-AMPL-NPG are proposed in this dissertation. Firstly, thermodynamic assessment with CALPHAD method is used to construct the Gibbs energy functions into thermodynamic database for these four materials based on available experimental results from X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). The phase stability and thermodynamic characteristics of these four materials calculated from present thermodynamic database with CALPHAD method can match well the present experimental results from XRD and DSC. Secondly, related six binary phase diagrams of PG-TRIS, PG-AMPL, PG-NPG, TRIS-AMPL, TRIS-NPG, and AMPL-NPG are optimized with CALPHAD method in Thermo-Calc software based on available experimental results, in which the substitutional model is used and excess Gibbs energy is expressed with Redlich-Kister formalism. The
International Nuclear Information System (INIS)
Prinja, A.K.; Olson, G.L.
2005-01-01
Simplified models for the unconditional ensemble-averaged radiation intensity and material energy are developed for radiative transfer in binary statistical media. Asymptotic analysis is used to construct an effective transport model with homogenized opacities in two limits. In the first, the material properties are assumed to have low contrast on average, and is shown to correctly reproduce the well-known atomic mix model in both time-dependent and equilibrium situations. Our analysis successfully resolves an inconsistency previously noted in the literature with the application of the standard definition of the atomic mix limit to radiative transfer in participating random media. In the second limit considered, the materials are assumed to have highly contrasting opacities, yielding a reduced transport model with effective scattering. The existence of these limits requires the mean chunk sizes to be independent of the photon direction and this creates an ambiguity in the interpretation of the models when the underlying stochastic geometry is comprised of alternating one-dimensional slabs. A consistent one-dimensional setting is defined and the asymptotic models are numerically validated over a broad range of physical parameter values
Momida, Hiroyoshi; Oguchi, Tamio
2018-04-01
Longitudinal piezoelectric constant (e 33) values of wurtzite materials, which are listed in a structure database, are calculated and analyzed by using first-principles and statistical learning methods. It is theoretically shown that wurtzite materials with high e 33 generally have small lattice constant ratios (c/a) almost independent of constituent elements, and approximately expressed as e 33 ∝ c/a - (c/a)0 with ideal lattice constant ratio (c/a)0. This relation also holds for highly-piezoelectric ternary materials such as Sc x Al1- x N. We conducted a search for high-piezoelectric wurtzite materials by identifying materials with smaller c/a values. It is proposed that the piezoelectricity of ZnO can be significantly enhanced by substitutions of Zn with Ca.
DEFF Research Database (Denmark)
Korneliussen, Thorfinn Sand; Moltke, Ida; Albrechtsen, Anders
2013-01-01
A number of different statistics are used for detecting natural selection using DNA sequencing data, including statistics that are summaries of the frequency spectrum, such as Tajima's D. These statistics are now often being applied in the analysis of Next Generation Sequencing (NGS) data. Howeve......, estimates of frequency spectra from NGS data are strongly affected by low sequencing coverage; the inherent technology dependent variation in sequencing depth causes systematic differences in the value of the statistic among genomic regions....
Methodology comparison for gamma-heating calculations in material-testing reactors
Energy Technology Data Exchange (ETDEWEB)
Lemaire, M.; Vaglio-Gaudard, C.; Lyoussi, A. [CEA, DEN, DER, Cadarache F-13108 Saint Paul les Durance (France); Reynard-Carette, C. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France)
2015-07-01
The Jules Horowitz Reactor (JHR) is a Material-Testing Reactor (MTR) under construction in the south of France at CEA Cadarache (French Alternative Energies and Atomic Energy Commission). It will typically host about 20 simultaneous irradiation experiments in the core and in the beryllium reflector. These experiments will help us better understand the complex phenomena occurring during the accelerated ageing of materials and the irradiation of nuclear fuels. Gamma heating, i.e. photon energy deposition, is mainly responsible for temperature rise in non-fuelled zones of nuclear reactors, including JHR internal structures and irradiation devices. As temperature is a key parameter for physical models describing the behavior of material, accurate control of temperature, and hence gamma heating, is required in irradiation devices and samples in order to perform an advanced suitable analysis of future experimental results. From a broader point of view, JHR global attractiveness as a MTR depends on its ability to monitor experimental parameters with high accuracy, including gamma heating. Strict control of temperature levels is also necessary in terms of safety. As JHR structures are warmed up by gamma heating, they must be appropriately cooled down to prevent creep deformation or melting. Cooling-power sizing is based on calculated levels of gamma heating in the JHR. Due to these safety concerns, accurate calculation of gamma heating with well-controlled bias and associated uncertainty as low as possible is all the more important. There are two main kinds of calculation bias: bias coming from nuclear data on the one hand and bias coming from physical approximations assumed by computer codes and by general calculation route on the other hand. The former must be determined by comparison between calculation and experimental data; the latter by calculation comparisons between codes and between methodologies. In this presentation, we focus on this latter kind of bias. Nuclear
International report to validate criticality safety calculations for fissile material transport
International Nuclear Information System (INIS)
Whitesides, G.E.
1984-01-01
During the past three years a Working Group established by the Organization for Economic Co-operation and Development's Nuclear Energy Agency (OECD-NEA) in Paris, France, has been studying the validity and applicability of a variety of criticality safety computer programs and their associated nuclear data for the computation of the neutron multiplication factor, k/sub eff/, for various transport packages used in the fuel cycle. The principal objective of this work has been to provide an internationally acceptable basis for the licensing authorities in a country to honor licensing approvals granted by other participating countries. Eleven countries participated in the initial study which consisted of examining criticality safety calculations for packages designed for spent light water reactor fuel transport. This paper presents a summary of this study which has been completed and reported in an OECD-NEA Report No. CSNI-71. The basic goal of this study was to outline a satisfactory validation procedure for this particular application. First, a set of actual critical experiments were chosen which contained the various material and geometric properties present in typical LWR transport containers. Secondly, calculations were made by each of the methods in order to determine how accurately each method reproduced the experimental values. This successful effort in developing a benchmark procedure for validating criticality calculations for spent LWR transport packages along with the successful intercomparison of a number of methods should provide increased confidence by licensing authorities in the use of these methods for this area of application. 4 references, 2 figures
A simple method for calculation of the hydrogen diffusion in composite materials
International Nuclear Information System (INIS)
Paraschiv, M.C.; Paraschiv, A.; Grecu, V. V.
2008-01-01
A method for calculating the diffusion of various chemical species in composite materials when the material compounds can not be described as a function of the position coordinate in every point has been proposed. The method can be applied only for such systems in which a quasi-continuous presence of every component can be defined in every arbitrary region. Since the complete random distribution of the boundaries between the components will influence the diffusion process, the continuity equation associated to the diffusion problem was extended for arbitrary volumes that keep the volume concentration of every component of the alloy as the entire material volume. Its consistency with the Fick's second law was also proved. To visualise the differences of hydrogen migration in a thermal gradient inside the TRIGA fuels, arising as a result of increasing the uranium content from ∼ 10% wt. U to ∼ 45% wt. U in the TRIGA U-ZrH δ alloy, the method has been applied for the two concentrations of uranium. To this aim, the assumption that the rate-controlling parameter of hydrogen diffusion is the dissociation equilibrium pressure of hydrogen in zirconium hydride has been used. The results show significant differences of both hydrogen distribution and the kinetics of hydrogen migration in a thermal gradient for the two cases analysed. (authors)
International Nuclear Information System (INIS)
Ghosh, V. J.; Alatalo, M.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K. G.; Kruseman, A. C.; Mijnarends, P. E.
2000-01-01
Results of a calculation of the Doppler broadening of the positron-electron annihilation radiation and positron lifetimes in a large number of elemental defect-free materials are presented. A simple scheme based on the method of superimposed atoms is used for these calculations. Calculated values of the Doppler broadening are compared with experimental data for a number of elemental materials, and qualitative agreement is obtained. These results provide a database which can be used for characterizing materials and identifying impurity-vacancy complexes. (c) 2000 The American Physical Society
International Nuclear Information System (INIS)
Lima Barros, M. de.
1982-04-01
The multiplication factors of several systems with low enrichment, 3,5% and 3,2% in the isotope 235 U, aiming at the storage of fuel of ANGRA-I and ANGRA II, through the method of Monte Carlo, by the computacional code KENO-IV and the library of section of cross Hansen - Roach with 16 groups of energy. The method of Monte Carlo is specially suitable to the calculation of the factor of multiplication, because it is one of the most acurate models of solution and allows the description of complex tridimensional systems. Various tests of sensibility of this method have been done in order to present the most convenient way of working with KENO-IV code. The safety on criticality of stores of fissile material of the 'Fabrica de Elementos Combustiveis ', has been analyzed through the method of Monte Carlo. (Author) [pt
GW Calculations of Materials on the Intel Xeon-Phi Architecture
Deslippe, Jack; da Jornada, Felipe H.; Vigil-Fowler, Derek; Biller, Ariel; Chelikowsky, James R.; Louie, Steven G.
Intel Xeon-Phi processors are expected to power a large number of High-Performance Computing (HPC) systems around the United States and the world in the near future. We evaluate the ability of GW and pre-requisite Density Functional Theory (DFT) calculations for materials on utilizing the Xeon-Phi architecture. We describe the optimization process and performance improvements achieved. We find that the GW method, like other higher level Many-Body methods beyond standard local/semilocal approximations to Kohn-Sham DFT, is particularly well suited for many-core architectures due to the ability to exploit a large amount of parallelism over plane-waves, band-pairs and frequencies. Support provided by the SCIDAC program, Department of Energy, Office of Science, Advanced Scientic Computing Research and Basic Energy Sciences. Grant Numbers DE-SC0008877 (Austin) and DE-AC02-05CH11231 (LBNL).
Isotopic fractionation of NBS oxalic acid and its influence in the calculated age of materials
International Nuclear Information System (INIS)
Nehmi, V.A.
1979-10-01
The intensity of the isotopic fractionation during the oxidation of NBS oxalic acid to carbon dioxide was checked. 30 reactions of oxidation of NBS oxalic acid with potassium permanganate were made. The resultant isotopic composition of CO 2 has been determined with a mass-spectrometer. A conclusion has been reached that the average of Δ 13 C is - 18.9% o with variation between - 17.7 and - 21.2%o. For values of Δ 13 C equal to - 22.0%o, the calculated age with isotopic correction shows the following deviations in relation to non-corrected age: 4% for materials of 1,000 years and 0.3% for 20,000 years.(Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Dai, Wen-Wu [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Zhao, Zong-Yan, E-mail: zzy@kmust.edu.cn [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093 (China)
2017-06-01
Highlights: • Heterostructure constructing is an effective way to enhance the photocatalytic performance. • Graphene-like materials and BiOI were in contact and formed van der Waals heterostructures. • Band edge positions of GO/g-C{sub 3}N{sub 4} and BiOI changed to form standard type-II heterojunction. • 2D materials can promote the separation of photo-generated electron-hole pairs in BiOI. - Abstract: Heterostructure constructing is a feasible and powerful strategy to enhance the performance of photocatalysts, because they can be tailored to have desirable photo-electronics properties and couple distinct advantageous of components. As a novel layered photocatalyst, the main drawback of BiOI is the low edge position of the conduction band. To address this problem, it is meaningful to find materials that possess suitable band gap, proper band edge position, and high mobility of carrier to combine with BiOI to form hetertrostructure. In this study, graphene-based materials (including: graphene, graphene oxide, and g-C{sub 3}N{sub 4}) were chosen as candidates to achieve this purpose. The charge transfer, interface interaction, and band offsets are focused on and analyzed in detail by DFT calculations. Results indicated that graphene-based materials and BiOI were in contact and formed van der Waals heterostructures. The valence and conduction band edge positions of graphene oxide, g-C{sub 3}N{sub 4} and BiOI changed with the Fermi level and formed the standard type-II heterojunction. In addition, the overall analysis of charge density difference, Mulliken population, and band offsets indicated that the internal electric field is facilitate for the separation of photo-generated electron-hole pairs, which means these heterostructures can enhance the photocatalytic efficiency of BiOI. Thus, BiOI combines with 2D materials to construct heterostructure not only make use of the unique high electron mobility, but also can adjust the position of energy bands and
Directory of Open Access Journals (Sweden)
Shi-Yi Chen
Full Text Available Although various computer tools have been elaborately developed to calculate a series of statistics in molecular population genetics for both small- and large-scale DNA data, there is no efficient and easy-to-use toolkit available yet for exclusively focusing on the steps of mathematical calculation. Here, we present PopSc, a bioinformatic toolkit for calculating 45 basic statistics in molecular population genetics, which could be categorized into three classes, including (i genetic diversity of DNA sequences, (ii statistical tests for neutral evolution, and (iii measures of genetic differentiation among populations. In contrast to the existing computer tools, PopSc was designed to directly accept the intermediate metadata, such as allele frequencies, rather than the raw DNA sequences or genotyping results. PopSc is first implemented as the web-based calculator with user-friendly interface, which greatly facilitates the teaching of population genetics in class and also promotes the convenient and straightforward calculation of statistics in research. Additionally, we also provide the Python library and R package of PopSc, which can be flexibly integrated into other advanced bioinformatic packages of population genetics analysis.
Chen, Shi-Yi; Deng, Feilong; Huang, Ying; Li, Cao; Liu, Linhai; Jia, Xianbo; Lai, Song-Jia
2016-01-01
Although various computer tools have been elaborately developed to calculate a series of statistics in molecular population genetics for both small- and large-scale DNA data, there is no efficient and easy-to-use toolkit available yet for exclusively focusing on the steps of mathematical calculation. Here, we present PopSc, a bioinformatic toolkit for calculating 45 basic statistics in molecular population genetics, which could be categorized into three classes, including (i) genetic diversity of DNA sequences, (ii) statistical tests for neutral evolution, and (iii) measures of genetic differentiation among populations. In contrast to the existing computer tools, PopSc was designed to directly accept the intermediate metadata, such as allele frequencies, rather than the raw DNA sequences or genotyping results. PopSc is first implemented as the web-based calculator with user-friendly interface, which greatly facilitates the teaching of population genetics in class and also promotes the convenient and straightforward calculation of statistics in research. Additionally, we also provide the Python library and R package of PopSc, which can be flexibly integrated into other advanced bioinformatic packages of population genetics analysis.
Kanji, Gopal K
2006-01-01
This expanded and updated Third Edition of Gopal K. Kanji's best-selling resource on statistical tests covers all the most commonly used tests with information on how to calculate and interpret results with simple datasets. Each entry begins with a short summary statement about the test's purpose, and contains details of the test objective, the limitations (or assumptions) involved, a brief outline of the method, a worked example, and the numerical calculation. 100 Statistical Tests, Third Edition is the one indispensable guide for users of statistical materials and consumers of statistical information at all levels and across all disciplines.
First principles calculation of material properties of group IV elements and III-V compounds
Malone, Brad Dean
This thesis presents first principles calculations on the properties of group IV elements and group III-V compounds. It includes investigations into what structure a material is likely to form in, and given that structure, what are its electronic, optical, and lattice dynamical properties as well as what are the properties of defects that might be introduced into the sample. The thesis is divided as follows: • Chapter 1 contains some of the conceptual foundations used in the present work. These involve the major approximations which allow us to approach the problem of systems with huge numbers of interacting electrons and atomic cores. • Then, in Chapter 2, we discuss one of the major limitations to the DFT formalism introduced in Chapter 1, namely its inability to predict the quasiparticle spectra of materials and in particular the band gap of a semiconductor. We introduce a Green's function approach to the electron self-energy Sigma known as the GW approximation and use it to compute the quasiparticle band structures of a number of group IV and III-V semiconductors. • In Chapter 3 we present a first-principles study of a number of high-pressure metastable phases of Si with tetrahedral bonding. The phases studied include all experimentally determined phases that result from decompression from the metallic beta-Sn phase, specifically the BC8 (Si-III), hexagonal diamond (Si-IV), and R8 (Si-XII). In addition to these, we also study the hypothetical ST12 structure found upon decompression from beta-Sn in germanium. • Our attention is then turned to the first principles calculations of optical properties in Chapter 4. The Bethe-Salpeter equation is then solved to obtain the optical spectrum of this material including electron-hole interactions. The calculated optical spectrum is compared with experimental data for other forms of silicon commonly used in photovoltaic devices, namely the cubic, polycrystalline, and amorphous forms. • In Chapter 5 we present
Riandry, M. A.; Ismet, I.; Akhsan, H.
2017-09-01
This study aims to produce a valid and practical statistical physics course handout on distribution function materials based on STEM. Rowntree development model is used to produce this handout. The model consists of three stages: planning, development and evaluation stages. In this study, the evaluation stage used Tessmer formative evaluation. It consists of 5 stages: self-evaluation, expert review, one-to-one evaluation, small group evaluation and field test stages. However, the handout is limited to be tested on validity and practicality aspects, so the field test stage is not implemented. The data collection technique used walkthroughs and questionnaires. Subjects of this study are students of 6th and 8th semester of academic year 2016/2017 Physics Education Study Program of Sriwijaya University. The average result of expert review is 87.31% (very valid category). One-to-one evaluation obtained the average result is 89.42%. The result of small group evaluation is 85.92%. From one-to-one and small group evaluation stages, averagestudent response to this handout is 87,67% (very practical category). Based on the results of the study, it can be concluded that the handout is valid and practical.
Schwabl, Franz
2006-01-01
The completely revised new edition of the classical book on Statistical Mechanics covers the basic concepts of equilibrium and non-equilibrium statistical physics. In addition to a deductive approach to equilibrium statistics and thermodynamics based on a single hypothesis - the form of the microcanonical density matrix - this book treats the most important elements of non-equilibrium phenomena. Intermediate calculations are presented in complete detail. Problems at the end of each chapter help students to consolidate their understanding of the material. Beyond the fundamentals, this text demonstrates the breadth of the field and its great variety of applications. Modern areas such as renormalization group theory, percolation, stochastic equations of motion and their applications to critical dynamics, kinetic theories, as well as fundamental considerations of irreversibility, are discussed. The text will be useful for advanced students of physics and other natural sciences; a basic knowledge of quantum mechan...
International Nuclear Information System (INIS)
Mukanov, D.M.
1996-01-01
Both a definition of optimal sizes and an opinion about representation of assay present practical interest during process of physical characteristics calculation of inhomogeneous materials by neutron method. The opinion about calculation sphere is introduced for definition of necessary dependences. It presents limited by convex surface with center coinciding with center of initial measuring transformer. Sizes of calculation sphere have been defined by physical process character of neutral radiation interaction with measured substance and its nuclear-physical parameters. 3 figs
International Nuclear Information System (INIS)
Jung, Byung C.; Lee, Doo Ho; Youn, Byeng D.; Lee, Soo Bum
2011-01-01
The performance of surface damping treatments may vary once the surface is exposed to a wide range of temperatures, because the performance of viscoelastic damping material is highly dependent on operational temperature. In addition, experimental data for dynamic responses of viscoelastic material are inherently random, which makes it difficult to design a robust damping layout. In this paper a statistical modeling procedure with a statistical calibration method is suggested for the variability characterization of viscoelastic damping material in constrained-layer damping structures. First, the viscoelastic material property is decomposed into two sources: (I) a random complex modulus due to operational temperature variability, and (II) experimental/model errors in the complex modulus. Next, the variability in the damping material property is obtained using the statistical calibration method by solving an unconstrained optimization problem with a likelihood function metric. Two case studies are considered to show the influence of the material variability on the acoustic performances in the structural-acoustic systems. It is shown that the variability of the damping material is propagated to that of the acoustic performances in the systems. Finally, robust and reliable damping layout designs of the two case studies are obtained through the reliability-based design optimization (RBDO) amidst severe variability in operational temperature and the damping material
Weibull statistical analysis of Krouse type bending fatigue of nuclear materials
Energy Technology Data Exchange (ETDEWEB)
Haidyrah, Ahmed S., E-mail: ashdz2@mst.edu [Nuclear Engineering, Missouri University of Science & Technology, 301 W. 14th, Rolla, MO 65409 (United States); Nuclear Science Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Newkirk, Joseph W. [Materials Science & Engineering, Missouri University of Science & Technology, 1440 N. Bishop Ave, Rolla, MO 65409 (United States); Castaño, Carlos H. [Nuclear Engineering, Missouri University of Science & Technology, 301 W. 14th, Rolla, MO 65409 (United States)
2016-03-15
A bending fatigue mini-specimen (Krouse-type) was used to study the fatigue properties of nuclear materials. The objective of this paper is to study fatigue for Grade 91 ferritic-martensitic steel using a mini-specimen (Krouse-type) suitable for reactor irradiation studies. These mini-specimens are similar in design (but smaller) to those described in the ASTM B593 standard. The mini specimen was machined by waterjet and tested as-received. The bending fatigue machine was modified to test the mini-specimen with a specially designed adapter. The cycle bending fatigue behavior of Grade 91 was studied under constant deflection. The S–N curve was created and mean fatigue life was analyzed using mean fatigue life. In this study, the Weibull function was predicted probably for high stress to low stress at 563, 310 and 265 MPa. The commercial software Minitab 17 was used to calculate the distribution of fatigue life under different stress levels. We have used 2 and 3- parameters Weibull analysis to introduce the probability of failure. The plots indicated that the 3- parameter Weibull distribution fits the data well.
Weibull statistical analysis of Krouse type bending fatigue of nuclear materials
International Nuclear Information System (INIS)
Haidyrah, Ahmed S.; Newkirk, Joseph W.; Castaño, Carlos H.
2016-01-01
A bending fatigue mini-specimen (Krouse-type) was used to study the fatigue properties of nuclear materials. The objective of this paper is to study fatigue for Grade 91 ferritic-martensitic steel using a mini-specimen (Krouse-type) suitable for reactor irradiation studies. These mini-specimens are similar in design (but smaller) to those described in the ASTM B593 standard. The mini specimen was machined by waterjet and tested as-received. The bending fatigue machine was modified to test the mini-specimen with a specially designed adapter. The cycle bending fatigue behavior of Grade 91 was studied under constant deflection. The S–N curve was created and mean fatigue life was analyzed using mean fatigue life. In this study, the Weibull function was predicted probably for high stress to low stress at 563, 310 and 265 MPa. The commercial software Minitab 17 was used to calculate the distribution of fatigue life under different stress levels. We have used 2 and 3- parameters Weibull analysis to introduce the probability of failure. The plots indicated that the 3- parameter Weibull distribution fits the data well.
Energy Technology Data Exchange (ETDEWEB)
Smorodin, F.K.; Druzhinin, G.V.
1991-01-01
A mathematical model is proposed which describes the fracture behavior of amorphous materials during laser cutting. The model, which is based on boundary layer equations, is reduced to ordinary differential equations with the corresponding boundary conditions. The reduced model is used to develop an approximate method for calculating the fracture characteristics of nonmetallic materials.
International Nuclear Information System (INIS)
Geske, G.
1979-01-01
With the aid of two effective material parameters a simple expression is presented for the Bethe-Bloch-formula for the calculation of the collision stopping power of materials for fast electrons. The formula has been modified in order to include the density effect. The derivation was accomplished in connection with a formalism given by Kim. It was shown that the material dependence on the collision stopping power is entirely comprehended by the density and two effective material parameters. Thus a simple criterion is given for the comparison of materials as to their collision stopping power
International Nuclear Information System (INIS)
Jesenik, M.; Gorican, V.; Trlep, M.; Hamler, A.; Stumberger, B.
2006-01-01
A lot of magnetic materials are anisotropic. In the 3D finite element method calculation, anisotropy of the material is taken into account. Anisotropic magnetic material is described with magnetization curves for different magnetization directions. The 3D transient calculation of the rotational magnetic field in the sample of the round rotational single sheet tester with circular sample considering eddy currents is made and compared with the measurement to verify the correctness of the method and to analyze the magnetic field in the sample
Taniya, Abraham; Deepthi, Murali; Padmanabhan, Alapat
2018-06-01
Recent calculations on the change in radial dimensions of reacting (growing) polyethylene in the gas phase experiencing Lennard Jones and Kihara type potentials revealed that a single reacting polyethylene molecule does not experience polymer collapse. This implies that a transition that is the converse of what happens when molten polyethylene crystallizes, i.e. it transforms from random coil like structure to folded rigid rod type structure, occurs. The predicted behaviour of growing polyethylene was explained by treating the head of the growing polymer chain as myopic whereas as the whole chain (i.e. when under equilibrium conditions) being treated as having normal vision, i.e. the growing chain does not see the attractive part of the LJ or Kihara Potentials. In this paper we provide further proof for this argument in two ways. Firstly we carry forward the exact enumeration calculations on growing self avoiding walks reported in that paper to larger values of number of steps by using Monte Carlo type calculations. We thereby assign physical significance to the connective constant of self avoiding walks, which until now was treated as a purely abstract mathematical entity. Secondly since a reacting polymer molecule that grows by addition polymerisation sees only one step ahead at a time, we extend this calculation by estimating the average atmosphere for molecules, with repulsive potential only (growing self avoiding walks in two dimensions), that look at two, three, four, five ...steps ahead. Our calculation shows that the arguments used in the previous work are correct.
International Nuclear Information System (INIS)
Damla, N.; Baltas, H.; Celik, A.; Kiris, E.; Cevik, U.
2008-01-01
Some building materials, regularly used in Turkey, such as sand, cement, gas concrete (lightweight, aerated concrete), tile and brick, have been investigated in terms of mass attenuation coefficient, effective atomic, numbers (Z eff ), effective electron densities (N e ) and photon interaction cross section (σ a ) at 14 different energies from 81- to 1332-keV gamma-ray energies. The gamma rays were detected by using gamma-ray spectroscopy, a High Purity Germanium (HPGe) detector. The elemental compositions of samples were analysed using an energy dispersive X-ray fluorescence spectrometer. Mass attenuation coefficients of these samples have been compared with tabulations based upon the results of WinXcom. The theoretical mass attenuation coefficients were estimated using the mixture rule and the experimental values of investigated parameters were compared with the calculated values. The agreement of measured values of mass attenuation coefficient, effective atomic numbers, effective electron densities and photon interaction cross section with the theory has been found to be quite satisfactory. (authors)
Static analysis of material testing reactor cores:critical core calculations
International Nuclear Information System (INIS)
Nawaz, A. A.; Khan, R. F. H.; Ahmad, N.
