WorldWideScience

Sample records for materials sbir phase

  1. An Overview of 2014 SBIR Phase I and Phase II Materials Structures for Extreme Environments

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Materials and Structures for Extreme Environments. The technologies cover a wide spectrum of applications such as high temperature environmental barrier coating systems, deployable space structures, solid oxide fuel cells, and self-lubricating hard coatings for extreme temperatures. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  2. An Overview of SBIR Phase 2 Materials Structures for Extreme Environments

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in Materials and Structures for Extreme Environments which is one of six core competencies at NASA Glenn Research Center. There are twenty three technologies featured with emphasis on a wide spectrum of applications such as fine-filament superconductor wire, composite oxide cathode materials, nano-composites, high radiation solar cell, wrapped multilayer insulation, thin aerogel, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  3. An Overview of Materials Structures for Extreme Environments Efforts for 2015 SBIR Phases I and II

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency projects. This report highlights innovative SBIR 2015 Phase I and II projects that specifically address areas in Materials and Structures for Extreme Environments, one of six core competencies at NASA Glenn Research Center. Each article describes an innovation, defines its technical objective, and highlights NASA applications as well as commercial and industrial applications. Ten technologies are featured: metamaterials-inspired aerospace structures, metallic joining to advanced ceramic composites, multifunctional polyolefin matrix composite structures, integrated reacting fluid dynamics and predictive materials degradation models for propulsion system conditions, lightweight inflatable structural airlock (LISA), copolymer materials for fused deposition modeling 3-D printing of nonstandard plastics, Type II strained layer superlattice materials development for space-based focal plane array applications, hydrogenous polymer-regolith composites for radiation-shielding materials, a ceramic matrix composite environmental barrier coating durability model, and advanced composite truss printing for large solar array structures. This report serves as an opportunity for NASA engineers, researchers, program managers, and other personnel to learn about innovations in this technology area as well as possibilities for collaboration with innovative small businesses that could benefit NASA programs and projects.

  4. SBIR Phase I final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Grot

    2009-07-07

    The approach that we propose here in this SBIR proposal is a modified water electrolysis cell. In conventional water electrolysis the H2O is split into electrons, protons, and oxygen gas at the anode electrode. The electrons travel through an external power source and the protons travel through an electrolyte membrane to the cathode where they recombine to form hydrogen gas. The power source requires a minimum of 1.23 V to overcome the potential difference of the electrodes for the splitting of water. In contrast in our approach proposed here, instead of splitting water we are using acetate in wastewater and bacteria to oxidize the acetate into electrons and protons at the anode surface. The microbes release the electrons to the anode and the resulting protons move to the cathode electrode through the proton exchange membrane as described above and recombine to form hydrogen gas. The advantage here is that the required potential is now on the order of 0.25 to 0.8 V, and a considerable savings in electricity is realized to produce the same amount of hydrogen while at the same time removing organic matter from wastewater streams. Significant improvements in current density needs to be made in order for this type of technology to be economically viable

  5. NASA SBIR abstracts of 1990 phase 1 projects

    Science.gov (United States)

    Schwenk, F. C.; Gilman, J. A.; Paige, J. B.

    1991-01-01

    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number.

  6. NASA SBIR abstracts of 1991 phase 1 projects

    Science.gov (United States)

    Schwenk, F. Carl; Gilman, J. A.; Paige, J. B.

    1992-01-01

    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included.

  7. NASA SBIR abstracts of 1992, phase 1 projects

    Science.gov (United States)

    Schwenk, F. C.; Gilman, J. A.; Paige, J. B.; Sacknoff, S. M.

    1993-01-01

    The objectives of 346 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1992 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 346, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1992 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included.

  8. Combinatorial Approach for the Discovery of New Scintillating Materials SBIR Phase I Final Report DOE/ER/84310

    International Nuclear Information System (INIS)

    Cronin, J.P.; Agrawal, A.; Tonazzi, J.C.

    2006-01-01

    The combinatorial approach for the discovery of new scintillating materials has been investigated using the wet-chemical (sol-gel) synthesis methods. Known scintillating compounds Lu 2 SiO 5 (LSO) and (LuAl)O 3 (LAO) and solid solutions in the systems of Lu 2 O 3 -Y 2 O 3 --SiO 2 (CeO 2 -doped) (LYSO) and Lu 2 O 3 -Y 2 O 3 --Al 2 O 3 (CeO 2 -doped) (LYAO) were synthesized from sol-gel precursors. Sol-gel precursors were formulated from alkoxides and nitrates and acetates of the cations. Sol-gel solution precursors were formulated for the printing of microdot arrays of different compositions in the above oxide systems. Microdot arrays were successfully printed on C-cut and R-cut sapphire substrates using Biodot printer at Los Alamos National Laboratory (LANL). The microdot arrays were adherent and stable after heat-treating at 1665 C and had an average thickness of around 2 (micro)m. X-ray fluorescence elemental mapping showed the arrays to be of the correct chemical composition. Sintered microdots were found to be highly crystalline by microscopic observation and X-ray diffraction. Scintillation was not clearly detectable by visual observation under UV illumination and by video observation under the scanning electron beam of an SEM. The microdots were either poorly scintillating or not scintillating under the present synthesis and testing conditions. Further improvements in the synthesis and processing of the microdot arrays as well as extensive scintillation testing are needed

  9. An Overview of SBIR Phase 2 Communications Technology and Development

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are eighteen technologies featured with emphasis on a wide spectrum of applications such as with a security-enhanced autonomous network management, secure communications using on-demand single photons, cognitive software-defined radio, spacesuit audio systems, multiband photonic phased-array antenna, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  10. An Overview of SBIR Phase 2 Airbreathing Propulsion Technologies

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.; Bitler, Dean W.

    2014-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Airbreathing Propulsion which is one of six core competencies at NASA Glenn Research Center. There are twenty technologies featured with emphasis on a wide spectrum of applications such as with a Turbo-Brayton cryocooler for aircraft superconducting systems, braided composite rotorcraft structures, engine air brake, combustion control valve, flexible composite driveshaft, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  11. Phase 2 SBIR Final Report: An Ultra-Sensitive Optical Biosensor for Flood Safety

    National Research Council Canada - National Science Library

    2002-01-01

    The further development of a unique interferometric based optical biosensor platform for the rapid unlabelled detection and identification of foodborne pathogens was carried out under Phase II SBIR...

  12. Railgun armature velocity improvement, SBIR phase 2

    Science.gov (United States)

    Thurmond, Leo E.; Bauer, David P.

    1992-08-01

    Railgun hypervelocity performance has not been repeatably demonstrated at velocities over 6 km/s. A significant performance limiting phenomena is the formation of secondary current paths in parallel with the main projectile accelerating plasma. A confined plasma armature technique was developed to prevent secondary armature formation. Confinement prevents loss of ionized material from the plasma armature and thereby prevents formation of a low rail-to-rail conductance. We controlled pressure in the confined armature via controlled venting through ports in the rails. Railgun tests with the confined armature show that sealing at the rail-confinement vessel interface is critical and difficult to achieve. Our tests show that during low seal leakage operation secondaries are prevented. However, maintaining good seal for the entire launch is very difficult.

  13. An Overview of 2014 SBIR Phase 1 and Phase 2 Communications Technology and Development

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights eight of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Communication Technology and Development. The technologies cover a wide spectrum of applications such as X-ray navigation, microsensor instrument for unmanned aerial vehicle airborne atmospheric measurements, 16-element graphene-based phased array antenna system, interferometric star tracker, ultralow power fast-response sensor, and integrated spacecraft navigation and communication. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  14. An Overview of 2014 SBIR Phase 1 and Phase 2 Air-Breathing Propulsion

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as development of X-ray computed tomography (CT) imaging method for the measurement of complex 3D ice shapes, phased array techniques for low signal-to-noise ratio wind tunnels, compact kinetic mechanisms for petroleum-derived and alternative aviation fuels, and hybrid electric propulsion systems for a multirotor aircraft. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides as an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  15. Defense Small Business Innovation Research Program (SBIR). Abstracts of Phase 2 Awards, 1984.

    Science.gov (United States)

    165 proposals for funding in Phase II of the Small Business Innovation Research (SBIR) Program. These proposals were selected from those submitted by... small research and development firms awarded Phase I contracts from the FY 1984 solicitation. In order to make information available on the technical

  16. An Overview of Power, Energy Storage, and Conversion Efforts for 2014 SBIR Phases I and II

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 15 of the innovative SBIR 2014 Phase I and II projects that focus on one of NASA Glenn Research Center's six core competencies-Power, Energy Storage and Conversion. The technologies cover a wide spectrum of applications such as high-radiation-tolerant ceramic voltage isolators, development of hermetic sealing glasses for solid oxide fuel cells, rechargeable lithium metal cells, high-efficiency direct methane solid oxide fuel cell systems, Li metal protection for high-energy space batteries, isolated bidirectional direct current converters for distributed battery energy applications, and high-efficiency rad-hard ultrathin Si photovoltaic cell technology for space. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  17. Defense Small Business Innovation Research Program (SBIR). Abstracts of Phase II Awards. 1985.

    Science.gov (United States)

    1985-01-01

    OFFICE: AFBMOiPMX THE INTEGR ATE-DRILL-LOADLSHUOT (IDLS) C’ NCv " , A CONTINUOUS DRILL 04 ’e SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM - PHASE 2...WORK WAS TO DEMONSTRATE THAT THE COMPONENTS OF THE -.’ WBGI INDEX ( WEB BULB, DRY BULB AND BLACK GLOBE TEMPERATURE) CAN BE DE- RIVED FROM SATELLITE DATA

  18. An Overview of SBIR Phase 2 In-Space Propulsion and Cryogenic Fluids Management

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in In-Space Propulsion and Cryogenic Fluids Management which is one of six core competencies at NASA Glenn Research Center. There are nineteen technologies featured with emphasis on a wide spectrum of applications such as high-performance Hall thruster support system, thruster discharge power converter, high-performance combustion chamber, ion thruster design tool, green liquid monopropellant thruster, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  19. An Overview of Air-Breathing Propulsion Efforts for 2015 SBIR Phase I

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 24 of the innovative SBIR 2015 Phase I projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as hybrid nanocomposites for efficient aerospace structures; plasma flow control for drag reduction; physics-based aeroanalysis methods for open rotor conceptual designs; vertical lift by series hybrid power; fast pressure-sensitive paint systems for production wind tunnel testing; rugged, compact, and inexpensive airborne fiber sensor interrogators based on monolithic tunable lasers; and high sensitivity semiconductor sensor skins for multi-axis surface pressure characterization. Each featured technology describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  20. An Overview of SBIR Phase 2 Physical Sciences and Biomedical Technologies in Space

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in physical sciences and biomedical technologies in space, which is one of six core competencies at NASA Glenn Research Center. There are twenty two technologies featured with emphasis on a wide spectrum of applications such as reusable handheld electrolyte, sensor for bone markers, wideband single crystal transducer, mini treadmill for musculoskeletal, and much more. Each article in this report describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  1. Small Business Innovation Research (SBIR) Topic CBD99-204, Phase I: 3D Chemical/BIO Response Trainer

    National Research Council Canada - National Science Library

    Metz, Dennis

    1999-01-01

    The overall objective of this Phase I small business innovation research (SBIR) program effort was to demonstrate the scientific, technical and commercial feasibility of a 3D virtual world or virtual reality (VR...

  2. Defense Small Business Innovation Research Program (SBIR). Volume 2. Navy Abstracts of Phase 1 Awards 1991

    Science.gov (United States)

    1991-01-01

    NAVY ABSTRACTS OF SBIR PHASE I AWARDS mmhancemegs to be added. Advanced processor architeturs which u- new technology hardware and software for...Adaptive Compensation System for Performance Improvenent of piezoelectric Hydropbones Abstract: Hydopbone output level is, in gena, insly proportional to die...growth rate is proportional to the mode frequency and under optimal conditions, the cavity mode TMI 10 exponcntiates in only 10 oscillation periods. In

  3. Defense Small Business Innovation Research Program (SBIR). Abstracts of Phase 2 Awards 1992

    Science.gov (United States)

    1992-01-01

    into diamond. 2 ARMY SBIR PHASE II AWARDS Transition metals were alloyed at relatively low temperatures to form a thin layer of silicides which lowered...structures. D~uring the phase I program. lDamaskos . Intc. succCssfullN delltonstratet! a cs stpssiol loter :,1I formed by depositinig alte rnat intg layers ...Heights Drive Office: CRI)FC Aica. fiI 96701 Co ntract #: 1)AAA 1 5-93-C-0002if Phonie: 1808)l 486-5381 Ill: Dr, T- J, G. Rasbould Title: Urease -Linked

  4. Daylighting Digital Dimmer SBIR Phase 2 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Morgan [MoJo Labs Inc., Longmont, CO (United States)

    2018-01-17

    The primary focus of the Phase II Development is the implementation of two key technologies, Task To Wall (TTW) Control, and Wand Gesture light dimming control into an easy to use remote for SSL light control, the MoJo Remote. The MoJo Remote product family includes a battery powered wireless remote, a WiFi gateway as well as Mobile Applications for iOS and Android. Specific accomplishments during the second reporting period include: 1. Finalization and implementation of MoJo Remote Accelerometer and capacitive-touch based UI/UX, referred to as the Wand Gesture UI. 2. Issuance of Patent for Wand Gesture UI. 3. Industrial and Mechanical Design for MoJo Remote and MoJo Gateway. 4. Task To Wall implementation and testing in MoJo Remote. 5. Zooming User Interface (ZUI) for the Mobile App implemented on both iOS and Andriod. 6. iOS Mobile app developed to beta level functionality. 7. Initial Development of the Android Mobile Application. 8. Closed loop color control at task (demonstrated at 2016 SSL R&D Workshop). 9. Task To Wall extended to Color Control, working in simulation. 10. Beta testing begun in Late 2017/Early 2018. The MoJo Remote integrates the Patented TTW Control and the Wand Gesture innovative User Interface, and is currently in Beta testing and on the path to commercialization.

  5. Subsurface Monitor for Dissolved Inorganic Carbon at Geological Sequestration Site Phase 1 SBIR Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Wu

    2012-08-03

    Phase I research of this SBIR contract has yielded anticipated results and enable us to develop a practical new instrument to measure the Dissolved Inorganic Carbons (DIC) as well as Supercritical (SC) CO2 in underground brine water at higher sensitivity, lower cost, higher frequency and longer period of time for the Monitoring, Verification & Accounting (MVA) of CO2 sequestration as well as Enhanced Oil Recovery (EOR). We show that reduced cost and improved performance are possible; both future and emerging market exist for the proposed new instrument.

  6. Linear feature extraction from radar imagery: SBIR (Small Business Innovative Research), phase 2, option 2

    Science.gov (United States)

    Milgram, David L.; Kahn, Philip; Conner, Gary D.; Lawton, Daryl T.

    1988-12-01

    The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze features from Synthetic Aperture Radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of and technology issues involved in the development of an automated linear feature extraction system. This final report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.

  7. Ultra-secure RF Tags for Safeguards and Security - SBIR Phase II Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Twogood, Richard E [Dirac Solutions Inc., Pleasanton, CA (United States)

    2015-01-27

    This is the Final Report for the DOE Phase II SBIR project “Ultra-secure RF Tags for Safeguards and Security.” The topics covered herein include technical progress made, progress against the planned milestones and deliverables, project outcomes (results, collaborations, intellectual property, etc.), and a discussion on future expectations of deployment and impacts of the results of this work. In brief, all planned work for the project was successfully completed, on or ahead of schedule and on budget. The major accomplishment was the successful development of a very advanced passive ultra-secure RFID tag system with combined security features unmatched by any commercially available ones. These tags have high-level dynamic encrypted authentication, a novel tamper-proofing mechanism, system software including graphical user interfaces and networking, and integration with a fiber-optic seal mechanism. This is all accomplished passively (with no battery) by incorporating sophisticated hardware in the tag which harvests the energy from the RFID readers that are interrogating the tag. Based on initial feedback (and deployments) at DOE’s Lawrence Livermore National Laboratory (LLNL), it is anticipated these tags and their offspring will meet DOE and international community needs for highly secure RFID systems. Beyond the accomplishment of those original objectives for the ultra-secure RF tags, major new spin-off thrusts from the original work were identified and successfully pursued with the cognizance of the DOE sponsor office. In particular, new classes of less sophisticated RFID tags were developed whose lineage derives from the core R&D thrusts of this SBIR. These RF “tag variants” have some, but not necessarily all, of the advanced characteristics described above and can therefore be less expensive and meet far wider markets. With customer pull from the DOE and its national laboratories, new RFID tags and systems (including custom readers and software) for

  8. Sputter-Resistant Materials for Electric Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 2 project shall develop sputter-resistant materials for use in electric propulsion test facilities and for plume shields on spacecraft using electric...

  9. 77 FR 23228 - Notice of Submission for OMB Review; Small Business Innovation Research (SBIR) Program-Phase II...

    Science.gov (United States)

    2012-04-18

    ... business concerns to submit a Phase II application for the Small Business Innovation Research (SBIR) Program (CFDA 84.133). This is in response to Public Law 106-554, the ``Small Business Reauthorization Act... DEPARTMENT OF EDUCATION Notice of Submission for OMB Review; Small Business Innovation Research...

  10. 77 FR 23229 - Submission for OMB Review; Small Business Innovation Research (SBIR) Program-Phase I-Grant...

    Science.gov (United States)

    2012-04-18

    ....133). This is in response to Public Law 106- 554, the ``Small Business Reauthorization Act of [[Page... DEPARTMENT OF EDUCATION Submission for OMB Review; Small Business Innovation Research (SBIR) Program--Phase I--Grant Application Package SUMMARY: This application package invites small business...

  11. Automated System for Aneuploidy Detection in Sperm Final Report CRADA No. TC-1364-96: Phase I SBIR

    Energy Technology Data Exchange (ETDEWEB)

    Wyrobek, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunlay, R. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    This project was a relationship between Lawrence Livermore National Laboratory (LLNL) and Biological Detection, Inc. (now known as Cellomics, Inc.) It was funded as a Phase I SBIR from the National Institutes of Health (NIH) awarded to Cellomics, Inc. with a subcontract to LLNL.

  12. Linear feature extraction from radar imagery: SBIR (Small Business Innovative Research) phase 2, option 1

    Science.gov (United States)

    Conner, Gary D.; Milgram, David L.; Lawton, Daryl T.; McConnell, Christopher C.

    1988-04-01

    The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze linear features from synthetic aperture radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of the technology issues involved in the development of an automatedlinear feature extraction system. This Option 1 Final Report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.

  13. Final report SBIR Phase II. High current density (Jc), low A.C . loss, low cost, Internal-Tin Superconductors

    International Nuclear Information System (INIS)

    Gregory, Eric

    2009-01-01

    Final report of SBIR to develop an economical process that can produce the best material for high field magnets to be used in the next generation of accelerators. The overall objective is to develop an economical process that can produce the best material for high field magnets to be used in future particle accelerators. The internal-tin process has shown by others to produce high J c Nb 3 Sn material and the work here is primarily directed to lowering the AC losses, increasing piece lengths and lowering costs. In the previous reports on this Phase II work we have explored the finned restack approach. We have however encountered ductility problems when we have attempted to produce material without fins but with large numbers of subelements in the restacks. The work reported has concentrated on the scale up of the internal-tin materials without fins and we have finally made internal tin material with 40 (micro)m subelements which exhibited a J c at 12 T of 2757 A/mm 2 in the non-Cu and a J c at 14 T of 1985 A/mm 2 in the non-Cu. These results are the best we have achieved to date and are approaching those that Oxford has achieved for sometime.

  14. An Overview of In-Space Propulsion and Cryogenics Fluids Management Efforts for 2014 SBIR Phases I and II

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency programs. This report highlights 11 of the innovative SBIR 2014 Phase I and II projects from 2010 to 2012 that focus on one of NASA Glenn Research Center's six core competencies-In-Space Propulsion and Cryogenic Fluids Management. The technologies cover a wide spectrum of applications such as divergent field annular ion engines, miniature nontoxic nitrous oxide-propane propulsion, noncatalytic ignition systems for high-performance advanced monopropellant thrusters, nontoxic storable liquid propulsion, and superconducting electric boost pumps for nuclear thermal propulsion. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  15. Turnable Semiconductor Laser Spectroscopy in Hollow Optical Waveguides, Phase II SBIR

    Energy Technology Data Exchange (ETDEWEB)

    Gregory J. Fetzer, Ph.D.

    2001-12-24

    In this study a novel optical trace gas sensor based on a perforated hollow waveguide (PHW) was proposed. The sensor has been given the acronym ESHOW for Environmental Sensor using Hollow Optical Waveguides. Realizations of the sensor have demonstrated rapid response time (<2s), low minimum detection limits (typically around 3 x 10-5 absorbance). Operation of the PHW technology has been demonstrated in the near-infrared (NIR) and mid0infrared (MIR) regions of the spectrum. Simulation of sensor performance provided in depth understanding of the signals and signal processing required to provide high sensitivity yet retain rapid response to gas changes. A dedicated sensor electronics and software foundation were developed during the course of the Phase II effort. Commercial applications of the sensor are ambient air and continuous emissions monitoring, industrial process control and hazardous waste site monitoring. There are numerous other applications for such a sensor including medical diagnosis and treatment, breath analysis for legal purposes, water quality assessment, combustion diagnostics, and chemical process control. The successful completion of Phase II resulted in additional funding of instrument development by the Nations Institute of Heath through a Phase I SBIR grant and a strategic teaming relationship with a commercial manufacture of medical instrumentation. The purpose of the NIH grant and teaming relationship is to further develop the sensor to monitor NO in exhaled breath for the purposes of asthma diagnosis.

  16. Final Report SBIR Phase I, Improvement of Properties of Tubular Internal-Tin Nb3Sn

    International Nuclear Information System (INIS)

    Gregory, Eric

    2009-01-01

    Final report of SBIR to develop an economical process that can produce the best material for high field magnets to be used in the next generation of accelerators. The overall problem is to develop an economical process that can produce material with good properties for high field magnets to be used in the future for High Energy Physics (HEP) applications. The Internal-tin (IT) process, called by some the Restacked Rod process (RRP), for making Nb 3 Sn has been very successful in achieving high J c properties in the high field region. As a result it has been used effectively in several high field magnets. Originally, when this material was processed to give the highest J c it behaved unstably in the low field region and consequently did not perform as well in magnets designed for intermediate field applications. In this field range, the Powder-in-Tube (PIT) material, that has a lower d eff and a high RRR, behaved more reliably. The IT material has been improved to give better stability in the low field range and consequently the process offers a considerable challenge to the PIT process for application in both types of magnets. The PIT material has two principal drawbacks - lower J c and high cost. Work has been carried out to address these two problems and Supergenics I LLC has reported, on a low cost tubular process that is under development. It has fewer problems than the (IT) process in making low d eff materials and is of lower cost than both the IT and PIT processes. At the present stage, the J c 's that have been achieved are similar to those of the PIT material but are below those of the IT material. The purpose of the work proposed here is to improve the properties of the material made by this tubular process that has been described previously.

  17. MULTIFUNCTIONAL, SELF-HEALING HYBRIDSIL MATERIALS FOR EVA SPACE SUIT PRESSURE GARMENT SYSTEMS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A Phase II SBIR transition of NanoSonic's high flex HybridSil space suit bladder and glove materials will provide a pivotal funding bridge toward Phase III...

  18. An Overview of Communications Technology and Development Efforts for 2015 SBIR Phase I

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report highlights innovative SBIR 2015 Phase I projects specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are fifteen technologies featured with emphasis on a wide spectrum of applications such as novel solid state lasers for space-based water vapor dial; wide temperature, high voltage and energy density capacitors for aerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser for methane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites; a SIC-based microcontroller for high-temperature in-situ instruments and systems; improved yield, performance and reliability of high-actuator-count deformable mirrors; embedded multifunctional optical sensor system; switching electronics for space-based telescopes with advanced AO systems; integrated miniature DBR laser module for Lidar instruments; and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. space-based water vapor dial; wide temperature, high voltage and energy density capacitors foraerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser formethane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites.

  19. Parallel tools GUI framework-DOE SBIR phase I final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Galarowicz, James [Argo Navis Technologies LLC., Annapolis, MD (United States)

    2013-12-05

    Many parallel performance, profiling, and debugging tools require a graphical way of displaying the very large datasets typically gathered from high performance computing (HPC) applications. Most tool projects create their graphical user interfaces (GUI) from scratch, many times spending their project resources on simply redeveloping commonly used infrastructure. Our goal was to create a multiplatform GUI framework, based on Nokia/Digia’s popular Qt libraries, which will specifically address the needs of these parallel tools. The Parallel Tools GUI Framework (PTGF) uses a plugin architecture facilitating rapid GUI development and reduced development costs for new and existing tool projects by allowing the reuse of many common GUI elements, called “widgets.” Widgets created include, 2D data visualizations, a source code viewer with syntax highlighting, and integrated help and welcome screens. Application programming interface (API) design was focused on minimizing the time to getting a functional tool working. Having a standard, unified, and userfriendly interface which operates on multiple platforms will benefit HPC application developers by reducing training time and allowing users to move between tools rapidly during a single session. However, Argo Navis Technologies LLC will not be submitting a DOE SBIR Phase II proposal and commercialization plan for the PTGF project. Our preliminary estimates for gross income over the next several years was based upon initial customer interest and income generated by similar projects. Unfortunately, as we further assessed the market during Phase I, we grew to realize that there was not enough demand to warrant such a large investment. While we do find that the project is worth our continued investment of time and money, we do not think it worthy of the DOE's investment at this time. We are grateful that the DOE has afforded us the opportunity to make this assessment, and come to this conclusion.

  20. Next Generation , Lightweight, Durable Boot Materials to Provide Active & Passive Thermal Protection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA Phase I SBIR program is to leverage lightweight, durable materials developed by NanoSonic for use within extra vehicular activity (EVA)...

  1. Reversible Copolymer Materials for FDM 3-D Printing of Non-Standard Plastics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Cornerstone Research Group Inc. (CRG) proposes to continue efforts from the 2015 NASA SBIR Phase I topic H14.03 ?Reversible Copolymer Materials for FDM 3D Printing...

  2. Digital active material processing platform effort (DAMPER), SBIR phase 2

    Science.gov (United States)

    Blackburn, John; Smith, Dennis

    1992-11-01

    Applied Technology Associates, Inc., (ATA) has demonstrated that inertial actuation can be employed effectively in digital, active vibration isolation systems. Inertial actuation involves the use of momentum exchange to produce corrective forces which act directly on the payload being actively isolated. In a typical active vibration isolation system, accelerometers are used to measure the inertial motion of the payload. The signals from the accelerometers are then used to calculate the corrective forces required to counteract, or 'cancel out' the payload motion. Active vibration isolation is common technology, but the use of inertial actuation in such systems is novel, and is the focus of the DAMPER project. A May 1991 report was completed which documented the successful demonstration of inertial actuation, employed in the control of vibration in a single axis. In the 1 degree-of-freedom (1DOF) experiment a set of air bearing rails was used to suspend the payload, simulating a microgravity environment in a single horizontal axis. Digital Signal Processor (DSP) technology was used to calculate in real time, the control law between the accelerometer signals and the inertial actuators. The data obtained from this experiment verified that as much as 20 dB of rejection could be realized by this type of system. A discussion is included of recent tests performed in which vibrations were actively controlled in three axes simultaneously. In the three degree-of-freedom (3DOF) system, the air bearings were designed in such a way that the payload is free to rotate about the azimuth axis, as well as translate in the two horizontal directions. The actuator developed for the DAMPER project has applications beyond payload isolation, including structural damping and source vibration isolation. This report includes a brief discussion of these applications, as well as a commercialization plan for the actuator.

  3. Systems Engineering Applications for Small Business Innovative Research (SBIR) Projects

    Science.gov (United States)

    2012-09-01

    Engineering processes within the SBIR community. Information was collected from multiple organizations throughout the SBIR community to support this research...Force by Program Executive Officers, Technolgy Directorates, Air Logistics Centers and Test Centers. SBIR projects are developed in three phases...found to be associated with SBIR projects and varied among organizations. Thus it became essential to conduct interviews to gather the information

  4. Next Generation Thermal Management Materials: Boron Arsenide for Isotropic Diamond Like Thermal Conductivity - Affordable BAs Processing Innovations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this SBIR phase I proposal is to design, develop and carry out the materials and process engineering studies to demonstrate the feasibility of...

  5. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures: SBIR Phase I Final Report

    Science.gov (United States)

    Likhanskii, Alexandre

    2012-01-01

    This report is the final report of a SBIR Phase I project. It is identical to the final report submitted, after some proprietary information of administrative nature has been removed. The development of a numerical simulation tool for dielectric barrier discharge (DBD) plasma actuator is reported. The objectives of the project were to analyze and predict DBD operation at wide range of ambient gas pressures. It overcomes the limitations of traditional DBD codes which are limited to low-speed applications and have weak prediction capabilities. The software tool allows DBD actuator analysis and prediction for subsonic to hypersonic flow regime. The simulation tool is based on the VORPAL code developed by Tech-X Corporation. VORPAL's capability of modeling DBD plasma actuator at low pressures (0.1 to 10 torr) using kinetic plasma modeling approach, and at moderate to atmospheric pressures (1 to 10 atm) using hydrodynamic plasma modeling approach, were demonstrated. In addition, results of experiments with pulsed+bias DBD configuration that were performed for validation purposes are reported.

  6. Defense Small Business Innovation Research Program (SBIR). Volume 2. Navy Projects, Abstracts of Phase 1 Awards from FY 1989 SBIR Solicitation

    Science.gov (United States)

    1990-04-01

    SYSTEM WILL BE DEVELOPED IN PHASE II. LAGUNA RESEARCH LAB 3015 RAINBOW GLEN FALLBROOK, CA 92028 CONTRACT NUMBER: HENDRICUS G LOOS TITLE: SEAWATER...PHASE II. PAGE AUTOMATED TELECOMMUNICATIONS SYS PO BOX 188 - RTE 2 LA HONDA , CA 94020 CONTRACT NUMBER: PATRICIA WIENER TITLE: NEW PACKAGING TECHNOLOGIES

  7. Defense Small Business Innovation Research Program (SBIR) Volume 2. Navy Abstracts of Phase 1 Awards, 1987

    Science.gov (United States)

    1988-04-01

    LOSS OF POWER TO THE COMPRESSOR SYS- TEM. COMPLETE EFFICIENCY OF THIS DEHYDRATOR WILL RESUME WITHIN A FEW SECONDS FOLLOWING RESTORATION OF POWER...NAVY SUBMITTED BY THIS PHASE I PROGRAM IS DIRECTED TOWARD THE DEVELOPMENT OF A CHARGE- ENHANCED MICROFILTRATION MEMBRANE SYSTEM FOR REMOVAL OF SUSPENDED...THAT A SINGLE 10V " RESTORE " PULSE RETURNS THE KNO(3) MEMORIES TO A STATE VERY NEAR THAT OF VIRGIN DEVICES. RE- LATED ELECTRICAL REMEDIES FOR FATIGUE

  8. Defense Small Business Innovation Research Program (SBIR). Volume 3. Air Force Abstracts of Phase 1 Awards

    Science.gov (United States)

    1990-01-01

    APPLICATION. CRYSTALLUME 125 CONSTITUTION DR MENLO PARK, CA 94025 Program Manager: WILSON SMART Contract #: Title: DIAMOND WAVEGUIDES FOR THE LONG WAVELENGTH...MENLO PARK, CA 94025 Program Manager: WILSON SMART Contract #: Title: DIAMOND COATINGS FOR INFRARED MATERIAL Topic #: AF90-019 Office: MSD/PMR ID

  9. 2007 Beyond SBIR Phase II: Bringing Technology Edge to the Warfighter

    Science.gov (United States)

    2007-08-23

    D1 D2 D3 D4 D5 Diaper tapes Shell material for disposable diapers Technology in search...MRFDL) DACS Booster Power Systems Solar Cells Batteries Fuel CellsSurvivability Electro-Optical Components/Systems • Identify and develop innovative...the quality, reliability and producibility of batteries and related power sources, including concentrator solar arrays, through innovative ideas

  10. Defense Small Business Innovation Research Program (SBIR). Volume 2. Navy Abstracts of Phase 1 Awards 1993

    Science.gov (United States)

    1993-01-01

    and toughness and strength will be evaluated by pressurized ring tensile tests. MUDAWAR THERMAL SYSTEM, INC. Topic#: 92-136 ID#: 92N40-240 1217...ARMY Topic#: 92-056 MTL SYSTEMS, INC. AF TopicS: 93-051 MIMS TECHNOLOGY DEVELOPMENT COMPANY AF Topic#: 93-111 AF Topic#: 93-011 MUDAWAR THERMAL SYSTEM...156 MUDAWAR THERMAL SYSTEM, INC. ANALYTICAL SERVICES & MATERIALS, INC. NAVY Topic#: 92-137 NAVY Topic#: 92-157 MOUNTAIN OPTECH, INC. DATAMAT SYSTEMS

  11. Superconducting magnetic bearings for machine tools. Phase 1, SBIR program. Final report

    International Nuclear Information System (INIS)

    Anastas, G.; Bennett, A.; Downer, J.; Hockney, R.

    1988-01-01

    The research was directed toward investigating the role of superconducting materials in a magnetic bearing system. Superconducting magnetic bearings are shown to offer the potential for vastly improved performance. These bearings are expected to be especially applicable to rotors which have extremely tight position tolerances. The development of superconducting magnetic bearing technology is also expected to allow a number of novel approaches in the development of machinery and systems. Researchers studied an alternative bearing design which employs a superconducting coil and eliminates all conventional magnetic structures. The study has resulted in a design definition and detailed analysis for a superconducting bearing system which is sized to roughly duplicate the air bearing system of an existing air-bearing spindle

  12. Report on Performance of Prototype Dynatronix Power Supplies Developed Under a Phase I DOE SBIR

    International Nuclear Information System (INIS)

    Hoppe, Eric W.; Merriman, Jason H.

    2011-01-01

    The purpose of this study is to evaluate the prototype power supplies fabricated by Dynatronix, Inc. This project supports the advancement of electroforming capabilities to produce ultra-high purity copper. Ultra-high purity copper is an essential material used for a range of current and future fundamental nuclear physics programs such as the MAJORANA DEMONSTRATOR. The Mach 30 power supplies are a new design built to the specifications from the requirements of Pacific Northwest National Laboratory (PNNL) with regard to timing, voltage, current output, and the required tolerances. The parameters used in these tests were developed empirically over a number of years based on a combination of thermodynamic and kinetics of the electroplating process. The power supplies were operated in a typical cleanroom environment for the production electroforming at PNNL. The units that were received by PNNL in July, 2010 have performed satisfactorily and have demonstrated short term durability.

  13. SBIR/STTR Programs

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA SBIR and STTR programs fund the research, development, and demonstration of innovative technologies that fulfill NASA needs as described in the annual...

  14. A Fire Safety Certification System for Board and Care Operators and Staff. SBIR Phase I: Final Report.

    Science.gov (United States)

    Walker, Bonnie L.

    This report describes the development and pilot testing of a fire safety certification system for board and care operators and staff who serve clients with developmental disabilities. During Phase 1, training materials were developed, including a trainer's manual, a participant's coursebook a videotape, an audiotape, and a pre-/post test which was…

  15. SBIR PHASE I FINAL REPORT: Adoption of High Performance Computational (HPC) Modeling Software for Widespread Use in the Manufacture of Welded Structures

    Energy Technology Data Exchange (ETDEWEB)

    Brust, Frederick W. [Engineering Mechanics Corporation of Columbus (Emc2), Columbus, OH (United States); Punch, Edward F. [Engineering Mechanics Corporation of Columbus (Emc2), Columbus, OH (United States); Kurth, Elizabeth A. [Engineering Mechanics Corporation of Columbus (Emc2), Columbus, OH (United States); Kennedy, James C. [Engineering Mechanics Corporation of Columbus (Emc2), Columbus, OH (United States)

    2013-12-02

    Many US manufacturing companies have moved fabrication and production facilities off shore because of cheaper labor costs. A key aspect in bringing these jobs back to the US is the use of technology to render US-made fabrications more efficient overall with higher quality. A new initiative of the current administration has the goal of enhancing competitiveness to retain manufacturing jobs in the US. One significant competitive advantage that has emerged in the US over the last two decades is the use of virtual design for fabrication of large structures in the light and heavy materials industries. Industries that have used virtual design and analysis tools have reduced material parts size, developed environmentally-friendly fabrication processes, improved product quality and performance, and reduced manufacturing costs. Indeed, Caterpillar Inc. (CAT), one of the partners in this effort, continues to have a large fabrication presence in the US because of the use of weld fabrication modeling to optimize fabrications by controlling weld residual stresses and distortions and improving fatigue, corrosion, and fracture performance. This report describes Engineering Mechanics Corporation of Columbus (Emc2's) DOE SBIR Phase I results which extended an existing, state-of-the-art software code, VFT, currently used to design and model large welded structures prior to fabrication - to a broader range of products with widespread applications for small and medium-sized enterprises (SMEs). VFT helps control distortion, can minimize and/or control residual stresses, control welding microstructure, and pre-determine welding parameters such as weld-sequencing, pre-bending, thermal-tensioning, etc. VFT uses material properties, consumable properties, etc. as inputs. Through VFT, manufacturing companies can avoid costly design changes after fabrication. This leads to the concept of joint design/fabrication where these important disciplines are intimately linked to minimize

  16. Bulk Nano-structured Materials for Turbomachinery Components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort seeks to exploit some of the tremendous benefits that could be attained from a revolutionary new approach to grain refinement in bulk...

  17. Organic photochemical reactions on solid surfaces: Enrichment and separation of isotopes. Final report. SBIR-1988, Phase 2

    International Nuclear Information System (INIS)

    Ruderman, W.; Fehlner, J.; Spencer, J.

    1988-01-01

    The objectives of the Phase II program were to: (1) investigate organic photochemical reactions on solid porous silica surfaces, (2) utilize the magnetic isotope effect to develop a (13)C enrichment process using a fluidized bed reactor, and (3) investigate the possibility of enrichment of heavier isotopes having a nuclear spin. Although researchers were able to demonstrate a continuous fluidized bed (13)C enrichment process, analysis showed that the process could not compete with low temperature distillation of CO because of the high cost of the starting material, dibenzylketone (DBK), and the difficulty of converting the photochemical decomposition products back to DBK. However, the process shows promise for the separation of heavier isotopes such as (29)Si. The photochemical studies led to the discovery that the selectivity for terminal chlorination of alkanes can be increased more than 25 fold by sorbing the alkanes on ZSM-5 zeolites in a fluidized bed. The selectivity is ascribed to the presence of interfaces within the crystals

  18. Final Report: DoE SBIR Phase 2 Low-Cost Small Diameter NMR Technologies for In-Situ Subsurface Characterization and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, David Oliver [Vista Clara Inc., Mukilteo, WA (United States)

    2010-09-03

    In this Phase 2 SBIR program, Vista Clara successfully developed and field-tested small diameter NNR logging tools for subsurface characterization and monitoring. This effort involved the design and development surface electronics, a winch with 470ft cable, and three interchangeable downhole probes: a 3.5â diameter borehole NMR probe, a 1.67â diameter borehole NMR probe, and a 2.5â diameter NMR probe that can be deployed using a Geoprobe direct push machine. The 3.5â probe was tested extensively over a 6 week period including 4â to 8â boreholes in Washington, Idaho, Nebraska, Colorado, Kansas, Connecticut and Massachusetts. The field test campaign was highly successful. The 1.67â probe was assembled, tested and calibrated in the laboratory. The 2.5â Geoprobe probe is in final assembly and testing at the time of this report. The completed Phase 2 R&D program has resulted in the first NMR logging tool that can be deployed in boreholes of 4â diameter, the first NMR logging tool that can be deployed in boreholes on 2â diameter, and the first NMR logging tool that can be deployed by a direct push machine. These small diameter tools make NMR logging technically and economically feasible, for the first time. Previously available NMR logging tools were developed for oilfield applications and are prohibitively large and expensive for the majority of near surface groundwater characterization problems.

  19. Feasibility of an Integrated Expert Video Authoring Workstation for Low-Cost Teacher Produced CBI. SBIR Phase I: Final Report.

    Science.gov (United States)

    IntelliSys, Inc., Syracuse, NY.

    This was Phase I of a three-phased project. This phase of the project investigated the feasibility of a computer-based instruction (CBI) workstation, designed for use by teachers of handicapped students within a school structure. This station is to have as a major feature the ability to produce in-house full-motion video using one of the…

  20. Phase-change materials handbook

    Science.gov (United States)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1972-01-01

    Handbook describes relationship between phase-change materials and more conventional thermal control techniques and discusses materials' space and terrestrial applications. Material properties of most promising phase-change materials and purposes and uses of metallic filler materials in phase-change material composites are provided.

  1. A Fire Safety Certification System for Board and Care Operators and Staff. SBIR Phase II: Final Report.

    Science.gov (United States)

    Walker, Bonnie L.

