WorldWideScience

Sample records for materials performance factors

  1. Influential Factors Affecting Materials Management in Construction Projects

    Directory of Open Access Journals (Sweden)

    Jusoh Zairra Mat

    2017-12-01

    Full Text Available Construction projects are more often than not plagued by poor performances such as delays, cost overrun, low productivity, construction wastes and compromised quality. Amongst the critical contributory factors of poor project performances, is the ineffectiveness of materials management occurring in the construction sites. Indeed, materials management is a very important component for construction projects. However, there are only limited numbers of research available regarding this topic. Thus, this research focuses its study on materials management, specifically in identifying the influential factors that affect materials management in the construction project activities. Literatures from books, journal articles and conference papers related to poor project performances and materials management have been reviewed. Consequently, this study sorted the salient influential factors and categorized them based on their specific group. Out of 47 factors identified, they are classified into 8 groups. They are (1 site condition; (2 planning and handling on site; (3 management; (4 materials; (5 supplier and manufacturer default; (6 transportation; (7 contractual; and (8 governmental interferences. In conclusion, this study contends that by identifying the influential factors affecting materials management, it will help construction players to avoid the occurrence of those factors and will minimize the negative impacts on the overall performance of construction projects. Hence, the handling-over of project will be according to schedule and not delayed by materials mismanagement.

  2. An empirical investigation of the influence of qualitative risk factors on Canadian auditors’ determination of performance materiality

    OpenAIRE

    C. Emby; N. Pecchiari

    2013-01-01

    This paper presents the results of a field experiment that tested the effects of various qualitative risk factors suggested by auditing standards and prior literature on practicing Canadian auditors’ estimates of performance materiality, a concept introduced by Canadian Auditing Standard (CAS) 320, in the audit of specific accounts in a financial statement audit. Ninety-four practicing auditors responded to four scenarios and, based on “good” and “bad” versions of six qualitative risk factors...

  3. Bionic Design, Materials and Performance of Bone Tissue Scaffolds

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2017-10-01

    Full Text Available Design, materials, and performance are important factors in the research of bone tissue scaffolds. This work briefly describes the bone scaffolds and their anatomic structure, as well as their biological and mechanical characteristics. Furthermore, we reviewed the characteristics of metal materials, inorganic materials, organic polymer materials, and composite materials. The importance of the bionic design in preoperative diagnosis models and customized bone scaffolds was also discussed, addressing both the bionic structure design (macro and micro structure and the bionic performance design (mechanical performance and biological performance. Materials and performance are the two main problems in the development of customized bone scaffolds. Bionic design is an effective way to solve these problems, which could improve the clinical application of bone scaffolds, by creating a balance between mechanical performance and biological performance.

  4. Factors Affecting the Battery Performance of Anthraquinone-based Organic Cathode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wu; Read, Adam L.; Koech, Phillip K.; Hu, Dehong; Wang, Chong M.; Xiao, Jie; Padmaperuma, Asanga B.; Graff, Gordon L.; Liu, Jun; Zhang, Jiguang

    2012-02-01

    Two organic cathode materials based on poly(anthraquinonyl sulfide) structure with different substitution positions were synthesized and their electrochemical behavior and battery performances were investigated. The substitution positions on the anthraquinone structure, binders for electrode preparation and electrolyte formulations have been found to have significant effects on the battery performances of such organic cathode materials. The substitution position with less steric stress has higher capacity, longer cycle life and better high-rate capability. Polyvinylidene fluoride binder and ether-based electrolytes are favorable for the high capacity and long cycle life of the quinonyl organic cathodes.

  5. The interface between metallurgy and mechanics in material performance

    Directory of Open Access Journals (Sweden)

    M. Newby

    2010-10-01

    Full Text Available This paper considers an important topic, and one that is often poorly understood or misinterpreted, but which is a determining factor in many aspects of the service performance of metals (and other materials. Engineering components and structures must, of necessity, provide a bridge between the macroscopic, homogeneous and generally continuum aspects of applied load and displacement, and the microscopic, heterogeneous and often non-continuum reality of material structure and behaviour. This bridge can take the form of a genuine interface between material and environment, e.g. at a surface, or can be a virtual one where the differing philosophies of design have to be merged. The interface has particular importance in circumstances where environmental influences have a key role in determining performance characteristics (e.g. creep, environmentally-assisted cracking, or corrosion, where performance is dominated by fatigue or fracture, where welding is used to join components, or where tribology plays a role. The paper focuses on the problems associated with cracking and uses case study examples drawn from engineering practice to illustrate the role of metallurgical factors in mechanical performance of materials.

  6. Material and design considerations of FBGA reliability performance

    International Nuclear Information System (INIS)

    Lee, Teck Kheng; Ng, T.C.; Chai, Y.M.

    2004-01-01

    FBGA package reliability is usually assessed through the conventional approaches of die attach and mold compound material optimization. However, with the rapid changes and fast-moving pace of electronic packaging and the introduction of new soldermask and core materials, substrate design has also become a critical factor in determining overall package reliability. The purpose of this paper is to understand the impact design and soldermask material of a rigid substrate on overall package reliability. Three different soldermask patterns with a matrix of different die attach, mold compound, and soldermask materials are assessed using the moisture sensitivity test (MST). Package reliability is also assessed through the use of temperature cycling (T/C) at conditions 'B' and 'C'. For material optimization, three different mold compounds and die attach materials are used. Material adhesion between different die attach materials and soldermask materials are obtained through die shear performed at various temperatures and preset moisture conditions. A study correlating the different packaging material properties and their relative adhesion strengths with overall package reliability in terms of both MST and T/C performance was performed. Soldermask design under the die pads was found to affect package reliability. For example, locating vias at the edge of the die is not desirable because the vias acts as initiation point for delamination and moisture-induced failure. Through die shear testing, soldermask B demonstrated higher adhesion properties compared to soldermask A across several packaging materials and enhanced the overall package reliability in terms of both MST and T/C performance. Both MST JEDEC level 1 and the T/C of 'B' and 'C' at 1000 cycles have been achieved through design and package material optimization

  7. Quantitative EDXS analysis of organic materials using the ζ-factor method

    International Nuclear Information System (INIS)

    Fladischer, Stefanie; Grogger, Werner

    2014-01-01

    In this study we successfully applied the ζ-factor method to perform quantitative X-ray analysis of organic thin films consisting of light elements. With its ability to intrinsically correct for X-ray absorption, this method significantly improved the quality of the quantification as well as the accuracy of the results compared to conventional techniques in particular regarding the quantification of light elements. We describe in detail the process of determining sensitivity factors (ζ-factors) using a single standard specimen and the involved parameter optimization for the estimation of ζ-factors for elements not contained in the standard. The ζ-factor method was then applied to perform quantitative analysis of organic semiconducting materials frequently used in organic electronics. Finally, the results were verified and discussed concerning validity and accuracy. - Highlights: • The ζ-factor method is used for quantitative EDXS analysis of light elements. • We describe the process of determining ζ-factors from a single standard in detail. • Organic semiconducting materials are successfully quantified

  8. Material and design considerations of FBGA reliability performance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Teck Kheng; Ng, T.C.; Chai, Y.M

    2004-09-01

    FBGA package reliability is usually assessed through the conventional approaches of die attach and mold compound material optimization. However, with the rapid changes and fast-moving pace of electronic packaging and the introduction of new soldermask and core materials, substrate design has also become a critical factor in determining overall package reliability. The purpose of this paper is to understand the impact design and soldermask material of a rigid substrate on overall package reliability. Three different soldermask patterns with a matrix of different die attach, mold compound, and soldermask materials are assessed using the moisture sensitivity test (MST). Package reliability is also assessed through the use of temperature cycling (T/C) at conditions 'B' and 'C'. For material optimization, three different mold compounds and die attach materials are used. Material adhesion between different die attach materials and soldermask materials are obtained through die shear performed at various temperatures and preset moisture conditions. A study correlating the different packaging material properties and their relative adhesion strengths with overall package reliability in terms of both MST and T/C performance was performed. Soldermask design under the die pads was found to affect package reliability. For example, locating vias at the edge of the die is not desirable because the vias acts as initiation point for delamination and moisture-induced failure. Through die shear testing, soldermask B demonstrated higher adhesion properties compared to soldermask A across several packaging materials and enhanced the overall package reliability in terms of both MST and T/C performance. Both MST JEDEC level 1 and the T/C of 'B' and 'C' at 1000 cycles have been achieved through design and package material optimization.

  9. Evaluation of Shielding Performance for Newly Developed Composite Materials

    Science.gov (United States)

    Evans, Beren Richard

    This work details an investigation into the contributing factors behind the success of newly developed composite neutron shield materials. Monte Carlo simulation methods were utilized to assess the neutron shielding capabilities and secondary radiation production characteristics of aluminum boron carbide, tungsten boron carbide, bismuth borosilicate glass, and Metathene within various neutron energy spectra. Shielding performance and secondary radiation data suggested that tungsten boron carbide was the most effective composite material. An analysis of the macroscopic cross-section contributions from constituent materials and interaction mechanisms was then performed in an attempt to determine the reasons for tungsten boron carbide's success over the other investigated materials. This analysis determined that there was a positive correlation between a non-elastic interaction contribution towards a material's total cross-section and shielding performance within the thermal and epi-thermal energy regimes. This finding was assumed to be a result of the boron-10 absorption reaction. The analysis also determined that within the faster energy regions, materials featuring higher non-elastic interaction contributions were comparable to those exhibiting primarily elastic scattering via low Z elements. This allowed for the conclusion that composite shield success within higher energy neutron spectra does not necessitate the use elastic scattering via low Z elements. These findings suggest that the inclusion of materials featuring high thermal absorption properties is more critical to composite neutron shield performance than the presence of constituent materials more inclined to maximize elastic scattering energy loss.

  10. Designing high-Performance layered thermoelectric materials through orbital engineering

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited...... insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach...... naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth...

  11. Investigating the Effects of Loading Factors on the In Vitro Pharmaceutical Performance of Mesoporous Materials as Drug Carriers for Ibuprofen

    Directory of Open Access Journals (Sweden)

    Junmin Lai

    2017-02-01

    Full Text Available The aim of the study was to investigate the effects of the loading factors, i.e., the initial drug loading concentration and the ratio of the drug to carriers, on the in vitro pharmaceutical performance of drug-loaded mesoporous systems. Ibuprofen (IBU was used as a model drug, and two non-ordered mesoporous materials of commercial silica Syloid® 244FP (S244FP and Neusilin® US2 (NS2 were selected in the study. The IBU-loaded mesoporous samples were prepared by a solvent immersion method with a rotary evaporation drying technique and characterized by polarized light microscopy (PLM, Fourier transform infrared (FTIR spectroscopy, X-ray powder diffraction (XRPD and differential scanning calorimetry (DSC. Dissolution experiments were performed in simulated gastric media at 37 °C under non-sink conditions. The concentration of IBU in solution was determined by HPLC. The study showed that the dissolution rate of IBU can be improved significantly using the mesoporous S224FP carriers due to the conversion of crystalline IBU into the amorphous form. Both of the loading factors affected the IBU dissolution kinetics. Due to the molecular interaction between the IBU and NS2 carriers, the loading factors had little effects on the drug release kinetics with incomplete drug desorption recovery and insignificant dissolution enhancement. Care and extensive evaluation must therefore be taken when mesoporous materials are chosen as carrier delivery systems.

  12. Hazardous materials package performance regulations

    International Nuclear Information System (INIS)

    Russell, N.A.; Glass, R.E.; McClure, J.D.; Finley, N.C.

    1992-01-01

    The hazardous materials (hazmat) packaging development and certification process is currently defined by two different regulatory philosophies, one based on specification packagings and the other based on performance standards. With specification packagings, a packaging is constructed according to an agreed set of design specifications. In contrast, performance standards do not specify the packaging design; they specify performance standards that a packaging design must be able to pass before it can be certified for transport. The packaging can be designed according to individual needs as long as it meets these performance standards. Performance standards have been used nationally and internationally for about 40 years to certify radioactive materials (RAM) packagings. It is reasonable to state that for RAM transport, performance specifications have maintained transport safety. A committee of United Nation's experts recommended the performance standard philosophy as the preferred regulation method for hazmat packaging. Performance standards for hazmat packagings smaller than 118 gallons have been adopted in 49CFR178. Packagings for materials that are classified as toxic-by-inhalation must comply with the performance standards by October 1, 1993, and packagings for all other classes of hazardous materials covered must comply by October 1, 1996. For packages containing bulk (in excess of 188 gallons) quantities of materials that are extremely toxic by inhalation, there currently are no performance requirements. This paper discusses a Hazmat Packaging Performance Evaluation (HPPE) project to look at the subset of bulk packagings that are larger than 2000 gallons. The objectives of this project are the evaluate current hazmat specification packagings and develop supporting documentation for determining performance requirements for packagings in excess of 2000 gallons that transport hazardous materials that have been classified as extremely toxic by inhalation (METBI)

  13. Radioactive material packaging performance testing

    International Nuclear Information System (INIS)

    Romano, T.; Cruse, J.M.

    1991-02-01

    To provide uniform packaging of hazardous materials on an international level, the United Nations has developed packaging recommendations that have been implemented worldwide. The United Nations packaging recommendations are performance oriented, allowing for a wide variety of package materials and systems. As a result of this international standard, efforts in the United States are being directed toward use of performance-oriented packaging and elimination of specification (designed) packaging. This presentation will focus on trends, design evaluation, and performance testing of radioactive material packaging. The impacts of US Department of Transportation Dockets HM-181 and HM-169A on specification and low-specific activity radioactive material packaging requirements are briefly discussed. The US Department of Energy's program for evaluating radioactive material packings per US Department of Transportation Specification 7A Type A requirements, is used as the basis for discussing low-activity packaging performance test requirements. High-activity package testing requirements are presented with examples of testing performed at the Hanford Site that is operated by Westinghouse Hanford Company for the US Department of Energy. 5 refs., 2 tabs

  14. Validating YouTube Factors Affecting Learning Performance

    Science.gov (United States)

    Pratama, Yoga; Hartanto, Rudy; Suning Kusumawardani, Sri

    2018-03-01

    YouTube is often used as a companion medium or a learning supplement. One of the educational places that often uses is Jogja Audio School (JAS) which focuses on music production education. Music production is a difficult material to learn, especially at the audio mastering. With tutorial contents from YouTube, students find it easier to learn and understand audio mastering and improved their learning performance. This study aims to validate the role of YouTube as a medium of learning in improving student’s learning performance by looking at the factors that affect student learning performance. The sample involves 100 respondents from JAS at audio mastering level. The results showed that student learning performance increases seen from factors that have a significant influence of motivation, instructional content, and YouTube usefulness. Overall findings suggest that YouTube has a important role to student learning performance in music production education and as an innovative and efficient learning medium.

  15. Factors affecting construction performance: exploratory factor analysis

    Science.gov (United States)

    Soewin, E.; Chinda, T.

    2018-04-01

    The present work attempts to develop a multidimensional performance evaluation framework for a construction company by considering all relevant measures of performance. Based on the previous studies, this study hypothesizes nine key factors, with a total of 57 associated items. The hypothesized factors, with their associated items, are then used to develop questionnaire survey to gather data. The exploratory factor analysis (EFA) was applied to the collected data which gave rise 10 factors with 57 items affecting construction performance. The findings further reveal that the items constituting ten key performance factors (KPIs) namely; 1) Time, 2) Cost, 3) Quality, 4) Safety & Health, 5) Internal Stakeholder, 6) External Stakeholder, 7) Client Satisfaction, 8) Financial Performance, 9) Environment, and 10) Information, Technology & Innovation. The analysis helps to develop multi-dimensional performance evaluation framework for an effective measurement of the construction performance. The 10 key performance factors can be broadly categorized into economic aspect, social aspect, environmental aspect, and technology aspects. It is important to understand a multi-dimension performance evaluation framework by including all key factors affecting the construction performance of a company, so that the management level can effectively plan to implement an effective performance development plan to match with the mission and vision of the company.

  16. Calculation of intensity factors using weight function theory for a transversely isotropic piezoelectric material

    International Nuclear Information System (INIS)

    Son, In Ho; An, Deuk Man

    2012-01-01

    In fracture mechanics, the weight function can be used for calculating stress intensity factors. In this paper, a two dimensional electroelastic analysis is performed on a transversely isotropic piezoelectric material with an open crack. A plane strain formulation of the piezoelectric problem is solved within the Leknitskii formalism. Weight function theory is extended to piezoelectric materials. The stress intensity factors and electric displacement intensity factor are calculated by the weight function theory

  17. Radioactive material packaging performance testing

    International Nuclear Information System (INIS)

    Romano, T.

    1992-06-01

    In an effort to provide uniform packaging of hazardous material on an international level, recommendations for the transport of dangerous goods have been developed by the United Nations. These recommendations are performance oriented and contrast with a large number of packaging specifications in the US Department of Transportation's hazard materials regulations. This dual system presents problems when international shipments enter the US Department of Transportation's system. Faced with the question of continuing a dual system or aligning with the international system, the Research and Special Programs Administration of the US Department of Transportation responded with Docket HM-181. This began the transition toward the international transportation system. Following close behind is Docket HM-169A, which addressed low specific activity radioactive material packaging. This paper will discuss the differences between performance-oriented and specification packaging, the transition toward performance-oriented packaging by the US Department of Transportation, and performance-oriented testing of radioactive material packaging by Westinghouse Hanford Company. Dockets HM-181 and HM-169A will be discussed along with Type A (low activity) and Type B (high activity) radioactive material packaging evaluations

  18. Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance

    Science.gov (United States)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical compute engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While a variety of high-performance modulators have been demonstrated, no comprehensive picture of what factors are most responsible for high performance has emerged so far. Here we report the first systematic and comprehensive analytical and computational investigation for high-performance compact on-chip electro-optic modulators by considering emerging active materials, model considerations and cavity feedback at the nanoscale. We discover that the delicate interplay between the material characteristics and the optical mode properties plays a key role in defining the modulator performance. Based on physical tradeoffs between index modulation, loss, optical confinement factors and slow-light effects, we find that there exist combinations of bias, material and optical mode that yield efficient phase or amplitude modulation with acceptable insertion loss. Furthermore, we show how material properties in the epsilon near zero regime enable reduction of length by as much as by 15 times. Lastly, we introduce and apply a cavity-based electro-optic modulator figure of merit, Δλ/Δα, relating obtainable resonance tuning via phase shifting relative to the incurred losses due to the fundamental Kramers-Kronig relations suggesting optimized device operating regions with optimized modulation-to-loss tradeoffs. This work paves the way for a holistic design rule of electro-optic modulators for high-density on-chip integration.

  19. Cryogenic Q-factor measurement of optical substrate materials

    Energy Technology Data Exchange (ETDEWEB)

    Nietzsche, S; Nawrodt, R; Zimmer, A; Thuerk, M; Vodel, W; Seidel, P [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, 07743 Jena (Germany)

    2006-03-02

    Upcoming generations of interferometric gravitational wave detectors are likely to be operated at cryogenic temperatures because one of the sensitivity limiting factors of the present generation is the thermal noise of optical components (e.g. end mirrors, cavity couplers, beam splitters). The main contributions to this noise are due to the substrate, the optical coating, and the suspension. The thermal noise can be reduced by cooling to cryogenic temperatures. In addition the overall mechanical quality factor should preferable increase at low temperatures. The experimental details of a new cryogenic apparatus for investigations of the temperature dependency of the Q-factor of several substrate materials in the range of 5 to 300 K are presented. To perform a ring down recording an electrostatic mode excitation of the samples and an interferometric read-out of the amplitude of the vibrations was used.

  20. AN ASSESSMENT OF FACTORS AFFECTING MATERIAL STOCK CONTROL PRACTICE ON SELECTED CONSTRUCTION SITES IN NIGERIA

    OpenAIRE

    Adafin, Johnson Kayode; Ayodele, Elijah Olusegun; Daramola, Olufemi

    2011-01-01

    This research examines the stock control methods utilized by construction firms on construction sites with a view to assessing the factors affecting material stock control practice by construction firms as well as determining the impact of factors affecting material stock control on building project performance. Data were collected with the aid of well-structured questionnaire administered on a number of construction professionals and technicians in some randomly selected building constructio...

  1. Factors Affecting the Effectiveness of Inorganic Silicate Sealer Material through Multi-Quality Characteristics

    Directory of Open Access Journals (Sweden)

    Hui-Mi Hsu

    2013-03-01

    Full Text Available This study investigates the effectiveness of concrete protection with two inorganic silicate sealer materials (ISSMs. The Taguchi method and grey relational analysis (GRA have been used to identify the key factors influencing concrete protection provided by the surface treatment. Seven control factors with two levels were selected. By using the orthogonal array L12 (27, 12 experiments are chosen and four tests—the compressive strength test, resistivity test, absorption test and permeability test—were performed. Results have shown that the major factors affecting the protection effectiveness of ISSM are the water-binder ratio of mortar substrate, age of substrate for sealer application, addition of pozzolanic material and sealer type.

  2. Human performance: An essential element in materials control and accountability

    International Nuclear Information System (INIS)

    Haber, S.B.; Allentuck, J.

    1996-01-01

    The importance of the role of human performance in the successful and effective operation of many activities throughout many industries has been well documented. Most closely related to the materials control and accountability area is the work in human factors that has been ongoing in the U.S. nuclear industry since the Three Mile Island Nuclear Power Plant accident in 1979. Research related to the role of human reliability, human-system interface, and organization and management influences has been and is still being conducted to identify ways to enhance the safe and effective operation of nuclear facilities. This paper will discuss these human performance areas and how they relate to the materials control and accountability area. Particular attention will be focussed on the notion of open-quotes safety cultureclose quotes and how it can be defined and measured for understanding the values and attitudes held by individuals working in the materials control area. It is widely believed that the culture of an organization, which reflects the expectations and values of the management of an organization, is a key element to the operation of that organization. The human performance element is one which has not received a great deal of consideration in the materials control and accountability area and yet it will be demonstrated that it is an essential component to ensure the success of safeguards activities

  3. Band engineering and rational design of high-performance thermoelectric materials by first-principles

    Directory of Open Access Journals (Sweden)

    Lili Xi

    2016-06-01

    Full Text Available Understanding and manipulation of the band structure are important in designing high-performance thermoelectric (TE materials. Our recent work has involved the utilization of band structure in various topics of TE research, i.e., the band convergence, the conductive network, dimensionality reduction by quantum effects, and high throughput material screening. In non-cubic chalcopyrite compounds, we revealed the relations between structural factors and band degeneracy, and a simple unity-η rule was proposed for selecting high performance diamond-like TE materials. Based on the deep understanding of the electrical and thermal transport, we identified the conductive network in filled skutterudites with the “phonon glass-electron crystal” (PGEC paradigm, and extended this concept to caged-free Cu-based diamond-like compounds. By combining the band structure calculations and the Boltzmann transport theory, we conducted a high-throughput material screening in half-Heusler (HH systems, and several promising compositions with high power factors were proposed out of a large composition collection. At last, we introduced the Rashba spin-splitting effect into thermoelectrics, and its influence on the electrical transport properties was discussed. This review demonstrated the importance of the microscopic perspectives for the optimization and design of novel TE materials.

  4. Transparent conductors based on microscale/nanoscale materials for high performance devices

    Science.gov (United States)

    Gao, Tongchuan

    Transparent conductors are important as the top electrode for a variety of optoelectronic devices, including solar cells, light-emitting diodes (LEDs), at panel displays, and touch screens. Doped indium tin oxide (ITO) thin films are the predominant transparent conductor material. However, ITO thin films are brittle, making them unsuitable for the emerging flexible devices, and suffer from high material and processing cost. In my thesis, we developed a variety of transparent conductors toward a performance comparable with or superior to ITO thin films, with lower cost and potential for scalable manufacturing. Metal nanomesh (NM), hierarchical graphene/metal microgrid (MG), and hierarchical metal NM/MG materials were investigated. Simulation methods were used as a powerful tool to predict the transparency and sheet resistance of the transparent conductors by solving Maxwell's equations and Poisson's equation. Affordable and scalable fabrication processes were developed thereafter. Transparent conductors with over 90% transparency and less than 10 O/square sheet resistance were successfully fabricated on both rigid and flexible substrates. Durability tests, such as bending, heating and tape tests, were carried out to evaluate the robustness of the samples. Haze factor, which characterizes how blurry a transparent conductor appears, was also studied in-depth using analytical calculation and numerical simulation. We demonstrated a tunable haze factor for metal NM transparent conductors and analyzed the principle for tuning the haze factor. Plasmonic effects, excited by some transparent conductors, can lead to enhanced performance in photovoltaic devices. We systematically studied the effect of incorporating metal NM into ultrathin film silicon solar cells using numerical simulation, with the aid of optimization algorithms to reduce the optimization time. Mechanisms contributing to the enhanced performance were then identified and analyzed. Over 72% enhancement in short

  5. Hazardous materials package performance regulations

    International Nuclear Information System (INIS)

    Russell, N.A.; Glass, R.E.; McClure, J.D.; Finley, N.C.

    1993-01-01

    Two regulatory philosophies, one based on 'specification' packaging standards and the other based on 'performance' packaging standards, currently define the hazmat packaging certification process. A main concern when setting performance standards is determining the appropriate standards necessary to assure adequate public protection. This paper discusses a Hazmat Packaging Performance Evaluation (HPPE) project being conducted at Sandia National Laboratories for the U.S. Department of Transportation Research and Special Programs Administration. In this project, the current bulk packagings (larger than 2000 gallons) for transporting Materials Extremely Toxic By Inhalation (METBI) are being evaluated and performance standards will be recommended. A computer software system, HazCon, has been developed which can calculate the dispersion of dense, neutral, and buoyant gases. HazCon also has a database of thermodynamic and toxicity data for the METBI materials, a user-friendly menu-driven format for creating input data sets for calculating dispersion of the METBI in the event of an accidental release, and a link between the METBI database and the dense gas dispersion code (which requires thermodynamic properties). The primary output of HazCon is a listing of mass concentrations of the released material at distances downwind from the release point. (J.P.N.)

  6. Laser additive manufacturing of high-performance materials

    CERN Document Server

    Gu, Dongdong

    2015-01-01

    This book entitled “Laser Additive Manufacturing of High-Performance Materials” covers the specific aspects of laser additive manufacturing of high-performance new materials components based on an unconventional materials incremental manufacturing philosophy, in terms of materials design and preparation, process control and optimization, and theories of physical and chemical metallurgy. This book describes the capabilities and characteristics of the development of new metallic materials components by laser additive manufacturing process, including nanostructured materials, in situ composite materials, particle reinforced metal matrix composites, etc. The topics presented in this book, similar as laser additive manufacturing technology itself, show a significant interdisciplinary feature, integrating laser technology, materials science, metallurgical engineering, and mechanical engineering. This is a book for researchers, students, practicing engineers, and manufacturing industry professionals interested i...

  7. Impact of aging and material structure on CANDU plant performance

    International Nuclear Information System (INIS)

    Nadeau, E.; Ballyk, J.; Ghalavand, N.

    2011-01-01

    In-service behaviour of pressure tubes is a key factor in the assessment of safety margins during plant operation. Pressure tube deformation (diametral expansion) affects fuel bundle dry out characteristics resulting in reduced margin to trip for some events. Pressure tube aging mechanisms also erode design margins on fuel channels or interfacing reactor components. The degradation mechanisms of interest are primarily deformation, loss of fracture resistance and hydrogen ingress. CANDU (CANada Deuterium Uranium, a registered trademark of the Atomic Energy of Canada Limited used under exclusive licence by Candu Energy Inc.) owners and operators need to maximize plant capacity factor and meet or exceed the reactor design life targets while maintaining safety margins. The degradation of pressure tube material and geometry are characterized through a program of inspection, material surveillance and assessment and need to be managed to optimize plant performance. Candu is improving pressure tubes installed in new build and life extension projects. Improvements include changes designed to reduce or mitigate the impact of pressure tube elongation and diametral expansion rates, improvement of pressure tube fracture properties, and reduction of the implications of hydrogen ingress. In addition, Candu provides an extensive array of engineering services designed to assess the condition of pressure tubes and address the impact of pressure tube degradation on safety margins and plant performance. These services include periodic and in-service inspection and material surveillance of pressure tubes and deterministic and probabilistic assessment of pressure tube fitness for service to applicable standards. Activities designed to mitigate the impact of pressure tube deformation on safety margins include steam generator cleaning, which improves trip margins, and trip design assessment to optimize reactor trip set points restoring safety and operating margins. This paper provides an

  8. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  9. High-performance ferroelectric and magnetoresistive materials for next-generation thermal detector arrays

    Science.gov (United States)

    Todd, Michael A.; Donohue, Paul P.; Watton, Rex; Williams, Dennis J.; Anthony, Carl J.; Blamire, Mark G.

    2002-12-01

    This paper discusses the potential thermal imaging performance achievable from thermal detector arrays and concludes that the current generation of thin-film ferroelectric and resistance bolometer based detector arrays are limited by the detector materials used. It is proposed that the next generation of large uncooled focal plane arrays will need to look towards higher performance detector materials - particularly if they aim to approach the fundamental performance limits and compete with cooled photon detector arrays. Two examples of bolometer thin-film materials are described that achieve high performance from operating around phase transitions. The material Lead Scandium Tantalate (PST) has a paraelectric-to-ferroelectric phase transition around room temperature and is used with an applied field in the dielectric bolometer mode for thermal imaging. PST films grown by sputtering and liquid-source CVD have shown merit figures for thermal imaging a factor of 2 to 3 times higher than PZT-based pyroelectric thin films. The material Lanthanum Calcium Manganite (LCMO) has a paramagnetic to ferromagnetic phase transition around -20oC. This paper describes recent measurements of TCR and 1/f noise in pulsed laser-deposited LCMO films on Neodymium Gallate substrates. These results show that LCMO not only has high TCR's - up to 30%/K - but also low 1/f excess noise, with bolometer merit figures at least an order of magnitude higher than Vanadium Oxide, making it ideal for the next generation of microbolometer arrays. These high performance properties come at the expense of processing complexities and novel device designs will need to be introduced to realize the potential of these materials in the next generation of thermal detectors.

  10. Performance analysis of nuclear materials accounting systems

    International Nuclear Information System (INIS)

    Cobb, D.D.; Shipley, J.P.

    1979-01-01

    Techniques for analyzing the level of performance of nuclear materials accounting systems in terms of the four performance measures, total amount of loss, loss-detection time, loss-detection probability, and false-alarm probability, are presented. These techniques are especially useful for analyzing the expected performance of near-real-time (dynamic) accounting systems. A conservative estimate of system performance is provided by the CUSUM (cumulative summation of materials balances) test. Graphical displays, called performance surfaces, are developed as convenient tools for representing systems performance, and examples from a recent safeguards study of a nuclear fuels reprocessing plant are given. 6 refs

  11. Respirator field performance factors

    International Nuclear Information System (INIS)

    Skaggs, B.J.; DeField, J.D.; Strandberg, S.W.; Sutcliffe, C.R.

    1985-01-01

    The Industrial Hygiene Group assisted OSHA and the NRC in measurements of respirator performance under field conditions. They reviewed problems associated with sampling aerosols within the respirator in order to determine fit factors (FFs) or field performance factor (FPF). In addition, they designed an environmental chamber study to determine the effects of temperature and humidity on a respirator wearer

  12. Materials performance in advanced fossil technologies

    International Nuclear Information System (INIS)

    Natesan, K.

    1991-01-01

    A number of advanced technologies are being developed to convert coal into clean fuels for use as a feedstock in chemical plants and for power generation. From the standpoint of component materials, the environments created by coal conversion and combustion in these technologies and their interactions with materials are of interest. This article identifies several modes of materials degradation and possible mechanisms for metal wastage. Available data on the performance of materials in several of the environments are highlighted, and examples of promising research activities to improve the corrosion resistance of materials are presented

  13. Improvement of performance of ultra-high performance concrete based composite material added with nano materials

    Directory of Open Access Journals (Sweden)

    Pang Jinchang

    2016-03-01

    Full Text Available Ultra-high performance concrete (UHPC, a kind of composite material characterized by ultra high strength, high toughness and high durability. It has a wide application prospect in engineering practice. But there are some defects in concrete. How to improve strength and toughness of UHPC remains to be the target of researchers. To obtain UHPC with better performance, this study introduced nano-SiO2 and nano-CaCO3 into UHPC. Moreover, hydration heat analysis, X-Ray Diffraction (XRD, mercury intrusion porosimetry (MIP and nanoindentation tests were used to explore hydration process and microstructure. Double-doped nanomaterials can further enhance various mechanical performances of materials. Nano-SiO2 can promote early progress of cement hydration due to its high reaction activity and C-S-H gel generates when it reacts with cement hydration product Ca(OH2. Nano-CaCO3 mainly plays the role of crystal nucleus effect and filling effect. Under the combined action of the two, the composite structure is denser, which provides a way to improve the performance of UHPC in practical engineering.

  14. Material management performance indicators for upper management

    International Nuclear Information System (INIS)

    O'Loughlin, R.C.

    1987-01-01

    The purpose of this paper is to develop a case for the use of performance indicators by upper management to monitor the effectiveness of material management operations at nuclear power plants. The paper establishes that the use of performance indicators is not a pro forma matter. There are specific standards and conditions to which the material management operation must conform for the performance measures to be meaningful. The paper concludes with discussion of the application and use of specific performance indicators. Proper use of selected performance indicators can remove the mystery and uncertainty for management about an aspect of nuclear plant operations that has significant budget implications

  15. Reversibly tethering growth factors to surfaces : guiding cell function at the cell-material interface

    NARCIS (Netherlands)

    Cabanas Danés, Jordi

    2013-01-01

    Development of novel methodologies for tethering growth factors (GFs) to materials is highly desired for the generation of biomaterials with improved tissue repair properties. Progress in the development of biomaterials that incorporate GFs and the in vivo performance of such biomaterials in tissue

  16. Electron mean-free-path filtering in Dirac material for improved thermoelectric performance.

    Science.gov (United States)

    Liu, Te-Huan; Zhou, Jiawei; Li, Mingda; Ding, Zhiwei; Song, Qichen; Liao, Bolin; Fu, Liang; Chen, Gang

    2018-01-30

    Recent advancements in thermoelectric materials have largely benefited from various approaches, including band engineering and defect optimization, among which the nanostructuring technique presents a promising way to improve the thermoelectric figure of merit ( zT ) by means of reducing the characteristic length of the nanostructure, which relies on the belief that phonons' mean free paths (MFPs) are typically much longer than electrons'. Pushing the nanostructure sizes down to the length scale dictated by electron MFPs, however, has hitherto been overlooked as it inevitably sacrifices electrical conduction. Here we report through ab initio simulations that Dirac material can overcome this limitation. The monotonically decreasing trend of the electron MFP allows filtering of long-MFP electrons that are detrimental to the Seebeck coefficient, leading to a dramatically enhanced power factor. Using SnTe as a material platform, we uncover this MFP filtering effect as arising from its unique nonparabolic Dirac band dispersion. Room-temperature zT can be enhanced by nearly a factor of 3 if one designs nanostructures with grain sizes of ∼10 nm. Our work broadens the scope of the nanostructuring approach for improving the thermoelectric performance, especially for materials with topologically nontrivial electronic dynamics.

  17. Simple method of calculating the transient thermal performance of composite material and its applicable condition

    Institute of Scientific and Technical Information of China (English)

    张寅平; 梁新刚; 江忆; 狄洪发; 宁志军

    2000-01-01

    Degree of mixing of composite material is defined and the condition of using the effective thermal diffusivity for calculating the transient thermal performance of composite material is studied. The analytical result shows that for a prescribed precision of temperature, there is a condition under which the transient temperature distribution in composite material can be calculated by using the effective thermal diffusivity. As illustration, for the composite material whose temperatures of both ends are constant, the condition is presented and the factors affecting the relative error of calculated temperature of composite materials by using effective thermal diffusivity are discussed.

  18. Materials Challenges for High Performance Magnetocaloric Refrigeration Devices

    DEFF Research Database (Denmark)

    Smith, Anders; Bahl, Christian; Bjørk, Rasmus

    2012-01-01

    Magnetocaloric materials with a Curie temperature near room temperature have attracted signifi cant interest for some time due to their possible application for high-effi ciency refrigeration devices. This review focuses on a number of key issues of relevance for the characterization, performance....... The question of how to evaluate the suitability of a given material for use in a magnetocaloric device is covered in some detail, including a critical assessment of a number of common performance metrics. Of particular interest is which non-magnetocaloric properties need to be considered in this connection....... An overview of several important materials classes is given before considering the performance of materials in actual devices. Finally, an outlook on further developments is presented....

  19. BPM Magazine : biobased performance materials

    NARCIS (Netherlands)

    Bolck, C.H.; Bos, H.L.; Gennip, van E.; Zee, van der M.

    2011-01-01

    BPM magazine is een uitgave van het Biobased Performance Materials programma. In dit programma werken kennisinstellingen en bedrijven samen aan nieuwe biobased plastics en aan toepassingsgericht onderzoek om de eigenschappen van bestaande biokunststoffen te verbeteren.

  20. Impact of aging and material structure on CANDU plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Nadeau, E.; Ballyk, J.; Ghalavand, N. [Candu Energy Inc., Mississauga, Ontario (Canada)

    2011-07-01

    In-service behaviour of pressure tubes is a key factor in the assessment of safety margins during plant operation. Pressure tube deformation (diametral expansion) affects fuel bundle dry out characteristics resulting in reduced margin to trip for some events. Pressure tube aging mechanisms also erode design margins on fuel channels or interfacing reactor components. The degradation mechanisms of interest are primarily deformation, loss of fracture resistance and hydrogen ingress. CANDU (CANada Deuterium Uranium, a registered trademark of the Atomic Energy of Canada Limited used under exclusive licence by Candu Energy Inc.) owners and operators need to maximize plant capacity factor and meet or exceed the reactor design life targets while maintaining safety margins. The degradation of pressure tube material and geometry are characterized through a program of inspection, material surveillance and assessment and need to be managed to optimize plant performance. Candu is improving pressure tubes installed in new build and life extension projects. Improvements include changes designed to reduce or mitigate the impact of pressure tube elongation and diametral expansion rates, improvement of pressure tube fracture properties, and reduction of the implications of hydrogen ingress. In addition, Candu provides an extensive array of engineering services designed to assess the condition of pressure tubes and address the impact of pressure tube degradation on safety margins and plant performance. These services include periodic and in-service inspection and material surveillance of pressure tubes and deterministic and probabilistic assessment of pressure tube fitness for service to applicable standards. Activities designed to mitigate the impact of pressure tube deformation on safety margins include steam generator cleaning, which improves trip margins, and trip design assessment to optimize reactor trip set points restoring safety and operating margins. This paper provides an

  1. Base technology development of new materials for FBR performance innovations

    International Nuclear Information System (INIS)

    Kano, Shigeki; Koyama, Masahiro; Nomura, Shigeo; Morikawa, Satoru; Ueno, Fumiyoshi

    1989-01-01

    This paper describes the base technology development of new materials for FBR performance innovations at the Power Reactor and Nuclear Fuel Development Corporation. The contents are as follows: (1) development of sodium and radiation resistant new materials, (2) development of high performance shielding material, (3) development of high performance control material, (4) development of new functional materials for reactor instrumentation. (author)

  2. Vanadium based materials as electrode materials for high performance supercapacitors

    Science.gov (United States)

    Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo

    2016-10-01

    As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.

  3. Performance limits for fusion first-wall structural materials

    International Nuclear Information System (INIS)

    Smith, D.L.; Majumdar, S.; Billone, M.; Mattas, R.

    2000-01-01

    Key features of fusion energy relate primarily to potential advantages associated with safety and environmental considerations and the near endless supply of fuel. However, high-performance fusion power systems will be required in order to be an economically competitive energy option. As in most energy systems, the operating limits of structural materials pose a primary constraint to the performance of fusion power systems. In the case of fusion power, the first-wall/blanket system will have a dominant impact on both economic and safety/environmental attractiveness. This paper presents an assessment of the influence of key candidate structural material properties on performance limits for fusion first-wall blanket applications. Key issues associated with interactions of the structural materials with the candidate coolant/breeder materials are discussed

  4. BPM Magazine : biobased performance materials

    NARCIS (Netherlands)

    Bolck, C.H.; Bos, H.L.; Gennip, van E.; Zee, van der M.

    2011-01-01

    BPM magazine is a publication of the Biobased Performance Materials programme. In this programme, knowledge institutions and businesses are working together on new bio-based plastics and application-focused research to improve the properties of existing bio-plastics.

  5. Performance investigation on DCSFCL considering different magnetic materials

    Science.gov (United States)

    Yuan, Jiaxin; Zhou, Hang; Zhong, Yongheng; Gan, Pengcheng; Gao, Yanhui; Muramatsu, Kazuhiro; Du, Zhiye; Chen, Baichao

    2018-05-01

    In order to protect high voltage direct current (HVDC) system from destructive consequences caused by fault current, a novel concept of HVDC system fault current limiter (DCSFCL) was proposed previously. Since DCSFCL is based on saturable core reactor theory, iron core becomes the key to the final performance of it. Therefore, three typical kinds of soft magnetic materials were chosen to find out their impact on performances of DCSFCL. Different characteristics of materials were compared and their theoretical deductions were carried out, too. In the meanwhile, 3D models applying those three materials were built separately and finite element analysis simulations were performed to compare these results and further verify the assumptions. It turns out that materials with large saturation flux density value Bs like silicon steel and short demagnetization time like ferrite might be the best choice for DCSFCL, which can be a future research direction of magnetic materials.

  6. Transitional Materialities and the Performance of JavaScript

    OpenAIRE

    Walker, Nathan

    2013-01-01

    This article approaches questions around materiality in digital writing practice in terms of performance, sound, and sound-poetry. Using Alan Golding's term 'Transitional Materiality' as a kind of model which connects my own practice-based project 'Sounding.js'. The article also considers the practice of the Language Poets and their exploration of materiality, performance and the sound of language in relation to the propositions of the Italian futurist Filippo Tommaso Marinetti. Other works d...

  7. Radiation damage and materials performance in irradiation environment

    International Nuclear Information System (INIS)

    Singh, B.N.

    2009-01-01

    Collisions of energetic projectile particles with host atoms produce atomic displacements in the target materials. Subsequently, some of these displacements are transformed into lattice defects and survive in the form of single defects and of defect clusters. Depending on the ambient temperature, these defects and their clusters diffuse, interact, annihilate, segregate and accumulate in various forms and are responsible for the evolution of the irradiation-induced microstructure. Naturally, both physical and mechanical properties and thereby the performance and lifetime of target materials are likely to be determined by the nature and the magnitude of the accumulated defects and their spatial dispositions. The defect accumulation, microstructural evolution and the resulting materials response gets very complicated particularly under the reactor operational conditions. The complication arises from the fact that the materials used in the structural components will experience concurrently generation of defects produced by the flux of neutrons and generation of dislocations due to plastic deformation. In other words, the defect accumulation will have to be considered under the conditions of two interactive reaction kinetics operating simultaneously. Both materials and experimental variables are likely to affect the damage accumulation and thereby the materials performance. Experimental and theoretical results pertaining to effects of major materials and experimental variables on materials performance will be briefly examined. (au)

  8. Nuclear material control and accountancy planning and performance testing

    International Nuclear Information System (INIS)

    Mike Enhinger; Dennis Wilkey; Rod Martin; Ken Byers; Brian Smith

    1999-01-01

    An overview of performance testing as used at U.S. Department of Energy facilities is provided. Performance tests are performed on specific aspects of the regulations or site policy. The key issues in establishing a performance testing program are: identifying what needs to be tested; determining how to test; establishing criteria to evaluate test results. The program elements of performance testing program consist of: planning; coordination; conduct; evaluation. A performance test may be conducted of personnel or equipment. The DOE orders for nuclear material control and accountancy are divided into three functional areas: program administration, material accounting, and material control. Examples performance tests may be conducted on program administration, accounting, measurement and measurement control, inventory, and containment [ru

  9. Development and application of high performance liquid shielding materials

    International Nuclear Information System (INIS)

    Miura, Toshimasa; Omata, Sadao; Otano, Naoteru; Hirao, Yoshihiro; Kanai, Yasuji

    1998-01-01

    Development of liquid shielding material with good performance for neutron and γ-ray was investigated. Lead, hydrogen and boron were selected as the elements of shielding materials which were made by the ultraviolet curing method. Good performance shielding materials with about 1 mm width to neutron and gamma ray were produced by mixing lead, boron compound and ultraviolet curing monomer with many hydrogens. The shielding performance was the same as a concrete with two times width. The activation was very small such as 1/10 6 -1/10 8 of the standard concrete. The weight and the external appearance did not charged from room temperature to 100degC. Polyfunctional monomer had good thermal resistance. This shielding material was applied to double bending cylindrical duct and annulus ring duct. The results proved the shielding materials developed had good performance. (S.Y.)

  10. A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance

    Science.gov (United States)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical computing engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While high-performing modulators were demonstrated before, the approaches were taken as ad-hoc. Here we show the first systematic investigation to incorporate a holistic analysis for high-performance and ultra-compact electro-optic modulators on-chip. We show that intricate interplay between active modulation material and optical mode plays a key role in the device operation. Based on physical tradeoffs such as index modulation, loss, optical confinement factors and slow-light effects, we find that bias-material-mode regions exist where high phase modulation and high loss (absorption) modulation is found. This work paves the way for a holistic design rule of electro-optic modulators for on-chip integration.

  11. The contribution of human factors to risks from radioactive material transport

    International Nuclear Information System (INIS)

    Blenkin, J.J.; Ridsdale, E.; Wilkinson, H.L.

    1998-01-01

    The use of probabilistic risk assessment to assess the safety of radioactive material transport operations is well accepted. However, quantitative risk assessment of radioactive material transport operations have generally not explicitly considered human factors in estimating risks. Given the high profile of human factors as the root cause of many serious transport incidents omission of an explicit consideration of human factors in a risk assessment could lead to assessments losing credibility. In addition, scrutiny of radioactive material transport incident databases reveals a large number of operational incidents and minor accidents that would have been avoided if more attention had been paid to human factors aspects, and provides examples of instances where improvements have been achieved. This paper examines the areas of radioactive material transport risk assessments (both qualitative and quantitative) which could be strengthened by further examination of the impact of human errors. It is concluded that a more complete and detailed understanding of the effects of human factors on the risks from radioactive material transport operations has been obtained. Quality assurance has a key part to play in ensuring that packages are correctly manufactured and prepared for transport. Risk assessments of radioactive material transport operations can be strengthened by concentrating on the key human factors effects. (authors)

  12. Material parameters for thermoelectric performance

    Indian Academy of Sciences (India)

    The thermoelectric performance of a thermoelement is ideally defined in terms of the so-called figure-of-merit = 2 / , where , and refer respectively to the Seebeck coefficient, electrical conductivity and thermal conductivity of the thermoelement material. However, there are other parameters which are fairly good ...

  13. System and Method for Monitoring Piezoelectric Material Performance

    Science.gov (United States)

    Moses, Robert W. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Chattin, Richard L. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor)

    2007-01-01

    A system and method are provided for monitoring performance capacity of a piezoelectric material that may form part of an actuator or sensor device. A switch is used to selectively electrically couple an inductor to the piezoelectric material to form an inductor-capacitor circuit. Resonance is induced in the inductor-capacitor circuit when the switch is operated to create the circuit. The resonance of the inductor-capacitor circuit is monitored with the frequency of the resonance being indicative of performance capacity of the device's piezoelectric material.

  14. Material, behavioural, cultural and psychosocial factors in the explanation of socioeconomic inequalities in oral health.

    Science.gov (United States)

    Duijster, Denise; Oude Groeniger, Joost; van der Heijden, Geert J M G; van Lenthe, Frank J

    2017-12-19

    This study aimed to assess the contribution of material, behavioural, cultural and psychosocial factors in the explanation of socioeconomic inequalities (education and income) in oral health of Dutch adults. Cross-sectional data from participants (25-75 years of age) of the fifth wave of the GLOBE cohort were used (n = 2812). Questionnaires were used to obtain data on material factors (e.g. financial difficulties), behavioural factors (e.g. smoking), cultural factors (e.g. cultural activities) and psychosocial factors (e.g. psychological distress). Oral health outcomes were self-reported number of teeth and self-rated oral health (SROH). Mediation analysis, using multivariable negative binomial regression and logistic regression, was performed. Education level and income showed a graded positive relationship with both oral health outcomes. Adding material, behavioural, cultural and psychosocial factors substantially reduced the rate ratio for the number of teeth of the lowest education group from 0.79 (95% confidence interval (CI): 0.75-0.83) to 0.92 (95% CI: 0.87-0.97) and of the lowest income group from 0.80 (95% CI: 0.73-0.88) to 1.04 (95% CI: 0.96-1.14). Inclusion of all factors also substantially reduced the odds ratio for poor SROH of the lowest education group from 1.61 (95% CI: 1.28-2.03) to 1.12 (95% CI: 0.85-1.48) and of the lowest income groups from 3.18 (95% CI: 2.13-4.74) to 1.48 (95% CI: 0.90-2.45). In general, behavioural factors contributed most to the explanation of socioeconomic inequalities in adult oral health, followed by material factors. The contribution of cultural and psychosocial factors was relatively moderate. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association.

  15. Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration

    International Nuclear Information System (INIS)

    Cui, Xintao; Zhang, Hongwei; Wang, Shuxin; Zhang, Lianhong; Ko, Jeonghan

    2011-01-01

    Currently, automotive bodies are constructed usually using a single material, e.g. steel or aluminum. Compared to single-material automotive bodies, multi-material automotive bodies allow optimal material selection in each structural component for higher product performance and lower cost. This paper presents novel material performance indices and procedures developed to guide systematic material selection for multi-material automotive bodies. These new indices enable to characterize the crashworthiness performance of complex-shaped thin-walled beams in multi-material automotive bodies according to material types. This paper also illustrates the application of these performance indices and procedures by designing a lightweight multi-material automotive body. These procedures will help to design a lightweight and affordable body favored by the automotive industry, thus to reduce fuel consumption and greenhouse gas emissions.

  16. Building Investigation: Material or Structural Performance

    Directory of Open Access Journals (Sweden)

    Yusof M.Z.

    2014-03-01

    Full Text Available Structures such as roof trusses will not suddenly collapse without ample warning such as significant deflection, tilting etc. if the designer manages to avoid the cause of structural failure at the material level and the structural level. This paper outlines some principles and procedures of PDCA circle and QC tools which can show some clues of structural problems in terms of material or structural performance

  17. High Performance Nano-Crystalline Oxide Fuel Cell Materials. Defects, Structures, Interfaces, Transport, and Electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Scott [Northwestern Univ., Evanston, IL (United States); Poeppelmeier, Ken [Northwestern Univ., Evanston, IL (United States); Mason, Tom [Northwestern Univ., Evanston, IL (United States); Marks, Lawrence [Northwestern Univ., Evanston, IL (United States); Voorhees, Peter [Northwestern Univ., Evanston, IL (United States)

    2016-09-07

    This project addresses fundamental materials challenges in solid oxide electrochemical cells, devices that have a broad range of important energy applications. Although nano-scale mixed ionically and electronically conducting (MIEC) materials provide an important opportunity to improve performance and reduce device operating temperature, durability issues threaten to limit their utility and have remained largely unexplored. Our work has focused on both (1) understanding the fundamental processes related to oxygen transport and surface-vapor reactions in nano-scale MIEC materials, and (2) determining and understanding the key factors that control their long-term stability. Furthermore, materials stability has been explored under the “extreme” conditions encountered in many solid oxide cell applications, i.e, very high or very low effective oxygen pressures, and high current density.

  18. Complexity factors and prediction of performance

    International Nuclear Information System (INIS)

    Braarud, Per Oeyvind

    1998-03-01

    Understanding of what makes a control room situation difficult to handle is important when studying operator performance, both with respect to prediction as well as improvement of the human performance. A factor analytic approach identified eight factors from operators' answers to an 39 item questionnaire about complexity of the operator's task in the control room. A Complexity Profiling Questionnaire was developed, based on the factor analytic results from the operators' conception of complexity. The validity of the identified complexity factors was studied by prediction of crew performance and prediction of plant performance from ratings of the complexity of scenarios. The scenarios were rated by both process experts and the operators participating in the scenarios, using the Complexity Profiling Questionnaire. The process experts' complexity ratings predicted both crew performance and plant performance, while the operators' rating predicted plant performance only. The results reported are from initial studies of complexity, and imply a promising potential for further studies of the concept. The approach used in the study as well as the reported results are discussed. A chapter about the structure of the conception of complexity, and a chapter about further research conclude the report. (author)

  19. Tribo-performance evaluation of ecofriendly brake friction composite materials

    Science.gov (United States)

    Kumar, Naresh; Singh, Tej; Grewal, G. S.

    2018-05-01

    This paper presents the potential of natural fibre in brake friction materials. Natural fibre filled ecofriendly brake friction materials were developed without Kevlar fibre evaluated for tribo-performance on a chase friction testing machine following SAE J 661a standard. Experimental results indicated that natural fibre enhances the fade performance, but depresses the friction and wear performance, whereas Kevlar fibre improves the friction, wear and recovery performance but depresses the fade performance. Also the results revealed that with the increase in natural fibre content, the friction and fade performances enhanced.

  20. Local Delivery of Growth Factors Using Coated Suture Material

    Directory of Open Access Journals (Sweden)

    T. F. Fuchs

    2012-01-01

    Full Text Available The optimization of healing processes in a wide range of tissues represents a central point for surgical research. One approach is to stimulate healing processes with growth factors. These substances have a short half-life and therefore it seems useful to administer these substances locally rather than systemically. One possible method of local delivery is to incorporate growth factors into a bioabsorbable poly (D, L-lactide suspension (PDLLA and coat suture material. The aim of the present study was to establish a procedure for the local delivery of growth factors using coated suture material. Sutures coated with growth factors were tested in an animal model. Anastomoses of the colon were created in a rat model using monofilament sutures. These were either untreated or coated with PDLLA coating alone or coated with PDLLA incorporating insulin—like growth factor-I (IGF-I. The anastomoses were subjected to biomechanical, histological, and immunohistochemical examination. After 3 days the treated groups showed a significantly greater capacity to withstand biomechanical stress than the control groups. This finding was supported by the results of the histomorphometric. The results of the study indicate that it is possible to deliver bioactive growth factors locally using PDLLA coated suture material. Healing processes can thus be stimulated locally without subjecting the whole organism to potentially damaging high systemic doses.

  1. Decoupling interrelated parameters for designing high performance thermoelectric materials.

    Science.gov (United States)

    Xiao, Chong; Li, Zhou; Li, Kun; Huang, Pengcheng; Xie, Yi

    2014-04-15

    The world's supply of fossil fuels is quickly being exhausted, and the impact of their overuse is contributing to both climate change and global political unrest. In order to help solve these escalating problems, scientists must find a way to either replace combustion engines or reduce their use. Thermoelectric materials have attracted widespread research interest because of their potential applications as clean and renewable energy sources. They are reliable, lightweight, robust, and environmentally friendly and can reversibly convert between heat and electricity. However, after decades of development, the energy conversion efficiency of thermoelectric devices has been hovering around 10%. This is far below the theoretical predictions, mainly due to the interdependence and coupling between electrical and thermal parameters, which are strongly interrelated through the electronic structure of the materials. Therefore, any strategy that balances or decouples these parameters, in addition to optimizing the materials' intrinsic electronic structure, should be critical to the development of thermoelectric technology. In this Account, we discuss our recently developed strategies to decouple thermoelectric parameters for the synergistic optimization of electrical and thermal transport. We first highlight the phase transition, which is accompanied by an abrupt change of electrical transport, such as with a metal-insulator and semiconductor-superionic conductor transition. This should be a universal and effective strategy to optimize the thermoelectric performance, which takes advantage of modulated electronic structure and critical scattering across phase transitions to decouple the power factor and thermal conductivity. We propose that solid-solution homojunction nanoplates with disordered lattices are promising thermoelectric materials to meet the "phonon glass electron crystal" approach. The formation of a solid solution, coupled with homojunctions, allows for

  2. Performance enhancement of hermetic compressor using phase change materials

    Science.gov (United States)

    Mahmoud, I. M.; Rady, M. A.; Huzayyin, A. S.

    2015-08-01

    The present study is motivated by the need for the research of simple measures for increasing energy efficiency of hermetic compressor. The measure is the application of phase change materials for performance enhancement. The first experimental study should be guide for choice of PCM. It has been performed to investigate the effects of thermostat setting temperature on the performance of hermetic compressor. The effects of thermostat setting temperature with and without load on power consumption have been analyzed. Performance enhancement using phase change materials (PCMs) has been studied by employing a phase change material Rubitherm-42 (RT-42) on the top surface of compressor. Choice of PCM material is based on basic compressor performance measured in the first part of the present study. Experiments have been carried out for different load values and different quantities of PCM. The quantity and phase change characteristic of PCM are essential parameters that determine the percentage of performance enhancement in term of energy consumption. Reduction of energy consumption of about 10% has been achieved in the present study by using PCM. The present study shows that how to reduce the electrical power consumption to enhance compressor heat dissipation method to improve efficiency.

  3. Improving human performance: Industry factors influencing the ability to perform

    OpenAIRE

    Güera Massyn Romo

    2013-01-01

    Learning interventions and new technologies that aim to improve human performance must take cognisance of industry factors inhibiting human performance. The dynamic and fast pace nature of the Information and Communication Technologies (ICT) and the engineering industries do not lend themselves to proper skills planning and management. These industries experience real skills gaps, to some of which they contribute by themselves. This study reports on these performance-inhibiting factors such a...

  4. Dielectric characterization of high-performance spaceflight materials

    Science.gov (United States)

    Kleppe, Nathan; Nurge, Mark A.; Bowler, Nicola

    2015-03-01

    As commercial space travel increases, the need for reliable structural health monitoring to predict possible weaknesses or failures of structural materials also increases. Monitoring of these materials can be done through the use of dielectric spectroscopy by comparing permittivity or conductivity measurements performed on a sample in use to that of a pristine sample from 100 μHz to 3 GHz. Fluctuations in these measured values or of the relaxation frequencies, if present, can indicate chemical or physical changes occurring within the material and the possible need for maintenance/replacement. In this work, we establish indicative trends that occur due to changes in dielectric spectra during accelerated aging of various high-performance polymeric materials: ethylene vinyl alcohol (EVOH), Poly (ether ether ketone) (PEEK), polyphenylene sulfide (PPS), and ultra-high molecular weight polyethylene (UHMWPE). Uses for these materials range from electrical insulation and protective coatings to windows and air- or space-craft parts that may be subject to environmental damage over long-term operation. Samples were prepared by thermal exposure and, separately, by ultraviolet/water-spray cyclic aging. The aged samples showed statistically-significant trends of either increasing or decreasing real or imaginary permittivity values, relaxation frequencies, conduction or the appearance of new relaxation modes. These results suggest that dielectric testing offers the possibility of nondestructive evaluation of the extent of age-related degradation in these materials.

  5. Critical Factors Explaining the Leadership Performance of High-Performing Principals

    Science.gov (United States)

    Hutton, Disraeli M.

    2018-01-01

    The study explored critical factors that explain leadership performance of high-performing principals and examined the relationship between these factors based on the ratings of school constituents in the public school system. The principal component analysis with the use of Varimax Rotation revealed that four components explain 51.1% of the…

  6. Achieving Transformational Materials Performance in a New Era of Science

    International Nuclear Information System (INIS)

    Sarrao, John

    2009-01-01

    The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.

  7. Factors associated with occupational exposure to biological material among nursing professionals.

    Science.gov (United States)

    Negrinho, Nádia Bruna da Silva; Malaguti-Toffano, Silmara Elaine; Reis, Renata Karina; Pereira, Fernanda Maria Vieira; Gir, Elucir

    2017-01-01

    to identify factors associated with occupational exposure to biological material among nursing professionals. a cross-sectional study was conducted in a high complexity hospital of a city in the state of São Paulo, Brazil. Nursing professionals were interviewed from March to November 2015. All ethical aspects were observed. among the 226 professionals interviewed, 17.3% suffered occupational exposure to potentially contaminated biological material, with 61.5% being percutaneous. Factors such as age (p=0.003), professional experience in nursing (p=0.015), and experience at the institution (p=0.032) were associated with the accidents with biological material. most accidents with biological material among nursing professionals were percutaneous. Age, professional experience, and experience at the institution were considered factors associated with occupational exposure.

