WorldWideScience

Sample records for material task low-cost

  1. Low-cost encapsulation materials for terrestrial solar cell modules

    Science.gov (United States)

    Cuddihy, E. F.; Baum, B.; Willis, P.

    1979-01-01

    The paper presents the findings of material surveys intended to identify low cost materials which could be functional as encapsulants (by 1986) for terrestrial solar cell modules. Economic analyses have indicated that in order to meet the low cost goal of $2.70 per sq m, some or all of the following material technologies must be developed or advanced: (1) UV screening outer covers; (2) elastomeric acrylics; (3) weatherproofing and waterproofing of structural wood and paper products; (4) transparent UV stabilizers for the UV-sensitive transparent pottants; and (5) cost-effective utilization of silicone and fluorocarbon materials.

  2. development of low-cost educational materials for chemistry

    African Journals Online (AJOL)

    unesco

    development of low-cost Chemistry materials from locally available materials. It finally lists the ... According to the World Bank discussion paper (3) large investments have been made to improve the .... official language in Ethiopia) and English.

  3. Comparison of low-cost and engineered materials for phosphorus removal from organic-rich surface water.

    Science.gov (United States)

    Boyer, Treavor H; Persaud, Amar; Banerjee, Poulomi; Palomino, Pedro

    2011-10-15

    Excess phosphorus (P) in lakes and rivers remains a major water quality problem on a global scale. As a result, new materials and innovative approaches to P remediation are required. Natural materials and waste byproduct materials from industrial processes have the potential to be effective materials for P removal from surface water. Advantages of natural and waste byproduct materials include their low-cost, abundant supply, and minimal preparation, especially compared with engineered materials, such as ion exchange resins and polymeric adsorbents. As a result, natural and waste byproduct materials are commonly referred to as low-cost materials. Despite the potential advantages of low-cost materials, there are critical gaps in knowledge that are preventing their effective use. In particular, there are limited data on the performance of low-cost materials in surface waters that have high concentrations of natural organic matter (NOM), and there are no systematic studies that track the changes in water chemistry following treatment with low-cost materials or compare their performance with engineered materials. Accordingly, the goal of this work was to evaluate and compare the effectiveness of low-cost and engineered materials for P removal from NOM-rich surface water. Seven low-cost materials and three engineered materials were evaluated using jar tests and mini-column experiments. The test water was a surface water that had a total P concentration of 132-250 μg P/L and a total organic carbon concentration of 15-32 mg C/L. Alum sludge, a byproduct of drinking water treatment, and a hybrid anion exchange resin loaded with nanosize iron oxide were the best performing materials in terms of selective P removal in the presence of NOM and minimum undesirable secondary changes to the water chemistry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Low cost construction technologies and materials - case study Mozambuique

    CSIR Research Space (South Africa)

    Kuchena, JC

    2009-09-01

    Full Text Available Low cost or affordable construction technologies and materials are often touted as a panacea in meeting the ever growing demand for rapid housing delivery in developing economies. Mozambique as with most of the developing world, from both historical...

  5. Adaptive Cost-Based Task Scheduling in Cloud Environment

    Directory of Open Access Journals (Sweden)

    Mohammed A. S. Mosleh

    2016-01-01

    Full Text Available Task execution in cloud computing requires obtaining stored data from remote data centers. Though this storage process reduces the memory constraints of the user’s computer, the time deadline is a serious concern. In this paper, Adaptive Cost-based Task Scheduling (ACTS is proposed to provide data access to the virtual machines (VMs within the deadline without increasing the cost. ACTS considers the data access completion time for selecting the cost effective path to access the data. To allocate data access paths, the data access completion time is computed by considering the mean and variance of the network service time and the arrival rate of network input/output requests. Then the task priority is assigned to the removed tasks based data access time. Finally, the cost of data paths are analyzed and allocated based on the task priority. Minimum cost path is allocated to the low priority tasks and fast access path are allocated to high priority tasks as to meet the time deadline. Thus efficient task scheduling can be achieved by using ACTS. The experimental results conducted in terms of execution time, computation cost, communication cost, bandwidth, and CPU utilization prove that the proposed algorithm provides better performance than the state-of-the-art methods.