    This report describes Phase II of a project which developed a system for delivering fire safety training to board and care providers who serve adults with developmental disabilities. Phase II focused on developing and pilot testing a "train the trainers" workshop for instructors and field testing the provider's workshop. Evaluation of…

  2. Rock Melt Borehole Sealing System, Final Technical Report for SBIR Phase I Grant No. DE-SC0011888

    Energy Technology Data Exchange (ETDEWEB)

    Osnes, John D. [RE/SPEC Inc., Argonne, IL (United States); Vining, Cody A. [RE/SPEC Inc., Argonne, IL (United States); Nopola, Jay R. [RE/SPEC Inc., Argonne, IL (United States); Roggenthen, William M. [South Dakota School of Mines & Technology, Rapid City, SD (United States)

    2015-03-19

    required heat generation, container materials that can withstand the anticipated temperatures, and a system capable of providing power to the heater. Evaluating the feasibility of performing field-scale experiments resulted in the following major findings: • The Sanford Underground Research Facility (SURF) has been identified as a host site for field testing of prototype heaters. The technical and logistical requirements for performing the rock melt tests can be met by using or expanding the existing infrastructure at SURF with on-site personnel and contractors. • In situ hydraulic conductivity test using packers can test the effectiveness of the rock melt seal, while a mine back performed from a lower level can further evaluate the recrystallized melt. • Preliminary costing indicates that a field-scale melting experiment at SURF is feasible within a Phase II Small Business Innovation Research budget while allowing sufficient budget for refining the heater design, coordinating the test program, and interpreting the results. Application of Research The rock melt sealing concept has the potential to reduce uncertainty associated with the long-term storage of nuclear waste. Preliminary efforts of this study defined the requirements of a downhole heater system capable of melting rock and indicated that developing such a system is feasible using available technology. The next logical step is designing and manufacturing prototype heaters. Concurrent with prototype development is coordinating robust field-scale experiments that are capable of validating the design for marketing to potential users.

  3. I. Final Report for DOE SBIR Phase I Project DE-SC0013795 Final Report for DOE SBIR Phase I Project DE-SC0013795 Microtron-based Compact, Portable Gamma-Ray Source

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, Robert J. [Muons Inc., Batavia, IL (United States)

    2017-01-09

    Microtron-based Compact, Portable Gamma-Ray Source. The objective of Phase I of this project was to produce a conceptual design of a prototype compact microtron electron accelerator, which could be designed, built, and demonstrated in Phase II of the project. The conceptual design study included an analysis of the parameters of the microtron and its components, and the expected performance of the prototype microtron as a source of x-rays and/or RF neutrons in the MeV energy range. The major components of the microtron are the magnet, the accelerating system, the power system, the vacuum system, the control system, the beam extraction system and the targets to produce x-rays (and/or neutrons). Our objectives for the design of the prototype were for it to be compact, cost-effective, capable of producing high intensity x-ray (an/or neutron) fluxes. In addition, the prototype was to be easily assembled and disassembled so that components could be easily replaced. The main parameters for the prototype are the following: the range of electron kinetic energies, the output power, the RF frequency band (X-band, C-band, or S-Band), the type of injection (Type I or Type II), the magnet type, i.e. permanent magnet, electromagnet, or a hybrid combination of permanent and electromagnet. The results of the Phase I study and analysis for a prototype microtron are the following: The electron energy range can be varied from below 6 MeV to 9 MeV, the optimal frequency range is S-Band (2-4 GHz) RF frequency, Type II injection (described below), and the magnet type is the hybrid version. The prototype version will be capable of producing gamma ray doses of ~1800 R/min-m and neutron fluxes of up to ~6 x 1010 n/s with appropriate targets. The results of the Phase I study and analysis are provided below. The proposed Phase II plan was to demonstrate the prototype at low beam power. In the subsequent Phase III, high power tests would be performed, and the design of commercial

  4. COUPLING STATE-OF-THE-SCIENCE SUBSURFACE SIMULATION WITH ADVANCED USER INTERFACE AND PARALLEL VISUALIZATION: SBIR Phase I Final Report

    International Nuclear Information System (INIS)

    Hardeman, B.; Swenson, D.; Finsterle, S.; Zhou, Q.

    2008-01-01

    This is a Phase I report on a project to significantly enhance existing subsurface simulation software using leadership-class computing resources, allowing researchers to solve problems with greater speed and accuracy. Subsurface computer simulation is used for monitoring the behavior of contaminants around nuclear waste disposal and storage areas, groundwater flow, environmental remediation, carbon sequestration, methane hydrate production, and geothermal energy reservoir analysis. The Phase I project was a collaborative effort between Thunderhead Engineering (project lead and developers of a commercial pre- and post-processor for the TOUGH2 simulator) and Lawrence Berkeley National Laboratory (developers of the TOUGH2 simulator for subsurface flow). The Phase I project successfully identified the technical approaches to be implemented in Phase II.

  5. Discrimination of Closely-Spaced Geosynchronous Satellites - Phase Curve Analysis & New Small Business Innovative Research (SBIR) Efforts

    Science.gov (United States)

    Levan, P.

    2010-09-01

    Geosynchronous objects appear as unresolved blurs even when observed with the largest ground-based telescopes. Due to the lack of any spatial detail, two or more objects appearing at similar brightness levels within the spectral bandpass they are observed are difficult to distinguish. Observing a changing pattern of such objects from one time epoch to another showcases the deficiencies in associating individual objects before and after the configuration change. This paper explores solutions to this deficiency in the form of spectral (under small business innovative research) and phase curve analyses. The extension of the technique to phase curves proves to be a powerful new capability.

  6. A Novel Manufacturing Processing Route for Forming High-Density Ceramic Armor Materials: Phase I - SBIR

    National Research Council Canada - National Science Library

    Raman, Ramas

    1999-01-01

    .... The effects of applied pressure and pressure-transmitting media (PTM) temperature in controlling density, as well as thermal management issues to prevent cracking in applying the CS/Ceracon process to form TiC and TiB2, have been identified...

  7. Defense Small Business Innovation Research Program (SBIR). Volume 4. Defense Agencies Abstracts of Phase 1 Awards. 1990

    Science.gov (United States)

    1990-01-01

    RI 02871 Program Manager: T. DEEGAN Contract #: Title: LF DETECTION OF AIRCRAFT Topic #: DARPA90-049 Office: ID #: 50506 TECHNICAL ABSTRACT - COMBAT...INNOVATION RESEARCH PROGRAM - PHASE I SDIO Solicitation 90.1 TORRANCE, CA 90505 Program Manager: JAMES E CRAIG Contract #: Title: NONINTRUSIVE OPTICAL

  8. Phase change materials handbook

    Science.gov (United States)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1971-01-01

    This handbook is intended to provide theory and data needed by the thermal design engineer to bridge the gap between research achievements and actual flight systems, within the limits of the current state of the art of phase change materials (PCM) technology. The relationship between PCM and more conventional thermal control techniques is described and numerous space and terrestrial applications of PCM are discussed. Material properties of the most promising PCMs are provided; the purposes and use of metallic filler materials in PCM composites are presented; and material compatibility considerations relevant to PCM design are included. The engineering considerations of PCM design are described, especially those pertaining to the thermodynamic and heat transfer phenomena peculiar to PCM design. Methods of obtaining data not currently available are presented. The special problems encountered in the space environment are described. Computational tools useful to the designer are discussed. In summary, each aspect of the PCM problem important to the design engineer is covered to the extent allowed by the scope of this effort and the state of the art.

  9. GRAIL-genQuest: A comprehensive computational system for DNA sequence analysis. Final report, DOE SBIR Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Manning, Ruth Ann

    1999-01-05

    {trademark} Network Edition and ApoCom GRAIL{trademark} Personal Edition, have been developed to reach two diverse niche markets in the Phase III commercialization of this software. As a result of this project ApoCom GRAIL{trademark} can now be made available to the desktop (UNIX{reg_sign}, Windows{reg_sign} 95 and Windows NT{reg_sign}, or Mac{trademark} 0S) of any researcher who needs it.

  10. Omega phase in materials

    International Nuclear Information System (INIS)

    Sikka, S.K.; Vohra, Y.K.; Chidambaram, R.

    1982-01-01

    The subject is reviewed under the headings: introduction; occurrence and some systematics of omega phase; crystallography; physical properties; kinetics of formation, synthesis and metastability of omega phase; electronic structure of omega phase; electronic basis for omega phase stability; omega phase formation under combined thermal and pressure treatment in alloys; transformation mechanisms and models for diffuse omega phase; conclusion. The following elements of nuclear interest (or their alloys) are included: Zr, Hf, Nb, V, Mo. (U.K.)

  11. Next Generation Advanced Binder Chemistries for High Performance, Environmetally DurableThermal Control Material Systems., Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative SBIR Phase I proposal will develop new binder systems through the systematic investigations to tailor required unique performance properties and...

  12. Omega phase in materials

    International Nuclear Information System (INIS)

    Sikka, S.K.; Vohra, Y.K.; Chidambaram, R.

    1982-01-01

    The subject is covered in sections, entitled: introduction; occurrence and some systematics of omega phase (omega phase in Ti, Zr and Hf under high pressures; omega phase in Group IV transition metal alloys; omega in other systems; omega embryos at high temperatures); crystallography (omega structure; relationship of ω-structure to bcc (β) and hcp (α) structures); physical properties; kinetics of formation, synthesis and metastability of omega phase (kinetics of α-ω transformation under high pressures; kinetics of β-ω transformation; synthesis and metastability studies); electronic structure of omega phase (electronic structure models; band structure calculations; theoretical results and experimental studies); electronic basis for omega phase stability (unified phase diagram; stability of omega phase); omega phase formation under combined thermal and pressure treatment in alloys (Ti-V alloys under pressure - a prototype case study; P-X phase diagrams for alloys; transformation mechanisms and models for diffuse omega phase (is omega structure a charge density distortion of the bcc phase; nature of incommensurate ω-structure and models for diffuse scattering); conclusion. (U.K.)

  13. Vapor Chamber with Phase Change Material-Based Wick Structure for Thermal Control of Manned Spacecraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — During a NASA Phase I SBIR program, ACT addressed the need for light-weight, non-venting PCM heat storage devices by successfully demonstrating proof-of-concept of a...

  14. Vapor Chamber with Phase Change Material-based Wick Structure for Thermal Control of Manned Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA SBIR solicitation H3.01 "Thermal Control for Future Human Exploration", Advanced Cooling Technologies, Inc. (ACT) is proposing a novel Phase...

  15. Advanced Materials Test Methods for Improved Life Prediction of Turbine Engine Components

    National Research Council Canada - National Science Library

    Stubbs, Jack

    2000-01-01

    Phase I final report developed under SBIR contract for Topic # AF00-149, "Durability of Turbine Engine Materials/Advanced Material Test Methods for Improved Use Prediction of Turbine Engine Components...

  16. Nanoscale phase change memory materials.

    Science.gov (United States)

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  17. Joining Silicon Carbide Components for Space Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I program will identify the joining materials and demonstrate the processes that are suited for construction of advanced ceramic matrix composite...

  18. Torrefaction Processing of Human Fecal Waste, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — New technology is needed to collect, stabilize, safen, recover useful materials, and store human fecal waste for long duration missions. The current SBIR Phase I...

  19. Enhanced heat transport in environmental systems using microencapsulated phase change materials

    Science.gov (United States)

    Colvin, D. P.; Mulligan, J. C.; Bryant, Y. G.

    1992-01-01

    A methodology for enhanced heat transport and storage that uses a new two-component fluid mixture consisting of a microencapsulated phase change material (microPCM) for enhanced latent heat transport is outlined. SBIR investigations for NASA, USAF, SDIO, and NSF since 1983 have demonstrated the ability of the two-component microPCM coolants to provide enhancements in heat transport up to 40 times over that of the carrier fluid alone, enhancements of 50 to 100 percent in the heat transfer coefficient, practically isothermal operation when the coolant flow is circulated in an optimal manner, and significant reductions in pump work.

  20. KSC SBIR/STTR 2004 Program Year Report

    Science.gov (United States)

    2005-01-01

    The Kennedy Space Center Level III SBIR/STTR management staff is under the Technology Transfer Office within the Spaceport Engineering and Technology Directorate. The SBIR and STTR programs provide an opportunity for small high technology companies and research institutions to participate in Government-sponsored research and development (R&D) programs in key technology areas. The SBIR program was established by Congress in 1982 to provide increased opportunities for small businesses to participate in R&D programs, increase employment, and improve U.S. competitiveness. The program's specific objectives are to stimulate U.S. technological innovation, use small businesses to meet Federal research and development needs, increase private sector commercialization of innovations, and foster and encourage participation by socially disadvantaged businesses. Legislation enacted in December 2000 reauthorized the program and strengthened emphasis on pursuing commercial applications of SBIR projects. An SBIR Phase I contract is the opportunity to establish the feasibility and technical merit of a proposed innovation. Selected competitively, the Phase I contract lasts for 6 months and is funded up to $70,000. SBIR Phase II contracts continue the most promising Phase I projects based on scientific! technical merit, expected value to NASA, company capability, and commercial potential. Phase II contracts are usually for a period of 24 months and may not exceed $600,000. NASA usually selects approximately 40 percent of Phase I projects to continue to the Phase II level. Phase III is the process of furthering the development of a product to make it commercially available. The STTR program awards contracts to small business concerns for cooperative R&D with a nonprofit research institution. Research institutions include nonprofit research organizations, Federal laboratories, or universities. The goal of the program established by Congress is to facilitate the transfer of technology

  1. Large Format LW Type-II SLS FPAs for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposes to develop high performance (low dark current, high quantum efficiency, and low NEdT) infrared epitaxy materials based on Type II Strained...

  2. Extreme Environment Damage Index and Accumulation Model for CMC Laminate Fatigue Life Prediction, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Materials Research & Design (MR&D) is proposing in the SBIR Phase II an effort to develop a tool for predicting the fatigue life of C/SiC composite...

  3. Silicon Germanium Alloy Photovoltaics for 1.06 Micron Wireless Power Transmission, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR effort, Structured Materials Industries, Inc. (SMI)will design, fabricate, and test more efficient photovoltaics for 1.06 micron wavelength...

  4. A 10kWatt 36GHz Solid-State Power Amplifier using GaN-on-Diamond, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase-I SBIR proposal proposes for the first time ever, the use of a new class of materials - Gallium Nitride-on-diamond - in the manufacture of very high...

  5. Wireless Sensor Needs Defined by SBIR Topics

    Science.gov (United States)

    Studor, George F.

    2010-01-01

    This slide presentation reviews the needs for wireless sensor technology from various U.S. government agencies as exhibited by an analysis of Small Business Innovation Research (SBIR) solicitations. It would appear that a multi-agency group looking at overlapping wireless sensor needs and technology projects is desired. Included in this presentation is a review of the NASA SBIR process, and an examination of some of the SBIR projects from NASA, and other agencies that involve wireless sensor development

  6. Demonstration of an efficient cooling approach for SBIRS-Low

    Science.gov (United States)

    Nieczkoski, S. J.; Myers, E. A.

    2002-05-01

    The Space Based Infrared System-Low (SBIRS-Low) segment is a near-term Air Force program for developing and deploying a constellation of low-earth orbiting observation satellites with gimbaled optics cooled to cryogenic temperatures. The optical system design and requirements present unique challenges that make conventional cooling approaches both complicated and risky. The Cryocooler Interface System (CIS) provides a remote, efficient, and interference-free means of cooling the SBIRS-Low optics. Technology Applications Inc. (TAI), through a two-phase Small Business Innovative Research (SBIR) program with Air Force Research Laboratory (AFRL), has taken the CIS from initial concept feasibility through the design, build, and test of a prototype system. This paper presents the development and demonstration testing of the prototype CIS. Prototype system testing has demonstrated the high efficiency of this cooling approach, making it an attractive option for SBIRS-Low and other sensitive optical and detector systems that require low-impact cryogenic cooling.

  7. NASA Johnson Space Center SBIR STTR Program Technology Innovations

    Science.gov (United States)

    Krishen, Kumar

    2007-01-01

    The Small Business Innovation Research (SBIR) Program increases opportunities for small businesses to participate in research and development (R&D), increases employment, and improves U.S. competitiveness. Specifically the program stimulates U.S. technological innovation by using small businesses to meet federal R&D needs, increasing private-sector commercialization of innovations derived from federal R&D, and fostering and encouraging the participation of socially disadvantaged businesses. In 2000, the Small Business Technology Transfer (STTR) Program extended and strengthened the SBIR Program, increasing its emphasis on pursuing commercial applications by awarding contracts to small business concerns for cooperative R&D with a nonprofit research institution. Modeled after the SBIR Program, STTR is nevertheless a separately funded activity. Technologies that have resulted from the Johnson Space Center SBIR STTR Program include: a device for regenerating iodinated resin beds; laser-assisted in-situ keratomileusis or LASIK; a miniature physiological monitoring device capable of collecting and analyzing a multitude of real-time signals to transmit medical data from remote locations to medical centers for diagnosis and intervention; a new thermal management system for fibers and fabrics giving rise to new line of garments and thermal-enhancing environments; and a highly electropositive material that attracts and retains electronegative particles in water.

  8. Phase transformations im smart materials

    International Nuclear Information System (INIS)

    Newnham, R.E.

    1998-01-01

    One of the qualities that distinguishes living systems from inanimate matter is the ability to adapt to changes in the environment. Smart materials have the ability to perform both sensing and actuating functions and are, therefore, capable of imitating this rudimentary aspect of life. Four of the most widely used smart materials are piezoelectric Pb(Zr, Ti)O 3 , electrostrictive Pb(Mg, Nb)O 3 , magnetostrictive (Tb, Dy)Fe 2 and the shape-memory alloy NiTi. All four are ferroic with active domain walls and two phase transformations, which help to tune the properties of these actuator materials. Pb(Zr, Ti)O 3 is a ferroelectric ceramic which is cubic at high temperature and becomes ferroelectric on cooling through the Curie temperature. At room temperature, it is poised on a rhombohedral-tetragonal phase boundary which enhances the piezoelectric coefficients. Terfenol, (Tb, Dy)Fe 2 , is also cubic at high temperature and then becomes magnetic on cooling through its Curie temperature. At room temperature, it too is poised on a rhombohedral-tetragonal transition which enhances its magnetostriction coefficients. Pb(Mg, Nb)O 3 and nitinol (NiTi) are also cubic at high temperatures and on annealing transform to a partially ordered state. On further cooling, Pb(Mg, Nb)O 3 passes through a diffuse phase transformation at room temperature where it exhibits very large dielectric and electrostrictive coefficients. Just below room temperature, it transforms to a ferroelectric rhombohedral phase. The partially ordered shape-memory alloy NiTi undergoes an austenitic (cubic) to martensitic (mono-clinic) phase change just above room temperature. It is easily deformed in the martensitic state but recovers its original shape when reheated to austenite

  9. Polymers in phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, M.C.; Brites, M.J.; Alexandre, J.H. [National Lab. for Energy and Geology, Lisbon (Portugal)

    2010-07-01

    Phase Change Materials (PCMs) which are the core of latent heat thermal energy storage systems are currently an area of investigation of increasing interest. Several substances differing in physical and chemical characteristics as well as in thermal behavior have been studied as PCMS{sup 1-3}. In order to meet the requisites of particular systems, auxiliary materials are often used with specific functions. This bibliographic survey shows that polymeric materials have been proposed either as the PCM itself in solid-liquid or solid-solid transitions or to perform auxiliary functions of shape stabilisation and microencapsulation for solid-liquid PCMs. The PCMs have an operating temperature ranging from around 0 C (for the system water/polyacrilamid) to around 127 C (for crosslinked HDPE). (orig.)

  10. Phase transformations in engineering materials

    International Nuclear Information System (INIS)

    Bourke, M.A.M.; Lawson, A.C.; Dunand, D.C.

    1996-01-01

    Phase transformations in engineering materials are inevitably related to mechanical behavior and are often precursors to residual stress and distortion. Neutron scattering in general is a valuable tool for studying their effects, and pulsed neutrons are of special value, because of the inherently comprehensive crystallographic coverage they provide in each measurement. At the Manuel Lujan neutron scattering center several different research programs have addressed the relationships between phase transformation/mechanical behavior and residual strains. Three disparate examples are presented; (1) stress induced transformation in a NiTi shape memory alloy, (2) cryogenically induced transformation in a quenched 5180 steel, and (3) time resolved evolution of strain induced martensite in 304 stainless steel. In each case a brief description of the principle result will be discussed in the context of using neutrons for the measurement

  11. Photometrical Observations "SBIRS GEO-2"

    Science.gov (United States)

    Sukhov, P. P.; Epishev, V. P.; Karpenko, G. F.; Sukhov, K. P.; Kudak, V. I.

    2015-08-01

    Photometrical observations GSS "SBIRS GEO 2" in B,V,R filters were carried near the equinoxes 2014-2015. Used velocity electrophotometer based on the FEU-79 in the pulse-counting mode. Received more than 25 light curves. From the known dimensions are defined; effective reflecting area - Sγλ, the spectral reflectance index - γλ, periods of light variation. Color-indices showed that in the reflected light flux from the GSS prevails "red" component. In the light curves are periodically dips and specular flash. This shows that GSS orbit is not in a static position specified triaxial orientation as in dynamic motion. Assumed following dynamics of the satellite "SBIRS GEO 2" in orbit. Helical scanning the Earth's surface visible infrared sensors satellite occurs with a period P1 = 15.66 sec. and swinging of the GSS about the direction of the motion vector of the satellite in an orbit with P2 = 62.64 sec., from the northern to the southern pole. Thus, during the period of swinging GSS going on 2 scan the visible part of the northern and southern hemispheres. In some dates observations dynamics work satellite in orbit changed.

  12. Design and Manufacture of Pin Tools for Friction Stir Welding of Temperature-Resistant Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary goal of this SBIR Phase I project is to advance the development of low-cost, functionally graded laser additive manufactured high temperature refractory...

  13. Space Based Infrared System High (SBIRS High)

    Science.gov (United States)

    2015-12-01

    elements (five SMGTs) for the S2E2 Mobile Ground System. ​ SBIRS Block Buy (GEO 5-6) The GEO 5-6 Tech Refresh (TR) Engineering Change Proposal was...Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-210 Space Based Infrared System High ( SBIRS High) As of FY 2017 President’s Budget Defense...Acquisition Management Information Retrieval (DAMIR) March 23, 2016 11:24:26 UNCLASSIFIED SBIRS High December 2015 SAR March 23, 2016 11:24:26

  14. Nanoscale phase-change materials and devices

    International Nuclear Information System (INIS)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-01-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced. (topical review)

  15. Nanoscale phase-change materials and devices

    Science.gov (United States)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-06-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced.

  16. Phase change materials science and applications

    CERN Document Server

    Raoux, Simone

    2009-01-01

    ""Phase Change Materials: Science and Applications"" provides a unique introduction of this rapidly developing field. This clearly written volume describes the material science of these fascinating materials from a theoretical and experimental perspective.

  17. Reversible switching in phase-change materials

    OpenAIRE

    Wojciech Wełnic; Matthias Wuttig

    2008-01-01

    Phase-change materials are successfully employed in optical data storage and are becoming a promising candidate for future electronic storage applications. Despite the increasing technological interest, many fundamental properties of these materials remain poorly understood. However, in the last few years the understanding of the material properties of phase-change materials has increased significantly. At the same time, great advances have been achieved in technological applications in elect...

  18. PCM Concrete. [Phase Change Materials

    Energy Technology Data Exchange (ETDEWEB)

    Juul Andersen, T. [Danish Technological Institute, Taastrup (Denmark); Poulsen, H.-H. [BASF A/S, Roedekro (Denmark); Passov, F. [Spaencom A/S, Hedehusene (Denmark); Heiselberg, P. [Aalborg Univ..Aalborg (Denmark)

    2013-04-01

    PCM-Concrete was a research and development project launched in 2009 and finished in 2012. The project, which was funded by The Danish National Advanced Technology Foundation, had a total budget of 1.7 million Euros and included 4 partners: Danish Technological Institute (project manager), Aalborg University, BASF A/S and Spaencom A/S. The overall vision of the project was to reduce energy consumption for heating and cooling in buildings by developing high-performance concrete structures microencapsulated Phase Change Materials (PCM). The PCM used in the project was Micronal produced by BASF A/S. Micronal is small capsules with an acrylic shell and inside a wax with a melting point at approx. 23 deg. C equal to a comfortable indoor temperature. During the melting process thermal energy is transferred to chemical reaction (melting/solidification) depending on PCM being heated up or cooled down. Adding Micronal to concrete would theoretically increase the thermal mass of the concrete and improve the diurnal heat capacity which is the amount of energy that can be stored and released during 24 hours. Nevertheless, it is a relatively new technology that has not received much attention, yet. In the PCM-Concrete project 5 main investigations were carried out: 1) Development of concrete mix design with PCM. 2) Investigation of thermal properties of the PCM concrete: thermal conductivity, specific heat capacity, density. 3) Up-scaling the research to industrial production of PCM-concrete structures. 4) Testing energy efficiency in full scale. 5) Confronting aesthetic and acoustic barriers to full exploitation of the potential of PCM-concrete structures. The results from the test program showed: 1) That the diurnal heat storage capacity is higher for all 4 hollow core decks with tiles attached compared to the reference hollow core deck. 2) The hollow core decks with concrete tiles without PCM performs slightly better than the tiles with PCM. 3) That is was impossible to

  19. Multifunctional Composite Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polymeric composite materials that are currently utilized in aircraft structures are susceptible to significant damage from lightning strikes. Enhanced electrical...

  20. Intelligent Radiative Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An opportunity to boost energy efficiency in homes and buildings exists through the design of functional radiative properties in glass and other building materials....

  1. Optical computing, optical memory, and SBIRs at Foster-Miller

    Science.gov (United States)

    Domash, Lawrence H.

    1994-03-01

    A desktop design and manufacturing system for binary diffractive elements, MacBEEP, was developed with the optical researcher in mind. Optical processing systems for specialized tasks such as cellular automation computation and fractal measurement were constructed. A new family of switchable holograms has enabled several applications for control of laser beams in optical memories. New spatial light modulators and optical logic elements have been demonstrated based on a more manufacturable semiconductor technology. Novel synthetic and polymeric nonlinear materials for optical storage are under development in an integrated memory architecture. SBIR programs enable creative contributions from smaller companies, both product oriented and technology oriented, and support advances that might not otherwise be developed.

  2. From phase-change materials to thermoelectrics?

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Matthias N.; Rosenthal, Tobias; Oeckler, Oliver [Dept. of Chemistry, Ludwig Maximilian Univ. Munich (Germany); Stiewe, Christian [German Aerospace Center, Cologne (Germany)

    2010-07-01

    Metastable tellurides play an important role as phase-change materials in data storage media and non-volatile RAM devices. The corresponding crystalline phases with very simple basic structures are not stable as bulk materials at ambient conditions, however, for a broad range of compositions they represent stable high-temperature phases. In the system Ge/Sb/Te, rocksalt-type high-temperature phases are characterized by a large number of vacancies randomly distributed over the cation position, which order as 2D vacancy layers upon cooling. Short-range order in quenched samples produces pronounced nanostructures by the formation of twin domains and finite intersecting vacancy layers. As phase-change materials are usually semimetals or small-bandgap semiconductors and efficient data storage requires low thermal conductivity, bulk materials with similar compositions and properties can be expected to exhibit promising thermoelectric characteristics. Nanostructuring by phase transitions that involve partial vacancy ordering may enhance the efficiency of such thermoelectrics. We have shown that germanium antimony tellurides with compositions close to those used as phase-change materials in rewritable Blu-Ray Discs, e.g. (GeTe){sub 12}Sb{sub 2}Te{sub 3}, exhibit thermoelectric figures of merit of up to ZT = 1.3 at 450 C if a nanodomain structure is induced by rapidly quenching the cubic high-temperature phase. Structural changes have been elucidated by X-ray diffraction and high-resolution electron microscopy. (orig.)

  3. Heat transfer in multi-phase materials

    CERN Document Server

    Öchsner, Andreas

    2011-01-01

    This book provides a profound understanding, which physical processes and mechanisms cause the heat transfer in composite and cellular materials. It shows models for all important classes of composite materials and introduces into the latest advances. In three parts, the book covers Composite Materials (Part A), Porous and Cellular Materials (Part B) and the appearance of a conjoint solid phase and fluid aggregate (Part C).

  4. Phase change materials in energy sector - applications and material requirements

    Science.gov (United States)

    Kuta, Marta; Wójcik, Tadeusz M.

    2015-05-01

    Phase change materials (PCMs) have been applying in many areas. One of them is energy field. PCMs are interesting for the energy sector because their use enables thermal stabilization and storage of large amount of heat. It is major issue for safety of electronic devices, thermal control of buildings and vehicles, solar power and many others energy domains. This paper contains preliminary results of research on solid-solid phase change materials designed for thermal stabilisation of electronic devices.

  5. Crystallization kinetics of phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Michael; Sontheimer, Tobias; Wuttig, Matthias [I. Physikalisches Institut (1A), RWTH Aachen (Germany)

    2008-07-01

    Phase change materials are fascinating materials. They can be rapidly switched between two metastable states, the amorphous and crystalline phase, which show pronounced contrast in their optical and electrical properties. They are already widely used as the active layer in rewritable optical media and are expected to be used in the upcoming phase change random access memory (PRAM). Here we show measurements of the crystallization kinetics of chalcogenide materials that lead to a deeper understanding of these processes. This work focuses mainly on the Ge-Sb-Te system but also includes Ag-In-Te materials. The crystallization behaviour of these materials was investigated with an ex-situ annealing method employing the precise oven of a differential scanning calorimeter and imaging techniques employing atomic force microscopy and optical microscopy.

  6. Phase transformations, stability, and materials interactions

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.; Brewer, L.; Cost, J.R.; Shewmon, P.

    1977-07-01

    The proceedings of the Materials Sciences Workshop on Phase Transformations, Stability, and Materials Interactions are divided into sections according to the following topics: (I) workshop scope and priorities; (II) study group reports--ERDA mission needs; (III) study group reports--technical area research priorities

  7. Phase change material for temperature control and material storage

    Science.gov (United States)

    Wessling, Jr., Francis C. (Inventor); Blackwood, James M. (Inventor)

    2011-01-01

    A phase change material comprising a mixture of water and deuterium oxide is described, wherein the mole fraction of deuterium oxide is selected so that the mixture has a selected phase change temperature within a range between 0.degree. C. and 4.degree. C. The mixture is placed in a container and used for passive storage and transport of biomaterials and other temperature sensitive materials. Gels, nucleating agents, freezing point depression materials and colorants may be added to enhance the characteristics of the mixture.

  8. Large area nuclear particle detectors using ET materials, phase 2. Final report, 9 May 1988-9 May 1990

    International Nuclear Information System (INIS)

    Wrigley, C.Y.; Storti, G.M.; Walter, L.; Mathews, S.

    1990-05-01

    This report presents work done under a Phase 2 SBIR contract for demonstrating large area detector planes utilizing Quantex electron trapping materials as a film medium for storing high-energy nuclide impingement information. The detector planes utilize energy dissipated by passage of the high-energy nuclides to produce localized populations of electrons stored in traps. Readout of the localized trapped electron populations is effected by scanning the ET plane with near-infrared, which frees the trapped electrons and results in optical emission at visible wavelengths. The effort involved both optimizing fabrication technology for the detector planes and developing a readout system capable of high spatial resolution for displaying the recorded nuclide passage tracks

  9. Photometrical research geostationary satellite "SBIRS GEO-2"

    Science.gov (United States)

    Sukhov, P. P.; Epishev, V. P; Sukhov, K. P; Kudak, V. I.

    The multicolor photometrical observations GSS "Sbirs Geo-2" were carried in B,V,R filters out during the autumn equinox 2014 and spring 2015 y. Periodic appearance of many light curves and dips of mirror reflections suggests that the GSS was not in orbit in a static position, predetermined three-axis orientation and in dynamic motion. On the basis of computer modeling suggests the following dynamics GSS "Sbirs Geo-2" in orbit. Helically scanning the visible Earth's surface infrared satellite sensors come with period P1 = 15.66 sec. and the rocking of the GSS about the direction of the motion vector of the satellite in orbit with P2 = 62.64 sec., most likely with the purpose to survey the greatest possible portion of the earth's surface.

  10. Phase Change Materials for Thermal Energy Storage

    OpenAIRE

    Stiebra, L; Cabulis, U; Knite, M

    2014-01-01

    Phase change materials (PCMs) for thermal energy storage (TES) have become an important subject of research in recent years. Using PCMs for thermal energy storage provides a solution to increase the efficiency of the storage and use of energy in many domestic and industrial sectors. Phase change TES systems offer a number of advantages over other systems (e.g. chemical storage systems): particularly small temperature distance between the storage and retrieval cycles, small unit sizes and lo...

  11. Thermal Energy Storage with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Lavinia Gabriela SOCACIU

    2012-08-01

    Full Text Available Thermal energy storage (TES systems provide several alternatives for efficient energy use and conservation. Phase change materials (PCMs for TES are materials supplying thermal regulation at particular phase change temperatures by absorbing and emitting the heat of the medium. TES in general and PCMs in particular, have been a main topic in research for the last 30 years, but although the information is quantitatively enormous, it is also spread widely in the literature, and difficult to find. PCMs absorb energy during the heating process as phase change takes place and release energy to the environment in the phase change range during a reverse cooling process. PCMs possesses the ability of latent thermal energy change their state with a certain temperature. PCMs for TES are generally solid-liquid phase change materials and therefore they need encapsulation. TES systems using PCMs as a storage medium offers advantages such as high TES capacity, small unit size and isothermal behaviour during charging and discharging when compared to the sensible TES.

  12. Military Space Programs: Issues Concerning DOD's SBIRS and STSS Programs

    National Research Council Canada - National Science Library

    Smith, Marcia S

    2005-01-01

    .... The Space Tracking and Surveillance System (STSS, formerly SBIRS-Low), managed by the Missile Defense Agency, would perform missile tracking and target discrimination for missile defense objectives...

  13. Military Space Programs: Issues Concerning DOD's SBIRS and STSS Programs

    National Research Council Canada - National Science Library

    Smith, Marcia S

    2006-01-01

    .... The Space Tracking and Surveillance System (STSS, formerly SBIRS-Low), managed by the Missile Defense Agency, would perform missile tracking and target discrimination for missile defense objectives...

  14. Military Space Programs: Issues Concerning DOD's SBIRS and STSS Programs

    National Research Council Canada - National Science Library

    Smith, Marcia S

    2003-01-01

    .... The Space Tracking and Surveillance System (STSS, formerly SBIRS-Low), managed by the Missile Defense Agency, would perform missile tracking and target discrimination for missile defense objectives...

  15. Quality criteria for phase change materials selection

    International Nuclear Information System (INIS)

    Vitorino, Nuno; Abrantes, João C.C.; Frade, Jorge R.

    2016-01-01

    Highlights: • Selection criteria of phase change materials for representative applications. • Selection criteria based on reliable solutions for latent heat transfer. • Guidelines for the role of geometry and heat transfer mechanisms. • Performance maps based on PCM properties, operating conditions, size and time scales. - Abstract: Selection guidelines are primary criterion for optimization of materials for specific applications in order to meet simultaneous and often conflicting requirements. This is mostly true for technologies and products required to meet the main societal needs, such as energy. In this case, gaps between supply and demand require strategies for energy conversion and storage, including thermal storage mostly based on phase change materials. Latent heat storage is also very versatile for thermal management and thermal control by allowing high storage density within narrow temperature ranges without strict dependence between stored thermal energy and temperature. Thus, this work addressed the main issues of latent heat storage from a materials selection perspective, based on expected requirements of applications in thermal energy storage or thermal regulation. Representative solutions for the kinetics of latent heat charge/discharge were used to derive optimization guidelines for high energy density, high power, response time (from fast response to thermal inertia), etc. The corresponding property relations were presented in graphical forms for a wide variety of prospective phase change materials, and for wide ranges of operating conditions, and accounting for changes in geometry and mechanisms.

  16. Small business innovation research. Abstracts of 1988 phase 1 awards

    Science.gov (United States)

    1990-01-01

    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered.

  17. SBIR Final Report. Liquid Core Optical Scintillating Fibers

    International Nuclear Information System (INIS)

    Beetz, C.P.; Steinbeck, J.; Buerstler, R.

    2000-01-01

    This Phase I SBIR project focused on developing flexible scintillating liquid core optical fibers, with potential uses in high-energy calorimetry, tracking, preradiators, active targets or other fast detectors. Progress on the six tasks of the project is summarized. The technical developments involve three technology components: (1) highly flexible capillaries or tubes of relatively low n (index of refraction) to serve as cladding and liquid core containment; (2) scintillator (and clear) fluids of relatively high n to serve as a core-- these fluids must have a high light transmission and, for some applications, radiation hardness; (3) optical end plugs, plug insertion, and plug-cladding tube sealing technology to contain the core fluids in the tubes, and to transmit the light

  18. Transitional Phenomena on Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Wójcik Tadeusz M.

    2014-03-01

    Full Text Available One of the most significant problem with technology development is transferring of large heat fluxes, which requires constant heat transfer temperature (in the specified temperature range. This problem concern mainly the nuclear energetics, space technologies, military technologies and most of all electronics containing integrated circuits with very large scale of integrations. Intensive heat transfer and thermal energy storage are possible by the use of phase change materials (PCMs. In the paper there are presented preliminary results of research on the use of liquid-gas (L-G PCMs and solid-solid phase change materials (S-S PCMs. For L-G PCMs the boiling characteristics were determined by increasing and decreasing the heat flux, which for certain sets of structural parameters of the heating surface and the physical properties of the liquid induce a variety of forms of transitional phenomena. Thermal energy storage is much more effective when using PCMs than sensible heat.

  19. Sprayable Phase Change Coating Thermal Protection Material

    Science.gov (United States)

    Richardson, Rod W.; Hayes, Paul W.; Kaul, Raj

    2005-01-01

    NASA has expressed a need for reusable, environmentally friendly, phase change coating that is capable of withstanding the heat loads that have historically required an ablative thermal insulation. The Space Shuttle Program currently relies on ablative materials for thermal protection. The problem with an ablative insulation is that, by design, the material ablates away, in fulfilling its function of cooling the underlying substrate, thus preventing the insulation from being reused from flight to flight. The present generation of environmentally friendly, sprayable, ablative thermal insulation (MCC-l); currently use on the Space Shuttle SRBs, is very close to being a reusable insulation system. In actual flight conditions, as confirmed by the post-flight inspections of the SRBs, very little of the material ablates. Multi-flight thermal insulation use has not been qualified for the Space Shuttle. The gap that would have to be overcome in order to implement a reusable Phase Change Coating (PCC) is not unmanageable. PCC could be applied robotically with a spray process utilizing phase change material as filler to yield material of even higher strength and reliability as compared to MCC-1. The PCC filled coatings have also demonstrated potential as cryogenic thermal coatings. In experimental thermal tests, a thin application of PCC has provided the same thermal protection as a much thicker and heavier application of a traditional ablative thermal insulation. In addition, tests have shown that the structural integrity of the coating has been maintained and phase change performance after several aero-thermal cycles was not affected. Experimental tests have also shown that, unlike traditional ablative thermal insulations, PCC would not require an environmental seal coat, which has historically been required to prevent moisture absorption by the thermal insulation, prevent environmental degradation, and to improve the optical and aerodynamic properties. In order to reduce

  20. Phase change material thermal capacitor clothing

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2005-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  1. Electrical transport in crystalline phase change materials

    International Nuclear Information System (INIS)

    Woda, Michael

    2012-01-01

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge 2 Sb 2 Te 5 . The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  2. Electrical transport in crystalline phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Michael

    2012-01-06

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge{sub 2}Sb{sub 2}Te{sub 5}. The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  3. Dry powder mixes comprising phase change materials

    Science.gov (United States)

    Salyer, Ival O.

    1992-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  4. Dry powder mixes comprising phase change materials

    Science.gov (United States)

    Salyer, I.O.

    1994-02-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 2 figures.

  5. Material Engineering for Phase Change Memory

    Science.gov (United States)

    Cabrera, David M.