  8. Ways to improve physical and thermal performance of refractory lining materials

    Directory of Open Access Journals (Sweden)

    Khlystov A.I.

    2017-01-01

    Full Text Available Refractory lining materials, which include ceramic refractories and nonfired heat-resistant concretes, have a very short lifespan during the turnaround time measured in years and sometimes months. Therefore, increasing the service life of thermal generating units by 1.5-2 times will bring significant economic benefits. The main factor that determines the durability of refractory lining materials is the thermal resistance. It is possible to increase the thermal resistance by improving such physical and mechanical properties as strength and density. As for the ceramic refractory performance improvement, such technological methods as their structural and chemical modification by phosphate binder impregnation, as well as introduction of phosphate components into the ceramic batches during the molding process increase, in particular, their thermal stability. The use of aluminous and high-alumina cements contributes to a significant increase of not only strength, but also physical and thermal performance of heat-resistant concretes with different fillers. Switching to the use of chemical binders in the compositions of heat-resistant concretes (liquid glass with effective hardeners; silicate-block and phosphate binders enables to develop high-heat resistant materials which do not soften in a wide range of heating temperatures from 400 °С to 1600 °С. The positive results on increasing the thermal resistance of heat-resistant composites can be obtained by reinforcing them with high temperature fibers.

  9. High mechanical Q-factor measurements on silicon bulk material

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Christian; Nawrodt, Ronny; Heinert, Daniel; Schroeter, Anja; Neubert, Ralf; Thuerk, Matthias; Vodel, Wolfgang; Seidel, Paul [Institut fuer Festkoerperphysik, Helmholtzweg 5, D-07743 Jena (Germany); Tuennermann, Andreas [Institut fuer Angewandte Physik, Albert-Einstein-Strasse 15, D-07745 Jena (Germany)

    2008-07-01

    The direct observation of gravitational waves is one of the biggest challenges in science. Current detectors are limited by different kinds of noise. One of the fundamental noise sources is thermal noise arising from the optical components. One of the most promising attempts to reduce the thermal noise contribution in future detectors will be the use of high Q-factor materials at cryogenic temperatures. Silicon seems to be the most interesting material due to its excellent optical and thermal properties. We present high Q-factor measurements on bulk samples of high purity silicon in a temperature range from 5 to 300 K. The sample dimensions vary between 76.2 mm x 12..75 mm. The Q-factor exceeds 4.10{sup 8} at 6 K. The influence of the crystal orientation, doping and the sample preparation on the Q-factor is discussed.

  10. Influence of factors on release of antimicrobials from antimicrobial packaging materials.

    Science.gov (United States)

    Wu, Yu-Mei; Wang, Zhi-Wei; Hu, Chang-Ying; Nerín, Cristina

    2018-05-03

    Antimicrobial packaging materials (films or coatings) (APMs) have aroused great interest among the scientists or the experts specialized in material science, food science, packaging engineering, biology and chemistry. APMs have been used to package the food, such as dairy products, poultry, meat (e.g., beef), salmon muscle, pastry dough, fresh pasta, bakery products, fruits, vegetables and beverages. Some materials have been already commercialized. The ability of APMs to extend the shelf-life of the food depends on the release rate of the antimicrobials (AMs) from the materials to the food. The optimum rate is defined as target release rate (TRR). To achieve TRR, the influencing factors of the release rate should be considered. Herein we reviewed for the first time these factors and their influence on the release. These factors mainly include the AMs, food (or food simulant), packaging materials, the interactions among them, the temperature and environmental relative humidity (RH).

  11. Effect of material variables on the irradiation performance of boron carbide

    International Nuclear Information System (INIS)

    Basmajian, J.A.; Hollenberg, G.W.

    1980-01-01

    Boron carbide pellets were fabricated with variations in material parameters. These pellets were irradiated in the Experimental Breeder Reactor-II (EBR-II) to determine the effect of these variations on the performance. Helium release from the material and swelling of the pellets are the primary measures of performance. It was determined that material with a smaller grain size released more helium and swelled less. The pellets with boron-to-carbon ratios greater than 4 to 1 did not perform well. Iron additions improved the performance of the material while density variations had little effect

  12. Solar Sail Material Performance Property Response to Space Environmental Effects

    Science.gov (United States)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA s Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar[TM], Teonex[TM], and CPl (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  13. Material parameters for thermoelectric performance

    Indian Academy of Sciences (India)

    The thermoelectric performance of a thermoelement is ideally defined in terms of the so-called ... However, there are other parameters which are fairly good indicators ... Whereas a final deciding factor reflecting on .... matter of a future work.

  14. Analysis of human factors effects on the safety of transporting radioactive waste materials: Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Abkowitz, M.D.; Abkowitz, S.B.; Lepofsky, M.

    1989-04-01

    This report examines the extent of human factors effects on the safety of transporting radioactive waste materials. It is seen principally as a scoping effort, to establish whether there is a need for DOE to undertake a more formal approach to studying human factors in radioactive waste transport, and if so, logical directions for that program to follow. Human factors effects are evaluated on driving and loading/transfer operations only. Particular emphasis is placed on the driving function, examining the relationship between human error and safety as it relates to the impairment of driver performance. Although multi-modal in focus, the widespread availability of data and previous literature on truck operations resulted in a primary study focus on the trucking mode from the standpoint of policy development. In addition to the analysis of human factors accident statistics, the report provides relevant background material on several policies that have been instituted or are under consideration, directed at improving human reliability in the transport sector. On the basis of reported findings, preliminary policy areas are identified. 71 refs., 26 figs., 5 tabs.

  15. Radiation quality factor of spherical antennas with material cores

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle; Kim, Oleksiy S.; Breinbjerg, Olav

    2011-01-01

    This paper gives a description of the radiation quality factor and resonances of spherical antennas with material cores. Conditions for cavity and radiating resonances are given, and a theoretical description of the radiation quality factor, as well as simple expressions describing the relative...

  16. Entropy as a measure of the performance of phosphor materials used in medical imaging radiation detectors

    International Nuclear Information System (INIS)

    Cavouras, D.; Kandarakis, I.; Maris, T.; Panayiotakis, G.S.; Nomicos, C.D.

    2001-01-01

    In information theory, entropy expresses the information gain obtained after detection of a signal concerning the state of a parameter of interest. In this study, entropy has been expressed in terms of physical quantities (emitted optical fluence and MTF) related to the imaging performance of phosphor materials, which are employed in medical imaging radiation detectors. Four phosphor materials, used in the form of laboratory-prepared fluorescent layers (screens), were compared on the basis of their entropy performance. Measurements were performed using 30- and 80-kVp X-ray beams often employed in X-ray imaging. Results showed that phosphor materials with high density and effective atomic number exhibit high entropy performance, especially at the higher X-ray tube voltage of 80 kVp. Entropy values are also affected by the type of activator, which determines the intrinsic X-ray-to-light conversion efficiency, and the spectrum of emitted light. The proximity of the incident X-ray quanta energy to the energy of the K-shell threshold for photoelectric absorption is an additional important factor which increases entropy. This effect was more apparent in the performance of yttrium-based phosphors at the lower voltage of 30 kVp. (orig.)

  17. The impact of roofing material on building energy performance

    Science.gov (United States)

    Badiee, Ali

    , fenestration, etc. and their thermal insulation energy performance value will not be included this study. Five different UAB campus buildings with the same reinforced concrete structure (RC Structure), each having a different roofing material were selected, surveyed, analyzed, and evaluated in this study. Two primary factors are considered in this evaluation: the energy consumption and utility bills. The data has been provided by the UAB Facilities Management Department and has been monitored from 2007 to 2013 using analysis of variance (ANOVA) and t-test methods. The energy utilities examined in this study involved electricity, domestic water, and natural gas. They were measured separately in four different seasons over a seven-year time period. The building roofing materials consisted of a green roof, a white (reflective) roof, a river rock roof, a concrete paver roof, and a traditional black roof. Results of the tested roofs from this study indicate that the white roof is the most energy efficient roofing material.

  18. Material balance area custodian performance evaluation program at PNL

    International Nuclear Information System (INIS)

    Dickman, D.A.

    1991-01-01

    This paper reports that the material balance area (MBA) custodian has primary responsibility for control and accountability of nuclear material within an MBA. In this role, the custodian operates as an extension of the facility material control and accountability (MC and A) organization. To effectively meet administrative requirements and protection needs, the custodian must be fully trained in all aspects of MC and A related to the MBA, and custodian performance must be periodically evaluated. U.S. Department of Energy (DOE) Policy requires that each facility provide for a program which ensures that personnel performing MC and A functions are trained and/or qualified to perform their duties and responsibilities and knowledgeable of requirements and procedures related to their functions. the MBA Custodian Performance Evaluation Program at Pacific Northwest Laboratory (PNL) uses a variety of assessment techniques to meet this goal, including internal and independent MBA audits, periodic custodian testing, limited scope performance tests, daily monitoring of MC and A documentation, and reviewing custodian performance during physical inventories

  19. Sensation Seeking as one of the Motivating Factors for Performing Skydiving

    Directory of Open Access Journals (Sweden)

    Bołdak Agnieszka

    2016-06-01

    Full Text Available Introduction. For some time, the issue of participating in high-risk sports, including skydiving, has been linked to the trait of sensation seeking, but skydivers do not constitute a homogeneous group in terms of this factor. The aim of the study was to determine the role of the need for sensation in performing skydiving and to examine whether the importance of this factor differs depending on gender. Material and methods. The study included a total of 143 skydivers (98 men and 45 women aged from 17 to 49 years with different levels of expertise in skydiving. In total, 73 respondents were categorised as novices, and 70 were considered experts. Novice skydivers were defined as having completed no more than 10 jumps in their lives. Expert skydivers were persons who had made at least 100 jumps in their lives and had a licence to perform skydiving independently, without instructor supervision. The need for stimulation was measured using the Sensation Seeking Scale IV by Zuckerman, in its Polish version by Oleszkiewicz-Zsurzs. Results. Since a high proportion of individuals with a strong need for sensation was found among both men and women, it can be concluded that it is an important factor in primary selection in skydiving (when the sport is undertaken, regardless of gender. Conclusions. The significance of sensation seeking as a factor in secondary selection in skydiving (when the sport is being performed differs depending on the particular dimension of sensation seeking and gender. Susceptibility to boredom is probably a significant factor in secondary selection in women.

  20. Factors influencing pre-service physics teachers' skills of writing teaching materials

    Science.gov (United States)

    Sinaga, Parlindungan

    2016-02-01

    Writing teaching materials is one of the generic pedagogical skills. Teachers and pre-service teachers should be trained to have the skills of writing teaching materials. This study examines the factors that influence the skills of writing in the disciplines among pre-service physics teachers. This study in particular aims to contribute to the development of science writing in the disciplines and to the organization of workshops on writing teaching materials for pre-service teachers. The problems of this research are formulated in the question of what are the factors that influence the skills of pre-service physics teachers in writing teaching materials. The research adopted mixed methods with embedded experimental design. The research subjects were 18 students enrolled in the school physics course. The instruments used consisted of conceptual understanding tests, learning strategy questionnaire, tests of the multiple representation skills, and one-on-one semi- structured interview. Results of data analysis show that the ability and skills of writing physics teaching materials of the pre- service physics teachers are determined by the factors of conceptual understanding of the subject matter with a contribution of 20%, the skills of making multiple representations of concepts with a contribution of 9.8% and students' self-regulation and learning strategy with a contribution of 33.5%. There are other factors that have not been investigated in this study; therefore, it is recommended that future research conduct further investigation on other factors that influence pre-service teachers' skills in writing physics teaching materials.

  1. The contribution of material control to meeting performance requirements

    International Nuclear Information System (INIS)

    Rivers, J.D.

    1989-01-01

    The U.S. Dept. of Energy (DOE) is in the process of implementing a set of performance requirements for material control and accountability (MC ampersand A). These graded requirements set a uniform level of performance for similar materials at various facilities with respect to the threat of an insider adversary stealing special nuclear material (SNM). These requirements are phrased in terms of detecting the theft of a goal quantity of SNM within a specified time period and with a probability greater than or equal to a specified value and include defense in-depth requirements

  2. 46 CFR 160.062-3 - Materials, construction, workmanship, and performance requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, construction, workmanship, and performance...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Releases. Lifesaving Equipment, Hydraulic and Manual § 160.062-3 Materials, construction, workmanship, and performance...

  3. Peer Review of the Waste Package Material Performance Interim Report

    International Nuclear Information System (INIS)

    J. A. Beavers; T. M. Devine, Jr.; G. S. Frankel; R. H. Jones; R. G. Kelly; R. M. Latanision; J. H. Payer

    2001-01-01

    At the request of the U.S. Department of Energy, Bechtel SAIC Company, LLC, formed the Waste Package Materials Performance Peer Review Panel (the Panel) to review the technical basis for evaluating the long-term performance of waste package materials in a proposed repository at Yucca Mountain, Nevada. This is the interim report of the Panel; a final report will be issued in February 2002. In its work to date, the Panel has identified important issues regarding waste package materials performance. In the remainder of its work, the Panel will address approaches and plans to resolve these issues. In its review to date, the Panel has not found a technical basis to conclude that the waste package materials are unsuitable for long-term containment at the proposed Yucca Mountain Repository. Nevertheless, significant technical issues remain unsettled and, primarily because of the extremely long life required for the waste packages, there will always be some uncertainty in the assessment. A significant base of scientific and engineering knowledge for assessing materials performance does exist and, therefore, the likelihood is great that uncertainty about the long-term performance can be substantially reduced through further experiments and analysis

  4. Powder metallurgical high performance materials. Proceedings. Volume 4: late papers

    Energy Technology Data Exchange (ETDEWEB)

    Kneringer, G; Roedhammer, P; Wildner, H [eds.

    2001-07-01

    This is the fourth volume (late papers) of the 15th International Plansee seminar 2001 which general theme was 'Powder metallurgical high performance materials'. The seminar looked beyond the refractory metals and cemented carbides, which remain as its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. This volume 4 contains papers dealing with high performance P/M metals (ITER and fusion reactors, solid targets, materials microstructure, novel alloys, etc.), P/M hard materials ( production and characterization, tungsten carbides, titanium carbides, microstructural design, coatings composition and performance, etc.) and general topics. From 37 papers 24 correspond to INIS subject scope and they were indexed separately. (nevyjel)

  5. Powder metallurgical high performance materials. Proceedings. Volume 4: late papers

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    This is the fourth volume (late papers) of the 15th International Plansee seminar 2001 which general theme was 'Powder metallurgical high performance materials'. The seminar looked beyond the refractory metals and cemented carbides, which remain as its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. This volume 4 contains papers dealing with high performance P/M metals (ITER and fusion reactors, solid targets, materials microstructure, novel alloys, etc.), P/M hard materials ( production and characterization, tungsten carbides, titanium carbides, microstructural design, coatings composition and performance, etc.) and general topics. From 37 papers 24 correspond to INIS subject scope and they were indexed separately. (nevyjel)

  6. 46 CFR 160.057-3 - Materials, workmanship, construction, and performance requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, workmanship, construction, and performance...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Floating Orange Smoke Distress Signals (15 Minutes) § 160.057-3 Materials, workmanship, construction, and performance...

  7. 46 CFR 160.037-3 - Materials, workmanship, construction, and performance requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, workmanship, construction, and performance...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand Orange Smoke Distress Signals § 160.037-3 Materials, workmanship, construction, and performance requirements. (a...

  8. 46 CFR 160.024-3 - Materials, workmanship, construction, and performance requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, workmanship, construction, and performance...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Pistol-Projected Parachute Red Flare Distress Signals § 160.024-3 Materials, workmanship, construction, and performance...

  9. 46 CFR 160.058-3 - Materials, workmanship, construction and performance requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, workmanship, construction and performance...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Desalter Kits, Sea Water, for Merchant Vessels § 160.058-3 Materials, workmanship, construction and performance...

  10. CITA Working for and with material performance

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2011-01-01

    The understanding of materials as active, whether compressed, under tension or flexed while handled, is at the root of all craft traditions. The ability to work a material, to saw and chisel wood, to weld and hammer steel or to weave and knit yarn relies on a profound understanding of its...... performance. The soft flex of wood, the sprung stiffness of steel and the tensile elasticity of yarn are inherent properties that inform and shape our crafts traditions. It is through material understanding that we come to shape the world of artefacts and structure that surrounds us....

  11. Developments in the Material Fabrication and Performance of LiMn2O4 dCld Cathode Material

    Science.gov (United States)

    2016-06-13

    manganese oxide spinel materials exhibit promising electrochemical performance and good thermodynamic and kinetic stability when used as a cathode in... oxide spinel (LiMn2O4) is a potential viable active cathode material for use in these versatile applications due to its low toxicity, good capacity...Developments in the Material Fabrication and Performance of LiMn2O4-dCld Cathode Material Paula C Latorre, Ashley L Ruth, and Terrill B Atwater

  12. Derivation of Accident-Specific Material-at-Risk Equivalency Factors

    Energy Technology Data Exchange (ETDEWEB)

    Jason P. Andrus; Dr. Chad L. Pope

    2012-05-01

    A novel method for calculating material at risk (MAR) dose equivalency developed at the Idaho National Laboratory (INL) now allows for increased utilization of dose equivalency for facility MAR control. This method involves near-real time accounting for the use of accident and material specific release and transport. It utilizes all information from the committed effective dose equation and the five factor source term equation to derive dose equivalency factors which can be used to establish an overall facility or process MAR limit. The equivalency factors allow different nuclide spectrums to be compared for their respective dose consequences by relating them to a specific quantity of an identified reference nuclide. The ability to compare spectrums to a reference limit ensures that MAR limits are in fact bounding instead of attempting to establish a representative or bounding spectrum which may lead to unintended or unanalyzed configurations. This methodology is then coupled with a near real time material tracking system which allows for accurate and timely material composition information and corresponding MAR equivalency values. The development of this approach was driven by the complex nature of processing operations in some INL facilities. This type of approach is ideally suited for facilities and processes where the composition of the MAR and possible release mechanisms change frequently but in well defined fashions and in a batch-type nature.

  13. Effects of crystal structure and composition on the photocatalytic performance of Ta-O-N functional materials.

    Science.gov (United States)

    Liu, Qing-Lu; Zhao, Zong-Yan; Yi, Jian-Hong

    2018-05-07

    For photocatalytic applications, the response of a material to the solar spectrum and its redox capabilities are two important factors determined by the band gap and band edge position of the electronic structure of the material. The crystal structure and composition of the photocatalyst are fundamental for determining the above factors. In this article, we examine the functional material Ta-O-N as an example of how to discuss relationships among these factors in detail with the use of theoretical calculations. To explore how the crystal structure and composition influence the photocatalytic performance, two groups of Ta-O-N materials were considered: the first group included ε-Ta 2 O 5 , TaON, and Ta 3 N 5 ; the second group included β-Ta 2 O 5 , δ-Ta 2 O 5 , ε-Ta 2 O 5 , and amorphous-Ta 2 O 5 . Calculation results indicated that the band gap and band edge position are determined by interactions between the atomic core and valence electrons, the overlap of valence electronic states, and the localization of valence states. Ta 3 N 5 and TaON are suitable candidates for efficient photocatalysts owing to their photocatalytic water-splitting ability and good utilization efficiency of solar energy. δ-Ta 2 O 5 has a strong oxidation potential and a band gap suitable for absorbing visible light. Thus, it can be applied to photocatalytic degradation of most pollutants. Although a-Ta 2 O 5 , ε-Ta 2 O 5 , and β-Ta 2 O 5 cannot be directly used as photocatalysts, they can still be applied to modify conventional Ta-O-N photocatalysts, owing to their similar composition and structure. These calculation results will be helpful as reference data for analyzing the photocatalytic performance of more complicated Ta-O-N functional materials. On the basis of these findings, one could design novel Ta-O-N functional materials for specific photocatalytic applications by tuning the composition and crystal structure.

  14. Material-specific Conversion Factors for Different Solid Phantoms Used in the Dosimetry of Different Brachytherapy Sources

    Directory of Open Access Journals (Sweden)

    Sedigheh Sina

    2015-07-01

    Full Text Available Introduction Based on Task Group No. 43 (TG-43U1 recommendations, water phantom is proposed as a reference phantom for the dosimetry of brachytherapy sources. The experimental determination of TG-43 parameters is usually performed in water-equivalent solid phantoms. The purpose of this study was to determine the conversion factors for equalizing solid phantoms to water. Materials and Methods TG-43 parameters of low- and high-energy brachytherapy sources (i.e., Pd-103, I-125 and Cs-137 were obtained in different phantoms, using Monte Carlo simulations. The brachytherapy sources were simulated at the center of different phantoms including water, solid water, poly(methyl methacrylate, polystyrene and polyethylene. Dosimetric parameters such as dose rate constant, radial dose function and anisotropy function of each source were compared in different phantoms. Then, conversion factors were obtained to make phantom parameters equivalent to those of water. Results Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water. Conclusion Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water.

  15. Development of material measures for performance verifying surface topography measuring instruments

    International Nuclear Information System (INIS)

    Leach, Richard; Giusca, Claudiu; Rickens, Kai; Riemer, Oltmann; Rubert, Paul

    2014-01-01

    The development of two irregular-geometry material measures for performance verifying surface topography measuring instruments is described. The material measures are designed to be used to performance verify tactile and optical areal surface topography measuring instruments. The manufacture of the material measures using diamond turning followed by nickel electroforming is described in detail. Measurement results are then obtained using a traceable stylus instrument and a commercial coherence scanning interferometer, and the results are shown to agree to within the measurement uncertainties. The material measures are now commercially available as part of a suite of material measures aimed at the calibration and performance verification of areal surface topography measuring instruments

  16. Basic considerations for the preparation of performance testing materials as related to performance evaluation acceptance criteria

    International Nuclear Information System (INIS)

    McCurdy, D.E.; Morton, J.S.

    2001-01-01

    The preparation of performance testing (PT) materials for environmental and radiobioassay applications involves the use of natural matrix materials containing the analyte of interest, the addition (spiking) of the analyte to a desired matrix (followed by blending for certain matrices) or a combination of the two. The distribution of the sample analyte concentration in a batch of PT samples will reflect the degree of heterogeneity of the analyte in the PT material and/or the reproducibility of the sample preparation process. Commercial and government implemented radioanalytical performance evaluation programs have a variety of acceptable performance criteria. The performance criteria should take into consideration many parameters related to the preparation of the PT materials including the within and between sample analyte heterogeneity, the accuracy of the quantification of an analyte in the PT material and to what 'known' value will a laboratory's result be compared. How sample preparation parameters affect the successful participation in performance evaluation (PE) programs having an acceptance criteria established as a percent difference from a 'known' value or in PE programs using other acceptance criteria, such as the guidance provided in ANSI N42.22 and N13.30 is discussed. (author)

  17. High-performance thermoelectric materials based on ternary TiO2/CNT/PANI composites.

    Science.gov (United States)

    Erden, Fuat; Li, Hui; Wang, Xizu; Wang, FuKe; He, Chaobin

    2018-04-04

    In the present work, we report the fabrication of high-performance thermoelectric materials using TiO2/CNT/PANI ternary composites. We showed that a conductivity of ∼2730 S cm-1 can be achieved for the binary CNT (70%)/PANI (30%) composite, which is the highest recorded value for the reported CNT/PANI composites. We further demonstrated that the Seebeck coefficient of CNT/PANI composites could be enhanced by incorporating TiO2 nanoparticles into the binary CNT/PANI composites, which could be attributed to lower carrier density and the energy scattering of low-energy carriers at the interfaces of TiO2/a-CNT and TiO2/PANI. The resulting TiO2/a-CNT/PANI ternary system exhibits a higher Seebeck coefficient and enhanced thermoelectric power. Further optimization of the thermoelectric power was achieved by water treatment and by tuning the processing temperature. A high thermoelectric power factor of 114.5 μW mK-2 was obtained for the ternary composite of 30% TiO2/70% (a-CNT (70%)/PANI (30%)), which is the highest reported value among the reported PANI based ternary composites. The improvement of thermoelectric performance by incorporation of TiO2 suggests a promising approach to enhance power factor of organic thermoelectric materials by judicial tuning of the carrier concentration and electrical conductivity.

  18. Inorganic nanostructured materials for high performance electrochemical supercapacitors

    Science.gov (United States)

    Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng

    2014-01-01

    Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.

  19. Materials balance area Custodian Performance Evaluation Program at PNL

    International Nuclear Information System (INIS)

    Dickman, D.A.

    1991-07-01

    The material balance area (MBA) custodian has primary responsibility for control and accountability of nuclear material within an MBA. In this role, the custodian operates as an extension of the facility material control and accountability (MC ampersand A) organization. To effectively meet administrative requirements and protection needs, the custodian must be fully trained in all aspects of MC ampersand A related to the MBA, and custodian performance must be periodically evaluated. DOE Policy requires that each facility provide for a program which assures that each facility provide for a program which assures that personnel performing MC ampersand A functions are (1) trained and/or qualified to perform their duties and responsibilities and (2) knowledgeable of requirements and procedures related to their functions. The MBA Custodian Performance Evaluation Program at PNL uses a variety of assessment techniques to meet this goal, including internal and independent MBA audits, periodic custodian testing, conduct of limited scope performance tests, daily monitoring of MC ampersand A documentation, and reviewing custodian performance during physical inventories. The data collected from these sources is analyzed and incorporated into an annual custodian performance evaluation document, given to each custodian and line management. Development of this program has resulted in significantly improved custodian performance and a marked decrease in finding and observations identified during MBA audits

  20. Performance of Cement Containing Laterite as Supplementary Cementing Material

    Directory of Open Access Journals (Sweden)

    Abbas Bukhari, Z. S.

    2013-03-01

    Full Text Available The utilization of different industrial waste, by-products or other materials such as ground granulated blast furnace slag, silica fume, fly ash, limestone, and kiln dust, etc. as supplemen- tary cementing materials has received considerable attention in recent years. A study has been conducted to look into the performance of laterite as Supplementary Cementing Materials (SCM. The study focuses on compressive strength performance of blended cement containing different percentage of laterite. The cement is replaced accordingly with percentage of 2 %, 5 %, 7 % and 10 % by weight. In addition, the effect of use of three chemically different laterites have been studied on physical performance of cement as in setting time, Le-Chatlier expansion, loss on ignition, insoluble residue, free lime and specifically compressive strength of cement cubes tested at the age of 3, 7, and 28 days. The results show that the strength of cement blended with laterite as SCM is enhanced. Key words: Portland cement, supplementary cementing materials (SCM, laterite, compressive strength KUI – 6/2013 Received January 4, 2012 Accepted February 11, 2013

  1. Psychological factors affecting equine performance

    OpenAIRE

    McBride, Sebastian D; Mills, Daniel S

    2012-01-01

    Abstract For optimal individual performance within any equestrian discipline horses must be in peak physical condition and have the correct psychological state. This review discusses the psychological factors that affect the performance of the horse and, in turn, identifies areas within the competition horse industry where current behavioral research and established behavioral modification techniques could be applied to further enhance the performance of animals. In particular, the role of af...

  2. Performance of mechanically shaken indirect contact atmospheric dryer in drying pastelike materials

    Directory of Open Access Journals (Sweden)

    K. P. Melo

    2004-09-01

    Full Text Available Pastelike materials are encountered in many technological processes in chemical, pharmaceutical, foodstuff and natural product industries. The most important factor in the drying of this type of materials is the nature of the moisture bonding that occurs. Because of the different characteristics of pastes, it is impossible to recommend a universal type of dryer for all of these materials. Some of the dryers available provide only indirect contact with the drying agent (heat and also maintain constant moisture with a system of rotating paddles. We evaluated the performance of this type by studying the dryer kinetics curves for ground coffee under a variety of operational conditions of moisture load of material, temperature of the heating plate, intensity of the mechanical mixing of the moisture material, and initial moisture. The effects of these parameters (except for moisture were studied using a 2³ factorial design. According the analyses of the kinetics drying curves, was observed that the increase in the temperature of the plate and rotation as well as the decrease in the load facilitates more effective removal of moisture. In statistical analysis was determined that the load of the material and the heating plate temperature influence the final moisture content of the material and plate temperature modifies the final temperature of the solid. Also, was suggested linear models from the factorial design to describe the process of drying coffee grounds satisfactorily.

  3. Performance of dental impression materials: Benchmarking of materials and techniques by three-dimensional analysis.

    Science.gov (United States)

    Rudolph, Heike; Graf, Michael R S; Kuhn, Katharina; Rupf-Köhler, Stephanie; Eirich, Alfred; Edelmann, Cornelia; Quaas, Sebastian; Luthardt, Ralph G

    2015-01-01

    Among other factors, the precision of dental impressions is an important and determining factor for the fit of dental restorations. The aim of this study was to examine the three-dimensional (3D) precision of gypsum dies made using a range of impression techniques and materials. Ten impressions of a steel canine were fabricated for each of the 24 material-method-combinations and poured with type 4 die stone. The dies were optically digitized, aligned to the CAD model of the steel canine, and 3D differences were calculated. The results were statistically analyzed using one-way analysis of variance. Depending on material and impression technique, the mean values had a range between +10.9/-10.0 µm (SD 2.8/2.3) and +16.5/-23.5 µm (SD 11.8/18.8). Qualitative analysis using colorcoded graphs showed a characteristic location of deviations for different impression techniques. Three-dimensional analysis provided a comprehensive picture of the achievable precision. Processing aspects and impression technique were of significant influence.

  4. Improving human performance: Industry factors influencing the ability to perform

    Directory of Open Access Journals (Sweden)

    Güera Massyn Romo

    2013-03-01

    Full Text Available Learning interventions and new technologies that aim to improve human performance must take cognisance of industry factors inhibiting human performance. The dynamic and fast pace nature of the Information and Communication Technologies (ICT and the engineering industries do not lend themselves to proper skills planning and management. These industries experience real skills gaps, to some of which they contribute by themselves. This study reports on these performance-inhibiting factors such as the underutilisation of available skills, tolerance for individual preferences, and dynamically, and informally refining a role objective while an employee is occupying a certain role. The important professional skills required by individuals to cope with these real life factors are also explored in the skills gaps management context. Moreover, these industries need a profile they refer to as Special Forces, which denotes a high calibre of worker that possesses well-developed professional skills whilst having advanced technical expertise and sufficient experience. This resource profile is required largely due to the poor management of human resource processes in practice and the current reported lack of adequate skills. Furthermore, this study refers to the recent lack of a working definition for these Special Forces leading to the omitted active development of these profiles in industry today, which appears to become a key human performance inhibiting factor.

  5. Human factors with nonhumans - Factors that affect computer-task performance

    Science.gov (United States)

    Washburn, David A.

    1992-01-01

    There are two general strategies that may be employed for 'doing human factors research with nonhuman animals'. First, one may use the methods of traditional human factors investigations to examine the nonhuman animal-to-machine interface. Alternatively, one might use performance by nonhuman animals as a surrogate for or model of performance by a human operator. Each of these approaches is illustrated with data in the present review. Chronic ambient noise was found to have a significant but inconsequential effect on computer-task performance by rhesus monkeys (Macaca mulatta). Additional data supported the generality of findings such as these to humans, showing that rhesus monkeys are appropriate models of human psychomotor performance. It is argued that ultimately the interface between comparative psychology and technology will depend on the coordinated use of both strategies of investigation.

  6. Research on creation of new materials for innovative improvement of FBR performance

    International Nuclear Information System (INIS)

    Kano, S.; Yoshida, E.; Inoue, M.

    1992-01-01

    Creation of new materials is an essential issue to attain an innovative improvement of fast reactors' performance to achieve its excellent economics. In this paper, status and highlights are presented on the research of new materials in PNC. Firstly, sodium corrosion characteristics has been investigated on new ceramics recently developed and some considerations for their improvement have been clarified to create advanced ceramics having an excellent resistance to sodium corrosion. Secondary, materials design and manufacturing process by powder metallurgy were investigated to create new composites for radiation shielding. High performance shielding materials having an excellent shielding characteristics and a high heat resistance have been created. Thirdly, status of investigation on materials design and manufacturing process is presented on functionally gradient materials to create high performance thermal stress relieving material and innovative core material. Fourthly, manufacturing process by powder metallurgy was investigated on new composites such as B 4 C cermets, etc., to create high performance fission reaction control materials. Trial production pellets were evaluated on micro-structure, thermal conductivity, anti-thermal shock properties. etc.. (author)

  7. Study of the factors affecting radon diffusion through building materials

    International Nuclear Information System (INIS)

    Chauhan, R.P.

    2011-01-01

    Radon appears mainly by diffusion processes from the point of origin following - decay of 226 Ra in underground soil and building materials used, in the construction of floors, walls, and ceilings. The diffusion of radon in dwellings is a process determined by the radon concentration gradient across the building material structure and can be a significant contributor to indoor radon inflow. Radon can originate from the deeply buried deposit beneath homes and can migrate to the surface of earth. Radon diffusion and transport through different media is a complex process and is affected by several factors. It is well known that for building construction materials the porosity, permeability and the diffusion coefficient are the parameters, which can quantify the materials capability to hinder the flow of radon soil gas. An increase in porosity will provide more air space within the material for radon to travel, thus reducing its resistance to radon transport. The permeability of material describes its ability to act as a barrier to gas movement when a pressure gradient exists across it and is closely related to the porosity of material. The radon diffusion coefficient of a material quantifies the ability of radon gas to move through it when a concentration gradient is the driving force. This parameter depends upon the porosity and permeability of the medium. As diffusion process is the major contributor to indoor levels, therefore, the factors affecting the diffusion process need to be kept in consideration. Keeping this in mind the experimental arrangements have been made for control study of radon diffusion through some building materials to observe the effects of different factors viz.; compaction, grain size, temperature, humidity and the mixing of these materials etc. For the present study alpha sensitive LR-115 type II solid-state nuclear track detectors (SSNTDs) have been used for the recording of alpha tracks caused by radon gas after its diffusion through the

  8. Identification of coordination factors affecting building projects performance

    Directory of Open Access Journals (Sweden)

    Wesam Salah Alaloul

    2016-09-01

    Full Text Available Construction projects performance requires improvement to fulfil the complexity of the stakeholders’ needs and expectations. Coordination process is proposed as an efficient solution for weak performance of construction projects. Therefore, coordination factors are vital in ensuring a successful implementation of all project phases. This study aimed to identify and prioritise coordination factors that influence the performance of building projects in Malaysian context. A vast body of literature on coordination process was reviewed and resulted in 53 coordination factor. Three rounds of Delphi technique were conducted. The most effective coordination factors were ranked based on the Relative Importance Index (RII such as Scheduling (RII = 0.97, Quality assurance plan (RII = 0.93, and all parties’ participation in plans (RII = 0.89. These coordination factors have fulfilled the research gap and provided better management and higher performance for project parties. The results offer insightful perspectives to define the most effective coordination factors, for addressing the dependency between project tasks and the parties to enhance project performance.

  9. Managing the "wow factor" at live music performances

    Directory of Open Access Journals (Sweden)

    Bianca Manners

    2014-01-01

    Full Text Available The aim of this article is to determine what attendees at live music performances regard as critical success factors for different music genres in order to enhance memorable visitor experiences. Surveys were conducted for various genres at live music performances. A total of 4 110 questionnaires were administered. A general profile of the visitors for the different genres was determined whereafter a factor analysis was performed to determine the critical success factors for the genres. An ANOVA was subsequently applied to compare the critical success factors identified in the factor analysis. The results indicated significant statistical differences with regard to what visitors at the different music genres regard as being important for a memorable visitor experience. Determining the differences with regard to the critical success factors contribute towards event specific education and information for current as well as future live music performance managers.

  10. Hybrid nanostructured materials for high-performance electrochemical capacitors

    KAUST Repository

    Yu, Guihua

    2013-03-01

    The exciting development of advanced nanostructured materials has driven the rapid growth of research in the field of electrochemical energy storage (EES) systems which are critical to a variety of applications ranging from portable consumer electronics, hybrid electric vehicles, to large industrial scale power and energy management. Owing to their capability to deliver high power performance and extremely long cycle life, electrochemical capacitors (ECs), one of the key EES systems, have attracted increasing attention in the recent years since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review article describes the most recent progress in the development of nanostructured electrode materials for EC technology, with a particular focus on hybrid nanostructured materials that combine carbon based materials with pseudocapacitive metal oxides or conducting polymers for achieving high-performance ECs. This review starts with an overview of EES technologies and the comparison between various EES systems, followed by a brief description of energy storage mechanisms for different types of EC materials. This review emphasizes the exciting development of both hybrid nanomaterials and novel support structures for effective electrochemical utilization and high mass loading of active electrode materials, both of which have brought the energy density of ECs closer to that of batteries while still maintaining their characteristic high power density. Last, future research directions and the remaining challenges toward the rational design and synthesis of hybrid nanostructured electrode materials for next-generation ECs are discussed. © 2012 Elsevier Ltd.

  11. Materials Performance in Sodium-Cooled Fast Reactors: Past, Present, and Future

    International Nuclear Information System (INIS)

    Natesan, K.; Li Meimei

    2013-01-01

    • This paper gives an overview of the requirements, selection, and performance of materials for in-core and out-of-core components in SFRs. • Globally, sodium-cooled fast reactors have been designed, built, and operated in several countries. A substantial database exists for the existing materials on their functional and mechanical performance. • The 60-yr design life of the SFR presents a significant challenge to the development of database, extrapolation/prediction of long-term performance, and high-temperature design methodology for the structural components. • Licensing of SFR requires a valid assessment of the environmental effects (irradiation, thermal aging, and sodium) on materials performance. • Advanced materials such as, ODS alloys for cladding, Gr91 and 92 F/M steels, and austenitic alloys such as NF709 for structures can improve the economy, safety, and flexibility of SFRs. A substantial database is needed for all these materials and global effort is underway to develop the needed information through experimentation and modeling

  12. Summarizing description of the stereological equations to determine the stereometry factors of material microstructures

    International Nuclear Information System (INIS)

    Ondracek, G.

    1975-01-01

    The microstructure of a material can be determined quantitatively with the help of stereometric methods and described by stereometric factors. These are phase concentraction factor, form factor and orientation factor for the multiphase material. The determination of these parameters from stereometric measurements is discussed. (GSCH/LH) [de

  13. Towards high-performance materials for road construction

    Science.gov (United States)

    Gladkikh, V.; Korolev, E.; Smirnov, V.

    2017-10-01

    Due to constant increase of traffic, modern road construction is in need of high-performance pavement materials. The operational performance of such materials can be characterized by many properties. Nevertheless, the most important ones are resistance to rutting and resistance to dynamical loads. It was proposed earlier to use sulfur extended asphalt concrete in road construction practice. To reduce the emission of sulfur dioxide and hydrogen sulfide during the concrete mix preparation and pavement production stages, it is beneficial to make such a concrete on the base of complex sulfur modifier. In the present work the influence of the complex modifier to mechanical properties of sulfur extended asphalt concrete was examined. It was shown that sulfur extended asphalt concrete is of high mechanical properties. It was also revealed that there as an anomalous negative correlations between strain capacity, fatigue life and fracture toughness.

  14. Novel nano materials for high performance logic and memory devices

    Science.gov (United States)

    Das, Saptarshi

    mobility with the layer thickness. The non-monotonic trend suggests that in order to harvest the maximum potential of MoS2 for high performance device applications, a layer thickness in the range of 6-12 nm would be ideal. Finally using scandium contacts on 10nm thick exfoliated MoS2 flakes that are covered by a 15nm ALD grown Al2O3 film, record high mobility of 700cm2/Vs is achieved at room-temperature which is extremely encouraging for the design of high performance logic devices. The destructive nature of the readout process in Ferroelectric Random Access Memories (FeRAMs) is one of the major limiting factors for their wide scale commercialization. Utilizing Ferroelectric Field-Effect Transistor RAM (FeTRAM) instead solves the destructive read out problem, but at the expense of introducing crystalline ferroelectrics that are hard to integrate into CMOS. In order to address these challenges a novel, fully functional, CMOS compatible, One-Transistor-One-Transistor (1T1T) memory cell architecture using an organic ferroelectric -- PVDF-TrFE -- as the memory storage unit (gate oxide) and a silicon nanowire as the memory read out unit (channel material) is proposed and experimentally demonstrated. While evaluating the scaling potential of the above mentioned organic FeTRAM, it is found that the switching time and switching voltage of this organic copolymer PVDF-TrFE exhibits an unexpected scaling behavior as a function of the lateral device dimensions. The phenomenological theory, that explains this abnormal scaling trend, involves in-plane interchain and intrachain interaction of the copolymer - resulting in a power-law dependence of the switching field on the device area (ESW alpha ACH0.1) that is ultimately responsible for the decrease in the switching time and switching voltage. These findings are encouraging since they indicate that scaling the switching voltage and switching time without aggressively scaling the copolymer thickness occurs naturally while scaling the

  15. Factors influencing optical 3D scanning of vinyl polysiloxane impression materials.

    Science.gov (United States)

    DeLong, R; Pintado, M R; Ko, C C; Hodges, J S; Douglas, W H

    2001-06-01

    Future growth in dental practice lies in digital imaging enhancing many chairside procedures and functions. This revolution requires the fast, accurate, and 3D digitizing of clinical records. One such clinical record is the chairside impression. This study investigated how surface angle and surface roughness affect the digitizing of vinyl polysiloxane impression materials. Seventeen vinyl polysiloxane impression materials were digitized with a white light optical digitizing system. Each sample was digitized at 3 different angles: 0 degrees, 22.5 degrees, and 45 degrees, and 2 digitizer camera f-stops. The digitized images were rendered on a computer monitor using custom software developed under NIH/NIDCR grant DE12225. All the 3D images were rotated to the 0 degrees position, cropped using Corel Photo-Paint 8 (Corel Corp, Ottawa, Ontario, Canada), then saved in the TIFF file format. The impression material area that was successfully digitized was calculated as a percentage of the total sample area, using Optimas 5.22 image processing software (Media Cybernetics, LP, Silver Spring, MD). The dependent variable was a Performance Value calculated for each material by averaging the percentage of area that digitized over the 3 angles. New samples with smooth and rough surfaces were made using the 7 impression materials with the largest Performance Values. These samples were tested as before, but with the additional angle of 60 degrees. Silky-Rock die stone (Whip Mix Corp, Louisville, KY) was used as a control. The Performance Values for the 17 impression materials ranged from 0% to 100%. The Performance Values for the 7 best materials were equivalent to the control at f/11 out to a surface angle of 45 degrees; however, only Examix impression material (GC America Inc, Alsip, IL) was equivalent to the control at f/11/\\16. At the 60 degrees surface angle with f/11/\\16, the Performance Values were 0% for all the impression materials, whereas that for the control was 90

  16. Development of comprehensive material performance database for nuclear applications

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Yokoyama, Norio; Tsukada, Takashi; Nakajima, Hajime

    1993-01-01

    This paper introduces the present status of the comprehensive material performance database for nuclear applications, which was named JAERI Material Performance Database (JMPD), and examples of its utilization. The JMPD has been developed since 1986 in JAERI with a view to utilizing various kinds of characteristics data of nuclear materials efficiently. Management system of relational database, PLANNER, was employed, and supporting systems for data retrieval and output were expanded. In order to improve user-friendliness of the retrieval system, the menu selection type procedures have been developed where knowledge of the system or the data structures are not required for end-users. As to utilization of the JMPD, two types of data analyses are mentioned as follows: (1) A series of statistical analyses was performed in order to estimate the design values both of the yield strength (Sy) and the tensile strength (Su) for aluminum alloys which are widely used as structural materials for research reactors. (2) Statistical analyses were accomplished by using the cyclic crack growth rate data for nuclear pressure vessel steels, and comparisons were made on variability and/or reproducibility of the data between obtained by ΔK-increasing and ΔK-constant type tests. (author)

  17. Corrosion performance of advanced structural materials in sodium.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L. (Nuclear Engineering Division)

    2012-05-16

    Test Facility, and Clinch River Breeder Reactor. Among the nonmetallic elements discussed, oxygen is deemed controllable and its concentration in sodium can be maintained in sodium for long reactor life by using cold-trap method. It was concluded that among the cold-trap and getter-trap methods, the use of cold trap is sufficient to achieve oxygen concentration of the order of 1 part per million. Under these oxygen conditions in sodium, the corrosion performance of structural materials such as austenitic stainless steels and ferritic steels will be acceptable at a maximum core outlet sodium temperature of {approx}550 C. In the current sodium compatibility studies, the oxygen concentration in sodium will be controlled and maintained at {approx}1 ppm by controlling the cold trap temperature. The oxygen concentration in sodium in the forced convection sodium loop will be controlled and monitored by maintaining the cold trap temperature in the range of 120-150 C, which would result in oxygen concentration in the range of 1-2 ppm. Uniaxial tensile specimens are being exposed to flowing sodium and will be retrieved and analyzed for corrosion and post-exposure tensile properties. Advanced materials for sodium exposure include austenitic alloy HT-UPS and ferritic-martensitic steels modified 9Cr-1Mo and NF616. Among the nonmetallic elements in sodium, carbon was assessed to have the most influence on structural materials since carbon, as an impurity, is not amenable to control and maintenance by any of the simple purification methods. The dynamic equilibrium value for carbon in sodium systems is dependent on several factors, details of which were discussed in the earlier report. The current sodium compatibility studies will examine the role of carbon concentration in sodium on the carburization-decarburization of advanced structural materials at temperatures up to 650 C. Carbon will be added to the sodium by exposure of carbon-filled iron tubes, which over time will enable

  18. Corrosion performance of advanced structural materials in sodium

    International Nuclear Information System (INIS)

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L.

    2012-01-01

    Clinch River Breeder Reactor. Among the nonmetallic elements discussed, oxygen is deemed controllable and its concentration in sodium can be maintained in sodium for long reactor life by using cold-trap method. It was concluded that among the cold-trap and getter-trap methods, the use of cold trap is sufficient to achieve oxygen concentration of the order of 1 part per million. Under these oxygen conditions in sodium, the corrosion performance of structural materials such as austenitic stainless steels and ferritic steels will be acceptable at a maximum core outlet sodium temperature of ∼550 C. In the current sodium compatibility studies, the oxygen concentration in sodium will be controlled and maintained at ∼1 ppm by controlling the cold trap temperature. The oxygen concentration in sodium in the forced convection sodium loop will be controlled and monitored by maintaining the cold trap temperature in the range of 120-150 C, which would result in oxygen concentration in the range of 1-2 ppm. Uniaxial tensile specimens are being exposed to flowing sodium and will be retrieved and analyzed for corrosion and post-exposure tensile properties. Advanced materials for sodium exposure include austenitic alloy HT-UPS and ferritic-martensitic steels modified 9Cr-1Mo and NF616. Among the nonmetallic elements in sodium, carbon was assessed to have the most influence on structural materials since carbon, as an impurity, is not amenable to control and maintenance by any of the simple purification methods. The dynamic equilibrium value for carbon in sodium systems is dependent on several factors, details of which were discussed in the earlier report. The current sodium compatibility studies will examine the role of carbon concentration in sodium on the carburization-decarburization of advanced structural materials at temperatures up to 650 C. Carbon will be added to the sodium by exposure of carbon-filled iron tubes, which over time will enable carbon to diffuse through iron and

  19. Risk Factors Influencing Construction Procurement Performance in Nigeria

    Directory of Open Access Journals (Sweden)

    Alhassan Dahiru

    2015-08-01

    Full Text Available One of the challenges facing construction procurement performance is the failure to determine the risk related factors limiting its success. These risk factors can cause a significant increase in the procurement cost leading to an increase in the overall project cost. The purpose of this study is to identify and evaluate the risk factors influencing construction procurement performance with a view to achieve the overall project performance. The objectives are to establish a relative significance index score for the most important risk factors limiting the procurement performance of the projects. A self administered questionnaire was employed to the construction industry professionals for responses. A total of 78 questionnaires were distributed to these professionals (architects, quantity surveyors, engineers, and contractors but 62 were returned and analyzed using influential index and later ranked in order of importance. Results of the analysis indicate a disparity in terms of ranking of the factors influencing construction procurement performance. Corruption related risk, conflict of interest, ineffective project technical feasibility, and lack of commitment to transparency were found to be the most significant factors limiting construction procurement performance. Communication barriers and unconfidential tender evaluation process were found to be the low weighted risk factors. The findings can serve as a supportive mechanism for risks management in public construction procurement management. Therefore, construction procurement personnel at all levels of government may find this study relevant, while improving construction procurement performance in the country. It is recommended that construction procurement system should be focused on risks related to corruption, conflict of interest, and effective technical feasibility for improving the overall project performance.

  20. A general solution to the material performance index for bending strength design

    International Nuclear Information System (INIS)

    Burgess, S.C.; Pasini, D.; Smith, D.J.; Alemzadeh, K.

    2006-01-01

    This paper presents a general solution to the material performance index for the bending strength design of beams. In general, the performance index for strength design is ρ f q /ρ where σ f is the material strength, ρ is the material density and q is a function of the direction of scaling. Previous studies have only solved q for three particular cases: proportional scaling of width and height (q=2/3), constrained height (q=1) and constrained width (q=1/2). This paper presents a general solution to the exponent q for any arbitrary direction of scaling. The index is used to produce performance maps that rank relative material performance for particular design cases. The performance index and the performance maps are applied to a design case study

  1. HIGH-PERFORMANCE COATING MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  2. Factors affecting scholastic performances of adolescents.

    Science.gov (United States)

    Shashidhar, Saraswati; Rao, Chandrika; Hegde, Radhakrishna

    2009-05-01

    The present study aims at recognizing the social influence, study habits and health factors affecting scholastic performances of adolescents and to compare these factors among the adolescents between two categories of school. A total of 1230 adolescents (13-18 yrs) were screened. Data was collected by personal interview, using the teenage screening questionnaire, Trivandrum, between May 2004 and November 2005. A total 615 students from corporation and private schools were studied. 39.76% (489) were high achievers, 13.5% (166) were low achievers with p poor study habits and social factors were increased in low achievers of corporation schools. On multivariate analysis, the predictor variables for poor scholastic performance were adolescent having refractory error, not having help for study at home, not doing home work regularly, not solving question bank papers and reading only before examinations. It is feasible and worthwhile to identify the determinants of scholastic performance and plan intervention strategies at each school. The results of this study highlight the importance of implementing newer strategies, focusing on strict study patterns and creating the conducive school and home environment for study, so as to achieve better scholastic performances.

  3. An investigation into the relationship between thermal shock resistance and ballistic performance of ceramic materials

    Science.gov (United States)

    Beaumont, Robert

    about the relative ballistic performances. The tests showed that all of the composites would outperform the alumina materials. Further, all of the tests led to the prediction that AD995 would be better ballistically than Sintox FA, possibly up to a factor of two better. The predictions were in very good agreement with literature values for depth-of-penetration testing. The situation was more complex for the carbide materials, with different tests leading to slightly different predictions. However, the predictions from the ultrasonic tests were consistent with the available ballistic data. Indeed, the ultrasonic data proved to be the most consistent predictor of ballistic performance, supporting the view that the total defect population is more relevant than a ‘critical flaw’ concept. Thus, it can be concluded that with further development, and subject to validation across a wider spread of materials and microstructures, thermal shock testing coupled with ultrasonic measurements could form the basis of a future screening test for ceramics for armour applications.

  4. Reliability assessment of a bi-material notch: Strain energy density factor approach

    Czech Academy of Sciences Publication Activity Database

    Klusák, Jan; Knésl, Zdeněk

    2010-01-01

    Roč. 53, č. 2 (2010), s. 89-93 ISSN 0167-8442 R&D Projects: GA ČR GAP108/10/2049; GA ČR GA101/08/0994 Institutional research plan: CEZ:AV0Z20410507 Keywords : crack initiation * bi-material notch * strain energy density factor Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.073, year: 2010

  5. PREFACE: Processing, Microstructure and Performance of Materials

    Science.gov (United States)

    Chiu, Yu Lung; Chen, John J. J.; Hodgson, Michael A.; Thambyah, Ashvin

    2009-07-01

    A workshop on Processing, Microstructure and Performance of Materials was held at the University of Auckland, School of Engineering, on 8-9 April 2009. Organised by the Department of Chemical and Materials Engineering, University of Auckland, this meeting consisted of international participants and aimed at addressing the state-of-the-art research activities in processing, microstructure characterization and performance integrity investigation of materials. This two-day conference brought together scientists and engineers from New Zealand, Australia, Hong Kong, France, and the United Kingdom. Undoubtedly, this diverse group of participants brought a very international flair to the proceedings which also featured original research papers on areas such as Materials processing; Microstructure characterisation and microanalysis; Mechanical response at different length scales, Biomaterials and Material Structural integrity. There were a total of 10 invited speakers, 16 paper presentations, and 14 poster presentations. Consequently, the presentations were carefully considered by the scientific committee and participants were invited to submit full papers for this volume. All the invited paper submissions for this volume have been peer reviewed by experts in the various fields represented in this conference, this in accordance to the expected standards of the journal's Peer review policy for IOP Conference Series: Materials Science and Engineering. The works in this publication consists of new and original research as well as several expert reviews of current state-of-the art technologies and scientific developments. Knowing some of the real constraints on hard-copy publishing of high quality, high resolution images, the editors are grateful to IOP Publishing for this opportunity to have the papers from this conference published on the online open-access platform. Listed in this volume are papers on a range of topics on materials research, including Ferguson's high strain

  6. PERFORMANCE ANALYSIS OF RECTANGULAR MPA USING DIFFERENT SUBSTRATE MATERIALS FOR WLAN APPLICATION

    Directory of Open Access Journals (Sweden)

    E Aravindraj

    2017-03-01

    Full Text Available In this paper, a rectangular microstrip patch antenna (MPA is designed using different substrate materials for analyzing the performance of the MPA. Alumina (Al2O3, Bakelite, Beryllium oxide (BeO, Gallium Arsenide (GaAs, RT-Duroid and Flame Retardant 4 (FR-4 are the six different substrate used in the design. The size of the rectangular microstrip patch antenna varies according to the dielectric constant of substrate materials used. The operating frequency taken for this analysis is 5.8 GHz. The proposed design provides the study on the performance of rectangular microstrip patch antenna for different substrate materials using the same frequency. This study conveys that which substrate material provides better performance. Moreover, this comparative study conveys that which substrate material provides better performance. The simulation parameters are investigated using HFSS.

  7. Materials performance experience at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, W.F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    There is a growing, but not yet substantial, data base for materials performance at spallation neutron sources. Specially designed experiments using medium energy protons (650 MeV) have been conducted at the Proton Irradiation Experiment (PIREX) facility at the Swiss Nuclear Institute accelerator (SIN). Specially designed experiments using 760-800 MeV copper target have been completed at the Los Alamos Spallation Radiation Effects Facility (LASREF) at Los Alamos Meson Physics Facility (LAMPF). An extensive material testing program was initiated at LASREF in support of the German spallation neutron source (SNQ) project, before it terminated in 1985.

  8. Oxasmaragdyrins as New and Efficient Hole-Transporting Materials for High-Performance Perovskite Solar Cells.

    Science.gov (United States)

    Mane, Sandeep B; Sutanto, Albertus Adrian; Cheng, Chih-Fu; Xie, Meng-Yu; Chen, Chieh-I; Leonardus, Mario; Yeh, Shih-Chieh; Beyene, Belete Bedemo; Diau, Eric Wei-Guang; Chen, Chin-Ti; Hung, Chen-Hsiung

    2017-09-20

    The high performance of the perovskite solar cells (PSCs) cannot be achieved without a layer of efficient hole-transporting materials (HTMs) to retard the charge recombination and transport the photogenerated hole to the counterelectrode. Herein, we report the use of boryl oxasmaragdyrins (SM01, SM09, and SM13), a family of aromatic core-modified expanded porphyrins, as efficient hole-transporting materials (HTMs) for perovskite solar cells (PSCs). These oxasmaragdyrins demonstrated complementary absorption spectra in the low-energy region, good redox reversibility, good thermal stability, suitable energy levels with CH 3 NH 3 PbI 3 perovskite, and high hole mobility. A remarkable power conversion efficiency of 16.5% (V oc = 1.09 V, J sc = 20.9 mA cm -2 , fill factor (FF) = 72%) is achieved using SM09 on the optimized PSCs device employing a planar structure, which is close to that of the state-of-the-art hole-transporting materials (HTMs), spiro-OMeTAD of 18.2% (V oc = 1.07 V, J sc = 22.9 mA cm -2 , FF = 74%). In contrast, a poor photovoltaic performance of PSCs using SM01 is observed due to the interactions of terminal carboxylic acid functional group with CH 3 NH 3 PbI 3 .

  9. Psychological factors affecting equine performance

    Directory of Open Access Journals (Sweden)

    McBride Sebastian D

    2012-09-01

    Full Text Available Abstract For optimal individual performance within any equestrian discipline horses must be in peak physical condition and have the correct psychological state. This review discusses the psychological factors that affect the performance of the horse and, in turn, identifies areas within the competition horse industry where current behavioral research and established behavioral modification techniques could be applied to further enhance the performance of animals. In particular, the role of affective processes underpinning temperament, mood and emotional reaction in determining discipline-specific performance is discussed. A comparison is then made between the training and the competition environment and the review completes with a discussion on how behavioral modification techniques and general husbandry can be used advantageously from a performance perspective.

  10. Factors affecting the performance of professional nurses in Namibia

    Directory of Open Access Journals (Sweden)

    Magdalene H. Awases

    2013-04-01

    Objectives: The aim of the present study was to identify factors affecting the performance of professional nurses in Namibia. Method: A quantitative, descriptive survey was used to collect data by means of a questionnaire. A random sample of 180 professional nurses was selected from six hospitals in three regions of Namibia. Results: Factors affecting the performance of nurses negatively were identified such as: lack of recognition of employees who are performing well, quality performance outcomes and an absence of a formal performance appraisal system and poor working conditions. Various factors contribute to both the positive and negative performance of professional nurses in Namibia. Strategies were developed for addressing the negative factors that could positively affect the performance of professional nurses in Namibia. Conclusions: This study emphasises the importance of developing strategies to promote the performance of nurses; build knowledge and expertise; develop mechanisms for improving the performance of nurses; expand leadership and management capacity; and generate information and knowledge through research.

  11. Dependence of behavioral performance on material category in an object grasping task with monkeys.

    Science.gov (United States)

    Yokoi, Isao; Tachibana, Atsumichi; Minamimoto, Takafumi; Goda, Naokazu; Komatsu, Hidehiko

    2018-05-02

    Material perception is an essential part of our cognitive function that enables us to properly interact with our complex daily environment. One important aspect of material perception is its multimodal nature. When we see an object, we generally recognize its haptic properties as well as its visual properties. Consequently, one must examine behavior using real objects that are perceived both visually and haptically to fully understand the characteristics of material perception. As a first step, we examined whether there is any difference in the behavioral responses to different materials in monkeys trained to perform an object grasping task in which they saw and grasped rod-shaped real objects made of various materials. We found that the monkeys' behavior in the grasping task, measured based on the success rate and the pulling force, differed depending on the material category. Monkeys easily and correctly grasped objects of some materials, such as metal and glass, but failed to grasp objects of other materials. In particular, monkeys avoided grasping fur-covered objects. The differences in the behavioral responses to the material categories cannot be explained solely based on the degree of familiarity with the different materials. These results shed light on the organization of multimodal representation of materials, where their biological significance is an important factor. In addition, a monkey that avoided touching real fur-covered objects readily touched images of the same objects presented on a CRT display. This suggests employing real objects is important when studying behaviors related to material perception.

  12. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles.