1999-01-01
A methodology has been described to study the effect of number of fuel plates per fuel element on critical cores of Material Testing Reactors (MTR). When the number of fuel plates are varied in a fuel element by keeping the fuel loading per fuel element constant, the fuel density in the fuel plates varies. Due to this variation, the water channel width needs to be recalculated. For a given number of fuel plates, water channel width was determined by optimizing k i nfinity using a transport theory lattice code WIMS-D/4. The dimensions of fuel element and control fuel element were determined using this optimized water channel width. For the calculated dimensions, the critical cores were determined for the given number of fuel plates per fuel element by using three dimensional diffusion theory code CITATION. The optimization of water channel width gives rise to a channel width of 2.1 mm when the number of fuel plates is 23 with 290 g ''2''3''5U fuel loading which is the same as in the case of Pakistan Reactor-1 (PARR-1). Although the decrease in number of fuel element results in an increase in optimal water channel width but the thickness of standard fuel element (SFE) and control fuel element (CFE) decreases and it gives rise to compact critical and equilibrium cores. The criticality studies of PARR-1 are in good agreement with the predictions
Sink efficiency calculation of dislocations in irradiated materials by phase-field modelling
International Nuclear Information System (INIS)
Rouchette, Adrien
2015-01-01
The aim of this work is to develop a modelling technique for diffusion of crystallographic migrating defects in irradiated metals and absorption by sinks to better predict the microstructural evolution in those materials.The phase field technique is well suited for this problem, since it naturally takes into account the elastic effects of dislocations on point defect diffusion in the most complex cases. The phase field model presented in this work has been adapted to simulate the generation of defects by irradiation and their absorption by the dislocation cores by means of a new order parameter associated to the sink morphology. The method has first been validated in different reference cases by comparing the sink strengths obtained numerically with analytical solutions available in the literature. Then, the method has been applied to dislocations with different orientations in zirconium, taking into account the anisotropic properties of the crystal and point defects, obtained by state-of-the-art atomic calculations.The results show that the shape anisotropy of the point defects promotes the vacancy absorption by basal loops, which is consistent with the experimentally observed zirconium growth under irradiation. Finally, the rigorous investigation of the dislocation loop case proves that phase field simulations give more accurate results than analytical solutions in realistic loop density ranges. (author)
International Nuclear Information System (INIS)
Li Qing; Ren Xin; Zhang Kangda
2009-01-01
Using the finite element method, calculation and test are conducted on the bolted joints of four different diameters, and the existing calculation method for bolt compliance coefficient is analyzed. The results indicate that the calculated and test results by finite element method are agreed well, and value D/t f and β have a linear relation. (authors)
International Nuclear Information System (INIS)
Kucharczyk, M.; Olszewski, S.
1982-01-01
The Grueneisen parameter of alkali halides is calculated by an ab initio quantum-statistical method and then compared with the experimental data. The crystal model applied assumes the crystal ions to be compressible but impenetrable spheres. The ions are described with the aid of a modified Thomas-Fermi theory with exchange. At the next step it is possible to calculate the energy needed to transform the system of the non-interacting ions into the ionic system represented by the crystal lattice. This calculation allows for an ab initio estimate of the parameters entering the Born, or the Born-Mayer, repulsive part of the crystal energy. The parameters are then used in the calculation of the Grueneisen parameter and its dependence on the crystal compression. (author)
Granato, Gregory E.; Ries, Kernell G.; Steeves, Peter A.
2017-10-16
Streamflow statistics are needed by decision makers for many planning, management, and design activities. The U.S. Geological Survey (USGS) StreamStats Web application provides convenient access to streamflow statistics for many streamgages by accessing the underlying StreamStatsDB database. In 2016, non-interpretive streamflow statistics were compiled for streamgages located throughout the Nation and stored in StreamStatsDB for use with StreamStats and other applications. Two previously published USGS computer programs that were designed to help calculate streamflow statistics were updated to better support StreamStats as part of this effort. These programs are named “GNWISQ” (Get National Water Information System Streamflow (Q) files), updated to version 1.1.1, and “QSTATS” (Streamflow (Q) Statistics), updated to version 1.1.2.Statistics for 20,438 streamgages that had 1 or more complete years of record during water years 1901 through 2015 were calculated from daily mean streamflow data; 19,415 of these streamgages were within the conterminous United States. About 89 percent of the 20,438 streamgages had 3 or more years of record, and about 65 percent had 10 or more years of record. Drainage areas of the 20,438 streamgages ranged from 0.01 to 1,144,500 square miles. The magnitude of annual average streamflow yields (streamflow per square mile) for these streamgages varied by almost six orders of magnitude, from 0.000029 to 34 cubic feet per second per square mile. About 64 percent of these streamgages did not have any zero-flow days during their available period of record. The 18,122 streamgages with 3 or more years of record were included in the StreamStatsDB compilation so they would be available via the StreamStats interface for user-selected streamgages. All the statistics are available in a USGS ScienceBase data release.
Labushev, Mikhail M.; Khokhlov, Alexander N.
2012-01-01
Index of proportionality of atomic weights of chemical elements is proposed for determining the relative age of minerals and rocks. Their chemical analysis results serve to be initial data for calculations. For rocks of different composition the index is considered to be classification value as well. Crystal lattice energy change in minerals and their associations can be measured by the index value change, thus contributing to the solution of important practical problems. There was determined...
International Nuclear Information System (INIS)
Gribakin, G.F.; Gribakina, A.A.; Flambaum, V.V.
1999-01-01
We show that the spectrum and eigenstates of open-shell multicharged atomic ions near the ionisation threshold are chaotic, as a result of extremely high level densities of multiply excited electron states (10 3 eV -1 in Au 24+ ) and strong configuration mixing. This complexity enables one to use statistical methods to analyse the system. We examine the dependence of the orbital occupation numbers and single-particle energies on the excitation energy of the system, and show that the occupation numbers are described by the Fermi-Dirac distribution, and the temperature and chemical potential can be introduced. The Fermi-Dirac temperature is close to the temperature defined through the canonical distribution. Using a statistical approach we estimate the contribution of multielectron resonant states to the radiative capture of low-energy electrons by Au 25+ and demonstrate that this mechanism fully accounts for the 10 2 times enhancement of the recombination over the direct radiative recombination, in agreement with recent experimental observations. Copyright (1999) CSIRO Australia
CSIR Research Space (South Africa)
Debba, Pravesh
2010-11-01
Full Text Available This paper reports on the results from ordinary least squares and ridge regression as statistical methods, and is compared to numerical optimization methods such as the stochastic method for global optimization, simulated annealing, particle swarm...
Energy Technology Data Exchange (ETDEWEB)
Garcia, T.; Angeles, A.; Flores C, J., E-mail: teodoro.garcia@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)
2013-10-15
In this work the conditions of nuclear safety were determined as much in normal conditions as in the accident event of the nuclear fuel warehouse of the reactor TRIGA Mark III of the Instituto Nacional de Investigaciones Nucleares (ININ). The warehouse contains standard fuel elements Leu - 8.5/20, a control rod with follower of standard fuel type Leu - 8.5/20, fuel elements Leu - 30/20, and the reactor fuel Sur-100. To check the subcritical state of the warehouse the effective multiplication factor (keff) was calculated. The keff calculation was carried out with the code MCNPX. (Author)
International Nuclear Information System (INIS)
1987-04-01
Under the auspices of the IAEA a computercode, named INTERTRAN, has been developed in order to calculate the risks of the transport of radioactive materials. This code has to be tested nearer. For the Dutch situation a number of calculations has been performed of more or less realistic cases in which four transport streams have been investigated. Two transport routes are chosen. The risks thus obtained are compared quantitatively with the risks of LPG-transports. 4 refs.; 9 figs
Study on the surface hydroxyl group on solid breeding materials by ab-initio calculations
Energy Technology Data Exchange (ETDEWEB)
Tanaka, Satoru; Taniguchi, Masaki [Tokyo Univ. (Japan). Faculty of Engineering
1996-10-01
The nature of -OH on the surface of Li{sub 2}O was analyzed with the ab-initio quantum chemical calculation technique. Calculation results showed that the stretching vibration of O-H is affected by the chemical species around the -OH. (author)
Review of theoretical calculations of hydrogen storage in carbon-based materials
Energy Technology Data Exchange (ETDEWEB)
Meregalli, V.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)
2001-02-01
In this paper we review the existing theoretical literature on hydrogen storage in single-walled nanotubes and carbon nanofibers. The reported calculations indicate a hydrogen uptake smaller than some of the more optimistic experimental results. Furthermore the calculations suggest that a variety of complex chemical processes could accompany hydrogen storage and release. (orig.)
Model for calculation of concentration and load on behalf of accidents with radioactive materials
International Nuclear Information System (INIS)
Janssen, L.A.M.; Heugten, W.H.H. van
1987-04-01
In the project 'Information- and calculation-system for disaster combatment', by order of the Dutch government, a demonstration model has been developed for a diagnosis system for accidents. In this demonstration a model is used to calculate the concentration- and dose-distributions caused by incidental emissions of limited time. This model is described in this report. 4 refs.; 2 figs.; 3 tabs
Neutron spectra calculation in material in order to compute irradiation damage
International Nuclear Information System (INIS)
Dupont, C.; Gonnord, J.; Le Dieu de Ville, A.; Nimal, J.C.; Totth, B.
1982-01-01
This short presentation will be on neutron spectra calculation methods in order to compute the damage rate formation in irradiated structure. Three computation schemes are used in the French C.E.A.: (1) 3-dimensional calculations using the line of sight attenuation method (MERCURE IV code), the removal cross section being obtained from an adjustment on a 1-dimensional transport calculation with the discrete ordinate code ANISN; (2) 2-dimensional calculations using the discrete ordinates method (DOT 3.5 code), 20 to 30 group library obtained by collapsing the 100 group a library on fluxes computed by ANISN; (3) 3-dimensional calculations using the Monte Carlo method (TRIPOLI system). The cross sections which originally came from UKNDL 73 and ENDF/B3 are now processed from ENDF B IV. (author)
International Nuclear Information System (INIS)
Sorokin, G.A.; Zhukov, A.V.; Bogoslovskaya, G.P.; Sorokin, A.P.
2000-01-01
The method of calculation of a temperature field in fast reactor core using criterion equal thermo-technical reliability of subassemblies in various zones throttling taking into account change thermohydraulic characteristics of subassemblies during campaign under influence change form of core, redistribution heat generation, casual any deviation of various parameters is stated. The distribution of the statistical characteristics of a temperature field in subassemblies is calculated on subchannel method with account of an interchannel exchange and feature of influence of deformation on a temperature field in subassemblies using Monte-Carlo method. The results of the calculations show that deformation can have significant influence on a temperature mode of core. It is necessary to make thermohydraulic analysis of core during campaign at a stage of preliminary study of the projects fast reactors. (author)
Energy Technology Data Exchange (ETDEWEB)
Baniassadi, Majid; Mortazavi, Behzad; Hamedani, Amani; Garmestani, Hamid; Ahzi, Said; Fathi-Torbaghan, Madjid; Ruch, David; Khaleel, Mohammad A.
2012-01-31
In this study, a previously developed reconstruction methodology is extended to three-dimensional reconstruction of a three-phase microstructure, based on two-point correlation functions and two-point cluster functions. The reconstruction process has been implemented based on hybrid stochastic methodology for simulating the virtual microstructure. While different phases of the heterogeneous medium are represented by different cells, growth of these cells is controlled by optimizing parameters such as rotation, shrinkage, translation, distribution and growth rates of the cells. Based on the reconstructed microstructure, finite element method (FEM) was used to compute the effective elastic modulus and effective thermal conductivity. A statistical approach, based on two-point correlation functions, was also used to directly estimate the effective properties of the developed microstructures. Good agreement between the predicted results from FEM analysis and statistical methods was found confirming the efficiency of the statistical methods for prediction of thermo-mechanical properties of three-phase composites.
Earthquake statistics inferred from plastic events in soft-glassy materials
Benzi, Roberto; Toschi, Federico; Trampert, Jeannot
2016-01-01
We propose a new approach for generating synthetic earthquake catalogues based on the physics of soft glasses. The continuum approach produces yield-stress materials based on Lattice-Boltzmann simulations. We show that, if the material is stimulated below yield stress, plastic events occur, which
Energy Technology Data Exchange (ETDEWEB)
Nimbalkar, Sachin U. [ORNL; Wenning, Thomas J. [ORNL; Guo, Wei [ORNL
2017-08-01
In the United States, manufacturing facilities account for about 32% of total domestic energy consumption in 2014. Robust energy tracking methodologies are critical to understanding energy performance in manufacturing facilities. Due to its simplicity and intuitiveness, the classic energy intensity method (i.e. the ratio of total energy use over total production) is the most widely adopted. However, the classic energy intensity method does not take into account the variation of other relevant parameters (i.e. product type, feed stock type, weather, etc.). Furthermore, the energy intensity method assumes that the facilities’ base energy consumption (energy use at zero production) is zero, which rarely holds true. Therefore, it is commonly recommended to utilize regression models rather than the energy intensity approach for tracking improvements at the facility level. Unfortunately, many energy managers have difficulties understanding why regression models are statistically better than utilizing the classic energy intensity method. While anecdotes and qualitative information may convince some, many have major reservations about the accuracy of regression models and whether it is worth the time and effort to gather data and build quality regression models. This paper will explain why regression models are theoretically and quantitatively more accurate for tracking energy performance improvements. Based on the analysis of data from 114 manufacturing plants over 12 years, this paper will present quantitative results on the importance of utilizing regression models over the energy intensity methodology. This paper will also document scenarios where regression models do not have significant relevance over the energy intensity method.
International Nuclear Information System (INIS)
Max Morris
2001-01-01
Recent advances in sensor technology and engineering have made it possible to assemble many related sensors in a common array, often of small physical size. Sensor arrays may report an entire vector of measured values in each data collection cycle, typically one value per sensor per sampling time. The larger quantities of data provided by larger arrays certainly contain more information, however in some cases experience suggests that dramatic increases in array size do not always lead to corresponding improvements in the practical value of the data. The work leading to this report was motivated by the need to develop computational planning tools to approximate the relative effectiveness of arrays of different size (or scale) in a wide variety of contexts. The basis of the work is a statistical model of a generic sensor array. It includes features representing measurement error, both common to all sensors and independent from sensor to sensor, and the stochastic relationships between the quantities to be measured by the sensors. The model can be used to assess the effectiveness of hypothetical arrays in classifying objects or events from two classes. A computer program is presented for evaluating the misclassification rates which can be expected when arrays are calibrated using a given number of training samples, or the number of training samples required to attain a given level of classification accuracy. The program is also available via email from the first author for a limited time
TNG calculations and evaluations of photon production data for some ENDF/B-VI materials
International Nuclear Information System (INIS)
Fu, C.Y.
1994-01-01
Among the new evaluations in the ENDF/B-VI general purpose files, 25 were based on calculations using TNG, a consistent Hauser-Feshbach pre-equilibrium nuclear model code. The photon production cross sections and spectra were calculated simultaneously with the particle emission cross sections and spectra, assuring energy balance for each reaction. The theories used in TNG for these calculations are summarized. Several examples of photon production data, taken from the ENDF/B-VI files, are compared with the available experimental data
Energy Technology Data Exchange (ETDEWEB)
Mura, M.C. [Istituto Superiore di Sanita' , Laboratorio di Igiene Ambientale, Rome (Italy)
2001-07-01
The statistical processing of data resulting from the monitoring of chemical atmospheric pollution aimed at air quality control is presented. The form of procedural models may offer a practical instrument to the operators in the sector. The procedural models are modular and can be easily integrated with other models. They include elementary calculation procedures and mathematical methods for statistical analysis. The calculation elements have been developed by probabilistic induction so as to relate them to the statistical analysis. The calculation elements have been developed by probabilistic induction so as to relate them to the statistical models, which are the basis of the methods used for the study and the forecast of atmospheric pollution. This report is part of the updating and training activity that the Istituto Superiore di Sanita' has been carrying on for over twenty years, addressed to operators of the environmental field. [Italian] Il processo di elaborazione statistica dei dati provenienti dal monitoraggio dell'inquinamento chimico dell'atmosfera, finalizzato al controllo della qualita' dell'aria, e' presentato in modelli di procedure al fine di fornire un sintetico strumento di lavoro agli operatori del settore. I modelli di procedure sono modulari ed integrabili. Includono gli elementi di calcolo elementare ed i metodi statistici d'analisi. Gli elementi di calcolo sono sviluppati con metodo d'induzione probabilistica per collegarli ai modelli statistici, che sono alla base dei metodi d'analisi nello studio del fenomeno dell'inquinamento atmosferico anche a fini previsionali. Il rapporto si inserisce nell'attivita' di aggiornamento e di formazione che fin dagli anni ottanta l'Istituto Superiore di Sanita' indirizza agli operatori del settore ambientale.
International Nuclear Information System (INIS)
Fryer, L.S.
1978-12-01
TIRION 4 is the most recent program in a series designed to calculate the consequences of releasing radioactive material to the atmosphere. A brief description of the models used in the program and full details of the various control cards necessary to run TIRION 4 are given. (author)
Calculation of radiation level around a pile of packages for radioactive materials
International Nuclear Information System (INIS)
Franken, Y.
2003-01-01
With respect to the title subject three calculation methods were investigated for reliability and ease of use and tested on the basis of two cases (one single Mo/TC-generator and a pile of five Mo/TC-generators). Method 1 is an approximate calculation method on the basis of a grid (as a BCC-lattice), Method 2 is the Point-Kernel method, and Method 3 concerns the Monte Carlo N-particle code (MCNP) method [nl
International Nuclear Information System (INIS)
Mizoguchi, Teruyasu
2011-01-01
In this review, following two topics are introduced: 1) experimental and theoretical electron energy loss (EEL) near edge structures (ELNES) and X-ray absorption near edge structures (XANES), and 2) atomic and electronic structure analysis of ceramic interface by combing spectroscopy, microscopy, and first principles calculation. In the ELNES/XANES calculation, it is concluded that inclusion of core-hole effect in the calculation is essential. By combining high energy resolution observation and theoretical calculation, detailed analysis of the electronic structure is achieved. In addition, overlap population (OP) diagram is used to interpret the spectrum. In the case of AlN, sharp and intense first peak of N-K edge is found to reflect narrow dispersion of the conduction band bottom. By applying ELNES and the OP diagram to Cu/Al 2 O 3 heterointerface, it is revealed that intensity of prepeak in O-K edge is inverse proportional to interface strength. The relationships between atomic structure and defect energetics at SrTiO 3 grain boundary are also investigated, and reveal that the formation behavior of Ti vacancy is sensitive to the structural distortion. In addition, by using state-of-the-art spectroscopy, microscopy, and first principles calculations, atomic scale visualization of fluorine dopant in LaFeOAs and first principles calculation of HfO 2 phase transformation are demonstrated. (author)
International Nuclear Information System (INIS)
Eisenbach, Markus; Perera, Meewanage Dilina N.; Landau, David P; Nicholson, Don M.; Yin, Junqi; Brown, Greg
2015-01-01
We present a unified approach to describe the combined behavior of the atomic and magnetic degrees of freedom in magnetic materials. Using Monte Carlo simulations directly combined with first principles the Curie temperature can be obtained ab initio in good agreement with experimental values. The large scale constrained first principles calculations have been used to construct effective potentials for both the atomic and magnetic degrees of freedom that allow the unified study of influence of phonon-magnon coupling on the thermodynamics and dynamics of magnetic systems. The MC calculations predict the specific heat of iron in near perfect agreement with experimental results from 300K to above Tc and allow the identification of the importance of the magnon-phonon interaction at the phase-transition. Further Molecular Dynamics and Spin Dynamics calculations elucidate the dynamics of this coupling and open the potential for quantitative and predictive descriptions of dynamic structure factors in magnetic materials using first principles-derived simulations.
International Nuclear Information System (INIS)
Bangart, R.L.; Bell, L.G.; Boegli, J.S.; Burke, W.C.; Lee, J.Y.; Minns, J.L.; Stoddart, P.G.; Weller, R.A.; Collins, J.T.
1978-12-01
The calculational procedures described in the report reflect current NRC staff practice. The methods described will be used in the evaluation of applications for construction permits and operating licenses docketed after January 1, 1979, until this NUREG is revised as a result of additional staff review. The BWR-GALE (Boiling Water Reactor Gaseous and Liquid Effluents) Code is a computerized mathematical model for calculating the release of radioactive material in gaseous and liquid effluents from boiling water reactors (BWRs). The calculations are based on data generated from operating reactors, field tests, laboratory tests, and plant-specific design considerations incorporated to reduce the quantity of radioactive materials that may be released to the environment
DEFF Research Database (Denmark)
Thygesen, Kristian Sommer
2017-01-01
and quasiparticle band structures in 2D materials and their heterostructures. The general theory is illustrated by applications to various types of 2D materials including transition metal dichalcogenides, graphene, phosphorene, and hexagonal boron nitride. The weak and highly non-local dielectric function...
CONTRIBUTION TO THE STATISTICAL INTERPRETATION OF RAW MATERIALS FOR THE CEMENT INDUSTRY OF SPLIT
Directory of Open Access Journals (Sweden)
Miroslav Matijaca
1990-12-01
Full Text Available Up to the last two decades cement was produced from mari called »tupina« (with about 76% CaCOj which is an ideal mixture for cement production. Due to the quantity decrease of this raw material, cement production went on using the mixture of other members of the flysch series: limestones, marls, clay, loess, sandstones a.o. By the analysis of natural materials the CaCO^ content has mostly been proved. Therefore, knowing the correlation of oxides in mineral raw material is of special significance. The article discusses investigation results of the correlation between CaCO-i and other oxides of the raw material (the paper is published in Croatian.
Statistical analysis of nuclear material weighing systems at the Oak Ridge - Y-12 plant
International Nuclear Information System (INIS)
Hammer, A.H.
1980-04-01
The variation in weight measurements on the electronic scales purchased for the Dynamic Special Nuclear Materials Control and Accountability System (DYMCAS) has been characterized and estimated to be more than is acceptable when using the current weighing methods. New weighing procedures have been developed which substantially reduce this variation and bring the weight errors within the Y-12 Plant Nuclear Materials Control and Accountability Department's desired +- 2-g accuracy
Calculation of Airborne Radioactivity Hazard from Machining Volume-Activated Materials
International Nuclear Information System (INIS)
E.T. Marshall; S.O. Schwahn
1997-01-01
When evaluating a task involving the machining of volume-activated materials, accelerator health physicists must consider more than the surface contamination levels of the equipment and containment of loose shavings, dust or filings. Machining operations such as sawing, routing, welding, and grinding conducted on volume-activated material may pose a significant airborne radioactivity hazard to the worker. This paper presents a computer spreadsheet notebook that conservatively estimates the airborne radioactivity levels generated during machining operations performed on volume-activated materials. By knowing (1) the size and type of materials, (2) the dose rate at a given distances, and (3) limited process knowledge, the Derived Air Concentration (DAC) fraction can be estimated. This tool is flexible, taking into consideration that the process knowledge available for the different materials varies. It addresses the two most common geometries: thick plane and circular cylinder. Once the DAC fraction has been estimated, controls can be implemented to mitigate the hazard to the worker
Calculation of airborne radioactivity hazard from machining volume-activated materials
International Nuclear Information System (INIS)
Marshall, E.T.; Schwahn, S.O.
1996-10-01
When evaluating a task involving the machining of volume-activated materials, accelerator health physicists must consider more than the surface contamination levels of the equipment and containment of loose shavings, dust or filings. Machining operations such as sawing, routing, welding, and grinding conducted on volume-activated material may pose a significant airborne radioactivity hazard to the worker. This paper presents a computer spreadsheet notebook that conservatively estimates the airborne radioactivity levels generated during machining operations performed on volume-activated materials. By knowing (1) the size and type of materials, (2) the dose rate at a given distances, and (3) limited process knowledge, the Derived Air Concentration (DAC) fraction can be estimated. This tool is flexible, taking into consideration that the process knowledge available for the different materials varies. It addresses the two most common geometries: thick plane and circular cylinder. Once the DAC fraction has been estimated, controls can be implemented to mitigate the hazard to the worker
Kauweloa, Kevin I; Gutierrez, Alonso N; Stathakis, Sotirios; Papanikolaou, Niko; Mavroidis, Panayiotis
2016-07-01
A toolkit has been developed for calculating the 3-dimensional biological effective dose (BED) distributions in multi-phase, external beam radiotherapy treatments such as those applied in liver stereotactic body radiation therapy (SBRT) and in multi-prescription treatments. This toolkit also provides a wide range of statistical results related to dose and BED distributions. MATLAB 2010a, version 7.10 was used to create this GUI toolkit. The input data consist of the dose distribution matrices, organ contour coordinates, and treatment planning parameters from the treatment planning system (TPS). The toolkit has the capability of calculating the multi-phase BED distributions using different formulas (denoted as true and approximate). Following the calculations of the BED distributions, the dose and BED distributions can be viewed in different projections (e.g. coronal, sagittal and transverse). The different elements of this toolkit are presented and the important steps for the execution of its calculations are illustrated. The toolkit is applied on brain, head & neck and prostate cancer patients, who received primary and boost phases in order to demonstrate its capability in calculating BED distributions, as well as measuring the inaccuracy and imprecision of the approximate BED distributions. Finally, the clinical situations in which the use of the present toolkit would have a significant clinical impact are indicated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
International Nuclear Information System (INIS)
Milinski, N.; Milinski, E.
2002-01-01
Amorphous conductors such as liquid metals and alloys are subject to dc conductivity σ calculation here. Principal aim is to explore the impact on σ of the constitutive equation α * = 1, formulated and developed in the preceding papers. The nearly free electrons (NFE) model has been applied. Alkali metals are assumed to fit this model well, and sodium the best. Consequently, the results on these metals have been assumed reliable and relevant for conclusions making. The conclusion we made is: instead of the Fermi radius k f proper for the statistical ensemble in state of thermodynamics equilibrium, a new k ' f number is needed to be introduced into the linear response formula when calculating σ and α * . This k ' f is the length of the corresponding axis of ellipsoid proper for describing the statistical ensemble in the state with dc current. In the traditional interpretation of the linear response formula (Kubo formula) this conversion has been overlooked. Parameters of the mentioned ellipsoids are determined in this paper for a number of liquid metals of valency numbers 1,2,3,4, in addition to a selection of some binary and ternary conducting alloys. It is up to experimental measurements to decide how real this concept of restructuring the statistical ensemble is. (Authors)
International Nuclear Information System (INIS)
Yamauchi, Teiyu; Hayashi, Toshihiko; Yamada, Takeshi; Futami, Choichiro; Tsukiyama, Yumiko; Harada, Motoko; Furui, Shigeru; Suzuki, Shigeru; Mimura, Kohshiro
2008-01-01
It is important to increase the iodine delivery rate (I), that is the iodine concentration of the contrast material (C) x the flow rate of the contrast material (Q), through microcatheters to obtain arteriograms of the highest contrast. It is known that C is an important factor that influences I. The purpose of this study is to establish a method of hydrodynamic calculation of the optimum iodine concentration (i.e., the iodine concentration at which I becomes maximum) of the contrast material and its flow rate through commercially available microcatheters. Iopamidol, ioversol and iohexol of ten iodine concentrations were used. Iodine delivery rates (I meas) of each contrast material through ten microcatheters were measured. The calculated iodine delivery rate (I cal) and calculated optimum iodine concentration (calculated C opt) were obtained with spreadsheet software. The agreement between I cal and I meas was studied by correlation and logarithmic Bland-Altman analyses. The value of the calculated C opt was within the optimum range of iodine concentrations (i.e. the range of iodine concentrations at which I meas becomes 90% or more of the maximum) in all cases. A good correlation between I cal and I meas (I cal = 1.08 I meas, r = 0.99) was observed. Logarithmic Bland-Altman analysis showed that the 95% confidence interval of I cal/I meas was between 0.82 and 1.29. In conclusion, hydrodynamic calculation with spreadsheet software is an accurate, generally applicable and cost-saving method to estimate the value of the optimum iodine concentration and its flow rate through microcatheters
International Nuclear Information System (INIS)
Guan, Dong; Wu, Jiu Hui; Jing, Li
2015-01-01
Highlights: • A random internal morphology and structure generation-growth method, termed as the quartet structure generation set (QSGS), has been utilized based on the stochastic cluster growth theory for numerical generating the various microstructures of porous metal materials. • Effects of different parameters such as thickness and porosity on sound absorption performance of the generated structures are studied by the present method, and the obtained results are validated by an empirical model as well. • This method could be utilized to guide the design and fabrication of the sound-absorption porous metal materials. - Abstract: In this paper, a statistical method for predicting sound absorption properties of porous metal materials is presented. To reflect the stochastic distribution characteristics of the porous metal materials, a random internal morphology and structure generation-growth method, termed as the quartet structure generation set (QSGS), has been utilized based on the stochastic cluster growth theory for numerical generating the various microstructures of porous metal materials. Then by using the transfer-function approach along with the QSGS tool, we investigate the sound absorbing performance of porous metal materials with complex stochastic geometries. The statistical method has been validated by the good agreement among the numerical results for metal rubber from this method and a previous empirical model and the corresponding experimental data. Furthermore, the effects of different parameters such as thickness and porosity on sound absorption performance of the generated structures are studied by the present method, and the obtained results are validated by an empirical model as well. Therefore, the present method is a reliable and robust method for predicting the sound absorption performance of porous metal materials, and could be utilized to guide the design and fabrication of the sound-absorption porous metal materials
A statistic sensitive to deviations from the zero-loss condition in a sequence of material balances
International Nuclear Information System (INIS)
Sellinschegg, D.