    As semiconductor devices continue to scale downward, and portable consumer electronics become more prevalent there is a need to develop memory technology that will scale with devices and use less energy, while maintaining performance. One of the leading prototypical memories that is being investigated is phase change memory. Phase change memory (PCM) is a non-volatile memory composed of 1 transistor and 1 resistor. The resistive structure includes a memory material alloy which can change between amorphous and crystalline states repeatedly using current/voltage pulses of different lengths and magnitudes. The most widely studied PCM materials are chalcogenides - Germanium-Antimony-Tellerium (GST) with Ge2Sb2Te3 and Germanium-Tellerium (GeTe) being some of the most popular stochiometries. As these cells are scaled downward, the current/voltage needed to switch these materials becomes comparable to the voltage needed to sense the cell's state. The International Roadmap for Semiconductors aims to raise the threshold field of these devices from 66.6 V/mum to be at least 375 V/mum for the year 2024. These cells are also prone to resistance drift between states, leading to bit corruption and memory loss. Phase change material properties are known to influence PCM device performance such as crystallization temperature having an effect on data retention and litetime, while resistivity values in the amorphous and crystalline phases have an effect on the current/voltage needed to write/erase the cell. Addition of dopants is also known to modify the phase change material parameters. The materials G2S2T5, GeTe, with dopants - nitrogen, silicon, titanium, and aluminum oxide and undoped Gallium-Antimonide (GaSb) are studied for these desired characteristics. Thin films of these compositions are deposited via physical vapor deposition at IBM Watson Research Center. Crystallization temperatures are investigated using time resolved x-ray diffraction at Brookhaven National Laboratory

  6. Magnetocaloric materials and first order phase transitions

    DEFF Research Database (Denmark)

    Neves Bez, Henrique

    and magnetocaloric regenerative tests. The magnetic, thermal and structural properties obtained from such measurements are then evaluated through different models, i.e. the Curie-Weiss law, the Bean-Rodbell model, the free electron model and the Debye model.The measured magnetocaloric properties of La0.67Ca0.33MnO3...... heat capacity, magnetization and entropy change measurements. By measuring bulky particles (with a particle size in the range of 5001000 μm) of La(Fe,Mn,Si)13Hz with first order phase transition, it was possible to observe very sharp transitions. This is not the case for finer ground particles which......This thesis studies the first order phase transitions of the magnetocaloric materials La0.67Ca0.33MnO3 and La(Fe,Mn,Si)13Hz trying to overcome challenges that these materials face when applied in active magnetic regenerators. The study is done through experimental characterization and modelling...

  7. Passive thermal management using phase change materials

    Science.gov (United States)

    Ganatra, Yash Yogesh

    The trend of enhanced functionality and reducing thickness of mobile devices has. led to a rapid increase in power density and a potential thermal bottleneck since. thermal limits of components remain unchanged. Active cooling mechanisms are not. feasible due to size, weight and cost constraints. This work explores the feasibility. of a passive cooling system based on Phase Change Materials (PCMs) for thermal. management of mobile devices. PCMs stabilize temperatures due to the latent heat. of phase change thus increasing the operating time of the device before threshold. temperatures are exceeded. The primary contribution of this work is the identification. of key parameters which influence the design of a PCM based thermal management. system from both the experiments and the numerical models. This work first identifies strategies for integrating PCMs in an electronic device. A. detailed review of past research, including experimental techniques and computational. models, yields key material properties and metrics to evaluate the performance of. PCMs. Subsequently, a miniaturized version of a conventional thermal conductivity. measurement technique is developed to characterize thermal resistance of PCMs. Further, latent heat and transition temperatures are also characterized for a wide. range of PCMs. In-situ measurements with PCMs placed on the processor indicate that some. PCMs can extend the operating time of the device by as much as a factor of 2.48. relative to baseline tests (with no PCMs). This increase in operating time is investigated. by computational thermal models that explore various integration locations, both at the package and device level.

  8. High-Efficiency, Nanowire Based Thermoelectric Devices for Radioisotope Power Conversion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal responds to topic S3.03 of the 2010 NASA SBIR solicitation, for Power Generation and Conversion. Thermoelectric devices offer a simple and...

  9. Small business innovation research. Abstracts of completed 1987 phase 1 projects

    Science.gov (United States)

    1989-01-01

    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered.

  10. Industry-University SBIR NDT Projects — A Critical Assessment

    Science.gov (United States)

    Reinhart, Eugene R.

    2007-03-01

    The Small Business Innovative Research (SBIR) program, funded by various United States government agencies (DOD, DOE, NSF, etc.), provides funds for Research and Development (R&D) of nondestructive testing (NDT) techniques and equipment, thereby supplying valuable money for NDT development by small businesses and stimulating cooperative university programs. A review and critical assessment of the SBIR program as related to NDT is presented and should provide insight into reasons for or against pursuing this source of R&D funding.

  11. Anomalous phase change characteristics in Fe-Te materials

    International Nuclear Information System (INIS)

    Fu, X. T.; Song, W. D.; Ji, R.; Ho, H. W.; Wang, L.; Hong, M. H.

    2012-01-01

    Phase change materials have become significantly attractive due to its unique characteristics for its extensive applications. In this paper, a kind of phase change material, which consists of Fe and Te components, is developed. The crystallization temperature of the Fe-Te materials is 180 deg. C for Fe 1.19 Te and can be adjusted by the Fe/Te ratio. High-speed phase change in the Fe-Te materials has been demonstrated by nanosecond laser irradiation. Comparing to conventional phase change materials, the Fe-Te materials exhibit an anomalous optical property that has higher reflectivity at amorphous than crystalline state, which is useful for data storage design.

  12. Phase Change Material Heat Exchanger Life Test

    Science.gov (United States)

    Lillibridge, Sean; Stephan, Ryan

    2009-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions. In order to validate the performance of PCM Heat Exchangers, a life test is being conducted on four n-Pentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed.

  13. Constitutive modeling of multiphase materials including phase transformations

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Khan, A.S.; Meredith, C; Farrokh, B

    2011-01-01

    A constitutive model is developed for materials involving two or more different phases in their microstructure such as DP (Dual Phase) or TRIP (TRansformation Induced Plasticity) steels. Homogenization of the response of the phases is achieved by the Mean-Field method. One of the phases in TRIP

  14. Application of phase-change materials in memory taxonomy

    OpenAIRE

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Abstract Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other...

  15. Exploratory Model Analysis of the Space Based Infrared System (SBIRS) Low Global Scheduler Problem

    National Research Council Canada - National Science Library

    Morgan, Brian

    1999-01-01

    ...) "System of Systems". The SBIRS Low component of the SBIRS "System of Systems" will track strategic and theater ballistic missiles from launch to reentry and relay necessary cueing data to missile interceptors...

  16. DOE SBIR Phase I Grant No. DE-FG02-00ER83067, ''A Flexible and Economical Automated Nucleophilic [18F]Fluorination synthesis System for PET Radiopharmaceuticals.'' Final Technical Report

    International Nuclear Information System (INIS)

    Padgett, Henry C.

    2001-01-01

    Phase I Final Report. A prototype manual remote synthesis system based on the unit operations approach was designed, constructed, and functionally tested. This general-purpose system was validated by its configuration and initial use for the preparation of the PET radiopharmaceutical [F-18]FLT using [F-18]fluoride ion

  17. Microstructure characterization of multi-phase composites and utilization of phase change materials and recycled rubbers in cementitious materials

    Science.gov (United States)

    Meshgin, Pania

    2011-12-01

    This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.

  18. Heat storage system utilizing phase change materials government rights

    Science.gov (United States)

    Salyer, Ival O.

    2000-09-12

    A thermal energy transport and storage system is provided which includes an evaporator containing a mixture of a first phase change material and a silica powder, and a condenser containing a second phase change material. The silica powder/PCM mixture absorbs heat energy from a source such as a solar collector such that the phase change material forms a vapor which is transported from the evaporator to the condenser, where the second phase change material melts and stores the heat energy, then releases the energy to an environmental space via a heat exchanger. The vapor is condensed to a liquid which is transported back to the evaporator. The system allows the repeated transfer of thermal energy using the heat of vaporization and condensation of the phase change material.

  19. Phase change materials in non-volatile storage

    OpenAIRE

    Ielmini, Daniele; Lacaita, Andrea L.

    2011-01-01

    After revolutionizing the technology of optical data storage, phase change materials are being adopted in non-volatile semiconductor memories. Their success in electronic storage is mostly due to the unique properties of the amorphous state where carrier transport phenomena and thermally-induced phase change cooperate to enable high-speed, low-voltage operation and stable data retention possible within the same material. This paper reviews the key physical properties that make this phase so s...

  20. Latent Heat Storage Through Phase Change Materials

    Indian Academy of Sciences (India)

    IAS Admin

    reducing storage volume for different materials. The examples are numerous: ... Latent heat is an attractive way to store solar heat as it provides high energy storage density, .... Maintenance of the PCM treated fabric is easy. The melted PCM.

  1. Universal Orbital Material Processing Module, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA need for sustainable space operations and full utilization of the International Space Station (ISS) and specifically to advance the "Materials,...

  2. Engineered Alloy Structures by Friction Stir Reaction Processing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative surface modification technology incorporating friction stir reaction processing for producing...

  3. Shape Memory Alloy-Based Periodic Cellular Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular structures...

  4. Ultraflat Tip-Tilt-Piston MEMS Deformable Mirror, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes a Phase II SBIR project to develop high-resolution, ultraflat micromirror array devices using advanced silicon surface micromachining...

  5. Gradiometer Based on Nonlinear Magneto-Optic Rotation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR project will demonstrate sensitive measurements of magnetic field gradients by nonlinear atomic spectroscopy. The gradients are determined by...

  6. High Impulse Nanoparticulate-Based Gel Propellants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed Small Business Innovative Research (SBIR) Phase I addresses the development of advanced gel propellants and determination of their suitability for...

  7. Phase Change Material Thermal Power Generator

    Science.gov (United States)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor); Valdez, Thomas I. (Inventor)

    2014-01-01

    An energy producing device, for example a submersible vehicle for descending or ascending to different depths within water or ocean, is disclosed. The vehicle comprises a temperature-responsive material to which a hydraulic fluid is associated. A pressurized storage compartment stores the fluid as soon as the temperature-responsive material changes density. The storage compartment is connected with a hydraulic motor, and a valve allows fluid passage from the storage compartment to the hydraulic motor. An energy storage component, e.g. a battery, is connected with the hydraulic motor and is charged by the hydraulic motor when the hydraulic fluid passes through the hydraulic motor. Upon passage in the hydraulic motor, the fluid is stored in a further storage compartment and is then sent back to the area of the temperature-responsive material.

  8. Multilayer Pressure Vessel Materials Testing and Analysis Phase 2

    Science.gov (United States)

    Popelar, Carl F.; Cardinal, Joseph W.

    2014-01-01

    To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report

  9. Phase change materials: science and applications

    National Research Council Canada - National Science Library

    Raoux, Simone; Wuttig, Matthias

    2009-01-01

    ... are the Ovonic threshold switch, the multi-state Ovonic Universal Memory (OUM), and the Ovonic cognitive device which emulates the biological neurons with its plasticity and synaptic activity. The field of amorphous and disordered materials created not only a basic new area of science, but also important new technologies. It should be kept in mind that...

  10. Application of phase-change materials in memory taxonomy.

    Science.gov (United States)

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects.

  11. Nickel nanostructured materials from liquid phase photodeposition

    International Nuclear Information System (INIS)

    Giuffrida, Salvatore; Condorelli, Guglielmo G.; Costanzo, Lucia L.; Ventimiglia, Giorgio; Nigro, Raffaella Lo; Favazza, Maria; Votrico, Enrico; Bongiorno, Corrado; Fragala, Ignazio L.

    2007-01-01

    Liquid Phase Photo-Deposition (LPPD) technique has been used to obtain both colloidal particles and thin films of metallic and chloride nickel from solutions of only precursor Ni(acac) 2 (acac=2,4-pentandionato). Metallic nickel was obtained from ethanol solutions by direct nickel(II) photoreduction at 254 nm and by acetone sensitised reaction at 300 nm. In this latter process the rate was higher than in the first one. NiCl 2 was formed from CCl 4 solution by a solvent-initiated reaction. TEM analysis, performed on colloidal particles of nickel, showed that their dimensions are in the range 2-4 nm. The films did not present carbon contamination and were characterized by AFM, XPS and GIXRD. Metallic films consisted of particles of 20-40 nm that are the result of the aggregation of smaller crystallites (4-5 nm). Larger agglomerations (around 200 nm) have been observed for NiCl 2 films

  12. Low Cost, Light Weight Materials for Mirrors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — During the phase I program Northwestern and APS, Inc., have manufactured several different materials systems that are lighter than Beryllium and stiffer than...

  13. Organic Phase Change Materials And Their Textile Applications: An Overview

    OpenAIRE

    Sarıer, Nihal; Önder, Emel

    2012-01-01

    An organic phase change material (PCM) possesses the ability to absorb and release large quantity of latent heat during a phase change process over a certain temperature range. The use of PCMs in energy storage and thermal insulation has been tested scientifically and industrially in many applications. The broad based research and development studies concentrating on the characteristics of known organic PCMs and new materials as PCM candidates, the storage methods of PCMs, as well as the reso...

  14. The phase field technique for modeling multiphase materials

    Science.gov (United States)

    Singer-Loginova, I.; Singer, H. M.

    2008-10-01

    This paper reviews methods and applications of the phase field technique, one of the fastest growing areas in computational materials science. The phase field method is used as a theory and computational tool for predictions of the evolution of arbitrarily shaped morphologies and complex microstructures in materials. In this method, the interface between two phases (e.g. solid and liquid) is treated as a region of finite width having a gradual variation of different physical quantities, i.e. it is a diffuse interface model. An auxiliary variable, the phase field or order parameter \\phi(\\vec{x}) , is introduced, which distinguishes one phase from the other. Interfaces are identified by the variation of the phase field. We begin with presenting the physical background of the phase field method and give a detailed thermodynamical derivation of the phase field equations. We demonstrate how equilibrium and non-equilibrium physical phenomena at the phase interface are incorporated into the phase field methods. Then we address in detail dendritic and directional solidification of pure and multicomponent alloys, effects of natural convection and forced flow, grain growth, nucleation, solid-solid phase transformation and highlight other applications of the phase field methods. In particular, we review the novel phase field crystal model, which combines atomistic length scales with diffusive time scales. We also discuss aspects of quantitative phase field modeling such as thin interface asymptotic analysis and coupling to thermodynamic databases. The phase field methods result in a set of partial differential equations, whose solutions require time-consuming large-scale computations and often limit the applicability of the method. Subsequently, we review numerical approaches to solve the phase field equations and present a finite difference discretization of the anisotropic Laplacian operator.

  15. Nickel nanostructured materials from liquid phase photodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Giuffrida, Salvatore, E-mail: sgiuffrida@unict.it; Condorelli, Guglielmo G.; Costanzo, Lucia L.; Ventimiglia, Giorgio [Universita degli Studi di Catania and INSTM UdR di, Dipartimento di Scienze Chimiche (Italy); Nigro, Raffaella Lo [IMM-CNR (Italy); Favazza, Maria; Votrico, Enrico [Universita degli Studi di Catania and INSTM UdR di, Dipartimento di Scienze Chimiche (Italy); Bongiorno, Corrado [IMM-CNR (Italy); Fragala, Ignazio L. [Universita degli Studi di Catania and INSTM UdR di, Dipartimento di Scienze Chimiche (Italy)

    2007-08-15

    Liquid Phase Photo-Deposition (LPPD) technique has been used to obtain both colloidal particles and thin films of metallic and chloride nickel from solutions of only precursor Ni(acac){sub 2} (acac=2,4-pentandionato). Metallic nickel was obtained from ethanol solutions by direct nickel(II) photoreduction at 254 nm and by acetone sensitised reaction at 300 nm. In this latter process the rate was higher than in the first one. NiCl{sub 2} was formed from CCl{sub 4} solution by a solvent-initiated reaction. TEM analysis, performed on colloidal particles of nickel, showed that their dimensions are in the range 2-4 nm. The films did not present carbon contamination and were characterized by AFM, XPS and GIXRD. Metallic films consisted of particles of 20-40 nm that are the result of the aggregation of smaller crystallites (4-5 nm). Larger agglomerations (around 200 nm) have been observed for NiCl{sub 2} films.

  16. Advanced materials for future Phase II LHC collimators

    CERN Document Server

    Dallocchio, A; Arnau Izquierdo, G; Artoos, K

    2009-01-01

    Phase I collimators, equipped with Carbon-Carbon jaws, effectively met specifications for the early phase of LHC operation. However, the choice of carbon-based materials is expected to limit the nominal beam intensity mainly because of the high RF impedance and limited efficiency of the collimators. Moreover, C/C may be degraded by high radiation doses. To overcome these limitations, new Phase II secondary collimators will complement the existing system. Their extremely challenging requirements impose a thorough material investigation effort aiming at identifying novel materials combining very diverse properties. Relevant figures of merit have been identified to classify materials: Metal-diamonds composites look a promising choice as they combine good thermal, structural and stability properties. Molybdenum is interesting for its good thermal stability. Ceramics with non-conventional RF performances are also being evaluated. The challenges posed by the development and industrialization of these materials are ...

  17. Aging mechanisms in amorphous phase-change materials.

    Science.gov (United States)

    Raty, Jean Yves; Zhang, Wei; Luckas, Jennifer; Chen, Chao; Mazzarello, Riccardo; Bichara, Christophe; Wuttig, Matthias

    2015-06-24

    Aging is a ubiquitous phenomenon in glasses. In the case of phase-change materials, it leads to a drift in the electrical resistance, which hinders the development of ultrahigh density storage devices. Here we elucidate the aging process in amorphous GeTe, a prototypical phase-change material, by advanced numerical simulations, photothermal deflection spectroscopy and impedance spectroscopy experiments. We show that aging is accompanied by a progressive change of the local chemical order towards the crystalline one. Yet, the glass evolves towards a covalent amorphous network with increasing Peierls distortion, whose structural and electronic properties drift away from those of the resonantly bonded crystal. This behaviour sets phase-change materials apart from conventional glass-forming systems, which display the same local structure and bonding in both phases.

  18. Portable Thermoelectric Power Generator Coupled with Phase Change Material

    OpenAIRE

    Lim Chong C.; Al-Kayiem Hussain H.; Sing Chin Y.

    2014-01-01

    Solar is the intermittent source of renewable energy and all thermal solar systems having a setback on non-functioning during the night and cloudy environment. This paper presents alternative solution for power generation using thermoelectric which is the direct conversion of temperature gradient of hot side and cold side of thermoelectric material to electric voltage. Phase change material with latent heat effect would help to prolong the temperature gradient across thermoelectric material f...

  19. Small business innovation research: Abstracts of 1984. Phase 1 awards

    Science.gov (United States)

    1985-01-01

    On September 27, 1984, the National Aeronautics and Space Administration announced the selection of Phase I projects for the Small Business Innovation Research Program. These awards resulted from the evaluation of proposals submitted in response to the 1984 Program Solicitation, SBIR 84-1. In order to make available information on the technical content of the Phase I projects supported by the NASA SBIR Program, the abstracts of those proposals which resulted in awards of contracts are given. In addition, the name and address of the firm performing the work are given for those who may desired additional information about the project. Propulsion, aerodynamics, computer techniques, exobiology and composite materials are among the areas covered.

  20. Neutron Compound Refractive Prisms - DOE SBIR Phase II Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, Jr, Jay Theodore

    2011-06-25

    The results of the research led to a pulsed electromagnetic periodic magnetic field array (PMF), which coupled with a pair of collimation slits, and a mechanical chopper slit, were able to deflect spin-up neutrons to a band of line-fused neutrons a focal plane heights that correspond to the time-varying magnetic field amplitude. The electromagnetic field PMF produced 5.4 pulses per minute in which each pulse was 50 msec in duration with a full width half maximum (FWHM) of 7.5 msec. The calculated 7.7 mm vertical height of the band of focused spin-up neutrons corresponded closely to the measured 7.5 mm height of the center line of the imaged band of neutrons. The band of deflected spin-up neutrons was 5 mm in vertical width and the bottom of the band was 5 mm above the surface of the PMF pole. The limited exposure time of 3 hours and the smaller 0.78 T magnetic field allowed focused and near focused neutrons of 1.8 to 2.6 neutrons, which were in the tails of the McClellan Nuclear Radiation Center Bay 4 Maxwell Boltzmann distribution of neutrons with peak flux at 1.1-1.2. The electromagnetic PMF was expected to produces a 2.0 T peak magnetic field amplitude, which would be operational at a higher duty factor, rather than the as built 7.5 msec FWHM with pulse repetition frequency of 5.4 pulses per minute. The fabricated pulsed electromagnetic PMF with chopper is expected to perform well on a cold, very cold or ultra cold beam line as a spectrometer or monochromator source of spin-up polarized neutron. In fact there may be a possible use of the PMF to do ultra-cold neutron trapping, see paper by A. I. Frank1, V. G. Nosov, Quantum Effects in a One-Dimensional Magnetic Gravitational Trap for Ultracold Neutrons, JETP Letters, Vol. 79, No. 7, 2004, pp. 313-315. The next step is to find a cold or very cold neutron facility, where further testing or use of the pulsed magnetic field PMF can be pursued.

  1. A review on phase change energy storage: materials and applications

    International Nuclear Information System (INIS)

    Farid, Mohammed M.; Khudhair, Amar M.; Razack, Siddique Ali K.; Al-Hallaj, Said

    2004-01-01

    Latent heat storage is one of the most efficient ways of storing thermal energy. Unlike the sensible heat storage method, the latent heat storage method provides much higher storage density, with a smaller temperature difference between storing and releasing heat. This paper reviews previous work on latent heat storage and provides an insight to recent efforts to develop new classes of phase change materials (PCMs) for use in energy storage. Three aspects have been the focus of this review: PCM materials, encapsulation and applications. There are large numbers of phase change materials that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area. Hydrated salts have larger energy storage density and higher thermal conductivity but experience supercooling and phase segregation, and hence, their application requires the use of some nucleating and thickening agents. The main advantages of PCM encapsulation are providing large heat transfer area, reduction of the PCMs reactivity towards the outside environment and controlling the changes in volume of the storage materials as phase change occurs. The different applications in which the phase change method of heat storage can be applied are also reviewed in this paper. The problems associated with the application of PCMs with regards to the material and the methods used to contain them are also discussed

  2. Space Surveillance Catalog growth during SBIRS low deployment.

    Science.gov (United States)

    Hoult, C. P.; Wright, R. P.

    The Space Surveillance Catalog is a database of all Resident Space Objects (RSOs) on Earth orbit. It is expected to grow in the future as more RSOs accumulate on orbit. Potentially still more dramatic growth could follow the deployment of the Space Based Infrared System Low Earth Orbit Component (SBTRS Low). SBIRS Low, currently about to enter development, offers the potential to detect and acquire much smaller debris RSOs than can be seen by the current ground-based Space Surveillance Network (SSN). SBIRS Low will host multicolor infrared/visible sensors on each satellite in a proliferated constellation on low Earth orbit, and if appropriately tasked, these sensors could provide significant space surveillance capability. Catalog growth during SBIRS Low deployment was analyzed using a highly aggregated code that numerically integrates the Markov equations governing the state transitions of RSOs from uncataloged to cataloged, and back again. It was assumed that all newly observed debris RSOs will be detected as by-products of routine Catalog maintenance, not including any post breakup searches, and if sufficient sensor resources are available, be acquired into the Catalog. Debris over the entire low to high altitude regime were considered.

  3. Thermal energy storage using phase change materials fundamentals and applications

    CERN Document Server

    Fleischer, Amy S

    2015-01-01

    This book presents a comprehensive introduction to the use of solid‐liquid phase change materials to store significant amounts of energy in the latent heat of fusion. The proper selection of materials for different applications is covered in detail, as is the use of high conductivity additives to enhance thermal diffusivity. Dr. Fleischer explores how applications of PCMS have expanded over the past 10 years to include the development of high efficiency building materials to reduce heating and cooling needs, smart material design for clothing, portable electronic systems thermal management, solar thermal power plant design and many others. Additional future research directions and challenges are also discussed.

  4. Nanocomposite Textiles as Lightweight, Low-Volume Deployable Antenna Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR program will result in the application and characterization of highly conductive, inexpensive, nanostructured textiles and composites for ultra...

  5. Composite Overwrapped Pressure Vessels (COPV) Monitoring System Using Fiber, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems Corporation (IFOS) proposes, in this Phase 1 SBIR project, to demonstrate the feasibility of innovations based on an...

  6. Multilayer Pressure Vessel Materials Testing and Analysis. Phase 1

    Science.gov (United States)

    Cardinal, Joseph W.; Popelar, Carl F.; Page, Richard A.

    2014-01-01

    To provide NASA a comprehensive suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for aging multilayer pressure vessels, Southwest Research Institute (R) (SwRI) was contracted in two phases to obtain relevant material property data from a representative vessel. This report describes Phase 1 of this effort which includes a preliminary material property assessment as well as a fractographic, fracture mechanics and fatigue crack growth analyses of an induced flaw in the outer shell of a representative multilayer vessel that was subjected to cyclic pressure test. SwRI performed this Phase 1 effort under contract to the Digital Wave Corporation in support of their contract to Jacobs ATOM for the NASA Ames Research Center.

  7. Subthreshold electrical transport in amorphous phase-change materials

    International Nuclear Information System (INIS)

    Gallo, Manuel Le; Kaes, Matthias; Sebastian, Abu; Krebs, Daniel

    2015-01-01

    Chalcogenide-based phase-change materials play a prominent role in information technology. In spite of decades of research, the details of electrical transport in these materials are still debated. In this article, we present a unified model based on multiple-trapping transport together with 3D Poole–Frenkel emission from a two-center Coulomb potential. With this model, we are able to explain electrical transport both in as-deposited phase-change material thin films, similar to experimental conditions in early work dating back to the 1970s, and in melt-quenched phase-change materials in nanometer-scale phase-change memory devices typically used in recent studies. Experimental measurements on two widely different device platforms show remarkable agreement with the proposed mechanism over a wide range of temperatures and electric fields. In addition, the proposed model is able to seamlessly capture the temporal evolution of the transport properties of the melt-quenched phase upon structural relaxation. (paper)

  8. Recent Advances on Neuromorphic Systems Using Phase-Change Materials

    Science.gov (United States)

    Wang, Lei; Lu, Shu-Ren; Wen, Jing

    2017-05-01

    Realization of brain-like computer has always been human's ultimate dream. Today, the possibility of having this dream come true has been significantly boosted due to the advent of several emerging non-volatile memory devices. Within these innovative technologies, phase-change memory device has been commonly regarded as the most promising candidate to imitate the biological brain, owing to its excellent scalability, fast switching speed, and low energy consumption. In this context, a detailed review concerning the physical principles of the neuromorphic circuit using phase-change materials as well as a comprehensive introduction of the currently available phase-change neuromorphic prototypes becomes imperative for scientists to continuously progress the technology of artificial neural networks. In this paper, we first present the biological mechanism of human brain, followed by a brief discussion about physical properties of phase-change materials that recently receive a widespread application on non-volatile memory field. We then survey recent research on different types of neuromorphic circuits using phase-change materials in terms of their respective geometrical architecture and physical schemes to reproduce the biological events of human brain, in particular for spike-time-dependent plasticity. The relevant virtues and limitations of these devices are also evaluated. Finally, the future prospect of the neuromorphic circuit based on phase-change technologies is envisioned.

  9. Recent Advances on Neuromorphic Systems Using Phase-Change Materials.

    Science.gov (United States)

    Wang, Lei; Lu, Shu-Ren; Wen, Jing

    2017-12-01

    Realization of brain-like computer has always been human's ultimate dream. Today, the possibility of having this dream come true has been significantly boosted due to the advent of several emerging non-volatile memory devices. Within these innovative technologies, phase-change memory device has been commonly regarded as the most promising candidate to imitate the biological brain, owing to its excellent scalability, fast switching speed, and low energy consumption. In this context, a detailed review concerning the physical principles of the neuromorphic circuit using phase-change materials as well as a comprehensive introduction of the currently available phase-change neuromorphic prototypes becomes imperative for scientists to continuously progress the technology of artificial neural networks. In this paper, we first present the biological mechanism of human brain, followed by a brief discussion about physical properties of phase-change materials that recently receive a widespread application on non-volatile memory field. We then survey recent research on different types of neuromorphic circuits using phase-change materials in terms of their respective geometrical architecture and physical schemes to reproduce the biological events of human brain, in particular for spike-time-dependent plasticity. The relevant virtues and limitations of these devices are also evaluated. Finally, the future prospect of the neuromorphic circuit based on phase-change technologies is envisioned.

  10. Lightweight Phase-Change Material For Solar Power

    Science.gov (United States)

    Stark, Philip

    1993-01-01

    Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.

  11. Cold storage with phase change material for building ventilation

    OpenAIRE

    Butala, Vincenc; Stritih, Uroš

    2015-01-01

    This paper presents an experimental and numerical analysis of building coolingusing night-time cold accumulation in phase change material (PCM), otherwise known as the "free-cooling" or "passive-cooling" principle. The phase change materials were used in ceilings and floors. The free-cooling principle is explained and some of the types of PCMs suitable for summer cooling are listed. An experiment was conducted using paraffin with a melting point of 22 °C as the PCM to store cold during the ni...

  12. 7 CFR 3403.4 - Three-phase program.

    Science.gov (United States)

    2010-01-01

    ... SBIR Program funds. The purpose of the third phase is to pursue the commercial applications or objectives of the research carried out in Phases I and II through the use of private or Federal non-SBIR... proposals) to conduct feasibility-related experimental research and development related to described agency...

  13. Exploratory model analysis of the Space Based Infrared System (SBIRS) Low Global Scheduler problem

    OpenAIRE

    Morgan, Brian L.

    1999-01-01

    Approved for public release; distribution is unlimited Proliferation of theater ballistic missile technologies to potential U.S. adversaries necessitates that the U.S. employ a defensive system to counter this threat. The system that is being developed is called the Space-Based Infrared System (SBIRS) "System of Systems". The SBIRS Low component of the SBIRS "System of Systems" will track strategic and theater ballistic missiles from launch to reentry and relay necessary cueing data to mis...

  14. Optimization of a phase change material wallboard for building use

    International Nuclear Information System (INIS)

    Kuznik, Frederic; Virgone, Joseph; Noel, Jean

    2008-01-01

    In construction, the use of phase change materials (PCM) allows the storage/release of energy from the solar radiation and/or internal loads. The application of such materials for lightweight construction (e.g., a wood house) makes it possible to improve thermal comfort and reduce energy consumption. A wallboard composed of a new PCM material is investigated in this paper to enhance the thermal behavior of a lightweight internal partition wall. The paper focuses on the optimization of phase change material thickness. The in-house software CODYMUR is used to optimize the PCM wallboard by the means of numerical simulations. The results show that an optimal PCM thickness exists. The optimal PCM thickness value is then calculated for use in construction

  15. Optimization of a phase change material wallboard for building use

    Energy Technology Data Exchange (ETDEWEB)

    Kuznik, Frederic; Virgone, Joseph [Thermal Sciences Center of Lyon, CNRS, UMR 5008, INSA de Lyon, Universite Lyon 1, Bat Freyssinet, 40 Rue des Arts, 69621 Villeurbanne Cedex (France); Noel, Jean [Free-lance Scientific Software Developer, 15 Place Carnot, 69002 Lyon (France)

    2008-08-15

    In construction, the use of phase change materials (PCM) allows the storage/release of energy from the solar radiation and/or internal loads. The application of such materials for lightweight construction (e.g., a wood house) makes it possible to improve thermal comfort and reduce energy consumption. A wallboard composed of a new PCM material is investigated in this paper to enhance the thermal behavior of a lightweight internal partition wall. The paper focuses on the optimization of phase change material thickness. The in-house software CODYMUR is used to optimize the PCM wallboard by the means of numerical simulations. The results show that an optimal PCM thickness exists. The optimal PCM thickness value is then calculated for use in construction. (author)

  16. Intergranular and inter-phased boundaries in the materials

    International Nuclear Information System (INIS)

    Aslanides, A.; Backhaus-Ricoult, M.; Bayle-Guillemaud, P.

    2000-01-01

    This document collects the abstracts of the talks presented during the colloquium J2IM on the intergranular and inter-phased boundaries in the materials. Around the themes of the interfaces behaviour and grain boundaries defects in materials, these days dealt with the microstructure behaviour in many domains such as the interfaces in batteries, the irradiation damages and the special case of the fuel-cladding interactions, the stressed interfaces, the alumina or silicon carbides substrates. (A.L.B.)

  17. Encapsulation of phase change materials using rice-husk-char

    International Nuclear Information System (INIS)

    Gondora, Wayne; Doudin, Khalid; Nowakowski, Daniel J.; Xiao, Bo; Ding, Yulong; Bridgwater, Tony; Yuan, Qingchun

    2016-01-01

    Highlights: • Rice-husk-char particles are successfully used in the encapsulation of phase change materials. • Carbon-based phase change microcapsules aim at using the high thermal conductivity of carbon materials. • Carbon from biomass can be used in low and intermediate heat harvest and storage. • Carbon in biomass is captured and to be used in improving energy efficiency. - Abstract: This paper explored a new approach to prepare phase change microcapsules using carbon-based particles via Pickering emulsions for energy storage applications. Rice-husk-char, a by-product in biofuel production, containing 53.58 wt% of carbon was used as a model carbon-based material to encapsulate hexadecane. As a model phase change material, hexadecane was emulsified in aqueous suspensions of rice-husk-char nanoparticles. Water soluble polymers poly(diallyldimethyl-ammonium chloride) and poly(sodium styrene sulfonate) were used to fix the rice-husk-char nanoparticles on the emulsion droplets through layer-by-layer assembly to enhance the structural stability of the microcapsules. The microcapsules formed are composed of a thin shell encompassing a large core consisting of hexadecane. Thermal gravimetrical and differential scanning calorimeter analyses showed the phase change enthalpy of 80.9 kJ kg"−"1 or 120.0 MJ m"−"3. Design criteria of phase change microcapsules and preparation considerations were discussed in terms of desired applications. This work demonstrated possible utilisations of biomass-originated carbon-based material for thermal energy recovery and storage applications, which can be a new route of carbon capture and utilisation.

  18. State of the art on phase change material slurries

    International Nuclear Information System (INIS)

    Youssef, Ziad; Delahaye, Anthony; Huang Li; Trinquet, François; Fournaison, Laurence; Pollerberg, Clemens; Doetsch, Christian

    2013-01-01

    Highlights: ► A bibliographic study on PCM slurries. ► Clathrate Hydrate slurry, Microencapsulated PCM Slurry, shape-stabilized PCM slurries and Phase Change Material Emulsions. ► Formation, thermo-physical, rheological, heat transfers properties and applications of these four PCS systems. ► The use of thermal energy storage and distribution based on PCM slurries can improve the refrigerating machine performances. - Abstract: The interest in using phase change slurry (PCS) media as thermal storage and heat transfer fluids is increasing and thus leading to an enhancement in the number of articles on the subject. In air-conditioning and refrigeration applications, PCS systems represent a pure benefit resulting in the increase of thermal energy storage capacity, high heat transfer characteristics and positive phase change temperatures which can occur under low pressures. Hence, they allow the increase of energy efficiency and reduce the quantity of thermal fluids. This review describes the formation, thermo-physical, rheological, heat transfer properties and applications of four PCS systems: Clathrate hydrate slurry (CHS), Microencapsulated Phase Change Materials Slurry (MPCMS), shape-stabilized PCM slurries (SPCMSs) and Phase Change Material Emulsions (PCMEs). It regroups a bibliographic summary of important information that can be very helpful when such systems are used. It also gives interesting and valuable insights on the choice of the most suitable PCS media for laboratory and industrial applications.

  19. Phase change materials and the perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kosters, N.D.; Kappers, A.M.L.; Daanen, H.A.M.

    2012-01-01

    Phase change materials (PCMs) are increasingly incorporated in textiles in order to serve as a thermal buffer when humans change from a hot to a cold environment and the reverse. Due to the absence of wetness sensors in the skin, cooling of the skin may be perceived as a sensation of wetness instead

  20. Phase Change Materials and the perception of wetness.

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kappers, A.M.L.; Daanen, H.A.M.

    2012-01-01

    Phase change materials (PCMs) are increasingly incorporated in textiles in order to serve as a thermal buffer when humans change from a hot to a cold environment and the reverse. Due to the absence of wetness sensors in the skin, cooling of the skin may be perceived as a sensation of wetness instead

  1. Performance enhancement of hermetic compressor using phase change materials

    Science.gov (United States)

    Mahmoud, I. M.; Rady, M. A.; Huzayyin, A. S.

    2015-08-01

    The present study is motivated by the need for the research of simple measures for increasing energy efficiency of hermetic compressor. The measure is the application of phase change materials for performance enhancement. The first experimental study should be guide for choice of PCM. It has been performed to investigate the effects of thermostat setting temperature on the performance of hermetic compressor. The effects of thermostat setting temperature with and without load on power consumption have been analyzed. Performance enhancement using phase change materials (PCMs) has been studied by employing a phase change material Rubitherm-42 (RT-42) on the top surface of compressor. Choice of PCM material is based on basic compressor performance measured in the first part of the present study. Experiments have been carried out for different load values and different quantities of PCM. The quantity and phase change characteristic of PCM are essential parameters that determine the percentage of performance enhancement in term of energy consumption. Reduction of energy consumption of about 10% has been achieved in the present study by using PCM. The present study shows that how to reduce the electrical power consumption to enhance compressor heat dissipation method to improve efficiency.

  2. Polymeric compositions incorporating polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  3. Materials Characterization and Microelectronic Implementation of Metal-insulator Transition Materials and Phase Change Materials

    Science.gov (United States)

    2015-03-26

    materials like crystalline semiconductors, graphene , and composites, the materials discussed here could have a significant impact. This thesis investigates...diagnosis [124], crystallinity of pharmaceutical materials [125], materials diagnosis for restoration of paintings [126], and materials research [127...temperature dots and paint were placed on samples on the substrate. Temperature dots are typically used in the transportation of goods such as food in order

  4. Development of Latent Heat Storage Phase Change Material Containing Plaster

    Directory of Open Access Journals (Sweden)

    Diana BAJARE

    2016-05-01

    Full Text Available This paper reviews the development of latent heat storage Phase Change Material (PCM containing plaster as in passive application. Due to the phase change, these materials can store higher amounts of thermal energy than traditional building materials and can be used to add thermal inertia to lightweight constructions. It was shown that the use of PCMs have advantages stabilizing the room temperature variations during summer days, provided sufficient night ventilation is allowed. Another advantage of PCM usage is stabilized indoor temperature on the heating season. The goal of this study is to develop cement and lime based plaster containing microencapsulated PCM. The plaster is expected to be used for passive indoor applications and enhance the thermal properties of building envelope. The plaster was investigated under Scanning Electron Microscope and the mechanical, physical and thermal properties of created plaster samples were determined.

  5. Round-Robin Test of Paraffin Phase-Change Material

    Science.gov (United States)

    Vidi, S.; Mehling, H.; Hemberger, F.; Haussmann, Th.; Laube, A.

    2015-11-01

    A round-robin test between three institutes was performed on a paraffin phase-change material (PCM) in the context of the German quality association for phase-change materials. The aim of the quality association is to define quality and test specifications for PCMs and to award certificates for successfully tested materials. To ensure the reproducibility and comparability of the measurements performed at different institutes using different measuring methods, a round-robin test was performed. The sample was unknown. The four methods used by the three participating institutes in the round-robin test were differential scanning calorimetry, Calvet calorimetry and three-layer calorimetry. Additionally, T-history measurements were made. The aim of the measurements was the determination of the enthalpy as a function of temperature. The results achieved following defined test specifications are in excellent agreement.

  6. High-pressure Raman spectroscopy of phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L. [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States); Zalden, Peter [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Wuttig, Matthias [I. Physikalisches Institut (IA), RWTH Aachen University, 52056 Aachen (Germany); JARA – Fundamentals of Future Information Technology, RWTH Aachen University, 52056 Aachen (Germany); Lindenberg, Aaron M. [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, PULSE Institute, Menlo Park, California 94025 (United States)

    2013-11-04

    We used high-pressure Raman spectroscopy to study the evolution of vibrational frequencies of the phase change materials (PCMs) Ge{sub 2}Sb{sub 2}Te{sub 5}, GeSb{sub 2}Te{sub 4}, and SnSb{sub 2}Te{sub 4}. We found that the critical pressure for triggering amorphization in the PCMs decreases with increasing vacancy concentration, demonstrating that the presence of vacancies, rather than differences in the atomic covalent radii, is crucial for pressure-induced amorphization in PCMs. Compared to the as-deposited amorphous phase, the pressure-induced amorphous phase has a similar vibrational spectrum but requires much lower laser power to transform into the crystalline phase, suggesting different kinetics of crystallization, which may have implications for applications of PCMs in non-volatile data storage.

  7. Materials research for passive solar systems: Solid-state phase-change materials

    Science.gov (United States)

    Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.

  8. Highly tilted liquid crystalline materials possessing a direct phase transition from antiferroelectric to isotropic phase

    Energy Technology Data Exchange (ETDEWEB)

    Milewska, K.; Drzewiński, W. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Czerwiński, M., E-mail: mczerwinski@wat.edu.pl [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Dąbrowski, R. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Piecek, W. [Institute of Applied Physics, Military University of Technology, 00-908 Warsaw (Poland)

    2016-03-01

    Pure compounds and multicomponent mixtures with a broad temperature range of high tilted liquid crystalline antiferroelectric phase and a direct phase transition from antiferroelectric to isotropic phase, were obtained. X-ray diffraction analysis confirms these kinds of materials form a high tilted anticlinic phase, with a fixed layer spacing and very weak dependency upon temperature, after the transition from the isotropic phase. Due to this, not only pure orthoconic antiferroelectric liquid crystals but also those with a moderate tilt should generate a good dark state. Furthermore, due to the increased potential for forming anticlinic forces, such materials could minimize a commonly observed asymmetry of a rise and fall switching times at a surface stabilized geometry. - Highlights: • The new class of liquid crystalline materials with the direct SmC{sub A}*. • Iso phase transition were obtained. • Materials possess the layer spacing fixed and very weak dependent upon temperature. • Smectic layers without shrinkage are observed. • A good dark state can be generate in SSAFLC.