    Science.gov (United States)

    Lin, Naibo; Liu, Xiang Yang

    2015-11-07

    This review examines how the concepts and ideas of crystallization can be extended further and applied to the field of mesoscopic soft materials. It concerns the structural characteristics vs. the macroscopic performance, and the formation mechanism of crystal networks. Although this subject can be discussed in a broad sense across the area of mesoscopic soft materials, our main focus is on supramolecular materials, spider and silkworm silks, and biominerals. First, the occurrence of a hierarchical structure, i.e. crystal network and domain network structures, will facilitate the formation kinetics of mesoscopic phases and boost up the macroscopic performance of materials in some cases (i.e. spider silk fibres). Second, the structure and performance of materials can be correlated in some way by the four factors: topology, correlation length, symmetry/ordering, and strength of association of crystal networks. Moreover, four different kinetic paths of crystal network formation are identified, namely, one-step process of assembly, two-step process of assembly, mixed mode of assembly and foreign molecule mediated assembly. Based on the basic mechanisms of crystal nucleation and growth, the formation of crystal networks, such as crystallographic mismatch (or noncrystallographic) branching (tip branching and fibre side branching) and fibre/polymeric side merging, are reviewed. This facilitates the rational design and construction of crystal networks in supramolecular materials. In this context, the (re-)construction of a hierarchical crystal network structure can be implemented by thermal, precipitate, chemical, and sonication stimuli. As another important class of soft materials, the unusual mechanical performance of spider and silkworm silk fibres are reviewed in comparison with the regenerated silk protein derivatives. It follows that the considerably larger breaking stress and unusual breaking strain of spider silk fibres vs. silkworm silk fibres can be interpreted

  13. Relationship between organizational factors and performance among pay-for-performance hospitals.

    Science.gov (United States)

    Vina, Ernest R; Rhew, David C; Weingarten, Scott R; Weingarten, Jason B; Chang, John T

    2009-07-01

    The Centers for Medicare & Medicaid Services (CMS)/Premier Hospital Quality Incentive Demonstration (HQID) project aims to improve clinical performance through a pay-for-performance program. We conducted this study to identify the key organizational factors associated with higher performance. An investigator-blinded, structured telephone survey of eligible hospitals' (N = 92) quality improvement (QI) leaders was conducted among HQID hospitals in the top 2 or bottom 2 deciles submitting performance measure data from October 2004 to September 2005. The survey covered topics such as QI interventions, data feedback, physician leadership, support for QI efforts, and organizational culture. More top performing hospitals used clinical pathways for the treatment of AMI (49% vs. 15%, p vs. 18%, p vs. 13%, p vs. 23%, p vs. 77%, p vs. 69%, p vs. 64%, p vs. 7.9%, p organizational culture that supported coordination of care (p Organizational structure, support, and culture are associated with high performance among hospitals participating in a pay-for-performance demonstration project. Multiple organizational factors remain important in optimizing clinical care.

  14. Adhesives with wood materials : bond formation and performance

    Science.gov (United States)

    Charles R. Frihart; Christopher G. Hunt

    2010-01-01

    Adhesive bonding of wood plays an increasing role in the forest products industry and is a key factor for efficiently utilizing our timber resource. The main use of adhesives is in the manufacture of building materials, including plywood, oriented strandboard, particleboard, fiberboard, structural composite lumber, doors, windows and frames, and factory-laminated wood...

  15. Amperometric Detection in Microchip Electrophoresis Devices: Effect of Electrode Material and Alignment on Analytical Performance

    Science.gov (United States)

    Fischer, David J.; Hulvey, Matthew K.; Regel, Anne R.; Lunte, Susan M.

    2012-01-01

    The fabrication and evaluation of different electrode materials and electrode alignments for microchip electrophoresis with electrochemical (EC) detection is described. The influences of electrode material, both metal and carbon-based, on sensitivity and limits of detection (LOD) were examined. In addition, the effects of working electrode alignment on analytical performance (in terms of peak shape, resolution, sensitivity, and LOD) were directly compared. Using dopamine (DA), norepinephrine (NE), and catechol (CAT) as test analytes, it was found that pyrolyzed photoresist electrodes with end-channel alignment yielded the lowest limit of detection (35 nM for DA). In addition to being easier to implement, end-channel alignment also offered better analytical performance than off-channel alignment for the detection of all three analytes. In-channel electrode alignment resulted in a 3.6-fold reduction in peak skew and reduced peak tailing by a factor of 2.1 for catechol in comparison to end-channel alignment. PMID:19802847

  16. Some strategies to improve performance in school chemistry, based on two cognitive factors

    Science.gov (United States)

    Danili, Eleni; Reid, Norman

    2004-02-01

    The background to this study are the difficulties facing the majority of Greek pupils in understanding chemistry concepts and, therefore, performing well in the National Examinations. The aim was to explore the problems and to suggest ways in which the situation might be improved. Working with 105 Greek pupils aged 15 to 16, the first stage of the enquiry confirmed that both working memory space and extent of field dependency were two psychological factors affecting performance. This is at least part of the nature of the problem. In the second stage, an attempt was made to explore how the problems might be reduced. New teaching materials were constructed to minimize any limitations to learning caused by working memory space and problems associated with being field dependent. The use of the new materials was compared to the normal teaching process working with 210 Greek pupils aged 15 to16. It was found that there was a significant difference in the average improvement of the experimental group and the control group, in favour of the experimental group. This result was independent of the effect of the teacher, and of the interaction of teaching method and teacher. It is suggested that approaches to learning must take into account cognitive factors in the learners in the context of information processing understandings of learning. If this is done, learning is much more effective.

  17. Development, preparation, and characterization of high-performance superconducting materials for space applications. Progress Report

    International Nuclear Information System (INIS)

    Thorpe, A.N.; Barkatt, A.

    1991-12-01

    The preparation of high-temperature superconducting ceramics in bulk form is a major challenge in materials science. The current status of both partial melting and melt quenching techniques, with or without an intermediate powder processing stage, is described in detail, and the problems associated with each of the methods are discussed. Results of studies performed on melt-processed materials are reported and discussed. The discussion places emphasis on magnetization and on other physical properties associated with it, such as critical current density, levitation force, and flux creep. The nature of structural features which give rise to flux pinning, including both small and large defects, is discussed with reference to theoretical considerations. The rates of flux creep and the factors involved in attempting to retard the decay of the magnetization are surveyed

  18. Effects of backing board materials on wood combustion performance

    Science.gov (United States)

    Mathew J. Hagge; Kenneth M. Bryden; Mark A. Dietenberger

    2004-01-01

    Cone calorimeter tests show that backing board materials do not affect the ignition time, initial heat release rate, or the total heat released of combustion for redwood slabs. However, it has been observed that backing board materials alter combustion performance by altering the secondary heat release peak observed when the pyrolysis reaction front nears the unheated...

  19. The influence of ALN-Al gradient material gradient index on ballistic performance

    International Nuclear Information System (INIS)

    Wang Youcong; Liu Qiwen; Li Yao; Shen Qiang

    2013-01-01

    Ballistic performance of the gradient material is superior to laminated material, and gradient materials have different gradient types. Using ls-dyna to simulate the ballistic performance of ALN-AL gradient target plates which contain three gradient index (b = 1, b = 0.5, b = 2). Through Hopkinson bar numerical simulation to the target plate materials, we obtained the reflection stress wave and transmission stress wave state of gradient material to get the best gradient index. The internal stress state of gradient material is simulated by amplification processing of the target plate model. When the gradient index b is equal to 1, the gradient target plate is best of all.

  20. Perceived Factors Affecting Performance Of Extension Workers In ...

    African Journals Online (AJOL)

    The study focused on perceived factors affecting performance of extension workers in Imo State, Nigeria. Data for the study was collected from 83 Extension agents from the Imo State Agricultural Development Programme (ADP). Results of the study revealed that the organizational factors that affect performance are ...

  1. 46 CFR 160.031-3 - Materials, construction, workmanship, and performance requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, construction, workmanship, and performance...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Line-Throwing Appliance, Shoulder Gun Type (and Equipment) § 160.031-3 Materials, construction, workmanship, and...

  2. 46 CFR 160.036-3 - Materials, workmanship, construction and performance requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, workmanship, construction and performance...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket-Propelled Parachute Red Flare Distress Signals § 160.036-3 Materials, workmanship, construction and...

  3. 46 CFR 160.040-3 - Materials, construction, workmanship, and performance requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Materials, construction, workmanship, and performance...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Line-Throwing Appliance, Impulse-Projected Rocket Type (and Equipment) § 160.040-3 Materials, construction, workmanship...

  4. Mechanics of advanced materials analysis of properties and performance

    CERN Document Server

    Matveenko, Valery

    2015-01-01

    The last decades have seen a large extension of types of materials employed in various applications. In many cases these materials demonstrate mechanical properties and performance that vary significantly from those of their traditional counterparts. Such uniqueness is sought – or even specially manufactured – to meet increased requirements on modern components and structures related to their specific use. As a result, mechanical behaviors of these materials under different loading and environmental conditions are outside the boundaries of traditional mechanics of materials, presupposing development of new characterization techniques, theoretical descriptions and numerical tools. The book presents interesting examples of recent developments in this area. Among the studied materials are bulk metallic glasses, metamaterials, special composites, piezoelectric smart structures, nonwovens, etc.

  5. Material factors in relation to development time in liquid-penetrant inspection. Part 3. Testing of model plates

    Directory of Open Access Journals (Sweden)

    Irek P.

    2017-03-01

    Full Text Available The paper is the continuation of the previous ones entitled „Material factors in relation to development time in liquid-penetrant inspection. Part 1. Material factors“ and „Material factors in relation to development time in liquid-penetrant inspection. Part 2. Investigation programme and preliminary tests“ in which material factors influencing essentially the development time in penetrant testing as well as the range of their values have been specified. These factors are: material kind, surface roughness and imperfection width.

  6. Processing bulk natural wood into a high-performance structural material

    Science.gov (United States)

    Song, Jianwei; Chen, Chaoji; Zhu, Shuze; Zhu, Mingwei; Dai, Jiaqi; Ray, Upamanyu; Li, Yiju; Kuang, Yudi; Li, Yongfeng; Quispe, Nelson; Yao, Yonggang; Gong, Amy; Leiste, Ulrich H.; Bruck, Hugh A.; Zhu, J. Y.; Vellore, Azhar; Li, Heng; Minus, Marilyn L.; Jia, Zheng; Martini, Ashlie; Li, Teng; Hu, Liangbing

    2018-02-01

    Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites). Natural wood is a low-cost and abundant material and has been used for millennia as a structural material for building and furniture construction. However, the mechanical performance of natural wood (its strength and toughness) is unsatisfactory for many advanced engineering structures and applications. Pre-treatment with steam, heat, ammonia or cold rolling followed by densification has led to the enhanced mechanical performance of natural wood. However, the existing methods result in incomplete densification and lack dimensional stability, particularly in response to humid environments, and wood treated in these ways can expand and weaken. Here we report a simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability. Our two-step process involves the partial removal of lignin and hemicellulose from the natural wood via a boiling process in an aqueous mixture of NaOH and Na2SO3 followed by hot-pressing, leading to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres. This strategy is shown to be universally effective for various species of wood. Our processed wood has a specific strength higher than that of most structural metals and alloys, making it a low-cost, high-performance, lightweight alternative.

  7. Performance evaluation of seal coat materials and designs.

    Science.gov (United States)

    2011-01-01

    "This project presents an evaluation of seal coat materials and design method. The primary objectives of this research are 1) to evaluate seal coat performance : from various combinations of aggregates and emulsions in terms of aggregate loss; 2) to ...

  8. Powder metallurgical high performance materials. Proceedings. Volume 2: P/M hard materials

    Energy Technology Data Exchange (ETDEWEB)

    Kneringer, G; Roedhammer, P; Wildner, H [eds.

    2001-07-01

    The proceedings of these seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15{sup th} Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  9. Powder metallurgical high performance materials. Proceedings. Volume 2: P/M hard materials

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of these seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15 th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  10. Lambda as a factor for saving energy. When are special high-performance insulating materials worthwhile?; Einsparfaktor Lambda. Wann rechnen sich besonders leistungsfaehige Daemmstoffe?

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, Sven-Erik [Arbeitskreis Baufachpresse e.V., Koeln (Germany)

    2011-01-15

    The probably most important criterion of an insulating material is its specific thermal conductivity. The so-called lambda value describes the amount of heat which flows in one second at a temperature difference of one Kelvin through one square meters of a one meter thick layer of a material. The lower the lambda-value, the much better. While usual insulating materials exist in the heat conductance stages 035 to 045, in the meantime the manufactures overestimate oneself with super-insulating materials whose thermal conductivity reach a value of 0.019. VIP panels have a heat conductivity to approximately 0.006 W/(m{sup 2} K). This is a high damming performance,which has its price.

  11. Effects of non-steady irradiation conditions on fusion materials performance

    International Nuclear Information System (INIS)

    Matsui, H.; Fukumoto, K.; Nagumo, T.; Nita, N.

    2001-01-01

    During startup of fusion reactors, materials are exposed to neutron irradiation under non-steady temperature condition. Since the temperature of irradiation has decisive effects on the microstructural evolution, the non-steady temperature will have important consequences in the performance of fusion reactor materials. In the present study, a series of vanadium based alloys have been irradiated with neutrons in a temperature cycling condition. It has been found from this study that cavity number density is much greater in temperature cycled specimens than in steady temperature irradiation. Keeping the upper temperature constant, cavity number density is greater for smaller difference between the upper and the lower temperature. It follows that relatively small temperature excursions may have rather significant effects on the fusion material performance in service. (author)

  12. Dissolution performance of plutonium nitride based fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, E.; Hedberg, M. [Nuclear Chemistry, Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivaegen 4, Gothenburg, SE41296 (Sweden)

    2016-07-01

    Nitride fuels have been regarded as one viable fuel option for Generation IV reactors due to their positive features compared to oxides. To be able to close the fuel cycle and follow the Generation IV concept, nitrides must, however, demonstrate their ability to be reprocessed. This means that the dissolution performance of actinide based nitrides has to be thoroughly investigated and assessed. As the zirconium stabilized nitrides show even better potential as fuel material than does the pure actinide containing nitrides, investigations on the dissolution behavior of both PuN and (Pu,Zr)N has been undertaken. If possible it is desirable to perform the fuel dissolutions using nitric acid. This, as most reprocessing strategies using solvent-solvent extraction are based on a nitride containing aqueous matrix. (Pu,Zr)N/C microspheres were produced using internal gelation. The spheres dissolution performance was investigated using nitric acid with and without additions of HF and Ag(II). In addition PuN fuel pellets were produced from powder and their dissolution performance were also assessed in a nitric acid based setting. It appears that both PuN and (Pu,Zr)N/C fuel material can be completely dissolved in nitric acid of high concentration with the use of catalytic amounts of HF. The amount of HF added strongly affects dissolution kinetics of (Pu, Zr)N and the presence of HF affects the 2 solutes differently, possibly due to inhomogeneity o the initial material. Large additions of Ag(II) can also be used to facilitate the dissolution of (Pu,Zr)N in nitric acid. PuN can be dissolved by pure nitric acid of high concentration at room temperature while (Pu, Zr)N is unaffected under similar conditions. At elevated temperature (reflux), (Pu,Zr)N can, however, also be dissolved by concentrated pure nitric acid.

  13. 9975 Shipping Package Performance Of Alternate Materials For Long-Term Storage Application

    International Nuclear Information System (INIS)

    Skidmore, E.; Hoffman, E.; Daugherty, W.

    2010-01-01

    The Model 9975 shipping package specifies the materials of construction for its various components. With the loss of availability of material for two components (cane fiberboard overpack and Viton(reg s ign) GLT O-rings), alternate materials of construction were identified and approved for use for transport (softwood fiberboard and Viton(reg s ign) GLT-S O-rings). As these shipping packages are part of a long-term storage configuration at the Savannah River Site, additional testing is in progress to verify satisfactory long-term performance of the alternate materials under storage conditions. The test results to date can be compared to comparable results on the original materials of construction to draw preliminary conclusions on the performance of the replacement materials.

  14. Density as a factor limiting the workability of P/M materials

    International Nuclear Information System (INIS)

    Libura, W.; Zasadzinski, J.

    1993-01-01

    In this study a general scheme expressing the factors which affect a workability of powder materials is presented. It was found from laboratory experiments that workability of powder metal materials is limited by their density. Aluminium based materials with additions of Cu, Ni and Sn were used in the experiments. Workability determined in compression tests depends strongly on a sintered density, independently of the chemical composition of material. A linear dependence between workability and sintered density was found. The results are related to relatively high density values, taken from the range of 0.85-0.96 of theoretical density. (orig.)

  15. Acoustic Performance of Resilient Materials Using Acrylic Polymer Emulsion Resin.

    Science.gov (United States)

    Kim, Haseog; Park, Sangki; Lee, Seahyun

    2016-07-19

    There have been frequent cases of civil complaints and disputes in relation to floor impact noises over the years. To solve these issues, a substantial amount of sound resilient material is installed between the concrete slab and the foamed concrete during construction. A new place-type resilient material is made from cement, silica powder, sodium sulfate, expanded-polystyrene, anhydrite, fly ash, and acrylic polymer emulsion resin. Its physical characteristics such as density, compressive strength, dynamic stiffness, and remanent strain are analyzed to assess the acoustic performance of the material. The experimental results showed the density and the dynamic stiffness of the proposed resilient material is increased with proportional to the use of cement and silica powder due to the high contents of the raw materials. The remanent strain, related to the serviceability of a structure, is found to be inversely proportional to the density and strength. The amount of reduction in the heavyweight impact noise is significant in a material with high density, high strength, and low remanent strain. Finally, specimen no. R4, having the reduction level of 3 dB for impact ball and 1 dB for bang machine in the single number quantity level, respectively, is the best product to obtain overall acoustic performance.

  16. Acoustic Performance of Resilient Materials Using Acrylic Polymer Emulsion Resin

    Directory of Open Access Journals (Sweden)

    Haseog Kim

    2016-07-01

    Full Text Available There have been frequent cases of civil complaints and disputes in relation to floor impact noises over the years. To solve these issues, a substantial amount of sound resilient material is installed between the concrete slab and the foamed concrete during construction. A new place-type resilient material is made from cement, silica powder, sodium sulfate, expanded-polystyrene, anhydrite, fly ash, and acrylic polymer emulsion resin. Its physical characteristics such as density, compressive strength, dynamic stiffness, and remanent strain are analyzed to assess the acoustic performance of the material. The experimental results showed the density and the dynamic stiffness of the proposed resilient material is increased with proportional to the use of cement and silica powder due to the high contents of the raw materials. The remanent strain, related to the serviceability of a structure, is found to be inversely proportional to the density and strength. The amount of reduction in the heavyweight impact noise is significant in a material with high density, high strength, and low remanent strain. Finally, specimen no. R4, having the reduction level of 3 dB for impact ball and 1 dB for bang machine in the single number quantity level, respectively, is the best product to obtain overall acoustic performance.

  17. Transcatheter Arterial Embolization for Primary Postpartum Hemorrhage: Predictive Factors of Need for Embolic Material Conversion of Gelatin Sponge Particles to N-Butyl Cyanoacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Tanahashi, Yukichi; Goshima, Satoshi, E-mail: gossy@par.odn.ne.jp [Gifu University Hospital, Department of Radiology (Japan); Kondo, Hiroshi [Teikyo University School of Medicine, Department of Radiology (Japan); Ando, Tomohiro; Noda, Yoshifumi; Kawada, Hiroshi; Kawai, Nobuyuki [Gifu University Hospital, Department of Radiology (Japan); Kotoku, Junichi [Teikyo University School of Medicine, Department of Radiological Technology, Faculty of Medical Technology (Japan); Furui, Shigeru [Teikyo University School of Medicine, Department of Radiology (Japan); Matsuo, Masayuki [Gifu University Hospital, Department of Radiology (Japan)

    2017-02-15

    PurposeTo identify predictive factors for embolic material conversion to N-butyl cyanoacrylate (NBCA) for the treatment of primary postpartum hemorrhage (PPH) after failed transcatheter arterial embolization (TAE) using gelatin sponge (GS).Materials and MethodsInstitutional review board approval was obtained. We retrospectively studied 62 consecutive women with primary PPH who underwent TAE between January 2006 and March 2015. Five of them were excluded for the following: cardiopulmonary arrest at arrival (n = 1), uterine inversion (n = 1), and hysterectomy after TAE (n = 3). Remaining 57 women (age range, 21–43 years; mean, 32.6 years) comprised study population. TAE was initially performed using GS in all cases and then converted to NBCA after two embolizations using GS with persistent hemodynamic instability or vaginal bleeding. The patients’ background, uterine height, vital signs, laboratory tests, disseminated intravascular coagulation score, and details of procedure were reviewed. Univariate and multivariate analyses were performed to determine factors related to embolic material conversion.ResultsTechnical success rate was 100%. Fourteen patients (25%) needed embolic material conversion to NBCA. Univariate analysis showed that uterine height, systolic blood pressure (sBP), and hemoglobin level were significantly related to embolic material conversion to NBCA (P = 0.029, 0.030, and 0.042). Logistic regression analysis showed that uterine height (odds ratio, 1.37; P = 0.025) and sBP (odds ratio, 0.96; P = 0.003) were associated with embolic material conversion to NBCA.ConclusionUterine height and sBP can be predictive factors for embolic material conversion to NBCA for the treatment of PPH.Level of EvidenceLevel 4, Case Control Study.

  18. Transcatheter Arterial Embolization for Primary Postpartum Hemorrhage: Predictive Factors of Need for Embolic Material Conversion of Gelatin Sponge Particles to N-Butyl Cyanoacrylate

    International Nuclear Information System (INIS)

    Tanahashi, Yukichi; Goshima, Satoshi; Kondo, Hiroshi; Ando, Tomohiro; Noda, Yoshifumi; Kawada, Hiroshi; Kawai, Nobuyuki; Kotoku, Junichi; Furui, Shigeru; Matsuo, Masayuki

    2017-01-01

    PurposeTo identify predictive factors for embolic material conversion to N-butyl cyanoacrylate (NBCA) for the treatment of primary postpartum hemorrhage (PPH) after failed transcatheter arterial embolization (TAE) using gelatin sponge (GS).Materials and MethodsInstitutional review board approval was obtained. We retrospectively studied 62 consecutive women with primary PPH who underwent TAE between January 2006 and March 2015. Five of them were excluded for the following: cardiopulmonary arrest at arrival (n = 1), uterine inversion (n = 1), and hysterectomy after TAE (n = 3). Remaining 57 women (age range, 21–43 years; mean, 32.6 years) comprised study population. TAE was initially performed using GS in all cases and then converted to NBCA after two embolizations using GS with persistent hemodynamic instability or vaginal bleeding. The patients’ background, uterine height, vital signs, laboratory tests, disseminated intravascular coagulation score, and details of procedure were reviewed. Univariate and multivariate analyses were performed to determine factors related to embolic material conversion.ResultsTechnical success rate was 100%. Fourteen patients (25%) needed embolic material conversion to NBCA. Univariate analysis showed that uterine height, systolic blood pressure (sBP), and hemoglobin level were significantly related to embolic material conversion to NBCA (P = 0.029, 0.030, and 0.042). Logistic regression analysis showed that uterine height (odds ratio, 1.37; P = 0.025) and sBP (odds ratio, 0.96; P = 0.003) were associated with embolic material conversion to NBCA.ConclusionUterine height and sBP can be predictive factors for embolic material conversion to NBCA for the treatment of PPH.Level of EvidenceLevel 4, Case Control Study

  19. Electron fluence correction factors for various materials in clinical electron beams

    International Nuclear Information System (INIS)

    Olivares, M.; Blois, F. de; Podgorsak, E.B.; Seuntjens, J.P.

    2001-01-01

    Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at d max in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than ±1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83±0.01 and 1.55±0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1σ level. Excluding the data for Cu, electron fluence

  20. MATERIALS PERFORMANCE TARGETED THRUST FY 2004 PROJECTS

    International Nuclear Information System (INIS)

    DOE

    2005-01-01

    The Yucca Mountain site was recommended by the President to be a geological repository for commercial spent nuclear fuel and high-level radioactive waste. The multi-barrier approach was adopted for assessing and predicting system behavior, including both natural barriers and engineered barriers. A major component of the long-term strategy for safe disposal of nuclear waste is first to completely isolate the radionuclides in waste packages for long times and then to greatly retard the egress and transport of radionuclides from penetrated packages. The goal of the Materials Performance Targeted Thrust program is to further enhance the understanding of the role of engineered barriers in waste isolation. In addition, the Thrust will explore technical enhancements and seek to offer improvements in materials costs and reliability

  1. Human factors quantification via boundary identification of flight performance margin

    Directory of Open Access Journals (Sweden)

    Yang Changpeng

    2014-08-01

    Full Text Available A systematic methodology including a computational pilot model and a pattern recognition method is presented to identify the boundary of the flight performance margin for quantifying the human factors. The pilot model is proposed to correlate a set of quantitative human factors which represent the attributes and characteristics of a group of pilots. Three information processing components which are influenced by human factors are modeled: information perception, decision making, and action execution. By treating the human factors as stochastic variables that follow appropriate probability density functions, the effects of human factors on flight performance can be investigated through Monte Carlo (MC simulation. Kernel density estimation algorithm is selected to find and rank the influential human factors. Subsequently, human factors are quantified through identifying the boundary of the flight performance margin by the k-nearest neighbor (k-NN classifier. Simulation-based analysis shows that flight performance can be dramatically improved with the quantitative human factors.

  2. Evaluation of performance of barrier materials in geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sasakura, Takeshi; Kobayashi, Ichizo

    2004-01-01

    It is important to evaluate the hydraulic and mechanical performance of barrier materials for geological disposal of radioactive waste. Many experiments on the hydraulic and mechanical performance of barrier materials have been implemented. However, both the ordinary water head-controlled permeability test for evaluating hydraulic performance and the oedometer test for obtaining the mechanical properties are usually needed. In this study, the flow pump permeability test was applied to various barrier materials with the purpose of quickly evaluating their hydraulic performance. The flow pump permeability test was shown to be applicable to every barrier material employed in this study, of which the coefficient of permeability ranged from 10-7 to 10-14 m/sec. The time needed to obtain the coefficient of permeability was about 1/8 that of ordinary head-controlled permeability tests. The resulting coefficient of permeability was more accurate than that from the standard water head-controlled permeability test. Moreover, the bentonite-engineered barrier materials were subjected to a constant strain rate consolidation test, which is a method to quickly evaluate the mechanical performance. The results of the consolidation tests were consistent with the results of the oedometer tests and the necessary time for the test was reduced to only four days even in case of Na-ben-tonite, for which a couple of months was necessary with the standard oedometer test. (author)

  3. Evaluation of stress intensity factors for bi-material interface cracks using displacement jump methods

    Science.gov (United States)

    Nehar, K. C.; Hachi, B. E.; Cazes, F.; Haboussi, M.

    2017-12-01

    The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to analyze brittle and bi-material interfacial fatigue crack growth by computing the mixed mode stress intensity factors (SIF). Three different approaches are introduced to compute the SIFs. In the first one, mixed mode SIF is deduced from the computation of the contour integral as per the classical J-integral method, whereas a displacement method is used to evaluate the SIF by using either one or two displacement jumps located along the crack path in the second and third approaches. The displacement jump method is rather classical for mono-materials, but has to our knowledge not been used up to now for a bi-material. Hence, use of displacement jump for characterizing bi-material cracks constitutes the main contribution of the present study. Several benchmark tests including parametric studies are performed to show the effectiveness of these computational methodologies for SIF considering static and fatigue problems of bi-material structures. It is found that results based on the displacement jump methods are in a very good agreement with those of exact solutions, such as for the J-integral method, but with a larger domain of applicability and a better numerical efficiency (less time consuming and less spurious boundary effect).

  4. Corrosion performance of tube support materials

    International Nuclear Information System (INIS)

    Malagola, P.

    1985-01-01

    The problem of denting in steam generators leads to change in the conception of the tube support plates. A new material is now used for this component, a 13% Cr steel, which composition has been adjusted for weldability and mechanical resistance criteria. The geometry of trefoil support plate (TSP) has also been improved, using a broached TSP (quadrifoiled holes) instead of a drilled TSP. Tests have been performed on 13% Cr and C-steel broached TSP, and drilled TSP, to confirm the better resistance to denting of this new configuration

  5. Plant corrosion: prediction of materials performance

    International Nuclear Information System (INIS)

    Strutt, J.E.; Nicholls, J.R.

    1987-01-01

    Seventeen papers have been compiled forming a book on computer-based approaches to corrosion prediction in a wide range of industrial sectors, including the chemical, petrochemical and power generation industries. Two papers have been selected and indexed separately. The first describes a system operating within BNFL's Reprocessing Division to predict materials performance in corrosive conditions to aid future plant design. The second describes the truncation of the distribution function of pit depths during high temperature oxidation of a 20Cr austenitic steel in the fuel cladding in AGR systems. (U.K.)

  6. Performance of buffer material under radiation and thermal conditions

    International Nuclear Information System (INIS)

    Zhao Shuaiwei; Yang Zhongtian; Liu Wei

    2012-01-01

    Bentonite is generally selected as backfill and buffer material for repositories in the world. Radiation and heat release is the intrinsic properties of high level radioactive waste. This paper made a preliminary research on foreign literature about performance of the engineering barrier material under radiation and at higher temperatures (e. g. above 100℃). As our current research is just budding in this area, we need to draw lessons from foreign experience and methods. (authors)

  7. The impact of socio-economic factors on the performance of ...

    African Journals Online (AJOL)

    The impact of socio-economic factors on the performance of community ... the work ethic and the level of participation in rural development performance ... the factors responsible for the poor performance of community development projects.

  8. Influence of organizational factors on performance reliability

    International Nuclear Information System (INIS)

    Haber, S.B.; O'Brien, J.N.; Metlay, D.S.; Crouch, D.A.

    1991-12-01

    This is the first volume of a two-volume report. Volume 2 will be published at a later date. This report presents the results of a research project conducted by Brookhaven National Laboratory for the United States Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. The purpose of the project was to develop a general methodology to be use in the assessment of the organizational factors which affect performance reliability (safety) in a nuclear power plant. The research described in this report includes the development of the Nuclear Organization and Management Analysis Concept (GNOMIC). This concept characterizes the organizational factors that impact safety performance in a nuclear power plant and identifies some methods for systematically measuring and analyzing the influence of these factors on safety performance. This report is divided into two parts; Part 1 presents an overview of the development of the methodology, while Part 2 provides more details and a technical analysis of the methodological development. Specifically, the results of two demonstration studies, the feasibility of the methodology, and a specific applications for which the methodology was developed are presented

  9. Performance-oriented Architecture and the Spatial and Material Organisation Complex. Rethinking the Definition, Role and Performative Capacity of the Spatial and Material Boundaries of the Built Environment

    Directory of Open Access Journals (Sweden)

    Michael Ulrich Hensel

    2011-03-01

    Full Text Available This article is based on the proposition that performance-oriented design is characterised by four domains of ‘active agency’: the human subject, the spatial and material organisation complex and the environment (Hensel, 2010. While these four domains are seen to be interdependent and interacting with one another, it is nevertheless necessary to examine each in its own right. However, the spatial and material organisation complex contains both the spatial and material domains, which are interdependent to such a degree that these need to be examined in relation to one another and also in relation to the specific environment they are set within and interacting with. To explore this combined domain within the context of performance-oriented design is the aim of this article, in particularly in relation to the question of the definition and performative capacity of spatial and material boundaries. The various sections are accompanied by research by design efforts undertaken in specified academic contexts, which are intended as examples of modes and areas of inquiry relative to the purpose of this article.

  10. Hybrid Direct Carbon Fuel Cell Performance with Anode Current Collector Material

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Kammer Hansen, Kent

    2015-01-01

    collectors were studied: Au, Ni, Ag, and Pt. It was shown that the performance of the direct carbon fuel cell (DCFC) is dependent on the current collector materials, Ni and Pt giving the best performance, due to their catalytic activity. Gold is suggested to be the best material as an inert current collector......The influence of the current collector on the performance of a hybrid direct carbon fuel cell (HDCFC), consisting of solid oxide fuel cell (SOFC) with a molten carbonate-carbon slurry in contact with the anode, has been investigated using current-voltage curves. Four different anode current...

  11. Processing bulk natural wood into a high-performance structural material

    Science.gov (United States)

    Jianwei Song; Chaoji Chen; Shuze Zhu; Mingwei Zhu; Jiaqi Dai; Upamanyu Ray; Yiju Li; Yudi Kuang; Yongfeng Li; Nelson Quispe; Yonggang Yao; Amy Gong; Ulrich H. Leiste; Hugh A. Bruck; J. Y. Zhu; Azhar Vellore; Heng Li; Marilyn L. Minus; Zheng Jia; Ashlie Martini; Teng Li; Liangbing Hu

    2018-01-01

    Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites)1–8. Natural wood is a low-cost and abundant material and has been used...

  12. Electromechanical actuation of buckypaper actuator: Material properties and performance relationships

    International Nuclear Information System (INIS)

    Cottinet, P.-J.; Souders, C.; Tsai, S.-Y.; Liang, R.; Wang, B.; Zhang, C.

    2012-01-01

    Carbon nanotubes can be assembled into macroscopic thin film materials called buckypapers. To incorporate buckypaper actuators into engineering systems, it is of high importance to understand their material property-actuation performance relationships in order to model and predict the behavior of these actuators. The electromechanical actuation of macroscopic buckypaper structures and their actuators, including single and multi-walled carbon nanotube buckypapers and aligned single-walled nanotube buckypapers, were analyzed and compared. From the experimental evidence, this Letter discusses the effects of the fundamental material properties, including Young modulus and electrical double layer properties, on actuation performance of the resultant actuators. -- Highlights: ► In this study we identified the figure of merit of the electromechanical conversion. ► Different type of buckypaper was realized and characterized for actuation properties. ► The results demonstrated the potential of Buckypapers/Nafion for actuation

  13. Various methods of numerical estimation of generalized stress intensity factors of bi-material notches

    Directory of Open Access Journals (Sweden)

    Klusák J.

    2009-12-01

    Full Text Available The study of bi-material notches becomes a topical problem as they can model efficiently geometrical or material discontinuities. When assessing crack initiation conditions in the bi-material notches, the generalized stress intensity factors H have to be calculated. Contrary to the determination of the K-factor for a crack in an isotropic homogeneous medium, for the ascertainment of the H-factor there is no procedure incorporated in the calculation systems. The calculation of these fracture parameters requires experience. Direct methods of estimation of H-factors need choosing usually length parameter entering into calculation. On the other hand the method combining the application of the reciprocal theorem (Ψ-integral and FEM does not require entering any length parameter and is capable to extract the near-tip information directly from the far-field deformation.

  14. Performing Materiality: Rethinking the Subject-Object Relationship as a Site of Exchange in Performance Practice

    OpenAIRE

    Hussein, Nesreen

    2011-01-01

    This thesis reconsiders the relationship between the human subject and the physical object in performance practice, which has been commonly perceived within hierarchical systems of instrumentalisation. The thesis demonstrates that in processes of performance making and reception, the role of physical objects goes beyond mimesis and direct representation. Physical objects and materials have the capacity to take active parts in a complex and multilayered performance dynamic, articulating ways o...

  15. Integrated shape and material selection for single and multi-performance criteria

    International Nuclear Information System (INIS)

    Singh, Jasveer; Mirjalili, Vahid; Pasini, Damiano

    2011-01-01

    Research highlights: → The method of shape transformers is extended to torsional stiffness and combined load design. → The method is generalized for multi-criteria selection of shape and material. → Performance charts are presented for single and multi-objective selection of cross-section shape and material. → A four quadrant performance chart is presented to visualize the relation between objective function space and design variable space. -- Abstract: A shape and material selection method, based on the concept of shape transformers, has been recently introduced to characterize the mass efficiency of lightweight beams under bending and shear. This paper extends this method to deal with the case of torsional stiffness design, and generalize it to single and multi-crieria selection of lightweight shafts subjected to a combination of bending, shear, and torsional load. The novel feature of the paper is the useful integration of shape and material to model and visualize multi-objective selection problems. The scheme is centered on concept selection in structural design, and hinges on measures that govern the shape properties of a cross-section regardless of its size. These measures, referred as shape transformers, can classify shapes in a way similar to material classification. The procedure is exemplified by considering torsional stiffness as a constraint. The performance charts are developed for single and multi-criteria to visualize in a glance the whole range of cross-sectional shapes for each material. Each design chart is explained with a brief example.

  16. Direct alcohol fuel cells materials, performance, durability and applications

    CERN Document Server

    Corti, Horacio R; Antolini, Ermete

    2014-01-01

    After an introductory overview of this emerging form of clean, portable energy, experts from industry and academia discuss the challenges in materials development, performance, and commercialization standing between DAFCs and widespread public use.

  17. Implant Materials Generate Different Peri-implant Inflammatory Factors

    OpenAIRE

    Olivares-Navarrete, Rene; Hyzy, Sharon L.; Slosar, Paul J.; Schneider, Jennifer M.; Schwartz, Zvi; Boyan, Barbara D.

    2015-01-01

    Study Design. An in vitro study examining factors produced by human mesenchymal stem cells on spine implant materials. Objective. The aim of this study was to examine whether the inflammatory microenvironment generated by cells on titanium-aluminum-vanadium (Ti-alloy, TiAlV) surfaces is affected by surface microtexture and whether it differs from that generated on poly-ether-ether-ketone (PEEK). Summary of Background Data. Histologically, implants fabricated from PEEK have a fibrous connectiv...

  18. Performance evaluation on solar still integrated with nano-composite phase change materials

    International Nuclear Information System (INIS)

    Rajasekhar, G.; Eswaramoorthy, M.

    2015-01-01

    This paper communicates the performance evaluation of single slope solar still integrated with nano-composite phase change materials and compare with the experimental results of with and without phase change materials. A solar still with 1 m"2 surface area is developed with non-selective coating of absorber sheet with the provision of thermal energy storage materials. The solar still is tested on typical days with and without thermal energy storage materials. It is found that from the experimental studies that nano-materials (Al_2O_3) dispersed in paraffin wax is giving better cumulative yield of distillate than paraffin wax alone and without paraffin wax thermal storage. The daily efficiency of the solar still is computed for solar still with nano-composite phase change materials is 45% and solar still paraffin wax alone thermal storage is 40% and solar still without any thermal storage is 38%. It is concluded from the experimental studies; solar still integrated with nano-composite phase change materials gives better performance than with and without phase change material alone. (authors)

  19. Performance-based training: from job and task analysis to training materials

    International Nuclear Information System (INIS)

    Davis, L.T.; Spinney, R.W.

    1983-01-01

    Historically, the smoke filled room approach has been used to revise training programs: instructors would sit down and design a program based on existing training materials and any federal requirements that applied. This failure to reflect a systematic definition of required job functions, responsibilities and performance standards in training programs has resulted in generic program deficiencies: they do not provide complete training of required skills and knowledge. Recognition of this need for change, coupled with a decrease in experienced industry personnel inputs and long training pipelines, has heightened the need for efficient performance-based training programs which are derived from and referenced to job performance criteria. This paper presents the process for developing performance-based training materials based on job and task analysis products

  20. Buildup factor studies of HCO-materials as a function of weight fraction of constituent elements

    International Nuclear Information System (INIS)

    Brar, G.S.; Sidhu, G.S.; Singh, Parjit S.; Mudahar, Gurmel S.

    1999-01-01

    The effects of fractional abundance of constituent elements have been investigated on the energy absorption buildup factors of HCO-materials for some incident photon energies at a fixed penetration depth of 20 mfp. At low incident photon energies, a change in buildup factor is seen whereas buildup factor values of HCO-materials are independent of fractional abundances of H, C and O for high energies

  1. Environmental Performance in Countries Worldwide: Determinant Factors and Multivariate Analysis

    Directory of Open Access Journals (Sweden)

    Isabel Gallego-Alvarez

    2014-11-01

    Full Text Available The aim of this study is to analyze the environmental performance of countries and the variables that can influence it. At the same time, we performed a multivariate analysis using the HJ-biplot, an exploratory method that looks for hidden patterns in the data, obtained from the usual singular value decomposition (SVD of the data matrix, to contextualize the countries grouped by geographical areas and the variables relating to environmental indicators included in the environmental performance index. The sample used comprises 149 countries of different geographic areas. The findings obtained from the empirical analysis emphasize that socioeconomic factors, such as economic wealth and education, as well as institutional factors represented by the style of public administration, in particular control of corruption, are determinant factors of environmental performance in the countries analyzed. In contrast, no effect on environmental performance was found for factors relating to the internal characteristics of a country or political factors.

  2. Home Environmental Factors Influencing Performance and Progress ...

    African Journals Online (AJOL)

    Our findings support other studies which found that parents' educational level and income level have a bearing on school progress and performance. Contrary to most research findings mother tongue instruction did not eme1rge as an important explanatory factor on school progress and performance, however; home ...

  3. Performance of concrete blended with pozzolanic materials in marine environment

    Directory of Open Access Journals (Sweden)

    Khan Asad-ur-Rehman

    2017-01-01

    Full Text Available Reinforced concretes structures located at or near the coast line needs to be repaired more frequently when compared to structures located elsewhere. This study is continuation of previous studies carried out at the Department of Civil Engineering, NED University of Engineering and Technology, Karachi, Pakistan to study the performance of concrete made up of cements blended by pozzolonic materials. Different pozzolanic materials (blast furnace slag, fly ash and silica fume were used in the study. Tests conducted during the study to compare the performance of samples cast from concrete of different mix designs were Compressive Strength Test (ASTM C 39, Flexural Strength Test (ASTM C 293, Rapid Migration Test (NT Build 492, Absorptivity of the oven-dried samples (ASTM C 642 and Half Cell Potential (ASTM C 876. Use of cements blended with pozzolanic materials, used during the study, proved to be effective in enhancing the performance of the concrete exposed to marine environment. Use of pozzolans in concrete not only provides a sustainable and feasible solution to the durability problems in coastal areas, it also helps in conservation of natural resources and reduction of pollution and energy leading to a green environment.

  4. A Field Performance Evaluation Scheme for Microwave-Absorbing Material Coatings

    Directory of Open Access Journals (Sweden)

    Shaopeng Guan

    2017-03-01

    Full Text Available Performance evaluation is an important aspect in the study of microwave-absorbing material coatings. The reflectivity of the incident wave is usually taken as the performance indicator. There have been various methods to directly or indirectly measure the reflectivity, but existing methods are mostly cumbersome and require a strict testing environment. What is more, they cannot be applied to field measurement. In this paper, we propose a scheme to achieve field performance evaluation of microwave-absorbing materials, which adopts a small H-plane sectoral horn antenna as the testing probe and a small microwave reflectometer as the indicator. When the size of the H-plane sectoral horn antenna is specially designed, the field distribution at the antenna aperture can be approximated as a plane wave similar to the far field of the microwave emitted by a radar unit. Therefore, the reflectivity can be obtained by a near-field measurement. We conducted experiments on a kind of ferrite-based microwave-absorbing material at X band (8.2–12.4 GHz to validate the scheme. The experimental results show that the reflectivity is in agreement with the reference data measured by the conventional method as a whole.

  5. Critical Role of Monoclinic Polarization Rotation in High-Performance Perovskite Piezoelectric Materials.

    Science.gov (United States)

    Liu, Hui; Chen, Jun; Fan, Longlong; Ren, Yang; Pan, Zhao; Lalitha, K V; Rödel, Jürgen; Xing, Xianran

    2017-07-07

    High-performance piezoelectric materials constantly attract interest for both technological applications and fundamental research. The understanding of the origin of the high-performance piezoelectric property remains a challenge mainly due to the lack of direct experimental evidence. We perform in situ high-energy x-ray diffraction combined with 2D geometry scattering technology to reveal the underlying mechanism for the perovskite-type lead-based high-performance piezoelectric materials. The direct structural evidence reveals that the electric-field-driven continuous polarization rotation within the monoclinic plane plays a critical role to achieve the giant piezoelectric response. An intrinsic relationship between the crystal structure and piezoelectric performance in perovskite ferroelectrics has been established: A strong tendency of electric-field-driven polarization rotation generates peak piezoelectric performance and vice versa. Furthermore, the monoclinic M_{A} structure is the key feature to superior piezoelectric properties as compared to other structures such as monoclinic M_{B}, rhombohedral, and tetragonal. A high piezoelectric response originates from intrinsic lattice strain, but little from extrinsic domain switching. The present results will facilitate designing high-performance perovskite piezoelectric materials by enhancing the intrinsic lattice contribution with easy and continuous polarization rotation.

  6. Toward the Rational Design of Novel Noncentrosymmetric Materials: Factors Influencing the Framework Structures.

    Science.gov (United States)

    Ok, Kang Min

    2016-12-20

    Solid-state materials with extended structures have revealed many interesting structure-related characteristics. Among many, materials crystallizing in noncentrosymmetric (NCS) space groups have attracted massive attention attributable to a variety of superb functional properties such as ferroelectricity, pyroelectricity, piezoelectricity, and nonlinear optical (NLO) properties. In fact, the characteristics are pivotal to many industrial applications such as laser systems, optical communications, photolithography, energy harvesting, detectors, and memories. Thus, for the past several decades, a great deal of synthetic effort has been vigorously made to realize these technologically important properties by improving the occurrence of macroscopic NCS space groups. A bright approach to increase the incidence of NCS structures was combining local asymmetric units during the initial synthesis process. Although a significant improvement has been achieved in obtaining new NCS materials using this strategy, the majority of solid-state materials still crystallize in centrosymmetric (CS) structures as the locally unsymmetrical units are easily lined up in an antiparallel manner. Therefore, discovering an effective method to control the framework structure and the macroscopic symmetry is an imminent ongoing challenge. In order to more effectively control the overall symmetry of solid-state compounds, it is critical to understand how the backbone and the subsequent centricity are affected during the crystallization. In this Account, several factors influencing the framework structure and centricity of solid-state materials are described in order to more systematically discover novel NCS materials. Recent studies on crystalline solid-state materials suggest three factors affecting the local coordination environment as well as the overall symmetry of the framework structure: (1) size variations of the various template cations, (2) a variable backbone arrangement occurring from

  7. Performance and cost of materials for lithium-based rechargeable automotive batteries

    Science.gov (United States)

    Schmuch, Richard; Wagner, Ralf; Hörpel, Gerhard; Placke, Tobias; Winter, Martin

    2018-04-01

    It is widely accepted that for electric vehicles to be accepted by consumers and to achieve wide market penetration, ranges of at least 500 km at an affordable cost are required. Therefore, significant improvements to lithium-ion batteries (LIBs) in terms of energy density and cost along the battery value chain are required, while other key performance indicators, such as lifetime, safety, fast-charging ability and low-temperature performance, need to be enhanced or at least sustained. Here, we review advances and challenges in LIB materials for automotive applications, in particular with respect to cost and performance parameters. The production processes of anode and cathode materials are discussed, focusing on material abundance and cost. Advantages and challenges of different types of electrolyte for automotive batteries are examined. Finally, energy densities and costs of promising battery chemistries are critically evaluated along with an assessment of the potential to fulfil the ambitious targets of electric vehicle propulsion.

  8. Effect of Different Structural Materials on Neutronic Performance of a Hybrid Reactor

    Science.gov (United States)

    Übeyli, Mustafa; Tel, Eyyüp

    2003-06-01

    Selection of structural material for a fusion-fission (hybrid) reactor is very important by taking into account of neutronic performance of the blanket. Refractory metals and alloys have much higher operating temperatures and neutron wall load (NWL) capabilities than low activation materials (ferritic/martensitic steels, vanadium alloys and SiC/SiC composites) and austenitic stainless steels. In this study, effect of primary candidate refractory alloys, namely, W-5Re, T111, TZM and Nb-1Zr on neutronic performance of the hybrid reactor was investigated. Neutron transport calculations were conducted with the help of SCALE 4.3 System by solving the Boltzmann transport equation with code XSDRNPM. Among the investigated structural materials, tantalum had the worst performance due to the fact that it has higher neutron absorption cross section than others. And W-5Re and TZM having similar results showed the best performance.

  9. Prioritization of factors impacting on performance of power looms using AHP

    Science.gov (United States)

    Dulange, S. R.; Pundir, A. K.; Ganapathy, L.

    2014-08-01

    The purpose of this paper is to identify the critical success factors influencing the performance of power loom textiles, to evaluate their impact on the organizational performance and to find out the effect of these factors on the organizational performance of small and medium-sized enterprises (SMEs) in the Solapur (Maharashtra) industrial sector using AHP. In the methodology adopted, factors are identified through the literature survey and finalization of these factors is done by taking the opinion of experts in the Indian context. By cognitive map, the relation between these factors (direct and indirect effect) is determined and cause and effect diagram is prepared. Then these factors are arranged hierarchically and tree diagram is prepared. A questionnaire was designed and distributed among the experts; data is collected. Using expert choice software data is filled to quantify by pair-wise comparison of these factors and are prioritized. The weights demonstrate several key findings: local and global priority reveals that there is a substantial effect of the human resource, product style, and volume on the organizational performance. The skills and technology upgradation impact on organizational performance. Maintenance plays an important role in improving the organizational performances of the SMEs. Overall, the results showed the central role of the operational factors are important. The research is subject to the normal limitations of AHP. The study is using perceptual data provided by Experts which may not provide clear measures of impact factors. However, this can be overcome using more experts to collect data in future studies. Interestingly, the findings here may be generalisable outside Solapur like Ichalkarnji, Malegaon, and Bhiwadi (Maharashtra). Solapur power loom SMEs should consider AHP as an innovative tool for quantification of factors impacting on performance and improving operational and organizational performance in today's dynamic

  10. Methodology for performing measurements to release material from radiological control

    International Nuclear Information System (INIS)

    Durham, J.S.; Gardner, D.L.

    1993-09-01

    This report describes the existing and proposed methodologies for performing measurements of contamination prior to releasing material for uncontrolled use at the Hanford Site. The technical basis for the proposed methodology, a modification to the existing contamination survey protocol, is also described. The modified methodology, which includes a large-area swipe followed by a statistical survey, can be used to survey material that is unlikely to be contaminated for release to controlled and uncontrolled areas. The material evaluation procedure that is used to determine the likelihood of contamination is also described

  11. Effects of particle size and confining pressure on breakage factor of rockfill materials using medium triaxial test

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Gupta

    2016-06-01

    Full Text Available Rockfill dams are mostly constructed using blasted rockfill materials obtained by blasting rocks or alluvial rockfill materials collected from the riverbeds. Behaviors of rockfill materials and their characterization significantly depend on breakage factor observed during triaxial loading. In this paper, two modeled rockfill materials are investigated by using medium triaxial cell. Drained triaxial tests are conducted on various sizes of modeled rockfill materials used in the two dams, and test data are analyzed accordingly. Breakage factor of rockfill material is studied and the effects of particle size and confining pressure on breakage factor are investigated using medium triaxial cell as many researchers have already conducted investigation using large triaxial cell.

  12. Business factors related to manufacturing firms' performance

    Directory of Open Access Journals (Sweden)

    Stergios Vranakis

    2014-01-01

    Full Text Available Purpose: The main goal is to understand the way many factors affect the investment decision making process and business performance. Design/methodology/approach: This study proposes a new conceptual framework for examining the reasons that manufacturing firms decide to invest on the acquisition of new machinery and equipment in order to improve their infrastructure. It incorporates various factors related to the internal business environment (quality management, investment decisions etc. Findings and Originality/value: A new conceptual framework, establishing the relations between many factors, has been developed, allowing the determinants of adoption of many implications to be discussed and to relate them to the peculiarities of the Greek manufacturing industry. Originality/value: This study presents an overview of the impact of machinery and equipment investment on firm’s performance, giving grasp for further research of the inter-organizational relationships that exist between them. 

  13. Factors affecting the performance of maternal health care providers in Armenia

    Directory of Open Access Journals (Sweden)

    Voltero Lauren

    2004-06-01

    Full Text Available Abstract Background Over the last five years, international development organizations began to modify and adapt the conventional Performance Improvement Model for use in low-resource settings. This model outlines the five key factors believed to influence performance outcomes: job expectations, performance feedback, environment and tools, motivation and incentives, and knowledge and skills. Each of these factors should be supplied by the organization in which the provider works, and thus, organizational support is considered as an overarching element for analysis. Little research, domestically or internationally, has been conducted on the actual effects of each of the factors on performance outcomes and most PI practitioners assume that all the factors are needed in order for performance to improve. This study presents a unique exploration of how the factors, individually as well as in combination, affect the performance of primary reproductive health providers (nurse-midwives in two regions of Armenia. Methods Two hundred and eighty-five nurses and midwives were observed conducting real or simulated antenatal and postpartum/neonatal care services and interviewed about the presence or absence of the performance factors within their work environment. Results were analyzed to compare average performance with the existence or absence of the factors; then, multiple regression analysis was conducted with the merged datasets to obtain the best models of "predictors" of performance within each clinical service. Results Baseline results revealed that performance was sub-standard in several areas and several performance factors were deficient or nonexistent. The multivariate analysis showed that (a training in the use of the clinic tools; and (b receiving recognition from the employer or the client/community, are factors strongly associated with performance, followed by (c receiving performance feedback in postpartum care. Other – extraneous

  14. Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials

    International Nuclear Information System (INIS)

    Su, Di; Jia, Yuting; Alva, Guruprasad; Liu, Lingkun; Fang, Guiyin

    2017-01-01

    Highlights: • The dynamic model of photovoltaic–thermal collector with phase change material was developed. • The performances of photovoltaic–thermal collector are performed comparative analyses. • The performances of photovoltaic–thermal collector with phase change material were evaluated. • Upper phase change material mode can improve performances of photovoltaic–thermal collector. - Abstract: The operating conditions (especially temperature) of photovoltaic–thermal solar collectors have significant influence on dynamic performance of the hybrid photovoltaic–thermal solar collectors. Only a small percentage of incoming solar radiation can be converted into electricity, and the rest is converted into heat. This heat leads to a decrease in efficiency of the photovoltaic module. In order to improve the performance of the hybrid photovoltaic–thermal solar collector, we performed comparative analyses on a hybrid photovoltaic–thermal solar collector integrated with phase change material. Electrical and thermal parameters like solar cell temperature, outlet temperature of air, electrical power, thermal power, electrical efficiency, thermal efficiency and overall efficiency are simulated and analyzed to evaluate the dynamic performance of the hybrid photovoltaic–thermal collector. It is found that the position of phase change material layer in the photovoltaic–thermal collector has a significant effect on the performance of the photovoltaic–thermal collector. The results indicate that upper phase change material mode in the photovoltaic–thermal collector can significantly improve the thermal and electrical performance of photovoltaic–thermal collector. It is found that overall efficiency of photovoltaic–thermal collector in ‘upper phase change material’ mode is 10.7% higher than that in ‘no phase change material’ mode. Further, for a photovoltaic–thermal collector with upper phase change material, it is verified that 3 cm

  15. Gas-Transport-Property Performance of Hybrid Carbon Molecular Sieve−Polymer Materials

    KAUST Repository

    Das, Mita

    2010-10-06

    High-performance hybrid materials using carbon molecular sieve materials and 6FDA-6FpDA were produced. A detailed analysis of the effects of casting processes and the annealing temperature is reported. Two existing major obstacles, sieve agglomeration and residual stress, were addressed in this work, and subsequently a new membrane formation technique was developed to produce high-performing membranes. The successfully improved interfacial region of the hybrid membranes allows the sieves to increase the selectivity of the membranes above the neat polymer properties. Furthermore, an additional performance enhancement was seen with increased sieve loading in the hybrid membranes, leading to an actual performance above the upper bound for pure polymer membranes. The membranes were also tested under a mixed-gas environment, which further demonstrated promising results. © 2010 American Chemical Society.

  16. Optimized thermoelectric performance of the n-type half-Heusler material TiNiSn by substitution and addition of Mn

    Directory of Open Access Journals (Sweden)

    Enkhtaivan Lkhagvasuren

    2017-04-01

    Full Text Available Alloys based on the half-Heusler compound TiNiSn with the addition of Mn or with a substitution of Ti by Mn are investigated as high-temperature thermoelectric materials. In both materials an intrinsic phase separation is observed, similar to TiNiSn where Ti has been partially substituted by Hf, with increasing Mn concentration the phase separation drastically reduces the lattice thermal conductivity while the power factor is increased. The thermoelectric performance of the n-type conducting alloy can be optimized both by substitution of Ti by Mn as well as the addition of Mn.

  17. Factors of honeybee colony performances on sunflower at apiary scale

    Directory of Open Access Journals (Sweden)

    Kretzschmar André

    2017-11-01

    Full Text Available An observatory of honeybee colonies (Apis mellifera, consisting of at least 200 colonies, divided into 10 apiaries of 20 colonies, was monitored for three years on sunflower honeyflow (2015–2017. The purpose of this observatory is to understand which factors control colony performance during sunflower honeyflow in south-western France. From the temporal dynamics of weight gain, statistical analysis reveals a hierarchy of factors. First, variability in apiary scale performance is an image of the effect of resource variability. But, in addition to this primordial factor, two other factors contribute very significantly to performance. On the one hand, the amount of capped brood and the number of bees at the time of the installation of the apiary: these two elements testify to the vitality of the colony. The second remarkable factor is the Varroa load, which strongly penalizes performance beyond a certain threshold. The negative effect of the Varroa load on the colony performance is minimized in case of abondant sunflower honey flow.

  18. Core performance of equilibrium fast reactors for different coolant materials and fuel types

    International Nuclear Information System (INIS)

    Mizutani, Akihiko; Sekimoto, Hiroshi

    1998-01-01

    Parametric studies with several coolant and fuel materials in the equilibrium state are performed for fast reactors in which natural uranium is fed and all of the actinides are confined. Sodium, sodium-potassium, lead, lead-bismuth and helium coolant materials, and oxide, nitride and metal fuels are employed to compare the neutronic characteristics in the equilibrium state. As to the criticality performance, sodium-potassium shows the best performance among the liquid metal coolants and the metallic fuel indicates the best performance

  19. Novel materials for laser refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Hehlen, Markus P [Los Alamos National Laboratory

    2009-01-01

    The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which {Dirac_h}{omega}{sub max} < E{sub p}/8, where {Dirac_h}{omega}{sub max} is the maximum phonon energy of the host material and E{sub p} is the pump energy of the rare-earth dopant. Transition-metal and OH{sup -}impurities at levels >100 ppb are believed to be the main factors for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF{sub 3}-LiF are considered as alternatives to ZBLAN. The crystalline system KPb{sub 2}CI{sub 5} :Dy{sup 3+} is identified as a prime candidate for high-efficiency laser cooling.

  20. Modern diaper performance: construction, materials, and safety review.

    Science.gov (United States)

    Dey, Swatee; Kenneally, Dianna; Odio, Mauricio; Hatzopoulos, Ioannis

    2016-07-01

    A review of the literature on diapers and diaper rash reveals that many clinicians are unfamiliar with modern diaper construction and materials as well as diaper safety testing methods. Typical modern diapers do not contain ingredients of concern such as latex and disperse dyes, but use ingredients such as spandex and pigments with a favorable safety profile. Today's disposable diaper is a high performance product whose carefully designed layers and liners provide optimal urine and feces absorption and an ever more clothing-like and comfortable fit. This is possible due to a variety of specialized polymer materials that provide optimal absorption of urine and feces, thereby minimizing skin exposure. © 2016 The International Society of Dermatology.

  1. Use of alternative waste materials in producing ultra-high performance concrete

    Directory of Open Access Journals (Sweden)

    Ahmad Shamsad

    2017-01-01

    Full Text Available In a corrosive environment similar to that of the Arabian Gulf, use of high-performance concrete is one of the options to ensure a target service life of concrete structures. However, in absence of good quality coarse aggregates, it is a challenging task to produce high-performance concrete. Recently, the possibility of producing ultra-high-performance concrete (UHPC has been widely reported in the literature. UHPC is produced without coarse aggregates at very low water to cementitious materials ratio, high amounts of cement, mineral admixtures, and superplasticizer along with fine quartz sand as aggregate, quartz powder as micro-filler, a nd steel fibres for fracture toughness. In the present work, an effort was made to utilize local waste materials as alternative mineral admixtures and local dune sand as aggregate in producing different UHPC mixtures without addition of quartz powder. The mechanical properties, shrinkage, and durability characteristics of the UHPC mixtures were studied. Test results indicate that it is possible to produce UHPC mixtures using alternative waste materials, which would have targeted flow, strength, toughness, and resistance against reinforcement corrosion. The information presented in the paper would help in optimum selection of a mixture of UHPC considering the availability of local materials, exposure conditions and structural requirements.