  6. Metal-free supercapacitor with aqueous electrolyte and low-cost carbon materials

    Science.gov (United States)

    Blomquist, Nicklas; Wells, Thomas; Andres, Britta; Bäckström, Joakim; Forsberg, Sven; Olin, Håkan

    2017-01-01

    Electric double-layer capacitors (EDLCs) or supercapacitors (SCs) are fast energy storage devices with high pulse efficiency and superior cyclability, which makes them useful in various applications including electronics, vehicles and grids. Aqueous SCs are considered to be more environmentally friendly than those based on organic electrolytes. Because of the corrosive nature of the aqueous environment, however, expensive electrochemically stable materials are needed for the current collectors and electrodes in aqueous SCs. This results in high costs for a given energy-storage capacity. To address this, we developed a novel low-cost aqueous SC using graphite foil as the current collector and a mix of graphene, nanographite, simple water-purification carbons and nanocellulose as electrodes. The electrodes were coated directly onto the graphite foil by using casting frames and the SCs were assembled in a pouch cell design. With this approach, we achieved a material cost reduction of greater than 90% while maintaining approximately one-half of the specific capacitance of a commercial unit, thus demonstrating that the proposed SC can be an environmentally friendly, low-cost alternative to conventional SCs.

  7. Array automated assembly task low cost silicon solar array project. Phase 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Clayton

    1980-12-01

    The initial contract was a Phase II Process Development for a process sequence, but with concentration on two particular process steps: laserscribing and spray-on junction formation. The add-on portion of the contract was to further develop these tasks, to incorporate spray-on of AR Coating and aluminum and to study the application of microwave energy to solar cell fabrication. The overall process cost projection is 97.918 cents/Wp. The major contributor to this excess cost is the module encapsulation materials cost. During the span of this contract the study of microwave application to solar cell fabrication produced the ability to apply this technique to any requirement of 600/sup 0/C or less. Above this temperature, non-uniformity caused the processing to be unreliable. The process sequence is described in detail, and a SAMICS cost analysis for each valid process step studied is presented. A temporary catalog for expense items is included, and engineering specifications for the process steps are given. (WHK)

  8. Sources and Transportation of Bulk, Low-Cost Lunar Simulant Materials

    Science.gov (United States)

    Rickman, D. L.

    2013-01-01

    Marshall Space Flight Center (MSFC) has built the Lunar Surface Testbed using 200 tons of volcanic cinder and ash from the same source used for the simulant series JSC-1. This Technical Memorandum examines the alternatives examined for transportation and source. The cost of low-cost lunar simulant is driven by the cost of transportation, which is controlled by distance and, to a lesser extent, quantity. Metabasalts in the eastern United States were evaluated due to their proximity to MSFC. Volcanic cinder deposits in New Mexico, Colorado, and Arizona were recognized as preferred sources. In addition to having fewer green, secondary minerals, they contain vesicular glass, both of which are desirable. Transportation costs were more than 90% of the total procurement costs for the simulant material.

  9. Does task shifting yield cost savings and improve efficiency for health systems? A systematic review of evidence from low-income and middle-income countries.

    Science.gov (United States)

    Seidman, Gabriel; Atun, Rifat

    2017-04-13

    Task shifting has become an increasingly popular way to increase access to health services, especially in low-resource settings. Research has demonstrated that task shifting, including the use of community health workers (CHWs) to deliver care, can improve population health. This systematic review investigates whether task shifting in low-income and middle-income countries (LMICs) results in efficiency improvements by achieving cost savings. Using the PRISMA guidelines for systematic reviews, we searched PubMed, Embase, CINAHL, and the Health Economic Evaluation Database on March 22, 2016. We included any original peer-review articles that demonstrated cost impact of a task shifting program in an LMIC. We identified 794 articles, of which 34 were included in our study. We found that substantial evidence exists for achieving cost savings and efficiency improvements from task shifting activities related to tuberculosis and HIV/AIDS, and additional evidence exists for the potential to achieve cost savings from activities related to malaria, NCDs, NTDs, childhood illness, and other disease areas, especially at the primary health care and community levels. Task shifting presents a viable option for health system cost savings in LMICs. Going forward, program planners should carefully consider whether task shifting can improve population health and health systems efficiency in their countries, and researchers should investigate whether task shifting can also achieve cost savings for activities related to emerging global health priorities and health systems strengthening activities such as supply chain management or monitoring and evaluation.

  10. Low-Cost Composite Materials and Structures for Aircraft Applications

    Science.gov (United States)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  11. Low-Cost Precursors to Novel Hydrogen Storage Materials

    International Nuclear Information System (INIS)

    Linehan, Suzanne W.; Chin, Arthur A.; Allen, Nathan T.; Butterick, Robert; Kendall, Nathan T.; Klawiter, I. Leo; Lipiecki, Francis J.; Millar, Dean M.; Molzahn, David C.; November, Samuel J.; Jain, Puja; Nadeau, Sara; Mancroni, Scott

    2010-01-01

    From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH 4 ), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH 4 from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H 2 ) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH 4 as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH 4 is a key building block to most boron-based fuels, and the ability to produce NaBH 4 in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This project utilized an engineering

  12. Comparative evaluation of low cost materials as constructed wetland filling media

    Science.gov (United States)

    Pinho, Henrique J. O.; Vaz, Mafalda M.; Mateus, Dina M. R.