  9. Solid State MEMS Thrusters Using Electrically Controlled Extinguishable Solid Propellant, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ET Materials, LLC developed the first ever electrically controlled extinguishable solid propellant (ECESP). The original propellant developed under Air Force SBIR...

  10. Novel Solar Cell Nanotechnology for Improved Efficiency and Radiation Hardness, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Significant improvements in photovoltaic materials and systems are required to enable future exploration missions. This SBIR project, involving two innovative...

  11. Vibration damping and heat transfer using material phase changes

    Science.gov (United States)

    Kloucek, Petr (Inventor); Reynolds, Daniel R. (Inventor)

    2009-01-01

    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  12. Vibration damping and heat transfer using material phase changes

    Science.gov (United States)

    Kloucek, Petr [Houston, TX; Reynolds, Daniel R [Oakland, CA

    2009-03-24

    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  13. Disorder-induced localization in crystalline phase-change materials.

    Science.gov (United States)

    Siegrist, T; Jost, P; Volker, H; Woda, M; Merkelbach, P; Schlockermann, C; Wuttig, M

    2011-03-01

    Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.

  14. SBIR Advanced Technologies in Aviation and Air Transportation System 2016

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.; Kaszeta, Richard W.; Gold, Calman; Corke, Thomas C.; McGowan, Ryan; Matlis, Eric; Eichenlaub, Jesse; Davis, Joshua T.; Shah, Parthiv N.

    2017-01-01

    This report is intended to provide a broad knowledge of various topics associated with NASA's Aeronautics Research Mission Directorate (ARMD), with particular interest on the NASA SBIR contracts awarded from 2011-2012 executed by small companies. The content of this report focuses on the high-quality, cutting-edge research that will lead to revolutionary concepts, technologies, and capabilities that enable radical change to both the airspace system and the aircraft that fly within it, facilitating a safer, more environmentally friendly, and more efficient air transportation system.

  15. Tapping into a Billion Dollar Resource, SBIR/STTR

    Science.gov (United States)

    Mexcur, Paul; Kalshoven, James

    2002-10-01

    This presentation provides an overview of the Small Business Innovation Research (SBIR) and the Small Business Technology Transfer (STTR) Programs as implemented by the National Aeronautics and Space Administration (NASA). These programs, as mandated by Congress, provide an opportunity for small, high technology companies and research institutions to participate in Government sponsored research and development (R&D) efforts in key technology areas. This presentation describes the background and operation of these two programs and discusses what factors a business should consider in making the decision to participate.

  16. Dual phase magnetic material component and method of forming

    Science.gov (United States)

    Dial, Laura Cerully; DiDomizio, Richard; Johnson, Francis

    2017-04-25

    A magnetic component having intermixed first and second regions, and a method of preparing that magnetic component are disclosed. The first region includes a magnetic phase and the second region includes a non-magnetic phase. The method includes mechanically masking pre-selected sections of a surface portion of the component by using a nitrogen stop-off material and heat-treating the component in a nitrogen-rich atmosphere at a temperature greater than about 900.degree. C. Both the first and second regions are substantially free of carbon, or contain only limited amounts of carbon; and the second region includes greater than about 0.1 weight % of nitrogen.

  17. Characterization of Concrete Mixes Containing Phase Change Materials

    Science.gov (United States)

    Paksoy, H.; Kardas, G.; Konuklu, Y.; Cellat, K.; Tezcan, F.

    2017-10-01

    Phase change materials (PCM) can be used in passive building applications to achieve near zero energy building goals. For this purpose PCM can be added in building structures and materials in different forms. Direct incorporation, form stabilization and microencapsulation are different forms used for PCM integration in building materials. In addition to thermal properties of PCM itself, there are several other criteria that need to be fulfilled for the PCM enhanced building materials. Mechanical properties, corrosive effects, morphology and thermal buffering have to be determined for reliable and long-term applications in buildings. This paper aims to give an overview of characterization methods used to determine these properties in PCM added fresh concrete mixes. Thermal, compressive strength, corrosion, and microscopic test results for concrete mixes with PCM are discussed.

  18. 77 FR 30227 - Small Business Size Regulations, Small Business Innovation Research (SBIR) Program and Small...

    Science.gov (United States)

    2012-05-22

    ... Business Size Regulations, Small Business Innovation Research (SBIR) Program and Small Business Technology... public Webinar and Roundtable Meetings regarding its proposal to amend its regulations governing size and eligibility for the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR...

  19. 48 CFR 227.7104 - Contracts under the Small Business Innovation Research (SBIR) Program.

    Science.gov (United States)

    2010-10-01

    ... Business Innovation Research (SBIR) Program. 227.7104 Section 227.7104 Federal Acquisition Regulations... Data and Computer Software—Small Business Innovation Research (SBIR) Program, when technical data or... PATENTS, DATA, AND COPYRIGHTS Rights in Technical Data 227.7104 Contracts under the Small Business...

  20. 48 CFR 52.227-20 - Rights in Data-SBIR Program.

    Science.gov (United States)

    2010-10-01

    ... means recorded information (regardless of the form or method of the recording) of a scientific or... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Rights in Data-SBIR....227-20 Rights in Data—SBIR Program. As prescribed in 27.409(h), insert the following clause: Rights in...

  1. Portable Thermoelectric Power Generator Coupled with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Lim Chong C.

    2014-07-01

    Full Text Available Solar is the intermittent source of renewable energy and all thermal solar systems having a setback on non-functioning during the night and cloudy environment. This paper presents alternative solution for power generation using thermoelectric which is the direct conversion of temperature gradient of hot side and cold side of thermoelectric material to electric voltage. Phase change material with latent heat effect would help to prolong the temperature gradient across thermoelectric material for power generation. Besides, the concept of portability will enable different power source like solar, wasted heat from air conditioner, refrigerator, stove etc, i.e. to create temperature different on thermoelectric material for power generation. Furthermore, thermoelectric will generate direct current which is used by all the gadgets like Smartphone, tablet, laptop etc. The portable concept of renewable energy will encourage the direct usage of renewable energy for portable gadgets. The working principle and design of portable thermoelectric power generator coupled with phase change material is presented in this paper.

  2. Phase field modeling of rapid crystallization in the phase-change material AIST

    Science.gov (United States)

    Tabatabaei, Fatemeh; Boussinot, Guillaume; Spatschek, Robert; Brener, Efim A.; Apel, Markus

    2017-07-01

    We carry out phase field modeling as a continuum simulation technique in order to study rapid crystallization processes in the phase-change material AIST (Ag4In3Sb67Te26). In particular, we simulate the spatio-temporal evolution of the crystallization of a molten area of the phase-change material embedded in a layer stack. The simulation model is adapted to the experimental conditions used for recent measurements of crystallization rates by a laser pulse technique. Simulations are performed for substrate temperatures close to the melting temperature of AIST down to low temperatures when an amorphous state is involved. The design of the phase field model using the thin interface limit allows us to retrieve the two limiting regimes of interface controlled (low temperatures) and thermal transport controlled (high temperatures) dynamics. Our simulations show that, generically, the crystallization velocity presents a maximum in the intermediate regime where both the interface mobility and the thermal transport, through the molten area as well as through the layer stack, are important. Simulations reveal the complex interplay of all different contributions. This suggests that the maximum switching velocity depends not only on material properties but also on the precise design of the thin film structure into which the phase-change material is embedded.

  3. The role of phase change materials for the sustainable energy

    Directory of Open Access Journals (Sweden)

    Kuta Marta

    2016-01-01

    Full Text Available Unceasing global economic development leads to continuous increase of energy demand. Considering the limited conventional resources of energy as well as impact on the environment associated with its use, it is important to focus on the rational management of energy resources and on supporting the development of new technologies related to both conventional and renewable energy resources. In a number of cases the use of phase change materials (PCMs turns out to be a reasonable solution. This paper contains a summary of well-studied and known, previously used solutions based on phase change materials as well as novel possibilities, which are under development. It has been decided to investigate this topic due to the wide range of highly effective solutions. The review is focused on selected applications of PCMs for technologies which are designed to improve energy efficiency and on PCMs used in technologies based on renewable energy sources.

  4. Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials.

    Science.gov (United States)

    Zhu, Zhihua; Evans, Philip G; Haglund, Richard F; Valentine, Jason G

    2017-08-09

    Mastering dynamic free-space spectral control and modulation in the near-infrared (NIR) and optical regimes remains a challenging task that is hindered by the available functional materials at high frequencies. In this work, we have realized an efficient metadevice capable of spectral control by minimizing the thermal mass of a vanadium dioxide phase-change material (PCM) and placing the PCM at the feed gap of a bow-tie field antenna. The device has an experimentally measured tuning range of up to 360 nm in the NIR and a modulation depth of 33% at the resonant wavelength. The metadevice is configured for integrated and local heating, leading to faster switching and more precise spatial control compared with devices based on phase-change thin films. We envisage that the combined advantages of this device will open new opportunities for signal processing, memory, security, and holography at optical frequencies.

  5. Microencapsulated Phase-Change Materials For Storage Of Heat

    Science.gov (United States)

    Colvin, David P.

    1989-01-01

    Report describes research on engineering issues related to storage and transport of heat in slurries containing phase-change materials in microscopic capsules. Specific goal of project to develop lightweight, compact, heat-management systems used safely in inhabited areas of spacecraft. Further development of obvious potential of technology expected to lead to commercialization and use in aircraft, electronic equipment, machinery, industrial processes, and other sytems in which requirements for management of heat compete with severe restrictions on weight or volume.

  6. Artefacts in geometric phase analysis of compound materials.

    Science.gov (United States)

    Peters, Jonathan J P; Beanland, Richard; Alexe, Marin; Cockburn, John W; Revin, Dmitry G; Zhang, Shiyong Y; Sanchez, Ana M

    2015-10-01

    The geometric phase analysis (GPA) algorithm is known as a robust and straightforward technique that can be used to measure lattice strains in high resolution transmission electron microscope (TEM) images. It is also attractive for analysis of aberration-corrected scanning TEM (ac-STEM) images that resolve every atom column, since it uses Fourier transforms and does not require real-space peak detection and assignment to appropriate sublattices. Here it is demonstrated that, in ac-STEM images of compound materials with compositionally distinct atom columns, an additional geometric phase is present in the Fourier transform. If the structure changes from one area to another in the image (e.g. across an interface), the change in this additional phase will appear as a strain in conventional GPA, even if there is no lattice strain. Strategies to avoid this pitfall are outlined. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Reconfigurable optical manipulation by phase change material waveguides.

    Science.gov (United States)

    Zhang, Tianhang; Mei, Shengtao; Wang, Qian; Liu, Hong; Lim, Chwee Teck; Teng, Jinghua

    2017-05-25

    Optical manipulation by dielectric waveguides enables the transportation of particles and biomolecules beyond diffraction limits. However, traditional dielectric waveguides could only transport objects in the forward direction which does not fulfill the requirements of the next generation lab-on-chip system where the integrated manipulation system should be much more flexible and multifunctional. In this work, bidirectional transportation of objects on the nanoscale is demonstrated on a rectangular waveguide made of the phase change material Ge 2 Sb 2 Te 5 (GST) by numerical simulations. Either continuous pushing forces or pulling forces are generated on the trapped particles when the GST is in the amorphous or crystalline phase. With the technique of a femtosecond laser induced phase transition on the GST, we further proposed a reconfigurable optical trap array on the same waveguide. This work demonstrates GST waveguide's potential of achieving multifunctional manipulation of multiple objects on the nanoscale with plausible optical setups.

  8. Phase change - memory materials - composition, structure, and properties

    Czech Academy of Sciences Publication Activity Database

    Frumar, M.; Frumarová, Božena; Wágner, T.; Hrdlička, M.

    2007-01-01

    Roč. 18, suppl.1 (2007), S169-S174 ISSN 0957-4522. [International Conference on Optical and Optoelectronic Properties of Materials and Applications 2006. Darwin, 16.06.2006-20.06.2006] R&D Projects: GA ČR GA203/06/0627 Institutional research plan: CEZ:AV0Z40500505 Keywords : phase change memory Subject RIV: CA - Inorganic Chemistry Impact factor: 0.947, year: 2007

  9. Two-phase materials for high-temperature service

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2000-09-01

    Full Text Available load is carried by the g phase, which is a ductile material; at high temperatures the g phase is weak, and 0966-9795/00/$ - see front matter #2000 Elsevier Science Ltd. All rights reserved. PII: S0966-9795(00)00030-3 Intermetallics 8 (2000) 979?985 www...-temperature phase of ZrO2 containing 4.5 mol% per cent Y2O3 has the cubic ?uorite structure. A 980 F.R.N. Nabarro / Intermetallics 8 (2000) 979?985 face-centred cube of Zr atoms, with 4 Zr atoms in the unit cell, contains a simple cube of 8 O-atoms. On cooling...

  10. Flexible composite material with phase change thermal storage

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  11. Controllable biomimetic adhesion using embedded phase change material

    International Nuclear Information System (INIS)

    Krahn, J; Sameoto, D; Menon, C

    2011-01-01

    In many cases, such as in the instance of climbing robots or temporary adhesives, there is the need to be able to dynamically control the level of adhesion a biomimetic dry adhesive can provide. In this study, the effect of changing the backing layer stiffness of a dry adhesive is examined. Embedding a phase change material within the backing of a synthetic dry adhesive sheet allows the stiffness to be tailored at different points of a preload and adhesion cycle. Larger contact areas and more equal load sharing between adhesive fibres can be achieved by increasing the backing layer stiffness after initial deformation when the adhesive backing is loaded in its softened state. Adhesion behaviour is examined when the backing layer is maintained in solid and softened phases during complete load cycles and for load cycles under the condition of contact with the softened phase backing followed by pull-off during the solid phase. Absolute adhesion force is increased for trials in which a soft backing layer hardens prior to pull-off. This effect is due to the increased contact area made between the rounded probe and the softened material during preloading and the more equal load sharing condition during pull-off when the backing layer becomes stiff again

  12. Molecular simulation of capillary phase transitions in flexible porous materials

    Science.gov (United States)

    Shen, Vincent K.; Siderius, Daniel W.; Mahynski, Nathan A.

    2018-03-01

    We used flat-histogram sampling Monte Carlo to study capillary phase transitions in deformable adsorbent materials. Specifically, we considered a pure adsorbate fluid below its bulk critical temperature within a slit pore of variable pore width. The instantaneous pore width is dictated by a number of factors, such as adsorbate loading, reservoir pressure, fluid-wall interaction, and bare adsorbent properties. In the slit pores studied here, the bare adsorbent free energy was assumed to be biparabolic, consisting of two preferential pore configurations, namely, the narrow pore and the large pore configurations. Four distinct phases could be found in the adsorption isotherms. We found a low-pressure phase transition, driven primarily by capillary condensation/evaporation and accompanied by adsorbent deformation in response. The deformation can be a relatively small contraction/expansion as seen in elastic materials, or a large-scale structural transformation of the adsorbent. We also found a high-pressure transition driven by excluded volume effects, which tends to expand the material and thus results in a large-scale structural transformation of the adsorbent. The adsorption isotherms and osmotic free energies can be rationalized by considering the relative free energy differences between the basins of the bare adsorbent free energy.

  13. A phenomenological approach of solidification of polymeric phase change materials

    Science.gov (United States)

    Bahrani, Seyed Amir; Royon, Laurent; Abou, Bérengère; Osipian, Rémy; Azzouz, Kamel; Bontemps, André

    2017-01-01

    Phase Change Materials (PCMs) are widely used in thermal energy storage and thermal management systems due to their small volume for a given stored energy and their capability for maintaining nearly constant temperatures. However, their performance is limited by their low thermal conductivity and possible leaks while in the liquid phase. One solution is to imprison the PCM inside a polymer mesh to create a Polymeric Phase Change Material (PPCM). In this work, we have studied the cooling and solidification of five PPCMs with different PCMs and polymer fractions. To understand the heat transfer mechanisms involved, we have carried out micro- and macrorheological measurements in which Brownian motion of tracers embedded in PPCMs has been depicted and viscoelastic moduli have been measured, respectively. Beyond a given polymer concentration, it was shown that the Brownian motion of the tracers is limited by the polymeric chains and that the material exhibits an elastic behavior. This would suggest that heat transfer essentially occurs by conduction, instead of convection. Experiments were conducted to measure temperature variation during cooling of the five samples, and a semi-empirical model based on a phenomenological approach was proposed as a practical tool to choose and size PPCMs.

  14. Phase diagrams of superconducting materials: Metallurgy, fabrication, and applications

    International Nuclear Information System (INIS)

    Flukiger, R.

    1981-01-01

    Because a large number of investigations on superconducting material have been made on insufficiently characterized samples, and with temperature phase diagrams which contained serious errors, phase diagrams are studied. It is seen that the variation of critical temperature as a function of chemical composition for a given compound can be used as a supplementary tool in determining composition with greater accuracy. The consequent search for higher critical temperature value in specified materials has led to a new concept in determining high temperature phase diagrams. Most of this paper is devoted to the study of bulk binary, pseudobinary, or ternary superconductors at their equilibrium state. As will be shown in several cases, these data serve as standard values and are of great help in understanding the superconducting behavior in materials produced by non-equilibrium methods, i.e., splat-cooling, thin film preparation by either sputtering, co-evaporation, or CVD, and diffusion processes in multifilamentary composite wires. An example for the departure from thermal equilibrium is the retention of metastable composition by a fast quenching rate

  15. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase.

    Science.gov (United States)

    Jeyasingh, Rakesh; Fong, Scott W; Lee, Jaeho; Li, Zijian; Chang, Kuo-Wei; Mantegazza, Davide; Asheghi, Mehdi; Goodson, Kenneth E; Wong, H-S Philip

    2014-06-11

    Phase change materials are widely considered for application in nonvolatile memories because of their ability to achieve phase transformation in the nanosecond time scale. However, the knowledge of fast crystallization dynamics in these materials is limited because of the lack of fast and accurate temperature control methods. In this work, we have developed an experimental methodology that enables ultrafast characterization of phase-change dynamics on a more technologically relevant melt-quenched amorphous phase using practical device structures. We have extracted the crystallization growth velocity (U) in a functional capped phase change memory (PCM) device over 8 orders of magnitude (10(-10) 10(8) K/s), which reveals the extreme fragility of Ge2Sb2Te5 in its supercooled liquid phase. Furthermore, these crystallization properties were studied as a function of device programming cycles, and the results show degradation in the cell retention properties due to elemental segregation. The above experiments are enabled by the use of an on-chip fast heater and thermometer called as microthermal stage (MTS) integrated with a vertical phase change memory (PCM) cell. The temperature at the PCM layer can be controlled up to 600 K using MTS and with a thermal time constant of 800 ns, leading to heating rates ∼10(8) K/s that are close to the typical device operating conditions during PCM programming. The MTS allows us to independently control the electrical and thermal aspects of phase transformation (inseparable in a conventional PCM cell) and extract the temperature dependence of key material properties in real PCM devices.

  16. Phase change materials and the perception of wetness.

    Science.gov (United States)

    Tiest, Wouter M Bergmann; Kosters, N Dolfine; Kappers, Astrid M L; Daanen, Hein A M

    2012-01-01

    Phase change materials (PCMs) are increasingly incorporated in textiles in order to serve as a thermal buffer when humans change from a hot to a cold environment and the reverse. Due to the absence of wetness sensors in the skin, cooling of the skin may be perceived as a sensation of wetness instead of cold. In order to investigate if this phenomenon occurs when manipulating textiles, nine subjects were asked to touch or manipulate PCM-treated and untreated fabrics. In 75% of the cases, the subjects indicated that the treated material felt wetter than the untreated material independent of the way the textiles were manipulated. We conclude that incorporating PCMs in textiles may lead to a feeling of wetness which might be uncomfortable. Therefore, we recommend investigating a change in cooling properties to minimise this feeling. This article describes a psychophysical experiment into the sensation of wetness of textiles treated with phase change materials. It was found that in 75% of the cases, subjects found the treated fabric to feel wetter than the untreated. This may affect the comfort of wearing clothes made of these textiles.

  17. Large area nuclear particle detectors using ET materials

    International Nuclear Information System (INIS)

    1987-08-01

    The purpose of this SBIR Phase 1 feasibility effort was to demonstrate the usefulness of Quantex electron-trapping (ET) materials for spatial detection of nuclear particles over large areas. This demonstration entailed evaluating the prompt visible scintillation as nuclear particles impinged on films of ET materials, and subsequently detecting the nuclear particle impingement information pattern stored in the ET material, by means of the visible-wavelength luminescence produced by near-infrared interrogation. Readily useful levels of scintillation and luminescence outputs are demonstrated

  18. Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems

    International Nuclear Information System (INIS)

    Islam, M.M.; Pandey, A.K.; Hasanuzzaman, M.; Rahim, N.A.

    2016-01-01

    Highlights: • Broad summary of phase change materials based cooling for photovoltaic modules. • Compendium on phase change materials that are mostly used in photovoltaic systems. • Extension of heat availability period by 75–100% with phase change material. • Heat storage potential improves by 33–50% more with phase change material. • Future trend and move in photovoltaic thermal research. - Abstract: This communication lays out an appraisal on the recent works of phase change materials based thermal management techniques for photovoltaic systems with special focus on the so called photovoltaic thermal-phase change material system. Attempt has also been made to draw wide-ranging classification of both photovoltaic and photovoltaic thermal systems and their conventional cooling or heat harvesting methods developed so far so that feasible phase change materials application area in these systems can be pointed out. In addition, a brief literature on phase change materials with particular focus on their solar application has also been presented. Overview of the researches and studies establish that using phase change materials for photovoltaic thermal control is technically viable if some issues like thermal conductivity or phase stability are properly addressed. The photovoltaic thermal-phase change material systems are found to offer 33% (maximum 50%) more heat storage potential than the conventional photovoltaic-thermal water system and that with 75–100% extended heat availability period and around 9% escalation in output. Reduction in temperature attained with photovoltaic thermal-phase change material system is better than that with regular photovoltaic-thermal water system, too. Studies also show the potential of another emerging technology of photovoltaic thermal-microencapsulated phase change material system that makes use of microencapsulated phase change materials in thermal regulation. Future focus areas on photovoltaic thermal-phase change

  19. Polymer Derived Yttrium Silicate Ablative TPS Materials for Next-Generation Exploration Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Through the proposed NASA SBIR program, NanoSonic will optimize its HybridSil® derived yttrium silicates to serve as next-generation reinforcement for carbon and...

  20. Phase analysis of nano-phase materials using selected area electron diffraction in the TEM

    International Nuclear Information System (INIS)

    Labar, J. L.

    2002-01-01

    In analogy to X-ray power diffraction (XRD), we are developing a method to help phase identification when examining a large number of grains simultaneously by electron diffraction. Although XRD is well established, it can not be used for small quantities of materials (volumes below 1 mm 3 ). Examining a usual TEM sample with thickness of 100 nm and using a selected area of 1 mm in diameter, the selected area electron diffraction pattern (SAED) carries information about several thousands of grains from a material with an average grain size of about 10 nm. The accuracy of XRD can not be attained by electron diffraction (ED). However, simultaneous visual observation of the nanostructure is an additional benefit of TEM (beside the small amount of needed material). The first step of the development project was the development of a computer program ('ProcessDiffraction') that processes digital versions of SAED patterns and presents them in an XRD-like form (intensity vs. scattering vector). In the present version (V2.0.3) phase identification is carried out by comparing the measured distribution to 'Markers', i.e. data of known phases. XRD data cards are used if the detailed structure of a phase is not known. Kinematic electron diffraction intensities are calculated for phases with known atomic positions (Author)

  1. Phase change thermal control materials, method and apparatus

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  2. Sb-Te Phase-change Materials under Nanoscale Confinement

    Science.gov (United States)

    Ihalawela, Chandrasiri A.

    Size, speed and efficiency are the major challenges of next generation nonvolatile memory (NVM), and phase-change memory (PCM) has captured a great attention due to its promising features. The key for PCM is rapid and reversible switching between amorphous and crystalline phases with optical or electrical excitation. The structural transition is associated with significant contrast in material properties which can be utilized in optical (CD, DVD, BD) and electronic (PCRAM) memory applications. Importantly, both the functionality and the success of PCM technology significantly depend on the core material and its properties. So investigating PC materials is crucial for the development of PCM technology to realized enhanced solutions. In regards to PC materials, Sb-Te binary plays a significant role as a basis to the well-known Ge-Sb-Te system. Unlike the conventional deposition methods (sputtering, evaporation), electrochemical deposition method is used due to its multiple advantages, such as conformality, via filling capability, etc. First, the controllable synthesis of Sb-Te thin films was studied for a wide range of compositions using this novel deposition method. Secondly, the solid electrolytic nature of stoichiometric Sb2Te3 was studied with respect to precious metals. With the understanding of 2D thin film synthesis, Sb-Te 1D nanowires (18 - 220 nm) were synthesized using templated electrodeposition, where nanoporous anodic aluminum oxide (AAO) was used as a template for the growth of nanowires. In order to gain the controllability over the deposition in high aspect ratio structures, growth mechanisms of both the thin films and nanowires were investigated. Systematic understanding gained thorough previous studies helped to formulate the ultimate goal of this dissertation. In this dissertation, the main objective is to understand the size effect of PC materials on their phase transition properties. The reduction of effective memory cell size in conjunction with

  3. Microencapsulated Phase Change Composite Materials for Energy Efficient Buildings

    Science.gov (United States)

    Thiele, Alexander

    This study aims to elucidate how phase change material (PCM)-composite materials can be leveraged to reduce the energy consumption of buildings and to provide cost savings to ratepayers. Phase change materials (PCMs) can store thermal energy in the form of latent heat when subjected to temperatures exceeding their melting point by undergoing a phase transition from solid to liquid state. Reversibly, PCMs can release this thermal energy when the system temperature falls below their solidification point. The goal in implementing composite PCM walls is to significantly reduce and time-shift the maximum thermal load on the building in order to reduce and smooth out the electricity demand for heating and cooling. This Ph.D. thesis aims to develop a set of thermal design methods and tools for exploring the use of PCM-composite building envelopes and for providing design rules for their practical implementation. First, detailed numerical simulations were used to show that the effective thermal conductivity of core-shell-matrix composites depended only on the volume fraction and thermal conductivity of the constituent materials. The effective medium approximation reported by Felske (2004) was in very good agreement with numerical predictions of the effective thermal conductivity. Second, a carefully validated transient thermal model was used to simulate microencapsulated PCM-composite walls subjected to diurnal or annual outdoor temperature and solar radiation flux. It was established that adding microencapsulated PCM to concrete walls both substantially reduced and delayed the thermal load on the building. Several design rules were established, most notably, (i) increasing the volume fraction of microencapsulated PCM within the wall increases the energy savings but at the potential expense of mechanical properties [1], (ii) the phase change temperature leading to the maximum energy and cost savings should equal the desired indoor temperature regardless of the climate

  4. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  5. Artefacts in geometric phase analysis of compound materials

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Jonathan J.P., E-mail: j.j.p.peters@warwick.ac.uk [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Beanland, Richard; Alexe, Marin [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Cockburn, John W.; Revin, Dmitry G.; Zhang, Shiyong Y. [Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Sanchez, Ana M., E-mail: a.m.sanchez@warwick.ac.uk [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom)

    2015-10-15

    The geometric phase analysis (GPA) algorithm is known as a robust and straightforward technique that can be used to measure lattice strains in high resolution transmission electron microscope (TEM) images. It is also attractive for analysis of aberration-corrected scanning TEM (ac-STEM) images that resolve every atom column, since it uses Fourier transforms and does not require real-space peak detection and assignment to appropriate sublattices. Here it is demonstrated that, in ac-STEM images of compound materials with compositionally distinct atom columns, an additional geometric phase is present in the Fourier transform. If the structure changes from one area to another in the image (e.g. across an interface), the change in this additional phase will appear as a strain in conventional GPA, even if there is no lattice strain. Strategies to avoid this pitfall are outlined. - Highlights: • GPA is shown to produce incorrect strains when applied to images of compound materials. • A mathematical description is laid out for why GPA can produce artefacts. • The artefact is demonstrated using experimental and simulated data. • A ‘rule’ is set to avoid this artefact in GPA.

  6. Effect of phase change material on the heat transfer rate of different building materials

    Science.gov (United States)

    Hasan, Mushfiq; Alam, Shahnur; Ahmed, Dewan Hasan

    2017-12-01

    Phase change material (PCM) is widely known as latent heat storage. A comprehensive study is carried out to investigate the effect of PCM on heat transfer rate of building materials. Paraffin is used as PCM along with different conventional building materials to investigate the heat transfer rate from the heated region to the cold region. PCM is placed along with the three different types of building materials like plaster which is well know building material in urban areas and wood and straw which are commonly used in rural areas for roofing as well as wall panel material and investigated the heat transfer rate. An experimental setup was constructed with number of rectangular shape aluminum detachable casing (as cavity) and placed side by side. Series of rectangular cavity filled with convent ional building materials and PCM and these were placed in between two chambers filled with water at different temperature. Building materials and PCM were placed in different cavities with different combinations and investigated the heat transfer rate. The results show that using the PCM along with other building materials can be used to maintain lower temperature at the inner wall and chamber of the cold region. Moreover, the placement or orientation of the building materials and PCM make significant contribution to heat transfer rate from the heated zone to the cold zone.

  7. Study of Phase Change Materials Applied to CPV Receivers

    Directory of Open Access Journals (Sweden)

    Zun-Hao Shih

    2015-01-01

    Full Text Available There are lots of factors which can directly affect output efficiency of photovoltaic device. One of them is high temperature which would cause adverse effect to solar cell. When solar cell is operated in high temperature, the cell’s output efficiency will become low. Therefore, improving thermal spreading of solar cell is an important issue. In this study, we focused on finding new materials to enhance the thermal dispreading and keep the temperature of solar cell as low as possible. The new materials are different from conventional metal ones; they are called “phase change materials (PCMs” which are mainly applied to green buildings. We chose two kinds of PSMs to study their thermal dispreading ability and to compare them with traditional aluminum material. These two kinds of PCMs are wax and lauric acid. We made three aluminum-based cuboids as heat sinking units and two of them were designed with hollow space to fill in the PCMs. We applied electric forward bias on solar cells to simulate the heat contributed from the concentrated sunlight. Then we observed the thermal distribution of these three kinds of thermal spreading materials. Two levels of forward biases were chosen to test the samples and analyze the experiment results.

  8. Enhanced laminated composite phase change material for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Darkwa, J.; Zhou, T. [Centre for Sustainable Energy Technologies (CSET), The University of Nottingham Ningbo, 199 Taikang East Road, Ningbo 315100 (China)

    2011-02-15

    This paper summarises studies undertaken towards the development of a laminated composite aluminium/hexadecane phase change material (PCM) drywall based on previous analytical work. The study also covered the selection and testing of various types of adhesive materials and identified Polyvinyl acetate (PVA) material as a suitable bonding material. For the purpose of comparison pure hexadecane and composite aluminium/hexadecane samples were developed and tested. The test results revealed faster thermal response by the aluminium/hexadecane sample regarding the rate of heat flux and also achieved about 10% and 15% heat transfer enhancements during the charging and discharging periods respectively. Its measured effective thermal conductivity also increased remarkably to 1.25 W/mK as compared with 0.15 W/mK for pure hexadecane. However there was about 5% less total cumulative thermal energy discharged at the end of the test which indicates that its effective thermal capacity was reduced by the presence of the aluminium particles. The study has shown that some of the scientific and technical barriers associated with the development of laminated composite PCM drywall systems can be overcome but further investigations of effects of adhesive materials are needed. (author)

  9. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    Composites with extremal or unusual thermal expansion coefficients are designed using a three-phase topology optimization method. The composites are made of two different material phases and a void phase. The topology optimization method consists in finding the distribution of material phases...... materials having maximum directional thermal expansion (thermal actuators), zero isotropic thermal expansion, and negative isotropic thermal expansion. It is shown that materials with effective negative thermal expansion coefficients can be obtained by mixing two phases with positive thermal expansion...

  10. Thermal analysis of a double layer phase change material floor

    International Nuclear Information System (INIS)

    Jin Xing; Zhang Xiaosong

    2011-01-01

    Phase change materials (PCMs) can be used to shift the cooling or heating load from the peak period to the off-peak period. In this paper, a new double layer phase change material (PCM) floor is put forward. The two layers of PCM have different melting temperature. The system is used to store heat or cold energy in the off-peak period and release them in the peak period during heating or cooling. According to the numerical model built in this paper, the thermal performances of the floor are analyzed. The results show that the optimal melting temperatures of PCMs exist. The fluctuations of the floor surface temperatures and the heat fluxes will be reduced and the system still can provide a certain amount of heat or cold energy after the heat pump or chiller has been turned off for a long time. Compared to the floor without PCM, the energy released by the floor with PCM in peak period will be increased by 41.1% and 37.9% during heating and cooling when the heat of fusion of PCM is 150 kJ/kg. - Highlights: → A new double layer phase change material floor is put forward. → The system is used to store heat or cold energy in the off-peak period and release them in the peak period during heating or cooling. → The optimal melting temperatures of PCMs in the system exist. → The heat and cold energy released by the floor with PCM in peak period can be increased by 41.1% and 37.9%.

  11. Electronic transport in amorphous phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, Jennifer Maria

    2012-09-14

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  12. Electronic transport in amorphous phase-change materials

    International Nuclear Information System (INIS)

    Luckas, Jennifer Maria

    2012-01-01

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  13. NNWSI Phase II materials interaction test procedure and preliminary results

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project is investigating the volcanic tuff beds of Yucca Mountain, Nevada, as a potential location for a high-level radioactive waste repository. This report describes a test method (Phase II) that has been developed to measure the release of radionuclides from the waste package under simulated repository conditions, and provides information on materials interactions that may occur in the repository. The results of 13 weeks of testing using the method are presented, and an analog test is described that investigates the relationship between the test method and expected repository conditions. 9 references, 10 figures, 11 tables

  14. Review on phase change materials for building applications

    Directory of Open Access Journals (Sweden)

    Lavinia SOCACIU

    2014-11-01

    Full Text Available In nowadays, the Phase Change Material (PCM is a viable alternative for reducing the energy consumption and for increase the thermal comfort in buildings. The use of PCM in building applications provides the potential to increase the indoor thermal comfort for occupants due to the reduced indoor temperature fluctuations and lower global energy consumption. The possibility to incorporate the PCM into the material of construction for cooling and heating the buildings gained the interest of researchers from all the world because the PCM have a high heat of fusion, meaning it is capable to storing and release large amounts of energy in the form of heat during its melting and solidifying process at a specific temperature.

  15. Reclaimable Thermally Reversible Polymers for AM Feedstock, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — CRG proposes to continue efforts from the 2016 NASA SBIR Phase I topic H5.04 Reclaimable Thermally Reversible Polymers for AM Feedstock. In Phase II, CRG will refine...

  16. Murine Automated Urine Sampler (MAUS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort involves the development of a novel rodent spaceflight habitat, focusing on care and monitoring of mice for gravitational physiology...

  17. Crew Cerebral Oxygen Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal is aimed at developing a non-invasive, optical method for monitoring the state of consciousness of crew members in operational...

  18. Shape Memory Alloy Adaptive Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will demonstrate and scale up an innovative manufacturing process that yields aerospace grade shape memory alloy (SMA) solids and periodic...

  19. Novel Versatile Intelligent Drug Delivery, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project will demonstrate and develop a novel micro-pump capable of controlled and selective chemical transport. Phase I will create, characterize, and...

  20. Slow and Fast Light, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to the NASA Small Business Innovation Research (SBIR) Program 2015 Phase I Solicitation S3.08: Slow and Fast Light, Torch Technologies in partnership...

  1. Deep Ultraviolet Macroporous Silicon Filters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a novel method to make deep and far UV optical filters from macroporous silicon. This type of filter consists of an array of...

  2. Crew Cerebral Oxygen Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II SBIR proposal is aimed at developing a non-invasive, optical method for monitoring crew member state of awareness in operational environments. All...

  3. Additive Manufacturing of Telescope Mirrors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase 1 SBIR is to demonstrate feasibility of using selective laser melting (SLM) to produce a 3-meter symmetrical radius of curvature (ROC) isogrid mirror...

  4. Mathematical modeling of phase interaction taking place in materials processing

    International Nuclear Information System (INIS)

    Zinigrad, M.

    2002-01-01

    The quality of metallic products depends on their composition and structure. The composition and the structure are determined by various physico-chemical and technological factors. One of the most important and complicated problems in the modern industry is to obtain materials with required composition, structure and properties. For example, deep refining is a difficult task by itself, but the problem of obtaining the material with the required specific level of refining is much more complicated. It will take a lot of time and will require a lot of expanses to solve this problem empirically and the result will be far from the optimal solution. The most effective way to solve such problems is to carry out research in two parallel direction. Comprehensive analysis of thermodynamics, kinetics and mechanisms of the processes taking place at solid-liquid-gaseous phase interface and building of the clear well-based physico-chemical model of the above processes taking into account their interaction. Development of mathematical models of the specific technologies which would allow to optimize technological processes and to ensure obtaining of the required properties of the products by choosing the optimal composition of the raw materials. We apply the above unique methods. We developed unique methods of mathematical modeling of phase interaction at high temperatures. These methods allows us to build models taking into account: thermodynamic characteristics of the processes, influence of the initial composition and temperature on the equilibrium state of the reactions, kinetics of homogeneous and heterogeneous processes, influence of the temperature, composition, speed of the gas flows, hydrodynamic and thermal factors on the velocity of the chemical and diffusion processes. The models can be implemented in optimization of various metallurgical processes in manufacturing of steels and non-ferrous alloys as well as in materials refining, alloying with special additives

  5. Design and Development of a compact and ruggest phase and flouresence microscope for space utilization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR Phase 1 we propose to develop a novel microscope by integrating Fourier phase contrast microscopy (FPCM) and epi-fluorescence microscopy. In FPCM, the...

  6. Small Business Innovation Research, Post-Phase II Opportunity Assessment

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report outlines current Small Business Innovation Research (SBIR) Post-Phase II opportunity contract award results for the SBIR technology program from 2007 to 2011 for NASA's Aeronautics Research Mission Directorate (ARMD), Human Exploration and Operations Mission Directorate (HEOMD), Science Mission Directorate (SMD), and Space Technology Mission Directorate (STMD). The report provides guidelines for incorporating SBIR technology into NASA programs and projects and provides a quantitative overview of the post-Phase II award patterns that correspond with each mission directorate at NASA Glenn Research Center (GRC). In recent years, one of NASA's goals has been to not only transfer SBIR technologies to commercial industries, but to ensure that NASA mission directorates incorporate SBIR technologies into their program and project activities. Before incorporating technologies into MD programs, it is important to understand each mission directorate structure because each directorate has different objectives and needs. The directorate program structures follow.

  7. Phase Change Material Heat Sink for an ISS Flight Experiment

    Science.gov (United States)

    Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas

    2015-01-01

    A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.

  8. Integrating Phase-Change Materials into Automotive Thermoelectric Generators

    Science.gov (United States)

    Klein Altstedde, Mirko; Rinderknecht, Frank; Friedrich, Horst

    2014-06-01

    Because the heat emitted by conventional combustion-engine vehicles during operation has highly transient properties, automotive thermoelectric generators (TEG) are intended for a particular operating state (design point). This, however, leads to two problems. First, whenever the combustion engine runs at low load, the maximum operating temperature cannot be properly utilised; second, a combustion engine at high load requires partial diversion of exhaust gas away from the TEG to protect the thermoelectric modules. An attractive means of stabilising dynamic exhaust behaviour (thereby keeping the TEG operating status at the design point for as long as possible) is use of latent heat storage, also known as phase-change materials (PCM). By positioning PCM between module and exhaust heat conduit, and choosing a material with a phase-change temperature matching the module's optimum operating temperature, it can be used as heat storage. This paper presents results obtained during examination of the effect of integration of latent heat storage on the potential of automotive TEG to convert exhaust heat. The research resulted in the development of a concept based on the initial integration idea, followed by proof of concept by use of a specially created prototype. In addition, the potential amount of energy obtained by use of a PCM-equipped TEG was calculated. The simulations indicated a significant increase in electrical energy was obtained in the selected test cycle.