  2. Review of the impact of environmental factors on human performance

    International Nuclear Information System (INIS)

    Echeverria, D.; Barnes, V.; Bittner, A.

    1990-01-01

    The purpose of this project is to determine the effects of various environmental factors such as vibration, noise, heat, cold, and illumination on task performance in U.S. nuclear power plants. Although the effects of another environmental factor, radiation, is of concern to licensees and the Nuclear Regulatory Commission (NRC), much less attention has been paid to the potential effects of these other environmental factors. Performance effects from these environmental factors have been observed in other industries; for example, vibration can impair vision and noise can cause short- or long-term hearing loss. A primary goal of this project is to provide the technical basis for determining the likelihood of these factors affecting task performance in nuclear power plants, and thus the safety of the public

  3. Molecular modeling for the design of novel performance chemicals and materials

    CERN Document Server

    Rai, Beena

    2012-01-01

    Molecular modeling (MM) tools offer significant benefits in the design of industrial chemical plants and material processing operations. While the role of MM in biological fields is well established, in most cases MM works as an accessory in novel products/materials development rather than a tool for direct innovation. As a result, MM engineers and practitioners are often seized with the question: ""How do I leverage these tools to develop novel materials or chemicals in my industry?"" Molecular Modeling for the Design of Novel Performance Chemicals and Materials answers this important questio

  4. Materials and methods for higher performance screen-printed flexible MRI receive coils.

    Science.gov (United States)

    Corea, Joseph R; Lechene, P Balthazar; Lustig, Michael; Arias, Ana C

    2017-08-01

    To develop methods for characterizing materials used in screen-printed MRI coils and improve signal-to-noise ratio (SNR) with new lower-loss materials. An experimental apparatus was created to characterize dielectric properties of plastic substrates used in receive coils. Coils were fabricated by screen printing conductive ink onto several plastic substrates. Unloaded and sample loaded quality factor (Q Unloaded /Q Loaded ) measurements and scans on a 3T scanner were used to characterize coil performance. An experimental method was developed to describe the relationship between a coil's Q Unloaded and the SNR it provides in images of a phantom. In addition, 3T scans of a phantom and the head of a volunteer were obtained with a proof-of-concept printed eight-channel array, and the results were compared with a commercial 12-channel array. Printed coils with optimized substrates exhibited up to 97% of the image SNR when compared with a traditional coil on a loading phantom. Q Unloaded and the SNR of coils were successfully correlated. The printed array resulted in images comparable to the quality given by the commercial array. Using the proposed methods and materials, the SNR of printed coils approached that of commercial coils while using a new fabrication technique that provided more flexibility and close contact with the patient's body. Magn Reson Med 78:775-783, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Treatment, material, care, and patient-related factors in contact lens-related dry eye.

    Science.gov (United States)

    Ramamoorthy, Padmapriya; Sinnott, Loraine T; Nichols, Jason J

    2008-08-01

    To examine the effect of general contact lens and material characteristics, care solutions, treatment, and patient-related factors on contact lens-related dry eye. The data were derived from the Contact Lens and Dry Eye Study, designed as a cross-sectional and nested case-control study including 360 subjects. In separate statistical models, logistic regression was used to examine general contact lens characteristics, specific hydrogel lens materials, care solutions, and patient-related factors associated with dry eye status (controlled for age, gender, and current treatments). Several factors were significantly associated with dry eye, including treatment factors such as a recent contact lens refitting (odds ratios [OR] = 5.75, 95% confidence intervals [CI] = 2.14 to 15.46) and use of artificial tears/rewetting drops (OR = 1.09, 95% CI = 1.02 to 1.16), in addition, currently worn materials including Food and Drug Administration (FDA) group II (OR = 2.98, 95% CI = 1.14 to 6.19) and IV (OR = 1.87, 95% CI = 1.08 to 3.24). Significant patient-related factors included decreased overall satisfaction (OR = 3.57, 95% CI = 2.08 to 5.88,), dry eye in the absence of contact lens wear (OR = 6.54, 95% CI = 2.57 to 16.62), reduced daily lens wear duration (OR = 1.16, 95% CI = 1.06 to 1.26), and reduced ability to wear lenses as long as desired (OR = 2.44, 95% CI = 1.30 to 4.54). Care solutions were not associated with contact lens-related dry eye. The strong association of common treatment factors with dry eye status in contact lens wearers suggests that these treatments are not entirely effective. The use of high water content materials was strongly related to dry eye in lens wearers, whereas care solutions were not. Contact lens-related dry eye was also associated with several patient-related factors such as greater ocular discomfort (without lenses), dissatisfaction, and inability to wear lenses for desired durations.

  6. Strategic cost management, contingent factors and performance in services

    Directory of Open Access Journals (Sweden)

    Odysseas Pavlatos

    2018-06-01

    Full Text Available The purpose of this paper is to investigate the relationship between contextual factors identified from contingency-based research, the extent of the use of strategic cost management (SCM techniques and business performance in services. An empirical survey was conducted on a sample of 88 services in Greece. The analysis of the survey data indicates that the use of strategic cost management techniques in services can be considered quite satisfactory. By drawing on the grounds of contingency theory, five factors were identified as potentially exhibiting an emergent relationship with strategic cost management. The five factors are; (1 Perceived environmental uncertainty, (2 Structure, (3 Organizational life cycle stage, (4 Strategy and (5 Size. The survey revealed that SCM usage is positively affected by these five contingent factors, while SCM usage, in turn, positively affects performance. A significant mediating effect of SCM usage on performance is evident.

  7. Analysis of Metallized Teflon(trademark) Film Materials Performance on Satellites

    Science.gov (United States)

    Pippin, H. Gary; Normand, Eugene; Wolf, Suzanne L. B.; Kamenetzky, Rachel; Kauffman, William J., Jr. (Technical Monitor)

    2002-01-01

    Laboratory and on-orbit performance data for two common thermal control materials, silver- and aluminum-backed (metallized) fluorinated ethyl-propylene (TER) was collected from a variety of sources and analyzed. This paper demonstrates that the change in solar absorptance, alpha, is a strong function of particulate radiation for these materials. Examination of additional data shows that the atomic oxygen recession rate is a strong function of solar exposure with an induction period of between 25 to 50 equivalent solar hours. The relationships determined in this analysis were incorporated into an electronic knowledge base, the 'Spacecraft Materials Selector,' under NASA contract NAS8-98213.

  8. Powder metallurgical high performance materials. Proceedings. Volume 1: high performance P/M metals

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of this sequence of seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  9. Powder metallurgical high performance materials. Proceedings. Volume 1: high performance P/M metals

    Energy Technology Data Exchange (ETDEWEB)

    Kneringer, G; Roedhammer, P; Wildner, H [eds.

    2001-07-01

    The proceedings of this sequence of seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  10. Predicting the microstructure-dependent mechanical performance of materials for early-stage design

    International Nuclear Information System (INIS)

    Dimiduk, D.M.; Uchic, M.D.; Parathasarathy, T.A.; Rao, S.I.; Choi, Y.-S.

    2004-01-01

    A description is offered of a simulation and testing methodology for structural materials that incorporates the influence of the local, microscopic and submicroscopic heterogeneous nature of material properties directly into design procedures. The new methodology builds upon a multitude of rapid microstructural and property assessments of selected local regions of a material (i.e. single-crystal regions, defected regions, grain aggregates, etc.), perhaps from a fully-processed component, or from materials specifically prepared to represent selected aspects of the full-scale process. The results from these assessments are used to define parameters within a hierarchy of mathematical and numerical representations of the material, and together in turn these may be used in design performance simulation codes to predict the intrinsic response of larger-scale structures. Further, the methodology may be used to anticipate the effects of defects on the performance of the full-scale structure. Most steps of this alternative design and test methodology are amenable to automation, and the methodology as a whole will reduce the number of iterative large-scale cycles required to qualify a material's suitability for structural service; thus, the new method is a framework for accelerating the development of structural materials

  11. Processing and performance of self-healing materials

    International Nuclear Information System (INIS)

    Tan, P S; Bhattacharyya, D; Zhang, M Q

    2009-01-01

    Two self-healing methods were implemented into composite materials with self-healing capabilities, using hollow glass fibres (HGF) and microencapsulated epoxy resin with mercaptan as the hardener. For the HGF approach, two perpendicular layers of HGF were put into an E-glass/epoxy composite, and were filled with coloured epoxy resin and hardener. The HGF samples had a novel ball indentation test method done on them. The samples were analysed using micro-CT scanning, confocal microscopy and penetrant dye. Micro-CT and confocal microscopy produced limited success, but their viability was established. Penetrant dye images showed resin obstructing flow of dye through damage regions, suggesting infiltration of resin into cracks. Three-point bend tests showed that overall performance could be affected by the flaws arising from embedding HGF in the material. For the microcapsule approach, samples were prepared for novel double-torsion tests used to generate large cracks. The samples were compared with pure resin samples by analysing them using photoelastic imaging and scanning electron microscope (SEM) on crack surfaces. Photoelastic imaging established the consolidation of cracks while SEM showed a wide spread of microcapsules with their distribution being affected by gravity. Further double-torsion testing showed that healing recovered approximately 24% of material strength.

  12. Cognitive control over memory - individual differences in memory performance for emotional and neutral material.

    Science.gov (United States)

    Wierzba, M; Riegel, M; Wypych, M; Jednoróg, K; Grabowska, A; Marchewka, A

    2018-02-28

    It is widely accepted that people differ in memory performance. The ability to control one's memory depends on multiple factors, including the emotional properties of the memorized material. While it was widely demonstrated that emotion can facilitate memory, it is unclear how emotion modifies our ability to suppress memory. One of the reasons for the lack of consensus among researchers is that individual differences in memory performance were largely neglected in previous studies. We used the directed forgetting paradigm in an fMRI study, in which subjects viewed neutral and emotional words, which they were instructed to remember or to forget. Subsequently, subjects' memory of these words was tested. Finally, they assessed the words on scales of valence, arousal, sadness and fear. We found that memory performance depended on instruction as reflected in the engagement of the lateral prefrontal cortex (lateral PFC), irrespective of emotional properties of words. While the lateral PFC engagement did not differ between neutral and emotional conditions, it correlated with behavioural performance when emotional - as opposed to neutral - words were presented. A deeper understanding of the underlying brain mechanisms is likely to require a study of individual differences in cognitive abilities to suppress memory.

  13. A high performance scientific cloud computing environment for materials simulations

    Science.gov (United States)

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  14. Ability performance of older workers - Internal and external influencing factors

    NARCIS (Netherlands)

    Dittmann-Kohli, F.; Heijden, B.I.J.M. van der

    1996-01-01

    Internal and external factors affecting ability and performance of older employees are being analyzed in a short literature review. Internal factors like physical capacity, sensory capacity, cognitive abilities and general health are reduced with ageing; their effect on performance, however, depends

  15. Factors influencing economic performance of the South Moravian Region

    Directory of Open Access Journals (Sweden)

    Iva Živělová

    2011-01-01

    Full Text Available The paper deals with selected factors influencing economic performance of the South Moravian Region in the years 2003–2009. The economic performance of the region is evaluated by means of a contribution to the Gross Domestic Product of the Czech Republic. Considering the fact that the level of economic activity depends on the exploitation rate of production factors in the considered region, both development of soil exploitation rate and development of labour market indicators correlated with working force utilization are analysed, a number of employed adults and registered unemployment are taken into consideration. Attention is paid to the economic activity rate. The formation of the Gross Fixed Capital, which an assumption of favourable economic performance, and development of Gross Added Value are evaluated.All the regions nowadays fumble with the negative impacts of the economic crisis. According to the analysis of the economic performance of the South Moravian Region and the analysis of the factors influencing this performance, it could be stated, that the development of the South Moravian Region could be evaluated quite positively.

  16. Construction cost impacts related to manpower, material, and equipment factors in contractor firms perspective

    Science.gov (United States)

    Husin, Saiful; Abdullah, Riza, Medyan; Afifuddin, Mochammad

    2017-11-01

    Risk can be defined as consequences which possible happened inscrutably. Although an activity has planned as good as possible, but it keep contains uncertainty. Implementation of construction project was encountering various risk impacts from a number of risk factors. This study was intended to analyze the impacts of construction cost to for contractor firms as construction project executor related to the factors of manpower, material and equipment. The study was using data obtained from questionnaires distributed to 15 large qualification contractor firms. The period of study classified into conflict period (2000-2004), post tsunami disaster rehabilitation and reconstruction period (2005-2009), and post rehabilitation and reconstruction period (2010-present). The statistical analysis of severity index and variance used to analyze the data. The three risk factors reviewed generally affected the cost in a medium impact. The high impact occurred in minor variables, which are `increase in material prices', `theft of materials', and `the fuel scarcity'. In overall, the three risk factors and the observed period contributed significant impact on construction costs.

  17. In search of novel, high performance and intelligent materials for applications in severe and unconditioned environments

    International Nuclear Information System (INIS)

    Gyeabour Ayensu, A. I.; Normeshie, C. M. K.

    2007-01-01

    For extreme operating conditions in aerospace, nuclear power plants and medical applications, novel materials have become more competitive over traditional materials because of the unique characteristics. Extensive research programmes are being undertaken to develop high performance and knowledge-intensive new materials, since existing materials cannot meet the stringent technological requirements of advanced materials for emerging industries. The technologies of intermetallic compounds, nanostructural materials, advanced composites, and photonics materials are presented. In addition, medical biomaterial implants of high functional performance based on biocompatibility, resistance against corrosion and degradation, and for applications in hostile environment of human body are discussed. The opportunities for African researchers to collaborate in international research programmes to develop local raw materials into high performance materials are also highlighted. (au)

  18. Investigation of Material Performance Degradation for High-Strength Aluminum Alloy Using Acoustic Emission Method

    Directory of Open Access Journals (Sweden)

    Yibo Ai

    2015-02-01

    Full Text Available Structural materials damages are always in the form of micro-defects or cracks. Traditional or conventional methods such as micro and macro examination, tensile, bend, impact and hardness tests can be used to detect the micro damage or defects. However, these tests are destructive in nature and not in real-time, thus a non-destructive and real-time monitoring and characterization of the material damage is needed. This study is focused on the application of a non-destructive and real-time acoustic emission (AE method to study material performance degradation of a high-strength aluminum alloy of high-speed train gearbox shell. By applying data relative analysis and interpretation of AE signals, the characteristic parameters of materials performance were achieved and the failure criteria of the characteristic parameters for the material tensile damage process were established. The results show that the AE method and signal analysis can be used to accomplish the non-destructive and real-time detection of the material performance degradation process of the high-strength aluminum alloy. This technique can be extended to other engineering materials.

  19. Worry About Caregiving Performance: A Confirmatory Factor Analysis

    Directory of Open Access Journals (Sweden)

    Ruijie Li

    2018-03-01

    Full Text Available Recent studies on the Zarit Burden Interview (ZBI support the existence of a unique factor, worry about caregiving performance (WaP, beyond role and personal strain. Our current study aims to confirm the existence of WaP within the multidimensionality of ZBI and to determine if predictors of WaP differ from the role and personal strain. We performed confirmatory factor analysis (CFA on 466 caregiver-patient dyads to compare between one-factor (total score, two-factor (role/personal strain, three-factor (role/personal strain and WaP, and four-factor models (role strain split into two factors. We conducted linear regression analyses to explore the relationships between different ZBI factors with socio-demographic and disease characteristics, and investigated the stage-dependent differences between WaP with role and personal strain by dyadic relationship. The four-factor structure that incorporated WaP and split role strain into two factors yielded the best fit. Linear regression analyses reveal that different variables significantly predict WaP (adult child caregiver and Neuropsychiatric Inventory Questionnaire (NPI-Q severity from role/personal strain (adult child caregiver, instrumental activities of daily living, and NPI-Q distress. Unlike other factors, WaP was significantly endorsed in early cognitive impairment. Among spouses, WaP remained low across Clinical Dementia Rating (CDR stages until a sharp rise in CDR 3; adult child and sibling caregivers experience a gradual rise throughout the stages. Our results affirm the existence of WaP as a unique factor. Future research should explore the potential of WaP as a possible intervention target to improve self-efficacy in the milder stages of burden.

  20. The Influence of Instructional Materials on Academic Performance of ...

    African Journals Online (AJOL)

    This research work investigated the influence of instructional materials (teaching aids) on students' academic performance in senior secondary school Chemistry in Cross River State. A two group pre-test post test quasi-experimental design was adopted for the study. One research question and one hypothesis were ...

  1. DOE progress in assessing the long term performance of waste package materials

    International Nuclear Information System (INIS)

    Berusch, A.; Gause, E.

    1987-01-01

    Under the Nuclear Waste Policy Act of 1982 (NWPA)[1], the US Dept. of Energy (DOE) is conducting activities to select and characterize candidate sites suitable for the construction and operation of a geologic repository for the disposal of high-level nuclear wastes. DOE is funding three first repository projects: Basalt Waste Isolation Project, BWIP; Nevada Nuclear Waste Isolation Project, NNWSI; and Salt Repository Project Office, SRPO. It is essential in the licensing process that DOE demonstrate to the NRC that the long-term performance of the materials and design will be in compliance with the requirements of 10 CFR 60.113 on substantially complete containment within the waste packages for 300 to 1000 years and a controlled release rate from the engineered barrier system (EBS) for 10,000 years of 1 part in 10 5 per year for radionuclides present in defined quantities 100 years after permanent closure. Obviously, the time spans involved make it impractical to base the assessment of the long term performance of waste package materials on real time, prototypical testing. The assessment of performance will be implemented by the use of models that are supported by real time field and laboratory tests, monitoring, and natural analog studies. Each of the repository projects is developing a plan for demonstrating long-term waste package material performance depending on the particular materials and the package-perturbed, time-dependent environment under which the materials must function. An overview of progress in each of these activities for each of the projects is provided in the following

  2. attitudinal and motivational factors influencing job performance of ...

    African Journals Online (AJOL)

    p2333147

    Key words: Attitude, motivation, female extension agents, job performance. ... profession as factors limiting their job performance include lack of incentives, irregular ... Organization (FAO) survey reports that 95% of agricultural extension services ... Several studies also report the problems with male extension services as ...

  3. Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures

    Science.gov (United States)

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-01-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  4. Functionalized Materials From Elastomers to High Performance Thermoplastics

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Laura Ann [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Synthesis and incorporation of functionalized materials continues to generate significant research interest in academia and in industry. If chosen correctly, a functional group when incorporated into a polymer can deliver enhanced properties, such as adhesion, water solubility, thermal stability, etc. The utility of these new materials has been demonstrated in drug-delivery systems, coatings, membranes and compatibilizers. Two approaches exist to functionalize a material. The desired moiety can be added to the monomer either before or after polymerization. The polymers used range from low glass transition temperature elastomers to high glass transition temperature, high performance materials. One industrial example of the first approach is the synthesis of Teflon(reg. sign). Poly(tetrafluoroethylene) (PTFE or Teflon(reg. sign)) is synthesized from tetrafluoroethylene, a functionalized monomer. The resulting material has significant property differences from the parent, poly(ethylene). Due to the fluorine in the polymer, PTFE has excellent solvent and heat resistance, a low surface energy and a low coefficient of friction. This allows the material to be used in high temperature applications where the surface needs to be nonabrasive and nonstick. This material has a wide spread use in the cooking industry because it allows for ease of cooking and cleaning as a nonstick coating on cookware. One of the best examples of the second approach, functionalization after polymerization, is the vulcanization process used to make tires. Natural rubber (from the Hevea brasiliensis) has a very low glass transition temperature, is very tacky and would not be useful to make tires without synthetic alteration. Goodyear's invention was the vulcanization of polyisoprene by crosslinking the material with sulfur to create a rubber that was tough enough to withstand the elements of weather and road conditions. Due to the development of polymerization techniques to make cis

  5. Application of secondary ion mass spectrometry for the characterization of commercial high performance materials

    International Nuclear Information System (INIS)

    Gritsch, M.

    2000-09-01

    The industry today offers an uncounted number of high performance materials, that have to meet highest standards. Commercial high performance materials, though often sold in large quantities, still require ongoing research and development to keep up to date with increasing needs and decreasing tolerances. Furthermore, a variety of materials is on the market that are not fully understood in their microstructure, in the way they react under application conditions, and in which mechanisms are responsible for their degradation. Secondary Ion Mass Spectrometry (SIMS) is an analytical method that is now in commercial use for over 30 years. Its main advantages are the very high detection sensitivity (down to ppb), the ability to measure all elements with isotopic sensitivity, the ability of gaining laterally resolved images, and the inherent capability of depth-profiling. These features make it an ideal tool for a wide field of applications within advanced material science. The present work gives an introduction into the principles of SIMS and shows the successful application for the characterization of commercially used high performance materials. Finally, a selected collection of my publications in reviewed journals will illustrate the state of the art in applied materials research and development with dynamic SIMS. All publications focus on the application of dynamic SIMS to analytical questions that stem from questions arising during the production and improvement of high-performance materials. (author)

  6. A Novel Design Framework for Structures/Materials with Enhanced Mechanical Performance

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2018-04-01

    Full Text Available Structure/material requires simultaneous consideration of both its design and manufacturing processes to dramatically enhance its manufacturability, assembly and maintainability. In this work, a novel design framework for structural/material with a desired mechanical performance and compelling topological design properties achieved using origami techniques is presented. The framework comprises four procedures, including topological design, unfold, reduction manufacturing, and fold. The topological design method, i.e., the solid isotropic material penalization (SIMP method, serves to optimize the structure in order to achieve the preferred mechanical characteristics, and the origami technique is exploited to allow the structure to be rapidly and easily fabricated. Topological design and unfold procedures can be conveniently completed in a computer; then, reduction manufacturing, i.e., cutting, is performed to remove materials from the unfolded flat plate; the final structure is obtained by folding out the plate from the previous procedure. A series of cantilevers, consisting of origami parallel creases and Miura-ori (usually regarded as a metamaterial and made of paperboard, are designed with the least weight and the required stiffness by using the proposed framework. The findings here furnish an alternative design framework for engineering structures that could be better than the 3D-printing technique, especially for large structures made of thin metal materials.

  7. A Novel Design Framework for Structures/Materials with Enhanced Mechanical Performance

    Science.gov (United States)

    Liu, Jie; Fan, Xiaonan; Wen, Guilin; Qing, Qixiang; Wang, Hongxin; Zhao, Gang

    2018-01-01

    Structure/material requires simultaneous consideration of both its design and manufacturing processes to dramatically enhance its manufacturability, assembly and maintainability. In this work, a novel design framework for structural/material with a desired mechanical performance and compelling topological design properties achieved using origami techniques is presented. The framework comprises four procedures, including topological design, unfold, reduction manufacturing, and fold. The topological design method, i.e., the solid isotropic material penalization (SIMP) method, serves to optimize the structure in order to achieve the preferred mechanical characteristics, and the origami technique is exploited to allow the structure to be rapidly and easily fabricated. Topological design and unfold procedures can be conveniently completed in a computer; then, reduction manufacturing, i.e., cutting, is performed to remove materials from the unfolded flat plate; the final structure is obtained by folding out the plate from the previous procedure. A series of cantilevers, consisting of origami parallel creases and Miura-ori (usually regarded as a metamaterial) and made of paperboard, are designed with the least weight and the required stiffness by using the proposed framework. The findings here furnish an alternative design framework for engineering structures that could be better than the 3D-printing technique, especially for large structures made of thin metal materials. PMID:29642555

  8. A Novel Design Framework for Structures/Materials with Enhanced Mechanical Performance.

    Science.gov (United States)

    Liu, Jie; Fan, Xiaonan; Wen, Guilin; Qing, Qixiang; Wang, Hongxin; Zhao, Gang

    2018-04-09

    Abstract : Structure/material requires simultaneous consideration of both its design and manufacturing processes to dramatically enhance its manufacturability, assembly and maintainability. In this work, a novel design framework for structural/material with a desired mechanical performance and compelling topological design properties achieved using origami techniques is presented. The framework comprises four procedures, including topological design, unfold, reduction manufacturing, and fold. The topological design method, i.e., the solid isotropic material penalization (SIMP) method, serves to optimize the structure in order to achieve the preferred mechanical characteristics, and the origami technique is exploited to allow the structure to be rapidly and easily fabricated. Topological design and unfold procedures can be conveniently completed in a computer; then, reduction manufacturing, i.e., cutting, is performed to remove materials from the unfolded flat plate; the final structure is obtained by folding out the plate from the previous procedure. A series of cantilevers, consisting of origami parallel creases and Miura-ori (usually regarded as a metamaterial) and made of paperboard, are designed with the least weight and the required stiffness by using the proposed framework. The findings here furnish an alternative design framework for engineering structures that could be better than the 3D-printing technique, especially for large structures made of thin metal materials.

  9. Thermal performance of a phase change material on a nickel-plated surface

    International Nuclear Information System (INIS)

    Nurmawati, M.H.; Siow, K.S.; Rasiah, I.J.

    2004-01-01

    Thermal control becomes increasingly vital with IC chips becoming faster and smaller. The need to keep chips within acceptable operating temperatures is a growing challenge. Thermal interface materials (TIM) form the interfaces that improve heat transfer from the heat-generating chip to the heat dissipating thermal solution. One of the most commonly used materials in today's electronics industry is phase change material (PCM). Typically, the heat spreader is a nickel-plated copper surface. The compatibility of the PCM to this surface is crucial to the performance of the TIM. In this paper, we report on the performance of this interface. To that end, an instrument to suitably measure critical parameters, like the apparent and contact thermal resistance of the TIM, is developed according to the ASTM D5470 and calibrated. A brief theory of TIM is described and the properties of the PCM were investigated using the instrument. Thermal resistance measurements were made to investigate the effects of physical parameters like pressure, temperature and supplied power on the thermal performance of the material on nickel-plated surface. Conclusions were drawn on the effectiveness of the interface and their application in IC packages

  10. Factors related to teamwork performance and stress of operating room nurses.

    Science.gov (United States)

    Sonoda, Yukio; Onozuka, Daisuke; Hagihara, Akihito

    2018-01-01

    To evaluate operating room nurses' perception of teamwork performance and their level of mental stress and to identify related factors. Little is known about the factors affecting teamwork and the mental stress of surgical nurses, although the performance of the surgical team is essential for patient safety. The questionnaire survey for operation room nurses consisted of simple questions about teamwork performance and mental stress. Multivariate analyses were used to identify factors causing a sense of teamwork performance or mental stress. A large number of surgical nurses had a sense of teamwork performance, but 30-40% of operation room nurses were mentally stressed during surgery. Neither the patient nor the operation factors were related to the sense of teamwork performance in both types of nurses. Among scrub nurses, endoscopic and abdominal surgery, body mass index, blood loss and the American Society of Anesthesiologists physical status class were related to their mental stress. Conversely, circulating nurses were stressed about teamwork performance. The factors related to teamwork performance and mental stress during surgery differed between scrub and circulating nurses. Increased support for operation room nurses is necessary. The increased support leads to safer surgical procedures and better patient outcomes. © 2017 John Wiley & Sons Ltd.

  11. Comparisons of processes and performance of SSC-VQP material

    International Nuclear Information System (INIS)

    Seuntjens, J.M.; Clark, F.Y.; Erdmann, M.J.; Coleman, E.S.; Jones, B.A.

    1994-01-01

    The Superconducting Super Collider's (SSC) cable Vendor Qualification Program (VQP) will end in FY 1993. At the time of this writing, all 8 vendors involved in this program have demonstrated capability to fabricate conductor which meets SSC specifications. The magnet vendors have hard choices to make in calendar year 1993 in deciding which cable vendors will make the production cable. It is well accepted that because of requirements of magnet uniformity, that only one vendor will be chosen for dipole Inner cable, one vendor for dipole Outer cable, and one vendor for quadrupole Outer cable. The production quantities are nominally 500, 500, and 200 metric tonnes, respectively. Among the many deciding factors are a technically sound production process, process control, and production quantity capability of each cable vendor. Qualified vendors will have proven their technical process and process control is adequate for production quantities. This paper is part of ongoing effort to provide technical information for the magnet vendor's decision making process. Some of the Phase IB process data is summarized as well as results of a portion of the materials characterization performed at the SSC Laboratory. Key process and final product parameters for each cable vendor are compared without identifying specific vendor's process detail

  12. Comparisons of processes and performance of SSC-VQP material

    International Nuclear Information System (INIS)

    Seuntjens, J.; Clark, F.; Erdmann, M.; Coleman, E.; Jones, B.

    1993-05-01

    The Superconducting Super Collider's (SSC) cable Vendor Qualification Program (VQP) will end in FY 1993. At the time of this writing, all 8 vendors involved in this program have demonstrated capability to fabricate conductor which meets SSC specifications. The magnet vendors have hard choices to make in calendar year 1993 in deciding which cable vendors will make the production cable. It is well accepted that because of requirements of magnet uniformity, that only one vendor will be chosen for dipole Inner cable, one vendor for dipole Outer cable, and one vendor for quadrupole Outer cable. The production quantities are nominally 500, 500, and 200 metric tonnes, respectively. Among the many deciding factors are a technically sound production process, process control, and production quantity capability of each cable vendor. Qualified vendors will have proven their technical process and process control is adequate for production quantities. This paper is part of ongoing effort to provide technical information for the magnet vendor's decision making process. Some of the Phase IB process data is summarized and well as results of a portion of the materials characterization performed at the SSC Laboratory. Key process and final product parameters for each cable vendor are compared without identifying specific vendor's process detail

  13. Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability

    Energy Technology Data Exchange (ETDEWEB)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2011-02-15

    Biodiesel, derived from the transesterification of vegetable oils or animal fats, is composed of saturated and unsaturated long-chain fatty acid alkyl esters. In spite of having some application problems, recently it is being considered as one of the most promising alternative fuels in internal combustion engine. From scientific literatures, this paper has collected and analyzed the data on both advantages and disadvantages of biodiesel over conventional diesel. Since the aim of this study is to evaluate the biodiesel feasibility in automobiles, the first section is dedicated to materials compatibility in biodiesel as compared to that in diesel. The highest consensus is related to enhanced corrosion of automotive parts due to its compositional differences. In the subsequent sections, data on performance, emission and engine durability have been analyzed and compared. In this case, the highest consensus is found in reducing emissions as well as in increasing moving parts sticking, injector coking and filter plugging. This paper has also summarized the factors of biodiesel in contributing these technical performances. (author)

  14. Motivational factors and performance in soccer

    Directory of Open Access Journals (Sweden)

    Maria Cristina Chimelo Paim

    2008-06-01

    Full Text Available This study aimed to verify what were the motivational factors that made teenagers to choose ADUFSM soccer school, and to verify the difference among the groups, the performance and gain scores at soccer basis. The sample comprised 32 persons, 10 to 16 years old, that practice soccer at ADUFSM. The sample was divided in four groups. The motivational factors inventory (MFI was applied in the beginning of the semester. It was verified, through descriptive statistics, that the stronger motivation for the subjects involvement with soccer was to develop skills (78%, followed by excitation and challenge (72%; affiliation (70% and aptitude (68%. The performance level evaluation in three different phases was done through soccer basis analytical matrix (SBAM, always in game situation. Five observations per subject were made for each base listed in SBAM, and the execution mistakes were identifies. Initially, an ANOVA was used to deal with the data; later, a post-hoc test. The results showed that learning occurred and that there was a significant difference favoring GF10 in the learning gain scores after the treatment.

  15. Hypogammaglobulinemia and Poor Performance Status are Predisposing Factors for Vancomycin-Resistant Enterococcus Colonization in Patients with Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Elif Gülsüm Ümit

    2017-03-01

    Full Text Available Objective: Vancomycin-resistant enterococci (VRE are common pathogens of hospital-acquired infection. Long hospitalization periods, use of broadspectrum antibiotics, and immunosuppression are major risks for VRE colonization. We aimed to evaluate patients’ characteristics and factors that may contribute to VRE colonization. Materials and Methods: Data of 66 patients with colonization and 112 patients without colonization who were hospitalized in the hematology clinic were collected. Hematological malignancies, preexisting gastrointestinal complaints, the presence of hypogammaglobulinemia at the time of diagnosis, complications like neutropenic enterocolitis (NEC, and Eastern Cooperative Oncology Group (ECOG and Karnofsky performance statuses were recorded. Results: Ages of the patients ranged between 19 and 95 years (mean: 55.99. Karnofsky and ECOG scores were statistically related to VRE colonization (p7 days may also be accepted as a risk factor, independent of diagnosis or antibiotic use. Performance status is also an important factor for colonization, which may be related to poorer hygiene and increased external help.

  16. Factors Promoting Environmental Responsibility in European SMEs: The Effect on Performance

    Directory of Open Access Journals (Sweden)

    Francisco J. Sáez-Martínez

    2016-09-01

    Full Text Available There is increasing social and political awareness of the importance of developing environmental responsibility at a corporate level. When focusing on issues of responsibility, large companies are frequently perceived to be more responsible for driving climate change and resource depletion. However, small and medium enterprises (SMEs contribute significantly to the use of resources such as material and energy and produce approximately 64% of the pollution in Europe. Drawing on evidence from “The Eurobarometer 381 Survey on SMEs, Resource Efficiency and Green Markets”, we analyze the environmental responsibility of European SMEs, studying their compliance with environmental legislation and how several factors drive environmental orientation among SMEs. Our sample consists of 3647 SMEs operating in 38 countries. Only around a fifth of the firms go beyond environmental regulations, showing the highest levels of environmental responsibility. We conduct OLS regressions to analyze the factors that affect a positive environmental attitude among European SMEs (internal drivers being more significant than external ones and then, to observe the positive effect of environmental responsibility and firm’s experience in offering green services/products on performance, although a conjoint effect was not found. Implications for practitioners, academics, and policy-makers are outlined.

  17. Assessment of factors affecting the performance of microfinance ...

    African Journals Online (AJOL)

    On the other hand, institutional factors such as shortage of human resource, lack of cost effective technologies, shortage of loan capital and some others are identified. Political factors which are related to MFIs performance are also recognized in this study. Based on the analysis and the finding of the study, the researchers ...

  18. The use of repassivation potential in predicting the performance of high-level nuclear waste container materials

    International Nuclear Information System (INIS)

    Sridhar, N.; Dunn, D.; Cragnolino, G.

    1995-01-01

    Localized corrosion in aqueous environments forms an important bounding condition for the performance assessment of high-level waste (HLW) container materials. A predictive methodology using repassivation potential is examined in this paper. It is shown, based on long-term (continuing for over 11 months) testing of alloy 825, that repassivation potential of deep pits or crevices is a conservative and robust parameter for the prediction of localized corrosion. In contrast, initiation potentials measured by short-term tests are non-conservative and highly sensitive to several surface and environmental factors. Corrosion data from various field tests and plant equipment performance are analyzed in terms of the applicability of repassivation potential. The applicability of repassivation potential for predicting the occurrence of stress corrosion cracking (SCC) and intergranular corrosion in chloride containing environments is also examined

  19. Composite materials for thermal energy storage: enhancing performance through microstructures.

    Science.gov (United States)

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-05-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications

    DEFF Research Database (Denmark)

    Guler, U.; Naik, G. V.; Boltasseva, Alexandra

    2012-01-01

    . Titanium nitride and zirconium nitride, which were recently suggested as alternative plasmonic materials in the visible and near-infrared ranges, are compared to the performance of gold. In contrast to the results from quasistatic methods, both nitride materials are very good alternatives to the usual...

  1. Powder metallurgical high performance materials. Proceedings. Volume 3: general topics

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of these seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. The 15 th Plansee Seminar was convened under the general theme 'Powder Metallurgy High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (boteke)

  2. Doublet III limiter performance and implications for mechanical design and material selection for future limiters

    International Nuclear Information System (INIS)

    Sabado, M.M.; Marcus, F.B.; Trester, P.W.; Wesley, J.C.

    1979-10-01

    The plasma limiter system for Doublet III is described. Initially, high-Z materials, Ta-10W for the primary limiter and Mo for the backup limiters, were selected as the most attractive metallic candidates from the standpoint of thermal and structural properties. For the purpose of evaluating the effect of material Z on plasma performance, the nonmagnetic, Ni-base alloy Inconel X-750 was selected for a medium-Z limiter material. Graphite, a low-Z material, will likely be the next limiter material for evaluation. Design and material selection criteria for the different Z ranges are presented. The performance of the high-Z limiters in Doublet III is reviewed for an operation period that included approximately 5000 plasma shots. Changes in surface appearance and metallurgical changes are characterized. Discussion is presented on how and to what extent the high-Z elements affected the performance of the plasma based on theory and measurements in Doublet III. The fabrication processes for the Inconel X-750 limiters are summarized, and, last, observations on early performance of the Inconel limiters are described

  3. Doublet III limiter performance and implications for mechanical design and material selection for future limiters

    Energy Technology Data Exchange (ETDEWEB)

    Sabado, M.M.; Marcus, F.B.; Trester, P.W.; Wesley, J.C.

    1979-10-01

    The plasma limiter system for Doublet III is described. Initially, high-Z materials, Ta-10W for the primary limiter and Mo for the backup limiters, were selected as the most attractive metallic candidates from the standpoint of thermal and structural properties. For the purpose of evaluating the effect of material Z on plasma performance, the nonmagnetic, Ni-base alloy Inconel X-750 was selected for a medium-Z limiter material. Graphite, a low-Z material, will likely be the next limiter material for evaluation. Design and material selection criteria for the different Z ranges are presented. The performance of the high-Z limiters in Doublet III is reviewed for an operation period that included approximately 5000 plasma shots. Changes in surface appearance and metallurgical changes are characterized. Discussion is presented on how and to what extent the high-Z elements affected the performance of the plasma based on theory and measurements in Doublet III. The fabrication processes for the Inconel X-750 limiters are summarized, and, last, observations on early performance of the Inconel limiters are described. (MOW)

  4. Performance of NAA methods in an International Interlaboratory Reference Material Characterization Campaign

    International Nuclear Information System (INIS)

    Ihnat, M.

    2000-01-01

    An extensive database of analytical results from a recent biological matrix Reference Material Characterization Campaign permitted an intercomparison of the performances of various methods among each other and with 'true' best estimate concentration values established for these materials. Six different variants of neutron activation analysis (NAA) methods were employed including: instrumental neutron activation analysis, instrumental neutron activation analysis with acid digestion, neutron activation analysis with radiochemical separation, neutron capture prompt gamma activation analysis, epithermal instrumental neutron activation analysis, and neutron activation analysis with preconcentration. The precision and accuracy performance of NAA-based analytical methods are compared with three other major techniques, atomic absorption spectrometry (AAS), atomic emission spectrometry (AES) and mass spectrometry (MS) for 28 elements in 10 natural matrix materials. (author)

  5. EFFICIENCY OF RAW MATERIAL INVENTORIES IN IMPROVING SUPPLY CHAIN PERFORMANCE of CV. FIVA FOOD

    Directory of Open Access Journals (Sweden)

    Artadi Nugraha

    2016-01-01

    Full Text Available The production and number of processed food industries have slightly increased; as a result, the companies must compete to maximize their profits by conducting their efficient production process. CV. Fiva Food is one of the companies in the field of processed foods, especially in processed meat that has implemented supply chain management. It is necessary for the company to take measurements of its performance and efficiency for the entire supply chain such as procurement of raw materials. The purposes of this study were to analyze the performance of the company's supply chain and determine the most efficient  method of procurement for its raw materials as well as and to provide recommendations for the company to improve its performance of entire supply chain. This study used SCOR in analyzing the performance of supply chain and EOQ and POQ method to be compared with the method that the company uses to determine which method of procurement for raw materials is the most efficient one. The result showed that based on the matrix, the company's performance is unfavorable when it was compared to the benchmark performance of inventory days of supply. In addition, this study showed that the POQ method produces the lowest total inventory cost with savings of Rp6.647.015 for raw materials of MDM whereas EOQ method produced the lowest total inventory cost with savings of Rp222.153,78 for raw materials of FQ85CL. Keywords: performance suppy chain, SCOR, fiva food, EOQ, POQ

  6. Developing standard performance testing procedures for material control and accounting components at a site

    International Nuclear Information System (INIS)

    Scherer, Carolynn P.; Bushlya, Anatoly V.; Efimenko, Vladimir F.; Ilyanstev, Anatoly; Regoushevsky, Victor I.

    2010-01-01

    The condition of a nuclear material control and accountability system (MC and A) and its individual components, as with any system combining technical elements and documentation, may be characterized through an aggregate of values for the various parameters that determine the system's ability to perform. The MC and A system's status may be functioning effectively, marginally or not functioning based on a summary of the values of the individual parameters. This work included a review of the following subsystems, MC and A and Detecting Material Losses, and their respective elements for the material control and accountability system: (a) Elements of the MC and A Subsystem - Information subsystem (Accountancy/Inventory), Measurement subsystem, Nuclear Material Access subsystem, including tamper-indicating device (TID) program, and Automated Information-gathering subsystem; (b) Elements for Detecting Nuclear Material Loses Subsystem - Inventory Differences, Shipper/receiver Differences, Confirmatory Measurements and differences with accounting data, and TID or Seal Violations. In order to detect the absence or loss of nuclear material there must be appropriate interactions among the elements and their respective subsystems from the list above. Additionally this work includes a review of regulatory requirements for the MC and A system component characteristics and criteria that support the evaluation of the performance of the listed components. The listed components had performance testing algorithms and procedures developed that took into consideration the regulatory criteria. The developed MC and A performance-testing procedures were the basis for a Guide for MC and A Performance Testing at the material balance areas (MBAs) of State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering (SSC RF-IPPE).

  7. Analysis of Factors Influencing Building Refurbishment Project Performance

    Directory of Open Access Journals (Sweden)

    Ishak Nurfadzillah

    2018-01-01

    Full Text Available Presently, the refurbishment approach becomes favourable as it creates opportunities to incorporate sustainable value with other building improvement. In this regard, this approach needs to be implemented due to the issues on overwhelming ratio of existing building to new construction, which also can contribute to the environmental problem. Refurbishment principles imply to minimize the environmental impact and upgrading the performance of an existing building to meet new requirements. In theoretically, building project’s performance has a direct bearing on related to its potential for project success. However, in refurbishment building projects, the criteria for measure are become wider because the projects are a complex and multi-dimensional which encompassing many factors which reflect to the nature of works. Therefore, this impetus could be achieve by examine the direct empirical relationship between critical success factors (CSFs and complexity factors (CFs during managing the project in relation to delivering success on project performance. The research findings will be expected as the basis of future research in establish appropriate framework that provides information on managing refurbishment building projects and enhancing the project management competency for a better-built environment.

  8. Analysis of Factors Influencing Building Refurbishment Project Performance

    Science.gov (United States)

    Ishak, Nurfadzillah; Aswad Ibrahim, Fazdliel; Azizi Azizan, Muhammad

    2018-03-01

    Presently, the refurbishment approach becomes favourable as it creates opportunities to incorporate sustainable value with other building improvement. In this regard, this approach needs to be implemented due to the issues on overwhelming ratio of existing building to new construction, which also can contribute to the environmental problem. Refurbishment principles imply to minimize the environmental impact and upgrading the performance of an existing building to meet new requirements. In theoretically, building project's performance has a direct bearing on related to its potential for project success. However, in refurbishment building projects, the criteria for measure are become wider because the projects are a complex and multi-dimensional which encompassing many factors which reflect to the nature of works. Therefore, this impetus could be achieve by examine the direct empirical relationship between critical success factors (CSFs) and complexity factors (CFs) during managing the project in relation to delivering success on project performance. The research findings will be expected as the basis of future research in establish appropriate framework that provides information on managing refurbishment building projects and enhancing the project management competency for a better-built environment.

  9. Radioactive material package test standards and performance requirements - public perception

    International Nuclear Information System (INIS)

    Pope, R.B.; Shappert, L.B.; Rawl, R.R.

    1992-01-01

    This paper addresses issues related to the public perception of the regulatory test standards and performance requirements for packaging and transporting radioactive material. Specifically, it addresses the adequacy of the package performance standards and testing for Type B packages, which are those packages designed for transporting the most hazardous quantities and forms of radioactive material. Type B packages are designed to withstand accident conditions in transport. To improve public perception, the public needs to better understand: (a) the regulatory standards and requirements themselves, (b) the extensive history underlying their development, and (c) the soundness of the technical foundation. The public needs to be fully informed on studies, tests, and analyses that have been carried out worldwide and form the basis of the regulatory standards and requirements. This paper provides specific information aimed at improving the public perception of packages test standards

  10. Analysis of factors affecting the stability of backfill materials

    International Nuclear Information System (INIS)

    Peacor, D.R.; Essene, E.J.; Lee, J.H.; Kuo, L.C.

    1984-01-01

    Storage of high-level nuclear waste in subsurface repositories involves a backfill material as a physical/chemical barrier between the solid waste canisters and host rock. Chemical, structural, and textural changes due to hydrothermal reaction may degrade the backfill performance over the life of the repository. In order to evaluate the potential for such changes, we have: (1) carried out hydrothermal experiments on candidate backfill materials (smectite, illite, basalt) under conditions analogous to those at the repository, (2) performed a complete characterization of these materials before and after hydrothermal treatment using EMPA, XRD, SEM/EDS, and, especially, STEM/AEM techniques, and (3) reviewed and analyzed geologic systems which are analogous to the backfill systems. These serve as natural experimental systems with ages up to many tens of millions of years. The Umtanum basalt contains up to 25% of immiscible, two-phase glasses and late opal and nontronite in fractures. These materials are especially subject to solution effects and the glass may provide K to groundwater. The kinetics of the smectite to illite and illite to muscovite transitions are primarily controlled by Al/Si diffusion which is sluggish, rather than by rapid alkali ion diffusion. Thus, even though smectite (bentonite), mixed-layer illite/smectite and illite are all metastable phases transitional to muscovite plus other phases, reactions occur so slowly that these phases are retained even within a geologic time scale for temperatures of approximately 150, 200 and 300 0 C, respectively. A high ratio of Ca/K (perhaps supplied by solution of calcite) inhibits the transitions. If clay layers are compacted to form a continuous matrix, water may be prevented from penetrating the backfill and promoting the clay mineral transition

  11. Autism-specific covariation in perceptual performances: "g" or "p" factor?

    Science.gov (United States)

    Meilleur, Andrée-Anne S; Berthiaume, Claude; Bertone, Armando; Mottron, Laurent

    2014-01-01

    Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination) and mid-level (e.g., pattern matching) tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals. We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ) and Raven Progressive Matrices (RPM). We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence. In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism. Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or "g" factor). Instead, this residual covariation is accounted for by a common perceptual process (or "p" factor), which may drive perceptual abilities differently in autistic and

  12. Autism-specific covariation in perceptual performances: "g" or "p" factor?

    Directory of Open Access Journals (Sweden)

    Andrée-Anne S Meilleur

    Full Text Available Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination and mid-level (e.g., pattern matching tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals.We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ and Raven Progressive Matrices (RPM. We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence.In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism.Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or "g" factor. Instead, this residual covariation is accounted for by a common perceptual process (or "p" factor, which may drive perceptual abilities differently in

  13. High performance p-type half-Heusler thermoelectric materials

    Science.gov (United States)

    Yu, Junjie; Xia, Kaiyang; Zhao, Xinbing; Zhu, Tiejun

    2018-03-01

    Half-Heusler compounds, which possess robust mechanical strength, good high temperature thermal stability and multifaceted physical properties, have been verified as a class of promising thermoelectric materials. During the last two decades, great progress has been made in half-Heusler thermoelectrics. In this review, we summarize some representative work of p-type half-Heusler materials, the thermoelectric performance of which has been remarkably enhanced in recent years. We introduce the features of the crystal and electronic structures of half-Heusler compounds, and successful strategies for optimizing electrical and thermal transport in the p-type RFeSb (R  =  V, Nb, Ta) and MCoSb (M  =  Ti, Zr, Hf) based systems, including band engineering, the formation of solid solutions and hierarchical phonon scattering. The outlook for future research directions of half-Heusler thermoelectrics is also presented.

  14. The Effect of the Litter Materials on Broiler Chickens Welfare and Performance

    Directory of Open Access Journals (Sweden)

    Serpil Gençoğlan

    2017-12-01

    Full Text Available The aim of this study is to review the quality and types of the litter material and its effect on the welfare and performance of the broiler chickens. Since the most suitable broiler rearing system is on the littered floor, the litter material is of great importance. Demand for litter material is also increasing, depending on the development in broiler production. Straws, wood shavings, and sawdust are widely used as litters material. Beside these, materials such as wheat, barley, rye, oats, sunflower, rice, hazelnut, maize, soya, peanut, cotton and sugarcane are used purely or mixed as a litters material. The quality of the litter is determined with the litter moisture, pH, ammonium nitrate content, caking level and water holding capacity. The ideal litter material should have a moisture content of 20-25%, a pH of 8-10, and ammonia content should not exceed 25 ppm. The thickness of the litter changes between 2 and 10 cm according to the type of the litter, and size of it should not exceed 0.6 cm. Increase in the litter moisture increases pH, NH3 concentration and caking. The type of litter material effects on the performance, welfare, health, behavior and product quality of broiler chickens. In addition, there are negative effects of litter materials on carcass defects, foot-leg problems, breast blisters or bruises, decrease in living power, and increase of microorganism development due to litter moisture, increase of gas and dust formation in poultry. These adverse effects cause large economic losses in intensive enterprises. For this reason, the quality and type of litter material is very important in broiler rearing.

  15. Cardboard Based Packaging Materials as Renewable Thermal Insulation of Buildings: Thermal and Life Cycle Performance

    OpenAIRE

    Čekon, Miroslav; Struhala, Karel; Slávik, Richard

    2017-01-01

    Cardboard based packaging components represent a material with a significant potential of renewable exploitation in buildings. This study presents the results of thermal and environmental analysis of existing packaging materials compared with standard conventional thermal insulations. Experimental measurements were performed to identify the thermal performance of studied cardboard packaging materials. Real-size samples were experimentally tested in laboratory measurements. The thermal resi...

  16. The primary circuit materials properties results analysis performed on archive material used in NPP V-1 and Kola NPP Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Kupca, L.; Beno, P. [Nuclear Power Plants Research Institute Inc., Trnava (Slovakia)

    1997-04-01

    A very brief summary is provided of a primary circuit piping material properties analysis. The analysis was performed for the Bohunice V-1 reactor and the Kola-1 and -2 reactors. Assessment was performed on Bohunice V-1 archive materials and primary piping material cut from the Kola units after 100,000 hours of operation. Main research program tasks included analysis of mechanical properties, corrosion stability, and microstructural properties. Analysis results are not provided.

  17. High performance fuel technology development : Development of high performance cladding materials

    International Nuclear Information System (INIS)

    Park, Jeongyong; Jeong, Y. H.; Park, S. Y.

    2012-04-01

    The superior in-pile performance of the HANA claddings have been verified by the successful irradiation test and in the Halden research reactor up to the high burn-up of 67GWD/MTU. The in-pile corrosion and creep resistances of HANA claddings were improved by 40% and 50%, respectively, over Zircaloy-4. HANA claddings have been also irradiated in the commercial reactor up to 2 reactor cycles, showing the corrosion resistance 40% better than that of ZIRLO in the same fuel assembly. Long-term out-of-pile performance tests for the candidates of the next generation cladding materials have produced the highly reliable test results. The final candidate alloys were selected and they showed the corrosion resistance 50% better than the foreign advanced claddings, which is beyond the original target. The LOCA-related properties were also improved by 20% over the foreign advanced claddings. In order to establish the optimal manufacturing process for the inner and outer claddings of the dual-cooled fuel, 18 different kinds of specimens were fabricated with various cold working and annealing conditions. Based on the performance tests and various out-of-pile test results obtained from the specimens, the optimal manufacturing process was established for the inner and outer cladding tubes of the dual-cooled fuel

  18. Factoring symmetric indefinite matrices on high-performance architectures

    Science.gov (United States)

    Jones, Mark T.; Patrick, Merrell L.

    1990-01-01

    The Bunch-Kaufman algorithm is the method of choice for factoring symmetric indefinite matrices in many applications. However, the Bunch-Kaufman algorithm does not take advantage of high-performance architectures such as the Cray Y-MP. Three new algorithms, based on Bunch-Kaufman factorization, that take advantage of such architectures are described. Results from an implementation of the third algorithm are presented.

  19. Performance-oriented packagings for hazardous materials: Resource guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This document provides recommendations to US Department of Energy (DOE) shippers regarding packaging that meet performance-oriented packaging requirements implemented by US Department of Transportation (DOT) in rulemaking HM-181 (December 21, 1990) and subsequent actions. The packaging described in this document are certified by their vendor to comply with requirements for Packing Group I, II, or III hazardous materials packaging. The intent of this document is to share information between DOE and contractors and at all DOE facilities.

  20. Performance-oriented packagings for hazardous materials: Resource guide

    International Nuclear Information System (INIS)

    1993-09-01

    This document provides recommendations to US Department of Energy (DOE) shippers regarding packaging that meet performance-oriented packaging requirements implemented by US Department of Transportation (DOT) in rulemaking HM-181 (December 21, 1990) and subsequent actions. The packaging described in this document are certified by their vendor to comply with requirements for Packing Group I, II, or III hazardous materials packaging. The intent of this document is to share information between DOE and contractors and at all DOE facilities

  1. Empirical testing of Kotler's high-performance factors to increase sales growth

    Directory of Open Access Journals (Sweden)

    Oren Dayan

    2010-12-01

    Full Text Available Purpose and/or objectives: The primary objective of this study is to empirically test Kotler's (2003 high-performance model which ensures an increase in sales growth. More specifically, the study explores the influence of process variables (as measured by marketing strategies, resources management (as measured by the management of labour, materials, machines, information technology and energy and organisational variables (as measured by TQM and organisational culture on sales growth in the food, motorcar and high-technology manufacturing industries. Problem investigated Various research studies suggest that the managers of firms are continuously challenged in their attempts to increase their sales (Morre, 2007; Pauwels, Silva Risso, Srinivasan & Hanssens, 2004: 142-143; Gray & Hayes, 2007: 1. Kotler (2003 suggests a model that leads to a high performing business. The question is posed as to whether this model can be used to increase sales growth in all businesses. This study seeks to develop a generic model to increase sales growth across industries by using an adapted version of Kotler's (2003 high-performance model. The study investigates the application of this adapted model on the food, motorcar and high-technology manufacturing industries. Design and/or methodology and/or approach: An empirical causal research design that includes 770 marketing and product development practitioners from multinational food, motorcar and high-technology manufacturing firms, was used in this study. A response rate of 76.1% was achieved as only 571 useable questionnaires were returned. The internal reliability and discriminant validity of the measuring instrument were assessed by the calculation of Cronbach alpha coefficients and the conducting an exploratory factor analysis respectively. Structural Equation Modelling SEM was used to statistically test the relationships between the independent variables (marketing strategies, resource management, TQM and

  2. A Review of Various Performance Shaping Factors for Use in Advanced Control Rooms

    International Nuclear Information System (INIS)

    Lee, Seung Woo; Ha, Jun Su; Seong, Poong Hyun; Park, Jae Hyuk; Kim, Ja Kyung

    2009-01-01

    Human reliability analysis(HRA) has been performed as part of the probabilistic risk assessment to identify and quantify human actions and the associated impacts on structures, systems and components for a complex facility. Currently, representative HRA methods such as THERP, ASEP HRA and HCR are being used in Korea. In performing HRA, such conditions that influence human performances have been represented via several context factors. These context factors are referred to by different terms according to method: PSF(Performance Shaping Factors), PIF(Performance Influencing Factors), PAF(Performance Affecting Factors, EPC(Error Producing Conditions), CPC(Common Performance Conditions), and so on. These context factors which will be called PSFs in this study are used in adjusting the basic human error probability(BHEP). However, these PSFs need to be re-assessed since the context is expected to change due to the implementation of computer technologies in NPP. In this study, various PSFs used in different HRA methods are reviewed and PSFs which are frequently mentioned as important factors are derived. Also, HF(Human Factor) issues with one of the design characteristics of advanced NPP are identified

  3. Home Environmental Factors Influencing Performance and Progress ...

    African Journals Online (AJOL)

    2010-05-11

    May 11, 2010 ... internal factors for low school performance, this study focused on the learners ... Namibia. Although numerous studies have confinned socio-economic ... Many studies support the view that family background is the strongest single predictor of ..... Windhoek is clearly stratified, mainly following income levels.

  4. Performance and Test Results of Harshaw Pelletised LiF:Mg,Ti TLD Material

    International Nuclear Information System (INIS)

    Velbeck, K.J.; Zhang, L.; Green, R.; Tomlins, P.

    1999-01-01

    BICRON NE has recently introduced a pelletised version of their popular TLD-100, 600 and 700 lithium fluoride based thermoluminescence dosemeters (TLDs). These materials can be used unmounted or in card and ring formats. Applications include whole-body, environmental, medical, and extremity monitoring. The former manufacturing process included purifying, growing doped LiF, grinding, blending, pressing, slicing, and dicing. The new process eliminates the last four steps, replacing them with a pelletising process. This process transforms the material directly from a powder to its final form. This new process provides the benefits of better batch uniformity and excellent dimensional consistency. The testing is described that was performed for the purpose of accepting the pelletised material as a directly interchangeable substitute for the same material produced by the former process. Tests performed include reproducibility, batch homogeneity, linearity, detection threshold, and light sensitivity. (author)

  5. Performance evaluation of a thermoelectric energy harvesting device using various phase change materials

    International Nuclear Information System (INIS)

    Elefsiniotis, A; Becker, T; Kiziroglou, M E; Wright, S W; Toh, T T; Mitcheson, P D; Yeatman, E M; Schmid, U

    2013-01-01

    This paper compares the performance of a group of organic and inorganic phase change materials for a heat storage thermoelectric energy harvesting device. The device consists of thermoelectric generators and a closed container filled with a phase change material. One side of the generators is mounted on the aircraft fuselage and the other to the thermal mass. The group of inorganic and organic phase change materials was tested across two temperature ranges. These ranges are defined as ''positive'' and ''negative'', with the former being a sweep from +35°C to −5°C and the latter being a sweep from +5°C to −35°C. The performance in terms of electrical energy output and power produced is examined in detail for each group of materials

  6. Relating psychological and social factors to academic performance: A longitudinal investigation of high-poverty middle school students.

    Science.gov (United States)

    Li, Yaoran; Allen, Jeff; Casillas, Alex

    2017-04-01

    We investigated the relations between middle school students' psychological factors (academic commitment and emotional control), social perceptions (family involvement and school climate), and academic performance over time. Gender differences in these relations were also examined. Based on a two-year longitudinal data set of 942 middle-school students from a high-poverty district in the United States, we found that all four factors measured in 6th grade were predictive of GPA at the end of the 7th grade above and beyond gender, race, and home intellectual materials. Among these factors, emotional control had the strongest relation with GPA, and the importance of family involvement increased over time, especially for female students. The results also revealed the indirect effects of the social factors on GPA through the psychological factors, and mostly through emotional control. These findings highlight the complex relation between the social-emotional factors and academic outcomes in early adolescence. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  7. High performance soft magnetic materials

    CERN Document Server

    2017-01-01

    This book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets. Covers magnetic microwires, sensor applications, amorphous and nanocrystalli...