1982-01-01
The CUMUFR (cumulative sum of standardized MUFresiduals) statistic is proposed to examine materials balance data for deviations from the zero-loss condition. The time series of MUF-residuals is shown to be a linear transformation of the MUF-time series. The MUF-residuals can directly be obtained by applying the transformation or they can be obtained, approximately, by the application of a Kalman filter to estimate the true state of MUF. A modified sequential test with power one is formulated for testing the CUMUFR statistic. The detection capability of the proposed examination procedure is demonstrated by an example, based on Monte Carlo simulations, where the materials balance of the chemical separation process in a reference reprocessing facility is considered. It is shown that abrupt as well as protracted loss patterns are detected with rather high probability when they occur after a zeroloss period
Shi, Tingting
In this dissertation, a series of earth-abundant photovoltaic materials including lead halide perovskites, copper based compounds, and silicon are investigated via density functional theory (DFT). Firstly, we study the unique optoelectronic properties of perovskite CH3NH3PbI3 and CH3NH3PbBr 3. First-principle calculations show that CH3NH3PbI 3 perovskite solar cells exhibit remarkable optoelectronic properties that account for the high open circuit voltage (Voc) and long electron-hole diffusion lengths. Our results reveal that for intrinsic doping, dominant point defects produce only shallow levels. Therefore lead halide perovskites are expected to exhibit intrinsic low non-radiative recombination rates. The conductivity of perovskites can be tuned from p-type to n-type by controlling the growth conditions. For extrinsic defects, the p-type perovskites can be achieved by doping group-IA, -IB, or -VIA elements, such as Na, K, Rb, Cu, and O at I-rich growth conditions. We further show that despite a large band gap of 2.2 eV, the dominant defects in CH3 NH3PbBr3 also create only shallow levels. The photovoltaic properties of CH3NH3PbBr3 - based perovskite absorbers can be tuned via defect engineering. Highly conductive p-type CH3NH3PbBr3 can be synthesized under Br-rich growth conditions. Such CH3NH3PbBr 3 may be potential low-cost hole transporting materials for lead halide perovskite solar cells. All these unique defect properties of perovskites are largely due to the strong Pb lone-pair s orbital and I p (Br p) orbital antibonding coupling and the high ionicity of CH3NH3PbX3 (X=I, Br). Secondly, we study the optoelectronic properties of Cu-V-VI earth abundant compounds. These low cost thin films may have the good electronic and optical properties. We have studied the structural, electronic and optical properties of Cu3-V-VI4 compounds. After testing four different crystal structures, enargite, wurtzite-PMCA, famatinite and zinc-blend-PMCA, we find that Cu3PS4 and
Automated inventory and material science scoping calculations under fission and fusion conditions
Directory of Open Access Journals (Sweden)
Mark R. Gilbert
2017-09-01
Full Text Available The FISPACT-II inventory simulation platform is a modern computational tool with advanced and unique capabilities. It is sufficiently flexible and efficient to make it an ideal basis around which to perform extensive simulation studies to scope a variety of responses of many materials (elements to several different neutron irradiation scenarios. This paper briefly presents the typical outputs from these scoping studies, which have been used to compile a suite of nuclear physics materials handbooks, providing a useful and vital resource for material selection and design studies. Several different global responses are extracted from these reports, allowing for comparisons between materials and between different irradiation conditions. A new graphical output format has been developed for the FISPACT-II platform to display these “global summaries”; results for different elements are shown in a periodic table layout, allowing side-by-side comparisons. Several examples of such plots are presented and discussed.
Review of the Lattice Calculations for the CAREM-25 Reactor with Agincd as Absorber Material
International Nuclear Information System (INIS)
Zamonsky, Oscar
2000-01-01
In this work we compare some models to calculate the fuel elements of the CAREM-25 reactor at lattice level.In particular, we analyze the sensibility of the infinite multiplication factor and the peaking factor to several models and we propose the more accurate one for further calculations.The analysis is made for the cross sections library, the spatial discretization of the fuel element, the length of the burnup steps, the fuel temperature, and the coolant temperature and density.We also analyze several ways to model the AgInCd absorbers
International Nuclear Information System (INIS)
Shiino, Masatoshi; Yamana, Michiko
2004-01-01
We study the statistical mechanical aspects of stochastic analog neural network models for associative memory with correlation type learning. We take three approaches to derive the set of the order parameter equations for investigating statistical properties of retrieval states: the self-consistent signal-to-noise analysis (SCSNA), the Thouless-Anderson-Palmer (TAP) equation, and the replica symmetric calculation. On the basis of the cavity method the SCSNA can be generalized to deal with stochastic networks. We establish the close connection between the TAP equation and the SCSNA to elucidate the relationship between the Onsager reaction term of the TAP equation and the output proportional term of the SCSNA that appear in the expressions for the local fields
Statistical treatment of hazards result from radioactive material in metal scrap
International Nuclear Information System (INIS)
Salem, E.F.; Rashad, S.M.
2013-01-01
Radioactive sources have a wide range of uses in medicine and industry. Radioactive materials entering the public domain in an uncontrolled manner may creating a serious risk of radiation exposure for workers and the public as well as excessive costs for plant decontamination and waste of product to be borne by the metal industry. This paper describes the major accidents that had happened in the last decades due to radioactive material in metal scrap, provides assessment of associated hazards and lessons learned. This will help Regulatory Authority to introduce measures capable to avoid the recurrence of similar events. The study highlights the situation for metal scrap incidents in Egypt.
Garcia, F; Arruda-Neto, J D; Manso, M V; Helene, O M; Vanin, V R; Rodriguez, O; Mesa, J; Likhachev, V P; Filho, J W; Deppman, A; Perez, G; Guzman, F; de Camargo, S P
1999-10-01
A new and simple statistical procedure (STATFLUX) for the calculation of transfer coefficients of radionuclide transport to animals and plants is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. By using experimentally available curves of radionuclide concentrations versus time, for each animal compartment (organs), flow parameters were estimated by employing a least-squares procedure, whose consistency is tested. Some numerical results are presented in order to compare the STATFLUX transfer coefficients with those from other works and experimental data.
International Nuclear Information System (INIS)
Garcia, F.; Manso, M.V.; Rodriguez, O.; Mesa, J.; Arruda-Neto, J.D.T.; Helene, O.M.; Vanin, V.R.; Likhachev, V.P.; Pereira Filho, J.W.; Deppman, A.; Perez, G.; Guzman, F.; Camargo, S.P. de
1999-01-01
A new and simple statistical procedure (STATFLUX) for the calculation of transfer coefficients of radionuclide transport to animals and plants is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. By using experimentally available curves of radionuclide concentrations versus time, for each animal compartment (organs), flow parameters were estimated by employing a least-squares procedure, whose consistency is tested. Some numerical results are presented in order to compare the STATFLUX transfer coefficients with those from other works and experimental data. (author)
Yang, Hua; Mi, Wenbo; Bai, Haili; Cheng, Yingchun
2012-01-01
Electronic structure and optical properties of α-FeMO 3 systems (M = Sc, Ti, V, Cr, Cu, Cd or In) have been investigated using first principles calculations. All of the FeMO 3 systems have a large net magnetic moment. The ground state of pure α-Fe 2
Modeling of hydrogen storage in hydride-forming materials : statistical thermodynamics
Ledovskikh, A.; Danilov, D.; Rey, W.J.J.; Notten, P.H.L.
2006-01-01
A new lattice gas model has been developed, describing the hydrogen storage in hydride-forming materials. This model is based on the mean-field theory and Bragg-Williams approximation. To describe first-order phase transitions and two-phase coexistence regions, a binary alloy approach has been
International Nuclear Information System (INIS)
Borio, A.; Cagnazzo, M.; Marchetti, F.; Pappalardo, P.; Salvini, A.
2004-01-01
The aim of this work is to determine moderating properties of different materials (water, graphite, perfluoropolyethers), in particular the slowing down power (SDP) and the moderating ratio (MR), defined as SDP =ξΣ S and MR=ξΣ S /Σ A , where Σ S and Σ A represent the macroscopic scattering and absorption cross section, respectively, and ξ is the average logarithmic energy loss per collision. Slowing-down power indicates how rapidly a neutron will slow down in the material, but it does not fully explain the effectiveness of the material as a moderator. In fact, a material can slow down neutrons with high efficiency because of its big Σ S , but it can be a poor moderator because with high probability it also absorbs neutrons. Thus, the most complete measure of the effectiveness of a moderator is the moderating ratio parameter which takes into account also the absorption effects: the bigger is the moderating ratio values, the more effectively the material performs as a moderator. The first part of the work consisted in the comparison between the SDP and MR parameter evaluated for different materials by means of Monte Carlo simulations and by means of calculations based on their definition formula (they are developed from knowledge of material composition and of microscopic cross section σ i (derived from literature)). It was found that this comparison showed a good agreement with errors less than 10 %. Thus the Monte Carlo code seems to be a good support for the calculation of the moderating parameters, particularly useful when the materials are compounds of many elements. The second part of the work was dedicated to correlate the materials' MR values with the measured variation of reactivity induced by the insertion of the materials in the core of TRIGA Mark II reactor of the University of Pavia. This is possible by definition of a new parameter for the measure. This parameter, named S, depends on the total weight of the sample inserted in the reactor core
Aspects of modern fracture statistics
International Nuclear Information System (INIS)
Tradinik, W.; Pabst, R.F.; Kromp, K.
1981-01-01
This contribution begins with introductory general remarks about fracture statistics. Then the fundamentals of the distribution of fracture probability are described. In the following part the application of the Weibull Statistics is justified. In the fourth chapter the microstructure of the material is considered in connection with calculations made in order to determine the fracture probability or risk of fracture. (RW) [de
Energy Technology Data Exchange (ETDEWEB)
Kuster, E.; Moore, R.; Lust, L.; Kemper, P. [Georgia Inst. of Tech., Atlanta, GA (United States)
1996-12-31
A Method of Moments (MoM) electromagnetic model of percolating conducting films was applied to calculate the effective parameters of the composite formed by conducting inclusions placed within a dispersive magnetic but nondispersive dielectric matrix. The MoM calculations demonstrate a coupling between the magnetic properties of the matrix and the effective composite permittivity and frequency dispersion of the composite. The coupling of permittivity and permeability is observed near the percolation threshold of the composite and for high conductivity inclusions. The prediction agrees with physical expectations since near percolation the conduction correlation length dominates the effective permittivity of the composite and this correlation length is determined by both the permittivity and permeability of the composite.
Quasiparticle GW calculations for solids, molecules, and two-dimensional materials
DEFF Research Database (Denmark)
Hüser, Falco; Olsen, Thomas; Thygesen, Kristian Sommer
2013-01-01
band gap is around 1eV too low. Similar relative deviations are found for the ionization potentials of a test set of 32 small molecules. The importance of substrate screening for a correct description of quasiparticle energies and Fermi velocities in supported two-dimensional (2D) materials...... of quasiparticle states....
Ul Haq, Bakhtiar; Kanoun, Mohammed; Ahmed, Rashid; Bououdina, M.; Goumri-Said, Souraya
2014-01-01
.%) within a reasonable formation energy of -78 kJ mol-1, at room temperature, can be easily achievable, thus making Mg2FeH6 as potential material for practical H2 storage applications. Copyright © 2014, Hydrogen Energy Publications, LLC. Published
Saeed, Yasir
2014-01-01
opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure
A method to calculate flux distribution in reactor systems containing materials with grain structure
International Nuclear Information System (INIS)
Stepanek, J.
1980-01-01
A method is proposed to compute the neutron flux spatial distribution in slab, spherical or cylindrical systems containing zones with close grain structure of material. Several different types of equally distributed particles embedded in the matrix material are allowed in one or more zones. The multi-energy group structure of the flux is considered. The collision probability method is used to compute the fluxes in the grains and in an ''effective'' part of the matrix material. Then the overall structure of the flux distribution in the zones with homogenized materials is determined using the DPN ''surface flux'' method. Both computations are connected using the balance equation during the outer iterations. The proposed method is written in the code SURCU-DH. Two testcases are computed and discussed. One testcase is the computation of the eigenvalue in simplified slab geometry of an LWR container of one zone with boral grains equally distributed in an aluminium matrix. The second is the computation of the eigenvalue in spherical geometry of the HTR pebble-bed cell with spherical particles embedded in a graphite matrix. The results are compared to those obtained by repeated use of the WIMS Code. (author)
International Nuclear Information System (INIS)
Cardile, F.P.; Bangart, R.L.; Collins, J.T.
1978-06-01
The Intergovernmental Maritime Consultative Organization IMCO) is currently preparing guidelines concerning the safety of nuclear-powered merchant ships. An important aspect of these guidelines is the determination of the releases of radioactive material in effluents from these ships and the control exercised by the ships over these releases. To provide a method for the determination of these releases, the NRC staff has developed a computerized model, the NMS-GEFF Code, which is described in the following chapters. The NMS-GEFF Code calculates releases of radioactive material in gaseous effluents for nuclear-powered merchant ships using pressurized water reactors
International Nuclear Information System (INIS)
Hansen, F.Y.
1978-01-01
This program calculates the final pair distribution functions of non-crystalline materials on the basis of the experimental structure factor as calculated in part I and the parameters of the small distance part of the pair distribution function as calculated in part II. In this way, truncation error may be eliminated from the final pair distribution function. The calculations with this program depend on the results of calculations with the programs described in parts I and II. The final pair distribution function is calculated by a Fourier transform of a combination of an experimental structure factor and a model structure factor. The storage requirement depends on the number of data points in the structure factor, the number of data points in the final pair distribution function and the number of peaks necessary to resolve the small distance part of the pair distribution function. In the present set-up a storage requirement is set to 8860 words which is estimated to be satisfactory for a large number of cases. (Auth.)
International Nuclear Information System (INIS)
Voloshchenko, A.M.; Russkov, A.A.; Gurevich, M.I.; Olejnik, D.S.
2008-01-01
One analyzes a possibility to make use of the geometry approximations conserving the materials mass local balance in every mesh via adding of mixtures in the meshes containing several feed materials to perform the kinetic calculation of the reactor core neutron fields. To set the 3D-geometry of the reactor core one makes use of the combinatorial geometry methods implemented in the MCI Program to solve the diffusivity equations by the Monte Carlo method, to convert the combinatorial prescribing of the geometry into the mesh representation - the ray tracing method. According to the calculations of the WWER-1000 reactor core and the simulations of the spent fuel storage facility, the described procedure compares favorably with the conventional geometry approximations [ru
Material Deprivation in Selected EU Countries According to EU-SILC Income Statistics
Directory of Open Access Journals (Sweden)
Stávková Jana
2012-06-01
Full Text Available The article deals with issues of households at risk of poverty in relative conception. Income poverty means a situation when the threshold of 0.6 of median income is not achieved. The analysis of a broader definition of poverty is based on identification and assessment of material deprivation factors, including: financial stress, housing conditions, availability of consumer durables and basic needs. Data sources are based EU-SILC dataset. Presented analysis is focused on selected EU countries, namely Czech Republic, Finland, France, Spain and United Kingdom. The result identifies the problem areas that cause deprivation symptoms.
International Nuclear Information System (INIS)
Buffa, Francesca M.
2000-01-01
The aim of this work is to investigate the influence of the statistical fluctuations of Monte Carlo (MC) dose distributions on the dose volume histograms (DVHs) and radiobiological models, in particular the Poisson model for tumour control probability (tcp). The MC matrix is characterized by a mean dose in each scoring voxel, d, and a statistical error on the mean dose, σ d ; whilst the quantities d and σ d depend on many statistical and physical parameters, here we consider only their dependence on the phantom voxel size and the number of histories from the radiation source. Dose distributions from high-energy photon beams have been analysed. It has been found that the DVH broadens when increasing the statistical noise of the dose distribution, and the tcp calculation systematically underestimates the real tumour control value, defined here as the value of tumour control when the statistical error of the dose distribution tends to zero. When increasing the number of energy deposition events, either by increasing the voxel dimensions or increasing the number of histories from the source, the DVH broadening decreases and tcp converges to the 'correct' value. It is shown that the underestimation of the tcp due to the noise in the dose distribution depends on the degree of heterogeneity of the radiobiological parameters over the population; in particular this error decreases with increasing the biological heterogeneity, whereas it becomes significant in the hypothesis of a radiosensitivity assay for single patients, or for subgroups of patients. It has been found, for example, that when the voxel dimension is changed from a cube with sides of 0.5 cm to a cube with sides of 0.25 cm (with a fixed number of histories of 10 8 from the source), the systematic error in the tcp calculation is about 75% in the homogeneous hypothesis, and it decreases to a minimum value of about 15% in a case of high radiobiological heterogeneity. The possibility of using the error on the
Calculation of parameters of the original state of material radiation damage
International Nuclear Information System (INIS)
Krasnoshtanov, V.F.; Kevorkyan, Yu.R.; Eremin, Yu.P.; Belousov, G.G.
1974-01-01
The program ''Sample'' for evaluating the parameters of the initial state of radiation damage in samples irradiated by neutrons of different energies is described in this paper. Within the framework of this study, a program is elaborated for calculating the spectrum and density of initially knocked-on atoms in cylinder and parallelepiped-shaped samples, as well as in plates of various thickness. The model incorporated into the program is based on the Monte-Carlo method. In considering the neutron-to-atom interaction account is taken of the elastic scattering anisotropy and the process of inelastic scattering. This program is used to study the radiation damage states in iron samples irradiated by neutrons of different energies. A computer handled this program is based on sequential sampling of random values with a predetermined distribution law. The algorithm of the neutron's walk through a medium forms the basis of the ''Sample'' program. This program permits calculating, for a particular sample geometry, the initially knocked-on atom density and spectrum, as well as the density of the displacements due to the monoenergetic neutrons isotropically incident on the sample surface. The program also enables calculation of the static computation error. The block diagram of the ''Sample'' program and its text written in FORTRAN are presented. Also given is the dependence of the displacement density normalized with respect to the unit flux on the neutron energy for a parallelepiped-shaped sample. The neutron flux is determined by the number of collisions. The contribution of various energetic groups of initially knocked-on atoms into the radiation damage of a sample depending on the neutron energy is shown
2011-11-15
9001, Beer -Sheva, 84190, Israel † Present address: Pacific Northwest National Laboratory, Richland, WA 99354. ‡ Present address: Department of Physics...919 660 8963 Abstract Empirical databases of crystal structures and thermodynamic properties are fundamental tools for materials research. Recent...contains over 150,000 thermodynamic entries for alloys, covering the entire composition range of more than 650 binary systems, 13,000 electronic
Saeed, Yasir
2014-05-11
Thermoelectric materials can convert waste heat into electric power and thus provide a way to reduce the dependence on fossil fuels. Our aim is to model the underlying materials properties and, in particular, the transport as controlled by electrons and lattice vibrations. The goal is to develop an understanding of the thermoelectric properties of selected materials at a fundamental level. The structural, electronic, optical, and phononic properties are studied in order to tune the transport, focusing on KxRhO2, NaxRhO2, PtSb2 and Bi2Se3. The investigations are based on density functional theory as implemented in the all electron linearized augmented plane wave plus local orbitals WIEN2k and pseudo potential Quantum-ESPRESSO codes. The thermoelectric properties are derived from Boltzmann transport theory under the constant relaxation time approximation, using the BoltzTraP code. We will discuss first the changes in the electronic band structure under variation of the cation concentration in layered KxRhO2 in the 2H phase and NaxRhO2 in the 3R phase. We will also study the hydrated phase. The deformations of the RhO6 octahedra turn out to govern the thermoelectric properties, where the high Seebeck coefficient results from ”pudding mold" bands. We investigate the thermoelectric properties of electron and hole doped PtSb2, which is not a layered material but shares “pudding mold" bands. PtSb2 has a high Seebeck coefficient at room temperature, which increases significantly under As alloying by bandgap opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure, and transport properties of one to six quintuple layers of Bi2Se3 will be discussed. We also address the effect of strain on a single quintuple layer by phonon band structures. We will analyze the electronic and transport
STRRAP system-A software for hazardous materials risk assessment and safe distances calculation
International Nuclear Information System (INIS)
Godoy, S.M.; Santa Cruz, A.S.M.; Scenna, N.J.
2007-01-01
This work presents a powerful computational tool (Stochastic Toxic Release Risk Assessment Package, STRRAP) useful in risk assessment and emergency planning (safe distance calculation), which allows to handle the stochastic uncertainty of atmospheric parameters, critical for risk calculation when diffusion of hazardous gases or particulate matter occur as a consequence of an emission or accidental release. In fact, the random behaviour of wind intensity, wind direction, atmospheric stability and temperature, given a time horizon, (a season or a complete year), is taken into account considering also the day or night condition. STRRAP can be used for releases or emissions from static sources (for example a stack or a fixed tank in a facility) or from transportation accidents (road, rail, maritime and pipeline transport) involving different scenarios. After a stochastic simulation based on well-known diffusion models (dense and light gases, particulate matter) is carried out, the downwind pollutant concentrations are obtained, in order to compute safe distances and/or individual and societal risks. Some study cases are analyzed to show STRRAP capabilities
International Nuclear Information System (INIS)
Tsuji, Hirokazu; Yokoyama, Norio; Nakajima, Hajime; Kondo, Tatsuo
1993-05-01
Statistical analyses were conducted by using the cyclic crack growth rate data for pressure vessel steels stored in the JAERI Material Performance Database (JMPD), and comparisons were made on variability and/or reproducibility of the data between obtained by ΔK-increasing and by ΔK-constant type tests. Based on the results of the statistical analyses, it was concluded that ΔK-constant type tests are generally superior to the commonly used ΔK-increasing type ones from the viewpoint of variability and/or reproducibility of the data. Such a tendency was more pronounced in the tests conducted in simulated LWR primary coolants than those in air. (author)
International Nuclear Information System (INIS)
Broc, D.
1987-01-01
Mechanical stresses of compacted clays between the canister and the host rock are studied in the different cases during evolution of a vitrified waste storage site. Thermal stress variations are studied in function of time and thermal power decrease of stored wastes and of materials characteristics and behavior. Consequences of stresses produced by partial hydratation of clays are evaluated. The study concludes that an argillaceous containment does not present a rupture risk, even during a partial hydratation in addition stresses on stored packaging are obtained
Development of temperature statistical model when machining of aerospace alloy materials
Directory of Open Access Journals (Sweden)
Kadirgama Kumaran
2014-01-01
Full Text Available This paper presents to develop first-order models for predicting the cutting temperature for end-milling operation of Hastelloy C-22HS by using four different coated carbide cutting tools and two different cutting environments. The first-order equations of cutting temperature are developed using the response surface methodology (RSM. The cutting variables are cutting speed, feed rate, and axial depth. The analyses are carried out with the aid of the statistical software package. It can be seen that the model is suitable to predict the longitudinal component of the cutting temperature close to those readings recorded experimentally with a 95% confident level. The results obtained from the predictive models are also compared with results obtained from finite-element analysis (FEA. The developed first-order equations for the cutting temperature revealed that the feed rate is the most crucial factor, followed by axial depth and cutting speed. The PVD coated cutting tools perform better than the CVD-coated cutting tools in terms of cutting temperature. The cutting tools coated with TiAlN perform better compared with other cutting tools during the machining performance of Hastelloy C-22HS. It followed by TiN/TiCN/TiN and CVD coated with TiN/TiCN/Al2O3 and TiN/TiCN/TiN. From the finite-element analysis, the distribution of the cutting temperature can be discussed. High temperature appears in the lower sliding friction zone and at the cutting tip of the cutting tool. Maximum temperature is developed at the rake face some distance away from the tool nose, however, before the chip lift away.
Yang, Hua
2012-01-01
Electronic structure and optical properties of α-FeMO 3 systems (M = Sc, Ti, V, Cr, Cu, Cd or In) have been investigated using first principles calculations. All of the FeMO 3 systems have a large net magnetic moment. The ground state of pure α-Fe 2O 3 is an antiferromagnetic insulator. For M = Cu or Cd, the systems are half-metallic. Strong absorption in the visible region can be observed in the Cu and Cd-doped systems. Systems with M = Sc, Ti, V, Cr or In are not half-metallic and are insulators. The strongest peaks shift toward shorter wavelengths in the absorption spectra. It is concluded that transition metal doping can modify the electronic structure and optical properties of α-FeMO 3 systems. This journal is © 2012 The Royal Society of Chemistry.
Calculation of the thermal stress and thermal resistance of anisotropic materials. II
Energy Technology Data Exchange (ETDEWEB)
Krivko, A I; Epishin, A I; Svetlov, I L; Samoilov, A I; Sukhanov, N N
1989-04-01
The stressed state in a wedge and in a family of plates cut from single-crystal ingots of 40 axial orientations is analyzed. It is shown that, in contrast to the case of the wedge, the value of the thermal stress tensor components in the plates depends substantially not only on the axial crystallographic orientation but also on the azimuthal orientation. Requirements on the crystallographic orientation of simple single-crystal parts of plate or wedge type are formulated with the aim of decreasing the detrimental effects of thermal stresses. The correctness of the calculations is confirmed by results of thermal fatigue tests of hollow prismatic specimens, i.e., blade simulators with 001, 011, and 111 axial orientations.