    2017-11-01

    Three waste materials from civil construction activities were assessed as low cost alternative filling materials used in Constructed Wetlands (CW). CW are green processes for wastewater treatment, whose design includes an appropriate selection of vegetation and filling material. The sustainability of such processes may be incremented using recovered wastes as filling materials. The abilities of the materials to support plant growth and to contribute to pollutants removal from wastewater were assessed and compared to expanded clay, a filling usually used in CW design. Statistical analysis, using one-way ANOVA and Welch's ANOVA, demonstrate that limestone fragments are a better choice of filling material than brick fragments and basalt gravel.

  13. low-cost apparatus from locally available materials for teaching

    African Journals Online (AJOL)

    unesco

    twofold: i) to design and produce appropriate low cost apparatus from locally .... How are the low-cost and manufactured apparatus compared in terms of cost and efficiency? ... BASIC TOOLS FOR THE LOW COST APPARATUS PRODUCTION.

  14. Possibility of material cost reduction toward development of low-cost second-generation superconducting wires

    Science.gov (United States)

    Ichinose, Ataru; Horii, Shigeru; Doi, Toshiya

    2017-10-01

    Two approaches to reducing the material cost of second-generation superconducting wires are proposed in this paper: (1) instead of the electrical stabilizing layers of silver and copper presently used on the superconducting layer, a Nb-doped SrTiO3 conductive buffer layer and cube-textured Cu are proposed as an advanced architecture, and (2) the use of an electromagnetic (EM) steel tape as a metal substrate of coated conductors in a conventional architecture. In structures fabricated without using electrical stabilizing layers on the superconducting layer, the critical current density achieved at 77 K in a self-field was approximately 2.6 MA/cm2. On the other hand, in the case of using EM steel tapes, although the critical current density was far from practical at the current stage, the biaxial alignment of YBa2Cu3O y (YBCO) and buffer layers was realized without oxidation on the metal surface. In this study, the possibility of material cost reduction has been strongly indicated toward the development of low-cost second-generation superconducting wires in the near future.

  15. Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Phillip

    2014-11-01

    Air Products is carrying out a scope of work under DOE Award No. DE-FE0012065 “Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications.” The Statement of Project Objectives (SOPO) includes a Task 4f in which a Decision Point shall be reached, necessitating a review of Tasks 2-5 with an emphasis on Task 4f. This Topical Report constitutes the Decision Point Application pertaining to Task 4f. The SOPO under DOE Award No. DE-FE0012065 is aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration scale facility known as the Oxygen Development Facility (ODF). It is anticipated that the completion of the current SOPO will advance the technology significantly along a pathway towards enabling the design and construction of the ODF. Development progress on several fronts is critical before an ODF project can commence; this Topical Report serves as an early update on the progress in critical development areas. Progress was made under all tasks, including Materials Development, Ceramic Processing Development, Engineering Development, and Performance Testing. Under Task 4f, Air Products carried out a cost and performance study in which several process design and cost parameters were varied and assessed with a process model and budgetary costing exercise. The results show that the major variables include ceramic module reliability, ITM operating temperature, module production yield, and heat addition strategy. High-temperature compact heat exchangers are shown to contribute significant cost benefits, while directly firing into the feed stream to an ITM are even a mild improvement on the high-temperature recuperation approach. Based on the findings to-date, Air Products recommends no changes to the content or emphasis in the current SOPO and recommends its completion prior to another formal assessment of these factors.

  16. Low-Cost Precursors to Novel Hydrogen Storage Materials

    Energy Technology Data Exchange (ETDEWEB)

    Suzanne W. Linehan; Arthur A. Chin; Nathan T. Allen; Robert Butterick; Nathan T. Kendall; I. Leo Klawiter; Francis J. Lipiecki; Dean M. Millar; David C. Molzahn; Samuel J. November; Puja Jain; Sara Nadeau; Scott Mancroni

    2010-12-31

    From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH{sub 4}), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH{sub 4} from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H{sub 2}) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH{sub 4} as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH{sub 4} is a key building block to most boron-based fuels, and the ability to produce NaBH{sub 4} in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This

  17. Laser-based microstructuring of materials surfaces using low-cost microlens arrays

    Science.gov (United States)

    Nieto, Daniel; Vara, G.; Diez, J. A.; O`Connor, Gerard M.; Arines, Justo; Gómez-Reino, C.; Flores-Arias, M.