  8. Particle size effect of Ni-rich cathode materials on lithium ion battery performance

    International Nuclear Information System (INIS)

    Hwang, Ilkyu; Lee, Chul Wee; Kim, Jae Chang; Yoon, Songhun

    2012-01-01

    Graphical abstract: The preparation condition of Ni-rich cathode materials was investigated. When the retention time was short, a poor cathode performance was observed. For long retention time condition, cathode performance displayed a best result at pH 12. Highlights: ► Ni-rich cathode materials (LiNi 0.8 Co 0.15 Al 0.05 O 2 ) were prepared by co-precipitation method using separate addition of Al salt. ► Particle size of Ni-rich cathode materials became larger with increase of retention time and solution pH. ► Cathode performance was poor for low retention time. ► Optimal pH for co-precipitation was 12. -- Abstract: Herein, Ni-rich cathode materials (LiNi 0.8 Co 0.15 Al 0.05 O 2 ) in lithium ion batteries are prepared by a separate addition of Ni/Co salt and Al sol solution using a continuously stirred tank reactor. Retention time and solution pH were controlled in order to obtain high performance cathode material. Particle size increase was observed with a higher retention time of the reactants. Also, primary and secondary particles became smaller according to an increase of solution pH, which was probably due to a decrease of growth rate. From the cathode application, a high discharge capacity (175 mAh g −1 ), a high initial efficiency (90%) and a good cycleability were observed in the cathode material prepared under pH 12 condition, which was attributed to its well-developed layered property and the optimal particle size. However, rate capability was inversely proportional to the particle size, which was clarified by a decrease of charge-transfer resistance measured in the electrochemical impedance spectroscopy.

  9. The effect of material properties on the seismic performance of Arch Dams

    Directory of Open Access Journals (Sweden)

    B. Sevim

    2011-08-01

    Full Text Available The paper investigates the effect of material properties on the seismic performance of arch dam-reservoir-foundation interaction systems based on the Lagrangian approach using demand-capacity ratios. Type-5 arch dam is selected as a numerical application. The linear time history analyses of the arch dam-reservoir-foundation interaction system are carried out for different material properties. The foundation is taken into account as massless; behaviour of the reservoir is assumed to be linearly elastic, inviscid and irrotational. The north-south component of the Erzincan earthquake in 1992 is chosen as a ground motion. Dynamic equations of motions obtained from 3-D finite element modelling of the coupled system are solved by using the Newmark integration algorithm. The damage levels of the coupled system for the different material properties are demonstrated by using demand-capacity ratios and cumulative inelastic durations. The time histories and maximum values of the displacements and principal stresses, and performance curves, are obtained from linear analyses. It is clearly seen from the study that the different material properties affect the seismic behaviour of the dam.

  10. A study of the blade's material performance made of GFRP for 100kW tidal current turbine

    International Nuclear Information System (INIS)

    Kim, Jung Min; Chung, Hyun; Kim, Jong Sung

    2009-01-01

    The aim of this study is to investigate the performance of material of rotary blade which was designed for a energy system which utilizes a tide, a comparatively stable and predictable energy source. The rotary blade design for Horizontal Axis Tidal Turbine was carried out to convert an energy. And, considering seawater corrosion and material weight, Glass Fiber Reinforced Polymer (GFRP) was applied as the material of rotary blade. GFRP is a light material comparing with metal materials, while it has a sufficient stiffness, and GFRP has durability against seawater corrosion. However, it is suggested that the performance verification of material, since the material was built based on a polymer. And the performance verification of material was carried out comparing the results from experimental test and the results from finite element analysis using Nastran FX.

  11. Study on Electrochemical Performance of Carbonnanotubes/Fey 04 Composite Electrode Material

    Directory of Open Access Journals (Sweden)

    WANG Fang--yong

    2017-02-01

    Full Text Available For single super capacitor materials,each material has its own unique advantages and defects. In this paper, the synthesis of complex multi walled carbon nanotubes with Fe304 nanoparticles by simple hydrothermal method. Composite performance for Fe3 OQ nanoparticles adsorbed on carbon nano tube wall composed of reticular structure morphology. Synergy of two component,provides the binary nanometer compound larger specific capacity, excellent properties and good cycle stability. The experimental results proved that the improvement effects of CNT carbon materials on the electrochemical properties of pseudocapacitive electrode material,and CNT/Fe3 OQ nano- composites applied to supercapacitor electrode material.

  12. Study of flowability effect on self-planarization performance at SOC materials

    Science.gov (United States)

    Yun, Huichan; Kim, Jinhyung; Park, Youjung; Kim, Yoona; Jeong, Seulgi; Baek, Jaeyeol; Yoon, Byeri; Lim, Sanghak

    2017-03-01

    For multilayer process, importance of carbon-based spin-on hardmask material that replaces amorphous carbon layer (ACL) is ever increasing. Carbon-based spin-on hardmask is an organic polymer with high carbon content formulated in organic solvents for spin-coating application that is cured through baking. In comparison to CVD process for ACL, carbon-based spin-on hardmask material can offer several benefits: lower cost of ownership (CoO) and improved process time, as well as better gap-fill and planarization performances. Thus carbon-based spin-on hardmask material of high etch resistance, good gap-fill properties and global planarization performances over various pattern topographies are desired to achieve the fine patterning and high aspect ratio (A/R). In particular, good level of global planarization of spin coated layer over the underlying pattern topographies is important for self-aligned double patterning (SADP) process as it dictates the photolithographic margin. Herein, we report a copolymer carbon-based spin-on hardmask resin formulation that exhibits favorable film shrinkage profile and good etch resistance properties. By combining the favorable characteristics of each resin - one resin with good shrinkage property and the other with excellent etch resistance into the copolymer, it was possible to achieve a carbonbased spin-on hardmask formulation with desirable level of etch resistance and the planarization performances across various underlying substrate pattern topographies.

  13. Exploring Ultrahigh Magnetic Field Processing of Materials for Developing Customized Microstructures and Enhanced Performance

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, GERALD M.

    2005-03-31

    Thermodynamic calculations based on Gibbs free energy in the magnetization-magnetic intensity-temperature (M-H-T) magnetic equation of state space demonstrate that significantly different phase equilibria may result for those material systems where the product and parent phases exhibit different magnetization responses. These calculations show that the Gibbs free energy is changed by a factor equal to -MdH, where M and H are the magnetization and applied field strength, respectively. Magnetic field processing is directly applicable to a multitude of alloys and compounds for dramatically influencing phase stability and phase transformations. This ability to selectively control microstructural stability and alter transformation kinetics through appropriate selection of the magnetic field strength promises to provide a very robust mechanism for developing and tailoring enhanced microstructures (and even nanostructures through accelerated kinetics) with superior properties for a broad spectrum of material applications. For this Industrial Materials for the Future (IMF) Advanced Materials for the Future project, ferrous alloys were studied initially since this alloy family exhibits ferromagnetism over part of its temperature range of stability and therefore would demonstrate the maximum impact of this novel processing mechanism. Additionally, with these ferrous alloys, the high-temperature parent phase, austenite, exhibits a significantly different magnetization response from the potential product phases, ferrite plus carbide or martensite; and therefore, the solid-state transformation behavior of these alloys will be dramatically influenced by the presence of ultrahigh magnetic fields. Finally, a thermodynamic calculation capability (within ThermoCalc for example) was developed during this project to enable parametric studies to be performed to predict the magnitude of the influence of magnetic processing variables on the phase stability (phase diagrams) in

  14. The use of application-specific performance targets and engineering considerations to guide hydrogen storage materials development

    Energy Technology Data Exchange (ETDEWEB)

    Stetson, Ned T., E-mail: ned.stetson@ee.doe.gov [U.S. Department of Energy, 1000 Independence Ave., SW, EE-2H, Washington, DC 20585 (United States); Ordaz, Grace; Adams, Jesse; Randolph, Katie [U.S. Department of Energy, 1000 Independence Ave., SW, EE-2H, Washington, DC 20585 (United States); McWhorter, Scott [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-12-15

    Highlights: •Portable power and material handling equipment as early market technology pathways. •Engineering based system-level storage-materials requirements. •Application based targets. -- Abstract: The Hydrogen and Fuel Cells Technologies Office, carried out through the DOE Office of Energy Efficiency and Renewable Energy, maintains a broad portfolio of activities to enable the commercialization of fuel cells across a range of near, mid and long-term applications. Improved, advanced hydrogen storage technologies are seen as a critical need for successful implementation of hydrogen fuel cells in many of these applications. To guide and focus materials development efforts, the DOE develops system performance targets for the specific applications of interest, and carries out system engineering analyses to determine the system-level performance delivered when the materials are incorporated into a complete system. To meet the needs of applications, it is important to consider the system-level performance, not just the material-level properties. An overview of the DOE’s hydrogen storage efforts in developing application-specific performance targets and systems engineering to guide hydrogen storage materials identification and development is herein provided.

  15. The use of application-specific performance targets and engineering considerations to guide hydrogen storage materials development

    International Nuclear Information System (INIS)

    Stetson, Ned T.; Ordaz, Grace; Adams, Jesse; Randolph, Katie; McWhorter, Scott

    2013-01-01

    Highlights: •Portable power and material handling equipment as early market technology pathways. •Engineering based system-level storage-materials requirements. •Application based targets. -- Abstract: The Hydrogen and Fuel Cells Technologies Office, carried out through the DOE Office of Energy Efficiency and Renewable Energy, maintains a broad portfolio of activities to enable the commercialization of fuel cells across a range of near, mid and long-term applications. Improved, advanced hydrogen storage technologies are seen as a critical need for successful implementation of hydrogen fuel cells in many of these applications. To guide and focus materials development efforts, the DOE develops system performance targets for the specific applications of interest, and carries out system engineering analyses to determine the system-level performance delivered when the materials are incorporated into a complete system. To meet the needs of applications, it is important to consider the system-level performance, not just the material-level properties. An overview of the DOE’s hydrogen storage efforts in developing application-specific performance targets and systems engineering to guide hydrogen storage materials identification and development is herein provided

  16. Pathogenetic role of Factor VII deficiency and thrombosis in cross-reactive material positive patients.

    Science.gov (United States)

    Girolami, A; Sambado, L; Bonamigo, E; Ferrari, S; Lombardi, A M

    2013-12-01

    Congenital Factor VII (FVII) deficiency can be divided into two groups: cases of "true" deficiency, or cross-reactive material (CRM) negative and variants that are cross-reactive material positive.The first form is commonly recognized as Type I condition whereas the second one is known as Type II. FVII deficiency has been occasionally associated with thrombotic events, mainly venous. The reasons underlying this peculiar manifestation are unknown even though in the majority of associated patients thrombotic risk factors are present. The purpose of the present study was to investigate if a thrombotic event was more frequent in Type I or in Type II defect.The majority of patients with FVII deficiency and thrombosis belong to Type II defects. In the following paper we discuss the possible role of the dysfunctional FVII cross-reaction material as a contributory cause for the occurrence of thrombosis.

  17. 3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance

    Science.gov (United States)

    Zhan, Yingqing; Long, Zhihang; Wan, Xinyi; Zhang, Jiemin; He, Shuangjiang; He, Yi

    2018-06-01

    To obtain high-performance electromagnetic shielding materials, structure and morphology are two key factors. We here developed an efficient and facial method to prepare high-performance 3D carbon nanofiber mats (CFM)/Fe3O4 hybrid electromagnetic shielding materials. For this purpose, the CFM were chemically modified by mussel-inspired poly-dopamine coating, which were further used as templates for decoration of Fe3O4 nanoparticles via solvothermal route. It was found that the Fe3O4 nano-spheres with diameters of 200-250 nm were uniformly coated on the surface of 3D carbon nanofibers. More importantly, the morphology and structure of resulting 3D carbon nanofiber mats/Fe3O4 hybrids could be easily controlled by altering the experiment parameters, which were examined by FT-IR, XPS, TGA, XRD, SEM, and TEM. The measured magnetic properties showed that saturation magnetism and coercivity increased from 13.4 to 39.7 emu/g and 85.3 to 104.6 Oe, respectively. The lowest reflectivity of resulting hybrid was calculated to be -47 dB at 10.0 GHz (2.5 mm). In addition, the reflectivity of 3D carbon nanofiber mats/Fe3O4 hybrid was less than -25 dB in the range of 7-13 GHz. Moreover, the resulting 3D carbon nanofiber mats/Fe3O4 hybrid exhibited an EMI shielding performance of -62.6 dB in the frequency range of 8.2-12.4 GHz. Therefore, 3D carbon fiber mats/Fe3O4 hybrids can be ideal EMI materials with strong absorption, low density, and wide absorption range.

  18. Nickel cobalt oxide nanowire-reduced graphite oxide composite material and its application for high performance supercapacitor electrode material.

    Science.gov (United States)

    Wang, Xu; Yan, Chaoyi; Sumboja, Afriyanti; Lee, Pooi See

    2014-09-01

    In this paper, we report a facile synthesis method of mesoporous nickel cobalt oxide (NiCo2O4) nanowire-reduced graphite oxide (rGO) composite material by urea induced hydrolysis reaction, followed by sintering at 300 degrees C. P123 was used to stabilize the GO during synthesis, which resulted in a uniform coating of NiCo2O4 nanowire on rGO sheet. The growth mechanism of the composite material is discussed in detail. The NiCo2O4-rGO composite material showed an outstanding electrochemical performance of 873 F g(-1) at 0.5 A g(-1) and 512 F g(-1) at 40 A g(-1). This method provides a promising approach towards low cost and large scale production of supercapacitor electrode material.

  19. JAERI Material Performance Database (JMPD); outline of the system

    International Nuclear Information System (INIS)

    Yokoyama, Norio; Tsukada, Takashi; Nakajima, Hajime.

    1991-01-01

    JAERI Material Performance Database (JMPD) has been developed since 1986 in JAERI with a view to utilizing the various kinds of characteristic data of nuclear materials efficiently. Management system of relational database, PLANNER was employed and supporting systems for data retrieval and output were expanded. JMPD is currently serving the following data; (1) Data yielded from the research activities of JAERI including fatigue crack growth data of LWR pressure vessel materials as well as creep and fatigue data of the alloy developed for the High Temperature Gas-cooled Reactor (HTGR), Hastelloy XR. (2) Data of environmentally assisted cracking of LWR materials arranged by Electric power Research Institute (EPRI) including fatigue crack growth data (3000 tests), stress corrosion data (500 tests) and Slow Strain Rate Technique (SSRT) data (1000 tests). In order to improve user-friendliness of retrieval system, the menu selection type procedures have been developed where knowledge of system and data structures are not required for end-users. In addition a retrieval via database commands, Structured Query Language (SQL), is supported by the relational database management system. In JMPD the retrieved data can be processed readily through supporting systems for graphical and statistical analyses. The present report outlines JMPD and describes procedures for data retrieval and analyses by utilizing JMPD. (author)

  20. Computer simulation for prediction of performance and thermodynamic parameters of high energy materials

    International Nuclear Information System (INIS)

    Muthurajan, H.; Sivabalan, R.; Talawar, M.B.; Asthana, S.N.

    2004-01-01

    A new code viz., Linear Output Thermodynamic User-friendly Software for Energetic Systems (LOTUSES) developed during this work predicts the theoretical performance parameters such as density, detonation factor, velocity of detonation, detonation pressure and thermodynamic properties such as heat of detonation, heat of explosion, volume of explosion gaseous products. The same code also assists in the prediction of possible explosive decomposition products after explosion and power index. The developed code has been validated by calculating the parameters of standard explosives such as TNT, PETN, RDX, and HMX. Theoretically predicated parameters are accurate to the order of ±5% deviation. To the best of our knowledge, no such code is reported in literature which can predict a wide range of characteristics of known/unknown explosives with minimum input parameters. The code can be used to obtain thermochemical and performance parameters of high energy materials (HEMs) with reasonable accuracy. The code has been developed in Visual Basic having enhanced windows environment, and thereby advantages over the conventional codes, written in Fortran. The theoretically predicted HEMs performance can be directly printed as well as stored in text (.txt) or HTML (.htm) or Microsoft Word (.doc) or Adobe Acrobat (.pdf) format in the hard disk. The output can also be copied into the Random Access Memory as clipboard text which can be imported/pasted in other software as in the case of other codes

  1. The effect of doping on thermoelectric performance of p-type SnSe: Promising thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Niraj Kumar; Bathula, Sivaiah; Gahtori, Bhasker [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Tyagi, Kriti [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Acdemy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (NPL) Campus, New Delhi (India); Haranath, D. [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Dhar, Ajay, E-mail: adhar@nplindia.org [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2016-05-25

    Tin selenide (SnSe) based thermoelectric materials are being explored for making inexpensive and efficient thermoelectric devices with improved thermoelectric efficiency. As both Sn and Se are earth abundant and relatively inexpensive and these alloys do not involve toxic materials, such as lead and expensive tellurium. Hence, in the present study, we have synthesized SnSe doped with 2 at% of aluminium (Al), lead (Pb), indium (In) and copper (Cu) individually, which is not reported in literature. Out of these, Cu doped SnSe resulted in enhancement of figure-of-merit (zT) of ∼0.7 ± 0.02 at 773 K, synthesized employing conventional fusion method followed by spark plasma sintering. This enhancement in zT is ∼16% over the existing state-of-the-art value for p-type SnSe alloy doped with expensive Ag. This enhancement in ZT is primarily due to the presence of Cu{sub 2}Se second phase associated with intrinsic nanostructure formation of SnSe. This enhancement has been corroborated with the microstructural characterization using field emission scanning electron microscopy and X-ray diffraction studies. Also, Cu doped SnSe exhibited a higher value of carrier concentration in comparison to other samples doped with Al, Pb and In. Further, the compatibility factor of Cu doped SnSe alloys exhibited value of 1.62 V{sup −1} at 773 K and it is suitable to segment with most of the novel TE materials for obtaining the higher thermoelectric efficiencies. - Highlights: • Tin selenide (SnSe) doped with non-toxic and inexpensive dopants. • Synthesized highly dense SnSe employing Spark plasma sintering. • Enhanced thermoelectric compatibility factor of SnSe. • Enhanced thermoelectric performance of SnSe doped with Copper.

  2. Specific risk factors and macroeconomic factor on profitability performance an empirical evidence of Top Glove Corporation Bhd

    OpenAIRE

    Loh, Choon Zhee

    2017-01-01

    The purpose of this study to conducted the overall performance of Top Glove Corporation with specific risk factors and macroeconomic factor on profitability performance. The data acquired from annual report of Top Glove Corporation starting from the year of 2011 until 2015. The measurement of liquidity ratio and operating ratio used to see the overall performance of Top Glove in 5 years which allegedly beyond benchmark. The additional measurement is the asset size, this variable has a negativ...

  3. Performance of Anidolic Daylighting Systems in tropical climates - Parametric studies for identification of main influencing factors

    Energy Technology Data Exchange (ETDEWEB)

    Linhart, Friedrich; Scartezzini, Jean-Louis [Solar Energy and Building Physics Laboratory (LESO-PB), Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne (Switzerland); Wittkopf, Stephen K. [School of Design and Environment, Department of Architecture, National University of Singapore, 4 Architecture Drive, Singapore 117566 (Singapore)

    2010-07-15

    Making daylight more available in buildings is highly desirable, not only for reasons of energy-efficiency, but also for improvement of occupants' health and well-being. Core-daylighting, that is daylight provision in areas situated at considerable distances from facades and windows, is currently one of the main challenges in sustainable building design. Anidolic Daylighting Systems (ADSs) are one very promising technology in the field of core-daylighting, but commercial solutions that are not only well-performing but also financially competitive are not yet widely available. This article presents results of parametric studies on Anidolic Integrated Ceilings (AICs), a special type of ADS, for identification of main influencing factors. The article describes a reliable method for simulating ADS and AIC performance under given sky conditions. Various simulation results for the example location Singapore are discussed in detail, it is concluded that the main influencing factors are coating material, system dimensions and external obstruction, and those influencing factors' potential impacts are quantified. It is shown that AIC overall efficiencies can reach up to almost 50% in Singapore. The essentially new results presented in this article can be of great help to architects, engineers and scientists in the future, when it comes to precisely dimensioning ADS for various buildings and daylight conditions. (author)

  4. Effect of Poisson's loss factor of rubbery material on underwater sound absorption of anechoic coatings

    Science.gov (United States)

    Zhong, Jie; Zhao, Honggang; Yang, Haibin; Yin, Jianfei; Wen, Jihong

    2018-06-01

    Rubbery coatings embedded with air cavities are commonly used on underwater structures to reduce reflection of incoming sound waves. In this paper, the relationships between Poisson's and modulus loss factors of rubbery materials are theoretically derived, the different effects of the tiny Poisson's loss factor on characterizing the loss factors of shear and longitudinal moduli are revealed. Given complex Young's modulus and dynamic Poisson's ratio, it is found that the shear loss factor has almost invisible variation with the Poisson's loss factor and is very close to the loss factor of Young's modulus, while the longitudinal loss factor almost linearly decreases with the increase of Poisson's loss factor. Then, a finite element (FE) model is used to investigate the effect of the tiny Poisson's loss factor, which is generally neglected in some FE models, on the underwater sound absorption of rubbery coatings. Results show that the tiny Poisson's loss factor has a significant effect on the sound absorption of homogeneous coatings within the concerned frequency range, while it has both frequency- and structure-dependent influence on the sound absorption of inhomogeneous coatings with embedded air cavities. Given the material parameters and cavity dimensions, more obvious effect can be observed for the rubbery coating with a larger lattice constant and/or a thicker cover layer.

  5. Association between socio-demographic, psychosocial, material and occupational factors and self-reported health among workers in Europe.

    Science.gov (United States)

    Schütte, Stefanie; Chastang, Jean-François; Parent-Thirion, Agnès; Vermeylen, Greet; Niedhammer, Isabelle

    2014-06-01

    The aim of this study was to explore the associations between socio-demographic, psychosocial, material and occupational factors and self-reported health (SRH) in the European working population. Another objective was to examine whether these associations varied according to occupation and country. This study was based on data from the European quality of life survey 2007 including 17,005 workers from 31 European countries. SRH was measured using a single item. Factors were classified into four different groups: socio-demographic, psychosocial, material and occupational factors. The associations between these factors and SRH were examined using multilevel logistic regression analyses including interaction tests. When all four groups of factors were studied together, age, occupation, urbanization level, origin, trust level, social exclusion, material deprivation, financial and neighbourhood problems, access to medical services, quality of public services, psychological job demands, job reward, work-life imbalance and dangerous/unhealthy working conditions were associated with poor SRH. Almost no differences were found in these associations according to occupation and country. Various factors were associated with poor SRH. This study gave a first European overview of the associations between socio-demographic, psychosocial, material and occupational factors and SRH in Europe and could provide better advice to policy-makers at a European level. © The Author 2013. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. High temperature material characterization and advanced materials development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. and others

    2005-03-01

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division

  7. Infrared Extinction Performance of Randomly Oriented Microbial-Clustered Agglomerate Materials.

    Science.gov (United States)

    Li, Le; Hu, Yihua; Gu, Youlin; Zhao, Xinying; Xu, Shilong; Yu, Lei; Zheng, Zhi Ming; Wang, Peng

    2017-11-01

    In this study, the spatial structure of randomly distributed clusters of fungi An0429 spores was simulated using a cluster aggregation (CCA) model, and the single scattering parameters of fungi An0429 spores were calculated using the discrete dipole approximation (DDA) method. The transmittance of 10.6 µm infrared (IR) light in the aggregated fungi An0429 spores swarm is simulated by using the Monte Carlo method. Several parameters that affect the transmittance of 10.6 µm IR light, such as the number and radius of original fungi An0429 spores, porosity of aggregated fungi An0429 spores, and density of aggregated fungi An0429 spores of the formation aerosol area were discussed. Finally, the transmittances of microbial materials with different qualities were measured in the dynamic test platform. The simulation results showed that the parameters analyzed were closely connected with the extinction performance of fungi An0429 spores. By controlling the value of the influencing factors, the transmittance could be lower than a certain threshold to meet the requirement of attenuation in application. In addition, the experimental results showed that the Monte Carlo method could well reflect the attenuation law of IR light in fungi An0429 spore agglomerates swarms.

  8. The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study.

    Science.gov (United States)

    Long, Linshuang; Ye, Hong

    2016-04-07

    A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials.

  9. Preliminary assessment of the performance of concrete as a structural material for alternative low-level radioactive waste disposal technologies

    International Nuclear Information System (INIS)

    MacKenzie, D.R.; Siskind, B.; Bowerman, B.S.; Piciulo, P.L.

    1986-12-01

    The objective of this study was to develop information needed to evaluate the long-term performance of concrete and reinforced concrete as a structural material for alternative LLW disposal methods. The capability to carry out such an evaluation is required for licensing a site which employs one of these alternative methods. The basis for achieving the study objective was the review and analysis of the literature on concrete and its properties, particularly its durability. In carrying out this program, criteria for evaluating performance of concrete and factors that can effect its performance were identified. The factors are both intrinsic, i.e., associated with composition of the concrete (and thus controllable), and extrinsic, i.e., due to external environmental forces such as climatic conditions and aggressive chemicals in the soil. A section of the report is devoted to the properties of coatings and their possible use in protecting concrete from chemical attack and enhancing its useful properties. The testing of concrete, using both accelerated tests and long-term non-accelerated tests, is discussed with special reference to its application to modeling of long-term performance prediction. On the basis of the study's results, minimum acceptance criteria are recommended as an aid in the licensing of disposal sites which make sure use of alternative methods

  10. Photopolymerized materials and patterning for improved performance of neural prosthetics

    Science.gov (United States)

    Tuft, Bradley William

    Neural prosthetics are used to replace or substantially augment remaining motor and sensory functions of neural pathways that were lost or damaged due to physical trauma, disease, or genetics. However, due to poor spatial signal resolution, neural prostheses fail to recapitulate the intimate, precise interactions inherent to neural networks. Designing materials and interfaces that direct de novo nerve growth to spatially specific stimulating elements is, therefore, a promising method to enhance signal specificity and performance of prostheses such as the successful cochlear implant (CI) and the developing retinal implant. In this work, the spatial and temporal reaction control inherent to photopolymerization was used to develop methods to generate micro and nanopatterned materials that direct neurite growth from prosthesis relevant neurons. In particular, neurite growth and directionality has been investigated in response to physical, mechanical, and chemical cues on photopolymerized surfaces. Spiral ganglion neurons (SGNs) serve as the primary neuronal model as they are the principal target for CI stimulation. The objective of the research is to rationally design materials that spatially direct neurite growth and to translate fundamental understanding of nerve cell-material interactions into methods of nerve regeneration that improve neural prosthetic performance. A rapid, single-step photopolymerization method was developed to fabricate micro and nanopatterned physical cues on methacrylate surfaces by selectively blocking light with photomasks. Feature height is readily tuned by modulating parameters of the photopolymerizaiton including initiator concentration and species, light intensity, separation distance from the photomask, and radiation exposure time. Alignment of neural elements increases significantly with increasing feature amplitude and constant periodicity, as well as with decreasing periodicity and constant amplitude. SGN neurite alignment strongly

  11. External factors influencing the environmental performance of South African firms

    CSIR Research Space (South Africa)

    Peart, R

    2001-01-01

    Full Text Available This article reviews the external factors that influence environmental performance of companies in South Africa, drawing on international and local literature. After considering factors within the natural, social, economic and institutional...

  12. MaMR: High-performance MapReduce programming model for material cloud applications

    Science.gov (United States)

    Jing, Weipeng; Tong, Danyu; Wang, Yangang; Wang, Jingyuan; Liu, Yaqiu; Zhao, Peng

    2017-02-01

    With the increasing data size in materials science, existing programming models no longer satisfy the application requirements. MapReduce is a programming model that enables the easy development of scalable parallel applications to process big data on cloud computing systems. However, this model does not directly support the processing of multiple related data, and the processing performance does not reflect the advantages of cloud computing. To enhance the capability of workflow applications in material data processing, we defined a programming model for material cloud applications that supports multiple different Map and Reduce functions running concurrently based on hybrid share-memory BSP called MaMR. An optimized data sharing strategy to supply the shared data to the different Map and Reduce stages was also designed. We added a new merge phase to MapReduce that can efficiently merge data from the map and reduce modules. Experiments showed that the model and framework present effective performance improvements compared to previous work.

  13. Template-free synthesis of renewable macroporous carbon via yeast cells for high-performance supercapacitor electrode materials.

    Science.gov (United States)

    Sun, Hongmei; He, Wenhui; Zong, Chenghua; Lu, Lehui

    2013-03-01

    The urgent need for sustainable development has forced material scientists to explore novel materials for next-generation energy storage devices through a green and facile strategy. In this context, yeast, which is a large group of single cell fungi widely distributed in nature environments, will be an ideal candidate for developing effective electrode materials with fascinating structures for high-performance supercapacitors. With this in mind, herein, we present the first example of creating three-dimensional (3D) interpenetrating macroporous carbon materials via a template-free method, using the green, renewable, and widespread yeast cells as the precursors. Remarkably, when the as-prepared materials are used as the electrode materials for supercapacitors, they exhibit outstanding performance with high specific capacitance of 330 F g(-1) at a current density of 1 A g(-1), and good stability, even after 1000 charge/discharge cycles. The approach developed in this work provides a new view of making full use of sustainable resources endowed by nature, opening the avenue to designing and producing robust materials with great promising applications in high-performance energy-storage devices.

  14. Nominal Performance Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Wasiolek

    2003-07-25

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2003 [DIRS 164186]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports (BSC 2003 [DIRS 160964]; BSC 2003 [DIRS 160965]; BSC 2003 [DIRS 160976]; BSC 2003 [DIRS 161239]; BSC 2003 [DIRS 161241]) contain detailed description of the model input parameters. This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs and conversion factors for the TSPA. The BDCFs will be used in performance assessment for calculating annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose from beta- and photon-emitting radionuclides.

  15. Activities concerning a re-evaluation of gamma-ray buildup factors in Japan

    International Nuclear Information System (INIS)

    Hirayama, Hideo

    2000-01-01

    Research related to gamma-ray buildup factors in Japan are continuing to improve in accuracy and usefulness after the publication of new standard buildup factors as NUREG/CR-5740. Buildup factors for homogeneous materials were studied by three different calculation methods. Several improvements were made to calculate buildup factors up to 40 mfp for various materials for a wide energy range at each code. Systematic data production of buildup factors for multilayer materials were performed by using the EGS4 Monte Carlo code, and were used to improve the fitting formula. These research activities related to gamma-ray buildup factors performed in Japan are presented together with discussions concerning re-evaluation of buildup factors. (author)

  16. Motivation factors affecting employees job performance in selected ...

    African Journals Online (AJOL)

    Motivation can be intrinsic, such as satisfaction and feelings of achievement; or extrinsic, such as rewards, punishment, and goal obtainment. The study assessed the motivating factors affecting the job performance of two oil palm companies' ...

  17. Factors influencing performance within startup assistance organizations

    Directory of Open Access Journals (Sweden)

    Ceaușu Ioana

    2017-07-01

    Full Text Available Startup assistance organizations, and especially business accelerators have gained a lot of traction in the last years, captioning not only the attention of the public, but most importantly that of investors and other stakeholders. It has become a challenge for many all around the world to develop such programs, but many have failed or did not have their expected results, meaning medium to long-term sustainable and profitable alumni start-ups. As high amounts of resources, both human and financial, are being invested in the design and development of such programs, it is important to understand what sets apart the successful business acceleration programs from the ones that fail. The current paper is reviewing the up-to-date theoretical literature and studies on the matter at hand, in order to identify the most relevant factors influencing startup assistance organizations’ performance. The objective behind identifying these factors is to get a better understanding of best practices of such successful programs and set the basis for future research regarding the development of a set of metrics for more accurately measuring their performance.

  18. Factors Contributing to SMEs Failure in Meeting Supplier Performance Standards

    Directory of Open Access Journals (Sweden)

    van Scheers Louise

    2016-01-01

    Full Text Available This study sought to determine the factors that contribute to the failure of small and medium enterprises (SMEs in meeting supplier performance standards. Suppliers are faced with the challenge of SMEs failing to meet supplier performance standards because they rely on these providers of products and services, mainly SMEs, for their operations and to ultimately achieve their mandate. The researchers were able to establish the main factors contributing to SME failure in meeting supplier performance standards. These are as follows: unclear specifications and terms of references from suppliers; insufficient information provided to SME suppliers to ensure understanding of requirements; insufficient feedback and support; no support of SME suppliers based on their Black Economic Empowerment (BEE status; limited or no use of business support programs by SME suppliers; and external factors such as access to finance, changes in the economy, and location.

  19. Understanding and control of optical performance from ceramic materials

    International Nuclear Information System (INIS)

    Barbour, J.C.; Knapp, J.A.; Potter, B.G.; Jennison, D.R.; Verdozzi, C.A.; Follstaedt, D.M.; Bendale, R.D.; Simmons, J.H.

    1998-06-01

    This report summarizes a two-year Laboratory-Directed Research and Development (LDRD) program to gain understanding and control of the important parameters which govern the optical performance of rare-earth (RE) doped ceramics. This LDRD developed the capability to determine stable atomic arrangements in RE doped alumina using local density functional theory, and to model the luminescence from RE-doped alumina using molecular dynamic simulations combined with crystal-field calculations. Local structural features for different phases of alumina were examined experimentally by comparing their photoluminescence spectra and the atomic arrangement of the amorphous phase was determined to be similar to that of the gamma phase. The luminescence lifetimes were correlated to these differences in the local structure. The design of both high and low-phonon energy host materials was demonstrated through the growth of Er-doped aluminum oxide and lanthanum oxide. Multicomponent structures of rare-earth doped telluride glass in an alumina and silica matrix were also prepared. Finally, the optical performance of Er-doped alumina was determined as a function of hydrogen content in the host matrix. This LDRD is the groundwork for future experimentation to understand the effects of ionizing radiation on the optical properties of RE-doped ceramic materials used in space and other radiation environments

  20. Factors Influencing Student Nurses' Performance in the Final ...

    African Journals Online (AJOL)

    Factors Influencing Student Nurses' Performance in the Final Practical Examination ... Staff development courses can be held to coordinate the work of the school ... to authentic individual nursing care of patients so that they use the individual ...

  1. Factors influencing the properties and performance of microcapsules for immunoprotection of pancreatic islets.

    Science.gov (United States)

    van Schilfgaarde, R; de Vos, P

    1999-01-01

    There are several approaches of immunoprotection of pancreatic islets for the purpose of successful allo- or xenotransplantation in the absence of immunosuppressive medication. Extravascular approaches are either macroencapsulation (large numbers of islets together in one device) or microencapsulation. The latter approach is to envelop each individual islet in a semipermeable immunoprotective capsule. Quite promising results have been achieved with polylysine-alginate microencapsulated islet grafts in rodents, but clinical application is still restricted to a very small number of cases. Relevant considerations regard the following aspects. The biocompatibility of the microcapsules is influenced by the chemical composition of the materials applied and by mechanical factors related to the production process. With purified instead of crude alginates, the percentage of capsules with fibrotic overgrowth is reduced to approximately ten percent, and the remaining overgrowth is mainly explained by mechanical factors, i.e. inadequate encapsulation of individual islets. Even with purified alginates, however, the duration of encapsulated graft function is limited to a period of six to twenty weeks. Obviously, other factors than bioincompatibility play a role, which factors have to be identified. The limited duration of graft survival cannot be explained by rejection since, in rats, survival times of encapsulated isografts are similar, if not identical, to those of encapsulated allografts. An important factor is probably insufficient nutrition as a consequence of insufficient blood supply of the encapsulated and thus isolated islet. This also influences the functional performance of encapsulated islet grafts. Although normoglycemia can be readily obtained in streptozotocin diabetic rat recipients, glucose tolerance remains severely impaired, as a consequence of an insufficient increase of insulin levels in response to intravenous or oral glucose challenge. Important factors

  2. Environmental performances of gas pipe materials

    International Nuclear Information System (INIS)

    Van Nifterik, G.

    1996-01-01

    In constructing new gas pipelines energy distribution companies are increasingly dealing with the question of which material has the lowest environmental impact. Gastec (Dutch gas research institute) and the 'Centrum voor Milieukunde Leiden' (Centre for Environmental Studies of the University of Leiden) studied and compared the environmental aspects of such materials. The study concerns the entire life cycle from raw materials production through digging and welding or fusion joining to the moment the materials are discarded as waste. 2 figs

  3. Enhancing the Performance of the Microwave Absorbing Materials by Using Dielectric Resonator Arrays

    Directory of Open Access Journals (Sweden)

    Omar H. Al-Zoubi

    2017-01-01

    Full Text Available We present a technique for enhancing the performance of microwave absorbing materials in terms of weight, thickness, and bandwidth. The introduced technique is based on fabricating the microwave absorbing (MA material in a structure comprised of an array of circular cylinder dielectric resonators (CDR backed by a perfect electric conductor (PEC ground plane. Numerical electromagnetic methods are employed to study the properties of the proposed MA array structures, where 3D full wave simulation using finite-element method is implemented. The obtained results show that the performance of the MA-CDR arrays significantly outperforms that of a flat layer composed of the same material and having equivalent thickness. A flat layer of MA material with thickness of 5 mm backed by perfect electric conductor (PEC shows as low as -50 dB reflection loss (RL peak and ~3 GHz 10-dB bandwidth, whereas an MA-CDR array, composed of the same MA material, of height of 4 mm can achieve as low as ~−50 dB RL peak and ~12 GHz 10-dB RL bandwidth.

  4. Improved Manufacturing Performance of Screen Printed Carbon Electrodes through Material Formulation.

    Science.gov (United States)

    Jewell, Eifion; Philip, Bruce; Greenwood, Peter

    2016-06-27

    Printed carbon graphite materials are the primary common component in the majority of screen printed sensors. Screen printing allows a scalable manufacturing solution, accelerating the means by which novel sensing materials can make the transition from laboratory material to commercial product. A common bottleneck in any thick film printing process is the controlled drying of the carbon paste material. A study has been undertaken which examines the interaction between material solvent, printed film conductivity and process consistency. The study illustrates that it is possible to reduce the solvent boiling point to significantly increase process productivity while maintaining process consistency. The lower boiling point solvent also has a beneficial effect on the conductivity of the film, reducing the sheet resistance. It is proposed that this is a result of greater film stressing increasing charge percolation through greater inter particle contact. Simulations of material performance and drying illustrate that a multi layered printing provides a more time efficient manufacturing method. The findings have implications for the volume manufacturing of the carbon sensor electrodes but also have implications for other applications where conductive carbon is used, such as electrical circuits and photovoltaic devices.

  5. Angiostatic factors in the pulmonary endarterectomy material from chronic thromboembolic pulmonary hypertension patients cause endothelial dysfunction.

    Directory of Open Access Journals (Sweden)

    Diana Zabini

    Full Text Available Chronic thromboembolic pulmonary hypertension (CTEPH is a rare disease with persistent thrombotic occlusion or stenosis of the large pulmonary arteries resulting in pulmonary hypertension. Surgical removal of the neointimal layer of these vessels together with the non-resolved thrombus consisting of organized collagen-rich fibrotic areas with partly recanalized regions is the treatment of choice (pulmonary endarterectomy, PEA. The present study investigates endothelial cells isolated from such material as well as factors present in the surgical PEA material, which may contribute to impairment of recanalization and thrombus non-resolution. We observed muscularized vessels and non-muscularized vessels in the PEA material. The isolated endothelial cells from the PEA material showed significantly different calcium homeostasis as compared to pulmonary artery endothelial cells (hPAECs from normal controls. In the supernatant (ELISA as well as on the tissue level (histochemical staining of the PEA material, platelet factor 4 (PF4, collagen type I and interferon-gamma-inducible 10 kD protein (IP-10 were detected. CXCR3, the receptor for PF4 and IP-10, was particularly elevated in the distal parts of the PEA material as compared to human control lung (RT-PCR. PF4, collagen type I and IP-10 caused significant changes in calcium homeostasis and affected the cell proliferation, migration and vessel formation in hPAECs. The presence of angiostatic factors like PF4, collagen type I and IP-10, as recovered from the surgical PEA material from CTEPH patients, may lead to changes in calcium homeostasis and endothelial dysfunction.

  6. Factors That Drive RTO Performance: An Overview. Synthesis Report

    Science.gov (United States)

    Misko, Josie

    2017-01-01

    This paper provides an overview of recent research on the factors that drive the performance of registered training organisations (RTOs), with a view to identifying areas for future research. Initially it explores the drivers of RTO performance; then discusses findings from available literature from Australia and from overseas, and discusses some…

  7. Energy absorption buildup factors for thermoluminescent dosimetric materials and their tissue equivalence

    DEFF Research Database (Denmark)

    Manohara, S.R.; Hanagodimath, S.M.; Gerward, Leif

    2010-01-01

    Gamma ray energy-absorption buildup factors were computed using the five-parameter geometric progression (G-P) fitting formula for seven thermoluminescent dosimetric (TLD) materials in the energy range 0.015-15 MeV, and for penetration depths up to 40 mfp (mean free path). The generated energy-absorption...

  8. Air-Filled Nanopore Based High-Performance Thermal Insulation Materials

    OpenAIRE

    Gangåssæter, Haakon Fossen; Jelle, Bjørn Petter; Alex Mofid, Sohrab; Gao, Tao

    2017-01-01

    State-of-the-art thermal insulation solutions like vacuum insulation panels (VIP) and aerogels have low thermal conductivity, but their drawbacks may make them unable to be the thermal insulation solutions that will revolutionize the building industry regarding energy-efficient building envelopes. Nevertheless, learning from these materials may be crucial to make new and novel high-performance thermal insulation products. This study presents a review on the state-of-the-art air-filled thermal...

  9. Probabilistic Multi-Factor Interaction Model for Complex Material Behavior

    Science.gov (United States)

    Abumeri, Galib H.; Chamis, Christos C.

    2010-01-01

    Complex material behavior is represented by a single equation of product form to account for interaction among the various factors. The factors are selected by the physics of the problem and the environment that the model is to represent. For example, different factors will be required for each to represent temperature, moisture, erosion, corrosion, etc. It is important that the equation represent the physics of the behavior in its entirety accurately. The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the external launch tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points - the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation, the data used were obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated. The problem lies in how to represent the divot weight with a single equation. A unique solution to this problem is a multi-factor equation of product form. Each factor is of the following form (1 xi/xf)ei, where xi is the initial value, usually at ambient conditions, xf the final value, and ei the exponent that makes the curve represented unimodal that meets the initial and final values. The exponents are either evaluated by test data or by technical judgment. A minor disadvantage may be the selection of exponents in the absence of any empirical data. This form has been used successfully in describing the foam ejected in simulated space environmental conditions. Seven factors were required

  10. Identifying influential factors of business process performance using dependency analysis

    Science.gov (United States)

    Wetzstein, Branimir; Leitner, Philipp; Rosenberg, Florian; Dustdar, Schahram; Leymann, Frank

    2011-02-01

    We present a comprehensive framework for identifying influential factors of business process performance. In particular, our approach combines monitoring of process events and Quality of Service (QoS) measurements with dependency analysis to effectively identify influential factors. The framework uses data mining techniques to construct tree structures to represent dependencies of a key performance indicator (KPI) on process and QoS metrics. These dependency trees allow business analysts to determine how process KPIs depend on lower-level process metrics and QoS characteristics of the IT infrastructure. The structure of the dependencies enables a drill-down analysis of single factors of influence to gain a deeper knowledge why certain KPI targets are not met.

  11. Performance ratings and personality factors in radar controllers.

    Science.gov (United States)

    1970-09-01

    The purpose of the study was to determine whether primary or second-order personality questionnaire factors were related to job performance ratings on the Employee Appraisal Record in a sample of 264 radar controllers. A Pearson correlation matrix wa...

  12. Stress Intensity Factors of Slanted Cracks in Bi-Material Plates

    Science.gov (United States)

    Ismail, Al Emran; Azhar Kamarudin, Kamarul; Nor, Nik Hisyamudin Muhd

    2017-10-01

    In this study, the stress intensity factors (SIF) of slanted cracks in bi-material plates subjected to mode I loading is numerically solved. Based on the literature survey, tremendous amount of research works are available studying the normal cracks in both similar and dissimilar plates. However, lack of SIF behavior for slanted cracks especially when it is embedded in bi-material plates. The slanted cracks are then modelled numerically using ANSYS finite element program. Two plates of different in mechanical properties are firmly bonded obliquely and then slanted edge cracks are introduced at the lower inclined edge. Isoparametric singular element is used to model the crack tip and the SIF is determined which is based on the domain integral method. Three mechanical mismatched and four slanted angles are used to model the cracks. According to the present results, the effects of mechanical mismatch on the SIF for normal cracks are not significant. However, it is played an important role when slanted angles are introduced. It is suggested that higher SIF can be obtained when the cracks are inclined comparing with the normal cracks. Consequently, accelerating the crack growth at the interface between two distinct materials.

  13. The effects of glucose dose and dual-task performance on memory for emotional material.

    Science.gov (United States)

    Brandt, Karen R; Sünram-Lea, Sandra I; Jenkinson, Paul M; Jones, Emma

    2010-07-29

    Whilst previous research has shown that glucose administration can boost memory performance, research investigating the effects of glucose on memory for emotional material has produced mixed findings. Whereas some research has shown that glucose impairs memory for emotional material, other research has shown that glucose has no effect on emotional items. The aim of the present research was therefore to provide further investigation of the role of glucose on the recognition of words with emotional valence by exploring effects of dose and dual-task performance, both of which affect glucose facilitation effects. The results replicated past research in showing that glucose administration, regardless of dose or dual-task conditions, did not affect the memorial advantage enjoyed by emotional material. This therefore suggests an independent relationship between blood glucose levels and memory for emotional material. Copyright 2010 Elsevier B.V. All rights reserved.

  14. How the relative permittivity of solar cell materials influences solar cell performance

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Huss-Hansen, Mathias K.; Hansen, Ole

    2017-01-01

    of the materials permittivity on the physics and performance of the solar cell by means of numerical simulation supported by analytical relations. We demonstrate that, depending on the specific solar cell configuration and materials properties, there are scenarios where the relative permittivity has a major......The relative permittivity of the materials constituting heterojunction solar cells is usually not considered as a design parameter when searching for novel combinations of heterojunction materials. In this work, we investigate the validity of such an approach. Specifically, we show the effect...... the heterojunction partner has a high permittivity, solar cells are consistently more robust against several non-idealities that are especially likely to occur in early-stage development, when the device is not yet optimized....

  15. Surgeons' performance determining the amount of graft material for sinus floor augmentation using tomography

    International Nuclear Information System (INIS)

    Cruz, Adriana Dibo; Peixoto, Guilherme Alvares; Aguiar, Marcelo Freitas; Camargo, Gabriela Alessandra Cruz Galhardo; Homs, Nicolas

    2017-01-01

    This study aimed to assess the performance of surgeons in determining the amount of graft material required for maxillary sinus floor augmentation in a preoperative analysis using cone-beam computed tomography images. A convenience sample of 10 retrospective CBCT exams (i-CAT®) was selected. Scans of the posterior maxilla area with an absence of at least one tooth and residual alveolar bone with an up to 5 mm height were used. Templates (n=20) contained images of representative cross-sections in multiplanar view. Ten expert surgeons voluntarily participated as appraisers of the templates for grafting surgical planning of a 10 mm long implant. Appraisers could choose a better amount of graft material using scores: 0) when considered grafting unnecessary, 1) for 0.25 g in graft material, 2) for 0.50 g, 3) for 1.00 g and 4) for 1.50 g or more. Reliability of the response pattern was analyzed using Cronbach's α. Wilcoxon and Mann-Whitney tests were performed to compare scores. Regression analysis was performed to evaluate whether the volume of sinuses (mm"3) influenced the choose of scores. In the reliability analysis, all values were low and the score distribution was independent of the volume of the maxillary sinuses (p>0.05), which did not influence choosing the amount of graft material. Surgeons were unreliable to determine the best amount of graft material for the maxillary sinus floor augmentation using only CBCT images. Surgeons require auxiliary diagnostic tools to measure the volume associated to CBCT exams in order to perform better. (author)

  16. Visuospatial ability factors and performance variables in laparoscopic simulator training

    NARCIS (Netherlands)

    Luursema, J.M.; Verwey, Willem B.; Burie, Remke

    2012-01-01

    Visuospatial ability has been shown to be important to several aspects of laparoscopic performance, including simulator training. Only a limited subset of visuospatial ability factors however has been investigated in such studies. Tests for different visuospatial ability factors differ in stimulus

  17. Piezoelectric PVDF materials performance and operation limits in space environments

    International Nuclear Information System (INIS)

    Dargaville, Tim Richard; Assink, Roger Alan; Clough, Roger Lee; Celina, Mathias Christopher

    2004-01-01

    Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, gamma, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using gamma- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies

  18. Evaluation of the environmental, material, and structural performance of recycled aggregate concrete

    Science.gov (United States)

    Michaud, Katherine Sarah

    Concrete is the most commonly used building material in the construction industry, and contributes to 52% of construction and demolition waste in Canada. Recycled concrete aggregate (RCA) is one way to reduce this impact. To evaluate the performance of coarse and granular (fine and coarse) RCA in structural concrete applications, four studies were performed: an environmental assessment, a material testing program, a shear performance study, and a flexural performance study. To determine the environmental benefits of recycled aggregate concrete (RAC), three case studies were investigated using different populations and proximities to city centres. Environmental modelling suggested that RCA replacement could result in energy savings and greenhouse gas emission reductions, especially in remote areas. Tests were performed to determine if the volumetric replacement of up to 30% coarse RCA and 20% granular RCA is suitable for structural concrete applications in Canada. Fresh, hardened, and durability properties were evaluated. All five (5) of the RCA mixes showed equivalent material performance to the control mixes and met the requirements for a structural concrete mix. The five (5) RAC mixes were also used in structural testing. One-way reinforced concrete slab specimens were tested to failure to evaluate the shear and flexural performance of the RAC members. Peak capacities of and crack formation within each member were analyzed to evaluate the performance of RAC compared to conventional concrete. The shear capacity of specimens made from four (4) of the five (5) RAC mixtures was higher or equivalent to the control specimens. Specimens of the concrete mixture containing the highest content of recycled aggregate, 20% volumetric replacement of granular RCA, had shear capacities 14.1% lower, and exhibited cracking at lower loads than the control. The average flexural capacities of all RAC specimens were within 3.7% of the control specimens. Results from this research

  19. Climate Classification is an Important Factor in ­Assessing Hospital Performance Metrics

    Science.gov (United States)

    Boland, M. R.; Parhi, P.; Gentine, P.; Tatonetti, N. P.

    2017-12-01

    Context/Purpose: Climate is a known modulator of disease, but its impact on hospital performance metrics remains unstudied. Methods: We assess the relationship between Köppen-Geiger climate classification and hospital performance metrics, specifically 30-day mortality, as reported in Hospital Compare, and collected for the period July 2013 through June 2014 (7/1/2013 - 06/30/2014). A hospital-level multivariate linear regression analysis was performed while controlling for known socioeconomic factors to explore the relationship between all-cause mortality and climate. Hospital performance scores were obtained from 4,524 hospitals belonging to 15 distinct Köppen-Geiger climates and 2,373 unique counties. Results: Model results revealed that hospital performance metrics for mortality showed significant climate dependence (psocioeconomic factors. Interpretation: Currently, hospitals are reimbursed by Governmental agencies using 30-day mortality rates along with 30-day readmission rates. These metrics allow Government agencies to rank hospitals according to their `performance' along these metrics. Various socioeconomic factors are taken into consideration when determining individual hospitals performance. However, no climate-based adjustment is made within the existing framework. Our results indicate that climate-based variability in 30-day mortality rates does exist even after socioeconomic confounder adjustment. Use of standardized high-level climate classification systems (such as Koppen-Geiger) would be useful to incorporate in future metrics. Conclusion: Climate is a significant factor in evaluating hospital 30-day mortality rates. These results demonstrate that climate classification is an important factor when comparing hospital performance across the United States.

  20. Effect of Coversheet Materials on the Acoustic Performance of Melamine Foam

    Science.gov (United States)

    McNelis, Anne M.; Hughes, William O.

    2015-01-01

    Melamine foam is a highly absorptive material that is often used inside the payload fairing walls of a launch vehicle. This foam reduces the acoustic excitation environment that the spacecraft experiences during launch. Often, the melamine foam is enclosed by thin coversheet materials for contamination protection, thermal protection, and electrostatic discharge control. Previous limited acoustic testing by NASA Glenn Research Center has shown that the presence of a coversheet material on the melamine foam can have a significant impact on the absorption coefficient and the transmission loss. As a result of this preliminary finding a more extensive acoustic test program using several different coversheet materials on melamine foam was performed. Those test results are summarized in this paper. Additionally, a method is provided to use the acoustic absorption and transmission loss data obtained from panel level testing to predict their combined effect for the noise reduction of a launch vehicle payload fairing.

  1. Factors associated with academic performance in psychology students of UNMSM

    OpenAIRE

    García Ampudia, Lupe; Orellana Manrique, Oswaldo; Canales Quevedo, Isaac

    2014-01-01

    In the present job is studied the factors related to the academic performance in to university group of students of the Faculty of Psychology of the UN MSM, among the factors has been considered the motivation, the strategies of learning and the self-esteem and in it pertaining to the academic performance the average of notices there is been considered obtained by the students in the three first cycles of study. The sample studied was constituted by the ingresantes in the year 1,999 to the Fa...

  2. Repository seal materials performance for a SALT Repository Project 5-year code/model development plan: Draft

    International Nuclear Information System (INIS)

    1987-06-01

    This document describes an integrated laboratory testing and model development effort for the seal system for a high-level nuclear waste repository in salt. The testing and modeling efforts are designed to determine seal material response in the repository environment, to provide models of seal system components for performance assessment, and to assist in the development of seal system designs. A code/model development and performance analysis program will be performed to predict the short- and long-term response of seal materials and seal components. The results from these analyses will be used to support the material testing activities on this contract and to support performance assessment activities that are conducted in other parts of the Salt Repository Project (SRP). 48 refs., 15 figs., 4 tabs

  3. 10 CFR 73.25 - Performance capabilities for physical protection of strategic special nuclear material in transit.

    Science.gov (United States)

    2010-01-01

    ... strategic special nuclear material in transit. 73.25 Section 73.25 Energy NUCLEAR REGULATORY COMMISSION... Transit § 73.25 Performance capabilities for physical protection of strategic special nuclear material in transit. (a) To meet the general performance objective and requirements of § 73.20 an in-transit physical...

  4. Performances of some low-cost counter electrode materials in CdS and CdSe quantum dot-sensitized solar cells.

    Science.gov (United States)

    Jun, Hieng Kiat; Careem, Mohamed Abdul; Arof, Abdul Kariem

    2014-02-10

    Different counter electrode (CE) materials based on carbon and Cu2S were prepared for the application in CdS and CdSe quantum dot-sensitized solar cells (QDSSCs). The CEs were prepared using low-cost and facile methods. Platinum was used as the reference CE material to compare the performances of the other materials. While carbon-based materials produced the best solar cell performance in CdS QDSSCs, platinum and Cu2S were superior in CdSe QDSSCs. Different CE materials have different performance in the two types of QDSSCs employed due to the different type of sensitizers and composition of polysulfide electrolytes used. The poor performance of QDSSCs with some CE materials is largely due to the lower photocurrent density and open-circuit voltage. The electrochemical impedance spectroscopy performed on the cells showed that the poor-performing QDSSCs had higher charge-transfer resistances and CPE values at their CE/electrolyte interfaces.

  5. Performance evaluation of DAAF as a booster material using the onionskin test

    Energy Technology Data Exchange (ETDEWEB)

    Morris, John S [Los Alamos National Laboratory; Francois, Elizabeth G [Los Alamos National Laboratory; Hooks, Daniel E [Los Alamos National Laboratory; Hill, Larry G [Los Alamos National Laboratory; Harry, Herbert H [Los Alamos National Laboratory

    2010-12-02

    Initiation of insensitive high explosive (IHE) formulations requires the use of a booster explosive in the initiation train. Booster material selection is crucial, as the initiation must reliably function across some spectrum of physical parameters. The interest in Diaminoazoxyfurazan (DAAF) for this application stems from the fact that it possesses many traits of an IHE but is shock sensitive enough to serve as an explosive booster. A hemispherical wave breakout test, termed the onionskin test, is one of the methods used to evaluate the performance of a booster material. The wave breakout time-position history at the surface of a hemispherical IHE charge is recorded and the relative uniformity of the breakout can be quantitatively compared between booster materials. A series of onionskin tests were performed to investigate breakout and propagation diaminoazoxyfurazan (DAAF) at low temperatures to evaluate ignition and detonation spreading in comparison to other explosives commonly used in booster applications. Some wave perturbation was observed with the DAAF booster in the onionskin tests presented. The results of these tests will be presented and discussed.

  6. Moisture performance of building materials: From material characterization to building simulation using the Moisture Buffer Value concept

    Energy Technology Data Exchange (ETDEWEB)

    Abadie, Marc Olivier [Mechanical Engineering Graduate Program, Pontifical Catholic University of Parana, PUC-PR/CCET, Curitiba, PR 80215-901 (Brazil); LEPTAB, University of La Rochelle, La Rochelle, 17042 Cedex 1 (France); Mendonca, Katia Cordeiro [Mechanical Engineering Graduate Program, Pontifical Catholic University of Parana, PUC-PR/CCET, Curitiba, PR 80215-901 (Brazil)

    2009-02-15

    Predicting the indoor air relative humidity evolution is of great importance to evaluate people thermal comfort, perceived air quality and energy consumption. In building environments, porous materials of the envelope and furniture act on the indoor air humidity by reducing its variations. Solving the physical processes involved inside the porous materials requires the knowledge of the material hygrothermal properties that needs multiple and, for some of them, time-consuming experimental procedures. Recently, both the NORDTEST Project and Japanese Industrial Standard described a new Moisture Buffer Capacity index that accounts for surrounding air vapor concentration variation. The Moisture Buffer Value (MBV) indicates the amount of water vapor that is transported in or out of a material, during a certain period of time, when the vapor concentration of the surrounding air varies. The MBV evaluation requires only one experimental procedure and its value permits a direct comparison of the building materials moisture performance. However, two limitations can be distinguished: first, no relation between the MBV and the usual material hygrothermal properties has been clearly identified and second, no model has been proposed to actually use the MBV in building simulation. The present study aims to solve these two problems. First, the MBV fundamentals are introduced and discussed; followed by its relation with the usual material properties. Then, a lumped model for building simulation, whose parameters can be determined from the MBV experimental procedure, is described. To finish, examples of the use of this MBV-based lumped model for moisture prediction in buildings are presented. (author)

  7. Evaluation of disposal site geochemical performance using a containment factor

    International Nuclear Information System (INIS)

    Lerman, A.; Domenico, P.A.; Bartlett, J.W.

    1988-01-01

    The containment factor is a measure of retention by geologic setting of wastes released from a repository. The factor is alternatively defined either in terms of several measurable hydrological and geochemical parameters, or in terms of amounts of waste components that may be released to the geologic setting and, subsequently, to the environment. Containment factors for individual waste components in a given geologic setting are functions of groundwater to rock volume ratios, sorption or exchange characteristics of the rocks, and containment time to groundwater travel time ratios. For high-level radioactive wastes, containment factors based on the NRC and EPA limit values for cumulative releases from waste and to the environment provide a measure of the geochemical performance of the geologic setting in tuff, basalt, and salt. The containment factor values for individual nuclides from high-level wastes indicate that for some of the nuclides containment may be achieved by groundwater travel time along. For other nuclides, additional performance functions need to be allocated to geochemical retention by such processes as sorption, ion-exchange or precipitation

  8. Thermal Performance and Reliability Characterization of Bonded Interface Materials (BIMs): Preprint

    Energy Technology Data Exchange (ETDEWEB)

    DeVoto, D.; Paret, P.; Mihalic, M.; Narumanchi, S.; Bar-Cohen, A.; Matin, K.

    2014-08-01

    Thermal interface materials are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistivity (< 1 mm2K/W). However, BIMs induce thermomechanical stresses in the package and can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. DARPA's Thermal Management Technologies program has addressed this challenge, supporting the development of mechanically-compliant, low resistivity nano-thermal interface (NTI) materials. In this work, we describe the testing procedure and report the results of NREL's thermal performance and reliability characterization of an initial sample of four different NTI-BIMs.