  9. Three-dimensional nanomechanical mapping of amorphous and crystalline phase transitions in phase-change materials.

    Science.gov (United States)

    Grishin, Ilja; Huey, Bryan D; Kolosov, Oleg V

    2013-11-13

    The nanostructure of micrometer-sized domains (bits) in phase-change materials (PCM) that undergo switching between amorphous and crystalline phases plays a key role in the performance of optical PCM-based memories. Here, we explore the dynamics of such phase transitions by mapping PCM nanostructures in three dimensions with nanoscale resolution by combining precision Ar ion beam cross-sectional polishing and nanomechanical ultrasonic force microscopy (UFM) mapping. Surface and bulk phase changes of laser written submicrometer to micrometer sized amorphous-to-crystalline (SET) and crystalline-to-amorphous (RESET) bits in chalcogenide Ge2Sb2Te5 PCM are observed with 10-20 nm lateral and 4 nm depth resolution. UFM mapping shows that the Young's moduli of crystalline SET bits exceed the moduli of amorphous areas by 11 ± 2%, with crystalline content extending from a few nanometers to 50 nm in depth depending on the energy of the switching pulses. The RESET bits written with 50 ps pulses reveal shallower depth penetration and show 30-50 nm lateral and few nanometer vertical wavelike topography that is anticorrelated with the elastic modulus distribution. Reverse switching of amorphous RESET bits results in the full recovery of subsurface nanomechanical properties accompanied with only partial topography recovery, resulting in surface corrugations attributed to quenching. This precision sectioning and nanomechanical mapping approach could be applicable to a wide range of amorphous, nanocrystalline, and glass-forming materials for 3D nanomechanical mapping of amorphous-crystalline transitions.

  10. Heat transfer characteristics of building walls using phase change material

    Science.gov (United States)

    Irsyad, M.; Pasek, A. D.; Indartono, Y. S.; Pratomo, A. W.

    2017-03-01

    Minimizing energy consumption in air conditioning system can be done with reducing the cooling load in a room. Heat from solar radiation which passes through the wall increases the cooling load. Utilization of phase change material on walls is expected to decrease the heat rate by storing energy when the phase change process takes place. The stored energy is released when the ambient temperature is low. Temperature differences at noon and evening can be utilized as discharging and charging cycles. This study examines the characteristics of heat transfer in walls using phase change material (PCM) in the form of encapsulation and using the sleeve as well. Heat transfer of bricks containing encapsulated PCM, tested the storage and released the heat on the walls of the building models were evaluated in this study. Experiments of heat transfer on brick consist of time that is needed for heat transfer and thermal conductivity test as well. Experiments were conducted on a wall coated by PCM which was exposed on a day and night cycle to analyze the heat storage and heat release. PCM used in these experiments was coconut oil. The measured parameter is the temperature at some points in the brick, walls and ambient temperature as well. The results showed that the use of encapsulation on an empty brick can increase the time for thermal heat transfer. Thermal conductivity values of a brick containing encapsulated PCM was lower than hollow bricks, where each value was 1.3 W/m.K and 1.6 W/m.K. While the process of heat absorption takes place from 7:00 am to 06:00 pm, and the release of heat runs from 10:00 pm to 7:00 am. The use of this PCM layer can reduce the surface temperature of the walls of an average of 2°C and slows the heat into the room.

  11. Defense Small Business Innovation Research Program (SBIR). Volume 2. Navy Abstracts of Phase 1 Awards from FY 1988 SBIR Solicitation.

    Science.gov (United States)

    1989-05-01

    3190 S WADSWORTH BLV - STE 100 LAKEWOOD, CO 80227 CONTRACT NUMBER: DR LOREN D NELSON TITLE: AN OCEANIC MICROTHERMAL SENSOR TECHNOLOGY FOR NON-ACOUSTIC...SUBMARINES BY USING NON-ACOUSTIC MICROTHERMAL ARRAY MEASUREMENTS SENSITIVE AT THE 0.001 DEG C LEVEL OR BELOW. TYPICALLY OCEANIC MICROTHERMAL ...PROTOTYPE DEVICE THAT OUR PROPOSED OCEAN MICROTHERMAL SENSOR TECHNIQUE HAS A READABLE RESOLUTION AND STABILITY OF 0.0001 DEG C AND A ABSOLUTE ACCURACY IN

  12. Phase transition transistors based on strongly-correlated materials

    Science.gov (United States)

    Nakano, Masaki

    2013-03-01

    The field-effect transistor (FET) provides electrical switching functions through linear control of the number of charges at a channel surface by external voltage. Controlling electronic phases of condensed matters in a FET geometry has long been a central issue of physical science. In particular, FET based on a strongly correlated material, namely ``Mott transistor,'' has attracted considerable interest, because it potentially provides gigantic and diverse electronic responses due to a strong interplay between charge, spin, orbital and lattice. We have investigated electric-field effects on such materials aiming at novel physical phenomena and electronic functions originating from strong correlation effects. Here we demonstrate electrical switching of bulk state of matter over the first-order metal-insulator transition. We fabricated FETs based on VO2 with use of a recently developed electric-double-layer transistor technique, and found that the electrostatically induced carriers at a channel surface drive all preexisting localized carriers of 1022 cm-3 even inside a bulk to motion, leading to bulk carrier delocalization beyond the electrostatic screening length. This non-local switching of bulk phases is achieved with just around 1 V, and moreover, a novel non-volatile memory like character emerges in a voltage-sweep measurement. These observations are apparently distinct from those of conventional FETs based on band insulators, capturing the essential feature of collective interactions in strongly correlated materials. This work was done in collaboration with K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura. This work was supported by the Japan Society for the Promotion of Science (JSAP) through its ``Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).''

  13. Single Photon Sensitive HgCdTe Avalanche Photodiode Detector (APD), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging Phase I SBIR successes, in Phase II, a single photon sensitive LIDAR receiver will be fabricated and delivered to NASA. In Phase I, high-gain,...

  14. Automated first-principles mapping for phase-change materials.

    Science.gov (United States)

    Esser, Marc; Maintz, Stefan; Dronskowski, Richard

    2017-04-05

    Plotting materials on bi-coordinate maps according to physically meaningful descriptors has a successful tradition in computational solid-state science spanning more than four decades. Equipped with new ab initio techniques introduced in this work, we generate an improved version of the treasure map for phase-change materials (PCMs) as introduced previously by Lencer et al. which, other than before, charts all industrially used PCMs correctly. Furthermore, we suggest seven new PCM candidates, namely SiSb 4 Te 7 , Si 2 Sb 2 Te 5 , SiAs 2 Te 4 , PbAs 2 Te 4 , SiSb 2 Te 4 , Sn 2 As 2 Te 5 , and PbAs 4 Te 7 , to be used as synthetic targets. To realize aforementioned maps based on orbital mixing (or "hybridization") and ionicity coordinates, structural information was first included into an ab initio numerical descriptor for sp 3 orbital mixing and then generalized beyond high-symmetry structures. In addition, a simple, yet powerful quantum-mechanical ionization measure also including structural information was introduced. Taken together, these tools allow for (automatically) generating materials maps solely relying on first-principles calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. A Report on the Navy SBIR Program: Best Practices, Roadblocks and Recommendations for Technology Transition

    National Research Council Canada - National Science Library

    Bland, Erin; Busch, Dan; Clark, Al

    2008-01-01

    Over the past few years the Armed Services Committees have shown an increased interest in the DoD doing as much as possible to transition SBIR developed technologies into products or services that support the warfighter...

  16. Defense Contractors SBIR/STTR Partnering Manual: A Primer on Technology Risk Management and Partnering Strategies

    National Research Council Canada - National Science Library

    Williams, John R

    2008-01-01

    As the world looks increasingly to technology innovation to meet the challenges of defense, security, disaster relief and increased health, many in industry have come to identify this nation's SBIR...

  17. Continuous-Scan Phased Array Measurement Methods for Turbofan Engine Acoustic Testing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ATA Engineering, Inc., (ATA) proposes an SBIR project to advance the technology readiness level (TRL) of a method for measuring phased array acoustic data for...

  18. Electric vehicles batteries thermal management systems employing phase change materials

    Science.gov (United States)

    Ianniciello, Lucia; Biwolé, Pascal Henry; Achard, Patrick

    2018-02-01

    Battery thermal management is necessary for electric vehicles (EVs), especially for Li-ion batteries, due to the heat dissipation effects on those batteries. Usually, air or coolant circuits are employed as thermal management systems in Li-ion batteries. However, those systems are expensive in terms of investment and operating costs. Phase change materials (PCMs) may represent an alternative which could be cheaper and easier to operate. In fact, PCMs can be used as passive or semi-passive systems, enabling the global system to sustain near-autonomous operations. This article presents the previous developments introducing PCMs for EVs battery cooling. Different systems are reviewed and solutions are proposed to enhance PCMs efficiency in those systems.

  19. Modeling of subcooling and solidification of phase change materials

    Science.gov (United States)

    Günther, Eva; Mehling, Harald; Hiebler, Stefan

    2007-12-01

    Phase change materials (PCM) are able to store thermal energy in small temperature intervals very efficiently due to their high latent heat. Particularly high storage capacity is found in salt hydrates. Salt hydrates however often show subcooling, thus inhibiting the release of the stored heat. In the state of the art simulations of PCM, the effect of subcooling is almost always neglected. This is a practicable approach for small subcooling, but it is problematic for subcooling in the order of the driving temperature gradient on unloading the storage. In this paper, we first present a new algorithm to simulate subcooling in a physically proper way. Then, we present a parametric study to demonstrate the main features of the algorithm and a comparison of computed and experimentally obtained data. The new algorithm should be particularly useful in simulating applications with low cooling rates, for example building applications.

  20. Color printing enabled by phase change materials on paper substrate

    Directory of Open Access Journals (Sweden)

    Hong-Kai Ji

    2017-12-01

    Full Text Available We have coated phase change materials (PCMs on rough and flexible substrates to achieve multicolor changeable devices. The principle of the device is based on an earlier discovery that lights have strong interference effect in PCM films, leading to various colors by reflection. In this work, paper substrates are laminated by parylene layers to protect the device from water before coated with functional PCM films. The PCM-based color printing (PCP on paper is not affected by rough surfaces and shows a similar color appearance as that on smooth surfaces. In particular, the color-printed device can be patterned by UV lithography to display a clear and tunable optical image, and it exhibits a low sensitivity to the angle of view. Such PCP has potential applications for low-cost, disposable, and flexible displays.

  1. Plastic phase change material and articles made therefrom

    Science.gov (United States)

    Abhari, Ramin

    2016-04-19

    The present invention generally relates to a method for manufacturing phase change material (PCM) pellets. The method includes providing a melt composition, including paraffin and a polymer. The paraffin has a melt point of between about 10.degree. C. and about 50.degree. C., and more preferably between about 18.degree. C. and about 28.degree. C. In one embodiment, the melt composition includes various additives, such as a flame retardant. The method further includes forming the melt composition into PCM pellets. The method further may include the step of cooling the melt to increase the melt viscosity before pelletizing. Further, PCM compounds are provided having an organic PCM and a polymer. Methods are provided to convert the PCM compounds into various form-stable PCMs. A method of coating the PCMs is included to provide PCMs with substantially no paraffin seepage and with ignition resistance properties.

  2. Color printing enabled by phase change materials on paper substrate

    Science.gov (United States)

    Ji, Hong-Kai; Tong, Hao; Qian, Hang; Liu, Nian; Xu, Ming; Miao, Xiang-Shui

    2017-12-01

    We have coated phase change materials (PCMs) on rough and flexible substrates to achieve multicolor changeable devices. The principle of the device is based on an earlier discovery that lights have strong interference effect in PCM films, leading to various colors by reflection. In this work, paper substrates are laminated by parylene layers to protect the device from water before coated with functional PCM films. The PCM-based color printing (PCP) on paper is not affected by rough surfaces and shows a similar color appearance as that on smooth surfaces. In particular, the color-printed device can be patterned by UV lithography to display a clear and tunable optical image, and it exhibits a low sensitivity to the angle of view. Such PCP has potential applications for low-cost, disposable, and flexible displays.

  3. Force law in material media, hidden momentum and quantum phases

    International Nuclear Information System (INIS)

    Kholmetskii, Alexander L.; Missevitch, Oleg V.; Yarman, T.

    2016-01-01

    We address to the force law in classical electrodynamics of material media, paying attention on the force term due to time variation of hidden momentum of magnetic dipoles. We highlight that the emergence of this force component is required by the general theorem, deriving zero total momentum for any static configuration of charges/currents. At the same time, we disclose the impossibility to add this force term covariantly to the Lorentz force law in material media. We further show that the adoption of the Einstein–Laub force law does not resolve the issue, because for a small electric/magnetic dipole, the density of Einstein–Laub force integrates exactly to the same equation, like the Lorentz force with the inclusion of hidden momentum contribution. Thus, none of the available expressions for the force on a moving dipole is compatible with the relativistic transformation of force, and we support this statement with a number of particular examples. In this respect, we suggest applying the Lagrangian approach to the derivation of the force law in a magnetized/polarized medium. In the framework of this approach we obtain the novel expression for the force on a small electric/magnetic dipole, with the novel expression for its generalized momentum. The latter expression implies two novel quantum effects with non-topological phases, when an electric dipole is moving in an electric field, and when a magnetic dipole is moving in a magnetic field. These phases, in general, are not related to dynamical effects, because they are not equal to zero, when the classical force on a dipole is vanishing. The implications of the obtained results are discussed.

  4. Subscale Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Sheth, Rubik; Hansen, Scott

    2016-01-01

    Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.

  5. Analysis of wallboard containing a phase change material

    Science.gov (United States)

    Tomlinson, J. J.; Heberle, D. P.

    Phase change materials (PCMs) used on the interior of buildings hold the promise for improved thermal performance by reducing the energy requirements for space conditioning and by improving thermal comfort by reducing temperature swings inside the building. Efforts are underway to develop a gypsum wallboard containing a hydrocarbon PCM. With a phase change temperature in the room temperature range, the PCM wallboard adds substantially to the thermal mass of the building while serving the same architectural function as conventional wallboard. To determine the thermal and economic performance of this PCM wallboard, the Transient Systems Simulation Program (TRNSYS) was modified to accommodate walls that are covered with PCM plasterboard, and to apportion the direct beam solar radiation to interior surfaces of a building. The modified code was used to simulate the performance of conventional and direct-gain passive solar residential-sized buildings with and without PCM wallboard. Space heating energy savings were determined as a function of PCM wallboard characteristics. Thermal comfort improvements in buildings containing the PCM were qualified in terms of energy savings. The report concludes with a present worth economic analysis of these energy savings and arrives at system costs and economic payback based on current costs of PCMs under study for the wallboard application.

  6. Phase Change Energy Storage Material Suitable for Solar Heating System

    Science.gov (United States)

    Li, Xiaohui; Li, Haihua; Zhang, Lihui; Liu, Zhenfa

    2018-01-01

    Differential scanning calorimetry (DSC) was used to investigate the thermal properties of palmitic acid, myristic acid, laurel acid and the binary composite of palmitic/laurel acid and palmitic/myristic acid. The results showed that the phase transition temperatures of the three monomers were between 46.9-65.9°C, and the latent heats were above 190 J/g, which could be used as solar energy storage material. When the mass ratio of Palmitic acid and myristic was 1:1, the eutectic mixture could be formed. The latent heat of the eutectic mixture was 186.6 J/g, the melting temperature and the solidification temperature was 50.6°C and 43.8°C respectively. The latent heat of phase change and the melting temperature had not obvious variations after 400 thermal cycles, which proved that the binary composite had good thermal stability and was suitable for solar floor radiant heating system.

  7. Si-Sb-Te materials for phase change memory applications

    International Nuclear Information System (INIS)

    Rao Feng; Song Zhitang; Ren Kun; Zhou Xilin; Cheng Yan; Wu Liangcai; Liu Bo

    2011-01-01

    Si-Sb-Te materials including Te-rich Si 2 Sb 2 Te 6 and Si x Sb 2 Te 3 with different Si contents have been systemically studied with the aim of finding the most suitable Si-Sb-Te composition for phase change random access memory (PCRAM) use. Si x Sb 2 Te 3 shows better thermal stability than Ge 2 Sb 2 Te 5 or Si 2 Sb 2 Te 6 in that Si x Sb 2 Te 3 does not have serious Te separation under high annealing temperature. As Si content increases, the data retention ability of Si x Sb 2 Te 3 improves. The 10 years retention temperature for Si 3 Sb 2 Te 3 film is ∼ 393 K, which meets the long-term data storage requirements of automotive electronics. In addition, Si richer Si x Sb 2 Te 3 films also show improvement on thickness change upon annealing and adhesion on SiO 2 substrate compared to those of Ge 2 Sb 2 Te 5 or Si 2 Sb 2 Te 6 films. However, the electrical performance of PCRAM cells based on Si x Sb 2 Te 3 films with x > 3.5 becomes worse in terms of stable and long-term operations. Si x Sb 2 Te 3 materials with 3 < x < 3.5 are proved to be suitable for PCRAM use to ensure good overall performance.

  8. Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Ribik B.; Atwell, Matt; Cheek, Ann; Agarwal, Muskan; Hong, Steven; Patel, Aashini,; Nguyen, Lisa; Posada, Luciano

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft’s radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a “topper” to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. Studies conducted in this paper investigate utilizing water’s high latent heat of formation as a PCM, as opposed to traditional waxes, and corresponding complications surrounding freezing water in an enclosed volume. Work highlighted in this study is primarily visual and includes understanding ice formation, freeze front propagation, and the solidification process of water/ice. Various test coupons were constructed of copper to emulate the interstitial pin configuration (to aid in conduction) of the proposed water PCM HX design. Construction of a prototypic HX was also completed in which a flexible bladder material and interstitial pin configurations were tested. Additionally, a microgravity flight was conducted where three copper test articles were frozen continuously during microgravity and 2-g periods and individual water droplets were frozen during microgravity.

  9. Study of Material Compatibility for a Thermal Energy Storage System with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Songgang Qiu

    2018-03-01

    Full Text Available The suitability of stainless steel 316L and Inconel 625 for use in a latent heat thermal energy storage (TES system was investigated. A NaCl–NaF eutectic mixture with a melting temperature of 680 °C was used as the phase change material (PCM. Containers were filled with the PCM prior to heating to 750 °C, then examined after 100 and 2500 h of high-temperature exposure by analyzing the material surface and cross-section areas. A small amount of corrosion was present in both samples after 100 h. Neither sample suffered significant damage after 2500 h. The undesirable inter-granular grain boundary attack found in SS316L samples was in the order of 1–2 µm in depth. On Inconel 625 sample surface, an oxide complex formed, resisting material dissolution into the PCM. The surface morphology of tested samples remained largely unchanged after 2500 h, but the corrosion pattern changed from an initially localized corrosion penetration to a more uniform type. After 2500 h, the corrosion depth of Inconel 625 remained at roughly 1–2 µm, indicating that the corrosion rate decelerated. Both materials demonstrated good compatibility with the chosen NaF–NaCl eutectic salt, but the low corrosion activity in Inconel 625 samples shows a performance advantage for long term operation.

  10. Applications of graphite-enabled phase change material composites to improve thermal performance of cementitious materials

    Science.gov (United States)

    Li, Mingli; Lin, Zhibin; Wu, Lili; Wang, Jinhui; Gong, Na

    2017-11-01

    Enhancing the thermal efficiency to decrease the energy consumption of structures has been the topic of much research. In this study, a graphite-enabled microencapsulated phase change material (GE-MEPCM) was used in the production of a novel thermal energy storage engineered cementitious composite feathering high heat storage capacity and enhanced thermal conductivity. The surface morphology and particle size of the microencapsulated phase change material (MEPCM) were investigated by scanning electron microscopy (SEM). Thermal properties of MEPCM was determined using differential scanning calorimetry (DSC). In addition, thermal and mechanical properties of the cementitious mortar with different admixtures were explored and compared with those of a cementitious composite. It was shown that the latent heat of MEPCM was 162 J/g, offering much better thermal energy storage capacity to the cementitious composite. However, MEPCM was found to decrease the thermal conductivity of the composite, which can be effectively solved by adding natural graphite (NG). Moreover, the incorporation of MEPCM has a certain decrease in the compressive strength, mainly due to the weak interfaces between MEPCM and cement matrix.

  11. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    Science.gov (United States)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2012-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  12. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Rubik B.; Poynot, Joe; Giglio, Tony; Ungar, Gene K.

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to meet the full heat rejection demands. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HX's do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research on freeze front propagation to a full-scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Two units, Units A and B, were constructed and differed only in their midplate design. Both units failed multiple times during testing. This report highlights learning outcomes from these tests and are applied to a final sub-scale PCM HX which is slated to be tested on the ISS in early 2017.

  13. Bonding in phase change materials: concepts and misconceptions

    Science.gov (United States)

    Jones, R. O.

    2018-04-01

    Bonding concepts originating in chemistry are surveyed from a condensed matter perspective, beginning around 1850 with ‘valence’ and the word ‘bond’ itself. The analysis of chemical data in the 19th century resulted in astonishing progress in understanding the connectivity and stereochemistry of molecules, almost without input from physicists until the development of quantum mechanics in 1925 and afterwards. The valence bond method popularized by Pauling and the molecular orbital methods of Hund, Mulliken, Bloch, and Hückel play major roles in the subsequent development, as does the central part played by the kinetic energy in covalent bonding (Ruedenberg and others). ‘Metallic’ (free electron) and related approaches, including pseudopotential and density functional theories, have been remarkably successful in understanding structures and bonding in molecules and solids. We discuss these concepts in the context of phase change materials, which involve the rapid and reversible transition between amorphous and crystalline states, and note the confusion that some have caused, in particular ‘resonance’ and ‘resonant bonding’.

  14. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott; Poynot, Joe

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research and experimentation to the full scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Design and construction of these HX's led to successful testing of both PCM HX's.

  15. High Energy Single Frequency Resonant Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  16. Micromachined High-Temperature Sensors for Planet Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In phase I of the SBIR program, LEEOAT Company will develop, simulate, fabricate and test high-temperature piezoelectric miniature sensors (up to 800oC), for...

  17. Composite Structure Monitoring using Direct Write Sensors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase II project seeks to develop and demonstrate a suite of sensor products to monitor the health of composite structures. Sensors will be made using...

  18. Instrument for Airborne Measurement of Carbonyl Sulfide, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II SBIR program, Southwest Sciences will continue the development of small, low power instrumentation for real-time direct measurement of carbonyl...

  19. Handheld FRET-Aptamer Sensor for Water Safety, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Operational Technologies Corporation (OpTech) proposes to expand its current NASA Phase 2 SBIR handheld fluorometer and bone marker fluorescence resonance energy...

  20. Novel Instrumentation for Rocket Propulsion Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed SBIR Phase II program is to develop, deploy and deliver novel laser-based instruments that provide rapid, in situ, simultaneous...

  1. Componentized Models as a Service (CMaaS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research (SBIR) Phase I project, which will conclude with a Technical Readiness Level of 3-4, will demonstrate the feasibility of the...

  2. Higher Strength, Lighter Weight Aluminum Spacecraft Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I program proposes to develop a bulk processing technology for producing ultra fine grain (UFG) aluminum alloy structures. The goal is to demonstrate...

  3. Shape Memory Alloy-Based Periodic Cellular Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort will continue to develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular...

  4. Manufacturing For Design of Titanium Alloys, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I program proposes to exploit the tremendous benefits that could be offered by the development of a microstructural refinement and control technology...

  5. No-Oven, No-Autoclave, Composite Processing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Cornerstone Research Group Inc. (CRG) proposes to continue the efforts from the 2010 NASA SBIR Phase I topic X5.03, "No-Oven, No-Autoclave (NONA) Composite...

  6. High Radiation Resistance Inverted Metamorphic Solar Cell, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in this SBIR Phase II project is the development of a unique triple junction inverted metamorphic technology (IMM), which will enable the...

  7. Modular Ultra-High Power Solar Array Architecture, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems (DSS) will focus the proposed Phase 2 SBIR program on the hardware-based development and TRL advance of a highly-modularized and...

  8. Simulating Nonlinear Dynamics of Deployable Space Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To support NASA's vital interest in developing much larger solar array structures over the next 20 years, MotionPort LLC's Phase I SBIR project will strengthen...

  9. A Novel Cyclic Catalytic Reformer for Hydrocarbon Fuels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed Small Business Innovative Research (SBIR) Phase I addresses development of a compact reformer system based on a cyclic partial oxidation (POx)...

  10. RFI mitigating receiver back end for radiometers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal requests support for Alphacore, Inc. to design and a low power application specific integrated circuit (ASIC) RFI mitigating receiver back...

  11. Novel Instrumentation for Rocket Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed SBIR Phase I program is to develop novel laser-based instruments that provide rapid, in situ, simultaneous measurements of gas...

  12. Friction Stir Processing of Cast Superalloys, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for producing...

  13. Multi-channel tunable source for atomic sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR will establish the feasibility of developing compact, robust, integrated components suitable for atomic interferometry. AdvR's design is enabled by...

  14. Multi-Channel Tunable Source for Atomic Sensors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II SBIR will seek to develop a prototype laser source suitable for atomic interferometry from compact, robust, integrated components. AdvR's design is...

  15. Self-Calibrating Vector Helium Magnetometer (SVHM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal describes proposed development of a conceptual design for a Self-Calibrating Vector Helium Magnetometer (SVHM) for design and fabrication...

  16. Fiber Optic Sensor System for Cryogenic Fuel Measurement, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will address the feasibility of using a fiber Bragg grating array as a means of detecting liquid and slush hydrogen in gravity and zero...

  17. High Performance Low Mass Nanowire Enabled Heatpipe, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Illuminex Corporation proposes a NASA Phase I SBIR project to develop high performance, lightweight, low-profile heat pipes with enhanced thermal transfer properties...

  18. Multi-layer Far-Infrared Component Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR will demonstrate the feasibility of a process to create multi-layer thin-film optics for the far-infrared/sub-millimeter wave spectral region. The...

  19. Fine Water Mist Fire Extinguisher for Spacecraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This three phase SBIR project from ADA Technologies Inc. (ADA) builds upon the experience of ADA in development of fine water mist (FWM) fire suppression technology....

  20. Phase-change material as a thermal storage media

    Energy Technology Data Exchange (ETDEWEB)

    El Chazly, Nihad M; Khattab, Nagwa M [Dokki, Cairo (Egypt)

    2000-07-01

    Heat storage based on the sensible heating of media such as water, rock and earth represent the first generation of solar energy storage subsystems and technology for their utilization. However, recently the heat storage based on the latent heat associated with a change in phase of a material offers many advantages over sensible heat storage. The most important characteristic of such a subsystem is its a sufficient storage capacity. An idealized model visualizing a thermal capacitor using a phase change material is constructed and subjected to simulated solar system environmental conditions. The proposed model is of a flat plate geometry consisting of two panels compartments forming the body of the capacitor containing the paraffin, leaving at their inner surfaces a thin passage allowing the water flow. The whole structure was assumed to be insulated to minimize heat loss. An analysis of the model is conducted using Goodman technique to generate data about the temperature distribution, the melt thickness, and the heat stored in the PCM under conditions of: ( i ) constant mass flow rate tests for various water inlet temperatures and ( ii ) constant water inlet temperature for various mass flow rate. A FORTRAN computer program was constructed to perform the analysis. It was found the water outlet temperature increases with time until it becomes nearly equals to the inlet temperature. Increasing the mass flow rate for a given inlet temperature, decreases the time required for outlet temperature to reach a given value. Increasing inlet temperature for a given mass flow rate gives a very rapid decrease in the time required for the outlet water temperature to reach a given value. Instantaneous rate of heat storage was determined from the inlet-to- exit temperature differential and measured flow rate. This rate was then integrated numerically to determine the cumulative total energy stored as a function of time. It was found that the instantaneous rate of heat storage

  1. Development of Phase Change Materials for RF Switch Applications

    Science.gov (United States)

    King, Matthew Russell

    For decades chalcogenide-based phase change materials (PCMs) have been reliably implemented in optical storage and digital memory platforms. Owing to the substantial differences in optical and electronic properties between crystalline and amorphous states, device architectures requiring a "1" and "0" or "ON" and "OFF" states are attainable with PCMs if a method for amorphizing and crystallizing the PCM is demonstrated. Taking advantage of more than just the binary nature of PCM electronic properties, recent reports have shown that the near-metallic resistivity of some PCMs allow one to manufacture high performance RF switches and related circuit technologies. One of the more promising RF switch technologies is the Inline Phase Change Switch (IPCS) which utilizes GeTe as the active material. Initial reports show that an electrically isolated, thermally coupled thin film heater can successfully convert GeTe between crystalline and amorphous states, and with proper design an RF figure of merit cutoff frequency (FCO) of 12.5 THz can be achieved. In order to realize such world class performance a significant development effort was undertaken to understand the relationship between fundamental GeTe properties, thin film deposition method and resultant device properties. Deposition pressure was found to be the most important deposition process parameter, as it was found to control Ge:Te ratio, oxygen content, Ar content, film density and surface roughness. Ultimately a first generation deposition process produced GeTe films with a crystalline resistivity of 3 ohm-mum. Upon implementing these films into IPCS devices, post-cycling morphological analysis was undertaken using STEM and related analyses. It was revealed that massive structural changes occur in the GeTe during switching, most notably the formation of an assembly of voids along the device centerline and large GeTe grains on either side of the so-called active region. Restructuring of this variety was tied to

  2. Quantitative method of X-ray diffraction phase analysis of building materials

    International Nuclear Information System (INIS)

    Czuba, J.; Dziedzic, A.

    1978-01-01

    Quantitative method of X-ray diffraction phase analysis of building materials, with use of internal standard, has been presented. The errors committed by determining the content of particular phases have been also given. (author)

  3. Study of improving the thermal response of a construction material containing a phase change material

    Science.gov (United States)

    Laaouatni, A.; Martaj, N.; Bennacer, R.; Elomari, M.; El Ganaoui, M.

    2016-09-01

    The use of phase change materials (PCMs) for improving the thermal comfort in buildings has become an attractive application. This solution contributes to increasing the thermal inertia of the building envelope and reducing power consumption. A building element filled with a PCM and equipped with ventilation tubes is proposed, both for increasing inertia and contributing to refreshing building envelope. A numerical simulation is conducted by the finite element method in COMSOL Multiphysics, which aims to test the thermal behaviour of the developed solution. An experimental study is carried out on a concrete block containing a PCM with ventilation tubes. The objective is to see the effect of PCM coupled with ventilation on increasing the inertia of the block. The results show the ability of this new solution to ensure an important thermal inertia of a building.

  4. Studies of cluster-assembled materials: From gas phase to condensed phase

    Science.gov (United States)

    Gao, Lin

    . After being mass gated in a reflectron equipped time-of-flight mass spectrometer (TOF-MS) and deposited onto TEM grids, the resultant specimens can be loaded onto high-resolution TEM investigation via electron diffraction. In conclusion, soft-landing of mass selected clusters has been shown to be a successful approach to obtain structural information on Zr-Met-Car cluster-assembled materials collected from the gas phase. TEM images indicate the richness of the morphologies associated with these cluster crystals. However, passivation methods are expected to be examined further to overcome the limited stabilities of these novel clusters. From this initial study, it's shown the promising opportunity to study other Met-Cars species and more cluster-based materials. Experimental results of reactions run with a solvothermal synthesis method obtained while searching for new Zr-C cluster assembled materials, are reported. One unexpected product in single crystal form was isolated and tentatively identified by X-ray diffraction to be [Zr6i O(OH)O12·2(Bu)4], with space group P2 1/n and lattice parameters of a = 12.44 A, b = 22.06 A, c = 18.40 A, alpha = 90°, beta = 105°, gamma = 90°, V = 4875 A3 and R 1 = 3.15% for the total observed data (I ≥ 2 sigma I) and oR2 = 2.82%. This novel hexanuclear Zr(IV)-oxo-hydroxide cluster anion may be the first member in polyoxometalates class with metal atoms from the IVB group and having Oh symmetry. Alternatively, it may be the first member in {[(Zr6Z)X 12]X6}m- class with halides replaced by oxo- and hydroxyl groups and with an increased oxidation state of Zr. It is predicted to bear application potentials directed by both families. This work could suggest a direction in which the preparation of Zr-C cluster-assembled materials in a liquid environment may be eventually fulfilled. 1,3-Bis(diethylphosphino)propane (depp) protected small gold clusters are studied via multiple techniques, including Electrospray Ionization Mass Spectrometry

  5. NASA Johnson Space Center Small Business Innovation Research (SBIR) Successes, Infusion and Commercializations and Potential International Partnering Opportunities

    Science.gov (United States)

    Packard, Kathryn; Goodman, Doug; Whittington, James

    2016-01-01

    The NASA Small Business Innovation Research (SBIR) Program has served as a beneficial funding vehicle to both US small technology businesses and the Federal Agencies that participate in the program. This paper, to the extent possible, while observing Intellectual Property (IP) laws, will discuss the many SBIR and STTR (SBIR Technology Transfer) successes in the recent history of the NASA Johnson Space Center (JSC). Many of the participants of the International Conference on Environmental Systems (ICES) have based their research and papers on technologies that were made possible by SBIR/STTR awards and post award funding. Many SBIR/STTR successes have flown on Space Shuttle missions, Space X Dragons, and other spacecraft. SBIR/STTR technologies are currently infused on the International Space Station (ISS) and satellites, one of which was a NASA/JAXA (Japanese Space Agency) joint venture. Many of these companies have commercialized their technologies and grown as businesses while helping the economy through the creation of new jobs. In addition, this paper will explore the opportunity for international partnership with US SBIR/STTR companies as up to 49% of the makeup of the company is not required to be American owned. Although this paper will deal with technical achievements, it does not purport to be technical in nature. It will address the many requests for information on successes and opportunities within NASA SBIR and the virtually untapped potential of international partnering.

  6. The Progress of SBIR Supported R and D of Solid State Pulse Modulators

    International Nuclear Information System (INIS)

    Koontz, R

    2004-01-01

    The Small Business Innovative Research (SBIR) grant program funded by the US Department of Energy makes a number of awards each year for R and D in the field of accelerator technology including high power pulse modulators and their components. This paper outlines program requirements, and reviews some of the awards made in the last three years in support of high power modulator systems and solid state switching. A number of award recipients are presenting the results of their SBIR R and D at this workshop

  7. Engineered Materials for Advanced Gas Turbine Engine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop innovative composite powders and composites that will surpass the properties of currently identified materials for advanced gas turbine...

  8. Multifunctional Carbon Electromagnetic Materials - Motors & Actuators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the proposal is to apply multifunctional carbon electromagnetic materials, including carbon nanotube electrical thread (replaces copper wire) and...

  9. Non-Catalytic Self Healing Composite Material Solution, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fiber reinforce polymer (FRP) composite materials are seeing increasing use in the construction of a wide variety of aerospace structures. However, uncertainties...

  10. High-pressure phase transitions of deep earth materials

    International Nuclear Information System (INIS)

    Hirose, Kei

    2009-01-01

    Recent developments in synchrotron XRD measurements combined with laser-heated diamond-anvil cell (LHDAC) techniques have enabled us to search for a novel phase transition at extremely high pressure and temperature. A phase transition from MgSiO 3 perovskite to post-perovskite was discovered through a drastic change in XRD patterns above 120 GPa and 2500 K, corresponding to the condition in the lowermost mantle (Murakami et al., 2004; Oganov and Ono, 2004). A pressure-induced phase transformation from ABO 3 -type perovskite to any denser structures was not known at that time. This new MgSiO 3 polymorph called post-perovskite has an orthorhombic symmetry (space group: Cmcm) with a sheet-stacking structure. The Mg site in post-perovskite is smaller than that in perovskite, which results in a volume reduction by 1.0-1.5% from perovskite structure. The electrical conductivity of post-perovskite is higher by three orders of magnitude than that of perovskite at similar pressure range (Ohta et al., 2008). This is likely due to a shorter Fe-Fe distance in post-perovskite structure, while conduction mechanism is yet to be further examined. Phase transition boundary between perovskite and post-perovskite has been determined in a wide temperature range up to 4400 K at 170 GPa (Tateno et al., 2008). Phase relations of Fe alloys have been also studied at core pressures (>135 GPa), although the generation of high temperature is more difficult at higher pressures. A new high-pressure B2 phase of B2 phase of FeS was recently discovered above 180 GPa (Sata et al., 2008). The Fe-Ni alloys have a wide pressure-temperature stability field of fcc phase at the core pressure range, depending on the Ni content (Kuwayama et al., 2008). (author)

  11. Development of ductile cementitious composites incorporating microencapsulated phase change materials

    NARCIS (Netherlands)

    Savija, B.; Lukovic, M.; Chaves Figueiredo, S.; de Mendoca Filho, Fernando Franca; Schlangen, H.E.J.G.

    2017-01-01

    Abstract In the past two decades, much research has been devoted to overcoming the inherent brittleness of cementitious materials. To that end, several solutions have been proposed, mainly utilizing fibres. One of the most promising classes of materials is strain hardening cementitious composite

  12. Ductile Binder Phase For Use With Almgb14 And Other Hard Ceramic Materials

    Science.gov (United States)

    Cook, Bruce A.; Russell, Alan; Harringa, Joel

    2005-07-26

    This invention relates to a ductile binder phase for use with AlMgB14 and other hard materials. The ductile binder phase, a cobalt-manganese alloy, is used in appropriate quantities to tailor good hardness and reasonable fracture toughness for hard materials so they can be used suitably in industrial machining and grinding applications.

  13. Nano-Phase Powder Based Exothermic Braze Repair Technology For RCC Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II project will advance innovative, cost effective and reliable nano-phase exothermic RCC joining processes (ExoBrazeTM) in order to be able to reinforce...

  14. Solid state phase change materials for thermal energy storage in passive solar heated buildings

    Science.gov (United States)

    Benson, D. K.; Christensen, C.

    1983-11-01

    A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.

  15. Preparation and characterization of a novel polymeric based solid-solid phase change heat storage material

    International Nuclear Information System (INIS)

    Xi Peng; Gu Xiaohua; Cheng Bowen; Wang Yufei

    2009-01-01

    Here we reported a two-step procedure for preparing a novel polymeric based solid-solid phase change heat storage material. Firstly, a copolymer monomer containing a polyethylene glycol monomethyl ether (MPEG) phase change unit and a vinyl unit was synthesized via the modification of hydrogen group of MPEG. Secondly, by copolymerization of the copolymer monomer and phenyl ethylene, a novel polymeric based solid-solid phase change heat storage material was prepared. The composition, structure and properties of the novel polymeric based solid-solid phase change material were characterized by IR, 1 H NMR, DSC, WAXD, and POM, respectively. The results show that the novel polymeric based solid-solid phase change material possesses of excellent crystal properties and high phase change enthalpy.

  16. The use of lipids as phase change materials for thermal energy storage

    Science.gov (United States)

    Phase change materials (PCMs) are substances capable of absorbing and releasing large 2 amounts of thermal energy (heat or cold) as latent heat over constant temperature as they 3 undergo a change in state of matter (phase transition), commonly, between solid and 4 liquid phases. Since the late 194...

  17. Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials.

    Science.gov (United States)

    Kalkan, B; Sen, S; Clark, S M

    2011-09-28

    The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope. © 2011 American Institute of Physics

  18. Feasibility of using microencapsulated phase change materials as filler for improving low temperature performance of rubber sealing materials.

    Science.gov (United States)

    Tiwari, Avinash; Shubin, Sergey N; Alcock, Ben; Freidin, Alexander B; Thorkildsen, Brede; Echtermeyer, Andreas T

    2017-11-01

    The feasibility of a novel composite rubber sealing material to improve sealing under transient cooling (in a so-called blowdown scenario) is investigated here. A composite of hydrogenated nitrile butadiene rubber (HNBR) filled with Micro Encapsulated Phase Change Materials (MEPCM) is described. The fillers contain phase change materials that release heat during the phase transformation from liquid to solid while cooling. This exotherm locally heats the rubber and may improve the function of the seal during a blowdown event. A representative HNBR-MEPCM composite was made and the critical thermal and mechanical properties were obtained by simulating the temperature distribution during a blowdown event. Simulations predict that the MEPCM composites can delay the temperature decrease in a region of the seal during the transient blowdown. A sensitivity analysis of material properties is also presented which highlights possible avenues of improvement of the MEPCMs for sealing applications.

  19. Materials Information for Science and Technology (MIST): Project overview: Phase 1 and 2 and general considerations

    Energy Technology Data Exchange (ETDEWEB)

    Grattidge, W.; Westbrook, J.; McCarthy, J.; Northrup, C. Jr.; Rumble, J. Jr.

    1986-11-01

    The National Bureau of Standards and the Department of Energy have embarked on a program to build a demonstration computerized materials data system called Materials Information for Science and Technology (MIST). This report documents the first two phases of the project. The emphasis of the first phase was on determining what information was needed and how it could impact user productivity. The second phase data from the Aerospace Metal Handbook on a set of alloys was digitized and incorporated in the system.