International Nuclear Information System (INIS)
Perroni, C.; Rutherford, T.F.
1993-01-01
Restrictions on CO 2 emissions affect international trade and the pattern of comparative advantage. This paper, based on calculations with a static general equilibrium model, suggests that international trade in carbon rights is a substitute for trade in energy-intensive goods, and thus international trading in carbon rights reduces sectoral effects of emission reductions. In our model, we surprisingly find that free riding by non-signatory countries may not render unilateral action ineffective. If the OECD unilaterally cuts global emissions by 5 per cent from 1990 levels by the year 2020, emission by non-OECD regions increase but offset less than 15 per cent of this cutback. Moreover, carbon taxes depress international oil prices and create incentives for increased trade in natural gas. 14 refs, 7 figs
International Nuclear Information System (INIS)
Toporova, V.G.; Pimenov, V.V.
2004-01-01
Full text: Reactor material science is one of the main scientific directions of the RIAR activities. Particularly, a wide range of materials and products testing under irradiation is performed in reactor facility SM (RF SM). To solve the tasks specified in the technical specification for an experiment, previously, the test conditions are chosen. At the minimum a space-energy distribution of neutrons and heating rate in the materials under test are important as well as temperature conditions of irradiation. The up-to-date software and libraries of nuclear data allow modeling of neutron-material interaction processes to a considerable degree of details and also obtaining a true neutron distribution by calculation methods. As a result of a great scope of work on verification, a calculation model, developed on the basis of a package of applied software MCU (option MCU-4/SM22) and analogue Monte-Carlo method, is widely used at RIAR. The MCU geometric module makes it possible to model the SM core and reflector in three-dimensional geometry with sufficient accuracy and to describe all elements of the channel structure and irradiation device with specimens. The calculation model of RF SM is tested using the results of activation experiments performed in its critical assembly, geometric parameters and structural materials of which correspond completely with the prototype. The difference in the calculated and experimental values is less than 2.5%. Possibilities of the calculated estimation of operating temperature conditions of absorbing elements under irradiation should be considered separately. As the conducted calculations and their analysis show, to define the fuel column temperature correctly, one needs reliable data on thermal-physical parameters of materials, especially ceramic ones, such as titanium, dysprosium or boron carbide. This is very important for boron carbide-absorbing elements for actually all their operation parameters (such as: gas release, swelling
Calculation of HPGe Detector Response for NRF Photons Scattered from Threat Materials
International Nuclear Information System (INIS)
Park, B. G.; Choi, H. D.
2009-01-01
Nuclear Resonance Fluorescence (NRF) is a process of resonant nuclear absorption of photons, followed by deexcitation with emission of fluorescence photons. The cross section of NRF photons process is given by σ i max ≡ 2π(λ/2π) 2 2J+1/2J 0 +1 Γ 0 Γ i /Γ tot 2 , where λ is the wavelength of the photon, J 0 and J are the nuclear spins of the ground state and excited state, respectively, Γ 0 , Γ i and Γ tot are decay width for deexcitation to the ground state, to the i-th mode state and total decay width, respectively. NRF based security inspection technique uses the signatures of resonance energies of the fluorescence photon scattered from nuclides of the illicit materials in cargo container. NRF can be used to identify the material type, quantity and location. It is performed by measuring the fluorescence photon and the transmitted photon spectrum while irradiating Bremsstrahlung photon beam to the sample
International Nuclear Information System (INIS)
Scheur, M.J. van de; Stolk, D.J.
1987-04-01
On request of the Netherlands government by TNO a decision support system is developed for the assessment of the off-site consequences of an accident with toxic or radioactive materials. The interactive system supports the emergency planning in two ways. First, the risk to the residents in the surroundings of the accident is quantified in terms of severity and magnitude. Second, a set of countermeasures is evaluated by which an optimum strategy to reduce the impact of the accident can be determined. At this moment the system is in a development stage. It turned out that even the preliminary system provides information to the decision process that is urgently needed. This specifically refers to the introduction of the time aspects and the quantification of the damage. 7 refs.; 8 figs.; 3 tabs
Calculation of doses received while crossing a plume of radioactive material
International Nuclear Information System (INIS)
Scherpelz, R.I.; Desrosiers, A.E.
1981-04-01
A method has been developed for determining the dose received by a person while crossing a plume of radioactive material. The method uses a Gaussian plume model to arrive at a dose rate on the plume centerline at the position of the plume crossing. This dose rate may be due to any external or internal dose pathway. An algebraic formula can then be used to convert the plume centerline dose rate to a total dose integrated over the total time of plume crossing. Correction factors are presented for dose pathways in which the dose rate is not normally distributed about the plume centerline. The method is illustrated by a study done at the Pacific Northwest Laboratory, and results of this study are presented
Cardot, J-M; Roudier, B; Schütz, H
2017-07-01
The f 2 test is generally used for comparing dissolution profiles. In cases of high variability, the f 2 test is not applicable, and the Multivariate Statistical Distance (MSD) test is frequently proposed as an alternative by the FDA and EMA. The guidelines provide only general recommendations. MSD tests can be performed either on raw data with or without time as a variable or on parameters of models. In addition, data can be limited-as in the case of the f 2 test-to dissolutions of up to 85% or to all available data. In the context of the present paper, the recommended calculation included all raw dissolution data up to the first point greater than 85% as a variable-without the various times as parameters. The proposed MSD overcomes several drawbacks found in other methods.
Directory of Open Access Journals (Sweden)
Erin Peterson
2014-01-01
Full Text Available This paper describes the STARS ArcGIS geoprocessing toolset, which is used to calcu- late the spatial information needed to fit spatial statistical models to stream network data using the SSN package. The STARS toolset is designed for use with a landscape network (LSN, which is a topological data model produced by the FLoWS ArcGIS geoprocessing toolset. An overview of the FLoWS LSN structure and a few particularly useful tools is also provided so that users will have a clear understanding of the underlying data struc- ture that the STARS toolset depends on. This document may be used as an introduction to new users. The methods used to calculate the spatial information and format the final .ssn object are also explicitly described so that users may create their own .ssn object using other data models and software.
Jain, Anubhav
2017-04-01
Density functional theory (DFT) simulations solve for the electronic structure of materials starting from the Schrödinger equation. Many case studies have now demonstrated that researchers can often use DFT to design new compounds in the computer (e.g., for batteries, catalysts, and hydrogen storage) before synthesis and characterization in the lab. In this talk, I will focus on how DFT calculations can be executed on large supercomputing resources in order to generate very large data sets on new materials for functional applications. First, I will briefly describe the Materials Project, an effort at LBNL that has virtually characterized over 60,000 materials using DFT and has shared the results with over 17,000 registered users. Next, I will talk about how such data can help discover new materials, describing how preliminary computational screening led to the identification and confirmation of a new family of bulk AMX2 thermoelectric compounds with measured zT reaching 0.8. I will outline future plans for how such data-driven methods can be used to better understand the factors that control thermoelectric behavior, e.g., for the rational design of electronic band structures, in ways that are different from conventional approaches.
Fauziah, D.; Mardiyana; Saputro, D. R. S.
2018-05-01
Assessment is an integral part in the learning process. The process and the result should be in line, regarding to measure the ability of learners. Authentic assessment refers to a form of assessment that measures the competence of attitudes, knowledge, and skills. In fact, many teachers including mathematics teachers who have implemented curriculum based teaching 2013 feel confuse and difficult in mastering the use of authentic assessment instruments. Therefore, it is necessary to design an authentic assessment instrument with an interactive mini media project where teacher can adopt it in the assessment. The type of this research is developmental research. The developmental research refers to the 4D models development, which consist of four stages: define, design, develop and disseminate. The research purpose is to create a valid mini project interactive media on statistical materials in junior high school. The retrieved valid instrument based on expert judgment are 3,1 for eligibility constructions aspect, and 3,2 for eligibility presentation aspect, 3,25 for eligibility contents aspect, and 2,9 for eligibility didactic aspect. The research results obtained interactive mini media projects on statistical materials using Adobe Flash so it can help teachers and students in achieving learning objectives.
Tel, E.; Durgu, C.; Aktı, N. N.; Okuducu, Ş.
2010-06-01
Fusion serves an inexhaustible energy for humankind. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So, the working out the systematics of ( n, t) reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. In this study, ( n, t) reactions for some structural fusion materials such as 27Al, 51V, 52Cr, 55Mn, and 56Fe have been investigated. The new calculations on the excitation functions of 27Al( n, t)25Mg, 51V( n, t)49Ti, 52Cr( n, t)50V, 55Mn( n, t)53Cr and 56Fe( n, t)54Mn reactions have been carried out up to 50 MeV incident neutron energy. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model, hybrid model and the cascade exciton model. Equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, we have calculated ( n, t) reaction cross-sections by using new evaluated semi-empirical formulas developed by Tel et al. at 14-15 MeV energy. The calculated results are discussed and compared with the experimental data taken from the literature.
International Nuclear Information System (INIS)
Filges, D.; Enke, M.; Galin, J.
2001-01-01
A renascence of interest for energetic proton induced production of neutrons originates recently by the inception of new projects for target stations of intense spallation neutron sources (like the planned European Spallation Source ESS), accelerator-driven nuclear reactors, nuclear waste transmutation and also the application for radioactive beams. Here we verify the predictive power of transport codes currently on the market by confronting observables and quantities of interest with an exhaustive matrix of benchmark data essentially coming from two experiments being performed at the Cooler Synchrotron COSY at Juelich. Program packages like HERMES, LCS or MCNPX master the prevision of reaction cross sections, hadronic interaction lengths, averaged neutron multiplicities and neutron multiplicity distributions in thick and thin(!) targets for a wide spectrum of incident proton energies, geometrical shapes and materials of the target. While also the observables related to the energy deposition in thick targets are in a good agreement with the model predictions, the production cross section measurements however for light charged particles on thin targets point out that problems exist within these models. (author)
International Nuclear Information System (INIS)
Seth, S.; Brunson, G.; Gmuer, K.; Jermann, M.; McCombie, C.; Richmond, R.; Schmocker, U.
1979-01-01
This paper relates the checking of integral data of steel and iron in fast reactor lattices. The fully-rodded GCFR benchmark lattice of the zero-energy reactor PROTEUS was successively modified by replacing the PuO 2 -UO 2 fuel rods by steel-18/8 or steel-37 (iron) rods. The neutron spectra of the modified lattices in fact have median energies close to that of a typical LMFBR. The replacement of fuel by the structural material of interest was such that in each case the value of k(infinity) was reduced to near-unity. This allowed the measurement of the lattice-k(infinity) by the null-reactivity technique. In addition, the principal reaction rates (namely U238 capture and fission, relative to Pu239 fission) and the neutron spectrum were measured. These directly measured integral data which are particularly sensitive to the steel cross-sections can be used for the checking and systematic adjustment of data sets. The results may also be analysed so as to derive specific values for the integral capture cross-sections of steel and iron. Neutron balance equations were set-up for each of the lattices using the measured k(infinity) and reaction rates
International Nuclear Information System (INIS)
Kubec, Adam; Braun, Stefan; Gawlitza, Peter; Menzel, Maik; Leson, Andreas
2016-01-01
Diffractive X-ray optical elements made by thin film coating techniques such as multilayer Laue lenses (MLL) and multilayer zone plates (MZP) are promising approaches to achieve resolutions in hard X-ray microscopy applications of less than 10 nm. The challenge is to make a lens with a large numerical aperture on the one hand and a decent working distance on the other hand. One of the limiting factors with the coated structures is the internal stress in the films, which can lead to significant bending of the substrate and various types of unwanted diffraction effects. Several approaches have been discussed to overcome this challenge. One of these is a three-material combination such as Mo/MoSi_2/Si, where four single layers per period are deposited. Mo and Si represent the absorber and spacer in this case while MoSi_2 forms a diffusion barrier; in addition the thicknesses of absorber and spacer are chosen to minimize residual stress of the overall coating. Here the diffraction efficiency as well as the profile of the beam in the focal plane are discussed in order to find a tradeoff between lowest residual stress and best diffraction properties.
International Nuclear Information System (INIS)
Relloso, J.M.
1990-01-01
This work describes a methodology to define the equilibrium core and a MTR (Materials Testing Reactors) type reactor's fuel management upon multiple boundary conditions, such as: end cycle and permitted maximum reactivities, burn-up extraction and maximun number of movements by rechange. The methodology proposed allows to determine the best options through conceptual relations, prior to a detailed calculation with the core code, reducing the test number with these codes and minimizing in this way CPU cost. The way to better systematized search of transient cores from the first one to the equilibrium one is presented. (Author) [es
Chiodo, S.; Gotsis, H. J.; Russo, N.; Sicilia, E.
2006-07-01
Recently it has been reported that osmium diboride has an unusually large bulk modulus combined with high hardness, and consequently is a most interesting candidate as an ultra-incompressible and hard material. The electronic and structural properties of the transition metal diborides OsB 2 and RuB 2 have been calculated within the local density approximation (LDA). It is shown that the high hardness is the result of covalent bonding between transition metal d states and boron p states in the orthorhombic structure.
International Nuclear Information System (INIS)
Wimmer, E
2008-01-01
A workshop, 'Theory Meets Industry', was held on 12-14 June 2007 in Vienna, Austria, attended by a well balanced number of academic and industrial scientists from America, Europe, and Japan. The focus was on advances in ab initio solid state calculations and their practical use in industry. The theoretical papers addressed three dominant themes, namely (i) more accurate total energies and electronic excitations (ii) more complex systems, and (iii) more diverse and accurate materials properties. Hybrid functionals give some improvements in energies, but encounter difficulties for metallic systems. Quantum Monte Carlo methods are progressing, but no clear breakthrough is on the horizon. Progress in order-N methods is steady, as is the case for efficient methods for exploring complex energy hypersurfaces and large numbers of structural configurations. The industrial applications were dominated by materials issues in energy conversion systems, the quest for hydrogen storage materials, improvements of electronic and optical properties of microelectronic and display materials, and the simulation of reactions on heterogeneous catalysts. The workshop is a clear testimony that ab initio computations have become an industrial practice with increasingly recognized impact
Wimmer, E.
2008-02-01
A workshop, 'Theory Meets Industry', was held on 12-14 June 2007 in Vienna, Austria, attended by a well balanced number of academic and industrial scientists from America, Europe, and Japan. The focus was on advances in ab initio solid state calculations and their practical use in industry. The theoretical papers addressed three dominant themes, namely (i) more accurate total energies and electronic excitations, (ii) more complex systems, and (iii) more diverse and accurate materials properties. Hybrid functionals give some improvements in energies, but encounter difficulties for metallic systems. Quantum Monte Carlo methods are progressing, but no clear breakthrough is on the horizon. Progress in order-N methods is steady, as is the case for efficient methods for exploring complex energy hypersurfaces and large numbers of structural configurations. The industrial applications were dominated by materials issues in energy conversion systems, the quest for hydrogen storage materials, improvements of electronic and optical properties of microelectronic and display materials, and the simulation of reactions on heterogeneous catalysts. The workshop is a clear testimony that ab initio computations have become an industrial practice with increasingly recognized impact.
International Nuclear Information System (INIS)
Bobbio, Lourdes D.; Otis, Richard A.; Borgonia, John Paul; Dillon, R. Peter; Shapiro, Andrew A.; Liu, Zi-Kui; Beese, Allison M.
2017-01-01
In functionally graded materials (FGMs), the elemental composition, or structure, within a component varies gradually as a function of position, allowing for the gradual transition from one alloy to another, and the local tailoring of properties. One method for fabricating FGMs with varying elemental composition is through layer-by-layer directed energy deposition additive manufacturing. This work combines experimental characterization and computational analysis to investigate a material graded from Ti-6Al-4V to Invar 36 (64 wt% Fe, 36 wt% Ni). The microstructure, composition, phases, and microhardness were determined as a function of position within the FGM. During the fabrication process, detrimental phases associated with the compositional blending of the Ti-6Al-4V and Invar formed, leading to cracking in the final deposited part. Intermetallic phases (FeTi, Fe_2Ti, Ni_3Ti, and NiTi_2) were experimentally identified to occur throughout the gradient region, and were considered as the reason that the FGM cracked during fabrication. CALPHAD (CALculation of PHase Diagrams) thermodynamic calculations were used concurrently to predict phases that would form during the manufacturing process and were compared to the experimental results. The experimental-computational approach described herein for characterizing FGMs can be used to improve the understanding and design of other FGMs.
Castruccio, Stefano
2016-01-01
One of the main challenges when working with modern climate model ensembles is the increasingly larger size of the data produced, and the consequent difficulty in storing large amounts of spatio-temporally resolved information. Many compression algorithms can be used to mitigate this problem, but since they are designed to compress generic scientific datasets, they do not account for the nature of climate model output and they compress only individual simulations. In this work, we propose a different, statistics-based approach that explicitly accounts for the space-time dependence of the data for annual global three-dimensional temperature fields in an initial condition ensemble. The set of estimated parameters is small (compared to the data size) and can be regarded as a summary of the essential structure of the ensemble output; therefore, it can be used to instantaneously reproduce the temperature fields in an ensemble with a substantial saving in storage and time. The statistical model exploits the gridded geometry of the data and parallelization across processors. It is therefore computationally convenient and allows to fit a nontrivial model to a dataset of 1 billion data points with a covariance matrix comprising of 10^{18} entries. Supplementary materials for this article are available online.
International Nuclear Information System (INIS)
Ihara, Hitoshi; Nishimura, Hideo; Ikawa, Koji; Miura, Nobuyuki; Iwanaga, Masayuki; Kusano, Toshitsugu.
1988-03-01
An Near-Real-Time Materials Accountancy(NRTA) system had been developed as an advanced safeguards measure for PNC Tokai Reprocessing Plant; a minicomputer system for NRTA data processing was designed and constructed. A full scale field test was carried out as a JASPAS(Japan Support Program for Agency Safeguards) project with the Agency's participation and the NRTA data processing system was used. Using this field test data, investigation of the detection power of a statistical test under real circumstances was carried out for five statistical tests, i.e., a significance test of MUF, CUMUF test, average loss test, MUF residual test and Page's test on MUF residuals. The result shows that the CUMUF test, average loss test, MUF residual test and the Page's test on MUF residual test are useful to detect a significant loss or diversion. An unmeasured inventory estimation model for the PNC reprocessing plant was developed in this study. Using this model, the field test data from the C-1 to 85 - 2 campaigns were re-analyzed. (author)
Energy Technology Data Exchange (ETDEWEB)
Becker, Dirk-Alexander
2016-05-15
The program package RepoTREND for the integrated long terms safety analysis of final repositories allows besides deterministic studies of defined problems also statistical or probabilistic analyses. Probabilistic uncertainty and sensitivity analyses are realized in the program package repoTREND by a specific statistic frame called RepoSTAR. The report covers the following issues: concept, sampling and data supply of single simulations, evaluation of statistical calculations with the program RepoSUN.
Directory of Open Access Journals (Sweden)
Y. Raghu
2017-07-01
Full Text Available One-hundred-fifty-one samples of six types of building materials were collected from different locations of the Tiruvannamalai District, Tamilnadu, and were analyzed using a gamma ray spectroscopy system. From the results, the highest values observed in the specific activities of 226Ra, 232Th and 40K were 116.1 (soil 106.67 (sand and 527.533 (tiles in Bq kg−1, while the lowest values observed in the specific activities of the same radionuclides were 35.73, 37.75 and 159.83 for cement in Bq kg−1, respectively. The potential radiological hazards were assessed by calculating the radium equivalent activity (Raeq, the indoor absorbed gamma dose rate (DR, the annual effective dose rate (HR, the activity utilization index (I, the alpha index (Iα, the gamma index (Iγ, and the external hazard (Hex and internal hazard (Hin indices. The estimated mean value of the absorbed dose rate of 148.35 nGy h−1 is slightly higher than the world average value of 84 nGy h−1, and the annual effective dose in the studied samples is 0.1824 mSv y−1, which is lower than the recommended limit. Multivariate statistical methods are applied to determine the existing relationship between radionuclides and radiological health hazard parameters and to identify the maximum contribution of radionuclide in radioactivity. The values of the hazard indices were below the recommended levels; therefore, it is concluded that the buildings constructed from such materials are safe for the inhabitants. The findings from this research will be useful to assess the radiation hazards of building materials in humans.
International Nuclear Information System (INIS)
Aumeier, S.E.; Forsmann, J.H.
1997-01-01
Over the years a number of techniques have been developed to determine the quantity and distribution of radiative isotopes contained in given assay samples through the measurement and analysis of penetrating characteristic radiations. An active technique of particular utility when assaying samples containing very small quantities of fissionable material or when high gamma ray backgrounds are encountered is the delayed neutron nondestructive assay (DN-NDA) technique. Typically, analysis of the delayed neutron signal involves relating the gross delayed neutron count observed following neutron irradiation of an assay sample to total fissionable material present via a linear calibration curve. In this way, the technique is capable of yielding the mass of a single dominant fissionable isotope or the total fissionable mass contained in a sample. Using this approach the only way to determine the mass of individual fissionable isotopes contained in a sample is to correlate total fissionable mass to individual isotopics via calculations or other means, yielding an indirect measure of isotopics. However, there is isotope specific information in the temporal delayed neutron signal due to differences in the delayed neutron precursor yields resulting from the fissioning of different isotopes. The authors present the results of an analysis to evaluate the feasibility of using Kalman filters and genetic algorithms to determine multiple specific fissionable isotopic masses contained in an assay sample from a cumulative delayed neutron signal measured following neutron irradiation of the sample
Garcia, F.; Mesa, J.; Arruda-Neto, J. D. T.; Helene, O.; Vanin, V.; Milian, F.; Deppman, A.; Rodrigues, T. E.; Rodriguez, O.
2007-03-01
The code STATFLUX, implementing a new and simple statistical procedure for the calculation of transfer coefficients in radionuclide transport to animals and plants, is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. Flow parameters were estimated by employing two different least-squares procedures: Derivative and Gauss-Marquardt methods, with the available experimental data of radionuclide concentrations as the input functions of time. The solution of the inverse problem, which relates a given set of flow parameter with the time evolution of concentration functions, is achieved via a Monte Carlo simulation procedure. Program summaryTitle of program:STATFLUX Catalogue identifier:ADYS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYS_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computer for which the program is designed and others on which it has been tested:Micro-computer with Intel Pentium III, 3.0 GHz Installation:Laboratory of Linear Accelerator, Department of Experimental Physics, University of São Paulo, Brazil Operating system:Windows 2000 and Windows XP Programming language used:Fortran-77 as implemented in Microsoft Fortran 4.0. NOTE: Microsoft Fortran includes non-standard features which are used in this program. Standard Fortran compilers such as, g77, f77, ifort and NAG95, are not able to compile the code and therefore it has not been possible for the CPC Program Library to test the program. Memory required to execute with typical data:8 Mbytes of RAM memory and 100 MB of Hard disk memory No. of bits in a word:16 No. of lines in distributed program, including test data, etc.:6912 No. of bytes in distributed program, including test data, etc.:229 541 Distribution format:tar.gz Nature of the physical problem:The investigation of transport mechanisms for
International Nuclear Information System (INIS)
Cierjacks, S.W.; Oblozinsky, P.; Kelzenberg, S.; Rzehorz, B.
1993-01-01
A new algorithm and three major nuclear data libraries were developed for the kinematically complete treatment of sequential (x,n) reactions in fusion material activation calculations. The new libraries include data for virtually all isotopes with Z ≤ 84 (A ≤ 210) and half-lives exceeding 1 day; primary neutron energies E n 3 He, and α with energies E x < 24 MeV. While production cross sections of charged particles for primary (n,x) reactions can be deduced from the European activation file, the KFKSPEC data file was created for the corresponding normalized charged-particle spectra. The second data file, KFKXN, contains cross sections for secondary (x,n) reactions. The third data file, KFKSTOP, has a complete set of differential ranges for all five aforementioned light charged particles and all elements from hydrogen to uranium. The KFKSPEC and KFKXN libraries are based essentially on nuclear model calculations using the statistical evaporation model superimposed with the pre-equilibrium contribution as implemented in the Lawrence Livermore National Laboratory ALICE code. The KFKSPEC library includes 633 isotopes, of which 55 are in their isomeric states, and contains 63,300 spectra of the (n,x) type with almost 1.5 million data points. The KFKXN library also includes 633 isotopes and contains all (x,n) and partly (x,2n) cross sections for 4431 reactions with ∼ 106,000 data points. The KFKSTOP library is considered complete and has 11,040 data points. 42 refs., 2 figs., 4 tabs
Directory of Open Access Journals (Sweden)
Dmitriy V. Dianov
2016-01-01
Full Text Available Scientific and technical activity is part of development work. Is very important to plan scientic and technical activities. The article discusses the types of reports, calculation of statistical indicators, built charts and diagrams. These data will help to analyze the execution plans. Statistical indicators can be used in the Ministry of internal Affairs of the Russian Federation and other departments.
Directory of Open Access Journals (Sweden)
Guez F.
2006-11-01
Full Text Available La recherche des conditions optimales d'exploitation d'un gisement fissuré repose sur une bonne description de la fissuration. En conséquence il est nécessaire de définir les dimensions et volumes des blocs matriciels en chaque point d'une structure. Or la géométrie du milieu (juxtaposition et formes des blocs est généralement trop complexe pour se prêter au calcul. Aussi, dans une précédente communication, avons-nous dû tourner cette difficulté par un raisonnement sur des moyennes (pendages, azimuts, espacement des fissures qui nous a conduits à un ordre de grandeur des volumes. Cependant un volume moyen ne peut pas rendre compte d'une loi de répartition des volumes des blocs. Or c'est cette répartition qui conditionne le choix d'une ou plusieurs méthodes successives de récupération. Aussi présentons-nous ici une méthode originale de calcul statistique de la loi de distribution des volumes des blocs matriciels, applicable en tout point d'un gisement. La part de gisement concernée par les blocs de volume donné en est déduite. La connaissance générale du phénomène de la fracturation sert de base au modèle. Les observations de subsurface sur la fracturation du gisement en fournissent les données (histogramme d'orientation et d'espacement des fissures.Une application au gisement d'Eschau (Alsace, France est rapportée ici pour illustrer la méthode. The search for optimum production conditions for a fissured reservoir depends on having a good description of the fissure pattern. Hence the sizes and volumes of the matrix blocks must be defined at all points in a structure. However, the geometry of the medium (juxtaposition and shapes of blocks in usually too complex for such computation. This is why, in a previous paper, we got around this problem by reasoning on the bases of averages (clips, azimuths, fissure spacing, and thot led us to an order of magnitude of the volumes. Yet a mean volume cannot be used to explain
Sullivan, Sharon G.; Barr, Catherine; Grabois, Andrew
2002-01-01
Includes six articles that report on prices of U.S. and foreign published materials; book title output and average prices; book sales statistics; book exports and imports; book outlets in the U.S. and Canada; and review media statistics. (LRW)
Sullivan, Sharon G.; Grabois, Andrew; Greco, Albert N.