  9. Hierarchical porous carbon materials derived from petroleum pitch for high-performance supercapacitors

    Science.gov (United States)

    Abudu, Patiman; Wang, Luxiang; Xu, Mengjiao; Jia, Dianzeng; Wang, Xingchao; Jia, Lixia

    2018-06-01

    In this work, a honeycomb-like carbon material derived from petroleum pitch was synthesized by a simple one-step carbonization/activation method using silica nanospheres as the hard templates. The obtained hierarchical porous carbon materials (HPCs) with a large specific surface area and uniform macropore distribution provide abundant active sites and sufficient ion migration channels. When used as an electrode material for supercapacitors, the HPCs exhibit a high specific capacitance of 341.0 F g-1 at 1 A g-1, excellent rate capability with a capacitance retention of 55.6% at 50 A g-1 (189.5 F g-1), and outstanding cycling performance in the three-electrode system.

  10. Development of Separation Materials Containing Palladium for Hydrogen Isotopes Separation

    International Nuclear Information System (INIS)

    Deng Xiaojun; Luo Deli; Qian Xiaojing

    2010-01-01

    Displacement chromatography (DC) is a ascendant technique for hydrogen isotopes separation. The performance of separation materials is a key factor to determine the separation effect of DC. At present,kinds of materials are researched, including palladium materials and non-palladium materials. It is hardly replaceable because of its excellent separation performance, although palladium is expensive. The theory of hydrogen isotopes separation using DC was introduced at a brief manner, while several palladium separation materials were expatiated in detail(Pd/K, Pd-Al 2 O 3 , Pd-Pt alloy). Development direction of separation materials for DC was forecasted elementarily. (authors)

  11. Assessing the Effects of Different Multimedia Materials on Emotions and Learning Performance for Visual and Verbal Style Learners

    Science.gov (United States)

    Chen, Chih-Ming; Sun, Ying-Chun

    2012-01-01

    Multimedia materials are now increasingly used in curricula. However, individual preferences for multimedia materials based on visual and verbal cognitive styles may affect learners' emotions and performance. Therefore, in-depth studies that investigate how different multimedia materials affect learning performance and the emotions of learners…

  12. Laboratory-performance criteria for in situ waste-stabilization materials

    International Nuclear Information System (INIS)

    Shaw, P.; Weidner, J.

    1996-01-01

    The Department of Energy (DOE) Landfill Stabilization Focus Area is investigating a variety of in situ placement methods, grout materials, and characterization techniques for the stabilization of buried low-level transuranic-contaminated waste at Department of Energy sites. In situ stabilization involves underground injection or placement of substances to isolate, treat, or contain buried contaminants. Performance criteria were developed to evaluate various candidate stabilization materials for both long-term stabilization and interim stabilization or retrieval. The criteria are go/no-go, ready, and preliminary. The criterion go/no-go eliminates technologies that are not applicable for in situ treatment of buried waste. The criterion ready indicates that the technology is sufficiently developed and proven to be field demonstrated full-scale. The criterion preliminary indicates the prospective technologies to be potentially applicable to in situ buried waste stabilization, but further development is needed before the technology is ready for field-scale demonstration

  13. Corrosion resistance of high-performance materials titanium, tantalum, zirconium

    CERN Document Server

    2012-01-01

    Corrosion resistance is the property of a material to resist corrosion attack in a particular aggressive environment. Although titanium, tantalum and zirconium are not noble metals, they are the best choice whenever high corrosion resistance is required. The exceptionally good corrosion resistance of these high–performance metals and their alloys results from the formation of a very stable, dense, highly adherent, and self–healing protective oxide film on the metal surface. This naturally occurring oxide layer prevents chemical attack of the underlying metal surface. This behavior also means, however, that high corrosion resistance can be expected only under neutral or oxidizing conditions. Under reducing conditions, a lower resistance must be reckoned with. Only very few inorganic and organic substances are able to attack titanium, tantalum or zirconium at ambient temperature. As the extraordinary corrosion resistance is coupled with an excellent formability and weldability these materials are very valua...

  14. Estimation of raw material performance in mammalian cell culture using near infrared spectra combined with chemometrics approaches.

    Science.gov (United States)

    Lee, Hae Woo; Christie, Andrew; Liu, Jun Jay; Yoon, Seongkyu

    2012-01-01

    Understanding variability in raw materials and their impacts on product quality is of critical importance in the biopharmaceutical manufacturing processes. For this purpose, several spectroscopic techniques have been studied for raw material characterization, providing fast and nondestructive ways to measure quality of raw materials. However, investigations of correlation between spectra of raw materials and cell culture performance have been scarce due to their complexity and uncertainty. In this study, near-infrared spectra and bioassays of multiple soy hydrolysate lots manufactured by different vendors were analyzed using chemometrics approaches in order to address variability of raw materials as well as correlation between raw material properties and corresponding cell culture performance. Principal component analysis revealed that near-infrared spectra of different soy lots contain enough physicochemical information about soy hydrolysates to allow identification of lot-to-lot variability as well as vendor-to-vendor differences. The identified compositional variability was further analyzed in order to estimate cell growth and protein production of two mammalian cell lines under the condition of varying soy dosages using partial least square regression combined with optimal variable selection. The performance of the resulting models demonstrates the potential of near-infrared spectroscopy as a robust lot selection tool for raw materials while providing a biological link between chemical composition of raw materials and cell culture performance. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  15. Influence of Workpiece Material on Tool Wear Performance and Tribofilm Formation in Machining Hardened Steel

    Directory of Open Access Journals (Sweden)

    Junfeng Yuan

    2016-04-01

    Full Text Available In addition to the bulk properties of a workpiece material, characteristics of the tribofilms formed as a result of workpiece material mass transfer to the friction surface play a significant role in friction control. This is especially true in cutting of hardened materials, where it is very difficult to use liquid based lubricants. To better understand wear performance and the formation of beneficial tribofilms, this study presents an assessment of uncoated mixed alumina ceramic tools (Al2O3+TiC in the turning of two grades of steel, AISI T1 and AISI D2. Both workpiece materials were hardened to 59 HRC then machined under identical cutting conditions. Comprehensive characterization of the resulting wear patterns and the tribofilms formed at the tool/workpiece interface were made using X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy. Metallographic studies on the workpiece material were performed before the machining process and the surface integrity of the machined part was investigated after machining. Tool life was 23% higher when turning D2 than T1. This improvement in cutting tool life and wear behaviour was attributed to a difference in: (1 tribofilm generation on the friction surface and (2 the amount and distribution of carbide phases in the workpiece materials. The results show that wear performance depends both on properties of the workpiece material and characteristics of the tribofilms formed on the friction surface.

  16. Research on optimizing components of microfine high-performance composite cementitious materials

    International Nuclear Information System (INIS)

    Hu Shuguang; Guan Xuemao; Ding Qingjun

    2002-01-01

    The relationship between material components and mechanical properties was studied in terms of composite material principles and orthogonal experimental design. Moreover, the microstructure of microfine high-performance composite cementitious material (MHPCC) paste was investigated by means of scanning electron microscopy (SEM) methods. The results showed that the composite material consisting of blast furnace slag (BFS), gypsum (G 2 ) and expansive agent (EA) could obviously improve the strength of the cementitious material containing 40% fly ash (FA). Although microfine cement (MC) was merely 45% percent of the MHPCC, the compressive strength of MHPCC paste was higher than that of neat MC paste. BFS played an important role in MHPCC. The optimum-added quantity of BFS was 15%. The needle-shaped ettringite obtained from the EA reacting with Ca(OH) 2 forms a three-dimensional network structure, which not only improved the early strength of MHPCC paste but also increased its late strength. The reason was that the network structure, which was similar to a fiber-reinforced composite, was formed in the late period of hydration with the progress of hydration and the deposition of hydration products into the network structure

  17. Mechanical performance optimization of neutron shielding material based on short carbon fiber reinforced B4C/epoxy resin

    International Nuclear Information System (INIS)

    Wang Peng; Tang Xiaobin; Chen Feida; Chen Da

    2013-01-01

    To satisfy engineering requirements for mechanics performance of neutron shielding material, short carbon fiber was used to reinforce the traditional containing B 4 C neutron shielding material and effects of fiber content, length and surface treatment to mechanics performance of material was discussed. Based on Americium-Beryllium neutron source, material's neutron shielding performance was tested. The result of experiment prove that tensile strength of material which the quality ratio of resin and fiber is 5:1 is comparatively excellent for 10wt% B 4 C of carbon fiber reinforced epoxy resin. The tensile properties of material change little with the fiber length ranged from 3-10 mm The treatment of fiber surface with silane coupling agent KH-550 can increase the tensile properties of materials by 20% compared with the untreated of that. A result of shielding experiment that the novel neutron shielding material can satisfy the neutron shielding requirements can be obtained by comparing with B 4 C/polypropylene materials. The material has good mechanical properties and wide application prospect. (authors)

  18. Factor analysis of financial and operational performance measures of non-profit hospitals.

    Science.gov (United States)

    Das, Dhiman

    2009-01-01

    To understand the important dimensions of the financial and operational performance of non-profit hospitals. Secondary data for non-profit US hospitals between 1996 and 2004. I use iterative principal factor analysis of hospitals' financial and operational ratios for each year of the study. For factor interpretation, I use oblique rotation. Financial ratios were created using cost report data from HCRIS 2552-96 available from the Centers for Medicaid & Medicare Services (CMS). I identify five factors--capital structure, profitability, activity, liquidity, and an operational factor--that explain most of the variation in the performance of non-profit hospitals. I also find that capital structure is more important than profitability in determining the performance of these hospitals. The importance of capital structure highlights a significant shift in the organization of the non-profit hospitals' finances.

  19. Detecting nuclear materials smuggling: performance evaluation of container inspection policies.

    Science.gov (United States)

    Gaukler, Gary M; Li, Chenhua; Ding, Yu; Chirayath, Sunil S

    2012-03-01

    In recent years, the United States, along with many other countries, has significantly increased its detection and defense mechanisms against terrorist attacks. A potential attack with a nuclear weapon, using nuclear materials smuggled into the country, has been identified as a particularly grave threat. The system for detecting illicit nuclear materials that is currently in place at U.S. ports of entry relies heavily on passive radiation detectors and a risk-scoring approach using the automated targeting system (ATS). In this article we analyze this existing inspection system and demonstrate its performance for several smuggling scenarios. We provide evidence that the current inspection system is inherently incapable of reliably detecting sophisticated smuggling attempts that use small quantities of well-shielded nuclear material. To counter the weaknesses of the current ATS-based inspection system, we propose two new inspection systems: the hardness control system (HCS) and the hybrid inspection system (HYB). The HCS uses radiography information to classify incoming containers based on their cargo content into "hard" or "soft" containers, which then go through different inspection treatment. The HYB combines the radiography information with the intelligence information from the ATS. We compare and contrast the relative performance of these two new inspection systems with the existing ATS-based system. Our studies indicate that the HCS and HYB policies outperform the ATS-based policy for a wide range of realistic smuggling scenarios. We also examine the impact of changes in adversary behavior on the new inspection systems and find that they effectively preclude strategic gaming behavior of the adversary. © 2011 Society for Risk Analysis.

  20. Factors in the selection of broiler tube materials for a civil fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tyzack, C; Chitty, A

    1975-07-01

    This paper briefly considers some of the factors which must be balanced in the selection of a boiler tube material for a Civil Fast Reactor. The merits and possible demerits of low alloy ferritic steels and the austenitic Alloy 800 are compared with respect to waterside corrosion resistance, mechanical properties, fabrication and weldability and possible effects of exposure to the sodium environment under normal and fault conditions. It is pointed out that although there is operational experience of most of the materials in boiler superheater applications there is little or none in evaporative regimes. (author)

  1. A high performance scientific cloud computing environment for materials simulations

    OpenAIRE

    Jorissen, Kevin; Vila, Fernando D.; Rehr, John J.

    2011-01-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including...

  2. Nominal Performance Biosphere Dose Conversion Factor Analysis

    International Nuclear Information System (INIS)

    M.A. Wasiolek

    2005-01-01

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standards. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' (Figure 1-1). The objectives of this analysis are to develop BDCFs for the

  3. Research Performance of Higher Education Institutions: A Review on the Measurements and Affecting Factors of Research Performance

    Directory of Open Access Journals (Sweden)

    Oya TAMTEKİN AYDIN

    2017-08-01

    Full Text Available Recently, the increasing competition in higher education has attracted attention by many researchers. They have emphasized that the aim of the growing competition between universities is to increase the number of students, the research performance and get research support, find qualified faculty members, and receive financial contributions. This paper aims to draw attention to “research performance” which is a significant part of the competition among the universities. In connection with this goal, the study tries to outline the results of an extensive literature review in the field of higher education research performance. Firstly, literature regarding research performance, its definition as a concept, and its indicators are discussed. Then, the factors influencing research performance are presented in a comprehensive manner. At the end of the study, a conceptual framework that will be useful for all university staff is provided. Understanding the concept of research performance and the factors affecting research performance can help relevant authorities improve their current positions.

  4. An Initial Investigation of Factors Affecting Multi-Task Performance

    National Research Council Canada - National Science Library

    Branscome, Tersa A; Swoboda, Jennifer C; Fatkin, Linda T

    2007-01-01

    This report presents the results of the first in a series of investigations designed to increase fundamental knowledge and understanding of the factors affecting multi-task performance in a military environment...

  5. Material Selection for Competition–A Case Study for Air Coolers

    Directory of Open Access Journals (Sweden)

    Luma A. H. Al Kindi

    2018-02-01

    Full Text Available Competition is one of the most important challenges that is facing the marketing of industrial products in today's markets. In this research study of the impact of material selection factor for air coolers of different materials is applied. Investigation on the air cooler windows which are part of the body of air coolers is conducted. Corrosion resistance, thermal conductivity, strength of material, weight, shape, cost and manufacturing process are the factors that are applied and calculated on three types of materials Aluminum, Galvanized steel and polypropylene. The physical properties of the three mentioned materials are used to calculate Merit Index .The corrosion average, according to Tafel Method depending the corrosion current and adopting contactors for the anodic and cathodic metals behaviors is performed. ANSYS is adopted using the three samples for the selected materials Aluminum, Galvanized steel and polypropylene to measure maximum stress and deflection are measured. Accordingly, the results are compared to choose the best alternative. It is observed that the polypropylene is the best choice depending three factors while the aluminum material is better depending two factors and the galvanized steel is regarded as the best in only one factor, the rest factors are identical when choosing  an alternative material for manufacturing the air cooler windows.

  6. Utilization of Additive Manufacturing in Evaluating the Performance of Internally Defected Materials

    Science.gov (United States)

    Mourad, A.-H. I.; Ghazal, A. M.; Syam, M. M.; Qadi, O. D. Al; Jassmi, H. Al

    2018-05-01

    The elimination of internal defects in a material present in the raw material or generated during the manufacturing or service is difficult. The inclusions of the defects have an adverse effect on the load bearing capacity. The presence of the cracks subjected to a specific orientation in materials or machinery can cause devastating unexpected failure during operation. Analysis of the failure in the components with cracks is more confined to analytical and numerical evaluation. The experimental evaluation has been tedious due to the complexity of replicating the actual defected component. The potential of additive manufacturing in developing user-defined components with cracks for the experimental evaluation is explored in this research. The present research investigated the effect of the internal elliptical cracks aligned at different orientations on the mechanical performance of polylactic acid (Green filament). The Fusion Deposition Method was utilized for the development of the standard tensile specimens with internal elliptical crack oriented at 0°, 45° and 90° using UltiMaker 2. The results proved that there is a considerable reduction in the load bearing capacity due to the presence of the cracks. The maximum load bearing capacity decreased by 15.01% for the specimen with crack inclined at 0° to the lateral axis compared to crack- free specimen. The nature of the fracture and the stress-strain graph evidently showcase the brittle nature of the material. The SEM image of the fractured region proved the phenomenal characteristics such as strong adhesion between the layers and the proper material flow. In the light of the results of this work, it can be concluded that the 3-D printing methodology is effective for evaluating the mechanical performance of the internally defected material.

  7. Agility in Team Sports: Testing, Training and Factors Affecting Performance.

    Science.gov (United States)

    Paul, Darren J; Gabbett, Tim J; Nassis, George P

    2016-03-01

    Agility is an important characteristic of team sports athletes. There is a growing interest in the factors that influence agility performance as well as appropriate testing protocols and training strategies to assess and improve this quality. The objective of this systematic review was to (1) evaluate the reliability and validity of agility tests in team sports, (2) detail factors that may influence agility performance, and (3) identify the effects of different interventions on agility performance. The review was undertaken in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We conducted a search of PubMed, Google Scholar, Science Direct, and SPORTDiscus databases. We assessed the methodological quality of intervention studies using a customized checklist of assessment criteria. Intraclass correlation coefficient values were 0.80-0.91, 0.10-0.81, and 0.81-0.99 for test time using light, video, and human stimuli. A low-level reliability was reported for youth athletes using the video stimulus (0.10-0.30). Higher-level participants were shown to be, on average, 7.5% faster than their lower level counterparts. Reaction time and accuracy, foot placement, and in-line lunge movement have been shown to be related to agility performance. The contribution of strength remains unclear. Efficacy of interventions on agility performance ranged from 1% (vibration training) to 7.5% (small-sided games training). Agility tests generally offer good reliability, although this may be compromised in younger participants responding to various scenarios. A human and/or video stimulus seems the most appropriate method to discriminate between standard of playing ability. Decision-making and perceptual factors are often propositioned as discriminant factors; however, the underlying mechanisms are relatively unknown. Research has focused predominantly on the physical element of agility. Small-sided games and video training may offer effective

  8. Supplier selection or collaboration? Determining factors of performance improvement when outsourcing manufacturing

    OpenAIRE

    Dabhilkar, Mandar; Bengtsson, Lars; Haartman, Robin von; Åhlström, Pär

    2009-01-01

    An empirical study was designed to determine factors of performance improvement when outsourcing manufacturing. Findings from a survey of 136 manufacturing plants in Sweden show that most of them achieve their outsourcing motives, but not without trade-offs. Factors of performance improvements such as economies of scale or operations in low-cost countries can improve one performance dimension, such as product cost, yet negatively impact volume flexibility, speed or product innovation. The res...

  9. Two-dimensional hierarchical porous carbon composites derived from corn stalks for electrode materials with high performance

    International Nuclear Information System (INIS)

    Xu, Haitao; Zhang, Huijuan; Ouyang, Ya; Liu, Li; Wang, Yu

    2016-01-01

    Highlights: • Novel 2D porous carbon sheets from cornstalks are obtained for the first time. • The hierarchical porous carbon nansheets are gained by chemical activation. • The porous structure facilitates ion transfer and Li-ion absorption. • The strategy are applied to both cathode and anode electrode materials. • The porous nanocomposites exhibit excellent electrochemical performance. - Abstract: Herein, we propose a novel and green strategy to convert crop stalks waste into hierarchical porous carbon composites for electrode materials of lithium-ion batteries. In the method, the sustainable crop stalks, an abundant agricultural byproduct, is recycled and treated by a simple and clean chemical activation process. Afterwards, the obtained porous template is adopted for large-scale production of high-performance anode and cathode materials for lithium-ion batteries. Due to the large surface area, hierarchical porous structures and subsize of the functional particles, the electrode materials manifest excellent electrochemical performance. In particular, the prepared TiO 2 /C composite presents a reversible specific capacity of 203 mAh g −1 after 200 cycles. Our results demonstrate that the sheetlike composites show remarkable cycling stability, high specific capacity and excellent rate ability, and thus hold promise for commercializing the high-performance electrode materials as the advanced lithium-ion batteries.

  10. Post-Materialism as a Cultural Factor Influencing Entrepreneurial Activity across Nations

    OpenAIRE

    Uhlaner, L.M.; Thurik, A.R.; Hutjes, J.

    2002-01-01

    textabstractThe study of the determinants of entrepreneurship at the country level has been dominated by economic influences. The relative stability of differences in levels of entrepreneurship across coun-tries suggests that other forces such as certain institutional and/or cultural factors are at play. The objective of this paper is to explore how post-materialism explains differences in entrepreneurial activity across countries. Entrepreneurial activity is defined as the percent of a count...

  11. Nitrogen-doped Sb-rich Si–Sb–Te phase-change material for high-performance phase-change memory

    International Nuclear Information System (INIS)

    Zhou, Xilin; Wu, Liangcai; Song, Zhitang; Cheng, Yan; Rao, Feng; Ren, Kun; Song, Sannian; Liu, Bo; Feng, Songlin

    2013-01-01

    The effects of nitrogen doping on the phase-change performance of Sb-rich Si–Sb–Te materials are systemically investigated, focusing on the chemical state and the role of nitrogen upon crystallization. The tendency of N atoms to bond with Si (SiN x ) in the crystalline film is analyzed by X-ray photoelectron spectroscopy. The microstructures of the materials mixed with Sb 2 Te crystal grains and amorphous Si/SiN x regions are elucidated via in situ transmission electron microscopy, from which a percolation behavior is demonstrated to possibly describe the random crystallization feature in the nucleation-dominated nanocomposite material. The phase-change memory cells based on N-doped Sb-rich Si–Sb–Te materials display more stable and reliable electrical performance than the nitrogen-free ones. An endurance characteristic in the magnitude of 10 7 cycles of the phase-change memory cells is realized with moderate nitrogen addition, meaning that the nitrogen incorporation into Si–Sb–Te material is a suitable method to achieve high-performance phase-change memory for commercial applications

  12. Development of high-performance shielding material by heat curing method

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Toshimasa; Hirao, Yoshihiro; Hayashi, Takayuki; Okuno, Koichi; Sato, Osamu [National Maritime Research Institute, Ibaraki (Japan)

    2002-07-01

    A high-performance shielding material is developed by a heat curing method. It is mainly made of a thermosetting resin, lead powder, and a boron compound. To make the resin, a single functional monomer stearyl methacrylate (SMA) is used. To get good dispersion of lead and the boron compound in the resin, the viscosity of the SMA is increased by adding a small amount of a peroxide into the liquid monomer and heating up to the temperature of 100 .deg. C. Next, a peroxide, lead powder, a boron compound, a three functional monomer, and a curing accelerator are mixed into the viscous SMA. The mixture is cured in an atmosphere of nitrogen after removing bubbles using a vacuum pump. Measured properties of the cured material are as follows. The curing rate of SMA is 97 %. The density is kept 2.35 g/cm{sub 3} in the range from room temperature to 150 .deg. C. The weight-change measured by a thermogravimetry is 0.16 % in the range from room temperature to 200 .deg. C. Details of fragments in the gas released from the material is analyzed by a gas chromatography and a mass spectrometry. The hydrogen content of the material is 6.04x10 {sub 22} /cm{sub 3} . The shielding effect is calculated for a fission source by an Sn code ANISN. The shielding effect of the curing material is excellent. For example, concrete shield of a certain thickness can be replaced by the material having a thickness less than a half of concrete. Several samples of the material are irradiated at an irradiation equipment of the research reactor JRR-4 installed at Japan Atomic Energy Research Institute. At the 14{sub th} day after irradiating with the thermal neutron fluence of 6.6x10{sub 15} /cm{sub 2} , the radioactivity is less than one tenth of 75 Bq/g above which materials are regulated as the radioactive substance in Japan.

  13. Performance of materials in the component cooling water systems of pressurized water reactors

    International Nuclear Information System (INIS)

    Lee, B.S.

    1993-01-01

    The component cooling water (CCW) system provides cooling water to several important loads throughout the plant under all operating conditions. An aging assessment CCW systems in pressurized water reactors (PWRs) was conducted as part of Nuclear Plant Aging Research Program (NPAR) instituted by the US Nuclear Regulatory Commission. This paper presents some of the results on the performances of materials in respect of their application in CCW Systems. All the CCW system failures reported to the Nuclear Plant Reliability Data System (NPRDS) from January 1988 to June 1990 were reviewed; it is concluded that three of the main contributors to CCW system failures are valves, pumps, and heat exchangers. This study identified the modes and causes of failure for these components; most of the causes for the aging-related failures could be related to the performance of materials. Also, in this paper the materials used for these components are reviewed, and there aging mechanisms under CCW system conditions are discussed

  14. Machining of high performance workpiece materials with CBN coated cutting tools

    International Nuclear Information System (INIS)

    Uhlmann, E.; Fuentes, J.A. Oyanedel; Keunecke, M.

    2009-01-01

    The machining of high performance workpiece materials requires significantly harder cutting materials. In hard machining, the early tool wear occurs due to high process forces and temperatures. The hardest known material is the diamond, but steel materials cannot be machined with diamond tools because of the reactivity of iron with carbon. Cubic boron nitride (cBN) is the second hardest of all known materials. The supply of such PcBN indexable inserts, which are only geometrically simple and available, requires several work procedures and is cost-intensive. The development of a cBN coating for cutting tools, combine the advantages of a thin film system and of cBN. Flexible cemented carbide tools, in respect to the geometry can be coated. The cBN films with a thickness of up to 2 μm on cemented carbide substrates show excellent mechanical and physical properties. This paper describes the results of the machining of various workpiece materials in turning and milling operations regarding the tool life, resultant cutting force components and workpiece surface roughness. In turning tests of Inconel 718 and milling tests of chrome steel the high potential of cBN coatings for dry machining was proven. The results of the experiments were compared with common used tool coatings for the hard machining. Additionally, the wear mechanisms adhesion, abrasion, surface fatigue and tribo-oxidation were researched in model wear experiments.

  15. Steam generator materials performance in high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Chafey, J.E.; Roberts, D.I.

    1980-11-01

    This paper reviews the materials technology aspects of steam generators for HTGRs which feature a graphite-moderated, uranium-thorium, all-ceramic core and utilizes high-pressure helium as the primary coolant. The steam generators are exposed to gas-side temperatures approaching 760 0 C and produce superheated steam at 538 0 C and 16.5 MPa (2400 psi). The prototype Peach Bottom I 40-MW(e) HTGR was operated for 1349 EFPD over 7 years. Examination after decommissioning of the U-tube steam generators and other components showed the steam generators to be in very satisfactory condition. The 330-MW(e) Fort St. Vrain HTGR, now in the final stages of startup, has achieved 70% power and generated more than 1.5 x 10 6 MWh of electricity. The steam generators in this reactor are once-through units of helical configuration, requiring a number of new materials factors including creep-fatigue and water chemistry control. Current designs of larger HTGRs also feature steam generators of helical once-through design. Materials issues that are important in these designs include detailed consideration of time-dependent behavior of both base metals and welds, as required by current American Society of Mechanical Engineers (ASME) Code rules, evaluation of bimetallic weld behavior, evaluation of the properties of large forgings, etc

  16. Latent Factors Limiting the Performance of sEMG-Interfaces

    Directory of Open Access Journals (Sweden)

    Sergey Lobov

    2018-04-01

    Full Text Available Recent advances in recording and real-time analysis of surface electromyographic signals (sEMG have fostered the use of sEMG human–machine interfaces for controlling personal computers, prostheses of upper limbs, and exoskeletons among others. Despite a relatively high mean performance, sEMG-interfaces still exhibit strong variance in the fidelity of gesture recognition among different users. Here, we systematically study the latent factors determining the performance of sEMG-interfaces in synthetic tests and in an arcade game. We show that the degree of muscle cooperation and the amount of the body fatty tissue are the decisive factors in synthetic tests. Our data suggest that these factors can only be adjusted by long-term training, which promotes fine-tuning of low-level neural circuits driving the muscles. Short-term training has no effect on synthetic tests, but significantly increases the game scoring. This implies that it works at a higher decision-making level, not relevant for synthetic gestures. We propose a procedure that enables quantification of the gestures’ fidelity in a dynamic gaming environment. For each individual subject, the approach allows identifying “problematic” gestures that decrease gaming performance. This information can be used for optimizing the training strategy and for adapting the signal processing algorithms to individual users, which could be a way for a qualitative leap in the development of future sEMG-interfaces.

  17. EPDM and fluorocarbon seal materials: a comparison of performance for nuclear fuel transport flasks

    International Nuclear Information System (INIS)

    Chivers, T.C.; George, A.F.

    2004-01-01

    The lid seals on the flasks used to transport spent fuel from U.K. AGR and Magnox Power Stations are fluorocarbon elastomer 'O' rings. Currently, only this material is qualified for the purpose and it was decided to investigate the possibility of qualifying other materials. One material that is already in use in similar applications is an Ethylene Propylene Diene Monomer (EPDM). The work presented in this paper compares the performance of the existing material with three candidate types of EPDM. The areas considered were: Extrusion and blow-out resistance when subjected to various steam pressures and temperatures at a range of flange separations, Permeability to water, caesium salt solution and hydrogen (as a typical 'benchmark' gas) Radiation resistance in warm (60 C) aqueous conditions It is concluded that the performance of the EPDM materials is good in respect of mechanical properties, radiation and water resistance. However, while permeation rates for gas and water can be higher than for fluorocarbon, this might be mitigated by assessing the actual radioactive burden in the permeate. In the case of dissolved salts, the test results indicate that this will be very low

  18. Performance of an online translation tool when applied to patient educational material.

    Science.gov (United States)

    Khanna, Raman R; Karliner, Leah S; Eck, Matthias; Vittinghoff, Eric; Koenig, Christopher J; Fang, Margaret C

    2011-11-01

    Language barriers may prevent clinicians from tailoring patient educational material to the needs of individuals with limited English proficiency. Online translation tools could fill this gap, but their accuracy is unknown. We evaluated the accuracy of an online translation tool for patient educational material. We selected 45 sentences from a pamphlet available in both English and Spanish, and translated it into Spanish using GoogleTranslate™ (GT). Three bilingual Spanish speakers then performed a blinded evaluation on these 45 sentences, comparing GT-translated sentences to those translated professionally, along four domains: fluency (grammatical correctness), adequacy (information preservation), meaning (connotation maintenance), and severity (perceived dangerousness of an error if present). In addition, evaluators indicated whether they had a preference for either the GT-translated or professionally translated sentences. The GT-translated sentences had significantly lower fluency scores compared to the professional translation (3.4 vs. 4.7, P educational material, GT performed comparably to professional human translation in terms of preserving information and meaning, though it was slightly worse in preserving grammar. In situations where professional human translations are unavailable or impractical, online translation may someday fill an important niche. Copyright © 2011 Society of Hospital Medicine.

  19. Nominal Performance Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-09-08

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs for the groundwater exposure scenario for the three climate states considered in the TSPA-LA as well as conversion factors for evaluating compliance with the groundwater protection standard. The BDCFs will be used in performance assessment for calculating all-pathway annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle

  20. Nominal Performance Biosphere Dose Conversion Factor Analysis

    International Nuclear Information System (INIS)

    M. Wasiolek

    2004-01-01

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs for the groundwater exposure scenario for the three climate states considered in the TSPA-LA as well as conversion factors for evaluating compliance with the groundwater protection standard. The BDCFs will be used in performance assessment for calculating all-pathway annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose

  1. Autism-Specific Covariation in Perceptual Performances: “g” or “p” Factor?

    Science.gov (United States)

    Meilleur, Andrée-Anne S.; Berthiaume, Claude; Bertone, Armando; Mottron, Laurent

    2014-01-01

    Background Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination) and mid-level (e.g., pattern matching) tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals. Methods We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ) and Raven Progressive Matrices (RPM). We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence. Results In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism. Conclusions Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or “g” factor). Instead, this residual covariation is accounted for by a common perceptual process (or “p” factor), which may drive

  2. Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings

    International Nuclear Information System (INIS)

    Long, Linshuang; Ye, Hong; Gao, Yanfeng; Zou, Ruqiang

    2014-01-01

    Highlights: • VO 2 and PCM were combined in passive building application for the first time. • Synergetic performance of them is demonstrated in a full size room. • Synergetic application has a better performance than the solo ones. • The materials interact with each other in synergetic application. • ESI can be used to evaluate the performance of the synergetic application. - Abstract: One of the key methods to improve the energy saving performance of a building is to apply advanced materials or components to the building envelope. However, the two parts of a building’s envelope, the transparent one and the non-transparent one, are usually investigated individually by existing literature. In this study, vanadium dioxide (VO 2 ) glazing, an advanced energy-efficient element applied to the transparent parts of the building envelope, and phase change material (PCM), a typical thermal storage material used to improve the non-transparent parts of the building envelope, were adopted simultaneously for the first time. The synergetic performance of VO 2 glazing and PCM, demonstrated in a full-scale, lightweight, passive room, resulted in a significant improvement in the thermal comfort degree. The Energy Saving Index (ESI) is a simple and effective indicator that can be used to evaluate the passive application performance of a single energy-efficient material or component on a common standpoint. In this work, the index was broadened to evaluate the performance of more than one material, showing that ESI is feasible and favorable to analyze the coefficient application of several building materials and/or components. Using the ESI, the performance of the synergetic application was also compared with those of the sole materials, indicating that the synergetic application has a better performance during the cooling period. Furthermore the synergetic application involves an interplay rather than a simple combination of the energy-efficient materials. The

  3. Ultra High Electrical Performance of Nano Nickel Oxide and Polyaniline Composite Materials

    Directory of Open Access Journals (Sweden)

    Xiaomin Cai

    2017-07-01

    Full Text Available The cooperative effects between the PANI (polyaniline/nano-NiO (nano nickel oxide composite electrode material and redox electrolytes (potassium iodide, KI for supercapacitor applications was firstly discussed in this article, providing a novel method to prepare nano-NiO by using β-cyelodextrin (β-CD as the template agent. The experimental results revealed that the composite electrode processed a high specific capacitance (2122.75 F·g−1 at 0.1 A·g−1 in 0.05 M KI electrolyte solution, superior energy density (64.05 Wh·kg−1 at 0.2 A·g−1 in the two-electrode system and excellent cycle performance (86% capacitance retention after 1000 cycles at 1.5 A·g−1. All those ultra-high electrical performances owe to the KI active material in the electrolyte and the PANI coated nano-NiO structure.

  4. Structure-dependent performance of TiO2/C as anode material for Na-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    He, Hanna; Gan, Qingmeng; Wang, Haiyan; Xu, Gui-Liang; Zhang, Xiaoyi; Huang, Dan; Fu, Fang; Tang, Yougen; Amine, Khalil; Shao, Minhua

    2018-02-01

    The performance of energy storage materials is highly dependent on their nanostructures. Herein, hierarchical rod-in-tube TiO2 with a uniform carbon coating is synthesized as the anode material for sodium-ion batteries by a facile solvothermal method. This unique structure consists of a tunable nanorod core, interstitial hollow spaces, and a functional nanotube shell assembled from two-dimensional nanosheets. By adjusting the types of solvents used and reaction time, the morphologies of TiO2/C composites can be tuned to nanoparticles, microrods, rod-in-tube structures, or microtubes. Among these materials, rod-in-tube TiO2 with a uniform carbon coating shows the highest electronic conductivity, specific surface area (336.4 m(2) g(-1)), and porosity, and these factors lead to the best sodium storage capability. Benefiting from the unique structural features and improved electronic/ionic conductivity, the as-obtained rod-in-tube TiO2/C in coin cell tests exhibits a high discharge capacity of 277.5 and 153.9 mAh g(-1) at 50 and 5000 mA g(-1), respectively, and almost 100% capacity retention over 14,000 cycles at 5000 mA g(-1). In operando high-energy X-ray diffraction further confirms the stable crystal structure of the rod-in-tube TiO2/C during Na+ insertion/extraction. This work highlights that nanostructure design is an effective strategy to achieve advanced energy storage materials.

  5. Surgeons' performance determining the amount of graft material for sinus floor augmentation using tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Adriana Dibo; Peixoto, Guilherme Alvares; Aguiar, Marcelo Freitas; Camargo, Gabriela Alessandra Cruz Galhardo; Homs, Nicolas, E-mail: adrianadibo@gmail.com [Universidade Federal Fluminense (UFF), Nova Friburgo, RJ, (Brazil)

    2017-05-15

    This study aimed to assess the performance of surgeons in determining the amount of graft material required for maxillary sinus floor augmentation in a preoperative analysis using cone-beam computed tomography images. A convenience sample of 10 retrospective CBCT exams (i-CAT®) was selected. Scans of the posterior maxilla area with an absence of at least one tooth and residual alveolar bone with an up to 5 mm height were used. Templates (n=20) contained images of representative cross-sections in multiplanar view. Ten expert surgeons voluntarily participated as appraisers of the templates for grafting surgical planning of a 10 mm long implant. Appraisers could choose a better amount of graft material using scores: 0) when considered grafting unnecessary, 1) for 0.25 g in graft material, 2) for 0.50 g, 3) for 1.00 g and 4) for 1.50 g or more. Reliability of the response pattern was analyzed using Cronbach's α. Wilcoxon and Mann-Whitney tests were performed to compare scores. Regression analysis was performed to evaluate whether the volume of sinuses (mm{sup 3}) influenced the choose of scores. In the reliability analysis, all values were low and the score distribution was independent of the volume of the maxillary sinuses (p>0.05), which did not influence choosing the amount of graft material. Surgeons were unreliable to determine the best amount of graft material for the maxillary sinus floor augmentation using only CBCT images. Surgeons require auxiliary diagnostic tools to measure the volume associated to CBCT exams in order to perform better. (author)

  6. Effect of calcination temperature on microstructure and electrochemical performance of lithium-rich layered oxide cathode materials

    International Nuclear Information System (INIS)

    Ma, Quanxin; Peng, Fangwei; Li, Ruhong; Yin, Shibo; Dai, Changsong

    2016-01-01

    Highlights: • A series of Li-rich layered oxide cathode materials (Li_1_._2Mn_0_._5_6Ni_0_._1_6Co_0_._0_8O_2) were successfully synthesized via a two-step synthesis method. • The effects of calcination temperature on the cathode materials were researched in detail. • A well-crystallized layered structure was obtained as the calcination temperature increased. • The samples calcined in a range of 850–900 °C exhibited excellent electrochemical performance. - Abstract: Lithium-rich layered oxide cathode materials (Li_1_._2Mn_0_._5_6Ni_0_._1_6Co_0_._0_8O_2 (LLMO)) were synthesized via a two-step synthesis method involving co-precipitation and high-temperature calcination. The effects of calcination temperature on the cathode materials were studied in detail. Structural and morphological characterizations revealed that a well-crystallized layered structure was obtained at a higher calcination temperature. Electrochemical performance evaluation revealed that a cathode material obtained at a calcination temperature of 850 °C delivered a high initial discharge capacity of 266.8 mAh g"−"1 at a 0.1 C rate and a capacity retention rate of 95.8% after 100 cycles as well as excellent rate capability. Another sample calcinated at 900 °C exhibited good cycling stability. It is concluded that the structural stability and electrochemical performance of Li-rich layered oxide cathode materials were strongly dependent on calcination temperatures. The results suggest that a calcination temperature in a range of 850–900 °C could promote electrochemical performance of this type of cathode materials.

  7. Effect of calcination temperature on microstructure and electrochemical performance of lithium-rich layered oxide cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Quanxin; Peng, Fangwei; Li, Ruhong; Yin, Shibo; Dai, Changsong, E-mail: changsd@hit.edu.cn

    2016-11-15

    Highlights: • A series of Li-rich layered oxide cathode materials (Li{sub 1.2}Mn{sub 0.56}Ni{sub 0.16}Co{sub 0.08}O{sub 2}) were successfully synthesized via a two-step synthesis method. • The effects of calcination temperature on the cathode materials were researched in detail. • A well-crystallized layered structure was obtained as the calcination temperature increased. • The samples calcined in a range of 850–900 °C exhibited excellent electrochemical performance. - Abstract: Lithium-rich layered oxide cathode materials (Li{sub 1.2}Mn{sub 0.56}Ni{sub 0.16}Co{sub 0.08}O{sub 2} (LLMO)) were synthesized via a two-step synthesis method involving co-precipitation and high-temperature calcination. The effects of calcination temperature on the cathode materials were studied in detail. Structural and morphological characterizations revealed that a well-crystallized layered structure was obtained at a higher calcination temperature. Electrochemical performance evaluation revealed that a cathode material obtained at a calcination temperature of 850 °C delivered a high initial discharge capacity of 266.8 mAh g{sup −1} at a 0.1 C rate and a capacity retention rate of 95.8% after 100 cycles as well as excellent rate capability. Another sample calcinated at 900 °C exhibited good cycling stability. It is concluded that the structural stability and electrochemical performance of Li-rich layered oxide cathode materials were strongly dependent on calcination temperatures. The results suggest that a calcination temperature in a range of 850–900 °C could promote electrochemical performance of this type of cathode materials.

  8. Human performance modeling for system of systems analytics: combat performance-shaping factors.

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Craig R.; Miller, Dwight Peter

    2006-01-01

    The US military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives. To support this goal, Sandia National Laboratories (SNL) has undertaken a program of HPM as an integral augmentation to its system-of-system (SoS) analytics capabilities. The previous effort, reported in SAND2005-6569, evaluated the effects of soldier cognitive fatigue on SoS performance. The current effort began with a very broad survey of any performance-shaping factors (PSFs) that also might affect soldiers performance in combat situations. The work included consideration of three different approaches to cognition modeling and how appropriate they would be for application to SoS analytics. This bulk of this report categorizes 47 PSFs into three groups (internal, external, and task-related) and provides brief descriptions of how each affects combat performance, according to the literature. The PSFs were then assembled into a matrix with 22 representative military tasks and assigned one of four levels of estimated negative impact on task performance, based on the literature. Blank versions of the matrix were then sent to two ex-military subject-matter experts to be filled out based on their personal experiences. Data analysis was performed to identify the consensus most influential PSFs. Results indicate that combat-related injury, cognitive fatigue, inadequate training, physical fatigue, thirst, stress, poor perceptual processing, and presence of chemical agents are among the PSFs with the most negative impact on combat performance.

  9. Nanomechanical analysis of high performance materials

    CERN Document Server

    2014-01-01

    This book is intended for researchers who are interested in investigating the nanomechanical properties of materials using advanced instrumentation techniques. The chapters of the book are written in an easy-to-follow format, just like solved examples. The book comprehensively covers a broad range of materials such as polymers, ceramics, hybrids, biomaterials, metal oxides, nanoparticles, minerals, carbon nanotubes and welded joints. Each chapter describes the application of techniques on the selected material and also mentions the methodology adopted for the extraction of information from the raw data. This is a unique book in which both equipment manufacturers and equipment users have contributed chapters. Novices will learn the techniques directly from the inventors and senior researchers will gain in-depth information on the new technologies that are suitable for advanced analysis. On the one hand, fundamental concepts that are needed to understand the nanomechanical behavior of materials is included in t...

  10. High-Performance and Simply-Synthesized Ladder-Like Structured Methacrylate Siloxane Hybrid Material for Flexible Hard Coating

    Directory of Open Access Journals (Sweden)

    Yun Hyeok Kim

    2018-04-01

    Full Text Available A high performance ladder-like structured methacrylate siloxane hybrid material (LMSH was fabricated via simple hydrolytic sol–gel reaction, followed by free-radical polymerization. A structurally ordered siloxane backbone, the ladder-like structure, which is an essential factor for high performance, could be achieved by a short period of sol–gel reaction in only 4 h. This results in superior optical (Transmittance > 90% at 550 nm, thermal (T5 wt % decomposition > 400 ℃ , mechanical properties(elastic recovery = 0.86, hardness = 0.6 GPa compared to the random- and even commercialized cage-structured silsesquioxane, which also has ordered structure. It was investigated that the fabricated ladder-like structured MSH showed the highest overall density of organic/inorganic co-networks that are originated from highly ordered siloxane network, along with high conversion rate of polymerizable methacrylate groups. Our findings suggest a potential of the ladder-like structured MSH as a powerful alternative for the methacrylate polysilsesquioxane, which can be applied to thermally stable and flexible optical coatings, even with an easier and simpler preparation process.

  11. Factors Affecting Green Supply Chain Operational Performance of the Thai Auto Parts Industry

    Directory of Open Access Journals (Sweden)

    Korrakot Yaibuathet Tippayawong

    2016-11-01

    Full Text Available In this work, operational performance in the green supply chain management (SCM of the Thai auto parts industry was investigated. A green supply chain performance measurement (GSPM model was developed from the combination of various concepts including an SCM logistics scorecard, a supply chain operations reference model, a balance scorecard, and green supply chain management. The GSPM has been designed for use as a self-evaluation tool focusing on five decisive areas, or factors, and 28 sub-factors. A factor analysis was conducted using the survey results of the GSPM in order to identify significant factors that represent the green supply chain operation performance. Grouped as three major factors, namely green procurement, green transportation, and green manufacturing; reverse logistics and eco-design; and reuse and recycle of manufacturing, their significance and impact on the auto parts industry in Thailand were highlighted. Specifically, the factor of green procurement, green transportation, and green manufacturing, as major factor 1, in relation with the factor of reverse logistics and eco-design, as major factor 2, were found to have a strong positive relationship with the asset turnover ratio.

  12. Internal and external environmental factors affecting the performance of hospital-based home nursing care.

    Science.gov (United States)

    Noh, J-W; Kwon, Y-D; Yoon, S-J; Hwang, J-I

    2011-06-01

    Numerous studies on HNC services have been carried out by signifying their needs, efficiency and effectiveness. However, no study has ever been performed to determine the critical factors associated with HNC's positive results despite the deluge of positive studies on the service. This study included all of the 89 training hospitals that were practising HNC service in Korea as of November 2006. The input factors affecting the performance were classified as either internal or external environmental factors. This analysis was conducted to understand the impact that the corresponding factors had on performance. Data were analysed by using multiple linear regressions. The internal and external environment variables affected the performance of HNC based on univariate analysis. The meaningful variables were internal environmental factors. Specifically, managerial resource (the number of operating beds and the outpatient/inpatient ratio) were meaningful when the multiple linear regression analysis was performed. Indeed, the importance of organizational culture (the passion of HNC nurses) was significant. This study, considering the limited market size of Korea, illustrates that the critical factor for the development of hospital-led HNC lies with internal environmental factors rather than external ones. Among the internal environmental factors, the hospitals' managerial resource-related factors (specifically, the passion of nurses) were the most important contributing element. © 2011 The Authors. International Nursing Review © 2011 International Council of Nurses.

  13. Factors affecting the laser processing of wood, 2: Effects of material parameters on machinability

    International Nuclear Information System (INIS)

    Arai, T.; Hayashi, D.

    1994-01-01

    Material parameters of wood were investigated. Factors relating to the workpiece include cutting direction, specific gravity, and components of the wood such as resin-like materials. Also studies of the effects of irregular tissue on machinability were made. The interactions between laser beam and materials are often greatly complex. They depend on the characteristics of the laser beam, the thermal constants of the woods, and the optical surface properties of the woods. Therefore, high quality beam mode and carefully selected materials were used. The following laser cutting properties became clear after studying the experimental results. Slow speed cutting and softwoods make slight differences, regarding cutting section and fiber direction. However, it can beconsidered that there is not very much change except in cross-section. Because of the high power density of laser, cutting speed makes no big difference. The irregular tissue of wood cannot maintain normal cutting speed and accuracy. The factor of genuine density eta, which is thought to be entirely independent of each specific gravity, is definedas the concept of density in general. It can be obtained by applying a simple rule, that is, the eta is the ratio of r(u)/rho(s) where rho(s) is the wood substance as the characteristic value of wood, and r(u)is specific gravity. An experimental formula shows that the depth of cut decreases in proportion to the value of eta. However, in the strict sense of the word, data of wood material as a natural resources mustbe treated qualitatively, because there are deviations from regularity due to various reasons. (author)

  14. Balanced improvement of high performance concrete material properties with modified graphite nanomaterials

    Science.gov (United States)

    Peyvandi, Amirpasha

    Graphite nanomaterials offer distinct features for effective reinforcement of cementitious matrices in the pre-crack and post-crack ranges of behavior. Thoroughly dispersed and well-bonded nanomaterials provide for effective control of the size and propagation of defects (microcracks) in matrix, and also act as closely spaced barriers against diffusion of moisture and aggressive solutions into concrete. Modified graphite nanomaterials can play multi-faceted roles towards enhancing the mechanical, physical and functional attributes of concrete materials. Graphite nanoplatelets (GP) and carbon nanofibers (CNF) were chosen for use in cementitious materials. Experimental results highlighted the balanced gains in diverse engineering properties of high-performance concrete realized by introduction of graphite nanomaterials. Nuclear Magnetic Resonance (NMR) spectroscopy was used in order to gain further insight into the effects of nanomaterials on the hydration process and structure of cement hydrates. NMR exploits the magnetic properties of certain atomic nuclei, and the sensitivity of these properties to local environments to generate data which enables determination of the internal structure, reaction state, and chemical environment of molecules and bulk materials. 27 Al and 29Si NMR spectroscopy techniques were employed in order to evaluate the effects of graphite nanoplatelets on the structure of cement hydrates, and their resistance to alkali-silica reaction (ASR), chloride ion diffusion, and sulfate attack. Results of 29Si NMR spectroscopy indicated that the percent condensation of C-S-H in cementitious paste was lowered in the presence of nanoplatelets at the same age. The extent of chloride diffusion was assessed indirectly by detecting Friedel's salt as a reaction product of chloride ions with aluminum-bearing cement hydrates. Graphite nanoplatelets were found to significantly reduce the concentration of Friedel's salt at different depths after various periods

  15. Factors Affecting Performance of Undergraduate Students in Construction Related Disciplines

    Science.gov (United States)

    Olatunji, Samuel Olusola; Aghimien, Douglas Omoregie; Oke, Ayodeji Emmanuel; Olushola, Emmanuel

    2016-01-01

    Academic performance of students in Nigerian institutions has been of much concern to all and sundry hence the need to assess the factors affecting performance of undergraduate students in construction related discipline in Nigeria. A survey design was employed with questionnaires administered on students in the department of Quantity Surveying,…

  16. Influence of Material Properties on the Ballistic Performance of Ceramics for Personal Body Armour

    Directory of Open Access Journals (Sweden)

    Christian Kaufmann

    2003-01-01

    Full Text Available In support of improved personal armour development, depth of penetration tests have been conducted on four different ceramic materials including alumina, modified alumina, silicon carbide and boron carbide. These experiments consisted of impacting ceramic tiles bonded to aluminum cylinders with 0.50 caliber armour piercing projectiles. The results are presented in terms of ballistic efficiency, and the validity of using ballistic efficiency as a measure of ceramic performance was examined. In addition, the correlation between ballistic performance and ceramic material properties, such as elastic modulus, hardness, spall strength and Hugoniot Elastic Limit, has been considered.

  17. Attitudinal and motivational factors influencing job performance of ...

    African Journals Online (AJOL)

    The study investigated the attitudinal and motivational factors influencing job performance of female extension agents in Edo State, Nigeria. A random sample of 35 female extension agents was selected for the study. Findings reveal that the majority of the respondents (57.1%) were in the age group of 31 – 40 years and ...

  18. An investigation on effective factors influencing employee performance: A case study

    Directory of Open Access Journals (Sweden)

    Hamid Reza Alavi

    2013-06-01

    Full Text Available Human resources are considered as one of the key components of any organization to reach its objectives. Human resources help organization performance doing organizational duties and making employees’ improvement. Because of this, employee performance appraisal has changed to one of the most important issues for top managers. Performance appraisal is necessary to select useful strategies for increasing productivity of human resource management along with productivity of employee to get strategic targets. In this study, we extract effective factors on increasing of employee performance and subsequently, present some suggestions to managers of academic organizations. The study was performed on some employees who worked for Islamic Azad University in 2013. Cronbach alpha was equal to 99.4% for employee performance appraisal, which confirmed the overall survey. To recognize key factors we used path analysis technique too. The results of the study revealed that in this school, employee performance in practical field was higher than expected, but in terms of operational and behavioral fields, they were in the middle stage.

  19. CO2 emission factors for waste incineration: Influence from source separation of recyclable materials

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Astrup, Thomas

    2011-01-01

    variations between emission factors for different incinerators, but the background for these variations has not been thoroughly examined. One important reason may be variations in collection of recyclable materials as source separation alters the composition of the residual waste incinerated. The objective...... routed to incineration. Emission factors ranged from 27 to 40kg CO2/GJ. The results appeared most sensitive towards variations in waste composition and water content. Recycling rates and lower heating values could not be used as simple indicators of the resulting emission factors for residual household...... different studies and when using the values for environmental assessment purposes....

  20. Materials selection for cutting tools

    International Nuclear Information System (INIS)

    Burkhis, Adel M.

    2008-01-01

    The selection of proper tool steel for a given application is a difficult task. So; the most important selection factors in choosing cutting tool materials are based on their tool material requirements, cutting tool design and service conditions which is mainly considered as functional requirements. The processability requirements concerns in heat treat ability of the material tool. The classification of these tool materials were discussed with their properties requirement and percent of alloying element which is added to give best properties with a little increase in cost that highly appear in comparison of the selection. The cutting tool materials were evaluated based on two cases; The first was in case of rough surface; the high speed steels is the best material and the other was the ceramic material is the highest performance in cutting of soft or high rate of metal removal. (author)

  1. Nominal Performance Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Wasiolek

    2005-04-28

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standards. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis

  2. Creep performance of oxide ceramic fiber materials at elevated temperature in air and in steam

    Science.gov (United States)

    Armani, Clinton J.

    Structural aerospace components that operate in severe conditions, such as extreme temperatures and detrimental environments, require structural materials that have superior long-term mechanical properties and that are thermochemically stable over a broad range of service temperatures and environments. Ceramic matrix composites (CMCs) capable of excellent mechanical performance in harsh environments are prime candidates for such applications. Oxide ceramic materials have been used as constituents in CMCs. However, recent studies have shown that high-temperature mechanical performance of oxide-oxide CMCs deteriorate in a steam-rich environment. The degradation of strength at elevated temperature in steam has been attributed to the environmentally assisted subcritical crack growth in the oxide fibers. Furthermore, oxide-oxide CMCs have shown significant increases in steady-state creep rates in steam. The present research investigated the effects of steam on the high-temperature creep and monotonic tension performance of several oxide ceramic materials. Experimental facilities were designed and configured, and experimental methods were developed to explore the influence of steam on the mechanical behaviors of ceramic fiber tows and of ceramic bulk materials under temperatures in the 1100--1300°C range. The effects of steam on creep behavior of Nextel(TM)610 and Nextel(TM)720 fiber tows were examined. Creep rates at elevated temperatures in air and in steam were obtained for both types of fibers. Relationships between creep rates and applied stresses were modeled and underlying creep mechanisms were identified. For both types of fiber tows, a creep life prediction analysis was performed using linear elastic fracture mechanics and a power-law crack velocity model. These results have not been previously reported and have critical design implications for CMC components operating in steam or near the recommended design limits. Predictions were assessed and validated via

  3. FACTORS INFLUENCING THE SUCCESS OF PERFORMANCE MEASUREMENT: EVIDENCE FROM LOCAL GOVERNMENT

    Directory of Open Access Journals (Sweden)

    Herlina Primarisanti

    2015-01-01

    Full Text Available There were only a few government institutions in Indonesia capable of preparing good accountability reports. Based on the survey conducted in the Special District of Yogyakarta, the study aimed to empirically examine the influencing factors in the development of the measure-ment system of performance, performance accountability and the use of performance informa-tion. Additionally, it also tried to interpret and to explain empirical evidence in the perspective of the institutional theory. The institutional theory was used to find out the extent to which the development of the measurement system of the performance, the performance accountability and the use of the performance information was influenced because of the presence of coercive, mimetic and normative isomorphism phenomena. The study used mixed methods that combined quantitative and qualitative study approaches simultaneously and a sequential explanatory strategy. It used Partial Least Square (PLS analysis to test the hypotheses. It gave evidence that training, incentives and authority in decision making had significant impacts on the development of the measurement of the performance, the performance accountability and the use of the performance information. It contributed to the understanding of the influencing factors of the development of the measurement system of the performance, the performance accountability and the use of the performance information in order to improve the measurement system of the performance of government institutions.

  4. Factores que afectan al rendimiento en carreras de fondo. [Factors affecting long-distance running performance].

    Directory of Open Access Journals (Sweden)

    Ana Ogueta-Alday

    2016-07-01

    and runners are interested on learning about the factors that affect long-distance running performance. Facing this new reality, scientific literature has been concerned about the aforementioned factors, and the amount of studies has considerably grown. Therefore, the purpose of this review is to analyse factors affecting long-distance running performance from different points of view. Literature review was performed through 3 different databases (Medline, SportDiscus and Google Scholar and the factors were classified into 5 main groups, subdivided into different sections: 1- environmental (air/wind, temperature, humidity, altitude and slope of the ground, 2- training-related (endurance, resistance, training in hot environments and in altitude, 3- physiological (VO2max, thersholds, running economy, age, gender, muscle fibre type, fatigue and race, 4- biomechanical (anthropometry, leg-stiffness, flexibility, foot strike pattern, footwear, foot orthoses and spatio-temporal parameters and 5- psychological (intervention strategies, direction of attention and music. Even though the influence of some of these factors on running performance in quite well-known, the influence of some psychological (direction of attention and music and biomechanical factors (foot strike pattern and spatio-temporal parameters is still unclear. There are few studies or the results cannot be generalized. Future studies and the progress of new technologies and measurement tools will provide a better understanding.

  5. Review on factors influencing thermal conductivity of concrete incorporating various type of waste materials

    Science.gov (United States)

    Misri, Z.; Ibrahim, M. H. W.; Awal, A. S. M. A.; Desa, M. S. M.; Ghadzali, N. S.

    2018-04-01

    Concrete is well-known as a construction material which is widely used in building and infrastructure around the world. However, its widespread use has affected the reduction of natural resources. Hence, many approached have been made by researchers to study the incorporation of waste materials in concrete as a substitution for natural resources besides reducing waste disposal problems. Concrete is basically verified by determining its properties; strengths, permeability, shrinkage, durability, thermal properties etc. In various thermal properties of concrete, thermal conductivity (TC) has received a large amount of attention because it is depend upon the composition of concrete. Thermal conductivity is important in building insulation to measure the ability of a material to transfer heat. The aim of this paper is to discuss the methods and influence factors of TC of concrete containing various type of waste materials.

  6. Impact of Waste Materials and Organic Amendments on Soil Properties and Vegetative Performance

    Directory of Open Access Journals (Sweden)

    Steven L. McGeehan

    2012-01-01

    Full Text Available Waste materials, and materials derived from wastes, possess many characteristics that can improve soil fertility and enhance crop performance. These materials can be particularly useful as amendments to severely degraded soils associated with mining activities. This study evaluated biosolids, composts, log yard wastes, and two organic soil treatments for improved soil fertility and vegetative performance using side-by-side comparisons. Each plot was seeded with a standardized seed mix and evaluated for a series of soil chemical and physical parameters, total vegetation response, species diversity, ecological plant response, and invasion indices. All treatments were successful at improving soil fertility and promoting a self-sustaining vegetative cover. The level of available nitrogen had a strong impact on vegetative coverage, species distribution, and extent of unseeded vegetation. For example, high nitrogen treatments promoted a grass-dominated (low forb plant community with a low content of unseeded vegetation. In contrast, low nitrogen treatments promoted a more balanced plant community with a mixture of grass and forb species and greater susceptibility to unseeded vegetation establishment.

  7. Method for assessing the performance of a material control and accounting system at an operating nuclear fuel processing facility

    International Nuclear Information System (INIS)

    Ellwein, L.B.; Harris, L.; Altman, W.D.; Gramann, R.H.

    1981-01-01

    This paper discusses a method for assessing the performance of a material control and accounting (MCandA) system in an operating nuclear fuel processing facility. The performance criteria inherent in the assessment are 16 key goals established by NRC's 1978 Material Control and Material Accounting Task Force. 7 refs

  8. Wages or Other Conditions: A Critical Assessment of Factors in Workers Performance in Nigeria

    OpenAIRE

    A. M. Ogaboh Agba; W. A. Mboto; M. S. Agba

    2013-01-01

    The challenge of getting maximum performance from employees remain a perennial problem to managers in Nigeria. This challenge is aggravated by the great divide that exist among managers on which of the motivational factors stimulate workers the more into higher performance; while some tilt to monetary incentives; many more argue that non-monetary incentives are major motivating factors. Thus, this study is set to investigate factors that influence workers’ job performance in Nigeria. The stud...