  20. Thermal Stability Test of Sugar Alcohols as Phase Change Materials for Medium Temperature Energy Storage Application

    OpenAIRE

    Solé, Aran; Neumann, Hannah; Niedermaier, Sophia; Cabeza, Luisa F.; Palomo, Elena

    2014-01-01

    Sugar alcohols are potential phase change materials candidates as they present high phase change enthalpy values, are non-toxic and low cost products. Three promising sugar-alcohols were selected: D-mannitol, myo-inositol and dulcitol under high melting enthalpy and temperature criterion. Thermal cycling tests were performed to study its cycling stability which can be determining when selecting the suitable phase change material. D-mannitol and dulcitol present poor thermal stability...

  1. Analysis of writing and erasing behaviours in phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Hyot, B. E-mail: bhyot@cea.fr; Poupinet, L.; Gehanno, V.; Desre, P.J

    2002-09-01

    An understanding of the process involved in writing and erasing of phase-change optical recording media is vital to the development of new, and the improvement of existing, products. The present work investigates both experimental and theoretical laser-induced fast structural transformations of GeSbTe thin films. Optical and microstructural changes are correlated using both a static tester and transmission electron microscopy. In the second part of this paper we try to elucidate the physics underlying the amorphous-to-crystalline phase transformation under short-pulse laser excitation. Both thermal and thermodynamical behaviours must be taken into account to illustrate real processes.

  2. Analysis of writing and erasing behaviours in phase change materials

    International Nuclear Information System (INIS)

    Hyot, B.; Poupinet, L.; Gehanno, V.; Desre, P.J.

    2002-01-01

    An understanding of the process involved in writing and erasing of phase-change optical recording media is vital to the development of new, and the improvement of existing, products. The present work investigates both experimental and theoretical laser-induced fast structural transformations of GeSbTe thin films. Optical and microstructural changes are correlated using both a static tester and transmission electron microscopy. In the second part of this paper we try to elucidate the physics underlying the amorphous-to-crystalline phase transformation under short-pulse laser excitation. Both thermal and thermodynamical behaviours must be taken into account to illustrate real processes

  3. Advanced Insulation Materials for Cryogenic Propellant Storage Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc responds to the NASA solicitation Topic X9 entitled "Propulsion and Propellant Storage" under subtopic X9-01, "Long Term Cryogenic...

  4. Raman Mapping for the Investigation of Nano-phased Materials

    Science.gov (United States)

    Gouadec, G.; Bellot-Gurlet, L.; Baron, D.; Colomban, Ph.

    Nanosized and nanophased materials exhibit special properties. First they offer a good compromise between the high density of chemical bonds by unit volume, needed for good mechanical properties and the homogeneity of amorphous materials that prevents crack initiation. Second, interfaces are in very high concentration and they have a strong influence on many electrical and redox properties. The analysis of nanophased, low crystallinity materials is not straigtforward. The recording of Raman spectra with a geometric resolution close to 0.5 \\upmu {text{ m}^3} and the deep understanding of the Raman signature allow to locate the different nanophases and to predict the properties of the material. Case studies are discussed: advanced polymer fibres, ceramic fibres and composites, textured piezoelectric ceramics and corroded (ancient) steel.

  5. Alternative materials for FDOT sign structures : phase I literature review.

    Science.gov (United States)

    2012-05-01

    Inspections of tubular sign structures by the Florida Department of Transportation (FDOT) have : revealed occurrences of premature corrosion on the inside of galvanized steel tubes. As a result, FDOT : engineers are seeking alternative materials that...

  6. Advanced Thermal Interface Material Systems for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The ultimate aim of proposed efforts are to develop innovative material and process (M increase thermal cycles before degradation and efforts to ensure ease of...

  7. Integrated Computational Material Engineering Technologies for Additive Manufacturing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — QuesTek Innovations, a pioneer in Integrated Computational Materials Engineering (ICME) and a Tibbetts Award recipient, is teaming with University of Pittsburgh,...

  8. Additively Manufactured Multi-Material Insert, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Parabilis Space Technologies is pleased to propose development of a novel additive manufacturing method which enables the use of multiple dissimilar materials in an...

  9. High Temperature Electrical Insulation Materials for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future space science missions cannot be realized without the state of the art high temperature insulation materials of which higher working temperature, high...

  10. Modeling of Impact Properties of Auxetic Materials Phase 2

    Science.gov (United States)

    2014-03-01

    over the more conventional engineering materials, such as higher indentation resistance, higher fracture toughness and greater resistance to impact...entrant materials were fixed at L=H=1.0 mm from which the rib lengths and thickness for each test case could be calculated using Equations (5) and (6...specimen. In all finite element models, the horizontal (2h) and diagonal (l) ribs shown in Figure 2 were idealized by ten and five shell elements

  11. Thermal property prediction and measurement of organic phase change materials in the liquid phase near the melting point

    International Nuclear Information System (INIS)

    O’Connor, William E.; Warzoha, Ronald; Weigand, Rebecca; Fleischer, Amy S.; Wemhoff, Aaron P.

    2014-01-01

    Highlights: • Liquid-phase thermal properties for five phase change materials were estimated. • Various liquid phase and phase transition thermal properties were measured. • The thermal diffusivity was found using a best path to prediction approach. • The thermal diffusivity predictive method shows 15% agreement for organic PCMs. - Abstract: Organic phase change materials (PCMs) are a popular choice for many thermal energy storage applications including solar energy, building envelope thermal barriers, and passive cooling of portable electronics. Since the extent of phase change during a heating or cooling process is dependent upon rapid thermal penetration into the PCM, accurate knowledge of the thermal diffusivity of the PCM in both solid and liquid phases is crucial. This study addresses the existing gaps in information for liquid-phase PCM properties by examining an approach that determines the best path to prediction (BPP) for the thermal diffusivity of both alkanes and unsaturated acids. Knowledge of the BPP will enable researchers to explore the influence of PCM molecular structure on bulk thermophysical properties, thereby allowing the fabrication of optimized PCMs. The BPP method determines which of the tens of thousands of combinations of 22 different available theoretical techniques provides best agreement with thermal diffusivity values based on reported or measured density, heat capacity, and thermal conductivity for each of five PCMs (heneicosane, tricosane, tetracosane, oleic acid, and linoleic acid) in the liquid phase near the melting point. Separate BPPs were calibrated for alkanes based on heneicosane and tetracosane, and for the unsaturated acids. The alkane and unsaturated acid BPPs were then tested on a variety of similar materials, showing agreement with reported/measured thermal diffusivity within ∼15% for all materials. The alkane BPP was then applied to find that increasing the length of alkane chains decreases the PCM thermal

  12. Doped SbTe phase change material in memory cells

    NARCIS (Netherlands)

    in ‘t Zandt, M.A.A.; Jedema, F.J.; Gravesteijn, Dirk J; Gravesteijn, D.J.; Attenborough, K.; Wolters, Robertus A.M.

    2009-01-01

    Phase Change Random Access Memory (PCRAM) is investigated as replacement for Flash. The memory concept is based on switching a chalcogenide from the crystalline (low ohmic) to the amorphous (high ohmic) state and vice versa. Basically two memory cell concepts exist: the Ovonic Unified Memory (OUM)

  13. The materialization phase in the colour rope picture

    International Nuclear Information System (INIS)

    Knoll, J.

    1987-11-01

    The initial phase of ultra-relativistic nucleus-nucleus collisions where matter in form of quarks and real gluons is created is described in terms of a phenomenological strings with multiple colour charge sources at their ends. Consequences upon different observables are reviewed and discussed. (orig.)

  14. Control surface wettability with nanoparticles from phase-change materials

    NARCIS (Netherlands)

    Ten Brink, G. H.; van het Hof, P. J.; Chen, B.; Sedighi, M.; Kooi, B. J.; Palasantzas, G.

    2016-01-01

    The wetting state of surfaces can be controlled physically from the highly hydrophobic to hydrophilic states using the amorphous-to-crystalline phase transition of Ge2Sb2Te5 (GST) nanoparticles as surfactant. Indeed, contact angle measurements show that by increasing the surface coverage of the

  15. 77 FR 28520 - Small Business Size Regulations, Small Business Innovation Research (SBIR) Program and Small...

    Science.gov (United States)

    2012-05-15

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Part 121 RIN 3245-AG46 Small Business Size Regulations, Small Business Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR) Program AGENCY: Small Business Administration. ACTION: Proposed rule. SUMMARY: The U.S. Small Business Administration...

  16. The Results of Complex Research of GSS "SBIRS-Geo 2" Behavior in the Orbit

    Science.gov (United States)

    Sukhov, P. P.; Epishev, V. P.; Sukhov, K. P.; Karpenko, G. F.; Motrunich, I. I.

    2017-04-01

    The new generation of geosynchronous satellites SBIRS of US Air Force early warning system series (Satellite Early Warning System) replaced the previous DSP-satellite series (Defense Support Program). Currently from the territory of Ukraine, several GSS of DSP series and one "SBIRS-Geo 2" are available to observation. During two years of observations, we have received and analyzed for two satellites more than 30 light curves in B, V, R photometric system. As a result of complex research, we propose a model of "SBIRS-Geo" 2 orbital behavior compared with the same one of the DSP-satellite. To control the entire surface of the Earth with 15-16 sec interval, including the polar regions, 4 SBIRS satellites located every 90 deg. along the equator are enough in GEO orbit. Since DSP-satellites provide the coverage of the Earth's surface to 83 deg. latitudes with a period of 50 sec, DSP-satellites should be 8. All the conclusions were made based on an analysis of photometric and coordinate observations using the simulation of the dynamics of their orbital behavior.

  17. Deuterium absorption and material phase characteristics of Zr2Fe

    International Nuclear Information System (INIS)

    Nobile, A.; Mosley, W.C.; Holder, J.S.; Brooks, K.N.

    1992-01-01

    Scanning electron microscope (SEM) images of polished surfaces, electron probe microanalysis, and X-ray powder diffractometry indicated the presence of a continuous Zr 2 Fe phase with secondary phases of ZrFe 2 , Zr 5 FeSn, α-Zr, and Zr 6 Fe 3 O. A statistically-designed experiment to determine the effects of temperature, time, and vacuum quality On activation of St 198 revealed that when activated at low temperature (350 degrees C) deuterium absorption rate was slower when the vacuum quality was pwr (2.5 Pa vs. 3x10 -4 Pa). However, at higher activation temperature (500 degrees C), deuterium absorption rate was fast and was independent of vacuum quality. Deuterium pressure-composition-temperature (P-C-T) data are reported for St 198 in the temperature range 200--500 degrees C. The P-C-T data over the full range of deuterium loading and at temperatures of 350 degrees C and below is described by: K 0e -(ΔH α /RT)=PD 2 q 2 /(q*-q) 2 where ΔHα and K 0 have values of 101.8 kJ·mole -1 and 3.24x10 -8 Pa -1 , and q* is 15.998 kPa·L -1 ·g -1 . At higher temperatures, one or more secondary reactions in the solid phase occur that slowly consume D 2 from the gas phase. XRD suggests these reactions to be: 2 Zr 2 FeD x → x ZrD 2 + x/3 ZrFe 2 + (2 - 2/3x) Zr 2 Fe and Zr 2 FeD x + (2 -1/2x) D 2 → ZrD 2 + Fe, where 0 < x < 3. Reaction between gas phase deuterium and Zr2FC formed in the first reaction accounts for the observed consumption of deuterium from the gas phase by this reaction

  18. Stowing of radioactive materials package during land transport. Third phase

    International Nuclear Information System (INIS)

    Gilles, P.; Chevalier, G.; Pouard, M.; Jolys, J.C.; Draulans, J.; Lafontaine, I.

    1984-01-01

    Phase 3 of this study is mainly experimental. The study is based on the work performed during 2 former studies: phase 1: definition and analysis of reference accidental conditions, and phase 2: selection of some reference accidents and computation of the deceleration forces. The main goal of the study is to draw up a reference document, giving some guidances for the stowing of packages on conveyances for land transportation. The third phase includes four frontal impact tests. The reference package used is a French IL-37 container weighing about 1.3 t. The first test was performed using a truck, loaded with two IL-37 containers and launched at a speed of 50 km/h against a fixed obstacle. The deceleration curve the behaviour of each package and the behaviour of stowing systems are compared with the theoretical results. Various measurements were made during the test: vehicle impact speed; vehicle deceleration, measured at different points on the frame, package deceleration, displacement of attachment points. The impact was filmed from different angles. The second test was performed in the same impact conditions but with a waggon instead of a truck, and loaded with one container. The front of the waggon was equipped with special shock absorbers to obtain the same deceleration as recorded during the truck impact (first test). In the third test the stowing systems were reinforced by a nylon one in order to obtain information of stowing systems of that type and to increase the energy absorption capacity. In the fourth test in addition to being stowed the package was also chocked. The results obtained have shown that it is possible to maintain a package on a truck platform even during a severe frontal impact

  19. Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials

    Science.gov (United States)

    Rehn, Daniel A.; Li, Yao; Pop, Eric; Reed, Evan J.

    2018-01-01

    Structural phase-change materials are of great importance for applications in information storage devices. Thermally driven structural phase transitions are employed in phase-change memory to achieve lower programming voltages and potentially lower energy consumption than mainstream nonvolatile memory technologies. However, the waste heat generated by such thermal mechanisms is often not optimized, and could present a limiting factor to widespread use. The potential for electrostatically driven structural phase transitions has recently been predicted and subsequently reported in some two-dimensional materials, providing an athermal mechanism to dynamically control properties of these materials in a nonvolatile fashion while achieving potentially lower energy consumption. In this work, we employ DFT-based calculations to make theoretical comparisons of the energy required to drive electrostatically-induced and thermally-induced phase transitions. Determining theoretical limits in monolayer MoTe2 and thin films of Ge2Sb2Te5, we find that the energy consumption per unit volume of the electrostatically driven phase transition in monolayer MoTe2 at room temperature is 9% of the adiabatic lower limit of the thermally driven phase transition in Ge2Sb2Te5. Furthermore, experimentally reported phase change energy consumption of Ge2Sb2Te5 is 100-10,000 times larger than the adiabatic lower limit due to waste heat flow out of the material, leaving the possibility for energy consumption in monolayer MoTe2-based devices to be orders of magnitude smaller than Ge2Sb2Te5-based devices.

  20. Analyse of possibilities of increasing housing energy efficiency by application of phase-changing materials

    Directory of Open Access Journals (Sweden)

    Vučeljić-Vavan Sanja

    2009-01-01

    Full Text Available Refurbishment of existing building stock using energy-saving phase-changing smart materials and technologies, in addition to improved indoor climatic conditions, offer an opportunity for increasing housing energy efficiency and value. This fast developing technology becomes increasingly cost-effective with much shorter payback periods. However, it is undertaken only on a limited scale; because of lack of knowledge about their changeable properties and dynamism in that they behave in response to energy fields. Main characteristics, which make them different form others, are: immediacy transience, self-actuation, selectivity and directness. Phase change processes invariably involve the absorbing, storing or releasing of large amounts of energy in the form of latent heat. These processes are reversible and phase-changing materials can undergo an unlimited number of cycles without degradation. Since phase-changing materials can be designed to absorb or release energy at predictable temperatures, they have naturally been explored for use in architecture as a way of helping deal with the thermal environment in a building. Technologies based on sealing phase-changing materials into small pellets have achieved widespread use in connection with radiant floor heating systems, phase change wallboards, mortar or facade systems. Thermal characteristics of existing buildings can be improved on increasing their thermal-stored mass by implementation products of phase-changing smart materials. In addition to contributing to carbon reduction and energy security, using phase-changing materials in the building sector stimulates innovations.

  1. Relaxed energy for transversely isotropic two-phase materials

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Miroslav; Padovani, C.

    2002-01-01

    Roč. 67, 3 (2002), s. 187-204 ISSN 0374-3535 R&D Projects: GA ČR GA201/00/1516 Institutional research plan: CEZ:AV0Z1019905 Keywords : double-well materials * transverse isotropy * quasiconvexity Subject RIV: BA - General Mathematics Impact factor: 0.615, year: 2002

  2. Balancing innovation with commercialization in NASA's Science Mission Directorate SBIR Program

    Science.gov (United States)

    Terrile, R. J.; Jackson, B. L.

    The NASA Science Mission Directorate (SMD) administers a portion of the Small Business Innovative Research (SBIR) Program. One of the challenges of administrating this program is to balance the need to foster innovation in small businesses and the need to demonstrate commercialization by infusion into NASA. Because of the often risky nature of innovation, SBIR programs will tend to drift into a status that rewards proposals that promise to deliver a product that is exactly what was specified in the call. This often will satisfy the metric of providing a clear demonstration of infusion and thus also providing a publishable success story. However, another goal of the SBIR program is to foster innovation as a national asset. Even though data from commercially successful SMD SBIR tasks indicate a higher value for less innovative efforts, there are programmatic and national reasons to balance the program toward risking a portion of the portfolio on higher innovation tasks. Establishing this balance is made difficult because there is a reward metric for successful infusion and commercialization, but none for successful innovation. In general, the ultimate infusion and commercialization of innovative solutions has a lower probability than implementation of established ideas, but they can also have a much higher return on investment. If innovative ideas are valued and solicited in the SBIR program, then NASA technology requirements need to be specified in a way that defines the problem and possible solution, but will also allow for different approaches and unconventional methods. It may also be necessary to establish a guideline to risk a percentage of awards on these innovations.

  3. Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials

    International Nuclear Information System (INIS)

    Su, Di; Jia, Yuting; Alva, Guruprasad; Liu, Lingkun; Fang, Guiyin

    2017-01-01

    Highlights: • The dynamic model of photovoltaic–thermal collector with phase change material was developed. • The performances of photovoltaic–thermal collector are performed comparative analyses. • The performances of photovoltaic–thermal collector with phase change material were evaluated. • Upper phase change material mode can improve performances of photovoltaic–thermal collector. - Abstract: The operating conditions (especially temperature) of photovoltaic–thermal solar collectors have significant influence on dynamic performance of the hybrid photovoltaic–thermal solar collectors. Only a small percentage of incoming solar radiation can be converted into electricity, and the rest is converted into heat. This heat leads to a decrease in efficiency of the photovoltaic module. In order to improve the performance of the hybrid photovoltaic–thermal solar collector, we performed comparative analyses on a hybrid photovoltaic–thermal solar collector integrated with phase change material. Electrical and thermal parameters like solar cell temperature, outlet temperature of air, electrical power, thermal power, electrical efficiency, thermal efficiency and overall efficiency are simulated and analyzed to evaluate the dynamic performance of the hybrid photovoltaic–thermal collector. It is found that the position of phase change material layer in the photovoltaic–thermal collector has a significant effect on the performance of the photovoltaic–thermal collector. The results indicate that upper phase change material mode in the photovoltaic–thermal collector can significantly improve the thermal and electrical performance of photovoltaic–thermal collector. It is found that overall efficiency of photovoltaic–thermal collector in ‘upper phase change material’ mode is 10.7% higher than that in ‘no phase change material’ mode. Further, for a photovoltaic–thermal collector with upper phase change material, it is verified that 3 cm

  4. Quantitative determination of the crystalline phases of the ceramic materials utilizing the Rietveld method

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Lima, J.C. de; Kuhnen, N.C.; Riella, H.G.; Maliska, A.M.

    2009-01-01

    Ceramic materials have properties defined by their chemical and micro-structural composition. The quantification of the crystalline phases is a fundamental stage in the determination of the structure, properties and applications of a ceramic material. Within this context, this study aims is the quantitative determination of the crystalline phases of the ceramic materials developed with addition of mineral coal bottom ash, utilizing the X ray diffraction technique, through the method proposed by Rietveld. For the formulation of the ceramic mixtures a {3,3} simplex-lattice design was used, giving ten formulations of three components (two different types of clays and coal bottom ash). The crystalline phases identified in the ceramic materials after sintering at 1150 deg C during two hours are: quartz, tridimite, mullite and hematite. The proposed methodology utilizing the Rietveld method for the quantification relating to crystalline phases of the materials was shown to be adequate and efficient. (author)

  5. Thermal Protection Performance of Carbon Aerogels Filled with Magnesium Chloride Hexahydrate as a Phase Change Material

    Directory of Open Access Journals (Sweden)

    Ali Kazemi

    2014-02-01

    Full Text Available Carbon aerogels are comprised of a class of low density open-cell foams with large void space, nanometer pore size and composed of sparsely semi-colloidal nanometer sized particles forming an open porous structure. Phase change materials are those with high heat of fusion that could absorb and release a large amount of energy at the time of phase transition. These materials are mostly used as thermal energy storage materials but in addition they could serve as an obstacle for passage of heat during phase changes and this has led to their use in thermal protection systems. In this study, the effect of magnesium chloride hexahydrate, as a phase change material (melting point 115°C, on thermal properties of carbon aerogels is investigated. Thermal performance tests are designed and used for comparing the temperature-time behavior of the samples. DSC is applied to obtain the latent heat of melting of the phase change materials and the SEM tests are used to analyze the microstructure and morphology of carbon aerogels. The results show that the low percentage of phase change materials in carbon aerogels does not have any significant positive effect on carbon aerogels thermal properties. However, these properties are improved by increasing the percentage of phase change materials. With high percentage of phase change materials, a sample surface at 300°C would display an opposite surface with a significant drop in temperature increases, while at 115-200°C, with carbon aerogels, having no phase change materials, there is a severe reduction in the rate of temperature increase of the sample.

  6. Combinatorial materials synthesis and high-throughput screening: an integrated materials chip approach to mapping phase diagrams and discovery and optimization of functional materials.

    Science.gov (United States)

    Xiang, X D

    Combinatorial materials synthesis methods and high-throughput evaluation techniques have been developed to accelerate the process of materials discovery and optimization and phase-diagram mapping. Analogous to integrated circuit chips, integrated materials chips containing thousands of discrete different compositions or continuous phase diagrams, often in the form of high-quality epitaxial thin films, can be fabricated and screened for interesting properties. Microspot x-ray method, various optical measurement techniques, and a novel evanescent microwave microscope have been used to characterize the structural, optical, magnetic, and electrical properties of samples on the materials chips. These techniques are routinely used to discover/optimize and map phase diagrams of ferroelectric, dielectric, optical, magnetic, and superconducting materials.

  7. A universal preconditioner for simulating condensed phase materials

    Energy Technology Data Exchange (ETDEWEB)

    Packwood, David; Ortner, Christoph, E-mail: c.ortner@warwick.ac.uk [Mathematics Institute, University of Warwick, Coventry CV4 7AL (United Kingdom); Kermode, James, E-mail: j.r.kermode@warwick.ac.uk [Warwick Centre for Predictive Modelling, School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Mones, Letif [Mathematics Institute, University of Warwick, Coventry CV4 7AL (United Kingdom); Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Bernstein, Noam [Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC 20375 (United States); Woolley, John [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Gould, Nicholas [Scientific Computing Department, STFC-Rutherford Appleton Laboratory Chilton, Oxfordshire OX11 0QX (United Kingdom); Csányi, Gábor, E-mail: gc121@cam.ac.uk [Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2016-04-28

    We introduce a universal sparse preconditioner that accelerates geometry optimisation and saddle point search tasks that are common in the atomic scale simulation of materials. Our preconditioner is based on the neighbourhood structure and we demonstrate the gain in computational efficiency in a wide range of materials that include metals, insulators, and molecular solids. The simple structure of the preconditioner means that the gains can be realised in practice not only when using expensive electronic structure models but also for fast empirical potentials. Even for relatively small systems of a few hundred atoms, we observe speedups of a factor of two or more, and the gain grows with system size. An open source Python implementation within the Atomic Simulation Environment is available, offering interfaces to a wide range of atomistic codes.

  8. Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays

    National Research Council Canada - National Science Library

    Yang, Kyoung

    2005-01-01

    This final report summarizes the progress during the Phase I SBIR project entitled "Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays...

  9. SmartTopo Intelligent Real-Time Topographic Information Collection System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The SmartTopo SBIR phase I program resulted in the creation of the first technology designed to provide robotic vehicles with the ability to "learn and remember" the...

  10. n x 10 Gbps Offload NIC for NASA, NLR, Grid Computing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase 1 proposal addresses the 2008 NASA SBIR Research Topic S6.04 Data Management - Storage, Mining and Visualization (GSFC). The subtopic we address is...

  11. Innovative Ultra-High Efficiency Cryogenic Actuators for Rocket Test Facilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The SBIR Phase I project will develop advanced ultra-high efficiency cryogenic actuators for NASA cryogenic fluid transfer application. The actuator will have low...

  12. Lightweight, High Strength Nano-Composite Magnesium for Radiators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR, Terves will develop processing routes to produce high thermal conductivity magnesium composites for use in heat transfer applications such as...

  13. Polymer Derived Rare Earth Silicate Nanocomposite Protective Coatings for Nuclear Thermal Propulsion Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging a rapidly evolving state-of-the-art technical base empowered by Phase I NASA SBIR funding, NanoSonic's polymer derived rare earth silicate EBCs will...

  14. Polymer Flip Chips with Extreme Temperature Stability in Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed SBIR Phase I program is to develop highly thermally and electrically conductive nanocomposites for space-based flip chips for...

  15. Optical Sensors for Hydrogen and Oxygen for Unambiguous Detection in Their Mutual Presence, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase I SBIR project is to develop sensors that can discriminate the presence of combustible gases like oxygen (O2) in hydrogen (H2) or H2 in O2...

  16. Fiber Optic Mass Flow Gauge for Liquid Cryogenic Fuel Facilities Monitoring and Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a fiber optic mass flow gauge that will aid in managing liquid hydrogen and oxygen fuel storage and transport. The increasing...

  17. GaN Bulk Growth and Epitaxy from Ca-Ga-N Solutions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR proposal addresses the liquid phase epitaxy (LPE) of gallium nitride (GaN) films using nitrogen-enriched metal solutions. Growth of GaN from solutions...

  18. Bandwidth Controllable Tunable Filter for Hyper-/Multi-Spectral Imager, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal introduces a fast speed bandwidth controllable tunable filter for hyper-/multi-spectral (HS/MS) imagers. It dynamically passes a variable...

  19. Software Infrastructure to Enable Modeling & Simulation as a Service (M&SaaS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 2 project will produce a software service infrastructure that enables most modeling and simulation (M&S) activities from code development and...

  20. mmWave PolyStrata(R) High Power Compact Transceiver, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA SBIR Topic S1.02 on Microwave Technologies for Remote Sensing, Nuvotronics is pleased to propose a Phase I program focused on delivering an...

  1. High Thermal Conductivity Functionally Graded Heat Sinks for High Power Packaging, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase I program proposes the development of a high thermal conductivity (400 W/mK), low coefficient of thermal expansion (7-10 ppm/?K), and light...

  2. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a tunable single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  3. An Instrument for Inspecting Aspheric Optical Surfaces and Components, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This is a Phase II SBIR proposal to develop an extremely versatile optical inspection tool for aspheric optical components and optics that are not easily inspected...

  4. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  5. Software-Defined Ground Stations - Enhancing Multi-Mission Support, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 1 proposal to NASA requests $99,055.69 to enhance multiple mission support in ground stations through the use of software defined radios and virtual...

  6. Polymer Derived Rare Earth Silicate Nanocomposite Protective Coatings for Nuclear Thermal Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this Phase I SBIR program is to develop polymer derived rare earth silicate nanocomposite environmental barrier coatings (EBC) for providing...

  7. Affordable Maximum Performance Solar Array for NASA and Commercial Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS), and Space Systems Loral as a key subcontractor and potential commercial infusion partner, will focus the proposed SBIR Phase 2...

  8. Printed Ultra-High Temperature NDE Sensors for Complex Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal will address the use of innovative additive manufacturing technologies applicable to Non-Destructive Evaluation (NDE) and Structural...

  9. Solid-Solid Vacuum Regolith Heat-Exchanger for Oxygen Production, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase-1 project will demonstrate the feasibility of using a novel coaxial counterflow solid-solid heat exchanger to recover heat energy from spent regolith...

  10. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase II effort will develop a 1 x 10 prototype non-mechanical fiber optic switch for use with high power lasers. The proposed optical device is a...

  11. Handheld Nonlinear Detection of Delamination and Intrusion Faults in Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I of the SBIR program, LEEOAT Company will develop a hand-held high-resolution ultrasonic nonlinear imager for non-destructive inspection (NDI) of...

  12. A New Approach to Commercialization of NASA's Human Research Program Technologies, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal describes, "A New Approach to Commercialization of NASA's Human Research Program Technologies." NASA has a powerful research program that...

  13. Lightweight Design of an HTS Coil for the VASIMR Experiment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II SBIR contract Tai-Yang Research Company of Tennessee proposes to design, fabricate, and test an ultra-lightweight High Temperature Superconducting...

  14. Feasibility of a 5mN Laser-Driven Mini-Thruster, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a next-generation thruster under a Phase II SBIR which we believe can meet NASA requirements after some modifications and improvements. It is the...

  15. Flight-appropriate 3D Terrain-rendering Toolkit for Synthetic Vision, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TerraMetrics proposes an SBIR Phase I R/R&D effort to develop a key 3D terrain-rendering technology that provides the basis for successful commercial deployment...

  16. High-Resolution Silicon-based Particle Sensor with Integrated Amplification, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will deliver a breakthrough in particle-detection sensors, by integrating an amplifying junction as part of the detector topology. Focusing...

  17. Data Description Exchange Services for Heterogeneous Vehicle and Spaceport Control and Monitor Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — CCT has designed and prototyped, as part of the Phase-1 SBIR, a generic platform independent software capability for exchange of semantic control and monitoring...

  18. Wireless Networked Sensors for Remote Monitoring in Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I SBIR program would fabricate wireless networked nanomembrane (NM) based surface pressure sensors for remote monitoring in propulsion systems, using...

  19. Carbon Nanotube-Based Adsorbents for Volatile Air Contaminants, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In completing the Phase I SBIR, Agave BioSystems and the Universities Space Research Association, have successfully demonstrated proof of concept for the use of...

  20. Deployable Engine Air-Brake for Drag Management Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ATA Engineering, Inc., (ATA) proposes a Phase II SBIR program to demonstrate an innovative engine air-brake (EAB) technology that uses a deployable swirl vane...

  1. Lightweight IMM Multi-Junction Photovoltaic Flexible Blanket Assembly, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — DSS's recently completed successful NASA SBIR Phase 1 program has established a TRL 3/4 classification for an innovative IMM PV Integrated Modular Blanket Assembly...

  2. In situ Laser Diagnostics for Arc-Jet Facilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR Phase I effort, Los Gatos Research (LGR) proposes to develop novel instrumentation based on laser absorption spectroscopy techniques for ultrasensitive...

  3. Automated High-Volume Manufacturing of Modular Photovoltaic Panel Assemblies for Space Solar Arrays, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) will focus the proposed SBIR Phase 2 program on the development and demonstration of an automated robotic manufacturing...

  4. Low Cost P/M Aluminum Syntactic Foam for Blade Containment in Turbine Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I SBIR proposes a low density (0.75-1.2g/cc)syntactic aluminum foam energy absorber co-manufactured inside a composite fan case for turbine...

  5. Damage Adaptation Using Integrated Structural, Propulsion, and Aerodynamic Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed SBIR Phase I plan of research seeks to develop and demonstrate an integrated architecture designed to compensate for combined propulsion, airframe,...

  6. 10-100 Gbps Offload NIC for WAN, NLR, Grid Computing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase 1 proposal addresses the 2006 NASA SBIR Research Topic S8.05 Science Data Management and Visualization (GSFC). The subtopic we address is Distributed Data...

  7. Freeform optics: a non-contact "test plate" for manufacturing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this NASA SBIR Phase I study is to determine the feasibility of measuring precision (fractional wave) freeform optics using non-contact areal (imaging)...

  8. Digital acquisition and wavelength control of seed laser for space-based Lidar applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposes to establish the feasibility of using a space qualifiable Field Programmable Gate Array (FPGA) based digital controller to autonomously...

  9. Polymer-Reinforced, Nonbrittle, Lightweight Cryogenic Insulation for Reduced Life-Cycle Costs, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II SBIR project focuses to continue developing cryogenic insulation foams that are flexible, deforming under compression. InnoSense LLC (ISL) demonstrated...

  10. High Power Compact Single-Frequency Volume Bragg Er-Doped Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this NASA SBIR Phase I proposal is to develop the prototype of a compact single-frequency mode one longitudinal and one transverse mode laser...

  11. Synthesis and characteristics of composite phase change humidity control materials

    DEFF Research Database (Denmark)

    Qin, Menghao; Chen, Zhi

    2017-01-01

    ) and the thermal gravimetric analysis (TGA) were used to determine the thermal properties and thermal stability. Both the moisture transfer coefficient and moisture buffer value (MBV) of different PCHCMs were measured by the improved cup method. The DSC results showed that the SiO2 shell can reduce the super...... synthesized with methyl triethoxysilane by the sol–gel method. The vesuvianite, sepiolite and zeolite were used as hygroscopic materials. The scanning electron microscopy (SEM) was used to measure the morphology profiles of the microcapsules and PCHCM. The differential scanning calorimetry (DSC...

  12. Microchannel plate special nuclear materials sensor

    International Nuclear Information System (INIS)

    Feller, W.B.; White, P.L.; White, P.B.; Siegmund, O.H.W.; Martin, A.P.; Vallerga, J.V.

    2011-01-01

    Nova Scientific Inc., is developing for the Domestic Nuclear Detection Office (DNDO SBIR no. HSHQDC-08-C-00190), a solid-state, high-efficiency neutron detection alternative to 3 He gas tubes, using neutron-sensitive microchannel plates (MCPs) containing 10 B and/or Gd. This work directly supports DNDO development of technologies designed to detect and interdict nuclear weapons or illicit nuclear materials. Neutron-sensitized MCPs have been shown theoretically and more recently experimentally, to be capable of thermal neutron detection efficiencies equivalent to 3 He gas tubes. Although typical solid-state neutron detectors typically have an intrinsic gamma sensitivity orders of magnitude higher than that of 3 He gas detectors, we dramatically reduce gamma sensitivity by combining a novel electronic coincidence rejection scheme, employing a separate but enveloping gamma scintillator. This has already resulted in a measured gamma rejection ratio equal to a small 3 He tube, without in principle sacrificing neutron detection efficiency. Ongoing improvements to the MCP performance as well as the coincidence counting geometry will be described. Repeated testing and validation with a 252 Cf source has been underway throughout the Phase II SBIR program, with ongoing comparisons to a small commercial 3 He gas tube. Finally, further component improvements and efforts toward integration maturity are underway, with the goal of establishing functional prototypes for SNM field testing.

  13. Performance evaluation on solar still integrated with nano-composite phase change materials

    International Nuclear Information System (INIS)

    Rajasekhar, G.; Eswaramoorthy, M.

    2015-01-01

    This paper communicates the performance evaluation of single slope solar still integrated with nano-composite phase change materials and compare with the experimental results of with and without phase change materials. A solar still with 1 m"2 surface area is developed with non-selective coating of absorber sheet with the provision of thermal energy storage materials. The solar still is tested on typical days with and without thermal energy storage materials. It is found that from the experimental studies that nano-materials (Al_2O_3) dispersed in paraffin wax is giving better cumulative yield of distillate than paraffin wax alone and without paraffin wax thermal storage. The daily efficiency of the solar still is computed for solar still with nano-composite phase change materials is 45% and solar still paraffin wax alone thermal storage is 40% and solar still without any thermal storage is 38%. It is concluded from the experimental studies; solar still integrated with nano-composite phase change materials gives better performance than with and without phase change material alone. (authors)

  14. Phase II evaluation of waste concrete road materials for use in oyster aquaculture - field test.

    Science.gov (United States)

    2015-02-01

    The overall objective of this study was to determine the suitability of recycled concrete aggregate : (RCA) from road projects as bottom conditioning material for on-bottom oyster aquaculture in the : Chesapeake Bay. During this Phase of the study, t...

  15. Innovative Structural and Material Concepts for Low-Weight Low-Drag Aircraft Design, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this multi-phase project is to explore, develop, integrate, and test several innovative structural design concepts and new material...

  16. Synchrotron radiation : characteristics and application in structural studies and phase transformations of materials

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1984-01-01

    The main characteristics of the synchrotron radiation for studying atomic structure and phase transformations in materials are presented. Some specific applications in alloys, glass and solids are described. (E.G.) [pt

  17. Integration of Magneto-Optical Materials for Novel Optical Devices & Magnetophotonic Crystals, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to capitalize on our Phase I success in monolithically integrating magneto-optic and magnetic materials with semiconductor platforms in order to...

  18. Phase II evaluation of waste concrete road materials for use in oyster aquaculture - field test.

    Science.gov (United States)

    2014-11-01

    The overall objective of this study was to determine the suitability of recycled concrete : aggregate (RCA) from road projects as bottom conditioning material for on-bottom oyster : aquaculture in the Chesapeake Bay. During this Phase of the study, t...

  19. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liang [College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)], E-mail: doseng_1982@hotmail.com; Xu Lingling; Shang Hongbo; Zhang Zhibin [College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2009-03-15

    For the last 20 years, microencapsulated phase change materials (MicroPCMs), which combine microencapsulation technology and phase change material, have been attracted more and more interest. By overcoming some limitations of the PCMs, the MicroPCMs improve the efficiency of PCMs and make it possible to apply PCMs in many areas. In this experiment, polyurea microcapsules containing phase change materials were prepared using interfacial polycondensation method. Toluene-2,4-diisocyanate (TDI) and ethylenediamine (EDA) were chosen as monomers. Butyl stearate was employed as a core material. The MicroPCMs' properties have been characterized by dry weight analysis, differential scanning calorimetry, Fourier transform IR spectra analysis and optical microscopy. The results show that the MicroPCMs were synthesized successfully and that, the phase change temperature was about 29 deg. C, the latent heat of fusion was about 80 J g{sup -1}, the particle diameter was 20-35 {mu}m.

  20. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system

    International Nuclear Information System (INIS)

    Chen Liang; Xu Lingling; Shang Hongbo; Zhang Zhibin

    2009-01-01

    For the last 20 years, microencapsulated phase change materials (MicroPCMs), which combine microencapsulation technology and phase change material, have been attracted more and more interest. By overcoming some limitations of the PCMs, the MicroPCMs improve the efficiency of PCMs and make it possible to apply PCMs in many areas. In this experiment, polyurea microcapsules containing phase change materials were prepared using interfacial polycondensation method. Toluene-2,4-diisocyanate (TDI) and ethylenediamine (EDA) were chosen as monomers. Butyl stearate was employed as a core material. The MicroPCMs' properties have been characterized by dry weight analysis, differential scanning calorimetry, Fourier transform IR spectra analysis and optical microscopy. The results show that the MicroPCMs were synthesized successfully and that, the phase change temperature was about 29 deg. C, the latent heat of fusion was about 80 J g -1 , the particle diameter was 20-35 μm

  1. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chen; Lingling, Xu; Hongbo, Shang; Zhibin, Zhang [College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2009-03-15

    For the last 20 years, microencapsulated phase change materials (MicroPCMs), which combine microencapsulation technology and phase change material, have been attracted more and more interest. By overcoming some limitations of the PCMs, the MicroPCMs improve the efficiency of PCMs and make it possible to apply PCMs in many areas. In this experiment, polyurea microcapsules containing phase change materials were prepared using interfacial polycondensation method. Toluene-2,4-diisocyanate (TDI) and ethylenediamine (EDA) were chosen as monomers. Butyl stearate was employed as a core material. The MicroPCMs' properties have been characterized by dry weight analysis, differential scanning calorimetry, Fourier transform IR spectra analysis and optical microscopy. The results show that the MicroPCMs were synthesized successfully and that, the phase change temperature was about 29 C, the latent heat of fusion was about 80 J g{sup -1}, the particle diameter was 20-35 {mu}m. (author)

  2. Field experiments on the use of phase changing materials, insulation materials and passive solar radiation in the built environment

    NARCIS (Netherlands)

    Entrop, Alexis Gerardus; Brouwers, Jos; Reinders, Angelina H.M.E.; McCarthy, J.; Foliente, G.

    2008-01-01

    This paper describes the development of an experimental research facility to assess the effectiveness of Phase Change Materials (PCM), that can be used for passive solar heating. Four test boxes are constructed representing the conventional and future Dutch building practices regarding insulation

  3. THE EFFECT OF PHASE CHANGE MATERIALS ON THE TENSILE STRENGTH

    Directory of Open Access Journals (Sweden)

    HERROELEN Thomas

    2016-05-01

    Full Text Available PCM’s need some important properties to have use such as high heat storage capacity, easy availability and low cost and can have different effects such as flavour, softness or exchange of heat. They are put inside of microcapsules, so they can be inbedded inside the strain, otherwise it wouldn’t be so effective. So basically the microcapsules consist of a core that’s the PCM and a polymer shell. This shell needs to be strong enough to hold the PCM and also withstand up to a certain level of heat and mechanical damage. This study investigates the tensile strength of fabrics composed by fibres, some of these fibres have benn inbedded phase change microcapsules (PCM’s. The investigated fabrics are divided by composition and by structure. By knitting the fabrics in different structures you could be able to investigate which knitting way could be the most effective to have a high tensile strength. Tensile strength tests are performed on specimens with different structures but also with different compositions which could indicate that some strains are tougher then others and more specifically if the PCM’s have a different effect on them.