2003-01-01
Includes six reports related to book trade statistics, including prices of U.S. and foreign materials; book title output and average prices; book sales statistics; book exports and imports; book outlets in the U.S. and Canada; and numbers of books and other media reviewed by major reviewing publications. (LRW)
International Nuclear Information System (INIS)
Konobeev, A.Yu.; Korovin, Yu.A.
1992-01-01
Recently, effects related to the formation of helium in irradiated construction materials have been studied extensively. Data on the nuclear cross sections for producing helium in these materials form the initial information necessary for such investigations. If the spectrum of the incoming particles is known, the value of the helium production cross section makes it possible to calculate the helium generation rate. In recent years, plans and simulating experiments on radiating materials with high-energy particles made it necessary to determine the helium production cross sections in constructionmaterials, which are irradiated by protons and neutrons with energies to 800 MeV. Helium-formation cross sections have been calculated at these energies. However, a correct description of the experimental data for various construction materials does not yet exist. For example, the calculated helium-formation cross sections turned out to overestimate the experimental data, and to underestimate the experimental data. The objective here is to calculate the helium-formation cross sections for various construction materials, which are irradiated by protons and neutrons to energies from 20 to 800 MeV, and to analyze the probable causes of deviations between experimental and earlier calculated cross sections
Blakemore, J S
1962-01-01
Semiconductor Statistics presents statistics aimed at complementing existing books on the relationships between carrier densities and transport effects. The book is divided into two parts. Part I provides introductory material on the electron theory of solids, and then discusses carrier statistics for semiconductors in thermal equilibrium. Of course a solid cannot be in true thermodynamic equilibrium if any electrical current is passed; but when currents are reasonably small the distribution function is but little perturbed, and the carrier distribution for such a """"quasi-equilibrium"""" co
Energy Technology Data Exchange (ETDEWEB)
Young, P.G.; Arthur, E.D.
1977-11-01
A new multistep Hauser--Feshbach code that includes corrections for preequilibrium effects is described. The code can calculate up to 60 decay reactions (cross sections and energy spectra) in one computation, and thereby provide considerable flexibility for handling processes with complicated reaction chains. Input parameter setup, problem output, and subroutine descriptions are given along with a sample problem calculation. A brief theoretical description is also included. 8 figures, 3 tables.
Ladd, David E.; Law, George S.
2007-01-01
The U.S. Geological Survey (USGS) provides streamflow and other stream-related information needed to protect people and property from floods, to plan and manage water resources, and to protect water quality in the streams. Streamflow statistics provided by the USGS, such as the 100-year flood and the 7-day 10-year low flow, frequently are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. In addition to streamflow statistics, resource managers often need to know the physical and climatic characteristics (basin characteristics) of the drainage basins for locations of interest to help them understand the mechanisms that control water availability and water quality at these locations. StreamStats is a Web-enabled geographic information system (GIS) application that makes it easy for users to obtain streamflow statistics, basin characteristics, and other information for USGS data-collection stations and for ungaged sites of interest. If a user selects the location of a data-collection station, StreamStats will provide previously published information for the station from a database. If a user selects a location where no data are available (an ungaged site), StreamStats will run a GIS program to delineate a drainage basin boundary, measure basin characteristics, and estimate streamflow statistics based on USGS streamflow prediction methods. A user can download a GIS feature class of the drainage basin boundary with attributes including the measured basin characteristics and streamflow estimates.
Understanding Statistics - Cancer Statistics
Annual reports of U.S. cancer statistics including new cases, deaths, trends, survival, prevalence, lifetime risk, and progress toward Healthy People targets, plus statistical summaries for a number of common cancer types.
Davidson, Norman
2003-01-01
Clear and readable, this fine text assists students in achieving a grasp of the techniques and limitations of statistical mechanics. The treatment follows a logical progression from elementary to advanced theories, with careful attention to detail and mathematical development, and is sufficiently rigorous for introductory or intermediate graduate courses.Beginning with a study of the statistical mechanics of ideal gases and other systems of non-interacting particles, the text develops the theory in detail and applies it to the study of chemical equilibrium and the calculation of the thermody
Finkelstein, Michael O
2015-01-01
This classic text, first published in 1990, is designed to introduce law students, law teachers, practitioners, and judges to the basic ideas of mathematical probability and statistics as they have been applied in the law. The third edition includes over twenty new sections, including the addition of timely topics, like New York City police stops, exonerations in death-sentence cases, projecting airline costs, and new material on various statistical techniques such as the randomized response survey technique, rare-events meta-analysis, competing risks, and negative binomial regression. The book consists of sections of exposition followed by real-world cases and case studies in which statistical data have played a role. The reader is asked to apply the theory to the facts, to calculate results (a hand calculator is sufficient), and to explore legal issues raised by quantitative findings. The authors' calculations and comments are given in the back of the book. As with previous editions, the cases and case stu...
Energy Technology Data Exchange (ETDEWEB)
Guedes, Guilherme, E-mail: gguedes.cefet@gmail.com [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET-RJ), Nova Friburgo, RJ (Brazil); Gonçalves, Alessandro C., E-mail: alessandrocgnuclear@gmail.com [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Palma, Daniel A.P., E-mail: dapalma@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)
2017-07-01
The thermal agitation movement in the reactor core is adequately represented by the microscopic cross section of the neutron-nucleus interaction through the Doppler broadening function. In the last decades several researches had been done on fundamentals and applications of generalized statistical theories based on quasi-Maxwellian distribution of probabilities. In this paper the effect of taking into account the non extensive Tsallis statistics in the evaluation of the absorption cross section in 3-dimension is discussed. In this context, it is obtained an integral form for a generalized Doppler broadening function in the scope of the single-level formalism given by the Bethe-Placzek approximations. This new function reproduces the well-established conventional Doppler broadening function on the limit when q removes the deformation. Numerical tests were carried out and by varying the q parameter it was possible to study the range of values where the effect is appreciable. (author)
International Nuclear Information System (INIS)
Scholtyssek, W.
1995-01-01
In the first phase of a benchmark comparison, the CONTAIN code was used to calculate an assumed EPR accident 'medium-sized leak in the cold leg', especially for the first two days after initiation of the accident. The results for global characteristics compare well with those of FIPLOC, MELCOR and WAVCO calculations, if the same materials data are used as input. However, significant differences show up for local quantities such as flows through leakages. (orig.)
International Nuclear Information System (INIS)
Kaiser, G.D.
1976-11-01
A brief description is given of the contents of TIRION, which is a computer program that has been written for use in calculations of the consequences of releasing radioactive material to the atmosphere. This is followed by a section devoted to an account of the control and data cards that make up the input to TIRION. (author)
Rimbey, Kimberly
2008-01-01
Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Play Ball! Explorations in Data Analysis & Statistics," which teachers can use to…
Nonparametric statistical inference
Gibbons, Jean Dickinson
2014-01-01
Thoroughly revised and reorganized, the fourth edition presents in-depth coverage of the theory and methods of the most widely used nonparametric procedures in statistical analysis and offers example applications appropriate for all areas of the social, behavioral, and life sciences. The book presents new material on the quantiles, the calculation of exact and simulated power, multiple comparisons, additional goodness-of-fit tests, methods of analysis of count data, and modern computer applications using MINITAB, SAS, and STATXACT. It includes tabular guides for simplified applications of tests and finding P values and confidence interval estimates.
Directory of Open Access Journals (Sweden)
Lazăr Cristiana Daniela
2017-01-01
Full Text Available Each organization has among its multiple secondary endpoints subordinated to a centralobjective that one of avoiding the contingencies. The direct procurement is carried out on themarket in SEAP (Electronic System of Public Procurement, and a performing management in apublic institution has as sub-base and risk management. The risks may be investigated byeconometric simulation, which is calculated by the use of calculus of probability and the sample fordetermining the relevance of these probabilities.
International Nuclear Information System (INIS)
1991-04-01
This standard provides guidelines and a methodology for calculating effective doses and thyroid doses to people (either individually or collectively) in the path of airborne radioactive material released from a nuclear facility following a hypothetical accident. The radionuclides considered are those associated with substances having the greatest potential for becoming airborne in reactor accidents: tritium (HTO), noble gases and their daughters, radioiodines, and certain radioactive particulates (Cs, Ru, Sr, Te). The standard focuses on the calculation of radiation doses for external exposures from radioactive material in the cloud; internal exposures for inhalation of radioactive material in the cloud and skin penetration of tritium; and external exposures from radionuclides deposited on the ground. It uses as modified Gaussian plume model to evaluate the time-integrated concentration downwind. (52 refs., 12 tabs., 21 figs.)
Directory of Open Access Journals (Sweden)
Ismael Fernando Meza Castro
2017-07-01
Full Text Available Introduction: This project carried out an experimental research with the design, assembly, and commissioning of a convection heat transfer test bench. Objective: To determine new statistical correlations that allow knowing the heat transfer coefficients by air convection with greater accuracy in applications with different heating geometry configurations. Methodology: Three geometric configurations, such as flat plate, cylinders and tube banks were studied according to their physical properties through Reynolds and Prandtl numbers, using a data transmission interface using Arduino® controllers Measured the air temperature through the duct to obtain real-time data and to relate the heat transferred from the heating element to the fluid and to perform mathematical modeling in specialized statistical software. The study was made for the three geometries mentioned, one power per heating element and two air velocities with 10 repetitions. Results: Three mathematical correlations were obtained with regression coefficients greater than 0.972, one for each heating element, obtaining prediction errors in the heat transfer convective coefficients of 7.50% for the flat plate, 2.85% for the plate Cylindrical and 1.57% for the tube bank. Conclusions: It was observed that in geometries constituted by several individual elements, a much more accurate statistical adjustment was obtained to predict the behavior of the convection heat coefficients, since each unit reaches a stability in the surface temperature profile with Greater speed, giving the geometry in general, a more precise measurement of the parameters that govern the transfer of heat, as it is in the case of the geometry of the tube bank.
Energy Technology Data Exchange (ETDEWEB)
Dreher, Marion; Memmler, Michael; Rother, Stefan; Schneider, Sven [Umweltbundesamt, Dessau (Germany); Boehme, Dieter [Bundesministerium fuer Umwelt, Naturschutz und Reaktorsicherheit, Berlin (Germany)
2012-02-15
In July 2011, the Federal Environment Agency (Dessau-Rosslau, Federal Republic of Germany) and the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (Berlin, Federal Republic of Germany) performed the workshop ''Bioenergy. Data base for the statistics of the renewable energy and emissions balance''. The material volume of this workshop under consideration contains plenary lectures on the state of knowledge and information need as well as materials to the working groups solid biomass (working group 1), biogas (working group 2) and liquid biomass (working group 3).
Directory of Open Access Journals (Sweden)
S. Lalléchère
2017-05-01
Full Text Available The aim of this proposal is to demonstrate the ability of tridimensional (3-D electromagnetic modeling tool for the characterization of composite materials in microwave frequency band range. Indeed, an automated procedure is proposed to generate random materials, proceed to 3-D simulations, and compute shielding effectiveness (SE statistics with finite integration technique. In this context, 3-D electromagnetic models rely on random locations of conductive inclusions; results are compared with classical electromagnetic mixing theory (EMT approaches (e.g. Maxwell-Garnett formalism, and dynamic homogenization model (DHM. The article aims to demonstrate the interest of the proposed approach in various domains such as propagation and electromagnetic compatibility (EMC.
CSIR Research Space (South Africa)
Maina, JW
2008-07-01
Full Text Available to be cross-anisotropic and by assuming a variety of horizontal and vertical elastic moduli, surface deflections were computed. These deflections were used to backcalculate equivalent layer moduli assuming isotropic material property. Finally, by using...
Directory of Open Access Journals (Sweden)
Мaryna O. Golofeyeva
2015-12-01
Full Text Available The effective use of heterogeneous non-metallic materials and structures needs measurement of reliable values of dissipation characteristics, as well as common factors of their change during the loading process. Aim: The aim of this study is to prepare the budget for measurement uncertainty of dissipative properties of composite materials. Materials and Methods: The method used to study the vibrational energy dissipation characteristics based on coupling of vibrations damping decrement and acoustic velocity in a non-metallic heterogeneous material is reviewed. The proposed method allows finding the dependence of damping on vibrations amplitude and frequency of strain-stress state of material. Results: Research of the accuracy of measurement method during the definition of decrement attenuation of fluctuations in synthegran was performed. The international approach for evaluation of measurements quality is used. It includes the common practice international rules for uncertainty expression and their summation. These rules are used as internationally acknowledged confidence measure to the measurement results, which includes testing. The uncertainties budgeting of acoustic method for measurement of dissipative properties of materials were compiled. Conclusions: It was defined that there are two groups of reasons resulting in errors during measurement of materials dissipative properties. The first group of errors contains of parameters changing of calibrated bump in tolerance limits, displacement of sensor in repeated placement to measurement point, layer thickness variation of contact agent because of irregular hold-down of resolvers to control surface, inaccuracy in reading and etc. The second group of errors is linked with density and Poisson’s ratio measurement errors, distance between sensors, time difference between signals of vibroacoustic sensors.
Miyata, Masanobu; Ozaki, Taisuke; Takeuchi, Tsunehiro; Nishino, Shunsuke; Inukai, Manabu; Koyano, Mikio
2018-06-01
The electron transport properties of 809 sulfides have been investigated using density functional theory (DFT) calculations in the relaxation time approximation, and a material design rule established for high-performance sulfide thermoelectric (TE) materials. Benchmark electron transport calculations were performed for Cu12Sb4S13 and Cu26V2Ge6S32, revealing that the ratio of the scattering probability of electrons and phonons ( κ lat τ el -1 ) was constant at about 2 × 1014 W K-1 m-1 s-1. The calculated thermopower S dependence of the theoretical dimensionless figure of merit ZT DFT of the 809 sulfides showed a maximum at 140 μV K-1 to 170 μV K-1. Under the assumption of constant κ lat τ el -1 of 2 × 1014 W K-1 m-1 s-1 and constant group velocity v of electrons, a slope of the density of states of 8.6 states eV-2 to 10 states eV-2 is suitable for high- ZT sulfide TE materials. The Lorenz number L dependence of ZT DFT for the 809 sulfides showed a maximum at L of approximately 2.45 × 10-8 V2 K-2. This result demonstrates that the potential of high- ZT sulfide materials is highest when the electron thermal conductivity κ el of the symmetric band is equal to that of the asymmetric band.
Heinrichs, U; Bussmann, N; Engels, R; Kemmerling, G; Weber, S; Ziemons, K
2002-01-01
The optimization of light output and energy resolution of scintillators is of special interest for the development of high resolution and high sensitivity PET. The aim of this work is to obtain statistically reliable results concerning optimal surface treatment of scintillation crystals and the selection of reflector material. For this purpose, raw, mechanically polished and etched LSO crystals (size 2x2x10 mm sup 3) were combined with various reflector materials (Teflon tape, Teflon matrix, BaSO sub 4) and exposed to a sup 2 sup 2 Na source. In order to ensure the statistical reliability of the results, groups of 10 LSO crystals each were measured for all combinations of surface treatment and reflector material. Using no reflector material the light output increased up to 551+-35% by mechanical polishing the surface compared to 100+-5% for raw crystals. Etching the surface increased the light output to 441+-29%. The untreated crystals had an energy resolution of 24.6+-4.0%. By mechanical polishing the surfac...
Feldbauer, Gregor; Wolloch, Michael; Bedolla, Pedro O.; Redinger, Josef; Vernes, András; Mohn, Peter
2018-03-01
The effect of monolayers of oxygen (O) and hydrogen (H) on the possibility of material transfer at aluminium/titanium nitride (Al/TiN) and copper/diamond (Cu/Cdia) interfaces, respectively, were investigated within the framework of density functional theory (DFT). To this end the approach, contact, and subsequent separation of two atomically flat surfaces consisting of the aforementioned pairs of materials were simulated. These calculations were performed for the clean as well as oxygenated and hydrogenated Al and Cdia surfaces, respectively. Various contact configurations were considered by studying several lateral arrangements of the involved surfaces at the interface. Material transfer is typically possible at interfaces between the investigated clean surfaces; however, the addition of O to the Al and H to the Cdia surfaces was found to hinder material transfer. This passivation occurs because of a significant reduction of the adhesion energy at the examined interfaces, which can be explained by the distinct bonding situations.
Natrella, Mary Gibbons
1963-01-01
Formulated to assist scientists and engineers engaged in army ordnance research and development programs, this well-known and highly regarded handbook is a ready reference for advanced undergraduate and graduate students as well as for professionals seeking engineering information and quantitative data for designing, developing, constructing, and testing equipment. Topics include characterizing and comparing the measured performance of a material, product, or process; general considerations in planning experiments; statistical techniques for analyzing extreme-value data; use of transformations
Robel, Martin; Kristo, Michael J
2008-11-01
The problem of identifying the provenance of unknown nuclear material in the environment by multivariate statistical analysis of its uranium and/or plutonium isotopic composition is considered. Such material can be introduced into the environment as a result of nuclear accidents, inadvertent processing losses, illegal dumping of waste, or deliberate trafficking in nuclear materials. Various combinations of reactor type and fuel composition were analyzed using Principal Components Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLSDA) of the concentrations of nine U and Pu isotopes in fuel as a function of burnup. Real-world variation in the concentrations of (234)U and (236)U in the fresh (unirradiated) fuel was incorporated. The U and Pu were also analyzed separately, with results that suggest that, even after reprocessing or environmental fractionation, Pu isotopes can be used to determine both the source reactor type and the initial fuel composition with good discrimination.
Energy Technology Data Exchange (ETDEWEB)
Vallee, T.; Keller, Th. [Ecole Polytech Fed Lausanne, CCLab, CH-1015 Lausanne, (Switzerland); Fourestey, G. [Ecole Polytech Fed Lausanne, IACS, Chair Modeling and Sci Comp, CH-1015 Lausanne, (Switzerland); Fournier, B. [CEA SACLAY ENSMP, DEN, DANS, DMN, SRMA, LC2M, F-91191 Gif Sur Yvette, (France); Correia, J.R. [Univ Tecn Lisbon, Inst Super Tecn, Civil Engn and Architecture Dept, P-1049001 Lisbon, (Portugal)
2009-07-01
The Weibull distribution, used to describe the scaling of strength of materials, has been verified on a wide range of materials and geometries: however, the quality of the fitting tended to be less good towards the upper tail. Based on a previously developed probabilistic strength prediction method for adhesively bonded joints composed of pultruded glass fiber-reinforced polymer (GFRP) adherends, where it was verified that a two-parameter Weibull probabilistic distribution was not able to model accurately the upper tail of a material strength distribution, different improved probabilistic distributions were compared to enhance the quality of strength predictions. The following probabilistic distributions were examined: a two-parameter Weibull (as a reference), m-fold Weibull, a Grafted Distribution, a Birnbaum-Saunders Distribution and a Generalized Lambda Distribution. The Generalized Lambda Distribution turned out to be the best analytical approximation for the strength data, providing a good fit to the experimental data, and leading to more accurate joint strength predictions than the original two-parameter Weibull distribution. It was found that a proper modeling of the upper tail leads to a noticeable increase of the quality of the predictions. (authors)
International Nuclear Information System (INIS)
Vallee, T.; Keller, Th.; Fourestey, G.; Fournier, B.; Correia, J.R.
2009-01-01
The Weibull distribution, used to describe the scaling of strength of materials, has been verified on a wide range of materials and geometries: however, the quality of the fitting tended to be less good towards the upper tail. Based on a previously developed probabilistic strength prediction method for adhesively bonded joints composed of pultruded glass fiber-reinforced polymer (GFRP) adherends, where it was verified that a two-parameter Weibull probabilistic distribution was not able to model accurately the upper tail of a material strength distribution, different improved probabilistic distributions were compared to enhance the quality of strength predictions. The following probabilistic distributions were examined: a two-parameter Weibull (as a reference), m-fold Weibull, a Grafted Distribution, a Birnbaum-Saunders Distribution and a Generalized Lambda Distribution. The Generalized Lambda Distribution turned out to be the best analytical approximation for the strength data, providing a good fit to the experimental data, and leading to more accurate joint strength predictions than the original two-parameter Weibull distribution. It was found that a proper modeling of the upper tail leads to a noticeable increase of the quality of the predictions. (authors)
Czech Academy of Sciences Publication Activity Database
Tyrpekl, Václav; Piluso, P.
2012-01-01
Roč. 46, AUGUST (2012), s. 197-203 ISSN 0306-4549 Institutional support: RVO:61388980 Keywords : Nuclear reactor severe accident * Fuel -Coolant Interaction * Material effect * Steam explosion Subject RIV: CA - Inorganic Chemistry Impact factor: 0.800, year: 2012
Directory of Open Access Journals (Sweden)
Grodzki Tomasz
2011-03-01
Full Text Available Abstract Background Lung cancer diagnosis in tissue material with commonly used histological techniques is sometimes inconvenient and in a number of cases leads to ambiguous conclusions. Frequently advanced immunostaining techniques have to be employed, yet they are both time consuming and limited. In this study a proteomic approach is presented which may help provide unambiguous pathologic diagnosis of tissue material. Methods Lung tissue material found to be pathologically changed was prepared to isolate proteome with fast and non selective procedure. Isolated peptides and proteins in ranging from 3.5 to 20 kDa were analysed directly using high resolution mass spectrometer (MALDI-TOF/TOF with sinapic acid as a matrix. Recorded complex spectra of a single run were then analyzed with multivariate statistical analysis algorithms (principle component analysis, classification methods. In the applied protocol we focused on obtaining the spectra richest in protein signals constituting a pattern of change within the sample containing detailed information about its protein composition. Advanced statistical methods were to indicate differences between examined groups. Results Obtained results indicate changes in proteome profiles of changed tissues in comparison to physiologically unchanged material (control group which were reflected in the result of principle component analysis (PCA. Points representing spectra of control group were located in different areas of multidimensional space and were less diffused in comparison to cancer tissues. Three different classification algorithms showed recognition capability of 100% regarding classification of examined material into an appropriate group. Conclusion The application of the presented protocol and method enabled finding pathological changes in tissue material regardless of localization and size of abnormalities in the sample volume. Proteomic profile as a complex, rich in signals spectrum of proteins
Directory of Open Access Journals (Sweden)
V. M. Ovsianko
2012-01-01
Full Text Available The paper reveals a brand-new direction in simulation of frame and continual structures while calculating static and dynamic loads and stability. An electronic model has been synthesized for an investigated object and then it has been analyzed not with the help of specialized analog computing techniques but by means of high-performance software package for electronic circuit calculation using a personal computer.The given paper contains exact algebraic equations corresponding to differential equations for lateral bending calculation of frame structures without and with due account of viscoelastic material properties in compliance with the Kelvin model.The exact algebraic equation for a beam on elastic supports (or elastic Winkler foundation has been derived for quartic differential equation.The paper presents a number of exact algebraic equations which are equivalent to differential equations for transverse-longitudinal bending calculation of frame structures without and with due account of viscoelastic material properties when lateral and longitudinal loads are applied in the form of impulses with any periods of their duration and any interchangeability.
Czech Academy of Sciences Publication Activity Database
Hreha, P.; Radvanská, A.; Knapčíková, L.; Krolczyk, G.; Legutko, S.; Królczyk, J. B.; Hloch, Sergej; Monka, P.
2015-01-01
Roč. 22, č. 2 (2015), s. 315-326 ISSN 0860-8229 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : abrasive water jet * surface topography * material vibration * vibration measurement Subject RIV: JQ - Machines ; Tools Impact factor: 1.140, year: 2015 http://www.metrology.pg.gda.pl/archives.html
Energy Technology Data Exchange (ETDEWEB)
Lopez G, D.
2014-07-01
The present work describes the project which consisted in the development of an application to facilitate and display a graphic where the displacement and behavior of radioactive contaminants in soil could be observed. Once the data are introduced to the system, this makes the necessary calculations to display a graphic where the displacement of the substance is displayed in a given time. Through the graphs resulting from the program, we can quickly see the behavior and movement of a contaminant substance, but by numerical simulation, it can determine the possible impact caused by a supposition spills of a radioactive substance in soil and thus able to take the appropriate measures to control or avoid an impact resulting highly harmful to health and the environment, so as to determine the distance and time in which the substance already change or transform into another. (Author)
Beyond quantum microcanonical statistics
International Nuclear Information System (INIS)
Fresch, Barbara; Moro, Giorgio J.
2011-01-01
Descriptions of molecular systems usually refer to two distinct theoretical frameworks. On the one hand the quantum pure state, i.e., the wavefunction, of an isolated system is determined to calculate molecular properties and their time evolution according to the unitary Schroedinger equation. On the other hand a mixed state, i.e., a statistical density matrix, is the standard formalism to account for thermal equilibrium, as postulated in the microcanonical quantum statistics. In the present paper an alternative treatment relying on a statistical analysis of the possible wavefunctions of an isolated system is presented. In analogy with the classical ergodic theory, the time evolution of the wavefunction determines the probability distribution in the phase space pertaining to an isolated system. However, this alone cannot account for a well defined thermodynamical description of the system in the macroscopic limit, unless a suitable probability distribution for the quantum constants of motion is introduced. We present a workable formalism assuring the emergence of typical values of thermodynamic functions, such as the internal energy and the entropy, in the large size limit of the system. This allows the identification of macroscopic properties independently of the specific realization of the quantum state. A description of material systems in agreement with equilibrium thermodynamics is then derived without constraints on the physical constituents and interactions of the system. Furthermore, the canonical statistics is recovered in all generality for the reduced density matrix of a subsystem.
International Nuclear Information System (INIS)
Pavlovic, R.N.
1981-01-01
Nowadays, our rivers are polluted to an ever increasing degree by industrial and domestic discharges of waste heat and sewage. An important task of environmental protection is to predict the consequences of such pollutions in order to be able to plan and perform protective measures. For the solution of this problem a reliable mathematical model is very helpful. In the present paper a depth-averaged model is developed consisting of a two-dimensional elliptical model component for the direct near-field of a discharge and a two-dimensional parabolic separate model for the calculation of longer river distances further downstream. This model is exhaustively tested by application to a number of laboratory flows and real discharges to rivers. (orig./RW) [de
International Nuclear Information System (INIS)
1986-03-01
A study on radiation dose control in packages of radioactive waste from nuclear facilities, hospitals and industries, such as sources of Ra-226, Co-60, Ir-192 and Cs-137, is presented. The MAPA and MAPAM computer codes, based on point Kernel theory for calculating doses of several source-shielding type configurations, aiming to assure the safe transport conditions for these sources, was developed. The validation of the code for point sources, using the values provided by NCRP, for the thickness of lead and concrete shieldings, limiting the dose at 100 Mrem/hr for several distances from the source to the detector, was carried out. The validation for non point sources was carried out, measuring experimentally radiation dose from packages developed by Brazilian CNEN/S.P. for removing the sources. (M.C.K.) [pt
International Nuclear Information System (INIS)
Chan, T.; Cook, N.G.W.