  9. MICROECONOMIC FACTORS AFFECTING BANKS’ FINANCIAL PERFORMANCE: THE CASE OF ROMANIA

    Directory of Open Access Journals (Sweden)

    Lavinia Mihaela GUŢU

    2015-04-01

    Full Text Available Banks are important cells in the economy as they have a significant role by maintaining and encouraging the development of economic sectors. They refocus the resources from those who have surplus to those which have a deficit. Therefore, as any other enterprises, performance is highly desirable for banks and, then, it is crucial to discover what the main factors that influence this objective are. So, this paper analyzes the microeconomic factors affecting bank’s financial performance focusing on 11 entities for the period between 2003 and 2013. The performance is measured by return on assets. The independent variables used are bank’s size, financial leverage,loans to assets ratio, deposits to assets ratio, number of employees, liquidity, net result and monetary policy rate. The results show that bank’s size, loans to assets ratio and liquidity have not a significant impact on performance. Financial leverage has a negative impact, meanwhile the number of employees, deposits to assets ratio and net result have a positive effect.

  10. On the materials issues for pefc applications

    Directory of Open Access Journals (Sweden)

    Savadogo Oumarou

    2004-01-01

    Full Text Available Current limitations related to the development of effective, durable and reliable MEA components for PEFC applications are addressed. Advancements made in the development of materials (catalysts, high temperature membranes, bipolar plates, etc. for PEFC are shown. The effect of the catalyst on PEFC performances based on cells fed by hydrogen, direct methanol, direct propane, or direct acetal fuels are presented. The progress in cell performance and cathode research are discussed. Perspectives related to CO tolerance anodes are indicated. The effect of the membranes on the cell performance are shown and parameters which may help the development of appropriate membranes depending on the fuel are suggested. Openings for the future in materials processing and development for PEFC mass production are discussed. The development of New Materials is the key factor to meet those requirements. The aim of this paper is to present challenges related to the development of new materials for PEFC applications and perspectives related to components cost issues are discussed.

  11. Performance-influencing factors in homogeneous groups of top athletes: a cross-sectional study

    NARCIS (Netherlands)

    van Ingen Schenau, G.J.; Bakker, F.C.; de Koning, J.J.; de Groot, G.

    1996-01-01

    Sport scientists have identified many factors as prerequisites for a good athletic performance in various sports. It is not clear whether these factors also influence the best performers in the homogeneous groups of top athletes selected for national teams. In this study, this issue is addressed

  12. ERP IMPLANTATION: KEY FACTORS OF SUCCESS AND IMPACT ON PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Dumitru Valentin

    2008-05-01

    Full Text Available The implantation of an ERP (abbreviation for "Enterprise Resource Planning" system is an enterprise project that implies the remodeling of the information system, mostly the rethinking of management procedures within the organization. The expansion and the complexity of these projects demand a theoretical framework and « optimal practices » in order to model and to evaluate the key factors of implementation success and to analyze its impact on the organization’s performance. The research problem of our communication can be divided into three research questions: - What conceptual framework for ERP implantation? - What are the key factors of success in ERP implantation? - What is the relationship between ERP implantation and enterprise performance?

  13. The ETH Zurich AMS facilities: Performance parameters and reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Christl, M., E-mail: mchristl@phys.ethz.ch [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Vockenhuber, C.; Kubik, P.W.; Wacker, L.; Lachner, J.; Alfimov, V.; Synal, H.-A. [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland)

    2013-01-15

    The current performance of all three AMS systems in operation at ETH Zurich, the 6 MV HVEC EN-Tandem facility 'TANDEM', the 0.5 MV NEC Pelletron 'TANDY', and the 0.2 MV system 'MICADAS' is summarized. Radionuclides routinely measured with these AMS systems include {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36}Cl, {sup 41}Ca, {sup 129}I and the actinides. The reference materials used for the normalization of the AMS measurements at the ETH Zurich AMS facilities are presented. This paper therefore is a comprehensive status report of all three AMS systems currently operated by the Laboratory of Ion Beam Physics (LIP) at ETH Zurich and documents their performance and operation parameters.

  14. Performance tests on column materials for {sup 99}Mo-{sup 99m}Tc generator

    Energy Technology Data Exchange (ETDEWEB)

    Sombrito, E Z; Bulos, A D; Tangonan, M C [Chemistry Research Section, Atomic Research Div., Philippine Nuclear Research Inst., Quezon (Philippines)

    1998-10-01

    To meet the need of producing a {sup 99}Mo-{sup 99m}Tc generator, based on low specific activity reactor-produced {sup 99}Mo, different procedures for preparing zirconium molybdate gels were tested. Performance tests were done on molybdate gel columns prepared using the procedures developed by Vietnam and China, and recently, on a polyzirconium compound (PZC) prepared in Japan. The conditions for the batch drying of a large volume of the gel material were studied as well as the conditions in preparing a column to concentrate technetium-99m. The performance of PZC sample as column material for the generator was also evaluated. (author)

  15. Social inequalities in self-rated health in Ukraine in 2007: the role of psychosocial, material and behavioural factors.

    Science.gov (United States)

    Platts, Loretta G; Gerry, Christopher J

    2017-04-01

    Despite Ukraine's large population, few studies have examined social inequalities in health. This study describes Ukrainian educational inequalities in self-rated health and assesses how far psychosocial, material and behavioural factors account for the education gradient in health. Data were analyzed from the 2007 wave of the Ukrainian Longitudinal Monitoring Survey. Education was categorized as: lower secondary or less, upper secondary and tertiary. In logistic regressions of 5451 complete cases, stratified by gender, declaring less than average health was regressed on education, before and after adjusting for psychosocial, material and behavioural factors. In analyses adjusted for socio-demographic characteristics, compared with those educated up to lower secondary level, tertiary education was associated with lower risk of less than average health for both men and women. Including material factors (income quintiles, housing assets, labour market status) reduced the association between education and health by 55-64% in men and 35-47% in women. Inclusion of health behaviours (physical activity, smoking, alcohol consumption and body mass index) reduced the associations by 27-30% in men and 19-27% in women; in most cases including psychosocial factors (marital status, living alone, trust in family and friends) did not reduce the size of the associations. Including all potential explanatory factors reduced the associations by 68-84% in men and 43-60% in women. The education gradient in self-rated health in Ukraine was partly accounted for by material and behavioural factors. In addition to health behaviours, policymakers should consider upstream determinants of health inequalities, such as joblessness and poverty. © The Author 2016. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  16. Performance Shaping Factors Assessments and Application to PHWR Outages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Woo

    2007-02-15

    Human reliability analysis is definitely related to the quality of PSA because human errors have been identified as major contributors to PSA. According to NRC's 'Office of analysis and evaluation of operational data (AEOD)',82% of the reactor trips and accident during outage is caused by the events related to human errors. There is, however, no one HRA method universally accepted. Furthermore, HRA during PHWR outages has not been performed around the world yet. HRA during PHWR outages is especially important since manual management of operator is more required during PHWR. In this study, accident scenarios which HYU developed are used to perform a quantification of human error probability. In this study, overall procedures of standard HRA methodology are introduced and follows the quantification of 10 possible selected human actions during PHWR outages based on standard HRA methodology. To see the verification, quantified values were compared with the values from 'Generic CANDU Probabilistic Safety Assessment' and the values estimated by ASEP.Core Damage Frequency was estimated 3.35 x 10{sup -4} more higher than CDF estimated by AECL data. It was considered that the differences between the HEPs for OPAFW and OPECC3 make CDF higher. Therefore, complementary study of reestimating HEP for OPAFW and OPECC3 in detail is required for increasing the qualities of HRA and PSA. Moreover, one of the difficulties in performing human reliability analysis is to evaluate performance shaping factors which represent the characteristics and circumstances. For assessing a specific human action more exactly, it is necessary to consider all of the PSFs at the same time which makes an effect on the human action. Also, it requires the effect comparison among PSFs to minimize the uncertainties which are usually caused by the subjective judgements of HRA analysts. To see the sensitivity, performance shaping factors of each decision rule are changed which resulted

  17. Performance Shaping Factors Assessments and Application to PHWR Outages

    International Nuclear Information System (INIS)

    Lee, Seung Woo

    2007-02-01

    Human reliability analysis is definitely related to the quality of PSA because human errors have been identified as major contributors to PSA. According to NRC's 'Office of analysis and evaluation of operational data (AEOD)',82% of the reactor trips and accident during outage is caused by the events related to human errors. There is, however, no one HRA method universally accepted. Furthermore, HRA during PHWR outages has not been performed around the world yet. HRA during PHWR outages is especially important since manual management of operator is more required during PHWR. In this study, accident scenarios which HYU developed are used to perform a quantification of human error probability. In this study, overall procedures of standard HRA methodology are introduced and follows the quantification of 10 possible selected human actions during PHWR outages based on standard HRA methodology. To see the verification, quantified values were compared with the values from 'Generic CANDU Probabilistic Safety Assessment' and the values estimated by ASEP.Core Damage Frequency was estimated 3.35 x 10 -4 more higher than CDF estimated by AECL data. It was considered that the differences between the HEPs for OPAFW and OPECC3 make CDF higher. Therefore, complementary study of reestimating HEP for OPAFW and OPECC3 in detail is required for increasing the qualities of HRA and PSA. Moreover, one of the difficulties in performing human reliability analysis is to evaluate performance shaping factors which represent the characteristics and circumstances. For assessing a specific human action more exactly, it is necessary to consider all of the PSFs at the same time which makes an effect on the human action. Also, it requires the effect comparison among PSFs to minimize the uncertainties which are usually caused by the subjective judgements of HRA analysts. To see the sensitivity, performance shaping factors of each decision rule are changed which resulted in changes of core damage

  18. Concentrated Light for Accelerated Photo Degradation of Polymer Materials

    DEFF Research Database (Denmark)

    Madsen, Morten Vesterager; Tromholt, Thomas; Norrman, Kion

    2013-01-01

    Concentrated light is used to perform photochemical degradation of polymer solar cell materials with acceleration factors up to 1200. At constant temperature the photon efficiency in regards to photo degradation is constant for 1–150 suns and oxygen diffusion rates are not a limiting factor...

  19. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J C; Haslam, J J; Wong, F; Ji, X; Day, S D; Branagan, D J; Marshall, M C; Meacham, B E; Buffa, E J; Blue, C A; Rivard, J K; Beardsley, M B; Weaver, D T; Aprigliano, L F; Kohler, L; Bayles, R; Lemieux, E J; Wolejsza, T M; Martin, F J; Yang, N; Lucadamo, G; Perepezko, J H; Hildal, K; Kaufman, L; Heuer, A H; Ernst, F; Michal, G M; Kahn, H; Lavernia, E J

    2004-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an ''integral drip shield'' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  20. KEY PERFORMING FACTORS OF LEADING ROMANIAN COMPANIES

    Directory of Open Access Journals (Sweden)

    BURJA CAMELIA

    2014-08-01

    Full Text Available The analysis of financial economic ratios provides managers and external partners feedback on the results obtained from operational activities and the associated performance and risks. This paper studies the functional dependence of the companies’ success (on performance over internal financial management elements. The research was carried out for the most traded non-financial securities Bucharest listed companies and covers the period 2011- 2013. To carry out its purpose it analyzed the interdependence between the key financial ratios, studying the impact of liquidity ratios, solvency and efficiency on profitability. The study provides empirical evidences to identify factors that have ensured the performance of companies and their ranking in the segment of the most traded companies in Romania. Results suggest the view that the source of company success on the capital market lies in the positive signals sent to investors regarding profitability and the low risk of solvency. This study gives additional information for managerial decision-making in order to create more value and a better positioning of the companies in the market

  1. An investigation of the repeatability of calibration factors in gamma-ray spectrometry of geological materials

    International Nuclear Information System (INIS)

    Mustapha, A.O.; Patel, J.P.; Rathore, I.V.S.; Hashim, N.O.; Otwoma, D.

    2004-01-01

    A NaI(Tl)-based gamma spectrometer for the analysis of geological materials was calibrated using the IAEA reference materials RGU-1, RGTH-1 and RGK-1. To simulate typical geological samples, two additional standards were prepared from aliquots of the three reference materials. The reproducibility of the instrument calibration factors (CFs) was tested by repeated measurements of the pure IAEA reference materials and the mixed samples in a reproducible counting geometry. The results were analysed using a two-way classification analysis of variance; it was found that the variance in the CFs is significantly higher between standards than it is between measurements. Allowance should be made for this when estimating uncertainties in measurements with the NaI(Tl) spectrometers

  2. The Influence of Talent Factors on Business Performance

    Directory of Open Access Journals (Sweden)

    Fanny Soewignyo

    2015-03-01

    Using purposive sampling, 56 finance companies listed on Indonesia Stock Exchange in 2012 were selected. Corporate governance aspects were measured by employing 12 talent factors and business performance was measured using profit per employee, revenue per employee, and market capitalization per employee. 12 hypotheses were tested using multiple regression analysis.  The authors concluded on 2 things. Firstly, the greater the number of audit committee members, the higher the profit per employee and secondly, higher remuneration for directors and commissioners induced better business performance, as measured by three indicators. However, larger number of employees worsens profit per employee, revenue per employee, and market capitalization per employee.

  3. Pico-second laser materials interactions: mechanisms, material lifetime and performance optimization Ted Laurence(14-ERD-014)

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, Ted A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-14

    Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multiphoton ionization- and avalanche ionization-based ablation with fs pulses to defectdominated, thermal-based damage with ns pulses. We investigated the morphology and scaling of damage for commonly used silica and hafnia coatings as well as fused silica. Using carefully calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we showed that defects play an important role in laser-induced damage for pulse durations as short as 1 ps. Three damage morphologies were observed: standard material ablation, ultra-high density pits, and isolated absorbers. For 10 ps and longer, the isolated absorbers limited the damage performance of the coating materials. We showed that damage resulting from the isolated absorbers grows dramatically with subsequent pulses for sufficient fluences. For hafnia coatings, we used electric field modeling and experiments to show that isolated absorbers near the surface were affected by the chemical environment (vacuum vs. air) for pulses as short as 10 ps. Coupled with the silica results, these results suggested that improvements in the performance in the 10 -60 ps range have not reached fundamental limits. These findings motivate new efforts, including a new SI LDRD in improving the laser-damage performance of multi-layer dielectric coatings. A damage test facility for ps pulses was developed and automated, and was used for testing production optics for ARC. The resulting software was transferred to other laser test facilities for fs pulses and multiple wavelengths with 30 ps pulses. Additionally, the LDRD supported the retention and promotion of an important staff scientist in high-resolution dynamic microscopy and laser-damage testing.

  4. Enhancement of open-circuit voltage and the fill factor in CdTe nanocrystal solar cells by using interface materials

    International Nuclear Information System (INIS)

    Zhu, Jiaoyan; Yang, Yuehua; Gao, Yuping; Qin, Donghuan; Wu, Hongbin; Huang, Wenbo; Hou, Lintao

    2014-01-01

    Interface states influence the operation of nanocrystal (NC) solar cell carrier transport, recombination and energetic mechanisms. In a typical CdTe NC solar cell with a normal structure of a ITO/p-CdTe NCs/n-acceptor (or without)/Al configuration, the contact between the ITO and CdTe is a non-ohm contact due to a different work function (for an ITO, the value is ∼4.7 eV, while for CdTe NCs, the value is ∼5.3 eV), which results in an energetic barrier at the ITO/CdTe interface and decreases the performance of the NC solar cells. This work investigates how interface materials (including Au, MoO x and C 60 ) affect the performance of NC solar cells. It is found that devices with interface materials have shown higher V oc than those without interface materials. For the case in which we used Au as an interface, we obtained a high open-circuit voltage of 0.65 V, coupled with a high fill factor (62%); this resulted in a higher energy conversion efficiency (ECE) of 5.3%, which showed a 30% increase in the ECE compared with those without the interlayer. The capacitance measurements indicate that the increased V oc in the case in which Au was used as the interface is likely due to good ohm contact between the Au’s and the CdTe NCs’ thin film, which decreases the energetic barrier at the ITO/CdTe interface. (paper)

  5. Atomistic Simulations of Small-scale Materials Tests of Nuclear Materials

    International Nuclear Information System (INIS)

    Shin, Chan Sun; Jin, Hyung Ha; Kwon, Jun Hyun

    2012-01-01

    Degradation of materials properties under neutron irradiation is one of the key issues affecting the lifetime of nuclear reactors. Evaluating the property changes of materials due to irradiations and understanding the role of microstructural changes on mechanical properties are required for ensuring reliable and safe operation of a nuclear reactor. However, high dose of neuron irradiation capabilities are rather limited and it is difficult to discriminate various factors affecting the property changes of materials. Ion beam irradiation can be used to investigate radiation damage to materials in a controlled way, but has the main limitation of small penetration depth in the length scale of micro meters. Over the past decade, the interest in the investigations of size-dependent mechanical properties has promoted the development of various small-scale materials tests, e.g. nanoindentation and micro/nano-pillar compression tests. Small-scale materials tests can address the issue of the limitation of small penetration depth of ion irradiation. In this paper, we present small-scale materials tests (experiments and simulation) which are applied to study the size and irradiation effects on mechanical properties. We have performed molecular dynamics simulations of nanoindentation and nanopillar compression tests. These atomistic simulations are expected to significantly contribute to the investigation of the fundamental deformation mechanism of small scale irradiated materials

  6. Factors associated with high school learners' poor performance: a ...

    African Journals Online (AJOL)

    This study, using a non-experimental, exploratory and descriptive method, established learners' and educators' views about factors that contribute to poor performance in mathematics and physical science. Participants were purposefully selected from seven schools with poor pass rates in District 3 of Tshwane North.

  7. Blanket materials for fusion reactors: comparisons of thermochemical performance

    International Nuclear Information System (INIS)

    Johnson, C.E.; Fischer, A.K.; Tetenbaum, M.

    1984-01-01

    Thermodynamic calculations have been made to predict the thermochemical performance of the fusion reactor breeder materials, Li 2 O, LiAlO 2 , and Li 4 SiO 4 in the temperature range 900 to 1300 0 K and in the oxygen activity range 10 -25 to 10 -5 . Except for a portion of these ranges, the performance of LiAlO 2 is predicted to be better than that of Li 2 O and Li 4 SiO 4 . The protium purge technique for enhancing tritium release is explored for the Li 2 O system; it appears advantageous at higher temperatures but should be used cautiously at lower temperatures. Oxygen activity is an important variable in these systems and must be considered in executing and interpreting measurements on rates of tritium release, the form of released tritium, diffusion of tritiated species and their identities, retention of tritium in the condensed phase, and solubility of hydrogen isotope gases

  8. Cardiovascular risk factors associated with lower baseline cognitive performance in HIV-positive persons.

    Science.gov (United States)

    Wright, E J; Grund, B; Robertson, K; Brew, B J; Roediger, M; Bain, M P; Drummond, F; Vjecha, M J; Hoy, J; Miller, C; Penalva de Oliveira, A C; Pumpradit, W; Shlay, J C; El-Sadr, W; Price, R W

    2010-09-07

    To determine factors associated with baseline neurocognitive performance in HIV-infected participants enrolled in the Strategies for Management of Antiretroviral Therapy (SMART) neurology substudy. Participants from Australia, North America, Brazil, and Thailand were administered a 5-test neurocognitive battery. Z scores and the neurocognitive performance outcome measure, the quantitative neurocognitive performance z score (QNPZ-5), were calculated using US norms. Neurocognitive impairment was defined as z scores penetration effectiveness rank of antiretroviral regimens were not. In this HIV-positive population with high CD4 cell counts, neurocognitive impairment was associated with prior CVD. Lower neurocognitive performance was associated with prior CVD, hypertension, and hypercholesterolemia, but not conventional HAD risk factors. The contribution of CVD and cardiovascular risk factors to the neurocognition of HIV-positive populations warrants further investigation.

  9. Ion implantation: [fundamental factors which affect accelerator performance and their implications

    International Nuclear Information System (INIS)

    Armour, D.G.

    1987-01-01

    The use of ion implantation to modify the composition of the near surface layers of solid materials has been widely exploited in the semiconductor industry and is finding increasing application in the treatment of metals, ceramics and polymers. The bombardment of a solid with energetic ions inevitably involves the deposition of energy as well as material and this effect, which results in unwanted effects such as radiation damage in conventional implantation situations, is also being utilized to assist in the deposition of highly adherent or epitaxial layers. The increasing range of applications of ion implantation and ion assisted processing of materials has placed increasingly stringent demands on machine performance; in the present paper implantation techniques and their applications will be discussed. (author)

  10. A global fouling factor methodology for analyzing steam generator thermal performance degradation

    International Nuclear Information System (INIS)

    Kreider, M.A.; White, G.A.; Varrin, R.D. Jr.

    1998-06-01

    Over the past few years, steam generator (SG) thermal performance degradation has led to decreased plant efficiency and power output at numerous PWR nuclear power plants with recirculating-type SGs. The authors have developed and implemented methodologies for quantitatively evaluating the various sources of SG performance degradation, both internal and external to the SG pressure boundary. These methodologies include computation of the global fouling factor history, evaluation of secondary deposit thermal resistance using deposit characterization data, and consideration of pressure loss causes unrelated to the tube bundle, such as hot-leg temperature streaming and SG moisture separator fouling. In order to evaluate the utility of the global fouling factor methodology, the authors performed case studies for a number of PWR SG designs. Key results from two of these studies are presented here. In tandem with the fouling-factor analyses, a study evaluated for each plant the potential causes of pressure loss. The combined results of the global fouling factor calculations and the pressure-loss evaluations demonstrated two key points: (1) that the available thermal margin against fouling, which can vary substantially from plant to plant, has an important bearing on whether a given plant exhibits losses in electrical generating capacity, and (2) that a wide variety of causes can result in SG thermal performance degradation

  11. The Nursing Performance Instrument: Exploratory and Confirmatory Factor Analyses in Registered Nurses.

    Science.gov (United States)

    Sagherian, Knar; Steege, Linsey M; Geiger-Brown, Jeanne; Harrington, Donna

    2018-04-01

    The optimal performance of nurses in healthcare settings plays a critical role in care quality and patient safety. Despite this importance, few measures are provided in the literature that evaluate nursing performance as an independent construct from competencies. The nine-item Nursing Performance Instrument (NPI) was developed to fill this gap. The aim of this study was to examine and confirm the underlying factor structure of the NPI in registered nurses. The design was cross-sectional, using secondary data collected between February 2008 and April 2009 for the "Fatigue in Nursing Survey" (N = 797). The sample was predominantly dayshift female nurses working in acute care settings. Using Mplus software, exploratory and confirmatory factor analyses were applied to the NPI data, which were divided into two equal subsamples. Multiple fit indices were used to evaluate the fit of the alternative models. The three-factor model was determined to fit the data adequately. The factors that were labeled as "physical/mental decrements," "consistent practice," and "behavioral change" were moderately to strongly intercorrelated, indicating good convergent validity. The reliability coefficients for the subscales were acceptable. The NPI consists of three latent constructs. This instrument has the potentialto be used as a self-monitoring instrument that addressesnurses' perceptions of performance while providing patient care.

  12. Device Performance of the Mott InsulatorDevice Performance of the Mott Insulator LaVO3 as a Photovoltaic Material

    KAUST Repository

    Wang, Lingfei

    2015-06-22

    Searching for solar-absorbing materials containing earth-abundant elements with chemical stability is of critical importance for advancing photovoltaic technologies. Mott insulators have been theoretically proposed as potential photovoltaic materials. In this paper, we evaluate their performance in solar cells by exploring the photovoltaic properties of Mott insulator LaVO3 (LVO). LVO films show an indirect band gap of 1.08 eV as well as strong light absorption over a wide wavelength range in the solar spectrum. First-principles calculations on the band structure of LVO further reveal that the d−d transitions within the upper and lower Mott-Hubbard bands and p−d transitions between the O 2p and V 3d band contribute to the absorption in visible and ultraviolet ranges, respectively. Transport measurements indicate strong carrier trapping and the formation of polarons in LVO. To utilize the strong light absorption of LVO and to overcome its poor carrier transport, we incorporate it as a light absorber in solar cells in conjunction with carrier transporters and evaluate its device performance. Our complementary experimental and theoretical results on such prototypical solar cells made of Mott-Hubbard transition-metal oxides pave the road for developing light-absorbing materials and photovoltaic devices based on strongly correlated electrons.

  13. Superior cycle performance of Sn-C/graphene nanocomposite as an anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liang Shuzhao; Zhu Xuefeng; Lian Peichao; Yang Weishen; Wang Haihui

    2011-01-01

    A novel anode material for lithium-ion batteries, tin nanoparticles coated with carbon embedded in graphene (Sn-C/graphene), was fabricated by hydrothermal synthesis and subsequent annealing. The structure and morphology of the nanocomposite were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The size of the Sn-C nanoparticles is about 50-200 nm. The reversible specific capacity of the nanocomposite is ∼662 mAh g -1 at a specific current of 100 mA g -1 after 100 cycles, even ∼417 mAh g -1 at the high current of 1000 mA g -1 . These results indicate that Sn-C/graphene possesses superior cycle performance and high rate capability. The enhanced electrochemical performances can be ascribed to the characteristic structure of the nanocomposite with both of the graphene and carbon shells, which buffer the volume change of the metallic tin and prevent the detachment and agglomeration of pulverized tin. - Graphical abstract: Tin nanoparticles coated with carbon embedded in graphene have been successfully fabricated by hydrothermal synthesis and subsequent annealing. This nanocomposite as an anode material for lithium-ion batteries exhibits superior cycle performance. Highlights: → A novel Sn-C/graphene nanocomposite as an anode material for lithium-ion batteries. → Carbon coating and graphene improve the cycle performance of the Sn anode material. → Possess large capacity, superior cycle performance, and high rate capability.

  14. Emergency respiratory protection with common materials

    International Nuclear Information System (INIS)

    Cooper, D.W.; Hinds, W.C.; Price, J.M.

    1983-01-01

    Certain unexpected accidents, such as fires, explosions, chemical spills, or nuclear reactor malfunctions, can lead to the exposure of workers and the public to toxic gases, vapors, and aerosols. The efficacy of readily available materials, such as cotton fabric, toweling, and a single-use respirator, for providing emergency respiratory protection was evaluated by determining the filtration efficiency as a function of particle size over the range of 0.4 to 5 μm diameter and performance against a reactive water soluble (I 2 ) and unreactive vapor (CH 3 I). At a reasonable design face velocity (1.5 cm/s), the respirator mask used at double thickness could reduce particle concentrations a factor of 30 or more throughout the particle range tested, and a wetted towel four layers thick could provide a factor of five. Dry fabrics were ineffective in removing iodine vapor, but wetted sheeting or toweling reduced concentration by a factor of ten or more under design conditions, 1.5 cm/s face velocity and 50 Pa pressure drop (0.2 inches of water). The fabrics provided a statistically insignificant reduction in methyliodide. In practice, any leaks around the seal to the face would lessen the protection offered by such materials. The effectiveness factor approach proved useful in comparing filter performance under different conditions

  15. Dual-energy X-ray radiography for automatic high-Z material detection

    International Nuclear Information System (INIS)

    Chen Gongyin; Bennett, Gordon; Perticone, David

    2007-01-01

    There is an urgent need for high-Z material detection in cargo. Materials with Z > 74 can indicate the presence of fissile materials or radiation shielding. Dual (high) energy X-ray material discrimination is based on the fact that different materials have different energy dependence in X-ray attenuation coefficients. This paper introduces the basic physics and analyzes the factors that affect dual-energy material discrimination performance. A detection algorithm is also discussed

  16. The Effects of Blended Instruction on Oral Reading Performance and their Relationships to a Five-Factor Model of Personality

    Directory of Open Access Journals (Sweden)

    Isao Miyaji

    2010-09-01

    Full Text Available In recent times, 'Blended Instruction' - an effective method of instructions utilizing e-Learning materials in English education - consists of an individual learning part, a collaborative learning part and a teacher instruction part. In the individual learning, students act out model dialogues in the WBT courseware which incorporated a high quantity of video and sound clips. In the collaborative learning, students perform the dialogues in pairs and assessed each other's performance. Our recent research in a high school showed that the skill of the students' oral reading was improved in most criteria of assessment through blended instruction. However, it is still not clear what kind of relationship exists between the development of the students' oral reading skills and their personalities. With this in mind, the authors have studied the effects of the blended instruction on the junior high school students' oral reading performance and their relationships to the five-factor model of personality. The result of the research shows that the skill of the students' oral reading was improved in most criteria of assessment and the blended instruction was effective for the personality group, 'Introverted unintelligent person' in the most categories of oral reading criteria as well as the personality group, 'Sociable hard-worker'. The important factor for that group in oral reading performance turned out to be 'Sense Reading'.

  17. Analysis Of Performance Factors Of Construction Management Consultant Affecting The Failure In Achieving Time And Quality Targets On Construction Project Of Samarinda Baru Airport

    Directory of Open Access Journals (Sweden)

    Maryudi Utomo

    2017-11-01

    Full Text Available This research aims to determine the performance factors of construction management consultants affecting the failure in achieving time and quality targets on construction project of Samarinda Baru Airport. This research uses survey method by collecting respondents opinion experience and attitude by taking primary data from questionnaires and secondary data from related institutions. The results of the research are 1 Factors directly affecting the Time Target Y1 are the Understanding of Contract Document X1 Material Requirements X3 Worker Requirements X4 and Equipment Completeness X5 while factors indirectly affecting the Time Target Y1 are the Understanding of Technical Specifications X2 and Local Government Regulations X7 2 Factors directly affecting the Quality Target Y2 are the Understanding of Contract Document X1 the Understanding of Technical Specifications X2 Material Requirements X3 Worker Requirements X4 Equipment Completeness X5 and Time Target Y1 while factor indirectly affecting the Quality Target Y1 is Local Government Regulations X7 3 The most dominant factor affecting the unsuccessful Time Target Y1 is the Worker Requirements X4 with the path coefficient value of 0.431. While the most dominant factor affecting the unsuccessful Quality Target Y2 is Worker Requirements X4 with path coefficient value of 0.579 4.

  18. Influence of vermiculite on performance of flyash-based fibre-reinforced hybrid composites as friction materials

    International Nuclear Information System (INIS)

    Satapathy, Bhabani K.; Patnaik, Amar; Dadkar, Nandan; Kolluri, Dilip K.; Tomar, Bharat S.

    2011-01-01

    Highlights: → Study successfully demonstrates the possibility of designing fibre reinforced friction materials with vermiculite-flyash combination. → Vermiculite has caused an increase in the post-braking onset of degradation temperature. → Fade behaviour was found to be optimally dependent on the flyash-vermiculite combination whereas recovery remained broadly unaffected. → Vermiculite caused reduction in the maximum disc temperature rise and enhanced the frictional amplitude, i.e. μ max -μ min . → Static-friction, fade and recovery acted as major determinants for the overall friction performance whereas wear remained thermally activated. -- Abstract: Flyash-based fibre-reinforced hybrid phenolic composites filled with vermiculite were fabricated and characterized for their physical, thermal, mechanical and tribological performance. The performance were evaluated in terms of their friction-fade, friction-recovery, maximum disc temperature rise and wear behaviour on a Krauss friction tester conforming to the Regulation-90 as per the Economic Commission for Europe (ECE) norms. The fade behaviour has been observed to be optimally dependent on the flyash-vermiculite combination whereas the recovery remained broadly unaffected at ∼112 ± 14%. Addition of vermiculite has contributed to the reduction in the maximum disc temperature rise whereas it enhanced the frictional amplitude, i.e. μ max -μ min . The wear behaviour remains closely related to the trend observed in fade. The addition of vermiculite has caused an increase in the post-braking onset of degradation temperature of the surface composition as compared to the pre-braking composition. The analyses of friction and wear performance of the composites were carried out and major factors influencing the tribo-performance were identified. Worn surface morphology investigation using scanning electron microscope has revealed that the addition of vermiculite alters the compositional interactions at the

  19. FACTORS AFFECTING COST PERFORMANCE IN CONSTRUCTION PROJECTS WITHIN KELANTAN STATE IN MALAYSIA

    OpenAIRE

    ABDELNASER OMRAN; SITI NORHYDAYATON BINTI MAMAT

    2011-01-01

    This study investigates the factors affecting cost performance of construction projects in Kelantan State located in the east-coast part of Malaysia. It draws on relevant previous research in the theory of work on cost performance. Thirty-three contractors companies with different working grades in the state of Kelantan were participated in the study. Data were collected from the contractors using a questionnaire survey. The results indicated that the success factors affecting the cost perfor...

  20. Integration of nanostructured materials with MEMS microhotplate platforms to enhance chemical sensor performance

    International Nuclear Information System (INIS)

    Benkstein, Kurt D.; Martinez, Carlos J.; Li, Guofeng; Meier, Douglas C.; Montgomery, Christopher B.; Semancik, Steve

    2006-01-01

    The development of miniaturized chemical sensors is an increasingly active area of research. Such devices, particularly when they feature low mass and low power budgets, can impact a broad range of applications including industrial process monitoring, building security and extraterrestrial exploration. Nanostructured materials, because of their high surface area, can provide critical enhancements in the performance of chemical microsensors. We have worked to integrate nanomaterial films with MEMS (microelectromechanical systems) microhotplate platforms developed at the National Institute of Standards and Technology in order to gain the benefits of both the materials and the platforms in high-performance chemical sensor arrays. Here, we describe our success in overcoming the challenges of integration and the benefits that we have achieved with regard to the critical sensor performance characteristics of sensor response, speed, stability and selectivity. Nanostructured metal oxide sensing films were locally deposited onto microhotplates via chemical vapor deposition and microcapillary pipetting, and conductive polymer nanoparticle films were deposited via electrophoretic patterning. All films were characterized by scanning electron microscopy and evaluated as conductometric gas sensors

  1. Strategic Factor Markets Scale Free Resources and Economic Performance

    DEFF Research Database (Denmark)

    Geisler Asmussen, Christian

    2015-01-01

    This paper analyzes how scale free resources, which can be acquired by multiple firms simultaneously and deployed against one another in product market competition, will be priced in strategic factor markets, and what the consequences are for the acquiring firms' performance. Based on a game-theo...

  2. Facile synthesis of mesoporous NiFe2O4/CNTs nanocomposite cathode material for high performance asymmetric pseudocapacitors

    Science.gov (United States)

    Kumar, Nagesh; Kumar, Amit; Huang, Guan-Min; Wu, Wen-Wei; Tseng, Tseung Yuen

    2018-03-01

    Morphology and synergistic effect of constituents are the two very important factors that greatly influence the physical, chemical and electrochemical properties of a composite material. In the present work, we report the enhanced electrochemical performance of mesoporous NiFe2O4 and multiwall carbon nanotubes (MWCNTs) nanocomposites synthesized via hexamethylene tetramine (HMT) assisted one-pot hydrothermal approach. The synthesized cubic phase spinel NiFe2O4 nanomaterial possesses high specific surface area (148 m2g-1) with narrow mesopore size distribution. The effect of MWCNTs addition on the electrochemical performance of nanocomposite has been probed thoroughly in a normal three electrode configuration using 2 M KOH electrolyte at room temperature. Experimental results show that the addition of mere 5 mg MWCNTs into fixed NiFe2O4 precursors amount enhances the specific capacitance up to 1291 F g-1 at 1 A g-1, which is the highest reported value for NiFe2O4 nanocomposites so far. NiFe2O4/CNT nanocomposite exhibits small relaxation time constant (1.5 ms), good rate capability and capacitance retention of 81% over 500 charge-discharge cycles. This excellent performance can be assigned to high surface area, mesoporous structure of NiFe2O4 and conducting network formed by MWCNTs in the composite. Further, to evaluate the device performance of the composite, an asymmetric pseudocapacitor has been designed using NiFe2O4/CNT nanocomposite as a positive and N-doped graphene as a negative electrode material, respectively. Our designed asymmetric pseudocapacitor gives maximum energy density of 23 W h kg-1 at power density of 872 W kg-1. These promising results assert the potential of synthesized nanocomposite in the development of efficient practical high-capacitive energy storage devices.

  3. A performance study of sparse Cholesky factorization on INTEL iPSC/860

    Science.gov (United States)

    Zubair, M.; Ghose, M.

    1992-01-01

    The problem of Cholesky factorization of a sparse matrix has been very well investigated on sequential machines. A number of efficient codes exist for factorizing large unstructured sparse matrices. However, there is a lack of such efficient codes on parallel machines in general, and distributed machines in particular. Some of the issues that are critical to the implementation of sparse Cholesky factorization on a distributed memory parallel machine are ordering, partitioning and mapping, load balancing, and ordering of various tasks within a processor. Here, we focus on the effect of various partitioning schemes on the performance of sparse Cholesky factorization on the Intel iPSC/860. Also, a new partitioning heuristic for structured as well as unstructured sparse matrices is proposed, and its performance is compared with other schemes.

  4. Ceramic cutting tools materials, development and performance

    CERN Document Server

    Whitney, E Dow

    1994-01-01

    Interest in ceramics as a high speed cutting tool material is based primarily on favorable material properties. As a class of materials, ceramics possess high melting points, excellent hardness and good wear resistance. Unlike most metals, hardness levels in ceramics generally remain high at elevated temperatures which means that cutting tip integrity is relatively unaffected at high cutting speeds. Ceramics are also chemically inert against most workmetals.

  5. Micro-crack detection in high-performance cementitious materials

    DEFF Research Database (Denmark)

    Lura, Pietro; Guang, Ye; Tanaka, Kyoji

    2005-01-01

    of high-performance cement pastes in silicone moulds that exert minimal external restraint. Cast-in steel rods with varying diameter internally restrain the autogenous shrinkage and lead to crack formation. Dimensions of the steel rods are chosen so that the size of this restraining inclusion resembles......-ray tomography, do not allow sufficient resolution of microcracks. A new technique presented in this paper allows detection of microcracks in cement paste while avoiding artefacts induced by unwanted restraint, drying or temperature variations. The technique consists in casting small circular cylindrical samples...... aggregate size. Gallium intrusion of the cracks and subsequent examination by electron probe micro analysis, EPMA, are used to identify the cracks. The gallium intrusion technique allows controllable impregnation of cracks in the cement paste. A distinct contrast between gallium and the surrounding material...

  6. Factors associated to performance efficacy of technical-tactical actions in volleyball

    Directory of Open Access Journals (Sweden)

    William das Neves Salles

    2017-05-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2017v19n1p74   The aim of the study was to investigate the factors associated to performance efficacy of technical-tactical actions in volleyball. Based on the protocol of the Instrument for Technical and Tactical Performance Assessment in Volleyball (IAD-VB, 44.025 match actions performed by male and female athletes from u-15, u-16 and u-17 finalist teams of the 2010 Santa Catarina Volleyball Championship in Brazil were observed. Data were analyzed on SPPS 21 software using the logistic regression technique, adopting 5% significance level for the interpretation of results. Adjusted model explained 51.40% efficacy variance, and the factors associated with this variable were decision making, adjustment, efficiency, and competition level.

  7. Materials performance in prototype Thermal Cycling Absorption Process (TCAP) columns

    International Nuclear Information System (INIS)

    Clark, E.A.

    1992-01-01

    Two prototype Thermal Cycling Absorption Process (TCAP) columns have been metallurgically examined after retirement, to determine the causes of failure and to evaluate the performance of the column container materials in this application. Leaking of the fluid heating and cooling subsystems caused retirement of both TCAP columns, not leaking of the main hydrogen-containing column. The aluminum block design TCAP column (AHL block TCAP) used in the Advanced Hydride Laboratory, Building 773-A, failed in one nitrogen inlet tube that was crimped during fabrication, which lead to fatigue crack growth in the tube and subsequent leaking of nitrogen from this tube. The Third Generation stainless steel design TCAP column (Third generation TCAP), operated in 773-A room C-061, failed in a braze joint between the freon heating and cooling tubes (made of copper) and the main stainless steel column. In both cases, stresses from thermal cycling and local constraint likely caused the nucleation and growth of fatigue cracks. No materials compatibility problems between palladium coated kieselguhr (the material contained in the TCAP column) and either aluminum or stainless steel column materials were observed. The aluminum-stainless steel transition junction appeared to be unaffected by service in the AHL block TCAP. Also, no evidence of cracking was observed in the AHL block TCAP in a location expected to experience the highest thermal shock fatigue in this design. It is important to limit thermal stresses caused by constraint in hydride systems designed to work by temperature variation, such as hydride storage beds and TCAP columns

  8. Key Factors That Influence The Performance Properties Of ARP/MCU Saltstone Mixes

    International Nuclear Information System (INIS)

    Harbour, J.; Edwards, T.; Williams, V.

    2009-01-01

    At the Saltstone Production Facility (SPF), decontaminated salt solution (DSS) is combined with premix (a cementitious mixture of portland cement (PC), blast furnace slag (BFS) and Class F fly ash (FA)) in a Readco mixer to produce fresh (uncured) Saltstone. After transfer to the Saltstone Disposal Facility (SDF) the hydration reactions initiated during the contact of the premix and salt solution continue during the curing period to produce the hardened waste form product. The amount of heat generated from hydration and the resultant temperature increase in the vaults depend on the composition of the decontaminated salt solution being dispositioned as well as the grout formulation (mix design). This report details the results from Task 3 of the Saltstone Variability Study for FY09 which was performed to identify, and quantify when possible, those factors that drive the performance properties of the projected ARP/MCU Batches. A baseline ARP/MCU mix (at 0.60 water to cementitious materials (w/cm) ratio) was established and consisted of the normal premix composition and a salt solution that was an average of the projected compositions of the last three ARP/MCU batches developed by T. A. Le. This task introduced significant variation in (1) wt % slag, w/cm ratio, and wt % portland cement about the baseline mix and (2) the temperature of curing in order to better assess the dependence of the performance properties on these factors. Two separate campaigns, designated Phase 10 and Phase 11, were carried out under Task 3. Experimental designs and statistical analyses were used to search for correlation among properties and to develop linear models to predict property values based on factors such as w/cm ratio, slag concentration, and portland cement concentration. It turns out that the projected salt compositions contained relatively high amounts of aluminate (0.22 M) even though no aluminate was introduced due to caustic aluminate removal from High Level Waste. Previous

  9. HUMAN ERROR QUANTIFICATION USING PERFORMANCE SHAPING FACTORS IN THE SPAR-H METHOD

    Energy Technology Data Exchange (ETDEWEB)

    Harold S. Blackman; David I. Gertman; Ronald L. Boring

    2008-09-01

    This paper describes a cognitively based human reliability analysis (HRA) quantification technique for estimating the human error probabilities (HEPs) associated with operator and crew actions at nuclear power plants. The method described here, Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method, was developed to aid in characterizing and quantifying human performance at nuclear power plants. The intent was to develop a defensible method that would consider all factors that may influence performance. In the SPAR-H approach, calculation of HEP rates is especially straightforward, starting with pre-defined nominal error rates for cognitive vs. action-oriented tasks, and incorporating performance shaping factor multipliers upon those nominal error rates.

  10. A global fouling factor methodology for analyzing steam generator thermal performance degradation

    International Nuclear Information System (INIS)

    Kreider, M.A.; White, G.A.; Varrin, R.D.

    1998-01-01

    Over the past few years, steam generator (SG) thermal performance degradation has led to decreased plant efficiency and power output at numerous PWR nuclear power plants with recirculating-type SGs. The authors have developed and implemented methodologies for quantitatively evaluating the various sources of SG performance degradation, both internal and external to the SG pressure boundary. These methodologies include computation of the global fouling factor history, evaluation of secondary deposit thermal resistance using deposit characterization data, and consideration of pressure loss causes unrelated to the tube bundle, such as hot-leg temperature streaming and SG moisture separator performance. In order to evaluate the utility of the global fouling factor methodology, the authors performed case studies for a number of PWR SG designs. Key results from two of these studies are presented here. Uncertainty analyses were performed to determine whether the calculated fouling factor for each plant represented significant fouling or whether uncertainty in key variables (e.g., steam pressure or feedwater flow rate) could be responsible for calculated fouling. The methodology was validated using two methods: by predicting the SG pressure following chemical cleaning at San Onofre 2 and also by performing a sensitivity study with the industry-standard thermal-hydraulics code ATHOS to investigate the effects of spatially varying tube scale distributions. This study indicated that the average scale thickness has a greater impact on fouling than the spatial distribution, showing that the assumption of uniform resistance inherent to the global fouling factor is reasonable. In tandem with the fouling-factor analyses, a study evaluated for each plant the potential causes of pressure loss. The combined results of the global fouling factor calculations and the pressure loss evaluations demonstrated two key points: 1) that the available thermal margin against fouling, which can

  11. Performance of candidate gas turbine abradeable seal materials in high temperature combustion atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Simms, N.J. [Cranfield University, Power Generation Technology Centre, Cranfield, Beds, MK43 0AL (United Kingdom); Norton, J.F. [Cranfield University, Power Generation Technology Centre, Cranfield, Beds, MK43 0AL (United Kingdom); Consultant in Corrosion Science and Technology, Hemel Hempstead, Herts HP1 1SR (United Kingdom); McColvin, G. [Siemens Industrial Turbines Ltd., Lincoln, LN5 7FD (United Kingdom)

    2005-11-01

    The development of abradeable gas turbine seals for higher temperature duties has been the target of an EU-funded R and D project, ADSEALS, with the aim of moving towards seals that can withstand surface temperatures as high as {proportional_to} 1100 C for periods of at least 24,000 h. The ADSEALS project has investigated the manufacturing and performance of a number of alternative materials for the traditional honeycomb seal design and novel alternative designs. This paper reports results from two series of exposure tests carried out to evaluate the oxidation performance of the seal structures in combustion gases and under thermal cycling conditions. These investigations formed one part of the evaluation of seal materials that has been carried out within the ADSEALS project. The first series of three tests, carried out for screening purposes, exposed candidate abradeable seal materials to a simulated natural gas combustion environment at temperatures within the range 1050-1150 C in controlled atmosphere furnaces for periods of up to {proportional_to} 2,500 h with fifteen thermal cycles. The samples were thermally cycled to room temperature on a weekly basis to enable the progress of the degradation to be monitored by mass change and visual observation, as well as allowing samples to be exchanged at planned intervals. The honeycombs were manufactured from PM2000 and Haynes 214. The backing plates for the seal constructions were manufactured from Haynes 214. Some seals contained fillers or had been surface treated (e.g. aluminised). The second series of three tests were carried out in a natural gas fired ribbon furnace facility that allowed up to sixty samples of candidate seal structures (including honeycombs, hollow sphere structures and porous ceramics manufactured from an extended range of materials including Aluchrom YHf, PM2Hf, Haynes 230, IN738LC and MarM247) to be exposed simultaneously to a stream of hot combustion gas. In this case the samples were cooled

  12. A New Methodology for the Integration of Performance Materials into the Clothing Curriculum

    OpenAIRE

    Power, Jess

    2014-01-01

    This paper presents a model for integrating the study of performance materials into the clothing curriculum. In recent years there has been an increase in demand for stylish, functional and versatile sports apparel. Analysts predict this will reach US$126.30 billion by 2015. This growth is accredited to dramatic lifestyle changes and increasing participation in sports/leisurely pursuits particularly by women. The desire to own performance clothing for specific outdoor pursuits is increasing a...

  13. Strategies toward High Performance Organic Photovoltaic Cell: Material and Process

    Science.gov (United States)

    Kim, Bong Gi

    The power conversion efficiency of organic photovoltaic (OPV) cells has been rapidly improved during the last few years and currently reaches around 10 %. The performance is evenly governed by absorption, exciton diffusion, exciton dissociation, carrier transfer, and collection efficiencies. Establishing a better understanding of OPV device physics combined with the development of new materials for each executive step contributes to this dramatic improvement. This dissertation focuses mainly on material design and development to correlate the intrinsic properties of organic semiconductors and the OPV performance. The introductory Chapter 1 briefly reviews the motivation of OPV research, its working mechanism, and representative organic materials for OPV application. Chapter 2 discusses the modulation of conjugated polymer's (CP's) absorption behavior and an efficient semi-empirical approach to predict CP's energy levels from its constituent monomers' HOMO/LUMO values. A strong acceptor lowered both the HOMO and LUMO levels of the CP, but the LUMO dropped more rapidly which ultimately produced a narrowed band-gap in the electron donating/accepting alternating copolymer system. In addition, the energy level difference between the CP and the constituent monomers converged to a constant value, providing an energy level prediction tool. Chapter 3 illustrates the systematic investigation on the relationship between the molecular structure of an energy harvesting organic dye and the exciton dissociation efficiency. The study showed that the quantum yield decreased as the exciton binding energy increases, and dipole moment direction should be properly oriented in the dye framework in order to improve photo-current generation when used in a dye sensitized photovoltaic device. Chapter 4 demonstrates the ultrasonic-assisted self-assembly of CPs in solution, rapidly and efficiently. Ultrasonication combined with dipolar media accelerated CP's aggregation, and the effect of CP

  14. Psycho-social factors determining success in high-performance triathlon: compared perception in the coach-athlete pair.

    Science.gov (United States)

    Ruiz-Tendero, Germán; Salinero Martín, Juan José

    2012-12-01

    High-level sport can be analyzed using the complex system model, in which performance is constrained by many factors. Coaches' and athletes' perceptions of important positive and negative factors affecting performance were compared. Participants were 48 high-level international triathletes (n = 34) and their coaches (n = 14). They were personally interviewed via a questionnaire designed by four accredited experts, who selected groups of both positive and negative factors affecting performance. A list of factors was developed, in order of greater to lesser importance in the opinion of athletes and coaches, for subsequent analysis. Two ranked lists (positive and negative factors) indicated that athletes appear to rate personal environment factors (family, teammates, lack of support from relatives) higher, while the coaches tended to give more importance to technical and institutional aspects (institutional support, coach, medical support). There was complete agreement between coaches and triathletes about the top five positive factors. Negative factor agreement was somewhat lower (agreement on 3/5 factors). The most important positive factor for coaches and athletes was "dedication/engagement," while the most important factor adversely affecting performance was "injuries".

  15. Gender and engineering aptitude: Is the color of science, technology, engineering, and math materials related to children's performance?

    Science.gov (United States)

    Mulvey, Kelly Lynn; Miller, Bridget; Rizzardi, Victoria

    2017-08-01

    To investigate gender stereotypes, demonstrated engineering aptitude, and attitudes, children (N=105) solved an engineering problem using either pastel-colored or primary-colored materials. Participants also evaluated the acceptability of denial of access to engineering materials based on gender and counter-stereotypic preferences (i.e., a boy who prefers pastel-colored materials). Whereas material color was not related to differences in female participants' performance, younger boys assigned to pastel materials demonstrated lower engineering aptitude than did other participants. In addition, results documented age- and gender-related differences; younger participants, and sometimes boys, exhibited less flexibility regarding gender stereotypes than did older and female participants. The findings suggest that attempts to enhance STEM (science, technology, engineering, and math) engagement or performance through the color of STEM materials may have unintended consequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Nanoporous CuS nano-hollow spheres as advanced material for high-performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, Hamid [Faculty of Sciences, Razi University, Kermanshah (Iran, Islamic Republic of); Moosavifard, Seyyed Ebrahim, E-mail: info_seyyed@yahoo.com [Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Elyasi, Saeed [Department of Chemical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Shahraki, Mohammad [Department of Chemistry, University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of)

    2017-02-01

    Highlights: • Nanoporous CuS nano-hollow spheres were synthesized by a facile method. • Nano-hollow spheres have a large specific surface area (97 m{sup 2} g{sup −1}) and nanoscale shell thickness (<20 nm). • Such unique structures exhibit excellent electrochemical properties for high-performance SCs. - Abstract: Due to unique advantages, the development of high-performance supercapacitors has stimulated a great deal of scientific research over the past decade. The electrochemical performance of a supercapacitor is strongly affected by the surface and structural properties of its electrode materials. Herein, we report a facile synthesis of high-performance supercapacitor electrode material based on CuS nano-hollow spheres with nanoporous structures, large specific surface area (97 m{sup 2} g{sup −1}) and nanoscale shell thickness (<20 nm). This interesting electrode structure plays a key role in providing more active sites for electrochemical reactions, short ion and electron diffusion pathways and facilitated ion transport. The CuS nano-hollow spheres electrode exhibits excellent electrochemical performance including a maximum specific capacitance of 948 F g{sup −1} at 1 A g{sup −1}, significant rate capability of 46% capacitance retention at a high current density of 50 A g{sup −1}, and outstanding long-term cycling stability at various current densities. This work not only demonstrates the promising potential of the CuS-NHS electrodes for application in high-performance supercapacitors, but also sheds a new light on the metal sulfides design philosophy.

  17. Factores asociados al rendimiento académico en estudiantes de medicina Factors associated with academic performance in medical students

    Directory of Open Access Journals (Sweden)

    Alberto Vélez van Meerbeke

    2005-06-01

    Full Text Available Objetivos: Determinar y evaluar los factores que estuvieran incidiendo en el desempeño académico de nuestros estudiantes de primer semestre de medicina. Metodología: Se caracterizó la población en búsqueda de factores que se analizaron posteriormente para determinar asociación y predicción, a través de un modelo de regresión logística, del rendimiento académico final. Resultados: Se analizaron 80 estudiantes de edades comprendidas entre 17 y 18, la mayoría mujeres, procedentes de Bogotá, de colegios mixtos, privados y monolingües. El grupo fue homogéneo por factores sociodemográficos, culturales, escolaridad y de motivaciones. Se detectaron rasgos de violencia intrafamiliar, de consumo de alcohol y cigarrillo pero no de drogas psicoactivas. Los resultados obtenidos en la prueba de aptitudes diferenciales y generales (BADyGs del aprendizaje fueron bajos. El análisis mostró que el no leer como pasatiempo, la presencia de violencia intrafamiliar, el haber fumado marihuana, el provenir de un colegio mixto, el no haber realizado estudios profesionales, de quien se depende económicamente, las notas de biología, bioquímica y del promedio trimestral fueron los factores que se asocian con fracaso académico o pérdida de cupo. La variable que predice fracaso académico cuando se controla por los otros factores incluidos en el modelo es el promedio trimestral y la que determina pérdida de cupo es la nota del laboratorio de bioquímica. Conclusiones: Aunque existen factores previos al ingreso que puedan explicar el desempeño académico, es importante evaluar el rendimiento durante el semestre para intervenir rápidamente y evitar el fracaso.Objectives: To determine and evaluate factors that affect academic performance in first semester medicine students. Methodology: The population was characterized in a search for factors that would later be studied in order to determine statistical association and prediction of final academic

  18. The effects of glucose dose and dual-task performance on memory for emotional material

    OpenAIRE

    Brandt, Karen; Sünram-Lea, Sandra; Jenkinson, Paul; Jones, Emma

    2010-01-01

    Whilst previous research has shown that glucose administration can boost memory performance, research investigating the effects of glucose on memory for emotional material has produced mixed findings. Whereas some research has shown that glucose impairs memory for emotional material, other research has shown that glucose has no effect on emotional items. The aim of the present research was therefore to provide further investigation of the role of glucose on the recognition of words with emoti...

  19. Polythiophene nanocomposites as high performance electrode material for supercapacitor application

    Science.gov (United States)

    Vijeth, H.; Niranjana, M.; Yesappa, L.; Ashokkumar, S. P.; Devendrappa, H.

    2018-04-01

    A polythiophene-aluminium oxide nanocomposite is prepared by in situ chemical polymerisation in presence of anionic surfactant camphor sulfonic acid (CSA). The characterisation of nano composite was done by X-ray Diffraction (XRD), surface morphology was studied using Atomic Force Microscopy (AFM). The electrochemical performance is evaluated using cyclic voltammetry in 1M H2SO4. As an electroactive material, it exhibits high specific capacitance of 654.5 and 757 F/g for PTH and PTHA nanocomposites at scan rate of 30mV s-1 respectively.

  20. Nominal Performance Biosphere Dose Conversion Factor Analysis

    International Nuclear Information System (INIS)

    Wasiolek, M.

    2000-01-01

    The purpose of this report was to document the process leading to development of the Biosphere Dose Conversion Factors (BDCFs) for the postclosure nominal performance of the potential repository at Yucca Mountain. BDCF calculations concerned twenty-four radionuclides. This selection included sixteen radionuclides that may be significant nominal performance dose contributors during the compliance period of up to 10,000 years, five additional radionuclides of importance for up to 1 million years postclosure, and three relatively short-lived radionuclides important for the human intrusion scenario. Consideration of radionuclide buildup in soil caused by previous irrigation with contaminated groundwater was taken into account in the BDCF development. The effect of climate evolution, from the current arid conditions to a wetter and cooler climate, on the BDCF values was evaluated. The analysis included consideration of different exposure pathway's contribution to the BDCFs. Calculations of nominal performance BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. BDCFs for the nominal performance, when combined with the concentrations of radionuclides in groundwater allow calculation of potential radiation doses to the receptor of interest. Calculated estimates of radionuclide concentration in groundwater result from the saturated zone modeling. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA) to calculate doses to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain

  1. Degradation of photovoltaic backsheet materials under multi-factor accelerated UV light exposures

    Science.gov (United States)

    Klinke, Addison G.; Gok, Abdulkerim; Ifeanyi, Silas I.; French, Roger H.; Bruckman, Laura S.

    2017-08-01

    Long term outdoor durability of photovoltaic (PV) module backsheets is critical to a module's power output over its lifetime. The use of uoropolymer-based backsheets or the addition of stabilizers to polyethylene-terephthalate (PET) and polyamide (PA) type backsheets can help extend their lifetime. This study presents the performance of 21 backsheets made of 8 different material combinations under ASTM G154 Cycle 4 accelerated light exposures. The backsheets were subjected to 4000 hours of high irradiance UVA light at a peak intensity of 1.55 W=m2 at 340 nm at 70°C with and without a condensing humidity cycle at 50°C. Backsheets were evaluated, with repeated measurements, using various evaluation techniques to identify and assess potential signs of degradation. These evaluations included the yellowness index (YI), CIE color space coordinates, and gloss at 20, 60, and 85°. The temporal evolution of the relative color change ΔE was statistically analyzed to develop a stress-response model which used the UVA light dose to predict color change. It was found that the PVF/PET/E backsheet performed the best while PET/PET/E and THV/PET/EVA backsheets performed the worst. Additionally, substantial variation in color change response, attributable to key manufacturing differences, was observed within a given material type.

  2. A comparison of the Nordtest and Japanese test methods for the moisture buffering performance of building materials

    DEFF Research Database (Denmark)

    Roels, Staf; Janssen, Hans

    2006-01-01

    Two test methods, one worked out in a Nordtest project and the other available as a Japanese Industrial Standard, both developed to characterize building materials with respect to moisture buffering performance, are analyzed in detail by a numerical study on four different materials. Both test...... by confronting the values obtained for the four materials with the dynamic response of a small room with each of the materials used in turns as finishing material. Finally, the results determined according to the dynamic test protocol are compared with values calculated from steady-state material data....