  4. Structural properties of the metastable state of phase change materials investigated by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Merkelbach, Philipp; Eijk, Julia van; Wuttig, Matthias [I. Phys. Institut (IA), RWTH Aachen, 52056 Aachen (Germany); Braun, Carolin [Institut fuer Anorg. Chemie, CAU Kiel, 24098 Kiel (Germany)

    2008-07-01

    Phase change alloys are among the most promising materials for novel data storage devices. Since several years Phase Change Materials based on Ge-Sb-Te- alloys have been used in optical data storage solutions like rewriteable CDs and DVDs. Recently these alloys have been explored as potential candidates for fast nonvolatile electrical data storage devices in Phase Change Random Access Memory (PCRAM). Besides attracting considerable interest from the commercial point of view phase change materials are very interesting also due to their remarkable physical properties. They have the ability to be reversibly switched within a few nanoseconds between the amorphous and the crystalline phase, while changing their physical properties such as optical reflectivity and electrical resistivity significantly. Even though the electronic properties show a drastical contrast such fast transitions can only be caused by small atomic rearrangements. This behavior calls for a deeper understanding of the structural properties of the alloys. We have performed powder diffraction measurements of the crystal phase of various GeSbTe alloys, to determine the structural similarities and differences of several alloys. Understanding the crystal structure of phase change materials is a key to a deeper insight into the properties of these promising materials.

  5. Replacement of Ablators with Phase-Change Material for Thermal Protection of STS Elements

    Science.gov (United States)

    Kaul, Raj K.; Stuckey, Irvin; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    As part of the research and development program to develop new Thermal Protection System (TPS) materials for aerospace applications at NASA's Marshall Space Flight Center (MSFC), an experimental study was conducted on a new concept for a non-ablative TPS material. Potential loss of TPS material and ablation by-products from the External Tank (ET) or Solid Rocket Booster (SRB) during Shuttle flight with the related Orbiter tile damage necessitates development of a non-ablative thermal protection system. The new Thermal Management Coating (TMC) consists of phase-change material encapsulated in micro spheres and a two-part resin system to adhere the coating to the structure material. The TMC uses a phase-change material to dissipate the heat produced during supersonic flight rather than an ablative material. This new material absorbs energy as it goes through a phase change during the heating portion of the flight profile and then the energy is slowly released as the phase-change material cools and returns to its solid state inside the micro spheres. The coating was subjected to different test conditions simulating design flight environments at the NASA/MSFC Improved Hot Gas Facility (IHGF) to study its performance.

  6. Modeling and impacts of the latent heat of phase change and specific heat for phase change materials

    Science.gov (United States)

    Scoggin, J.; Khan, R. S.; Silva, H.; Gokirmak, A.

    2018-05-01

    We model the latent heats of crystallization and fusion in phase change materials with a unified latent heat of phase change, ensuring energy conservation by coupling the heat of phase change with amorphous and crystalline specific heats. We demonstrate the model with 2-D finite element simulations of Ge2Sb2Te5 and find that the heat of phase change increases local temperature up to 180 K in 300 nm × 300 nm structures during crystallization, significantly impacting grain distributions. We also show in electrothermal simulations of 45 nm confined and 10 nm mushroom cells that the higher amorphous specific heat predicted by this model increases nucleation probability at the end of reset operations. These nuclei can decrease set time, leading to variability, as demonstrated for the mushroom cell.

  7. Speci﬿c contact resistance of phase change materials to metal electrode

    NARCIS (Netherlands)

    Roy, Deepu; in 't Zandt, Micha A.A.; Wolters, Robertus A.M.

    2010-01-01

    For phase change random access memory (PCRAM) cells, it is important to know the contact resistance of phase change materials (PCMs) to metal electrodes at the contacts. In this letter, we report the systematic determination of the speci﬿c contact resistance (Ͽc ) of doped Sb2Te and Ge2Sb2Te5 to TiW

  8. Evaluation of waste concrete road materials for use in oyster aquaculture - Phase 3.

    Science.gov (United States)

    2016-08-01

    This project was the final phase of a three-phase project. The primary objective was to determine the suitability of recycled concrete aggregate (RCA) from road projects as a bottom conditioning material for on-bottom oyster aquaculture in the Chesap...

  9. Bias dependent specic contact resistance of phase change material to metal contacts

    NARCIS (Netherlands)

    Roy, Deepu; in 't Zandt, Micha; Wolters, Robertus A.M.

    2010-01-01

    Knowledge of contact resistance of phase change materials (PCM) to metal electrodes is important for scaling, device modeling and optimization of phase change random access memory (PCRAM) cells. In this article, we report the systematic determination of the speci_c contact resistance (_c) with

  10. Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials

    Science.gov (United States)

    Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang

    2018-04-01

    The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.

  11. Design rules for phase-change materials in data storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Lencer, Dominic; Salinga, Martin [I. Physikalisches Institut IA, RWTH Aachen University, 52056 Aachen (Germany); Wuttig, Matthias [I. Physikalisches Institut IA, RWTH Aachen University, 52056 Aachen (Germany); Juelich-Aachen Research Alliance, Section Fundamentals of Future Information Technology (JARA-FIT), 52056 Aachen (Germany)

    2011-05-10

    Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to optimize them with respect to specific applications. Design rules that can explain why the materials identified so far enable phase-change based devices would hence be very beneficial. This article describes materials that have been successfully employed and discusses common features regarding both typical structures and bonding mechanisms. It is shown that typical structural motifs and electronic properties can be found in the crystalline state that are indicative for resonant bonding, from which the employed contrast originates. The occurence of resonance is linked to the composition, thus providing a design rule for phase-change materials. This understanding helps to unravel characteristic properties such as electrical and thermal conductivity which are discussed in the subsequent section. Then, turning to the transition kinetics between the phases, the current understanding and modeling of the processes of amorphization and crystallization are discussed. Finally, present approaches for improved high-capacity optical discs and fast non-volatile electrical memories, that hold the potential to succeed present-day's Flash memory, are presented. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Design rules for phase-change materials in data storage applications.

    Science.gov (United States)

    Lencer, Dominic; Salinga, Martin; Wuttig, Matthias

    2011-05-10

    Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to optimize them with respect to specific applications. Design rules that can explain why the materials identified so far enable phase-change based devices would hence be very beneficial. This article describes materials that have been successfully employed and dicusses common features regarding both typical structures and bonding mechanisms. It is shown that typical structural motifs and electronic properties can be found in the crystalline state that are indicative for resonant bonding, from which the employed contrast originates. The occurence of resonance is linked to the composition, thus providing a design rule for phase-change materials. This understanding helps to unravel characteristic properties such as electrical and thermal conductivity which are discussed in the subsequent section. Then, turning to the transition kinetics between the phases, the current understanding and modeling of the processes of amorphization and crystallization are discussed. Finally, present approaches for improved high-capacity optical discs and fast non-volatile electrical memories, that hold the potential to succeed present-day's Flash memory, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.

    Science.gov (United States)

    Zhu, Min; Cojocaru-Mirédin, Oana; Mio, Antonio M; Keutgen, Jens; Küpers, Michael; Yu, Yuan; Cho, Ju-Young; Dronskowski, Richard; Wuttig, Matthias

    2018-05-01

    Laser-assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser-assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Experimental Studies of Phase Change and Microencapsulated Phase Change Materials in a Cold Storage/Transportation System with Solar Driven Cooling Cycle

    OpenAIRE

    Lin Zheng; Wei Zhang; Fei Liang; Shuang Lin; Xiangyu Jin

    2017-01-01

    The paper presents the different properties of phase change material (PCM) and Microencapsulated phase change material (MEPCM) employed to cold storage/transportation system with a solar-driven cooling cycle. Differential Scanning Calorimeter (DSC) tests have been performed to analyze the materials enthalpy, melting temperature range, and temperature range of solidification. KD2 Pro is used to test the thermal conductivities of phase change materials slurry and the results were used to compar...

  15. The Department of Defense FY 1998 Small Business Innovation Research (SBIR) Program. Program Solicitation 98.2

    National Research Council Canada - National Science Library

    1998-01-01

    ...), and Office of the Secretary of Defense (OSD), hereafter referred to as DoD Components, invite small business firms to submit proposals under this solicitation for the Small Business Innovation Research (SBIR) program...

  16. Program Solicitation 2001.2. Closing Date: 15 August 2001. FY 2001 Small Business Innovation Research (SBIR) Program

    National Research Council Canada - National Science Library

    2001-01-01

    ...), and Chemical and Biological Defense (CBD) hereafter referred to as DoD Components, invite small business firms to submit proposals under this solicitation for the Small Business Innovation Research (SBIR) program...

  17. The Department of Defense FY 1999 Small Business Innovation Research (SBIR) Program. Program Solicitation 99.2

    National Research Council Canada - National Science Library

    1999-01-01

    .... Special Operations Command (SOCOM), hereafter referred to as DoD Components, invite small business firms to submit proposals under this solicitation for the Small Business Innovation Research (SBIR) program...

  18. The Department of Defense FY 2000 Small Business Innovation Research (SBIR) Program: Program Solicitation 00.1

    National Research Council Canada - National Science Library

    2000-01-01

    ... (NIMA), and U.S. Special Operations Command (SOCOM), hereafter referred to as DoD Components, invite small business firms to submit proposals under this solicitation for the Small Business Innovation Research (SBIR) program...

  19. Examination of rapid phase change in copper wires to improve material models and understanding of burst

    Science.gov (United States)

    Olles, Joseph; Garasi, Christopher; Ball, J. Patrick

    2017-11-01

    Electrically-pulsed wires undergo multiple phase changes including a postulated metastable phase resulting in explosive wire growth. Simulations using the MHD approximation attempt to account for the governing physics, but lack the material properties (equations-of-state and electrical conductivity) to accurately predict the phase evolution of the exploding (bursting) wire. To explore the dynamics of an exploding copper wire (in water), we employ a digital micro-Schlieren streak photography technique. This imaging quantifies wire expansion and shock waves emitted from the wire during phase changes. Using differential voltage probes, a Rogowski coil, and timing fiducials, the phase change of the wire is aligned with electrical power and energy deposition. Time-correlated electrical diagnostics and imaging allow for detailed validation of MHD simulations, comparing observed phases with phase change details found in the material property descriptions. In addition to streak imaging, a long exposure image is taken to capture axial striations along the length of the wire. These images are used to compare with results from 3D MHD simulations which propose that these perturbations impact the rate of wire expansion and temporal change in phases. If successful, the experimental data will identify areas for improvement in the material property models, and modeling results will provide insight into the details of phase change in the wire with correlation to variations in the electrical signals.

  20. Crack propagation in touch ductile materials. Phase II

    International Nuclear Information System (INIS)

    Venter, R.D.; Sinclair, A.N.; McCammond, D.

    1989-06-01

    The thrust of this work was to investigate published J material resistance and stress-strain data applicable to the understanding of crack propagation in tough ductile steels, particularly SA 106 Grade B pipe steel. This data has been assembled from PIFRAC, AECB report INFO-0254-1 and Ontario Hydro sources and has been uniformly formatted and presented to facilitate comparison and assessment. While the data is in many aspects incomplete it has enabled an evaluation of the influence of temperature, specimen thickness and specimen orientation to be made in the context of the experimental J-R curves so determined. Comparisons of the stress-strain data within the Ramburg-Osgood formulation are also considered. A further component of this report addresses the development of the required software to utilize what is referred to as the engineering approach to elasto-plastic analysis to investigate the load carrying capacity of selected cracked pipe geometries which are representative of applied crack propagation studies associated with piping systems in the nuclear industry. Three specific geometries and loading situations, identified as Condition A, B and C have been evaluated; the results are presented and illustrate the variation in applied load as a function of an initial and final crack extension leading to instability

  1. Effect of microencapsulated phase change material in sandwich panels

    Energy Technology Data Exchange (ETDEWEB)

    Castellon, Cecilia; Medrano, Marc; Roca, Joan; Cabeza, Luisa F. [GREA Innovacio Concurrent, Edifici CREA, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida (Spain); Navarro, Maria E.; Fernandez, Ana I. [Departamento de Ciencias de los Materiales e Ingenieria Metalurgica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Lazaro, Ana; Zalba, Belen [Instituto de Investigacion en Ingenieria de Aragon, I3A, Grupo de Ingenieria Termica y Sistemas Energeticos (GITSE), Dpto. Ingenieria Mecanica, Area de Maquinas y Motores Termicos, Universidad de Zaragoza, Campus Politecnico Rio Ebro, Edificio ' ' Agustin de Betancourt,' ' Maria de Luna s/n, 50018 Zaragoza (Spain)

    2010-10-15

    Sandwich panels are a good option as building materials, as they offer excellent characteristics in a modular system. The goal of this study was to demonstrate the feasibility of using the microencapsulated PCM (Micronal BASF) in sandwich panels to increase their thermal inertia and to reduce the energy demand of the final buildings. In this paper, to manufacture the sandwich panel with microencapsulated PCM three different methods were tested. In case 1, the PCM was added mixing the microencapsulated PCM with one of the components of the polyurethane. In the other two cases, the PCM was added either a step before (case 2) or a step after (case 3) to the addition of the polyurethane to the metal sheets. The results show that in case 1 the effect of PCM was overlapped by a possible increase in thermal conductivity, but an increase of thermal inertia was found in case 3. In case 2, different results were obtained due to the poor distribution of the PCM. Some samples showed the effect of the PCM (higher thermal inertia), and other samples results were similar to the conventional sandwich panel. In both cases (2 and 3), it is required to industrialize the process to improve the results. (author)

  2. Air Force/Industry F-35/F-22 Technology Interchange Workshop for Small Business Innovation Research (SBIR): Plenary Session

    Science.gov (United States)

    2007-11-28

    Identification/Solution Process • Senior leader engagement • Joint AFRL/Product center process • Multi-directorate AFRL engagement • PEO/ TEO approval...SPO Primes participation Strategy Driven Process Industry days PEO/ TEO Meeting Jan - May Prioritized Tech Solutions Existing SBIRs SBIR Topics...Electronic parts & components, Frontier now supports the Global Hawk Joint Stars, B-1B, KC -135, C-17, F-15E, & DoD’s Defense Support Program (DSP

  3. Interface Characterization of Metals and Metal-nitrides to Phase Change Materials

    NARCIS (Netherlands)

    Roy, Deepu; Gravesteijn, Dirk J; Wolters, Robertus A.M.

    2011-01-01

    We have investigated the interfacial contact properties of the CMOS compatible electrode materials W, TiW, Ta, TaN and TiN to doped-Sb2Te phase change material (PCM). This interface is characterized both in the amorphous and in the crystalline state of the doped-Sb2Te. The electrical nature of the

  4. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    We show how composites with extremal or unusual thermal expansion coefficients can be designed using a numerical topology optimization method. The composites are composed of two different material phases and void. The optimization method is illustrated by designing materials having maximum therma...

  5. Does nanoparticles dispersed in a phase change material improve melting characteristics?

    NARCIS (Netherlands)

    Farsani, Rouhollah Yadollahi; Raisi, Afrasiab; Nadooshan, Afshin Ahmadi; Vanapalli, Srinivas

    2017-01-01

    Nanoparticles dispersed in a phase change material alter the thermo-physical properties of the base material, such as thermal conductivity, viscosity, and specific heat capacity. These properties combined with the configuration of the cavity, and the location of the heat source, influence the

  6. Constitutive modeling of two phase materials using the Mean Field method for homogenization

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.

    2010-01-01

    A Mean-Field homogenization framework for constitutive modeling of materials involving two distinct elastic-plastic phases is presented. With this approach it is possible to compute the macroscopic mechanical behavior of this type of materials based on the constitutive models of the constituent

  7. Research framework for an experimental study on phase change materials in scaled models of dutch dwellings

    NARCIS (Netherlands)

    Muthing, F.; Entrop, A.G.; Brouwers, H.J.H.

    2009-01-01

    In modern Dutch dwellings, about 10% of the annual use of primary energy is used for cooling, whereas about 50% of the primary energy is used for heating. With the technology of Phase Change Materials (PCMs) energy savings can be made in both areas. PCMs are materials with a high latent heat

  8. Research framework for an experimental study on phase change materials in scaled models of Dutch dwellings

    NARCIS (Netherlands)

    Müthing, F.; Entrop, Alexis Gerardus; Brouwers, Jos; Durmisevic, Elma

    2009-01-01

    In modern Dutch dwellings, about 10% of the annual use of primary energy is used for cooling, whereas about 50% of the primary energy is used for heating. With the technology of Phase Change Materials (PCMs) energy savings can be made in both areas. PCMs are materials with a high latent heat

  9. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science.

    Science.gov (United States)

    Mayo, Sheridan C; Stevenson, Andrew W; Wilkins, Stephen W

    2012-05-24

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

  10. Preparation and characterization of novel anion phase change heat storage materials.

    Science.gov (United States)

    Hong, Wei; Lil, Qingshan; Sun, Jing; Di, Youbo; Zhao, Zhou; Yu, Wei'an; Qu, Yuan; Jiao, TiFeng; Wang, Guowei; Xing, Guangzhong

    2013-10-01

    In this paper, polyurethane phase change material was successfully prepared with TDI with BDO for hard segments and PEG for soft segments. Moreover, based on this the solid-solid phase change material, A-PCM1030 which can release anions was prepared with the successful addition of anion additives A1030 for the first time. Then the test of the above material was conducted utilizing FT-IR, DSC, TEM, WAXD and Air Ion Detector. The Results indicated that the polyurethane phase change material possesses excellent thermal stability since there was no appearance of liquid leakage and phase separation after 50 times warming-cooling thermal cycles. It also presented reversibility on absorbing and releasing heat. In addition, adding a little A1030 can increase the thermal stability and reduce phase transition temperatures, as well as reduce the undercooling of the polyurethane phase change material. In addition, the anion test results suggested that the supreme amount of anion released by A-PCM1030 could reach 2510 anions/cm3 under dynamic conditions, which is beneficial for human health.

  11. Importance of the gas phase role to the prediction of energetic material behavior: An experimental study

    International Nuclear Information System (INIS)

    Ali, A.N.; Son, S.F.; Asay, B.W.; Sander, R.K.

    2005-01-01

    Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6 mm±0.4 mm exists below which ignition by CO 2 laser is not possible at the tested irradiances of 29 W/cm 2 and 38 W/cm 2 for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials

  12. Importance of the gas phase role to the prediction of energetic material behavior: An experimental study

    Science.gov (United States)

    Ali, A. N.; Son, S. F.; Asay, B. W.; Sander, R. K.

    2005-03-01

    Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6mm±0.4mm exists below which ignition by CO2 laser is not possible at the tested irradiances of 29W /cm2 and 38W/cm2 for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials.

  13. Summary of workshop on high temperature materials based on Laves phases

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Offices of Fossil Energy and Basic Energy Sciences of the Department of Energy jointly sponsored the Workshop on High Temperature Materials Based on Laves Phases in conjunction with the Tenth Annual Conference on Fossil Energy Materials held at the Radisson Summit Hill Hotel in Knoxville, Tennessee on May 14-16, 1996. The objective of this workshop was to review the current status and to address critical issues in the development of new-generation high-temperature structural materials based on Laves phases. The one-day workshop included two sessions of overview presentations and a session of discussion on critical scientific and technological issues. The Laves phases represent an abundant class of intermetallic alloys with possible high-temperature structural applications. Laves phases form at or near the AB{sub 2} composition, and there are over 360 binary Laves phases. The ability of these alloys to dissolve considerable amounts of ternary alloying additions provides over 900 combined binary and ternary Laves phases. Many Laves phases have unique properties which make them attractive for high-temperature structural use. At half their homologous temperature, they retain >0.85 of their ambient yield strength, which is higher than all other intermetallics. Many of the Laves phases also have high melting temperatures, excellent creep properties, reasonably low densities, and for alloys containing Cr, Al, Si or Be, good oxidation resistance. Despite these useful properties, the tendency for low-temperature brittleness has limited the potential application of this large class of alloys.

  14. Stoichiometrical trends in differential scanning calorimetry measurements on phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Michael; Linn, Malte; Wuttig, Matthias [I. Physikalisches Institut, RWTH Aachen University, Aachen (Germany)

    2009-07-01

    Phase-change materials are alloys which can be rapidly switched between two metastable states, the amorphous and the crystalline phase. At the same time they show pronounced contrast in their electrical and optical properties. They are widely used as the functional layer in rewritable optical discs. Prototypes of electrical devices employing phase change materials as non-volatile memory are already entering the market. Here we present calorimetric measurements, mainly on ternary Ge-Sb-Te alloys. Scratched-off thin film samples were heated in a differential scanning calorimeter to measure the transition from as-deposited amorphous to metastable crystalline phase and finally to the stable crystalline phase. The different transition temperatures will be analysed as a function of stoichiometry in order to improve the understanding of their interconnection.

  15. Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues

    Science.gov (United States)

    Noé, Pierre; Vallée, Christophe; Hippert, Françoise; Fillot, Frédéric; Raty, Jean-Yves

    2018-01-01

    Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as PCM memories or phase-change random access memories (PCRAMs), are the most promising candidates among emerging non-volatile memory (NVM) technologies to replace the current FLASH memories at CMOS technology nodes under 28 nm. Chalcogenide PCMs exhibit fast and reversible phase transformations between crystalline and amorphous states with very different transport and optical properties leading to a unique set of features for PCRAMs, such as fast programming, good cyclability, high scalability, multi-level storage capability, and good data retention. Nevertheless, PCM memory technology has to overcome several challenges to definitively invade the NVM market. In this review paper, we examine the main technological challenges that PCM memory technology must face and we illustrate how new memory architecture, innovative deposition methods, and PCM composition optimization can contribute to further improvements of this technology. In particular, we examine how to lower the programming currents and increase data retention. Scaling down PCM memories for large-scale integration means the incorporation of the PCM into more and more confined structures and raises materials science issues in order to understand interface and size effects on crystallization. Other materials science issues are related to the stability and ageing of the amorphous state of PCMs. The stability of the amorphous phase, which determines data retention in memory devices, can be increased by doping the PCM. Ageing of the amorphous phase leads to a large increase of the resistivity with time (resistance drift), which has up to now hindered the development of ultra-high multi-level storage devices. A review of the current understanding of all these

  16. Rapid Construction of Fe-Co-Ni Composition-Phase Map by Combinatorial Materials Chip Approach.

    Science.gov (United States)

    Xing, Hui; Zhao, Bingbing; Wang, Yujie; Zhang, Xiaoyi; Ren, Yang; Yan, Ningning; Gao, Tieren; Li, Jindong; Zhang, Lanting; Wang, Hong

    2018-03-12

    One hundred nanometer thick Fe-Co-Ni material chips were prepared and isothermally annealed at 500, 600, and 700 °C, respectively. Pixel-by-pixel composition and structural mapping was performed by microbeam X-ray at synchrotron light source. Diffraction images were recorded at a rate of 1 pattern/s. The XRD patterns were automatically processed, phase-identified, and categorized by hierarchical clustering algorithm to construct the composition-phase map. The resulting maps are consistent with corresponding isothermal sections reported in the ASM Alloy Phase Diagram Database, verifying the effectiveness of the present approach in phase diagram construction.

  17. T-p phase diagrams and the barocaloric effect in materials with successive phase transitions

    Science.gov (United States)

    Gorev, M. V.; Bogdanov, E. V.; Flerov, I. N.

    2017-09-01

    An analysis of the extensive and intensive barocaloric effect (BCE) at successive structural phase transitions in some complex fluorides and oxyfluorides was performed. The high sensitivity of these compounds to a change in the chemical pressure allows one to vary the succession and parameters of the transformations (temperature, entropy, baric coefficient) over a wide range and obtain optimal values of the BCE. A comparison of different types of schematic T-p phase diagrams with the complicated T( p) dependences observed experimentally shows that in some ranges of temperature and pressure the BCE in compounds undergoing successive transformations can be increased due to a summation of caloric effects associated with distinct phase transitions. The maximum values of the extensive and intensive BCE in complex fluorides and oxyfluorides can be realized at rather low pressure (0.1-0.3 GPa). In a narrow temperature range around the triple points conversion from conventional BCE to inverse BCE is observed, which is followed by a gigantic change of both \\vertΔ S_BCE\\vert and \\vertΔ T_AD\\vert .

  18. Performance evaluation of a thermoelectric energy harvesting device using various phase change materials

    International Nuclear Information System (INIS)

    Elefsiniotis, A; Becker, T; Kiziroglou, M E; Wright, S W; Toh, T T; Mitcheson, P D; Yeatman, E M; Schmid, U

    2013-01-01

    This paper compares the performance of a group of organic and inorganic phase change materials for a heat storage thermoelectric energy harvesting device. The device consists of thermoelectric generators and a closed container filled with a phase change material. One side of the generators is mounted on the aircraft fuselage and the other to the thermal mass. The group of inorganic and organic phase change materials was tested across two temperature ranges. These ranges are defined as ''positive'' and ''negative'', with the former being a sweep from +35°C to −5°C and the latter being a sweep from +5°C to −35°C. The performance in terms of electrical energy output and power produced is examined in detail for each group of materials

  19. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material

    International Nuclear Information System (INIS)

    Tao, Y.B.; Lin, C.H.; He, Y.L.

    2015-01-01

    Highlights: • Nanocomposite phase change materials were prepared and characterized. • Larger specific surface area is more efficient to enhance specific heat. • Columnar structure is more efficient to enhance thermal conductivity. • Thermal conductivity enhancement is the key. • Single walled carbon nanotube is the optimal nanomaterial additive. - Abstract: To enhance the performance of high temperature salt phase change material, four kinds of carbon nanomaterials with different microstructures were mixed into binary carbonate eutectic salts to prepare carbonate salt/nanomaterial composite phase change material. The microstructures of the nanomaterial and composite phase change material were characterized by scanning electron microscope. The thermal properties such as melting point, melting enthalpy, specific heat, thermal conductivity and total thermal energy storage capacity were characterized. The results show that the nanomaterial microstructure has great effects on composite phase change material thermal properties. The sheet structure Graphene is the best additive to enhance specific heat, which could be enhanced up to 18.57%. The single walled carbon nanotube with columnar structure is the best additive to enhance thermal conductivity, which could be enhanced up to 56.98%. Melting point increases but melting enthalpy decreases with nanomaterial specific surface area increase. Although the additives decrease the melting enthalpy of composite phase change material, they also enhance the specific heat. As a combined result, the additives have little effects on thermal energy storage capacity. So, for phase change material performance enhancement, more emphasis should be placed on thermal conductivity enhancement and single walled carbon nanotube is the optimal nanomaterial additive

  20. Monoolein lipid phases as incorporation and enrichment materials for membrane protein crystallization.

    Directory of Open Access Journals (Sweden)

    Ellen Wallace

    Full Text Available The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive

  1. Phase transitions and phase miscibility of mixed particles of ammonium sulfate, toluene-derived secondary organic material, and water.

    Science.gov (United States)

    Smith, Mackenzie L; You, Yuan; Kuwata, Mikinori; Bertram, Allan K; Martin, Scot T

    2013-09-12

    The phase states of atmospheric particles influence their roles in physicochemical processes related to air quality and climate. The phases of particles containing secondary organic materials (SOMs) are still uncertain, especially for SOMs produced from aromatic precursor gases. In this work, efflorescence and deliquescence phase transitions, as well as phase separation, in particles composed of toluene-derived SOM, ammonium sulfate, and water were studied by hygroscopic tandem differential mobility analysis (HTDMA) and optical microscopy. The SOM was produced in the Harvard Environmental Chamber by photo-oxidation of toluene at chamber relative humidities of toluene-derived SOM and aqueous ammonium sulfate, suggesting phase immiscibility between the two. Optical microscopy of particles prepared for ε = 0.12 confirmed phase separation for RH 0.5, the DRH values of ammonium sulfate in mixtures with SOM produced at toluene-derived SOM and aqueous ammonium sulfate across a limited range of organic volume fractions differentiates this SOM from previous reports for isoprene-derived SOM of full miscibility and for α-pinene-derived SOM of nearly full immiscibility with aqueous ammonium sulfate.

  2. A review of phase change materials for vehicle component thermal buffering

    International Nuclear Information System (INIS)

    Jankowski, Nicholas R.; McCluskey, F. Patrick

    2014-01-01

    Highlights: • A review of latent heat thermal energy storage for vehicle thermal load leveling. • Examined vehicle applications with transient thermal profiles from 0 to 800 °C. • >700 materials from over a dozen material classes examined for the applications. • Recommendations made for future application of high power density materials. - Abstract: The use of latent heat thermal energy storage for thermally buffering vehicle systems is reviewed. Vehicle systems with transient thermal profiles are classified according to operating temperatures in the range of 0–800 °C. Thermal conditions of those applications are examined relative to their impact on thermal buffer requirements, and prior phase change thermal enhancement studies for these applications are discussed. In addition a comprehensive overview of phase change materials covering the relevant operating range is given, including selection criteria and a detailed list of over 700 candidate materials from a number of material classes. Promising material candidates are identified for each vehicle system based on system temperature, specific and volumetric latent heat, and thermal conductivity. Based on the results of previous thermal load leveling efforts, there is the potential for making significant improvements in both emissions reduction and overall energy efficiency by further exploration of PCM thermal buffering on vehicles. Recommendations are made for further material characterization, with focus on the need for improved data for metallic and solid-state phase change materials for high energy density applications

  3. NASA's Management and Utilization of the Small Business Innovative Research (SBIR) Program

    Science.gov (United States)

    Mexcur, Winfield Paul

    2003-01-01

    The United Space Congress established the SBIR program in 1982 for the following purposes: ( 1) Stimulate technological innovation (2) Increase private-sector commercialization derived from federal R&D (3) Use small business to meet federal R&D needs (4) Foster and encourage participation by disadvantaged persons and women in technological innovation The STTR program was established in 1992 with the additional requirement of having a small business partner with a research institution (usually a university) for the purpose of transferring intellectual property from the research institution to the small business concern for enabling a government technical need and furthering the technological development for the purpose of developing commercial products. The government of Japan has established a program that models portions of the U.S. SBIR and STTR programs. They are very interested in how NASA has been so successful in fulfilling the Congressional objectives of these programs. In particular, they want to understand the management practices and incentives that are provided to enable partnerships between business enterprises, academia and government. The speech will also focus on some of the many successful technologies (on a conceptual level) that have been developed through NASA s SBIR and STTR programs and mechanisms used to promote cooperation between small businesses, large businesses, academia and government agencies within the United States. The speech is on a conceptual level, focusing on U.S. and NASA policies and management implementation practices. No enabling technical discussion will be held.

  4. Experimental data showing the thermal behavior of a flat roof with phase change material.

    Science.gov (United States)

    Tokuç, Ayça; Başaran, Tahsin; Yesügey, S Cengiz

    2015-12-01

    The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM) layer. The temperature and energy given to and taken from the building element are reported. In addition the solid-liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91-104.

  5. Experimental data showing the thermal behavior of a flat roof with phase change material

    Directory of Open Access Journals (Sweden)

    Ayça Tokuç

    2015-12-01

    Full Text Available The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM layer. The temperature and energy given to and taken from the building element are reported. In addition the solid–liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91–104.

  6. High Fidelity Down-Conversion Source for Secure Communications using On-Demand Single Photons, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this NASA SBIR Phase II effort, AdvR will design and build an efficient, fully integrated, waveguide based, source of spectrally uncorrelated photon pairs that...

  7. Advanced Data Mining and Deployment for Integrated Vehicle Health Management and the Space Vehicle Lifecycle, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In a successful Phase 1 project for NASA SBIR topic A1.05, "Data Mining for Integrated Vehicle Health Management," Michigan Aerospace Corporation (MAC) demonstrated...

  8. Quantitative kHz to MHz Frame Rate Flow Diagnostics for Aerodynamic Ground Test Facilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I SBIR program will study the feasibility of building next-generation burst-mode laser diagnostics that will enable unparalleled planar imaging...

  9. Miniaturized UHF, S-, and Ka-band RF MEMS Filters for Small Form Factor, High Performance EVA Radio, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase II of this SBIR, Harmonic Devices (HDI) proposes to develop miniaturized MEMS filters at UHF, S-band and Ka-band to address the requirements of NASA's...

  10. Lightweight, Wearable Metal Rubber-Textile Sensor for In-Situ Lunar Autonomous Health Monitoring, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase II SBIR program would develop comfortable garments with multiple integrated sensor functions for the monitoring of astronauts during long duration...

  11. A Three-Dimensional Nanoporous Silicon Anode for High-Energy Density Lithium-ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I program is directed toward the development of novel, nanoporous silica anodes for low-earth-orbiting (LEO) spacecraft power applications. Silica...

  12. Single Crystal Piezoelectric Stack Actuator DM with Integrated Low-Power HVA-Based Driver ASIC, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project aims to develop an innovative batch fabrication technique to create single crystal PMN-PT stack actuator deformable mirrors (DM) at low...

  13. Dynamic Science Data Services for Display, Analysis and Interaction in Widely-Accessible, Web-Based Geospatial Platforms, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TerraMetrics, Inc., proposes an SBIR Phase I R/R&D program to investigate and develop a key web services architecture that provides data processing, storage and...

  14. Graphene/phase change material nanocomposites: light-driven, reversible electrical resistivity regulation via form-stable phase transitions.

    Science.gov (United States)

    Wang, Yunming; Mi, Hongyi; Zheng, Qifeng; Ma, Zhenqiang; Gong, Shaoqin

    2015-02-04

    Innovative photoresponsive materials are needed to address the complexity of optical control systems. Here, we report a new type of photoresponsive nanomaterial composed of graphene and a form-stable phase change material (PCM) that exhibited a 3 orders of magnitude change in electrical resistivity upon light illumination while retaining its overall original solid form at the macroscopic level. This dramatic change in electrical resistivity also occurred reversibly through the on/off control of light illumination. This was attributed to the reversible phase transition (i.e., melting/recrystallization) behavior of the microscopic crystalline domains present in the form-stable PCM. The reversible phase transition observed in the graphene/PCM nanocomposite was induced by a reversible temperature change through the on/off control of light illumination because graphene can effectively absorb light energy and convert it to thermal energy. In addition, this graphene/PCM nanocomposite also possessed excellent mechanical properties. Such photoresponsive materials have many potential applications, including flexible electronics.

  15. Effects of Phase Transformations and Dynamic Material Strength on Hydrodynamic Instability Evolution in Metals

    Science.gov (United States)

    Opie, Saul

    Hydrodynamic phenomena such as the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities can be described by exponential/linear growth of surface perturbations at a bimaterial interface when subjected to constant/impulsive acceleration. A challenge in designing systems to mitigate or exploit these effects is the lack of accurate material models at large dynamic strain rates and pressures. In particular, little stress-strain constitutive information at large strain rates and pressures is available for transient material phases formed at high pressures, and the continuum effect the phase transformation process has on the instability evolution. In this work, a phase-aware isotropic strength model is developed and partially validated with a novel RM-based instability experiment in addition to existing data from the literature. With the validated material model additional simulations are performed to provide insight into to the role that robust material constitutive behavior (e.g., pressure, temperature, rate dependence) has on RM instability and how RM instability experiments can be used to characterize and validated expected material behavior. For phase aware materials, particularly iron in this work, the simulations predict a strong dependence on the Atwood number that single phase materials do not have. At Atwood numbers close to unity, and pressures in the high pressure stability region, the high pressure phase dominates the RM evolution. However, at Atwood numbers close to negative one, the RM evolution is only weakly affected by the high-pressure phase even for shocks well above the phase transformation threshold. In addition to RM evolution this work looks at the closely related shock front perturbation evolution. Existing analytical models for isentropic processes in gases and liquids are modified for metal equation of states and plastic behavior for the first time. It is found that the presence of a volume collapsing phase transformation with increased

  16. First principles study of the optical contrast in phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Caravati, S; Parrinello, M [Department of Chemistry and Applied Biosciences, ETH Zurich, USI Campus, Via Giuseppe Buffi 13, 6900 Lugano (Switzerland); Bernasconi, M, E-mail: marco.bernasconi@mater.unimib.i [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via R Cozzi 53, I-20125, Milano (Italy)

    2010-08-11

    We study from first principles the optical properties of the phase change materials Ge{sub 2}Sb{sub 2}Te{sub 5} (GST), GeTe and Sb{sub 2}Te{sub 3} in the crystalline phase and in realistic models of the amorphous phase generated by quenching from the melt in ab initio molecular dynamics simulations. The calculations reproduce the strong optical contrast between the crystalline and amorphous phases measured experimentally and exploited in optical data storage. It is demonstrated that the optical contrast is due to a change in the optical matrix elements across the phase change in all the compounds. It is concluded that the reduction of the optical matrix elements in the amorphous phases is due to angular disorder in p-bonding which dominates the amorphous network in agreement with previous proposals (Huang and Robertson 2010 Phys. Rev. B 81 081204) based on calculations on crystalline models.

  17. Imaging of soft and hard materials using a Boersch phase plate in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Alloyeau, D., E-mail: alloyeau.damien@gmail.com [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS/72, Berkeley, CA 94720 (United States); Hsieh, W.K. [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS/72, Berkeley, CA 94720 (United States); Anderson, E.H.; Hilken, L. [Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley CA 94720 (United States); Benner, G. [Carl Zeiss NTS GmbH, Oberkochen 73447 (Germany); Meng, X. [Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA 94720-1770 (United States); Chen, F.R. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan (China); Kisielowski, C. [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS/72, Berkeley, CA 94720 (United States)

    2010-04-15

    Using two levels of electron beam lithography, vapor phase deposition techniques, and FIB etching, we have fabricated an electrostatic Boersch phase plate for contrast enhancement of weak phase objects in a transmission electron microscope. The phase plate has suitable dimensions for the imaging of small biological samples without compromising the high-resolution capabilities of the microscope. A micro-structured electrode allows for phase tuning of the unscattered electron beam, which enables the recording of contrast enhanced in-focus images and in-line holograms. We have demonstrated experimentally that our phase plate improves the contrast of carbon nanotubes while maintaining high-resolution imaging performance, which is demonstrated for the case of an AlGaAs heterostructure. The development opens a new way to study interfaces between soft and hard materials.

  18. Preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage

    International Nuclear Information System (INIS)

    Konuklu, Yeliz; Ersoy, Orkun

    2016-01-01

    Highlights: • Sepiolite-based phase change material nanocomposites were prepared. • An easy direct impregnation process was used. • This paper is one of the first study about sepiolite-based phase change material nanocomposites. • Influence of PCM type on thermal properties of nanocomposites was reported. - Abstract: This paper is one of the first study about the preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage applications. Sepiolite is an important natural fibrous raw material. Nanoscale fibrous tubular structure of sepiolite becomes important in nanocomposite preparation. In this study, sepiolite/paraffin and sepiolite/decanoic acid nanocomposites were manufactured by the direct impregnation method. By the preparation of nanocomposites, PCM move in tubular channels of sepiolite, phase changing occurs in these tubes and surface area increases like as in microencapsulation. The structure and properties of nanocomposites PCMs (CPCM) have been characterized via scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). The SEM results prove the successful preparation of phase change material/sepiolite nanocomposites and point out that the fibers of sepiolite is modified with phase change materials in the nanocomposite. The phase change enthalpies of melting and freezing were about 62.08 J/g and −62.05 J/g for sepiolite/paraffin nanocomposites and 35.69 J/g and −34.55 J/g for sepiolite/decanoic acid nanocomposites, respectively. The results show that PCM/sepiolite nanocomposites were prepared successfully and their properties are very suitable for thermal energy storage applications.

  19. Development of phase-contrast imaging technique for material science and medical science applications

    International Nuclear Information System (INIS)

    Kashyap, Y.S.; Roy, Tushar; Sarkar, P.S; Shukla, Mayank; Yadav, P.S; Sinha, Amar; Verma, Vishnu; Ghosh, A.K.

    2007-07-01

    In-line phase contrast imaging technique is an emerging method for study of materials such as carbon fibres, carbon composite materials, polymers etc. These represent the class of materials for which x-ray attenuation cross-section is very small. Similarly, this technique is also well suited for imaging of soft materials such as tissues, distinguishing between tumour and normal tissue. Thus this method promises a far better contrast for low x-ray absorbing substances than the conventional radiography method for material and medical science applications. Though the conventional radiography technique has been carried out for decades, the phase-imaging technique is being demonstrated for the first time within, the country. We have set up an experimental facility for phase contrast imaging using a combination of x-ray CCD detector and a microfocus x-ray source. This facility is dedicated for micro-imaging experiments such as micro-tomography and high resolution phase contrast experiments. In this report, the results of phase contrast imaging using microfocus source and ELETTRA, synchrotron source are discussed. We have also discussed the basic design and heat load calculation for upcoming imaging beamline at Indus-II, RRCAT, Indore. (author)

  20. Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials.