1979-12-01
Thermally induced displacements and stresses have been calculated by finite element analysis to guide the design, operation, and data interpretation of the in situ heating experiments in a granite formation at Stripa, Sweden. There are two full-scale tests with electrical heater canisters comparable in size and power to those envisaged for reprocessed high level waste canisters and a time-scaled test. To provide a simple theoretical basis for data analysis, linear thermoelasticity was assumed. Constant (temperature-independent) thermal and mechanical rock properties were used in the calculations. These properties were determined by conventional laboratory testing on small intact core specimens recovered from the Stripa test site. Two-dimensional axisymmetric models were used for the full-scale experiments, and three-dimensional models for the time-scaled experiment. Highest compressive axial and tangential stresses are expected at the wall of the heater borehole. For the 3.6 kW full-scale heated experiment, maximum compressive tangential stress was predicted to be below the unconfined compressive strength of Stripa granite, while for the 5 kW experiment, the maximum was approximately equal to the compressive strength before the concentric ring of eight 1 kW peripheral heaters was activated, but would exceed that soon afterwards. Three zones of tensile thermomechanical stresses will occur in each full-scale experiment. Maximum vertical displacements range from a fraction of a millimeter over most of the instrumented area of the time-scaled experiment to a few millimeters in the higher-power full-scale experiment. Radial displacements are typically half or less than vertical displacements. The predicted thermomechanical displacements and stresses have been stored in an on-site computer to facilitate instant graphic comparison with field data as the latter are collected
International Nuclear Information System (INIS)
Dahmani, M.; McArthur, R.; Kim, B.G.; Kim, S.M.; Seo, H.-B.
2008-01-01
This paper describes the calculation of two-group incremental cross sections for all of the reactivity devices and incore structural materials for an RFSP-IST full-core model of Wolsong NPP Unit 1, in support of the conversion of the reference plant model to two energy groups. This is of particular interest since the calculation used the new standard 'side-step' approach, which is a three-dimensional supercell method that employs the Industry Standard Toolset (IST) codes DRAGON-IST and WIMS-IST with the ENDF/B-VI nuclear data library. In this technique, the macroscopic cross sections for the fuel regions and the device material specifications are first generated using the lattice code WIMS-IST with 89 energy groups. DRAGON-IST then uses this data with a standard supercell modelling approach for the three-dimensional calculations. Incremental cross sections are calculated for the stainless-steel adjuster rods (SS-ADJ), the liquid zone control units (LZCU), the shutoff rods (SOR), the mechanical control absorbers (MCA) and various structural materials, such as guide tubes, springs, locators, brackets, adjuster cables and support bars and the moderator inlet nozzle deflectors. Isotopic compositions of the Zircaloy-2, stainless steel and Inconel X-750 alloys in these items are derived from Wolsong NPP Unit 1 history dockets. Their geometrical layouts are based on applicable design drawings. Mid-burnup fuel with no moderator poison was assumed. The incremental cross sections and key aspects of the modelling are summarized in this paper. (author)
International Nuclear Information System (INIS)
Warsa, James S.; Wareing, Todd A.; Morel, Jim E.
2004-01-01
A loss in the effectiveness of diffusion synthetic acceleration (DSA) schemes has been observed with certain S N discretizations on two-dimensional Cartesian grids in the presence of material discontinuities. We will present more evidence supporting the conjecture that DSA effectiveness will degrade for multidimensional problems with discontinuous total cross sections, regardless of the particular physical configuration or spatial discretization. Fourier analysis and numerical experiments help us identify a set of representative problems for which established DSA schemes are ineffective, focusing on diffusive problems for which DSA is most needed. We consider a lumped, linear discontinuous spatial discretization of the S N transport equation on three-dimensional, unstructured tetrahedral meshes and look at a fully consistent and a 'partially consistent' DSA method for this discretization. The effectiveness of both methods is shown to degrade significantly. A Fourier analysis of the fully consistent DSA scheme in the limit of decreasing cell optical thickness supports the view that the DSA itself is failing when material discontinuities are present in a problem. We show that a Krylov iterative method, preconditioned with DSA, is an effective remedy that can be used to efficiently compute solutions for this class of problems. We show that as a preconditioner to the Krylov method, a partially consistent DSA method is more than adequate. In fact, it is preferable to a fully consistent method because the partially consistent method is based on a continuous finite element discretization of the diffusion equation that can be solved relatively easily. The Krylov method can be implemented in terms of the original S N source iteration coding with only slight modification. Results from numerical experiments show that replacing source iteration with a preconditioned Krylov method can efficiently solve problems that are virtually intractable with accelerated source iteration
International Nuclear Information System (INIS)
Bozoian, M.; Arthur, E.D.; Perry, R.T.; Wilson, W.B.; Young, P.G.
1988-01-01
Activation problems associated with particle accelerators are commonly dominated by reactions of secondary neutrons produced in reactions of beam particles with accelerator or beam stop materials. Measured values of neutron-activation cross sections above a few MeV are sparse. Calculations with the GNASH code have been made for neutrons incident on all stable nuclides of a range of elements common to accelerator materials. These elements include B, C, N, O, Ne, Mg, Al, Si, P, S, Ar, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Nd, and Sm. Calculations were made for a grid of incident neutron energies extending to 100 MeV. Cross sections leading to the direct production of as many as 87 activation products for each of 84 target nuclide were tabulated on this grid of neutron energies, each beginning with the threshold for the product nuclide's formation. Multigrouped values of these cross sections have been calculated and are being integrated into the cross-section library of the REAC-2 neutron activation code. Illustrative cross sections are presented. 20 refs., 6 figs., 1 tab
International Nuclear Information System (INIS)
TH Trumbull
2005-01-01
The effect of material homogenization on the calculated dose rate was studied for several arrangements of typical PWR spent fuel pins in an air medium using the Monte Carlo code, MCNP. The models analyzed increased in geometric complexity, beginning with a single fuel pin, progressing to ''small'' lattices, i.e., 3x3, 5x5, 7x7 fuel pins, and culminating with a full 17x17 pin PWR bundle analysis. The fuel pin dimensions and compositions were taken directly from a previous study and efforts were made to parallel this study by specifying identical flux-to-dose functions and gamma-ray source spectra. The analysis shows two competing components to the overall effect of material homogenization on calculated dose rate. Homogenization of pin lattices tends to lower the effect of radiation ''channeling'' but increase the effect of ''source redistribution.'' Depending on the size of the lattice and location of the detectors, the net effect of material homogenization on dose rate can be insignificant or range from a 6% decrease to a 35% increase relative to the detailed geometry model
International Nuclear Information System (INIS)
Gu Zhaolin; Liu Hongjuan; Li Yun
2004-01-01
Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion
International Nuclear Information System (INIS)
Kupchishin, A.A.; Kupchishin, A.I.; Omarbekova, Zh.
2001-01-01
In the work an experimental data analysis by integral σ(E 1 ) and differential [dσ(E 1 ,E 2 )]/dE 2 neutron interaction cross sections with reactor materials with the secondary protons and alpha particles generation as well as with the primarily knock-on atoms production in such reactions are carried out. It is shown, that in the (n,p) and (n',α) reactions the recoil nuclei receive essential energy portion and they are the patriarchs for atom-atom cascades in the substance. Nuclear reactions with formation of the secondary α-particles and and recoil nuclei are considered. It is shown, that these reactions are effectively proceeding within neutrons energy range 0.3-15 MeV. The nuclear reactions kinematics of above mentioned processes is studied. Energy conservation law for these reaction is applied. Deferential cross section conservation and transformation law for radiation defect formation in the (n,α) reaction are considered as well
Teaching Statistics Online Using "Excel"
Jerome, Lawrence
2011-01-01
As anyone who has taught or taken a statistics course knows, statistical calculations can be tedious and error-prone, with the details of a calculation sometimes distracting students from understanding the larger concepts. Traditional statistics courses typically use scientific calculators, which can relieve some of the tedium and errors but…
DEFF Research Database (Denmark)
Johannesson, Björn; Hosokawa, Yoshifumi; Yamada, Kazuo
2009-01-01
A method to analyse and calculate concentration profiles of different types of ions in the pore solution of porous materials such as concrete subjected to external wetting and drying is described. The equations in use have a solid theoretical meaning and are derived from a porous media technique......, which is a special branch of the more general mixture theory. The effect of chemical action is ignored making the presented model suitable to be implemented into codes dealing solely with chemical equilibrium. The coupled set of equations for diffusion of ionic species, the internal electrical potential...... of the model should be judged from the assumptions made when developing the balance laws and the constitutive equations and the assumptions made in obtaining a working numerical calculation scheme....
International Nuclear Information System (INIS)
Jones, J.A.
1980-03-01
Radioactive material may be discharged to atmosphere in small quantities during the normal operation of a nuclear installation as part of a considered waste management practice. Estimates of the individual and collective dose equivalent rates resulting from such a discharge are required in a number of contexts: for example, in assessing compliance with dose limits, in estimating the radiological impact of the discharge and as an input into optimisation studies. The suite of programs which has been developed to undertake such calculations is made up of a number of independent modules one of which, ESCLOUD, is described in this report. The ESCLOUD program evaluates, as a function of distance and direction from the release point, the air concentration, deposition rate and external β and γ doses from airborne and deposited activity. The air concentration and deposition rate can be used as input to other modules for calculating inhalation and ingestion doses. (author)
International Nuclear Information System (INIS)
Shin, Y.W.; Wiedermann, A.H.
1984-01-01
Accurate numerical methods for treating the junction and boundary conditions needed in the transient two-phase flows of a piping network were published earlier by us; the same methods are used to formulate the treatment of the material interface as a moving boundary. The method formulated is used in a computer program to calculate sample problems designed to test the numerical methods as to their ability and the accuracy limits for calculation of the transient two-phase flows in the piping network downstream of a PWR pressurizer. Independent exact analytical solutions for the sample problems are used as the basis of a critical evaluation of the proposed numerical methods. The evaluation revealed that the proposed boundary scheme indeed generates very accurate numerical results. However, in some extreme flow conditions, numerical difficulties were experienced that eventually led to numerical instability. This paper discusses further a special technique to overcome the difficulty
International Nuclear Information System (INIS)
Ono, T.; Muramoto, T.; Kenmotsu, T.; Kawamura, T.
2008-08-01
We calculated, with a dynamic Monte Carlo code ACAT-DIFFUSE, fluxes of thermal D 2 re-emission, reflection and self-sputtering from a wrought tungsten material during a time sequence of 100 eV D + implantation, post-implanted isothermal out-gassing and thermal desorption spectroscopy. The obtained result agreed well with an existing experiment, where diffusion was considered in the calculations from the beginning of implantation. The three fluxes in the implantation period were shown to be almost comparable. The integrated deuterium flux released in the same period was estimated. The depth profiles of deuterium retained at 300 K in that period indicate that, while their maximum locations did not move, the profiles were broadened out because of fast diffusion. The amount of deuterium retained at 300 K was one order of magnitude higher than that at 473 K. (author)
International Nuclear Information System (INIS)
1989-09-01
This Standard provides guidelines and a methodology for calculating effective doses and thyroid doses to people (either individually or collectively) in the path of airborne radioactive material released from a nuclear facility following a hypothetical accident. The specific radionuclides considered in the Standard are those associated with substances having the greatest potential for becoming airborne in reactor accidents (eg, tritium (HTO), noble gases and their daughters (Kr-Rb, Xe-Cs), and radioiodines (I)); and certain radioactive particulates (eg, Cs, Ru, Sr, Te) that may become airborne under exceptional circumstances
Directory of Open Access Journals (Sweden)
N. G. Yankevich
2009-01-01
Full Text Available One of the most important values while forming gear wheels is a material section area Sс which is to be removed by a tool in the process of forming a space between two teeth in one pass. Cutting resistance which is proportional to section area of the layer to be cut and, correspondingly, a thermodynamic intensity in the polishing zone depend on Sс value.The paper proposes relations for calculation of a material section area Sс which is to be removed from a blank while forming a space between two teeth of a satellite gear of a planetary pin tooth reducer.Measurements being made in the AutoCAD packet have shown that any corrections of the profile do not make a significant influence on a section area Sс.
Energy Technology Data Exchange (ETDEWEB)
Pepper, D.W.
1980-07-01
A three-dimensional numerical model is used to calculate ground-level air concentration and deposition (due to precipitation scavenging) after a hypothetical tornado strike at the Atomics International Nuclear Material Development Facility at Santa Susana, California. Plutonium particles less than 20 ..mu..m in diameter are assumed to be lifted into the tornadic storm cell by the vortex. The rotational characteristics of the tornadic storm are embedded within the larger mesoscale flow of the storm system. The design-basis translational wind values are based on probabilities associated with existing records of tornado strikes in the vicinity of the plant site. Turbulence exchange coefficients are based on empirical values deduced from experimental data in severe storms and from theoretical assumptions obtained from the literature. The method of moments is used to incorporate subgrid-scale resolution of the concentration within a grid cell volume. This method is a quasi-Lagrangian scheme which minimizes numerical error associated with advection. In all case studies, the effects of updrafts and downdrafts, coupled with scavenging of the particulates by precipitation, account for most of the material being deposited within 50 km downwind of the plant site. Ground-level isopleths in the x-y plane show that most of the material is deposited behind and slightly to the left of the centerline trajectory of the storm. Approximately 5% of the material is dispersed into the stratosphere and anvil section of the storm.
International Nuclear Information System (INIS)
Pepper, D.W.
1980-07-01
A three-dimensional numerical model is used to calculate ground-level air concentration and deposition (due to precipitation scavenging) after a hypothetical tornado strike at the Atomics International Nuclear Material Development Facility at Santa Susana, California. Plutonium particles less than 20 μm in diameter are assumed to be lifted into the tornadic storm cell by the vortex. The rotational characteristics of the tornadic storm are embedded within the larger mesoscale flow of the storm system. The design-basis translational wind values are based on probabilities associated with existing records of tornado strikes in the vicinity of the plant site. Turbulence exchange coefficients are based on empirical values deduced from experimental data in severe storms and from theoretical assumptions obtained from the literature. The method of moments is used to incorporate subgrid-scale resolution of the concentration within a grid cell volume. This method is a quasi-Lagrangian scheme which minimizes numerical error associated with advection. In all case studies, the effects of updrafts and downdrafts, coupled with scavenging of the particulates by precipitation, account for most of the material being deposited within 50 km downwind of the plant site. Ground-level isopleths in the x-y plane show that most of the material is deposited behind and slightly to the left of the centerline trajectory of the storm. Approximately 5% of the material is dispersed into the stratosphere and anvil section of the storm
International Nuclear Information System (INIS)
Lim, Gyeong Hui
2008-03-01
This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics
Directory of Open Access Journals (Sweden)
Veli ÇAPALI
2016-05-01
Full Text Available BeO is one of the most common moderator material for neutron moderation; due to its high density, neutron capture cross section and physical-chemical properties that provides usage at elevated temperatures. As it’s known, for various applications in the field of reactor design and neutron capture, reaction cross–section data are required. The cross–sections of (n,α, (n,2n, (n,t, (n,EL and (n,TOT reactions for 9Be and 16O nuclei have been calculated by using TALYS 1.6 Two Component Exciton model and EMPIRE 3.2 Exciton model in this study. Hadronic interactions of low energetic neutrons and generated isotopes–particles have been investigated for a situation in which BeO was used as a neutron moderator by using GEANT4, which is a powerful simulation software. In addition, energy deposition along BeO material has been obtained. Results from performed calculations were compared with the experimental nuclear reaction data exist in EXFOR.
International Nuclear Information System (INIS)
West, D.
1985-07-01
The application of neutron coincidence counting to the assay of special nuclear material involves a major correction for neutron multiplication. The correction commonly used at present requires an accurate knowledge of the intensity ratio of neutrons from (α,n) reactions to those from spontaneous fission. This paper covers various factors, which need to be evaluated in order to assess their importance, in the calculation of (α,n) neutron production using measured thick target yields. They include: accuracy of (α,n) thick target yield measurements; errors introduced by deriving yields in compounds from the measured yields in the constituents and vice-versa; the likely effect of neglecting the difference of α-particle stopping power between Pu and U on the calculated neutron yield from mixed oxide fuel pellets; the intensity of neutrons produced from 1 to 2% of Al used to alloy plutonium metal; the intensity of neutrons produced in Al, used as canning material, from α-particles escaping from the surface layers of oxide or metal fuel; and neutron production from oxygen in the air spaces of powdered PuO 2 prior to sintering. (author)
Melnyk, Andrew
2012-05-01
Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.
Rumsey, Deborah
2011-01-01
The fun and easy way to get down to business with statistics Stymied by statistics? No fear ? this friendly guide offers clear, practical explanations of statistical ideas, techniques, formulas, and calculations, with lots of examples that show you how these concepts apply to your everyday life. Statistics For Dummies shows you how to interpret and critique graphs and charts, determine the odds with probability, guesstimate with confidence using confidence intervals, set up and carry out a hypothesis test, compute statistical formulas, and more.Tracks to a typical first semester statistics cou
Directory of Open Access Journals (Sweden)
Rizzo Axel
2017-01-01
Full Text Available DARWIN2.3 is the reference package used for fuel cycle applications in France. It solves the Boltzmann and Bateman equations in a coupling way, with the European JEFF-3.1.1 nuclear data library, to compute the fuel cycle values of interest. It includes both deterministic transport codes APOLLO2 (for light water reactors and ERANOS2 (for fast reactors, and the DARWIN/PEPIN2 depletion code, each of them being developed by CEA/DEN with the support of its industrial partners. The DARWIN2.3 package has been experimentally validated for pressurized and boiling water reactors, as well as for sodium fast reactors; this experimental validation relies on the analysis of post-irradiation experiments (PIE. The DARWIN2.3 experimental validation work points out some isotopes for which the depleted concentration calculation can be improved. Some other nuclides have no available experimental validation, and their concentration calculation uncertainty is provided by the propagation of a priori nuclear data uncertainties. This paper describes the work plan of studies initiated this year to improve the accuracy of the DARWIN2.3 depleted material balance calculation concerning some nuclides of interest for the fuel cycle.
Rizzo, Axel; Vaglio-Gaudard, Claire; Martin, Julie-Fiona; Noguère, Gilles; Eschbach, Romain
2017-09-01
DARWIN2.3 is the reference package used for fuel cycle applications in France. It solves the Boltzmann and Bateman equations in a coupling way, with the European JEFF-3.1.1 nuclear data library, to compute the fuel cycle values of interest. It includes both deterministic transport codes APOLLO2 (for light water reactors) and ERANOS2 (for fast reactors), and the DARWIN/PEPIN2 depletion code, each of them being developed by CEA/DEN with the support of its industrial partners. The DARWIN2.3 package has been experimentally validated for pressurized and boiling water reactors, as well as for sodium fast reactors; this experimental validation relies on the analysis of post-irradiation experiments (PIE). The DARWIN2.3 experimental validation work points out some isotopes for which the depleted concentration calculation can be improved. Some other nuclides have no available experimental validation, and their concentration calculation uncertainty is provided by the propagation of a priori nuclear data uncertainties. This paper describes the work plan of studies initiated this year to improve the accuracy of the DARWIN2.3 depleted material balance calculation concerning some nuclides of interest for the fuel cycle.
International Nuclear Information System (INIS)
2003-01-01
The fourth Research Co-ordination Meeting (RCM) of the Co-ordinated Research Project (CRP) on 'Updated Codes and Methods to Reduce the Calculational Uncertainties of the LMFR Reactivity Effect' was held during 19-23 May, 2003 in Obninsk, Russian Federation. The general objective of the CRP is to validate, verify and improve methodologies and computer codes used for the calculation of reactivity coefficients in fast reactors aiming at enhancing the utilization of plutonium and minor actinides. The first RCM took place in Vienna on 24 - 26 November 1999. The meeting was attended by 19 participants from 7 Member States and one from an international organization (France, Germany, India, Japan, Rep. of Korea, Russian Federation, the United Kingdom, and IAEA). The participants from two Member States (China and the U.S.A.) provided their results and presentation materials even though being absent at the meeting. The results for several relevant reactivity parameters obtained by the participants with their own state-of-the-art basic data and codes, were compared in terms of calculational uncertainty, and their effects on the ULOF transient behavior of the hybrid BN- 600 core were evaluated. Contributions of the participants in the benchmark analyses is shown. This report first addresses the benchmark definitions and specifications given for each Phase and briefly introduces the basic data, computer codes, and methodologies applied to the benchmark analyses by various participants. Then, the results obtained by the participants in terms of calculational uncertainty and their effect on the core transient behavior are intercompared. Finally it addresses some conclusions drawn in the benchmarks
van Gent, P. L.; Schrijer, F. F. J.; van Oudheusden, B. W.
2018-04-01
Pseudo-tracking refers to the construction of imaginary particle paths from PIV velocity fields and the subsequent estimation of the particle (material) acceleration. In view of the variety of existing and possible alternative ways to perform the pseudo-tracking method, it is not straightforward to select a suitable combination of numerical procedures for its implementation. To address this situation, this paper extends the theoretical framework for the approach. The developed theory is verified by applying various implementations of pseudo-tracking to a simulated PIV experiment. The findings of the investigations allow us to formulate the following insights and practical recommendations: (1) the velocity errors along the imaginary particle track are primarily a function of velocity measurement errors and spatial velocity gradients; (2) the particle path may best be calculated with second-order accurate numerical procedures while ensuring that the CFL condition is met; (3) least-square fitting of a first-order polynomial is a suitable method to estimate the material acceleration from the track; and (4) a suitable track length may be selected on the basis of the variation in material acceleration with track length.
Directory of Open Access Journals (Sweden)
A. N. Ostrikov
2015-01-01
Full Text Available Consumer properties of food raw material formed during the heat treatment. New physical, flavoring and aromatic properties of the products of plant origin, formed during drying due to substantial changes in the composition of the raw materia l occurring as a result of biochemical reactions. In the production of dried and roasted products is very important to follow the parameters that contribute to the passage of biochemical processes aimed at creating a product with high nutritional qualities, strong aroma and pleasant taste. We studied the basic kinetics of the drying process of food raw material (in terms of artichoke in a dense interspersed layer, which formed the basis for the rational choice of the drying regime with due consideration of changes in the moisture content of the product are studied. The nature of the effect of the dried product movement hydrodynamic conditions on a layer height and intensity of drying is established. As a result of food raw material drying process kinetics analysis (in terms of artichoke multistep drying regimes were chosen. Analysis of the artichoke particles drying by air, air-steam mixture and superheated steam intensity showed the presence of two parts: the horizontal one and gradually diminishing one. Kinetic laws of the artichoke drying process in a dense interspersed layer were the basis of engineering calculation of dryer with a transporting body in the form of a "traveling wave". Application of the dryer with the transporting body in the form of a "traveling wave" for food raw material drying allow to achieve uniform drying of the product due to the use of soft, gentle regimes of oversleeping while preserving to the utmost particles of the product; to improve the quality of the finished product through the use of interspersed layer that reduces clumping of product to be dried.
... What Is Cancer? Cancer Statistics Cancer Disparities Cancer Statistics Cancer has a major impact on society in ... success of efforts to control and manage cancer. Statistics at a Glance: The Burden of Cancer in ...
International Nuclear Information System (INIS)
Long, K.A.; Moritz, N.; Tahir, N.A.
1983-11-01
The computer code GORGON, which calculates the energy deposition and slowing down of ions in cold materials and hot plasmas is described, and analyzed in this report. This code is in a state of continuous development but an intermediate stage has been reached where it is considered useful to document the 'state of the art' at the present time. The GORGON code is an improved version of a code developed by Zinamon et al. as part of a more complex program system for studying the hydrodynamic motion of plane metal targets irradiated by intense beams of protons. The improvements made in the code were necessary to improve its usefulness for problems related to the design and burn of heavy ion beam driven inertial confinement fusion targets. (orig./GG) [de
CSIR Research Space (South Africa)
Van Wyk, Llewellyn V
2009-02-01
Full Text Available . It is generally included as part of a structurally insulated panel (SIP) where the foam is sandwiched between external skins of steel, wood or cement. Cement composites Cement bonded composites are an important class of building materials. These products... for their stone buildings, including the Egyptians, Aztecs and Inca’s. As stone is a very dense material it requires intensive heating to become warm. Rocks were generally stacked dry but mud, and later cement, can be used as a mortar to hold the rocks...
International Nuclear Information System (INIS)
Noh, Tae Yang; Park, B. G.; Kim, M. S.
2016-01-01
Only delayed gamma heating is considered in this paper. Contribution of the delayed gamma heating is expected to be negligible for the reactor power. For the neutron irradiation, however, the contribution of delayed gamma heating is not negligible issue, and it should be evaluated for safety analysis. Additionally, in the case of temperature-sensitive irradiation targets, the delayed gamma heating should be evaluated precisely. For the HANARO, the delayed gamma heating has been evaluated by modifying the library data of the calculation code or by assuming the heating to be conservative value based on prompt gamma heating. For the method of modifying the library data, however, it should be able to estimate isotopes which contribute to heat generation exactly. And furthermore, it should be concerned to determine modified emission yield of gamma-rays depending on the half-life. For the method of assuming conservative value, it is hard to determine whether the assumed heating value is enough conservative or not. In this study, a methodology for evaluation of nuclear heating by structure materials irradiated for a long time is established with the ORIGEN and MCNP codes. And this method is applied to determine the nuclear heating of the RI capsule in the IR2 irradiation hole in the HANARO. In this paper, the methodology for evaluation of heat generation by irradiated structure materials was established by using the ORIGEN and MCNP codes. From this result, the contribution by farther structures was expected to be negligible. Meanwhile, heat generation by delayed gamma-ray was calculated less than 0.03% of heat generation by prompt radiations. The result of this study indicates that there are some remaining issues for the real situation of the neutron irradiation at HANARO.
International Nuclear Information System (INIS)
Hilaire, S.
2001-01-01
A review of the statistical model of nuclear reactions is presented. The main relations are described, together with the ingredients necessary to perform practical calculations. In addition, a substantial overview of the width fluctuation correction factor is given. (author)
Energy Technology Data Exchange (ETDEWEB)
Carlier, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1958-07-01
The uranium bearing shale ore-body at St-Hippolyte was mainly proved by drillings, the results of which were studied through statistical methods. The author gives an account of his conclusions regarding the distribution of mineralization, its origin and, the estimate of reserves. The uranium mineralization is irregularly distributed in shales. On a vertical line, levels could be singled out: they are similar, as far as lithology is concerned, but each of them is characterized by a grade-population, according to a lognormal distribution. Horizontally, a connection is noted between grades and the overlying barren sandstone bed. These considerations, as well as a statistical study of U/Ra ratio, induced the author to consider that the mineralization of the richest level has an hydrothermal origin. It is only through an uranium diffusion from that level that the others are mineralized. The uranium which is contained in poorest beds has a syn-genetic origin. Furthermore, statistical methods bring us to an evaluation of reserves. In such a case, the evaluation is equivalent to the ore obtained by common arithmetical methods. Moreover, we are able to state precisely the upper and lower limits where a true tonnage or a true grade could be given with a definite value of statistical certainty. Then the author has been able to study the separation of reserves in grade-groups and to foresee the effect of sorting in connection with the lower possible grade and with extraction units (wagons, lorries, etc...), on which the sorting will be done. To conclude, the author indicates the value of both classical and statistical methods. These two techniques are completing each other and they solve different problems. (author) [French] Le gisement des schistes uraniferes de St-Hippolyte a ete reconnu essentiellement par sondages, dont les resultats ont ete etudies par les methodes du calcul statistique. L'auteur expose les conclusions auxquelles il a ete amene et qui concernent: la
International Nuclear Information System (INIS)
Hansen, F.Y.