  3. Study on Performance Shaping Factors (PSFs) Quantification Method in Human Reliability Analysis (HRA)

    International Nuclear Information System (INIS)

    Kim, Ar Ryum; Jang, Inseok Jang; Seong, Poong Hyun; Park, Jinkyun; Kim, Jong Hyun

    2015-01-01

    The purpose of HRA implementation is 1) to achieve the human factor engineering (HFE) design goal of providing operator interfaces that will minimize personnel errors and 2) to conduct an integrated activity to support probabilistic risk assessment (PRA). For these purposes, various HRA methods have been developed such as technique for human error rate prediction (THERP), simplified plant analysis risk human reliability assessment (SPAR-H), cognitive reliability and error analysis method (CREAM) and so on. In performing HRA, such conditions that influence human performances have been represented via several context factors called performance shaping factors (PSFs). PSFs are aspects of the human's individual characteristics, environment, organization, or task that specifically decrements or improves human performance, thus respectively increasing or decreasing the likelihood of human errors. Most HRA methods evaluate the weightings of PSFs by expert judgment and explicit guidance for evaluating the weighting is not provided. It has been widely known that the performance of the human operator is one of the critical factors to determine the safe operation of NPPs. HRA methods have been developed to identify the possibility and mechanism of human errors. In performing HRA methods, the effect of PSFs which may increase or decrease human error should be investigated. However, the effect of PSFs were estimated by expert judgment so far. Accordingly, in order to estimate the effect of PSFs objectively, the quantitative framework to estimate PSFs by using PSF profiles is introduced in this paper

  4. Proposals for the use of reference materials and for the development of in-house quality control materials for food analysis

    International Nuclear Information System (INIS)

    Ihnat, Milan

    2002-01-01

    A summary is presented of factors to be considered in the development of food-based in-house quality control materials to augment available Reference Materials and for frequent, concerted data quality control. Some guidelines are offered regarding approaches to the many considerations required for such an endeavour. Preliminary draft recommendations containing a sequence of steps has been compiled as a starting proposal for a food quality control material development scheme, for a range of natural matrices and measurands. In addition, information on the selection and utilization of Certified Reference Materials and procedures for performance interpretation and corrective action is provided. (author)

  5. Oxidation performance of high temperature materials under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tuurna, Satu; Pohjanne, Pekka; Yli-Olli, Sanni; Kinnunen, Tuomo [VTT Technical Research Centre of Finland, Espoo (Finland)

    2010-07-01

    Oxyfuel combustion is widely seen as a major option to facilitate carbon capture and storage (CCS) from future boiler plants utilizing clean coal technologies. Oxyfuel combustion can be expected to differ from combustion in air by e.g. modified distribution of fireside temperatures, much reduced NOx but increased levels of fireside CO{sub 2}, SO{sub 2} and water levels due to extensive flue gas recirculation. Modified flue gas chemistry results in higher gas emissivity that can increase the thermal stresses at the heat transfer surfaces of waterwalls and superheaters. In addition, increased flue gas recirculation can increase the concentration of a number of contaminants in the deposited ash and promote fouling and corrosion. There is relatively little experimental information available about the effects of oxyfuel combustion on the performance of boiler material. In this work, the oxidation performance of steels X20CrMoV11-1 and TP347HFG has been determined at 580 C/650 C under simulated oxyfuel firing conditions. The results are presented and compared to corresponding results from simulated air firing conditions. (orig.)

  6. Investigation of the Hygrothermal Performance of Alternative Insulation Materials

    DEFF Research Database (Denmark)

    Rode, Carsten; Kristiansen, Finn Harken; Rasmussen, Niels T.

    1999-01-01

    The paper gives an account of hygrothermal investigations carried out on some insulation products which are "alternative" to the ones that are traditionally used in Danish constructions. The alternative products are claimed to be friendly both to the environment and to the labour force. The mater......The paper gives an account of hygrothermal investigations carried out on some insulation products which are "alternative" to the ones that are traditionally used in Danish constructions. The alternative products are claimed to be friendly both to the environment and to the labour force...... is determined for the different materials with a guarded hot plate apparatus in which different vapour pressure conditions can be maintained over the specimens. The apparatus and some results are presented.2. Computational analysis of the hygrothermal performance of constructions with alternative insulation...... products.The hygrothermal performance of constructions with alternative insulation products is analysed with a computational model for combined heat and moisture transfer. The analysis concerns both traditional wall and roof constructions with the alternative insulation products, and some alternative...

  7. Improvement of technical purpose materials performance characteristics with the radio frequency low pressure plasma

    Science.gov (United States)

    Makhotkina, L. Yu; Khristoliubova, V. I.

    2017-11-01

    The main aim of the work is to solve the actual problem of increasing the competitiveness of tanning products by reducing the prime cost and improving the quality of finished products due to the increased durability of the working elements of tanneries. The impact of the low pressure radio frequency (RF) plasma in the processes of treating for modification of the materials for special purposes is considered in the article. The results of working elements of tanneries and the materials for special purposes sample processing by a RF low pressure plasma are described. As a result of leather materials nano structuring and nano modifying physical, mechanical and hygienic characteristics were increased. Processing of the technical purpose materials allows to increase operational performance of products and extend their lifespan.

  8. Biomechanical factors influencing the performance of elite Alpine ski racers.

    Science.gov (United States)

    Hébert-Losier, Kim; Supej, Matej; Holmberg, Hans-Christer

    2014-04-01

    Alpine ski racing is a popular international winter sport that is complex and challenging from physical, technical, and tactical perspectives. Despite the vast amount of scientific literature focusing on this sport, including topical reviews on physiology, ski-snow friction, and injuries, no review has yet addressed the biomechanics of elite alpine ski racers and which factors influence performance. In World Cup events, winning margins are often mere fractions of a second and biomechanics may well be a determining factor in podium place finishes. The aim of this paper was to systematically review the scientific literature to identify the biomechanical factors that influence the performance of elite alpine ski racers, with an emphasis on slalom, giant slalom, super-G, and downhill events. Four electronic databases were searched using relevant medical subject headings and key words, with an additional manual search of reference lists, relevant journals, and key authors in the field. Articles were included if they addressed human biomechanics, elite alpine skiing, and performance. Only original research articles published in peer-reviewed journals and in the English language were reviewed. Articles that focused on skiing disciplines other than the four of primary interest were excluded (e.g., mogul, ski-cross and freestyle skiing). The articles subsequently included for review were quality assessed using a modified version of a validated quality assessment checklist. Data on the study population, design, location, and findings relating biomechanics to performance in alpine ski racers were extracted from each article using a standard data extraction form. A total of 12 articles met the inclusion criteria, were reviewed, and scored an average of 69 ± 13% (range 40-89%) upon quality assessment. Five of the studies focused on giant slalom, four on slalom, and three on downhill disciplines, although these latter three articles were also relevant to super-G events

  9. Feasibility of introducing ferromagnetic materials to onboard bulk high-Tc superconductors to enhance the performance of present maglev systems

    International Nuclear Information System (INIS)

    Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu

    2013-01-01

    Highlights: ► Ferromagnetic materials guide the flux distribution of the PMG to bulk positions. ► With ferromagnetic materials, guidance performance can be enhanced greatly. ► A new HTS Maglev system with onboard ferromagnetic materials is designed. ► The design can meet large guidance force requirements for practical applications. -- Abstract: Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves

  10. Factors Affecting the Business Performance of Female Owned Enterprises in TRNC

    OpenAIRE

    Hatice Jenkins; Salih Katircioglu

    2007-01-01

    This study is the first empirical research on the performance of the Turkish Cypriot female entrepreneurs in North Cyprus. The research helps to identify the major factors affecting the performance of Turkish Cypriot female entrepreneurs both positively and negatively. Furthermore, it identifies the main causes of performance variations among the businesses owned by female entrepreneurs. A face to face survey method was utilized to collect primary data from two hundred female entrepreneurs an...

  11. An overview of multidimensional factors influencing effective performance of expatriates

    Directory of Open Access Journals (Sweden)

    R. Arthi

    2015-01-01

    Full Text Available In the era of rapid globalization, every kind of business and commercial trading calls for a massive exchange of ideas, products, personnel, infrastructure, and development resources across the world. Today's highly competitive global business environment sets the platform for international employee assignments, wherein people possessing the required knowledge base and motivation, move across international boundaries. The purpose of the study is to identify various factors that might influence the expatriates during their foreign assignments. The study gains significance by attempting to understand the cultural challenges and intangible barriers that might exist in a new cultural setting and which might impede the performance of expatriates. The analysis is based on the review of approximately fifty existing papers. The study finally highlights the key factors that make the expatriates perform better in their new working environment.

  12. Numerical Simulation of the Dynamic Performance of the Ceramic Material Affected by Different Strain Rate and Porosity

    International Nuclear Information System (INIS)

    Wang Zhen; Mei, H; Lai, X; Liu, L S; Zhai, P C; Cao, D F

    2013-01-01

    Ceramic materials are frequently used in protective armor applications for its low-density, high elastic modulus and high strength. It may be subject to different ballistic impacts in many situations, thus many studies have been carried out to explore the approach to improve the mechanical properties of the ceramic material. However, the materials manufactured in real world are full of defects, which would involve in variable fractures or damage. Therefore, the defects should be taken into account while the simulations are performed. In this paper, the dynamic properties of ceramic materials (Al 2 O 3 ) affected by different strain rate (500–5000) and porosity (below 5%) are investigated. Foremost, the effect of strain rate was studied by using different load velocities. Then, compression simulations are performed by setting different porosities and random distribution of pores size and location in ceramic materials. Crack extensions and failure modes are observed to describe the dynamic mechanical behavior.

  13. Pathways to high and low performance: factors differentiating primary care facilities under performance-based financing in Nigeria

    Science.gov (United States)

    Mabuchi, Shunsuke; Sesan, Temilade; Bennett, Sara C

    2018-01-01

    Abstract The determinants of primary health facility performance in developing countries have not been well studied. One of the most under-researched areas is health facility management. This study investigated health facilities under the pilot performance-based financing (PBF) scheme in Nigeria, and aimed to understand which factors differentiated primary health care centres (PHCCs) which had performed well, vs those which had not, with a focus on health facility management practices. We used a multiple case study where we compared two high-performing PHCCs and two low-performing PHCCs for each of the two PBF target states. Two teams of two trained local researchers spent 1 week at each PHCC and collected semi-structured interview, observation and documentary data. Data from interviews were transcribed, translated and coded using a framework approach. The data for each PHCC were synthesized to understand dynamic interactions of different elements in each case. We then compared the characteristics of high and low performers. The areas in which critical differences between high and low-performers emerged were: community engagement and support; and performance and staff management. We also found that (i) contextual and health system factors particularly staffing, access and competition with other providers; (ii) health centre management including community engagement, performance management and staff management; and (iii) community leader support interacted and drove performance improvement among the PHCCs. Among them, we found that good health centre management can overcome some contextual and health system barriers and enhance community leader support. This study findings suggest a strong need to select capable and motivated health centre managers, provide long-term coaching in managerial skills, and motivate them to improve their practices. The study also highlights the need to position engagement with community leaders as a key management practice and a central

  14. Materials Performance in USC Steam

    Energy Technology Data Exchange (ETDEWEB)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

    2010-05-01

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

  15. Mechanical performance of MFE materials

    International Nuclear Information System (INIS)

    Opperman, E.K.; Straalsund, J.L.

    1977-01-01

    The objective of this program is to establish the effects of Magnetic Fusion Reactor (MFR) environments on the mechanical properties of candidate MFR materials. As a first step in meeting this end, a torsional system was developed to measure creep resulting from incident light ions of energies ranging from 5 to 60 MeV and displacement rates up to 1 x 10 -5 dpa/sec. Light particle simulation of creep and cyclic behavior will be necessary during early stages of MFR materials devlopment because high flux neutron sources will not be available during this period. The specific objectives of this six month period were to finalize the thermal creep testing phase and initiate creep measurements under proton irradiation. The goals of the first irradiation were to determine if proton induced creep could, in fact, be resolved from thermal creep and to give the entire system, including all beam defining, collimating and measurement components, a thorough test in a radiation environment

  16. Sensitivity analyses of factors influencing CMAQ performance for fine particulate nitrate.

    Science.gov (United States)

    Shimadera, Hikari; Hayami, Hiroshi; Chatani, Satoru; Morino, Yu; Mori, Yasuaki; Morikawa, Tazuko; Yamaji, Kazuyo; Ohara, Toshimasa

    2014-04-01

    Improvement of air quality models is required so that they can be utilized to design effective control strategies for fine particulate matter (PM2.5). The Community Multiscale Air Quality modeling system was applied to the Greater Tokyo Area of Japan in winter 2010 and summer 2011. The model results were compared with observed concentrations of PM2.5 sulfate (SO4(2-)), nitrate (NO3(-)) and ammonium, and gaseous nitric acid (HNO3) and ammonia (NH3). The model approximately reproduced PM2.5 SO4(2-) concentration, but clearly overestimated PM2.5 NO3(-) concentration, which was attributed to overestimation of production of ammonium nitrate (NH4NO3). This study conducted sensitivity analyses of factors associated with the model performance for PM2.5 NO3(-) concentration, including temperature and relative humidity, emission of nitrogen oxides, seasonal variation of NH3 emission, HNO3 and NH3 dry deposition velocities, and heterogeneous reaction probability of dinitrogen pentoxide. Change in NH3 emission directly affected NH3 concentration, and substantially affected NH4NO3 concentration. Higher dry deposition velocities of HNO3 and NH3 led to substantial reductions of concentrations of the gaseous species and NH4NO3. Because uncertainties in NH3 emission and dry deposition processes are probably large, these processes may be key factors for improvement of the model performance for PM2.5 NO3(-). The Community Multiscale Air Quality modeling system clearly overestimated the concentration of fine particulate nitrate in the Greater Tokyo Area of Japan, which was attributed to overestimation of production of ammonium nitrate. Sensitivity analyses were conducted for factors associated with the model performance for nitrate. Ammonia emission and dry deposition of nitric acid and ammonia may be key factors for improvement of the model performance.

  17. Factors related to the performance of Specialized Dental Care Centers

    Directory of Open Access Journals (Sweden)

    Flávia Christiane de Azevedo Machado

    2015-04-01

    Full Text Available The Specialized Dental Care Centers (SDCC have the mission to expand access to public medium complexity dental care and support the primary health care actions at this level of complexity. However, it is necessary to ensure the quality of services and to evaluate such services continuously to identify weaknesses and strengths that support the processes of leadership/management. Nevertheless, there is a dearth of studies on the assessment of oral health in specialized care that may indicate which factors should be investigated. Therefore, this integrated literature review sought to explore the plethora of publications on the evaluation of SDCC in the LILACS and MEDLINE data bases in October 2013 to identify factors possibly related to the performance of such health services. Thus, 13 references were included in this review pointing to forms of organization and management of work processes related to the creation of healthcare networks (operation of regulation centers and setting up of health consortiums. They include the contextual characteristics of the places where SDCCs are located (population size, Family Health Strategy coverage, Municipal Human Development Index, governance, governing capacity were factors that influenced the SDCCs performance.

  18. Level-3 Cholesky Factorization Routines Improve Performance of Many Cholesky Algorithms

    DEFF Research Database (Denmark)

    Gustavson, Fred G.; Wasniewski, Jerzy; Dongarra, Jack J.

    2013-01-01

    Four routines called DPOTF3i, i = a,b,c,d, are presented. DPOTF3i are a novel type of level-3 BLAS for use by BPF (Blocked Packed Format) Cholesky factorization and LAPACK routine DPOTRF. Performance of routines DPOTF3i are still increasing when the performance of Level-2 routine DPOTF2 of LAPACK...

  19. Why Is Working Memory Performance Unstable? A Review of 21 Factors

    Science.gov (United States)

    Blasiman, Rachael N.; Was, Christopher A.

    2018-01-01

    In this paper, we systematically reviewed twenty-one factors that have been shown to either vary with or influence performance on working memory (WM) tasks. Specifically, we review previous work on the influence of intelligence, gender, age, personality, mental illnesses/medical conditions, dieting, craving, stress/anxiety, emotion/motivation, stereotype threat, temperature, mindfulness training, practice, bilingualism, musical training, altitude/hypoxia, sleep, exercise, diet, psychoactive substances, and brain stimulation on WM performance. In addition to a review of the literature, we suggest several frameworks for classifying these factors, identify shared mechanisms between several variables, and suggest areas requiring further investigation. This review critically examines the breadth of research investigating WM while synthesizing the results across related subfields in psychology. PMID:29899806

  20. HPC-NMF: A High-Performance Parallel Algorithm for Nonnegative Matrix Factorization

    Energy Technology Data Exchange (ETDEWEB)

    2016-08-22

    NMF is a useful tool for many applications in different domains such as topic modeling in text mining, background separation in video analysis, and community detection in social networks. Despite its popularity in the data mining community, there is a lack of efficient distributed algorithms to solve the problem for big data sets. We propose a high-performance distributed-memory parallel algorithm that computes the factorization by iteratively solving alternating non-negative least squares (NLS) subproblems for $\\WW$ and $\\HH$. It maintains the data and factor matrices in memory (distributed across processors), uses MPI for interprocessor communication, and, in the dense case, provably minimizes communication costs (under mild assumptions). As opposed to previous implementation, our algorithm is also flexible: It performs well for both dense and sparse matrices, and allows the user to choose any one of the multiple algorithms for solving the updates to low rank factors $\\WW$ and $\\HH$ within the alternating iterations.

  1. Effects of Variation in Truck Factor on Pavement Performance in Pakistan

    Directory of Open Access Journals (Sweden)

    Rabia Chaudry

    2013-01-01

    Full Text Available Seasonal variation coupled with heavy axle loading is the key factor in rapid road deterioration in Pakistan. The serviceability loss is further accelerated by the fact that truck drivers and owners consider overloading as a profitable practice unaware of the adverse effects of this practice. Weigh-in-motion data from two stations located between two major cities of Pakistan (Peshawar and Rawalpindi on Grand Trunk Road (N-5 were collected and analyzed. Analysis of variance and comparison of actual and designed truck factor were performed to identify the most damaging axle truck type. It was found that axle truck type 3 (single/tandem axle is most damaging among all truck types. The actual truck factor for axle truck type 3 is 6.4 times greater than design truck factor. Regression expressions of different forms were also investigated to determine the relationship between truck factor and gross vehicular weight for the specified truck types. An optimum generalization strategy was used to prevent over-generalization and ensure accuracy. For data analysis, 75% of data was used to develop regression models and remaining 25% was to validate those models. The results show that the polynomial expressions performed best and provide a robust relationship that can be employed by the highway authorities to estimate truck factor from gross vehicular weight with a high degree of confidence. It was also observed that damaging effect of various types of trucks was very severe and quite high.

  2. Performance evaluation of subgrade stabilization with recycled materials.

    Science.gov (United States)

    2016-02-29

    Due to rising costs of good quality acceptable materials for remove/replace options and traditional : subgrade stabilization materials, MDOT is in need to identify potential recycled materials to treat : unacceptable subgrade soils. Use of recycled m...

  3. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxin [ORNL; Bhat, Vinay V [ORNL; Gallego, Nidia C [ORNL; Contescu, Cristian I [ORNL

    2012-01-01

    Graphene materials were synthesized by reduction of exfoliated graphene oxide sheets by hydrazine hydrate and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction, and nitrogen adsorption / desorption. RGO forms a continuous network of crumpled sheets, which consist of numerous few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. The results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving specific capacitance, energy, and power density.

  4. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors.

    Science.gov (United States)

    Zhang, Hongxin; Bhat, Vinay V; Gallego, Nidia C; Contescu, Cristian I

    2012-06-27

    Graphene materials were synthesized by reduction of exfoliated graphite oxide and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction pattern analysis, and nitrogen adsorption/desorption studies. RGO forms a continuous network of crumpled sheets, which consist of large amounts of few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. These results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving its specific capacitance, energy, and power density.

  5. Factors Influencing Individual Performance In An Indonesian Government Office

    Directory of Open Access Journals (Sweden)

    Azizatul Munawaroh

    2013-11-01

    Full Text Available 1024x768 Reformation in Indonesian government offices leads to many substantial changes, and demands improved job performances while arguably loading employees with more work. This research aims to understand factors that potentially influence job performance in Indonesian government offices that carries on such reformation. Using adapted scales from previous studies, this research investigates the role of workload, responsibility for others (level of responsibility to care for other people and need for achievement on employee’s performance.  A survey to all full-time workers in an Indonesian government office is conducted. Contrary to expectation, workload does not influence employee’s performance. Instead, regression analysis demonstrates that, employee’s need for achievement and responsibility for others are significant factors affecting individual performance. These results are important because they highlight the significance of need for achievement for the success of reformation in this office, and by extension for reformation in Indonesia. The results are also interesting because this is the first study that points out to the role of responsibility for others in influencing individual performance in Indonesia which is characterized by collectivistic culture. This paper discusses the contributions of these results for theory and practice.   Keywords: Indonesian public, need for achievement, responsibility for others, workload. Normal 0 false false false IN X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso

  6. Performance evaluation of PRIDE UNDA system with feed material of pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    An, Su Jung; Seo, Hee; Lee, Chae Hun; Ahn, Seong Kyu; Park, Se Hwan; Ku, Jeong Hoe [Nonproliferation System Research Division, KAERI, Daejeon (Korea, Republic of)

    2016-12-15

    The PRIDE (PyRoprocessing Integrated inactive DEmonstration facility) provides unique opportunities not only to develop process technologies but also to test various types of safeguards equipment for nuclear material accountancy (NMA), containment and surveillance (C/S), as well as process monitoring. In this regard, we developed a UNDA (Unified Non-Destructive Assay) system by incorporating three different non-destructive assay (NDA) techniques, i.e., neutron, gamma-ray, and mass measurements, for the testing of NMA of PRIDE. One of the main advantages of the UNDA is reducing measurement time and systematic error related to sample handling and placement by integrating the NDA techniques. The {sup 235}U mass can be determined from the {sup 238}U mass and uranium enrichment ({sup 235}U/{sup 238}U). The {sup 238}U mass is acquired from total neutron counting using neutron detection module of UNDA, with the information on the spontaneous fission neutron yield of {sup 238}U and neutron detection efficiency of the system. Total sample mass is measured by using the mass balance. In our previous studies, the UNDA was developed and characterized for a calibration source. In this study, the UNDA was installed in PRIDE facility, and the performance of the UNDA was evaluated with feed material of oxide reduction process. In this study, the performance of the UNDA was evaluated with feed material of oxide reduction process: UO2 porous pellets made of DU. The neutron net count rate was obtained as functions of 238U mass. The measured net count rate fitted by linear regression showed good linearity. In addition, the 238U mass of unknown source was determined using the information of the detection efficiency and count rate obtained from the UNDA.

  7. A search for factors related to successful performance by Rebuild America partnerships

    International Nuclear Information System (INIS)

    Schweitzer, Martin; Ogle-Graham, Laura

    2005-01-01

    Under the sponsorship of the US Department of Energy's Office of Energy Efficiency and Renewable Energy, staff at Oak Ridge National Laboratory (ORNL) studied the Rebuild America program for the purpose of identifying key factors associated with successful operations. This involved performing a quantitative analysis of the relationships between program results and selected characteristics of the partnerships as well as soliciting opinion data from partnership representatives regarding the factors related to good performance. The statistical analysis revealed that partnership age and the number of projects per partnership were both positively related to all the results measures tested, by themselves and in the presence of each other. The factors most frequently mentioned by the interviewed partnership representatives as influencing good partnership performance were: general assistance from the Rebuild America representative; open communications among all partners; existence of a 'champion' for the partnership; support from the relevant city or state government; effective marketing to attract new partners; strong community interest; quick return on investment; interaction with other community organizations; and continuity of funding. A full discussion of all study findings can be found in the ORNL Report entitled an examination of Rebuild America partnership accomplishments and the factors influencing them (ORNL/CON-490, Oak Ridge National Laboratory, Oak Ridge, TN)

  8. Game-Related Performance Factors in four European Men's Professional Volleyball Championships.

    Science.gov (United States)

    Peña, Javier; Casals, Martí

    2016-12-01

    The present study was designed to assess the relevance of game-related performance factors as outcome predictors in high-level volleyball. To carry out the analysis, the official box scores of 399 matches played by 47 different teams in four different European male professional volleyball leagues (Italy, Poland, Germany and Turkey) during the 2013-14 regular season were analyzed. A logistic mixed model was performed to determine the effects of different variables in matches' outcomes. According to the multivariate analysis the following factors were significantly associated with winning matches: the number of scorers (OR = 1.32; CI: 1.09 - 1.59), service errors (OR = 0.91; CI: 0.87 - 0.95), service points (OR = 1.25; CI: 1.15 -1.36), reception errors (OR = 0.79; CI: 0.74 - 0.84), the percentage of positive receptions (OR = 1.02; CI: 1.00 -1.04) and blocked balls (OR = 1.17; CI: 1.11 - 1.26). Team category 2 (OR = 0.39; CI: 0.24 - 0.63) and team category 3 (OR = 0.15; CI: 0.09 - 0.25) were significantly associated with losing matches. These findings can contribute to a better understanding of performance indicators in professional volleyball, helping coaches and decision makers to better determine the importance of particular game factors.

  9. Performance tests on new chromatographic material for 99Mo-99mTc generators

    International Nuclear Information System (INIS)

    Sombrito, Elvira Z.; Bulos, Adelina D.M.

    2004-01-01

    Technetium-99m continues to be the main workhorse of nuclear medicine in the Philippines. Almost 13TBq of 99m Tc was imported to the country in 2002 supplied as 99m Tc- 99 Mo generators. These generators make use of fission molybdenum adsorbed onto an alumina column. Problems associated with the alumina chromatographic generators arise due to safety and economic issues that would be remedied by gel-type generators using low specific activity reactor-produced molybdenum-99 adsorbed on a high capacity gel column material. The Philippine Nuclear Research Institute (PNRI) exerted efforts in this direction by developing a gel-type column, which showed satisfactory molybdenum adsorptive capacity. Likewise, Kaken Co. in Japan in cooperation with Japan Atomic Energy Research Institute (JAERI) developed a dried form of a gel-type polyzirconium compound (PZC). It is a ready-to-use high molybdenum capacity column material for adsorbing reactor-produced molybedum-99. The performance of this material is being tested under the framework of the FNCA project on Research Reactor Utilization. Performance tests on four batches of PZC were performed using fission molybdenum eluted from a 99 Mo- 99m Tc generator. A total of 3.3 GBq 99 Mo was extracted from an alumina column of a commercial generator and mixed with carrier molybdenum solution. About 0.67 GBq was loaded into each of the 12 x 90 mm column. One batch was prepared and distributed in 1999 and tests showed very poor elution yield of 30%. Three recent batches of PZC (2002) gave elution yields of 71% (Range of 69-75). The adsorptive capacity is 99% with about 4% desorption rate. Elution volume is at 5-6 ml. Daily elution for five days gave from 1.6 to 5.5% variability. The tests were performed all at the same time and a trend of improving elution yield and consistency of daily elution yield was observed with the time of testing nearer to the sample preparation date. X-ray diffraction analysis showed an amorphous structure for

  10. Material Factors in Relation to Development Time in Liquid-Penetrant Inspection. Part 1. Material Factors

    Directory of Open Access Journals (Sweden)

    Irek P.

    2016-06-01

    Full Text Available In technical publications and European Standards the development time (i.e. time of getting out of penetrant from a discontinuity to the material surface in penetration testing is specified within the range of 10-30 minutes. In practice, however, it is seen , that it is closely connected

  11. The effects of materials' composition and some external factors on measuring precision for nuclear conveyor belt scale

    International Nuclear Information System (INIS)

    Zhang Yongming; Hong Pingshun; Wang Min

    1997-01-01

    The effects of some external factors on the metrological precision of a nuclear conveyor belt scale were verified with a series of tests. It is shown that the precision is related not only with the moisture content and composition of the covered materials, but also with the belt's deviation and the evenness of the materials. Mild wind seems to have no effect on the precision

  12. Putting HLW performance assessment results in perspective

    International Nuclear Information System (INIS)

    Neall, F.; Smith, P.; Sumerling, T.; Umeki, H.

    1995-01-01

    According to performance assessment results for the different disposal concepts investigated, the maximum radiation doses to the population lie well below the limit set in the official Swiss Protection Objective and below the level of present-day natural background radiation. A comparison of different performance assessments has shown that the following key factors determine radionuclide release from a repository: radionuclide inventory, canister material and failure mode, nuclide solubility limits, the permeability of the buffer material, retardation during transport through the near-field, the presence of an excavation disturbed zone in the rock, the distance to the nearest major water-bearing fracture zone, the conceptual model for transport in fractured rock and near-surface dilution and dose factors. (author) 2 figs., 2 tabs

  13. Milking performance evaluation and factors affecting milking claw vacuum levels with flow simulator.

    Science.gov (United States)

    Enokidani, Masafumi; Kawai, Kazuhiro; Shinozuka, Yasunori; Watanabe, Aiko

    2017-08-01

    Milking performance of milking machines that matches the production capability of dairy cows is important in reducing the risk of mastitis, particularly in high-producing cows. This study used a simulated milking device to examine the milking performance of the milking system of 73 dairy farms and to analyze the factors affecting claw vacuum. Mean claw vacuum and range of fluctuation of claw vacuum (claw vacuum range) were measured at three different flow rates: 5.7, 7.6 and 8.7 kg/min. At the highest flow rate, only 16 farms (21.9%) met both standards of mean claw vacuum ≥35 kPa and claw vacuum range ≤ 7 kPa, showing that milking systems currently have poor milking performance. The factors affecting mean claw vacuum were claw type, milk-meter and vacuum shut-off device; the factor affecting claw vacuum range was claw type. Examination of the milking performance of the milking system using a simulated milking device allows an examination of the performance that can cope with high producing cows, indicating the possibility of reducing the risk of mastitis caused by inappropriate claw vacuum. © 2016 Japanese Society of Animal Science.

  14. Factors associated with motor performance among overweight and nonoverweight Tyrolean primary school children.

    Science.gov (United States)

    Ruedl, Gerhard; Greier, Klaus; Kirschner, Werner; Kopp, Martin

    2016-01-01

    The increasing prevalence of overweight and obesity among children is often associated with motor deficits. Motor performance among children partly depends on modifiable factors, for example, weight status, electronic media use, sports club participation, and on nonmodifiable factors, for example, sex, age, migration background, or socio-economic status. To evaluate factors associated with motor performance among overweight and nonoverweight Tyrolean primary school children. Height, weight, and sport motor performance of primary school children were measured using the German motor performance test DMT 6-18. In addition, children were asked about migration background, sports club participation, and electronic media use in their room. A total of 304 children (48.7% girls) with a mean age of 8.0 ± 1.2 years were tested. In total, 61 (20.1%) children were overweight or obese. Regarding motor performance, nonoverweight children showed significantly higher total z-scores (106.8 ± 5.7 vs. 102.4 ± 6.8). For the total cohort, results of the multiple linear regression analysis (R (2) = 0.20) revealed that factors male sex (β = 0.12), nonoverweight children (β = 0.28), higher school grade (β = 0.23), sports club participation (β = 0.18),and > 2 weekly lessons of physical education (β = 0.26) were associated with an increased motor performance. For nonoverweight children results of the multiple linear regression analysis (R (2) = 0.09) found that a higher school grade (β = 0.17), sports club participation (β = 0.16),and more than 2 weekly lessons of physical education (β = 0.22) were associated with an increased motor performance. For the overweight children, results of the multiple linear regression analysis (R (2) = 0 .43) showed that no migration background (β = 0.23), a higher school grade (β = 0.55), sports club participation (β = 0.33) and more than 2 weekly lessons of physical

  15. Enhanced performance of Li-O2 battery based on CFx/C composites as cathode materials

    International Nuclear Information System (INIS)

    Wu, Chaolumen; Wang, Haibin; Liao, Chenbo; Yang, Jun; Li, Lei

    2015-01-01

    A hybrid air-electrode composed of a mixture of fluorinated carbon (CF x ) and Ketjen black (KB) active carbon composite materials was prepared to improve performance of Li-O 2 battery. In the hybrid air-electrodes, four kinds of CF x materials including fluorinated graphite, fluorinated carbon fiber, fluorinated coke and fluorinated black carbon were utilized as lithium insertion materials. The physical properties and morphologies of the KB and CF x carbon materials were characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Scanning electron microscopy (SEM) measurements. Compared with the conventional KB air-electrode, all the CF x /KB hybrid air-electrodes in Li-O 2 batteries showed higher specific discharge capacity, especially at high current density. Among these CF x /KB hybrid air-electrodes, the fluorinated graphite based electrode showed the best electrochemical performance in Li-O 2 battery due to its highest discharge capacity of the fluorinated graphite material in the Li/CF x primary battery, highest specific surface area, and highest total pore volume. The electrochemical performance of Li-O 2 and Li-air batteries using the hybrid air-electrodes with the different fluorinated graphite: KB weight ratio, including specific charge and discharge capacity, cycling stability and rate capability were systematically investigated. At a current density of 0.5 mA cm −2 , the fluorinated graphite based air-electrode delivered a high specific discharge capacity of 1138 mAh g −1 in Li-O 2 batteries, which was more than four times than that of the conventional KB air-electrode (265 mAh g −1 ) under same testing conditions. The battery assembled with the fluorinated graphite based air-electrode exhibited better cycling stability than that of the battery assembled with the conventional KB air-electrode.

  16. Performance Evaluation Factors: Designing an Instrument for National Health Network in Iran

    Directory of Open Access Journals (Sweden)

    Sassan Ghorbani-Kalkhajeh

    2016-04-01

    Full Text Available As a systematic process for gathering and analyzing data, performance evaluation could be used as a valid method to highlight levels of success and to identify strength and weakness of ongoing programs. The aim of the present study was to develop an instrument for evaluating rural health centers in Iran. Based on related literature and experts’ views, eight crucial fields of performance evaluation, and a questionnaire including 100 items were formed. The participants of the study were 525 people having health related jobs in rural or urban health centers. Reliability and validity requirements were checked; exploratory and confirmatory factor analyses were used. Factor analysis identified 11 components which embraced 60 items. Components were named as planning, control, coordination, structure, setting and facilities, education, customers’ satisfaction, staff’s job satisfaction, disease surveillance, mother-child care, and effectiveness which are presented as a model for performance evaluation. The obtained instrument embraces all required factors suggested by experts and literature hence it can be used as an evaluation instrument in both rural and urban health centers.

  17. Explaining the impact of poverty on old-age frailty in Europe: material, psychosocial and behavioural factors.

    Science.gov (United States)

    Stolz, Erwin; Mayerl, Hannes; Waxenegger, Anja; Freidl, Wolfgang

    2017-12-01

    Previous research found poverty to be associated with adverse health outcomes among older adults but the factors that translate low economic resources into poor physical health are not well understood. The goal of this analysis was to assess the impact of material, psychosocial, and behavioural factors as well as education in explaining the poverty-health link. In total, 28 360 observations from 11 390 community-dwelling respondents (65+) in the Survey of Health, Ageing and Retirement in Europe (2004-13, 10 countries) were analysed. Multilevel growth curve models were used to assess the impact of combined income and asset poverty risk on old-age frailty (frailty index) and associated pathway variables. In total, 61.8% of the variation of poverty risk on frailty level was explained by direct and indirect effects. Results stress the role of material and particularly psychosocial factors such as perceived control and social isolation, whereas the role of health behaviour was negligible. We suggest to strengthen social policy and public health efforts in order to fight poverty and its deleterious health effects from early age on as well as to broaden the scope of interventions with regard to psychosocial factors. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  18. Effect of material selection and background impurity on interface property and resulted CIP-GMR performance

    International Nuclear Information System (INIS)

    Peng Xilin; Morrone, Augusto; Nikolaev, Konstantin; Kief, Mark; Ostrowski, Mark

    2009-01-01

    In this paper, we investigated the effect of background base pressure, wafer-transferring time between process modules, and stack layer material selection on the current-in-plane giant magneto-resistive (CIP-GMR) interface properties and the resulted CIP-GMR performance. Experimental results showed that seed layer/AFM interface, AFM/pinned layer (PL) interface, pinned layer/Ru interface, and reference layer (RL)/Cu spacer interface are among the most critical ones for a CIP-GMR device. By reducing the background impurity level (water moisture and oxygen), optimizing the wafer process flow sequence, and careful stack-layer material selection, such critical interfaces in a CIP-GMR device can be preserved. Consequently, a much robust GMR performance control can be achieved.

  19. Establishing a Set of Macroeconomic Factors Explaining Variation Over Time of Performance in Business Sectors

    Directory of Open Access Journals (Sweden)

    Audrius Dzikevičius

    2016-06-01

    Full Text Available With increasing competitiveness of companies and business sectors in the domestic markets of Lithuania, economic units are frequently confronted with the lack of methods for more detailed analysis of external factors explaining the variation over time of corporate financial indicators. The analysis or forecasting of financial indicators is usually linked with the development of a stock market or undertaken to estimate the probability of bankruptcy. However, there is a lack of studies aimed at identifying links between macroeconomic factors and financial performance indicators and explaining their variation over time. To serve that purpose, the factors of the macroeconomic environment that are most significant for certain economic activities have been identified and analysed to enable explaining the variation over time patterns of corporate financial indicators. The analysis covers economic performance, i.e. financial performance indicators and their links with macroeconomic factors, in 89 business sectors of Lithuania at a three-digit level of NACE 2 ed. The findings of the research indicate that the unemployment level in the country, the volume of export and import and the GDP are the most important macroeconomic factors that can be used to forecast different profitability, financial leverage, liquidity and other financial performance indicators of individual business sectors or companies. The research has not unfolded any significant differences between business sectors therefore the above factors are considered generic macroeconomic factors enabling to explain financial performance indicators of the 89 business sectors. Hence, special attention has to be paid to identifying and analysing specific factors and assessing the causal link. When established, the set of such factors provides a framework for building of a model to forecast business sector financial indicators.

  20. Firm-specific factors and financial performance of firms in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Pathirawasam Chandrapala

    2013-01-01

    Full Text Available The objective of this study is to investigate the role of internal factors in generating financial performance of firms in the Czech Republic. The paper examines the impact of firm specific factors on company financial performance of 974 firms in the Czech Republic over the period 2005 to 2008, using data in the Albertina database. Pooled and panel cross-sectional time series techniques are used for the data analysis. Return on Assets (ROA is the dependent variable of the model and eight firm specific factors are introduced as the explanatory variables. Using Return on Assets as the dependent variable, it is established that the firm size, sales growth and capital turnover are having significant positive impact on financial performance of firms. At the same time, debt ratio and inventory reflect significant negative impact on financial performance of firms. Overall explanatory powers of the two models are low and further research is necessary to increase the statistical power of the model. The results from the present study may be very encouraging and useful for managers as well as investors to plan investment and operational activities to achieve profitability objectives more efficiently and effectively. The findings have important managerial implications.

  1. Pharmacology national board examinations: factors that may influence performance.

    Science.gov (United States)

    Neidle, E A; Kahn, N

    1977-12-01

    Data from a survey of pharmacology courses in 60 dental schools were used to determine whether certain teaching variables affect performance in pharmacology National Board examinations. In addition, three-year class-averaged pharmacology scores and, rarely, one-year averaged scores were correlated with several admissions variables. While correlations between some admissions variables and pharmacology scores were quite good, the averaged pharmacology scores were not powerfully affected by course length, placement of the course in the curriculum, length of the curriculum, or the presence of a dentally trained pharmacologist in the department. It is suggested that other factors, related to the student and his capabilities, influence performance on National Boards. Dental pharmacology courses should be designed to given students the best possible exposure to an important basic science, not to make them perform well on National Boards, because student performance on National Boards may be independent of the nature of the didactic courses.

  2. Performance-influencing factors in homogeneous groups of top athletes: a cross-sectional study

    OpenAIRE

    van Ingen Schenau, G.J.; Bakker, F.C.; de Koning, J.J.; de Groot, G.

    1996-01-01

    Sport scientists have identified many factors as prerequisites for a good athletic performance in various sports. It is not clear whether these factors also influence the best performers in the homogeneous groups of top athletes selected for national teams. In this study, this issue is addressed with members of the Dutch National Junior Speed Skirting Team. A total of 237 different technical, physiological, anthropometrical, and psychological parameters were collected, including many that cor...

  3. Parameters for Building Materials Specifications in Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    Clement Oluwole Folorunso

    2013-07-01

    Full Text Available The responsibility of specifying materials for building construction purposes within Nigeria rests on the architects. Understanding the appropriate parameters for specifying building materials that could lead to immense financial proportion is required from the architects. The level of understanding and knowledge of architects is germane to the optimum performance of buildings throughout their life cycle. The methodology applied for this research involved the administration of a structured questionnaire on professional architects within the study area to determine the basis of their decision on the materials they specify or chose for building finishes. The parameters used to measure the specification of materials for finishes are client’s choice, cost, climatic compliance, and maintenance demand of materials. Findings show that the maintenance demand of materials is the most important factor that determines the specification of materials irrespective of the choice of client and climate. However, cost occupies a prominent role in the decision process. It also shows that most architects are not fully aware about the role of climate in determining the life cycle of materials in tropical environments. The compliance of materials to ever-changing climate does not constitute a major factor in the specification of materials in the area.

  4. Factors influencing obstacle crossing performance in patients with Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Ying-Yi Liao

    Full Text Available BACKGROUND: Tripping over obstacles is the major cause of falls in community-dwelling patients with Parkinson's disease (PD. Understanding the factors associated with the obstacle crossing behavior may help to develop possible training programs for crossing performance. This study aimed to identify the relationships and important factors determining obstacle crossing performance in patients with PD. METHODS: Forty-two idiopathic patients with PD (Hoehn and Yahr stages I to III participated in this study. Obstacle crossing performance was recorded by the Liberty system, a three-dimensional motion capture device. Maximal isometric strength of the lower extremity was measured by a handheld dynamometer. Dynamic balance and sensory integration ability were assessed using the Balance Master system. Movement velocity (MV, maximal excursion (ME, and directional control (DC were obtained during the limits of stability test to quantify dynamic balance. The sum of sensory organization test (SOT scores was used to quantify sensory organization ability. RESULTS: Both crossing stride length and stride velocity correlated significantly with lower extremity muscle strength, dynamic balance control (forward and sideward, and sum of SOT scores. From the regression model, forward DC and ankle dorsiflexor strength were identified as two major determinants for crossing performance (R(2 = .37 to.41 for the crossing stride length, R(2 = .43 to.44 for the crossing stride velocity. CONCLUSIONS: Lower extremity muscle strength, dynamic balance control and sensory integration ability significantly influence obstacle crossing performance. We suggest an emphasis on muscle strengthening exercises (especially ankle dorsiflexors, balance training (especially forward DC, and sensory integration training to improve obstacle crossing performance in patients with PD.

  5. Relationships between core factors of knowledge management in hospital nursing organisations and outcomes of nursing performance.

    Science.gov (United States)

    Lee, Eun Ju; Kim, Hong Soon; Kim, Hye Young

    2014-12-01

    The study was conducted to investigate the levels of implementation of knowledge management and outcomes of nursing performance, to examine the relationships between core knowledge management factors and nursing performance outcomes and to identify core knowledge management factors affecting these outcomes. Effective knowledge management is very important to achieve strong organisational performance. The success or failure of knowledge management depends on how effectively an organisation's members share and use their knowledge. Because knowledge management plays a key role in enhancing nursing performance, identifying the core factors and investigating the level of knowledge management in a given hospital are priorities to ensure a high quality of nursing for patients. The study employed a descriptive research procedure. The study sample consisted of 192 nurses registered in three large healthcare organisations in South Korea. The variables demographic characteristics, implementation of core knowledge management factors and outcomes of nursing performance were examined and analysed in this study. The relationships between the core knowledge management factors and outcomes of nursing performance as well as the factors affecting the performance outcomes were investigated. A knowledge-sharing culture and organisational learning were found to be core factors affecting nursing performance. The study results provide basic data that can be used to formulate effective knowledge management strategies for enhancing nursing performance in hospital nursing organisations. In particular, prioritising the adoption of a knowledge-sharing culture and organisational learning in knowledge management systems might be one method for organisations to more effectively manage their knowledge resources and thus to enhance the outcomes of nursing performance and achieve greater business competitiveness. The study results can contribute to the development of effective and efficient

  6. Silver-coated LiVPO4F composite with improved electrochemical performance as cathode material for lithium-ion batteries

    Science.gov (United States)

    Yang, Bo; Yang, Lin

    2015-12-01

    Nano-structured LiVPO4F/Ag composite cathode material has been successfully synthesized via a sol-gel route. The structural and physical properties, as well as the electrochemical performance of the material are compared with those of the pristine LiVPO4F. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that Ag particles are uniformly dispersed on the surface of LiVPO4F without destroying the crystal structure of the bulk material. An analysis of the electrochemical measurements show that the Ag-modified LiVPO4F material exhibits high discharge capacity, good cycle performance (108.5 mAh g-1 after 50th cycles at 0.1 C, 93% of initial discharge capacity) and excellent rate behavior (81.8 mAh g-1 for initial discharge capacity at 5 C). The electrochemical impedance spectroscopy (EIS) results reveal that the adding of Ag decreases the charge-transfer resistance (Rct) of LiVPO4F cathode. This study demonstrates that Ag-coating is a promising way to improve the electrochemical performance of the pristine LiVPO4F for lithium-ion batteries cathode material.

  7. Effects of loss factors on zero permeability and zero permittivity gaps in 1D photonic crystal containing DNG materials

    International Nuclear Information System (INIS)

    Aghajamali, Alireza; Alamfard, Tannaz; Barati, Mahmood

    2014-01-01

    The effects of electric and magnetic loss factors on zero-= and zero-= gaps in a one-dimensional lossy photonic crystal composed of double-negative and double-positive materials are theoretically investigated by employing the characteristic matrix method. This study contradicts the previous reports as it indicates that by applying the inevitable factors of electric and magnetic losses to the double-negative material, the zero-= and zero-= gaps appear simultaneously in the transmission spectrum, being independent of the incidence angle and polarizations. Moreover, the results show that these gaps appear not only for an oblique incidence but also in the case of normal incidence, and their appearance at the normal incidence is directly related to the magnetic and electric loss factors. Besides, the results indicate that as the loss factors and angle of incidence increase, the width of both gaps also increases

  8. Effect of the cavity configuration factor on the marginal microleakage of esthetic restorative materials.

    Science.gov (United States)

    Franco, Eduardo Batista; Gonzaga Lopes, Lawrence; Lia Mondelli, Rafael Francisco; da Silva e Souza, Mário Honorato; Pereira Lauris, José Roberto

    2003-06-01

    To evaluate the effect of the cavity configuration factor (CF) on the marginal microleakage of cervical restorations with four aesthetic restorative materials. Conventional cavities, 2.9 mm in diameter and 1.5 mm deep, with CF=2.7 and "saucer"-shaped ones with CF=2 were created in 60 extracted premolars. The following groups were established: G1: Z100/Single Bond, G2: Freedom/Stae, G3: Vitremer/Primer and G4: Durafill/Durafill Bond, following each manufacturer's directions. Thermocycling of the specimens was performed in an aqueous solution of 2% buffered methylene blue, with the temperature varying between 5 to 55 degrees C, for a total of cycles of 60 minutes per day, for 7 days. The specimens were then sectioned and evaluated by two observers using photographs acquired from a stereomicroscope. The values were subjected to Kruskal-Wallis analysis and the Dunn and Wilcoxon test. The averages of the microleakage scores observed in the conventional and "saucer"-shaped cavities were respectively: G1: 0.66/0.46; G2: 0.92/0.69; G3: 1.8/1.86; G4: 3.54/2.3.

  9. Factors Influencing HEPA Filter Performance

    International Nuclear Information System (INIS)

    Parsons, M.S.; Waggoner, Ch.A.

    2009-01-01

    Properly functioning HEPA air filtration systems depend on a variety of factors that start with the use of fully characterized challenge conditions for system design and then process control during operation. This paper addresses factors that should be considered during the design phase as well as operating parameters that can be monitored to ensure filter function and lifetime. HEPA filters used in nuclear applications are expected to meet design, fabrication, and performance requirements set forth in the ASME AG-1 standard. The DOE publication Nuclear Air Cleaning Handbook (NACH) is an additional guidance document for design and operation HEPA filter systems in DOE facilities. These two guidelines establish basic maximum operating parameters for temperature, maximum aerosol particle size, maximum particulate matter mass concentration, acceptable differential pressure range, and filter media velocity. Each of these parameters is discussed along with data linking variability of each parameter with filter function and lifetime. Temporal uncertainty associated with gas composition, temperature, and absolute pressure of the air flow can have a direct impact on the volumetric flow rate of the system with a corresponding impact on filter media velocity. Correlations between standard units of flow rate (standard meters per minute or cubic feet per minute) versus actual units of volumetric flow rate are shown for variations in relative humidity for a 70 deg. C to 200 deg. C temperature range as an example of gas composition that, uncorrected, will influence media velocity. The AG-1 standard establishes a 2.5 cm/s (5 feet per minute) ceiling for media velocities of nuclear grade HEPA filters. Data are presented that show the impact of media velocities from 2.0 to 4.0 cm/s media velocities (4 to 8 fpm) on differential pressure, filter efficiency, and filter lifetime. Data will also be presented correlating media velocity effects with two different particle size

  10. Supplementary Material for: Factor Copula Models for Replicated Spatial Data

    KAUST Repository

    Krupskii, Pavel; Huser, Raphaë l; Genton, Marc G.

    2016-01-01

    We propose a new copula model that can be used with replicated spatial data. Unlike the multivariate normal copula, the proposed copula is based on the assumption that a common factor exists and affects the joint dependence of all measurements of the process. Moreover, the proposed copula can model tail dependence and tail asymmetry. The model is parameterized in terms of a covariance function that may be chosen from the many models proposed in the literature, such as the Matérn model. For some choice of common factors, the joint copula density is given in closed form and therefore likelihood estimation is very fast. In the general case, one-dimensional numerical integration is needed to calculate the likelihood, but estimation is still reasonably fast even with large data sets. We use simulation studies to show the wide range of dependence structures that can be generated by the proposed model with different choices of common factors. We apply the proposed model to spatial temperature data and compare its performance with some popular geostatistics models.

  11. Experimental and numerical study of the thermal performance of a new type of phase change material room

    International Nuclear Information System (INIS)

    Meng, Erlin; Yu, Hang; Zhan, Guangyi; He, Yang

    2013-01-01

    Highlights: • A new type of PCM room is proposed, two kinds of PCM were used in the room. • The new room can decrease the indoor air temperature fluctuation by 4.3 °C in summer. • Indoor air temperature fluctuation was decreased by 14.2 °C in winter for the new room. • Important factors that affect the thermal performance of the new room were studied. - Abstract: A new type of phase change material (PCM) room was proposed in this paper to control the indoor air temperature for a better thermal comfort for human beings. That is to place two different kinds of PCM into room envelopes of different orientations. Both experimental and numerical studies were carried out for rooms with/without PCM. Indoor air temperature and interior surface heat flux of the two rooms were studied in typical summer and winter climate of Shanghai (31.2N, 121.5E). Important factors that affect the thermal performance of the PCM were studied, such as phase change temperature, thickness of the PCM and the arrangement of the two kinds of PCM in the room. Results showed that this new type of PCM room can decrease the indoor air temperature fluctuation by 4.3 °C in summer and 14.2 °C in winter. Different arrangements of the two kinds of PCM in the room can cause an indoor air temperature difference to be 6.9 °C in summer and 2.7 °C in winter

  12. Performance analysis of flow lines with non-linear flow of material

    CERN Document Server

    Helber, Stefan

    1999-01-01

    Flow line design is one of the major tasks in production management. The decision to install a set of machines and buffers is often highly irreversible. It determines both cost and revenue to a large extent. In order to assess the economic impact of any possible flow line design, production rates and inventory levels have to be estimated. These performance measures depend on the allocation of buffers whenever the flow of material is occasionally disrupted, for example due to machine failures or quality problems. The book describes analytical methods that can be used to evaluate flow lines much faster than with simulation techniques. Based on these fast analytical techniques, it is possible to determine a flow line design that maximizes the net present value of the flow line investment. The flow of material through the line may be non-linear, for example due to assembly operations or quality inspections.

  13. Recent advances and developments in composite dental restorative materials.

    Science.gov (United States)

    Cramer, N B; Stansbury, J W; Bowman, C N

    2011-04-01

    Composite dental restorations represent a unique class of biomaterials with severe restrictions on biocompatibility, curing behavior, esthetics, and ultimate material properties. These materials are presently limited by shrinkage and polymerization-induced shrinkage stress, limited toughness, the presence of unreacted monomer that remains following the polymerization, and several other factors. Fortunately, these materials have been the focus of a great deal of research in recent years with the goal of improving restoration performance by changing the initiation system, monomers, and fillers and their coupling agents, and by developing novel polymerization strategies. Here, we review the general characteristics of the polymerization reaction and recent approaches that have been taken to improve composite restorative performance.

  14. A database for CO2 Separation Performances of MOFs based on Computational Materials Screening.

    Science.gov (United States)

    Altintas, Cigdem; Avci, Gokay; Daglar, Hilal; Nemati Vesali Azar, Ayda; Velioglu, Sadiye; Erucar, Ilknur; Keskin, Seda

    2018-05-03

    Metal organic frameworks (MOFs) have been considered as great candidates for CO2 capture. Considering the very large number of available MOFs, high-throughput computational screening plays a critical role in identifying the top performing materials for target applications in a time-effective manner. In this work, we used molecular simulations to screen the most recent and complete MOF database for identifying the most promising materials for CO2 separation from flue gas (CO2/N2) and landfill gas (CO2/CH4) under realistic operating conditions. We first validated our approach by comparing the results of our molecular simulations for the CO2 uptakes, CO2/N2 and CO2/CH4 selectivities of various types of MOFs with the available experimental data. We then computed binary CO2/N2 and CO2/CH4 mixture adsorption data for the entire MOF database and used these results to calculate several adsorbent selection metrics such as selectivity, working capacity, adsorbent performance score, regenerability, and separation potential. MOFs were ranked based on the combination of these metrics and the top performing MOF adsorbents that can achieve CO2/N2 and CO2/CH4 separations with high performance were identified. Molecular simulations for the adsorption of a ternary CO2/N2/CH4 mixture were performed for these top materials in order to provide a more realistic performance assessment of MOF adsorbents. Structure-performance analysis showed that MOFs with ΔQ>30 kJ/mol, 3.8 A≤PLD≤5 A, 5 A≤LCD≤7.5 A, 0.5≤ϕ≤0.75, SA≤1,000 m2/g, ρ>1 g/cm 3 are the best candidates for selective separation of CO2 from flue gas and landfill gas. This information will be very useful to design novel MOFs with the desired structural features that can lead to high CO2 separation potentials. Finally, an online, freely accessible database https://cosmoserc.ku.edu.tr was established, for the first time in the literature, which reports all computed adsorbent metrics of 3,816 MOFs for CO2/N2, CO2/CH4

  15. Key Factors Influencing the Energy Absorption of Dual-Phase Steels: Multiscale Material Model Approach and Microstructural Optimization

    Science.gov (United States)

    Belgasam, Tarek M.; Zbib, Hussein M.

    2018-06-01

    The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro-macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.

  16. Factors affecting performance of hospital nurses in Riyadh Region, Saudi Arabia.

    Science.gov (United States)

    Al-Ahmadi, Hanan

    2009-01-01

    The purpose of this paper is to identify factors influencing performance of hospital nurses in Riyadh Region, Saudi Arabia. Specific objectives were to estimate self-reported performance, and determine whether differences in employee demographics, job satisfaction, and organizational commitment, influenced performance. In total, 15 hospitals were randomly selected. The questionnaire was sent to all nurses (1,834) in these facilities and 923 nurses responded. Statistical analysis included correlation, t-test, and regression analysis. The study finds that job performance is positively correlated with organizational commitment, job satisfaction and personal and professional variables. Both job satisfaction and organizational commitment are strong predictors of nurses' performance. Job performance is positively related to some personal factors, including years of experience, nationality, gender, and marital status. Level of education is negatively related to performance. The findings of this study have a limited generalisability due to the fact that all measures used are based on self-reports. Future research may be directed to other objective measures of performance. Emphasis should be placed on effective supervision, empowerment, and a better reward system. Cultural diversity is a reality for most health organizations in Saudi Arabia; therefore, they need to adopt effective human resources strategies that aim to improve commitment and retention of qualified workers, and build a high performance organizational culture based on empowerment, open communication, and appreciation of impact of national culture on work attitudes. This study fulfills a research gap in the area of nursing performance, and its relationship with work attitudes in Saudi Arabia. The paper also highlights the impact of national culture on job performance and work attitude among nurses in Saudi Arabia, and other countries facing the issue of multi-national work force.

  17. Design and Optimization of Composite Automotive Hatchback Using Integrated Material-Structure-Process-Performance Method

    Science.gov (United States)

    Yang, Xudong; Sun, Lingyu; Zhang, Cheng; Li, Lijun; Dai, Zongmiao; Xiong, Zhenkai

    2018-03-01

    The application of polymer composites as a substitution of metal is an effective approach to reduce vehicle weight. However, the final performance of composite structures is determined not only by the material types, structural designs and manufacturing process, but also by their mutual restrict. Hence, an integrated "material-structure-process-performance" method is proposed for the conceptual and detail design of composite components. The material selection is based on the principle of composite mechanics such as rule of mixture for laminate. The design of component geometry, dimension and stacking sequence is determined by parametric modeling and size optimization. The selection of process parameters are based on multi-physical field simulation. The stiffness and modal constraint conditions were obtained from the numerical analysis of metal benchmark under typical load conditions. The optimal design was found by multi-discipline optimization. Finally, the proposed method was validated by an application case of automotive hatchback using carbon fiber reinforced polymer. Compared with the metal benchmark, the weight of composite one reduces 38.8%, simultaneously, its torsion and bending stiffness increases 3.75% and 33.23%, respectively, and the first frequency also increases 44.78%.

  18. Synthesis and characterization of prospective polyanionic electrode materials for high performance energy storage applications

    Science.gov (United States)

    Jayachandran, M.; Durai, G.; Vijayakumar, T.

    2018-04-01

    In the present study, Polyanionic compound (SO4)-group based on Li2Ni(SO4)2 (Lithium Nickel Sulphate) composite electrodes materials were prepared by a ball-milling method and solid-state reaction route. X-ray diffraction analysis confirmed the formation of a polycrystalline orthorhombic phase of composite Li2Ni(SO4)2 with an average crystallite size of about 50.16 nm. Field Emission Scanning electron microscopy investigation reveals the spherical shape particles with the particle size of around 200–500 nm. Raman and FTIR analysis confirms the structural and functional groups of the synthesized materials and also the formation of Li2Ni(SO4)2. The electrochemical measurements using cyclic voltammetry (CV) and galvanostatic charging-discharging (GCD) techniques were carried out to study the electrochemical supercapacitive performance of the composite Li2Ni (SO4)2 electrodes. From the CV investigations, an areal capacitance of 508 mF cm‑2 was obtained at 10 mV s‑1. The galvanostatic charge-discharge (GCD) measurements exhibited the areal capacitance of 101 mF cm‑2 at a constant current density of 2 mA cm‑2 in 2 M KOH. These GCD profiles were linear and also symmetric in nature with the maximum columbic efficiency of about 85%. The electrochemical performance of the composite Li2Ni(SO4)2 electrode material shows excellent performance for supercapacitor applications.

  19. Development of field performance evaluation tools and program for pavement marking materials : technical report

    Science.gov (United States)

    2011-03-01

    Historically the prequalification or selection of pavement marking materials (PMMs) is mainly based on : product specifications and lab testing, which do not correlate well with the field performance of the products. : On the other hand, there is no ...

  20. Effect of environmental and material factors on the response of nanocomposite foam impact sensors

    Science.gov (United States)

    Bird, Evan; Merrell, Jake; Rosquist, Parker; Martineau, Adin; Bowden, Anton; Seeley, Matthew; Fullwood, David

    2018-05-01

    Nanocomposite foam (NCF) is a multifunctional material that can be used to measure impact. Interactions between the flexible polymer matrix and conductive particles dispersed throughout it produce a voltage signal under dynamic strain, which correlates to the magnitude of impact. Though promising in applications requiring both impact sensing and energy absorption, NCF’s voltage response has been observed to suffer from significant signal drift. This paper investigates several causes of variance in the response of NCF sensors to consistent impacts. These effects can be classified into three general types: recoverable transient effects (such as those relating to viscoelasticity or capacitive charging), environmental drift (due to humidity and temperature), and permanent signal decay from material degradation. The motivation for the study arises from various potential repeat-impact applications where periodic recalibration of the sensor would be difficult (such as a gait-tracking insole in use for a marathon event). A cyclic drop testing machine was used to apply consistent impacts to NCF, and drift resulting from each factor (in ranges typical of an insole environment) was experimentally isolated. Models representing each factor’s contribution to signal drift are presented. Of the factors investigated, humidity and temperature caused the most significant drift, with permanent material degradation accounting for only minor decay in voltage response. Transient effects were also observed, with a characteristic ‘warm-up’ (or ‘charging’) time required for the NCF to achieve steady-state; this phenomenon, and the related ‘recovery’ time for the material to return to its original state, were determined. The resultant data can be leveraged to implement a correction algorithm or other drift-compensating method to retain an NCF sensor’s accuracy in both long and short data collection scenarios.