    Science.gov (United States)

    Chung, In; Jang, Joon I; Malliakas, Christos D; Ketterson, John B; Kanatzidis, Mercouri G

    2010-01-13

    We report that the one-dimensional polar selenophosphate compounds APSe(6) (A = K, Rb), which show crystal-glass phase-change behavior, exhibit strong second harmonic generation (SHG) response in both crystal and glassy forms. The crystalline materials are type-I phase-matchable with SHG coefficients chi((2)) of 151.3 and 149.4 pm V(-1) for K(+) and Rb(+) salts, respectively, which is the highest among phase-matchable nonlinear optical (NLO) materials with band gaps over 1.0 eV. The glass of APSe(6) exhibits comparable SHG intensities to the top infrared NLO material AgGaSe(2) without any poling treatments. APSe(6) exhibit excellent mid-IR transparency. We demonstrate that starting from noncentrosymmetric phase-change materials such as APSe(6) (A = K, Rb), we can obtain optical glass fibers with strong, intrinsic, and temporally stable second-order nonlinear optical (NLO) response. The as-prepared glass fibers exhibit SHG and difference frequency generation (DFG) responses over a wide range of wavelengths. Raman spectroscopy and pair distribution function (PDF) analyses provide further understanding of the local structure in amorphous state of KPSe(6) bulk glass and glass fiber. We propose that this approach can be widely applied to prepare permanent NLO glass from materials that undergo a phase-change process.

  1. Beeswax as phase change material to improve solar panel’s performance

    Science.gov (United States)

    Thaib, R.; Rizal, S.; Riza, M.; Mahlia, T. M. I.; Rizal, T. A.

    2018-02-01

    One of the main obstacles faced during the operation of photovoltaic (PV) panels was overheating due to excessive solar radiation and high ambient temperatures. In this research, investigates the use of beeswax phase change materials (PCM) to maintain the temperature of the panels close to ambient. Solar panels used in this study has 839 mm length, 537 mm wide, and 50 mm thick, with maximum output power at 50 W. During the study, there were two solar panels was evaluated, one without phase change material while the other one was using beeswax phase change material. Solar panels were mounted at 15° slope. Variables observed was the temperature of solar panel’s surface, output voltage and current that produced by PV panels, wind speed around solar panels, and solar radiation. The observation was started at 07:00 am and ended at 06:00 pm. The research shows that maximum temperature of solar panels surface without phase change material is ranging between 46-49 °C, and electrical efficiency is about 7.2-8.8%. Meanwhile, for solar panels with beeswax phase change material, the maximum temperature solar panels surface is relatively low ranging between 33-34 °C, and its electrical efficiency seems to increase about 9.1-9.3%.

  2. Preparation of n-tetradecane-containing microcapsules with different shell materials by phase separation method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui [Department of Chemical Engineering, Tsinghua University, Beijing (China); Zhang, Yan; Zhang, Qingwu [Department of Chemical Engineering, China University of Mining and Technology, Beijing (China); Wang, Xin; Zhang, Yinping [Department of Building Science, Tsinghua University, Beijing (China)

    2009-10-15

    Microcapsules for thermal energy storage and heat-transfer enhancement have attracted great attention. Microencapsulation of n-tetradecane with different shell materials was carried out by phase separation method in this paper. Acrylonitrile-styrene copolymer (AS), acrylonitrile-styrene-butadiene copolymer (ABS) and polycarbonate (PC) were used as the shell materials. The structures, morphologies and the thermal capacities of the microcapsules were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The ternary phase diagrams showed the potential encapsulation capabilities of the three shell materials. The effects of the shell/core ratio and the molecular weight of the shell material on the encapsulation efficiency and the thermal capacity of the microcapsules were also discussed. Microcapsules with melting enthalpy > 100 J/g, encapsulation efficiency 66-75%, particle size<1 {mu}m were obtained for all three shell materials. (author)

  3. Thermal characteristics of shape-stabilized phase change material wallboard with periodical outside temperature waves

    International Nuclear Information System (INIS)

    Zhou, Guobing; Yang, Yongping; Wang, Xin; Cheng, Jinming

    2010-01-01

    Thermal characteristics of shape-stabilized phase change material (SSPCM) wallboard with sinusoidal temperature wave on the outer surface were investigated numerically and compared with traditional building materials such as brick, foam concrete and expanded polystyrene (EPS). One-dimensional enthalpy equation under convective boundary conditions was solved using fully implicit finite-difference scheme. The simulation results showed that the SSPCM wallboard presents distinct characteristics from other ordinary building materials. Phase transition keeping time of inner surface and decrement factor were applied to analyze the effects of PCM thermophysical properties (melting temperature, heat of fusion, phase transition zone and thermal conductivity), inner surface convective heat transfer coefficient and thickness of SSPCM wallboard. It was found that melting temperature is one important factor which influences both the phase transition keeping time and the decrement factor; for a certain outside temperature wave, there exist critical values of latent heat of fusion and thickness of SSPCM above which the phase transition keeping time or the decrement factor are scarcely influenced; thermal conductivity of PCM and inner surface convective coefficient have little effect on the phase transition keeping time but significantly influence the decrement factor; and the phase transition zone leads to small fluctuations of the original flat segment of inner surface temperature line. The results aim to be useful for the selection of SSPCMs and their applications in passive solar buildings.

  4. Novel phase diagram behavior and materials design in heterostructural semiconductor alloys.

    Science.gov (United States)

    Holder, Aaron M; Siol, Sebastian; Ndione, Paul F; Peng, Haowei; Deml, Ann M; Matthews, Bethany E; Schelhas, Laura T; Toney, Michael F; Gordon, Roy G; Tumas, William; Perkins, John D; Ginley, David S; Gorman, Brian P; Tate, Janet; Zakutayev, Andriy; Lany, Stephan

    2017-06-01

    Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the critical composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.

  5. Study on paraffin/expanded graphite composite phase change thermal energy storage material

    International Nuclear Information System (INIS)

    Zhang Zhengguo; Fang Xiaoming

    2006-01-01

    A paraffin/expanded graphite composite phase change thermal energy storage material was prepared by absorbing the paraffin into an expanded graphite that has an excellent absorbability. In such a composite, the paraffin serves as a latent heat storage material and the expanded graphite acts as the supporting material, which prevents leakage of the melted paraffin from its porous structure due to the capillary and surface tension forces. The inherent structure of the expanded graphite did not change in the composite material. The solid-liquid phase change temperature of the composite PCM was the same as that of the paraffin, and the latent heat of the paraffin/expanded graphite composite material was equivalent to the calculated value based on the mass ratio of the paraffin in the composite. The heat transfer rate of the paraffin/expanded graphite composite was obviously higher than that of the paraffin due to the combination with the expanded graphite that had a high thermal conductivity. The prepared paraffin/expanded graphite composite phase change material had a large thermal storage capacity and improved thermal conductivity and did not experience liquid leakage during its solid-liquid phase change

  6. Forced convection heat transfer with slurry of phase change material in circular ducts: A phenomenological approach

    International Nuclear Information System (INIS)

    Royon, Laurent; Guiffant, Gerard

    2008-01-01

    A model describing the thermal behaviour of a slurry of phase change material flow in a circular duct is presented. Reactors connected in series are considered for the representation of the circular duct with constant wall temperature. A phenomenological equation is formulated to take account of the heat generation due to phase change in the particles. Results of the simulation present a plateau of temperature along the longitudinal direction, characteristic of the phase change. The effect of different parameters such as the Reynolds number, the weight fraction and the temperature of the cold spring on the length of the plateau is analysed. A correlation resulting from numerical results is proposed for use in the determination of the characteristics of the exchanger for a phase change material slurry

  7. Enabling universal memory by overcoming the contradictory speed and stability nature of phase-change materials.

    Science.gov (United States)

    Wang, Weijie; Loke, Desmond; Shi, Luping; Zhao, Rong; Yang, Hongxin; Law, Leong-Tat; Ng, Lung-Tat; Lim, Kian-Guan; Yeo, Yee-Chia; Chong, Tow-Chong; Lacaita, Andrea L

    2012-01-01

    The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. Phase-change materials are highly promising in this respect. However, their contradictory speed and stability properties present a key challenge towards this ambition. We reveal that as the device size decreases, the phase-change mechanism changes from the material inherent crystallization mechanism (either nucleation- or growth-dominated), to the hetero-crystallization mechanism, which resulted in a significant increase in PCRAM speeds. Reducing the grain size can further increase the speed of phase-change. Such grain size effect on speed becomes increasingly significant at smaller device sizes. Together with the nano-thermal and electrical effects, fast phase-change, good stability and high endurance can be achieved. These findings lead to a feasible solution to achieve a universal memory.

  8. Green material composites from renewable resources: Polymorphic transitions and phase diagram of beeswax/rosin resin

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Yves [Mines-ParisTech., CEMEF, UMR CNRS 7635, 1 rue Claude Daunesse 06904 Sophia Antipolis cedex (France); Mija, Alice [University of Nice-Sophia Antipolis, Thermokinetic Group, Laboratory of Chemistry of Organic and Metallic Materials C.M.O.M., 06108 Nice Cedex 2 (France); Burr, Alain; Darque-Ceretti, Evelyne; Felder, Eric [Mines-ParisTech., CEMEF, UMR CNRS 7635, 1 rue Claude Daunesse 06904 Sophia Antipolis cedex (France); Sbirrazzuoli, Nicolas, E-mail: sbirrazz@unice.fr [University of Nice-Sophia Antipolis, Thermokinetic Group, Laboratory of Chemistry of Organic and Metallic Materials C.M.O.M., 06108 Nice Cedex 2 (France)

    2011-07-10

    Highlights: {yields} Blends of Rosin and beeswax are studied by DSC, XRD, and optical microscopy. {yields} The first phase diagram beeswax/rosin is established. {yields} Polymorphic transitions are identified and appear to be highly related to rosin content. - Abstract: Rosin and beeswax are two complex natural materials presenting numerous applications in paints, adhesives, varnishes or inks. Melted, they are particularly interesting for their adhesion properties. This paper establishes the first phase diagram beeswax/rosin blends. A systematic approach using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and polarised optical microscopy (POM) has been performed in order to describe the crystallographic structure and the thermal properties of two materials, beeswax and rosin, and their blends. Indeed, melting, softening and crystallisation temperatures, polymorphic transitions but also crystalline index has been investigated. The resulting phase diagram reveals a complex behaviour in terms of phase transformation and time-dependent phenomenon mainly representative of the complex composition of beeswax.

  9. Transient analysis of a thermal storage unit involving a phase change material

    Science.gov (United States)

    Griggs, E. I.; Pitts, D. R.; Humphries, W. R.

    1974-01-01

    The transient response of a single cell of a typical phase change material type thermal capacitor has been modeled using numerical conductive heat transfer techniques. The cell consists of a base plate, an insulated top, and two vertical walls (fins) forming a two-dimensional cavity filled with a phase change material. Both explicit and implicit numerical formulations are outlined. A mixed explicit-implicit scheme which treats the fin implicity while treating the phase change material explicitly is discussed. A band algorithmic scheme is used to reduce computer storage requirements for the implicit approach while retaining a relatively fine grid. All formulations are presented in dimensionless form thereby enabling application to geometrically similar problems. Typical parametric results are graphically presented for the case of melting with constant heat input to the base of the cell.

  10. From rice husk to high performance shape stabilized phase change materials for thermal energy storage

    DEFF Research Database (Denmark)

    Mehrali, Mohammad; Latibari, Sara Tahan; Rosen, Marc A.

    2016-01-01

    A novel shape-stabilized phase change material (SSPCM) was fabricated by using a vacuum impregnation technique. The lightweight, ultra-high specific surface area and porous activated carbon was prepared from waste material (rice husk) through the combination of an activation temperature approach...... and a sodium hydroxide activation procedure. Palmitic acid as a phase change material was impregnated into the porous carbon by a vacuum impregnation technique. Graphene nanoplatelets (GNPs) were employed as an additive for thermal conductivity enhancement of the SSPCMs. The attained composites exhibited...... exceptional phase change behavior, having a desirable latent heat storage capacity of 175 kJ kg(-1). When exposed to high solar radiation intensities, the composites can absorb and store the thermal energy. An FTIR analysis of the SSPCMs indicated that there was no chemical interaction between the palmitic...

  11. Nanocasting of Periodic Mesoporous Materials as an Effective Strategy to Prepare Mixed Phases of Titania

    Directory of Open Access Journals (Sweden)

    Luther Mahoney

    2015-12-01

    Full Text Available Mesoporous titanium dioxide materials were prepared using a nanocasting technique involving silica SBA-15 as the hard-template. At an optimal loading of titanium precursor, the hexagonal periodic array of pores in SBA-15 was retained. The phases of titanium dioxide could be easily varied by the number of impregnation cycles and the nature of titanium alkoxide employed. Low number of impregnation cycles produced mixed phases of anatase and TiO2(B. The mesoporous TiO2 materials were tested for solar hydrogen production, and the material consisting of 98% anatase and 2% TiO2(B exhibited the highest yield of hydrogen from the photocatalytic splitting of water. The periodicity of the pores was an important factor that influenced the photocatalytic activity. This study indicates that mixed phases of titania containing ordered array of pores can be prepared by using the nanocasting strategy.

  12. A Super Cooled, Non-toxic, Non-flammable Phase Change Material Thermal Pack for Portable Life Support Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The concept development and test of a water-based, advanced Phase Change Material (PCM) heat sink is proposed. Utilizing a novel material choice for both an...

  13. Interrelation of material microstructure, ultrasonic factors, and fracture toughness of two phase titanium alloy

    Science.gov (United States)

    Vary, A.; Hull, D. R.

    1982-01-01

    The pivotal role of an alpha-beta phase microstructure in governing fracture toughness in a titanium alloy, Ti-662, is demonstrated. The interrelation of microstructure and fracture toughness is demonstrated using ultrasonic measurement techniques originally developed for nondestructive evaluation and material property characterization. It is shown that the findings determined from ultrasonic measurements agree with conclusions based on metallurgical, metallographic, and fractographic observations concerning the importance of alpha-beta morphology in controlling fracture toughness in two phase titanium alloys.

  14. Experiment of forced convection heat transfer using microencapsulated phase-change-material slurries

    International Nuclear Information System (INIS)

    Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nagashima, Akira.

    1997-01-01

    The present study describes an experiment on forced convective heat transfer using a water slurry of Microencapsulated Phase-change-material. A normal paraffin hydrocarbon is microencapsulated by melamine resin, melting point of 28.1degC. The heat transfer coefficient and pressure drop in a circular tube were evaluated. The heat transfer coefficient using the slurry in case with and without phase change were compared to in case of using pure water. (author)

  15. Review of solid–liquid phase change materials and their encapsulation technologies

    OpenAIRE

    Su, Weiguang; Darkwa, Jo; Kokogiannakis, Georgios

    2017-01-01

    Various types of solid–liquid phase change materials (PCMs) have been reviewed for thermal energy storage applications. The review has shown that organic solid–liquid PCMs have much more advantages and capabilities than inorganic PCMs but do possess low thermal conductivity and density as well as being flammable. Inorganic PCMs possess higher heat storage capacities and conductivities, cheaper and readily available as well as being non-flammable, but do experience supercooling and phase segre...

  16. Metal - Insulator Transition Driven by Vacancy Ordering in GeSbTe Phase Change Materials

    OpenAIRE

    Bragaglia, Valeria; Arciprete, Fabrizio; Privitera, Stefania; Rimini, Emanuele; Mazzarello, Riccardo; Calarco, Raffaella; Zhang, Wei; Mio, Antonio Massimiliano; Zallo, Eugenio; Perumal, Karthick; Giussani, Alessandro; Cecchi, Stefano; Boschker, Jos Emiel; Riechert, Henning

    2016-01-01

    Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a f...

  17. Reduced material model for closed cell metal foam infiltrated with phase change material based on high resolution numerical studies

    International Nuclear Information System (INIS)

    Ohsenbrügge, Christoph; Marth, Wieland; Navarro y de Sosa, Iñaki; Drossel, Welf-Guntram; Voigt, Axel

    2016-01-01

    Highlights: • Closed cell metal foam sandwich structures were investigated. • High resolution numerical studies were conducted using CT scan data. • A reduced model for use in commercial FE software reduces needed degrees of freedom. • Thermal inertia is increased about 4 to 5 times in PCM filled structures. • The reduced material model was verified using experimental data. - Abstract: The thermal behaviour of closed cell metal foam infiltrated with paraffin wax as latent heat storage for application in high precision tool machines was examined. Aluminium foam sandwiches with metallically bound cover layers were prepared in a powder metallurgical process and cross-sectional images of the structures were generated with X-ray computed tomography. Based on the image data a three dimensional highly detailed model was derived and prepared for simulation with the adaptive FE-library AMDiS. The pores were assumed to be filled with paraffin wax. The thermal conductivity and the transient thermal behaviour in the phase-change region were investigated. Based on the results from the highly detailed simulations a reduced model for use in commercial FE-software (ANSYS) was derived. It incorporates the properties of the matrix and the phase change material into a homogenized material. A sandwich-structure with and without paraffin was investigated experimentally under constant thermal load. The results were used to verify the reduced material model in ANSYS.

  18. Heat transfer characteristics of coconut oil as phase change material to room cooling application

    Science.gov (United States)

    Irsyad, M.; Harmen

    2017-03-01

    Thermal comfort in a room is one of human needs in the workplace and dwellings, so that the use of air conditioning system in tropical countries is inevitable. This equipment has an impact on the increase of energy consumption. One method of minimizing the energy use is by using the phase change material (PCM) as thermal energy storage. This material utilizes the temperature difference between day and night for the storage and release of thermal energy. PCM development on application as a material for air cooling inlet, partitioning and interior needs to be supported by the study of heat transfer characteristics when PCM absorbs heat from ambient temperature. This study was conducted to determine the heat transfer characteristics on coconut oil as a phase change material. There are three models of experiments performed in this research. Firstly, an experiment was conducted to analyze the time that was needed by material to phase change by varying the temperature. The second experiment analyzed the heat transfer characteristics of air to PCM naturally convection. The third experiment analyzed the forced convection heat transfer on the surface of the PCM container by varying the air velocity. The data of experimental showed that, increasing ambient air temperature resulted in shorter time for phase change. At temperatures of 30°C, the time for phase change of PCM with the thickness of 8 cm was 1700 min, and it was stable at temperatures of 27°C. Increasing air temperature accelerated the phase change in the material. While for the forced convection heat transfer, PCM could reduce the air temperature in the range of 30 to 35°C at about 1 to 2°C, with a velocity of 1-3 m/s.

  19. Thermodynamic Calculations of Ternary Polyalcohol and Amine Phase Diagrams for Thermal Energy Storage Materials

    Science.gov (United States)

    Shi, Renhai

    Organic polyalcohol and amine globular molecular crystal materials as phase change materials (PCMs) such as Pentaglycerine (PG-(CH3)C(CH 2OH)3), Tris(hydroxymethyl)aminomethane (TRIS-(NH2)C(CH 2OH)3), 2-amino-2methyl-1,3-propanediol (AMPL-(NH2)(CH3)C(CH2OH)2), and neopentylglycol (NPG-(CH3)2C(CH2OH) 2) can be considered to be potential candidates for thermal energy storage (TES) applications such as waste heat recovery, solar energy utilization, energy saving in buildings, and electronic device management during heating or cooling process in which the latent heat and sensible heat can be reversibly stored or released through solid state phase transitions over a range of temperatures. In order to understand the polymorphism of phase transition of these organic materials and provide more choice of materials design for TES, binary systems have been studied to lower the temperature of solid-state phase transition for the specific application. To our best knowledge, the study of ternary systems in these organic materials is limited. Based on this motivation, four ternary systems of PG-TRIS-AMPL, PG-TRIS-NPG, PG-AMPL-NPG, and TRIS-AMPL-NPG are proposed in this dissertation. Firstly, thermodynamic assessment with CALPHAD method is used to construct the Gibbs energy functions into thermodynamic database for these four materials based on available experimental results from X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). The phase stability and thermodynamic characteristics of these four materials calculated from present thermodynamic database with CALPHAD method can match well the present experimental results from XRD and DSC. Secondly, related six binary phase diagrams of PG-TRIS, PG-AMPL, PG-NPG, TRIS-AMPL, TRIS-NPG, and AMPL-NPG are optimized with CALPHAD method in Thermo-Calc software based on available experimental results, in which the substitutional model is used and excess Gibbs energy is expressed with Redlich-Kister formalism. The

  20. Tailoring phase change materials: Stoichiometrical trends in the Ge-Sb-Te system

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Michael; Wamwangi, Daniel; Wuttig, Matthias [I. Physikalisches Institut 1A, RWTH Aachen, 52056 Aachen (Germany)

    2007-07-01

    Phase change materials are widely used as the active layer in rewritable optical media. This layer can be reversibly switched with a laser beam between an amorphous and crystalline state. As there is a pronounced optical contrast between these two phases, this provides the possibility to write, read and erase data. The speed of this method is limited by the speed of crystallization, as crystallization is the slower process. One possibility to make this process faster is to change the composition of this active layer. Thus it is very interesting to investigate how the process of crystallization is affected by a variation of stoichiometry. Although phase change materials technology is already used, there is little knowledge of the phase change process itself. Today the usability of phase change materials is still identified by try and error methods. We will show stoichiometrical trends of different properties relevant for data storage, e.g. the crystallisation temperature, which governs the room temperature stability of the amorphous phase and thus is a measure for the data retention time.

  1. THERMAL CHARACTERISTICS OF PHASE CHANGE MATERIAL USED AS THERMAL STORAGE SYSTEM BY USING SOLAR ENERGY

    Directory of Open Access Journals (Sweden)

    Kadhim F. Nasir

    2018-01-01

    Full Text Available In this paper, the melting processes of phase change material in a shell and tube heat exchanger by using solar thermal energy have been investigated numerically and experimentally. All experimental were outdoor tested at AL-Mussaib city-Babylon-Iraq (Lat 32.5 º North, and long 44.3 º East with N-S collector direction at tilt angle of 32.5 º with the horizontal. The phase change material used in this work is black color Iraqi origin pure Paraffin with amount of 12 kg. In the experimental setup evacuted tube solar collector is employed for melting phase change material in shell regime. Different volume flow rates for the water flow inside the inner tube of heat exchanger namely (200, 300, and 500 LPH for Reynolds number namely (15000, 23000, 38000 respectively were used for each season from August 2016 to January 2017. The numerical investigation involves a three dimension numerical solution of model by a commercial package ANSYS FLUENT 15.0. The boundary conditions of the model that solved by the numerical solution have been taken from the experimental tests. The experimental results indicated that the inner tube inlet and ambient temperatures has a significant effects on the melting process compared with the volume flow rates. Studying phase change material temperature distribution, it is exposed that a melting temperature of the phase change material in summer season needed time of (3-4 hours only, while it needed more time; (14-16 hours in winter season. Increasing solar radiation and ambient temperature reduces the melting time of phase change material. Increasing water temperature difference of inner tube increased the heat gained for phase change material. The results obtained from numerical solution presented the static temperature contours and showed that the temperature distribution of phase change material give good validations with experimental results with percentage deviation of 2.7%. The present experimental results have been

  2. Thermal properties of lauric acid filled in carbon nanotubes as shape-stabilized phase change materials.

    Science.gov (United States)

    Feng, Yanhui; Wei, Runzhi; Huang, Zhi; Zhang, Xinxin; Wang, Ge

    2018-03-14

    Carbon nanotubes (CNTs) filled with lauric acid (LA) as a kind of shape-stabilized phase change material were prepared and their structures and phase change properties were characterized. The results showed that the melting point and latent heat of LA confined in carbon nanotubes were lower than those of the bulk material, and both decrease as the diameters of CNTs and the filling ratios of LA decrease. Molecular dynamics (MD) simulations indicated that LA molecules form a liquid layer near pore walls and crystallize at the pore center. When the LA filling ratio was reduced to a certain value, all LA molecules were attached to the inner walls of CNTs, hindering their crystallization. A linear relationship between the melting temperature shift and structural properties was obtained based on the modified Gibbs-Thomson equation, which gives a reliable interpretation of the size effect of nanochannels in phase change materials. We also found that the thermal conductivity of the composite CNTs/LA was four times larger than that of pure LA. This study will provide insights into the design of novel composite phase change materials with better thermal properties by the selection of suitable porous materials and tailoring their pore structures.

  3. Development of phase change materials based microencapsulated technology for buildings: A review

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, V.V.; Kaushik, S.C. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Tyagi, S.K. [School of Infrastructure Technology and Resource Management, Shri Mata Vaishno Devi University, Katra 182320, J and K (India); Akiyama, T. [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-86283 (Japan)

    2011-02-15

    Thermal energy storage (TES) systems using phase change material (PCM) have been recognized as one of the most advanced energy technologies in enhancing the energy efficiency and sustainability of buildings. Now the research is focus on suitable method to incorporate PCMs with building. There are several methods to use phase change materials (PCMs) in thermal energy storage (TES) for different applications. Microencapsulation is one of the well known and advanced technologies for better utilization of PCMs with building parts, such as, wall, roof and floor besides, within the building materials. Phase change materials based microencapsulation for latent heat thermal storage (LHTS) systems for building application offers a challenging option to be employed as effective thermal energy storage and a retrieval device. Since the particular interest in using microencapsulation PCMs for concrete and wall/wallboards, the specific research efforts on both subjects are reviewed separately. This paper presents an overview of the previous research work on microencapsulation technology for thermal energy storage incorporating the phase change materials (PCMs) in the building applications, along with few useful conclusive remarks concluded from the available literature. (author)

  4. On entropy change measurements around first order phase transitions in caloric materials.

    Science.gov (United States)

    Caron, Luana; Ba Doan, Nguyen; Ranno, Laurent

    2017-02-22

    In this work we discuss the measurement protocols for indirect determination of the isothermal entropy change associated with first order phase transitions in caloric materials. The magneto-structural phase transitions giving rise to giant magnetocaloric effects in Cu-doped MnAs and FeRh are used as case studies to exemplify how badly designed protocols may affect isothermal measurements and lead to incorrect entropy change estimations. Isothermal measurement protocols which allow correct assessment of the entropy change around first order phase transitions in both direct and inverse cases are presented.

  5. Study on polyethylene glycol/epoxy resin composite as a form-stable phase change material

    International Nuclear Information System (INIS)

    Fang Yutang; Kang Huiying; Wang Weilong; Liu Hong; Gao Xuenong

    2010-01-01

    Form-stable polyethylene glycol (PEG)/epoxy resin (EP) composite as a novel phase change material (PCM) was prepared using casting molding method. In this new material, PEG acts as the latent heat storage material and EP polymer serves as the supporting material, which provides structural strength and prevents the leakage of the melted PEG. The structure and morphology of the novel composite were observed using Fourier transformation infrared spectroscope (FTIR) and scanning electronic microscope (SEM). The thermo-mechanical property and transition behavior were characterized by polarizing optical microscope (POM), static thermo-mechanical analysis (TMA) and differential scanning calorimeter (DSC). The experimental results show that, as a result of the physical tangled function of the epoxy resin carrier to the PEG segment, the composite macroscopically presents the solid-solid phase change characteristic.

  6. Evaluation of candidate magnetohydrodynamic materials for the U-02 Phase III test

    International Nuclear Information System (INIS)

    Marchant, D.D.; Bates, J.L.

    1978-06-01

    As part of a cooperative U.S.--U.S.S.R. program, electrode and insulator materials tested at the Westinghouse Electrode Systems Test Facility in Pittsburgh, Pennsylvania, were evaluated. From this evaluation materials will be selected for use in the third phase of tests being conducted in the U-02 magnetohydrodynamics test facility in the Soviet Union. Electrode and insulator materials were examined with both an optical microscope and a scanning electron microscope. The cathodes were found to behave differently from the anodes; most notably, the cathodes showed greater potassium interaction. The lanthanum chromite-based electrodes (excluding those fabricated by plasma-spraying) are recommended for testing in the U-02 Phase III test. Hotpressed, fused-grained MgO and sintered MgAl 2 O 4 are recommended as insulator materials. The electrode attachment techniques used in the Westinghouse Tests were inadequate and need to be modified for the U-02 test

  7. Characterization of a lime-pozzolan plaster containing phase change material

    International Nuclear Information System (INIS)

    Pavlíková, Milena; Pavlík, Zbyšek; Trník, Anton; Pokorný, Jaroslav; Černý, Robert

    2015-01-01

    A PCM (Phase Change Material) modified lime-pozzolan plaster for improvement of thermal energy storage of building envelopes is studied in the paper. The investigated plaster is composed of lime hydrate, pozzolan admixture based on metakaolin and mudstone, silica sand, water and paraffin wax encapsulated in polymer capsule. The reference plaster without PCM application is studied as well. The analyzed materials are characterized by bulk density, matrix density, total open porosity, compressive strength and pore size distribution. The temperature of phase change, heat of fusion and crystallization are studied using DSC (Difference Scanning Calorimetry) analysis performed in air atmosphere. In order to get information on materials hygrothermal performance, determination of thermal and hygric properties is done in laboratory conditions. Experimental data reveal a substantial improvement of heat storage capacity of PCM-modified plaster as compared to the reference material without PCM

  8. Phase Transitions of the Polariton Condensate in 2D Dirac Materials.

    Science.gov (United States)

    Lee, Ki Hoon; Lee, Changhee; Min, Hongki; Chung, Suk Bum

    2018-04-13

    For the quantum well in an optical microcavity, the interplay of the Coulomb interaction and the electron-photon (e-ph) coupling can lead to the hybridizations of the exciton and the cavity photon known as polaritons, which can form the Bose-Einstein condensate above a threshold density. Additional physics due to the nontrivial Berry phase comes into play when the quantum well consists of the gapped two-dimensional Dirac material such as the transition metal dichalcogenide MoS_{2} or WSe_{2}. Specifically, in forming the polariton, the e-ph coupling from the optical selection rule due to the Berry phase can compete against the Coulomb electron-electron (e-e) interaction. We find that this competition gives rise to a rich phase diagram for the polariton condensate involving both topological and symmetry breaking phase transitions, with the former giving rise to the quantum anomalous Hall and the quantum spin Hall phases.

  9. Phase Transitions of the Polariton Condensate in 2D Dirac Materials

    Science.gov (United States)

    Lee, Ki Hoon; Lee, Changhee; Min, Hongki; Chung, Suk Bum

    2018-04-01

    For the quantum well in an optical microcavity, the interplay of the Coulomb interaction and the electron-photon (e -ph) coupling can lead to the hybridizations of the exciton and the cavity photon known as polaritons, which can form the Bose-Einstein condensate above a threshold density. Additional physics due to the nontrivial Berry phase comes into play when the quantum well consists of the gapped two-dimensional Dirac material such as the transition metal dichalcogenide MoS2 or WSe2 . Specifically, in forming the polariton, the e -ph coupling from the optical selection rule due to the Berry phase can compete against the Coulomb electron-electron (e -e ) interaction. We find that this competition gives rise to a rich phase diagram for the polariton condensate involving both topological and symmetry breaking phase transitions, with the former giving rise to the quantum anomalous Hall and the quantum spin Hall phases.

  10. Accurate switching intensities and length scales in quasi-phase-matched materials

    DEFF Research Database (Denmark)

    Bang, Ole; Graversen, Torben Winther; Corney, Joel Frederick

    2001-01-01

    We consider unseeded typeI second-harmonic generation in quasi-phase-matched quadratic nonlinear materials and derive an accurate analytical expression for the evolution of the average intensity. The intensity- dependent nonlinear phase mismatch that is due to the cubic nonlinearity induced...... by quasi phase matching is found. The equivalent formula for the intensity of maximum conversion, the crossing of which changes the one-period nonlinear phase shift of the fundamental abruptly by p , corrects earlier estimates [Opt.Lett. 23, 506 (1998)] by a factor of 5.3. We find the crystal lengths...... that are necessary to obtain an optimal flat phase versus intensity response on either side of this separatrix intensity....

  11. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.

    Science.gov (United States)

    Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming

    2010-06-01

    This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.

  12. Fundamental incorporation of the density change during melting of a confined phase change material

    Science.gov (United States)

    Hernández, Ernesto M.; Otero, José A.

    2018-02-01

    The modeling of thermal diffusion processes taking place in a phase change material presents a challenge when the dynamics of the phase transition is coupled to the mechanical properties of the container. Thermo-mechanical models have been developed by several authors, however, it will be shown that these models only explain the phase transition dynamics at low pressures when the density of each phase experiences negligible changes. In our proposal, a new energy-mass balance equation at the interface is derived and found to be a consequence of mass conservation. The density change experienced in each phase is predicted by the proposed formulation of the problem. Numerical and semi-analytical solutions to the proposed model are presented for an example on a high temperature phase change material. The solutions to the models presented by other authors are observed to be well-behaved close to the isobaric limit. However, compared to the results obtained from our model, the change in the fusion temperature, latent heat, and absolute pressure is found to be greatly overestimated by other proposals when the phase transition is studied close to the isochoric regime.

  13. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials.

    Science.gov (United States)

    Mukhopadhyay, Saikat; Sun, Jifeng; Subedi, Alaska; Siegrist, Theo; Singh, David J

    2016-05-19

    Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. This different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.

  14. Novel Formulations of Phase Change Materials-Epoxy Composites for Thermal Energy Storage.

    Science.gov (United States)

    Arce, Maria Elena; Alvarez Feijoo, Miguel Angel; Suarez Garcia, Andres; Luhrs, Claudia C

    2018-01-26

    This research aimed to evaluate the thermal properties of new formulations of phase change materials (PCMs)-epoxy composites, containing a thickening agent and a thermally conductive phase. The composite specimens produced consisted of composites fabricated using (a) inorganic PCMs (hydrated salts), epoxy resins and aluminum particulates or (b) organic PCM (paraffin), epoxy resins, and copper particles. Differential Scanning Calorimetry (DSC) was used to analyze the thermal behavior of the samples, while hardness measurements were used to determine changes in mechanical properties at diverse PCM and conductive phase loading values. The results indicate that the epoxy matrix can act as a container for the PCM phase without hindering the heat-absorbing behavior of the PCMs employed. Organic PCMs presented reversible phase transformations over multiple cycles, an advantage that was lacking in their inorganic counterparts. The enthalpy of the organic PCM-epoxy specimens increased linearly with the PCM content in the matrix. The use of thickening agents prevented phase segregation issues and allowed the fabrication of specimens containing up to 40% PCM, a loading significantly higher than others reported. The conductive phase seemed to improve the heat transfer and the mechanical properties of the composites when present in low percentages (material at the temperatures employed.

  15. Intergranular and inter-phased boundaries in the materials; Joints intergranulaires et interphases dans les materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Aslanides, A. [Electricite de France, Dept. CIMA, 77 - Moret sur Loing (France); Backhaus-Ricoult, M. [Centre d' Etudes de Chimie metallurgique, 94 - Vitry-sur-Seine (France); Bayle-Guillemaud, P. [CEA Grenoble, Dept. de Recherche Fondamentale sur la Matiere Condensee, 38 (France)] [and others

    2000-07-01

    This document collects the abstracts of the talks presented during the colloquium J2IM on the intergranular and inter-phased boundaries in the materials. Around the themes of the interfaces behaviour and grain boundaries defects in materials, these days dealt with the microstructure behaviour in many domains such as the interfaces in batteries, the irradiation damages and the special case of the fuel-cladding interactions, the stressed interfaces, the alumina or silicon carbides substrates. (A.L.B.)

  16. On-chip photonic memory elements employing phase-change materials.

    Science.gov (United States)

    Rios, Carlos; Hosseini, Peiman; Wright, C David; Bhaskaran, Harish; Pernice, Wolfram H P

    2014-03-05

    Phase-change materials integrated into nanophotonic circuits provide a flexible way to realize tunable optical components. Relying on the enormous refractive-index contrast between the amorphous and crystalline states, such materials are promising candidates for on-chip photonic memories. Nonvolatile memory operation employing arrays of microring resonators is demonstrated as a route toward all-photonic chipscale information processing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Application of Phase Change Materials (PCM's) to Preserve the Freshness of Seafood Products

    OpenAIRE

    Pudjiastuti, Wiwik; Listyarini, Arie; Riyanto, Arief

    2015-01-01

    The application of Phase Change Materials (PCMs) as one of latent heat energy storage materials in smart cold system has been investigated for preserving a freshness of seafood products. In this investigation, PCMs was installed on Expanded Polystyrene (EPS) box system as insulated container. The freshness of the seafood product was shown by the time of keeping temperature during storage or distribution. Keeping temperature time of smart cold system using PCMs was compared to conventional col...

  18. Synthesis and Screening of Phase Change Chalcogenide Thin Film Materials for Data Storage.

    Science.gov (United States)

    Guerin, Samuel; Hayden, Brian; Hewak, Daniel W; Vian, Chris

    2017-07-10

    A combinatorial synthetic methodology based on evaporation sources under an ultrahigh vacuum has been used to directly synthesize compositional gradient thin film libraries of the amorphous phases of GeSbTe alloys at room temperature over a wide compositional range. An optical screen is described that allows rapid parallel mapping of the amorphous-to-crystalline phase transition temperature and optical contrast associated with the phase change on such libraries. The results are shown to be consistent with the literature for compositions where published data are available along the Sb 2 Te 3 -GeTe tie line. The results reveal a minimum in the crystallization temperature along the Sb 2 Te 3 -Ge 2 Te 3 tie line, and the method is able to resolve subsequent cubic-to-hexagonal phase transitions in the GST crystalline phase. HT-XRD has been used to map the phases at sequentially higher temperatures, and the results are reconciled with the literature and trends in crystallization temperatures. The results clearly delineate compositions that crystallize to pure GST phases and those that cocrystallize Te. High-throughput measurement of the resistivity of the amorphous and crystalline phases has allowed the compositional and structural correlation of the resistivity contrast associated with the amorphous-to-crystalline transition, which range from 5-to-8 orders of magnitude for the compositions investigated. The results are discussed in terms of the compromises in the selection of these materials for phase change memory applications and the potential for further exploration through more detailed secondary screening of doped GST or similar classes of phase change materials designed for the demands of future memory devices.

  19. Energy Saving Potentials of Phase Change Materials Applied to Lightweight Building Envelopes

    Directory of Open Access Journals (Sweden)

    Yoon-Bok Seong

    2013-10-01

    Full Text Available Phase change materials (PCMs have been considered as an innovative technology that can reduce the peak loads and heating, ventilating and air conditioning (HVAC energy consumption in buildings. Basically they are substances capable of storing or releasing thermal energy as latent heat. Because the amount of latent heat absorbed or released is much larger than the sensible heat, the application of PCMs in buildings has significant potential to reduce energy consumption. However, because each PCM has its own phase change temperature, which is the temperature at which latent heat is absorbed or released, it is important to use an appropriate PCM for the purpose of building envelope design. Therefore, this paper aims to investigate the energy saving potentials in buildings when various PCMs with different phase change temperatures are applied to a lightweight building envelope by analyzing the thermal load characteristics. As results, the annual heating load increased at every phase change temperature, but the peak heating load decreased by 3.19% with heptadecane (phase change temperature 21 °C, and the lowest indoor temperature increased by 0.86 °C with heptadecane (phase change temperature 21 °C. The annual cooling load decreased by 1.05% with dodecanol (phase change temperature 24 °C, the peak cooling load decreased by 1.30% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.50 °C with octadecane (phase change temperature 29 °C. When the night ventilation was applied to the building HVAC system for better passive cooling performance, the annual cooling load decreased by 9.28% with dodecanol (phase change temperature 24 °C, the peak load decreased by 11.33% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.85 °C with octadecane (phase change temperature 29 °C.

  20. LIFE Materials: Phase Formation and Transformations in Transmutation Fuel Materials for the LIFE Engine Part I - Path Forward Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P A; Kaufman, L; Fluss, M

    2008-12-19

    The current specifications of the LLNL fusion-fission hybrid proposal, namely LIFE, impose severe constraints on materials, and in particular on the nuclear fissile or fertile nuclear fuel and its immediate environment. This constitutes the focus of the present report with special emphasis on phase formation and phase transformations of the transmutation fuel and their consequences on particle and pebble thermal, chemical, and mechanical integrities. We first review the work that has been done in recent years to improve materials properties under the Gen-IV project, and with in particular applications to HTGR and MSR, and also under GNEP and AFCI in the USA. Our goal is to assess the nuclear fuel options that currently exist together with their issues. Among the options, it is worth mentioning TRISO, IMF, and molten salts. The later option will not be discussed in details since an entire report (Volume 8 - Molten-salt Fuels) is dedicated to it. Then, in a second part, with the specific LIFE specifications in mind, the various fuel options with their most critical issues are revisited with a path forward for each of them in terms of research, both experimental and theoretical. Since LIFE is applicable to very high burn-up of various fuels, distinctions will be made depending on the mission, i.e., energy production or incineration. Finally a few conclusions are drawn in terms of the specific needs for integrated materials modeling and the in depth knowledge on time-evolution thermo-chemistry that controls and drastically affects the performance of the nuclear materials and their immediate environment. Although LIFE demands materials that very likely have not yet been fully optimized, the challenges are not insurmountable, and a well concerted experimental-modeling effort should lead to dramatic advances that should well serve other fission programs such as Gen-IV, GNEP, AFCI as well as the international fusion program, ITER.