1978-01-01
The pair distribution function of non-crystalline materials may be obtained by a Fourier transform of the structure factor as calculated in part I of this series. The structure factor is often limited in the sense that it shows significant oscillations at the maximal wave vector transfers obtainable. The Fourier transform of such functions, therefore, introduces truncation errors in the transformed function. With this program a parametrization of the small distance part of the pair distribution function is obtained according to a method described which enables one to eliminate truncation error from the final pair distribution function. It is based on a least squares fit calculation of the small distance part of the pair distribution function obtained by a direct transform of the experimental structure factor and a model pair distribution function obtained from a model structure factor truncated at the same wave vector transfers as the experimental factor. The storage requirement depends on the number of structure factor data and the number of peaks used to resolve the small distance part of the pair distribution function. In the present set-up storage requirement is set to 15083 words, which is estimated to be satisfactory for a large number of cases. (Auth.)
International Nuclear Information System (INIS)
Damiani, Daniela D.; Cruz, Carlos M.; Pinnera, Ibrahin; Abreu, Yamiel; Leyva, Antonio
2015-01-01
New developments and simulations on regard to the interactions of incident gamma radiation over solids materials using the MCSAD (Monte Carlo Simulation of Atom Displacement) code are presented. In this code Monte Carlo algorithms are applied in order to sample all electrons and gamma interaction processes occurring during their transport through a solid target, especially those connected to the output of atom displacements events. Particularly, it is calculated the limit angle to elastic scattering for the electrons on a new approach, which allows correctly the splitting of the electron single processes at higher scattering angles. On this way, the probability of single electron scattering processes transferring high recoil atomic energy leading to atom displacement effects is calculated and consequently sampled in the MCSAD code. In addition, it is considered some other new theoretical aspects in order to improve previous versions, like the one concerning the selection of threshold energy for displacements at a given atom site in dependence of the atom recoil direction. (Author)
International Nuclear Information System (INIS)
Blanchet, D.
2006-01-01
The objective of this work is to develop the modelling of the nuclear heating of the experimental devices of the future Jules Horowitz material testing reactor (RJH). The strong specific nuclear power produced (460 kW/l), induces so intense photonic fluxes which cause heating and large temperature gradients that it is necessary to control it by an adequate design. However, calculations of heating are penalized by the very large uncertainties estimated at a value of about 30% (2*σ) coming from the gaps and uncertainties of the data of gamma emission present in the libraries of basic nuclear data. The experimental program ADAPh aims at reducing these uncertainties. Measurements by thermoluminescent detectors (TLD) and ionisation chambers are carried out in the critical assemblies EOLE (Mox) and Minerve (UO 2 ). The rigorous interpretation of these measurements requires specific developments based on Monte-Carlo simulations of coupled neutron-gamma and gamma-electron transport. The developments carried out are made different in particular by the modelling of cavities phenomena and delayed gamma emissions by the decay of fission products. The comparisons calculation-measurement made it possible to identify a systematic bias confirming a tendency of calculations to underestimate measurements. A Bayesian method of adjustment was developed in order to re-estimate the principal components of the gamma heating and to transpose the results obtained to the devices of the RJH, under conditions clearly and definitely representative. This work made possible to reduce significantly the uncertainties on the determination of the gamma heating from 30 to 15 per cent. (author)
Business statistics for dummies
Anderson, Alan
2013-01-01
Score higher in your business statistics course? Easy. Business statistics is a common course for business majors and MBA candidates. It examines common data sets and the proper way to use such information when conducting research and producing informational reports such as profit and loss statements, customer satisfaction surveys, and peer comparisons. Business Statistics For Dummies tracks to a typical business statistics course offered at the undergraduate and graduate levels and provides clear, practical explanations of business statistical ideas, techniques, formulas, and calculations, w
Energy Technology Data Exchange (ETDEWEB)
Roenning, Anne; Lyng, Kari-Anne; Vold, Mie
2011-07-01
Greenhouse gas emissions from building linked today to a large extent to the energy consumption during the operating period. Through increasingly stringent energy requirements and other changes, the energy consumption for the operation could go down over time. This means in this case that the energy required to produce, transport and set up the building, to a greater extent can be relatively more important in a life-cycle analysis. KRD in that regard ha given Oestfoldforskning the commission to conduct a literature study that will provide an overview and assessment of the literature / research papers describing various building materials climate impact and how this translates into a lifetime (LCA - Life Cycle Assessment), and thus describe the knowledge platform these analyzes are based in. It also means a description of the factors that affect the climate and the environment, including the stages of life that are important. Literature study is conducted by searching scientific databases (Springer Link, Science Direct, Google Scholar, Norwegian EPD database of declarations). The literature search is limited to studies that are based on LCA as a methodology for calculating the climate impacts associated with the construction and building materials. Based on the review of literature is also undertaken an analysis focusing on explaining the methodological platform between the studies are based on, in order to explain why the results differ and / or may not be comparable.(eb)
Energy Technology Data Exchange (ETDEWEB)
Heselhaus, A.
1997-05-01
In this work a hybrid program system consisting of a 3D finite-volume Navier-Stokes flow solver and a 3D finite-element heat conduction solver has been developed. It enables the coupled calculation of structure temperatures in diabatic solid/fluid configurations. The grids of both the finite element and the finite volume computational domain may be completely independent. The coupled program fully resolves the thermal interaction between heat transfer and the resulting material temperatures. The developed coupling algorithm is numerically stable, conservative and works without the need to define ambient temperatures in the flowfield. This allows for the simulation of any solid/fluid configuration. When simulating combined blade/endwall cooling or filmcooling, only a coupled procedure is capable to completely account for the interaction between all relevant thermal parameters. It is found that the coupled calculation of convective cooling in a realistic guide vane leads locally to 45 K higher and 107 K lower blade temperatures than the uncoupled calculation. This shows that accounting for the thermal interaction between the flow and the structure offers both potential to save cooling air and a lower margin of safety when designing cooling systems close to the thermal limits of the blade material. (orig.) [Deutsch] Im Rahmen der vorliegenden Arbeit wurde ein Verfahren zur Berechnung der Temperaturverteilung in diabat umstroemten Koerpern entwickelt, bei dem ein 3D-Finite Volumen Navier-Stokes Stroemungsloeser und ein 3D-Finite Elemente Waermeleitungsloeser zu einem hybriden Programmsystem gekoppelt werden. Dabei besteht die Moeglichkeit, voellig unabhaengige Rechennetze fuer Stroemung und Struktur zu verwenden. Mit dem gekoppelten Verfahren kann die Wechselwirkung zwischen resultierenden Materialtemperaturen und dem davon rueck-beeinflussten Waermeuebergang beruecksichtigt werden. Weiterhin ist der hier entwickelte, stabile und konservative Kopplungsalgorithmus nicht
Statistical and low dose response
International Nuclear Information System (INIS)
Thorson, M.R.; Endres, G.W.R.
1981-01-01
The low dose response and the lower limit of detection of the Hanford dosimeter depend upon may factors, including the energy of the radiation, whether the exposure is to be a single radiation or mixed fields, annealing cycles, environmental factors, and how well various batches of TLD materials are matched in the system. A careful statistical study and sensitivity analysis were performed to determine how these factors influence the response of the dosimeter system. Estimates have been included in this study of the standard deviation of calculated dose for various mixed field exposures from 0 to 1000 mrem
Ye, Hua; Wu, Hongyu; Chen, Liangyuan; Ma, Songhua; Zhou, Kaifeng; Yan, Guobing; Shen, Jiazhong; Chen, Dongcheng; Su, Shi-Jian
2018-03-01
A series of new small molecules based on symmetric electron-acceptor of 1,3,4-oxadiazole moiety or its asymmetric isomer of 1,2,4-oxadiazole unit were successfully synthesized and applied to solution-processable blue phosphorescent organic light-emitting diodes for the first time, and their thermal, photophysical, electrochemical properties and density functional theory calculations were studied thoroughly. Due to the high triplet energy levels ( E T, 2.82-2.85 eV), the energy from phosphorescent emitter of iridium(III) bis[(4,6-difluorophenyl)-pyridinate- N,C2']picolinate (FIrpic) transfer to the host molecules could be effectively suppressed and thus assuring the emission of devices was all from FIrpic. In comparison with the para-mode conjugation in substitution of five-membered 1,3,4-oxadiazole in 134OXD, the meta-linkages of 1,2,4-isomer appending with two phenyl rings cause the worse conjugation degree and the electron delocalization as well as the lower electron-withdrawing ability for the other 1,2,4-oxadiazole-based materials. Noting that the solution-processed device based on 134OXD containing 1,3,4-oxadiazole units without extra vacuum thermal-deposited hole/exciton-blocking layer and electron-transporting layer showed the highest maximum current efficiency (CEmax) of 8.75 cd/A due to the excellent charge transporting ability of 134OXD, which far surpassed the similar devices based on other host materials containing 1,2,4-oxadiazole units. Moreover, the device based on 134OXD presented small efficiency roll-off with current efficiency (CE) of 6.26 cd/A at high brightness up to 100 cd/m2. This work demonstrates different nitrogen and oxygen atom orientations of the oxadiazole-based host materials produce major impact on the optoelectronic characteristics of the solution-processable devices.
Equilibrium statistical mechanics
Mayer, J E
1968-01-01
The International Encyclopedia of Physical Chemistry and Chemical Physics, Volume 1: Equilibrium Statistical Mechanics covers the fundamental principles and the development of theoretical aspects of equilibrium statistical mechanics. Statistical mechanical is the study of the connection between the macroscopic behavior of bulk matter and the microscopic properties of its constituent atoms and molecules. This book contains eight chapters, and begins with a presentation of the master equation used for the calculation of the fundamental thermodynamic functions. The succeeding chapters highlight t
The Dental Trauma Internet Calculator
DEFF Research Database (Denmark)
Gerds, Thomas Alexander; Lauridsen, Eva Fejerskov; Christensen, Søren Steno Ahrensburg
2012-01-01
Background/Aim Prediction tools are increasingly used to inform patients about the future dental health outcome. Advanced statistical methods are required to arrive at unbiased predictions based on follow-up studies. Material and Methods The Internet risk calculator at the Dental Trauma Guide...... provides prognoses for teeth with traumatic injuries based on the Copenhagen trauma database: http://www.dentaltraumaguide.org The database includes 2191 traumatized permanent teeth from 1282 patients that were treated at the dental trauma unit at the University Hospital in Copenhagen (Denmark...
Abraham, Arick Reed A.; Johnson, Kenneth L.; Nichols, Charles T.; Saulsberry, Regor L.; Waller, Jess M.
2012-01-01
Broadband modal acoustic emission (AE) data were acquired during intermittent load hold tensile test profiles on Toray T1000G carbon fiber-reinforced epoxy (C/Ep) single tow specimens. A novel trend seeking statistical method to determine the onset of significant AE was developed, resulting in more linear decreases in the Felicity ratio (FR) with load, potentially leading to more accurate failure prediction. The method developed uses an exponentially weighted moving average (EWMA) control chart. Comparison of the EWMA with previously used FR onset methods, namely the discrete (n), mean (n (raised bar)), normalized (n%) and normalized mean (n(raised bar)%) methods, revealed the EWMA method yields more consistently linear FR versus load relationships between specimens. Other findings include a correlation between AE data richness and FR linearity based on the FR methods discussed in this paper, and evidence of premature failure at lower than expected loads. Application of the EWMA method should be extended to other composite materials and, eventually, composite components such as composite overwrapped pressure vessels. Furthermore, future experiments should attempt to uncover the factors responsible for infant mortality in C/Ep strands.
Ghavami, Behnam; Raji, Mohsen; Pedram, Hossein
2011-08-26
Carbon nanotube field-effect transistors (CNFETs) show great promise as building blocks of future integrated circuits. However, synthesizing single-walled carbon nanotubes (CNTs) with accurate chirality and exact positioning control has been widely acknowledged as an exceedingly complex task. Indeed, density and chirality variations in CNT growth can compromise the reliability of CNFET-based circuits. In this paper, we present a novel statistical compact model to estimate the failure probability of CNFETs to provide some material and process guidelines for the design of CNFETs in gigascale integrated circuits. We use measured CNT spacing distributions within the framework of detailed failure analysis to demonstrate that both the CNT density and the ratio of metallic to semiconducting CNTs play dominant roles in defining the failure probability of CNFETs. Besides, it is argued that the large-scale integration of these devices within an integrated circuit will be feasible only if a specific range of CNT density with an acceptable ratio of semiconducting to metallic CNTs can be adjusted in a typical synthesis process.
Griffiths, Dawn
2009-01-01
Wouldn't it be great if there were a statistics book that made histograms, probability distributions, and chi square analysis more enjoyable than going to the dentist? Head First Statistics brings this typically dry subject to life, teaching you everything you want and need to know about statistics through engaging, interactive, and thought-provoking material, full of puzzles, stories, quizzes, visual aids, and real-world examples. Whether you're a student, a professional, or just curious about statistical analysis, Head First's brain-friendly formula helps you get a firm grasp of statistics
Shen, Chenyang; Li, Bin; Chen, Liyuan; Yang, Ming; Lou, Yifei; Jia, Xun
2018-04-01
Accurate calculation of proton stopping power ratio (SPR) relative to water is crucial to proton therapy treatment planning, since SPR affects prediction of beam range. Current standard practice derives SPR using a single CT scan. Recent studies showed that dual-energy CT (DECT) offers advantages to accurately determine SPR. One method to further improve accuracy is to incorporate prior knowledge on human tissue composition through a dictionary approach. In addition, it is also suggested that using CT images with multiple (more than two) energy channels, i.e., multi-energy CT (MECT), can further improve accuracy. In this paper, we proposed a sparse dictionary-based method to convert CT numbers of DECT or MECT to elemental composition (EC) and relative electron density (rED) for SPR computation. A dictionary was constructed to include materials generated based on human tissues of known compositions. For a voxel with CT numbers of different energy channels, its EC and rED are determined subject to a constraint that the resulting EC is a linear non-negative combination of only a few tissues in the dictionary. We formulated this as a non-convex optimization problem. A novel algorithm was designed to solve the problem. The proposed method has a unified structure to handle both DECT and MECT with different number of channels. We tested our method in both simulation and experimental studies. Average errors of SPR in experimental studies were 0.70% in DECT, 0.53% in MECT with three energy channels, and 0.45% in MECT with four channels. We also studied the impact of parameter values and established appropriate parameter values for our method. The proposed method can accurately calculate SPR using DECT and MECT. The results suggest that using more energy channels may improve the SPR estimation accuracy. © 2018 American Association of Physicists in Medicine.
... HIV Syndicated Content Website Feedback HIV/AIDS Basic Statistics Recommend on Facebook Tweet Share Compartir HIV and ... HIV. Interested in learning more about CDC's HIV statistics? Terms, Definitions, and Calculations Used in CDC HIV ...
International Nuclear Information System (INIS)
Martin, P.M.
1977-01-01
Numerical description of medical and biologic phenomena is proliferating. Laboratory studies on patients now yield measurements of at least a dozen indices, each with its own normal limits. Within nuclear medicine, numerical analysis as well as numerical measurement and the use of computers are becoming more common. While the digital computer has proved to be a valuable tool for measurment and analysis of imaging and radioimmunoassay data, it has created more work in that users now ask for more detailed calculations and for indices that measure the reliability of quantified observations. The following material is presented with the intention of providing a straight-forward methodology to determine values for some useful parameters and to estimate the errors involved. The process used is that of asking relevant questions and then providing answers by illustrations. It is hoped that this will help the reader avoid an error of the third kind, that is, the error of statistical misrepresentation or inadvertent deception. This occurs most frequently in cases where the right answer is found to the wrong question. The purposes of this chapter are: (1) to provide some relevant statistical theory, using a terminology suitable for the nuclear medicine field; (2) to demonstrate the application of a number of statistical methods to the kinds of data commonly encountered in nuclear medicine; (3) to provide a framework to assist the experimenter in choosing the method and the questions most suitable for the experiment at hand; and (4) to present a simple approach for a quantitative quality control program for scintillation cameras and other radiation detectors
Methods for Melting Temperature Calculation
Hong, Qi-Jun
Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which
... this page: https://medlineplus.gov/usestatistics.html MedlinePlus Statistics To use the sharing features on this page, ... By Quarter View image full size Quarterly User Statistics Quarter Page Views Unique Visitors Oct-Dec-98 ...
Understanding advanced statistical methods
Westfall, Peter
2013-01-01
Introduction: Probability, Statistics, and ScienceReality, Nature, Science, and ModelsStatistical Processes: Nature, Design and Measurement, and DataModelsDeterministic ModelsVariabilityParametersPurely Probabilistic Statistical ModelsStatistical Models with Both Deterministic and Probabilistic ComponentsStatistical InferenceGood and Bad ModelsUses of Probability ModelsRandom Variables and Their Probability DistributionsIntroductionTypes of Random Variables: Nominal, Ordinal, and ContinuousDiscrete Probability Distribution FunctionsContinuous Probability Distribution FunctionsSome Calculus-Derivatives and Least SquaresMore Calculus-Integrals and Cumulative Distribution FunctionsProbability Calculation and SimulationIntroductionAnalytic Calculations, Discrete and Continuous CasesSimulation-Based ApproximationGenerating Random NumbersIdentifying DistributionsIntroductionIdentifying Distributions from Theory AloneUsing Data: Estimating Distributions via the HistogramQuantiles: Theoretical and Data-Based Estimate...
Pestman, Wiebe R
2009-01-01
This textbook provides a broad and solid introduction to mathematical statistics, including the classical subjects hypothesis testing, normal regression analysis, and normal analysis of variance. In addition, non-parametric statistics and vectorial statistics are considered, as well as applications of stochastic analysis in modern statistics, e.g., Kolmogorov-Smirnov testing, smoothing techniques, robustness and density estimation. For students with some elementary mathematical background. With many exercises. Prerequisites from measure theory and linear algebra are presented.
Energy Technology Data Exchange (ETDEWEB)
Rocquefelte, X.
2001-10-01
The functioning of a positive electrode in a lithium battery is based on the reversible intercalation of lithium. In some cases, such a reaction can lead to important structural modifications and therefore to an amorphization of the material. A theoretical approach is presented here that leads to structural predictions and simulations of electrochemical behaviour of positive electrode materials. In the first part, DFT (Density Functional Theory) formalisms and the respective advantages of FLAPW (Full potential Linearized Augmented Plane Waves) and PP/PW (Pseudopotential / Plane Waves) methods are discussed. In the second part are given some fundamental electrochemistry considerations related to the intercalation process, thermodynamics aspects and relationships with electronic structure. Then, an approach combining experimental data and geometry optimisation of structural hypotheses is given. This approach was first applied to a model compound LiMoS{sub 2}, and has been then generalised to systems of industrial interest such as Li{sub x}V{sub 2}O{sub 5} (0 {<=} x {<=} 3). The simulated X-ray diagrams of the optimised structures for LiMoS{sub 2} and {omega} - Li{sub 3}V{sub 2}O{sub 5} are in good agreement with experimental data. In the case of Li{sub x}V{sub 2}O{sub 5}, the first discharge curves starting from {alpha} - V{sub 2}O{sub 5} and {gamma}' - V{sub 2}O{sub 5} were then successfully simulated. A chemical bond analysis was carried out to help understand the origin of the distortion in LiMoS{sub 2} and the voltage variations in the electrochemical curves of Li{sub x}V{sub 2}O{sub 5}. This study clearly demonstrates that an approach combining first-principle calculations and available experimental data is invaluable in the structure determination of poorly crystallized compounds. Such a procedure contributes to the understanding of the phase transitions induced by the lithium intercalation in vanadium oxide compounds and can really be used in the research
Energy Technology Data Exchange (ETDEWEB)
Rocquefelte, X
2001-10-01
The functioning of a positive electrode in a lithium battery is based on the reversible intercalation of lithium. In some cases, such a reaction can lead to important structural modifications and therefore to an amorphization of the material. A theoretical approach is presented here that leads to structural predictions and simulations of electrochemical behaviour of positive electrode materials. In the first part, DFT (Density Functional Theory) formalisms and the respective advantages of FLAPW (Full potential Linearized Augmented Plane Waves) and PP/PW (Pseudopotential / Plane Waves) methods are discussed. In the second part are given some fundamental electrochemistry considerations related to the intercalation process, thermodynamics aspects and relationships with electronic structure. Then, an approach combining experimental data and geometry optimisation of structural hypotheses is given. This approach was first applied to a model compound LiMoS{sub 2}, and has been then generalised to systems of industrial interest such as Li{sub x}V{sub 2}O{sub 5} (0 {<=} x {<=} 3). The simulated X-ray diagrams of the optimised structures for LiMoS{sub 2} and {omega} - Li{sub 3}V{sub 2}O{sub 5} are in good agreement with experimental data. In the case of Li{sub x}V{sub 2}O{sub 5}, the first discharge curves starting from {alpha} - V{sub 2}O{sub 5} and {gamma}' - V{sub 2}O{sub 5} were then successfully simulated. A chemical bond analysis was carried out to help understand the origin of the distortion in LiMoS{sub 2} and the voltage variations in the electrochemical curves of Li{sub x}V{sub 2}O{sub 5}. This study clearly demonstrates that an approach combining first-principle calculations and available experimental data is invaluable in the structure determination of poorly crystallized compounds. Such a procedure contributes to the understanding of the phase transitions induced by the lithium intercalation in vanadium oxide compounds and can really be used in the research of
International Nuclear Information System (INIS)
Kadecka, P.
1995-01-01
The problem of evaluation of tolerable defects and thinning of pipe walls was analyzed. In fact, a procedure for evaluation of tolerable defects is described in ASME Code Case N 480 based on the ASME ''Rules for Construction of Nuclear Power Plant Components''. The pipe systems of the Dukovany NPP, however, were constructed to different (East European) standards, and therefore caution should be exercised when applying US standards to this plant. The report demonstrates major differences between the ASME Standard and the proposed Czech standard ''A.S.I. Standards Documentation for Strength Calculations of Equipment and Piping of WWER Type Nuclear Power Plants'' developed by the Czech Association of Mechanical Engineers (A.S.I), evaluates the applicability of Code Case N 480 to the Dukovany plant, and proposes a Czech procedure for the evaluation. The basic characteristics of materials cited by ASME II and carbon steels used in the secondary circuit of the Dukovany NPP are also compared. (P.A.). 78 tabs., 2 figs., 4 refs
International Nuclear Information System (INIS)
Ono, T.; Kenmotsu, T.; Muramoto, T.; Kawamura, T.
2009-01-01
We calculated, with a dynamic Monte Carlo code ACAT-DIFFUSE, fluxes of thermal D 2 re-emission, reflection and segregated self-sputtering of D from a D + implanted wrought tungsten material during a time sequence of l00 eV D + implantation, post-implanted isothermal out-gassing and thermal desorption spectroscopy. The obtained result was in good agreement with an existing experiment if two different trap sites with de-trapping energy of 0.85 eV and 2.2 eV and density fraction of 0.05 D/W and 0.01 D/W were assumed to exist. The re-emission, reflection and self-sputtering fluxes in the implantation period were shown to be almost comparable. The integrated deuterium flux released in the same period was estimated. The amount of deuterium retained at 300 K was nearly six times higher than that at 473 K, which reflects the result that mobile atoms and atoms trapped in 0.85 eV trap existed abundantly at 300 K but scarcely at 473 K.
Whole Frog Project and Virtual Frog Dissection Statistics wwwstats output for January 1 through duplicate or extraneous accesses. For example, in these statistics, while a POST requesting an image is as well. Note that this under-represents the bytes requested. Starting date for following statistics
Transient anisotropic magnetic field calculation
International Nuclear Information System (INIS)
Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan
2006-01-01
For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement
Tellinghuisen, Joel
2008-01-01
The method of least squares is probably the most powerful data analysis tool available to scientists. Toward a fuller appreciation of that power, this work begins with an elementary review of statistics fundamentals, and then progressively increases in sophistication as the coverage is extended to the theory and practice of linear and nonlinear least squares. The results are illustrated in application to data analysis problems important in the life sciences. The review of fundamentals includes the role of sampling and its connection to probability distributions, the Central Limit Theorem, and the importance of finite variance. Linear least squares are presented using matrix notation, and the significance of the key probability distributions-Gaussian, chi-square, and t-is illustrated with Monte Carlo calculations. The meaning of correlation is discussed, including its role in the propagation of error. When the data themselves are correlated, special methods are needed for the fitting, as they are also when fitting with constraints. Nonlinear fitting gives rise to nonnormal parameter distributions, but the 10% Rule of Thumb suggests that such problems will be insignificant when the parameter is sufficiently well determined. Illustrations include calibration with linear and nonlinear response functions, the dangers inherent in fitting inverted data (e.g., Lineweaver-Burk equation), an analysis of the reliability of the van't Hoff analysis, the problem of correlated data in the Guggenheim method, and the optimization of isothermal titration calorimetry procedures using the variance-covariance matrix for experiment design. The work concludes with illustrations on assessing and presenting results.
Energy Technology Data Exchange (ETDEWEB)
Boergesson, Lennart (Clay Technology AB, Lund (Sweden)); Hernelind, Jan (5T Engineering AB, Vaesteraas (Sweden))
2010-11-15
the scale tests, has been used for the copper. Two element models were used. In one of them (model A) the bentonite was divided into three parts with different densities according to the measurements made during dismantling and sampling. In the other one (model B) the same density, corresponding to the weighted mean value, was used for all bentonite in the test. The reason for using both these models was to investigate whether the simplification done in SR-Site, where only one density was modelled and thus no consideration was taken to the incomplete homogenisation that remains after water saturation and swelling, would affect the results significantly. The results show a remarkable agreement between modelled and measured results, in spite of the complexity of the models and the difficulties to measure stresses and strains under the very fast tests. In addition there was less than two per cent difference between the results of the simplified model with one density and the model with three densities. Figure 1 shows an example of results from Test 3 with the shear rate 160 mm/sec. i.e. the entire test took only 13/100 of a second. The modelling results of both models were thus found to agree well with the measurements, which validates the SR-Site modelling of the rock shear scenario. It should be emphasized that the calculations have been done without any changes or adaptations of material models or parameter values to test results. The overall conclusion is that the modelling technique, the element mesh and the material models used in these analyses are well fitted and useful for this type of modelling. [Figure 1. Measured total force as function of the shear deformation for Test 3 with the shear rate 160 mm/sec. Results from the calculations with the two models and the results of the measurements are shown.
Statistical aspects of forensic genetics
DEFF Research Database (Denmark)
Tvedebrink, Torben
This PhD thesis deals with statistical models intended for forensic genetics, which is the part of forensic medicine concerned with analysis of DNA evidence from criminal cases together with calculation of alleged paternity and affinity in family reunification cases. The main focus of the thesis...... is on crime cases as these differ from the other types of cases since the biological material often is used for person identification contrary to affinity. Common to all cases, however, is that the DNA is used as evidence in order to assess the probability of observing the biological material given different...... of the DNA evidence under competing hypotheses the biological evidence may be used in the court’s deliberation and trial on equal footing with other evidence and expert statements. These probabilities are based on population genetic models whose assumptions must be validated. The thesis’s first two articles...
Boslaugh, Sarah
2008-01-01
Need to learn statistics as part of your job, or want some help passing a statistics course? Statistics in a Nutshell is a clear and concise introduction and reference that's perfect for anyone with no previous background in the subject. This book gives you a solid understanding of statistics without being too simple, yet without the numbing complexity of most college texts. You get a firm grasp of the fundamentals and a hands-on understanding of how to apply them before moving on to the more advanced material that follows. Each chapter presents you with easy-to-follow descriptions illustrat
Sadovskii, Michael V
2012-01-01
This volume provides a compact presentation of modern statistical physics at an advanced level. Beginning with questions on the foundations of statistical mechanics all important aspects of statistical physics are included, such as applications to ideal gases, the theory of quantum liquids and superconductivity and the modern theory of critical phenomena. Beyond that attention is given to new approaches, such as quantum field theory methods and non-equilibrium problems.
Goodman, Joseph W
2015-01-01
This book discusses statistical methods that are useful for treating problems in modern optics, and the application of these methods to solving a variety of such problems This book covers a variety of statistical problems in optics, including both theory and applications. The text covers the necessary background in statistics, statistical properties of light waves of various types, the theory of partial coherence and its applications, imaging with partially coherent light, atmospheric degradations of images, and noise limitations in the detection of light. New topics have been introduced i
Energy Technology Data Exchange (ETDEWEB)
Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il
2017-05-15
The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.
International Nuclear Information System (INIS)
Eliazar, Iddo
2017-01-01
The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.
Szulc, Stefan
1965-01-01
Statistical Methods provides a discussion of the principles of the organization and technique of research, with emphasis on its application to the problems in social statistics. This book discusses branch statistics, which aims to develop practical ways of collecting and processing numerical data and to adapt general statistical methods to the objectives in a given field.Organized into five parts encompassing 22 chapters, this book begins with an overview of how to organize the collection of such information on individual units, primarily as accomplished by government agencies. This text then
... Testing Treatment & Outcomes Health Professionals Statistics More Resources Candidiasis Candida infections of the mouth, throat, and esophagus Vaginal candidiasis Invasive candidiasis Definition Symptoms Risk & Prevention Sources Diagnosis ...
National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...
Petocz, Peter; Sowey, Eric
2012-01-01
The term "data snooping" refers to the practice of choosing which statistical analyses to apply to a set of data after having first looked at those data. Data snooping contradicts a fundamental precept of applied statistics, that the scheme of analysis is to be planned in advance. In this column, the authors shall elucidate the…
Petocz, Peter; Sowey, Eric
2008-01-01
In this article, the authors focus on hypothesis testing--that peculiarly statistical way of deciding things. Statistical methods for testing hypotheses were developed in the 1920s and 1930s by some of the most famous statisticians, in particular Ronald Fisher, Jerzy Neyman and Egon Pearson, who laid the foundations of almost all modern methods of…
Glaz, Joseph
2009-01-01
Suitable for graduate students and researchers in applied probability and statistics, as well as for scientists in biology, computer science, pharmaceutical science and medicine, this title brings together a collection of chapters illustrating the depth and diversity of theory, methods and applications in the area of scan statistics.
Lyons, L.
2016-01-01
Accelerators and detectors are expensive, both in terms of money and human effort. It is thus important to invest effort in performing a good statistical anal- ysis of the data, in order to extract the best information from it. This series of five lectures deals with practical aspects of statistical issues that arise in typical High Energy Physics analyses.
Nick, Todd G
2007-01-01
Statistics is defined by the Medical Subject Headings (MeSH) thesaurus as the science and art of collecting, summarizing, and analyzing data that are subject to random variation. The two broad categories of summarizing and analyzing data are referred to as descriptive and inferential statistics. This chapter considers the science and art of summarizing data where descriptive statistics and graphics are used to display data. In this chapter, we discuss the fundamentals of descriptive statistics, including describing qualitative and quantitative variables. For describing quantitative variables, measures of location and spread, for example the standard deviation, are presented along with graphical presentations. We also discuss distributions of statistics, for example the variance, as well as the use of transformations. The concepts in this chapter are useful for uncovering patterns within the data and for effectively presenting the results of a project.
Statistical decay of giant resonances
International Nuclear Information System (INIS)
Dias, H.; Teruya, N.; Wolynec, E.
1986-01-01
Statistical calculations to predict the neutron spectrum resulting from the decay of Giant Resonances are discussed. The dependence of the resutls on the optical potential parametrization and on the level density of the residual nucleus is assessed. A Hauser-Feshbach calculation is performed for the decay of the monople giant resonance in 208 Pb using the experimental levels of 207 Pb from a recent compilation. The calculated statistical decay is in excelent agreement with recent experimental data, showing that the decay of this resonance is dominantly statistical, as predicted by continuum RPA calculations. (Author) [pt
Statistical decay of giant resonances
International Nuclear Information System (INIS)
Dias, H.; Teruya, N.; Wolynec, E.
1986-02-01
Statistical calculations to predict the neutron spectrum resulting from the decay of Giant Resonances are discussed. The dependence of the results on the optical potential parametrization and on the level density of the residual nucleus is assessed. A Hauser-Feshbach calculation is performed for the decay of the monopole giant resonance in 208 Pb using the experimental levels of 207 Pb from a recent compilation. The calculated statistical decay is in excellent agreement with recent experimental data, showing that decay of this resonance is dominantly statistical, as predicted by continuum RPA calculations. (Author) [pt
Wannier, Gregory Hugh
1966-01-01
Until recently, the field of statistical physics was traditionally taught as three separate subjects: thermodynamics, statistical mechanics, and kinetic theory. This text, a forerunner in its field and now a classic, was the first to recognize the outdated reasons for their separation and to combine the essentials of the three subjects into one unified presentation of thermal physics. It has been widely adopted in graduate and advanced undergraduate courses, and is recommended throughout the field as an indispensable aid to the independent study and research of statistical physics.Designed for
Feiveson, Alan H.; Foy, Millennia; Ploutz-Snyder, Robert; Fiedler, James
2014-01-01
Do you have elevated p-values? Is the data analysis process getting you down? Do you experience anxiety when you need to respond to criticism of statistical methods in your manuscript? You may be suffering from Insufficient Statistical Support Syndrome (ISSS). For symptomatic relief of ISSS, come for a free consultation with JSC biostatisticians at our help desk during the poster sessions at the HRP Investigators Workshop. Get answers to common questions about sample size, missing data, multiple testing, when to trust the results of your analyses and more. Side effects may include sudden loss of statistics anxiety, improved interpretation of your data, and increased confidence in your results.
Energy Technology Data Exchange (ETDEWEB)
Wendelberger, Laura Jean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-08-08
In large datasets, it is time consuming or even impossible to pick out interesting images. Our proposed solution is to find statistics to quantify the information in each image and use those to identify and pick out images of interest.
Department of Homeland Security — Accident statistics available on the Coast Guard’s website by state, year, and one variable to obtain tables and/or graphs. Data from reports has been loaded for...
U.S. Department of Health & Human Services — The CMS Center for Strategic Planning produces an annual CMS Statistics reference booklet that provides a quick reference for summary information about health...
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Data about the usage of the WPRDC site and its various datasets, obtained by combining Google Analytics statistics with information from the WPRDC's data portal.
Serdobolskii, Vadim Ivanovich
2007-01-01
This monograph presents mathematical theory of statistical models described by the essentially large number of unknown parameters, comparable with sample size but can also be much larger. In this meaning, the proposed theory can be called "essentially multiparametric". It is developed on the basis of the Kolmogorov asymptotic approach in which sample size increases along with the number of unknown parameters.This theory opens a way for solution of central problems of multivariate statistics, which up until now have not been solved. Traditional statistical methods based on the idea of an infinite sampling often break down in the solution of real problems, and, dependent on data, can be inefficient, unstable and even not applicable. In this situation, practical statisticians are forced to use various heuristic methods in the hope the will find a satisfactory solution.Mathematical theory developed in this book presents a regular technique for implementing new, more efficient versions of statistical procedures. ...
... Search Form Controls Cancel Submit Search the CDC Gonorrhea Note: Javascript is disabled or is not supported ... Twitter STD on Facebook Sexually Transmitted Diseases (STDs) Gonorrhea Statistics Recommend on Facebook Tweet Share Compartir Gonorrhea ...
MacKenzie, Dana
2004-01-01
The drawbacks of using 19th-century mathematics in physics and astronomy are illustrated. To continue with the expansion of the knowledge about the cosmos, the scientists will have to come in terms with modern statistics. Some researchers have deliberately started importing techniques that are used in medical research. However, the physicists need to identify the brand of statistics that will be suitable for them, and make a choice between the Bayesian and the frequentists approach. (Edited abstract).
Energy Technology Data Exchange (ETDEWEB)
Bruessermann, K; Eschhaus, M; Kreymborg, A; Muenster, M; Schommer, N
1980-01-01
Three FORTRAN-IV program systems have been developed and applied for calculating the radiation exposure due to the release of radioactive products through exhaust air and waste water. The documentation contains the materials from the regional data base, from the methods data base, as well as ecological background data.
DEFF Research Database (Denmark)
Rasmussen, Filip Anselm; Schmidt, Per Simmendefeldt; Winther, Kirsten Trøstrup
2016-01-01
Calculating the quasiparticle (QP) band structure of two-dimensional (2D) materials within the GW self-energy approximation has proven to be a rather demanding computational task. The main reason is the strong q dependence of the 2D dielectric function around q = 0 that calls for a much denser...
International Nuclear Information System (INIS)
Maas, R.; Hurkmans, A.
1979-10-01
The authors give either practical approximations or typical worst cases of the calculations on electromagnetic showers. The transition curve, that is the longitudinal development of the shower, is treated semi-empirically. The radial development of the shower at the position of the shower maximum is also considered. It is shown that the r.m.s. radius of this distribution can be calculated in a simple way, independent of the incident energy of the electron. (Auth.)
Statistical Hadronization and Holography
DEFF Research Database (Denmark)
Bechi, Jacopo
2009-01-01
In this paper we consider some issues about the statistical model of the hadronization in a holographic approach. We introduce a Rindler like horizon in the bulk and we understand the string breaking as a tunneling event under this horizon. We calculate the hadron spectrum and we get a thermal...
Energy Technology Data Exchange (ETDEWEB)
Nagao, Yoshiharu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment
1998-03-01
In material testing reactors like the JMTR (Japan Material Testing Reactor) of 50 MW in Japan Atomic Energy Research Institute, the neutron flux and neutron energy spectra of irradiated samples show complex distributions. It is necessary to assess the neutron flux and neutron energy spectra of an irradiation field by carrying out the nuclear calculation of the core for every operation cycle. In order to advance core calculation, in the JMTR, the application of MCNP to the assessment of core reactivity and neutron flux and spectra has been investigated. In this study, in order to reduce the time for calculation and variance, the comparison of the results of the calculations by the use of K code and fixed source and the use of Weight Window were investigated. As to the calculation method, the modeling of the total JMTR core, the conditions for calculation and the adopted variance reduction technique are explained. The results of calculation are shown. Significant difference was not observed in the results of neutron flux calculations according to the difference of the modeling of fuel region in the calculations by K code and fixed source. The method of assessing the results of neutron flux calculation is described. (K.I.)
Energy Technology Data Exchange (ETDEWEB)
Kazan, M. [LNIO, ICD, CNRS (FRE2848), Universite de Technologie de Troyes, 10010-Troyes (France); Pereira, S.; Correia, M.R. [CICECO and I3N, University of Aveiro, Aveiro-3810-193 (Portugal); Masri, P. [GES, CNRS-UMR 5650, Universite de Montpellier II, Montpellier-34095 (France)
2010-01-15
We present a calculation of the thermal conductance (TC) of the interface between aluminium nitride (AlN) and silicon (Si) and that between AlN and silicon carbide (SiC) with taking into account the detailed phonon spectra of the materials, as obtained from first principles calculations, and the interface conditions. On the basis of the results obtained, we discuss the relation between the interface TC, the interface conditions, and the mismatches between the acoustic waves velocities and the phonon densities of states of the materials in contact. Our calculation method is expected to provide a reliable tool for thermal management strategy, independently from the substrate choice (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
International Nuclear Information System (INIS)
Yoshita, Takashi; Ishihara, Yoshinao; Ishiguro, Katsuhiko; Ohi, Takao; Nakajima, Kunihiko
1999-11-01
Corrosion of the carbon steel overpack leads to a volume expansion since the specific gravity of corrosion products is smaller than carbon steel. The buffer material is compressed due to the corrosive swelling, reducing its thickness and porosity. On the other hand, buffer material may be extruded into fractures of the surrounding rock and this may lead to a deterioration of the planned functions of the buffer, including retardation of nuclides migration and colloid filtration. In this study, the sensitivity analyses for the effect of volume expansion and intrusion of the buffer material on nuclide migration in the engineering barrier system are carried out. The sensitivity analyses were performed on the decrease in the thickness of the buffer material in the radial direction caused by the corrosive swelling, and the change in the porosity and dry density of the buffer caused by both compacting due to corrosive swelling and intrusion of buffer material. As results, it was found the maximum release rates of relatively shorter half-life nuclides from the outside of the buffer material decreased for taking into account of a volume expansion due to overpack corrosion. On the other hand, the maximum release rates increased when the intrusion of buffer material was also taking into account. It was, however, the maximum release rates of longer half-life nuclides, such as Cs-137 and Np-237, were insensitive to the change of buffer material thickness, and porosity and dry density of buffer. (author)
Statistical Pattern Recognition
Webb, Andrew R
2011-01-01
Statistical pattern recognition relates to the use of statistical techniques for analysing data measurements in order to extract information and make justified decisions. It is a very active area of study and research, which has seen many advances in recent years. Applications such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition, all require robust and efficient pattern recognition techniques. This third edition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields,
Statistical theory of turbulent incompressible multimaterial flow
International Nuclear Information System (INIS)
Kashiwa, B.
1987-10-01
Interpenetrating motion of incompressible materials is considered. ''Turbulence'' is defined as any deviation from the mean motion. Accordingly a nominally stationary fluid will exhibit turbulent fluctuations due to a single, slowly moving sphere. Mean conservation equations for interpenetrating materials in arbitrary proportions are derived using an ensemble averaging procedure, beginning with the exact equations of motion. The result is a set of conservation equations for the mean mass, momentum and fluctuational kinetic energy of each material. The equation system is at first unclosed due to integral terms involving unknown one-point and two-point probability distribution functions. In the mean momentum equation, the unclosed terms are clearly identified as representing two physical processes. One is transport of momentum by multimaterial Reynolds stresses, and the other is momentum exchange due to pressure fluctuations and viscous stress at material interfaces. Closure is approached by combining careful examination of multipoint statistical correlations with the traditional physical technique of κ-ε modeling for single-material turbulence. This involves representing the multimaterial Reynolds stress for each material as a turbulent viscosity times the rate of strain based on the mean velocity of that material. The multimaterial turbulent viscosity is related to the fluctuational kinetic energy κ, and the rate of fluctuational energy dissipation ε, for each material. Hence a set of κ and ε equations must be solved, together with mean mass and momentum conservation equations, for each material. Both κ and the turbulent viscosities enter into the momentum exchange force. The theory is applied to (a) calculation of the drag force on a sphere fixed in a uniform flow, (b) calculation of the settling rate in a suspension and (c) calculation of velocity profiles in the pneumatic transport of solid particles in a pipe
Goodman, J. W.
This book is based on the thesis that some training in the area of statistical optics should be included as a standard part of any advanced optics curriculum. Random variables are discussed, taking into account definitions of probability and random variables, distribution functions and density functions, an extension to two or more random variables, statistical averages, transformations of random variables, sums of real random variables, Gaussian random variables, complex-valued random variables, and random phasor sums. Other subjects examined are related to random processes, some first-order properties of light waves, the coherence of optical waves, some problems involving high-order coherence, effects of partial coherence on imaging systems, imaging in the presence of randomly inhomogeneous media, and fundamental limits in photoelectric detection of light. Attention is given to deterministic versus statistical phenomena and models, the Fourier transform, and the fourth-order moment of the spectrum of a detected speckle image.
Jana, Madhusudan
2015-01-01
Statistical mechanics is self sufficient, written in a lucid manner, keeping in mind the exam system of the universities. Need of study this subject and its relation to Thermodynamics is discussed in detail. Starting from Liouville theorem gradually, the Statistical Mechanics is developed thoroughly. All three types of Statistical distribution functions are derived separately with their periphery of applications and limitations. Non-interacting ideal Bose gas and Fermi gas are discussed thoroughly. Properties of Liquid He-II and the corresponding models have been depicted. White dwarfs and condensed matter physics, transport phenomenon - thermal and electrical conductivity, Hall effect, Magneto resistance, viscosity, diffusion, etc. are discussed. Basic understanding of Ising model is given to explain the phase transition. The book ends with a detailed coverage to the method of ensembles (namely Microcanonical, canonical and grand canonical) and their applications. Various numerical and conceptual problems ar...
Guénault, Tony
2007-01-01
In this revised and enlarged second edition of an established text Tony Guénault provides a clear and refreshingly readable introduction to statistical physics, an essential component of any first degree in physics. The treatment itself is self-contained and concentrates on an understanding of the physical ideas, without requiring a high level of mathematical sophistication. A straightforward quantum approach to statistical averaging is adopted from the outset (easier, the author believes, than the classical approach). The initial part of the book is geared towards explaining the equilibrium properties of a simple isolated assembly of particles. Thus, several important topics, for example an ideal spin-½ solid, can be discussed at an early stage. The treatment of gases gives full coverage to Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics. Towards the end of the book the student is introduced to a wider viewpoint and new chapters are included on chemical thermodynamics, interactions in, for exam...
International Nuclear Information System (INIS)
De Raedt, C.; Leenders, L.; Tourwe, H.; Farrar, H. IV.
1982-01-01
For about fifteen years the high flux reactor BR2 has been involved in the testing of fast reactor fuel pins. In order to simulate the fast reactor neutron environment most devices are irradiated under cadmium screen, cutting off the thermal flux component. Extensive neutronic calculations are performed to help the optimization of the fuel bundle design. The actual experiments are preceded by irradiations of their mock-ups in BR02, the zero power model of BR2. The mock-up irradiations, supported by supplementary calculations, are performed for the determination of the main neutronic characteristics of the irradiation proper in BR2 and for the determination of the corresponding operation data. At the end of the BR2 irradiation, the experimental results, such as burn-ups, neutron fluences, helium production in the fuel pin claddings, etc. are correlated by neutronic calculations in order to examine the consistency of the post-irradiation results and to validate the routine calculation procedure and cross-section data employed. A comparison is made in this paper between neutronic calculation results and some post-irradiation data for MOL 7D, a cadmium screened sodium cooled loop containing a nineteen fuel pin bundle
Hinkley, T.K.; Seeley, J.L.; Tatsumoto, M.
1988-01-01
Three distinct types of solid material are associated with each sample of the hydrothermal fluid that was collected from the vents of the Southern Juan de Fuca Ridge. The solid materials appear to be representative of deposits on ocean floors near mid-ocean ridges, and interpretation of the chemistry of the hydrothermal solutions requires understanding of them. Sr isotopic evidence indicates that at least two and probably all three of these solid materials were removed from the solution with which they are associated, by precipitation or adsorption. This occurred after the "pure" hydrothermal fluid was diluted and thoroughly mixed with ambient seawater. The three types of solid materials, are, respectively, a coarse Zn- and Fe-rich material with small amounts of Na and Ca; a finer material also rich in Zn and Fe, but with alkali and alkaline-earth metals; and a scum composed of Ba or Zn, with either considerable Fe or Si, and Sr. Mineral identification is uncertain because of uncertain anion composition. Only in the cases of Ba and Zn were metal masses greater in solid materials than in the associated fluids. For all other metals measured, masses in fluids dwarf those in solids. The fluids themselves contain greater concentrations of all metals measured, except Mg, than seawater. We discuss in detail the relative merits of two methods of determining the mixing proportions of "pure" hydrothermal solution and seawater in the fluids, one based on Sr isotopes, and another previously used method based on Mg concentrations. Comparison of solute concentrations in the several samples shows that degree of dilution of "pure" hydrothermal solutions by seawater, and amounts of original solutes that were removed from it as solid materials, are not related. There is no clear evidence that appreciable amounts of solid materials were not conserved (lost) either during or prior to sample collection. ?? 1988.
Mandl, Franz
1988-01-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition E. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scient
Rohatgi, Vijay K
2003-01-01
Unified treatment of probability and statistics examines and analyzes the relationship between the two fields, exploring inferential issues. Numerous problems, examples, and diagrams--some with solutions--plus clear-cut, highlighted summaries of results. Advanced undergraduate to graduate level. Contents: 1. Introduction. 2. Probability Model. 3. Probability Distributions. 4. Introduction to Statistical Inference. 5. More on Mathematical Expectation. 6. Some Discrete Models. 7. Some Continuous Models. 8. Functions of Random Variables and Random Vectors. 9. Large-Sample Theory. 10. General Meth
Levine-Wissing, Robin
2012-01-01
All Access for the AP® Statistics Exam Book + Web + Mobile Everything you need to prepare for the Advanced Placement® exam, in a study system built around you! There are many different ways to prepare for an Advanced Placement® exam. What's best for you depends on how much time you have to study and how comfortable you are with the subject matter. To score your highest, you need a system that can be customized to fit you: your schedule, your learning style, and your current level of knowledge. This book, and the online tools that come with it, will help you personalize your AP® Statistics prep
DEFF Research Database (Denmark)
Johannesson, Björn
2010-01-01
There exist, mainly, two different continuum approaches to calculate transient multi species ionic diffusion. One of them is based on explicitly assuming a zero current in the diffusing mixture together with an introduction of a streaming electrical potential in the constitutive equations...... of the coupled set of equation in favor of the staggering approach. A one step truly implicit time stepping scheme is adopted together with an implementation of a modified Newton-Raphson iterational scheme for search of equilibrium at each considered time step calculation. Results from the zero current case...... difference of the two types of potentials, that is, the streaming electrical potential and the electrical field is carefully examined. A novel numerical method based on the finite element approach is established for the zero current method case. The proposed numerical method uses the direct calculation...
Statistical methods for quality assurance
International Nuclear Information System (INIS)
Rinne, H.; Mittag, H.J.
1989-01-01
This is the first German-language textbook on quality assurance and the fundamental statistical methods that is suitable for private study. The material for this book has been developed from a course of Hagen Open University and is characterized by a particularly careful didactical design which is achieved and supported by numerous illustrations and photographs, more than 100 exercises with complete problem solutions, many fully displayed calculation examples, surveys fostering a comprehensive approach, bibliography with comments. The textbook has an eye to practice and applications, and great care has been taken by the authors to avoid abstraction wherever appropriate, to explain the proper conditions of application of the testing methods described, and to give guidance for suitable interpretation of results. The testing methods explained also include latest developments and research results in order to foster their adoption in practice. (orig.) [de
Allswang, John M.
1986-01-01
This article provides two short microcomputer gradebook programs. The programs, written in BASIC for the IBM-PC and Apple II, provide statistical information about class performance and calculate grades either on a normal distribution or based on teacher-defined break points. (JDH)
International Nuclear Information System (INIS)
Moog, H.C.; Keesmann, S.M.
2007-02-01
This paper reports on the project ''Coupling transport models with thermodynamic equilibrium calculations'' - short title EQLINK, promotion code number 02 E 9723 - in the which the scope for coupling thermodynamic equilibrium model calculations with EMOS was expanded and improved. The first step was to inquire into the current state of research on radiolytic processes. It transpired that there is currently no conclusive description of radiolytic processes. The existing descriptions are too complex and too narrowly geared to specific scenarios to allow a general view on radiolytic processes, which would be a prerequisite for creating suitable long-term geochemical safety analysis modules. It appears that the approximation calculations implemented in EMOS tend to overestimate rather than underestimate radiolytic gas formation. The thermodynamic database which is used at GRS (Society for Plant and Reactor Safety) as a basis for coupled transport calculations has been updated. For this purpose the radionuclide database of the Institut fuer Nukleare Entsorgung (INE = Institute for Nuclear Disposal) was converted to an in-house format which permits creating parameter files for specific requirements. The data of the INE comprise thermodynamic parameters such as equilibrium constants, Gibbs free enthalpies of formation, enthalpies and entropies of formation and Pitzer parameters, which are required for model calculations on high-saline solutions. The database for low-saline solutions which had been developed by PSI/NAGRA for calculations with CLAYPOS was also adopted. Both parameter sets were subjected to test calculations to detect any errors that might have occurred during the data transfer. It is thus now possible to perform coupled transport calculations with the EMOS modules LOPOS and CLAYPOS according to the state of the art of geochemical research. The EQLINK interface which had been developed in an earlier project, titled ''Development of a model for describing the
Indian Academy of Sciences (India)
inference and finite population sampling. Sudhakar Kunte. Elements of statistical computing are discussed in this series. ... which captain gets an option to decide whether to field first or bat first ... may of course not be fair, in the sense that the team which wins ... describe two methods of drawing a random number between 0.
Schrödinger, Erwin
1952-01-01
Nobel Laureate's brilliant attempt to develop a simple, unified standard method of dealing with all cases of statistical thermodynamics - classical, quantum, Bose-Einstein, Fermi-Dirac, and more.The work also includes discussions of Nernst theorem, Planck's oscillator, fluctuations, the n-particle problem, problem of radiation, much more.
International Nuclear Information System (INIS)
Shibamoto, Yuta; Naruse, Asaka; Fukuma, Hiroshi; Ayakawa, Shiho; Sugie, Chikao; Tomita, Natsuo
2007-01-01
Influences of iodinated contrast media on dose calculation were studied in 26 patients. Mean increases in monitor units by contrast media administration were less than 1% and considered negligible in planning of whole-brain, whole-neck, mediastinal, and whole-pelvic irradiation. However, mean increases over 2% were seen in planning of upper-abdominal radiotherapy