    2012-03-01

    Since frictional interactions in microscopically small components are becoming increasingly important for the development of new products for all modern technology, we present a laser-based technique for micro-patterning surfaces of materials using low-cost microlens arrays. The microlens used were fabricated on soda-lime glass using a laser direct-write technique, followed by a thermal treatment into an oven. By combining laser direct-write and the thermal treatment it was possible to obtain high quality elements using a low cost infrared laser widely implemented in industry which makes this technique attractive in comparison with other more expensive methods. The main advantage of using microlens arrays for micropatterning surfaces is the possibility of fabricating a large number of identical structures simultaneously, leading to a highly efficient process. In order to study the capabilities of the microlens fabricated for microstructuring materials, identical structures and arrays of holes were fabricated over a variety of materials, such us, stainless steel, polymer and ceramic. The minimum diameter of the individual microstructure generated at surface is 5 μm. Different nanosecond lasers operating at Infrared, Green and UV were used. The topography and morphology of the elements obtained were determined using a confocal microscope SENSOFAR 2300 Plμ.

  18. Socio-economic research on fusion. SERF 1997-98. Macro Tast E2: External costs and benefits. Task 2: Comparison of external costs

    International Nuclear Information System (INIS)

    Schleisner, Lotte; Korhonen, Riitta

    1998-12-01

    This report is part of the SERF (Socio-Economic Research on Fusion) project, Macro Task E2, which covers External Costs and Benefits. The report is the documentation of Task 2, Comparison of External Costs. The aim of Task 2 Comparison of External Costs, has been to compare the external costs of the fusion energy with those from other alternative energy generation technologies. In this task identification and quantification of the external costs for wind energy and photovoltaic have been performed by Risoe, while identification and quantification of the external cost for nuclear fission and fossil fuels have been discussed by VTT. The methodology used for the assessment of the externalities of the fuel cycles selected has been the one developed within the ExternE Project. First estimates for the externalities of fusion energy have been under examination in Macrotask E2. Externalities of fossil fuels and nuclear fission have already been evaluated in the ExternE project and a vast amount of material for different sites in various countries is available. This material is used in comparison. In the case of renewable wind energy and photovoltaic are assessed separately. External costs of the various alternatives may change as new technologies are developed and costs can to a high extent be avoided (e.g. acidifying impacts but also global warming due to carbon dioxide emissions). Also fusion technology can experience major progress and some important cost components probably can be avoided already by 2050. (EG)

  19. Socio-economic research on fusion. SERF 1997-98. Macro Tast E2: External costs and benefits. Task 2: Comparison of external costs

    Energy Technology Data Exchange (ETDEWEB)

    Schleisner, Lotte; Korhonen, Riitta

    1998-12-01

    This report is part of the SERF (Socio-Economic Research on Fusion) project, Macro Task E2, which covers External Costs and Benefits. The report is the documentation of Task 2, Comparison of External Costs. The aim of Task 2 Comparison of External Costs, has been to compare the external costs of the fusion energy with those from other alternative energy generation technologies. In this task identification and quantification of the external costs for wind energy and photovoltaic have been performed by Risoe, while identification and quantification of the external cost for nuclear fission and fossil fuels have been discussed by VTT. The methodology used for the assessment of the externalities of the fuel cycles selected has been the one developed within the ExternE Project. First estimates for the externalities of fusion energy have been under examination in Macrotask E2. Externalities of fossil fuels and nuclear fission have already been evaluated in the ExternE project and a vast amount of material for different sites in various countries is available. This material is used in comparison. In the case of renewable wind energy and photovoltaic are assessed separately. External costs of the various alternatives may change as new technologies are developed and costs can to a high extent be avoided (e.g. acidifying impacts but also global warming due to carbon dioxide emissions). Also fusion technology can experience major progress and some important cost components probably can be avoided already by 2050. (EG) 36 refs.

  20. Development of a low-cost double rotor axial flux motor with soft magnetic composite and ferrite permanent magnet materials

    Science.gov (United States)

    Liu, Chengcheng; Zhu, Jianguo; Wang, Youhua; Guo, Youguang; Lei, Gang; Liu, Xiaojing

    2015-05-01

    This paper proposes a low-cost double rotor axial flux motor (DRAFM) with low cost soft magnetic composite (SMC) core and ferrite permanent magnets (PMs). The topology and operating principle of DRAFM and design considerations for best use of magnetic materials are presented. A 905 W 4800 rpm DRAFM is designed for replacing the high cost NdFeB permanent magnet synchronous motor (PMSM) in a refrigerator compressor. By using the finite element method, the electromagnetic parameters and performance of the DRAFM operated under the field oriented control scheme are calculated. Through the analysis, it is shown that that the SMC and ferrite PM materials can be good candidates for low-cost electric motor applications.

  1. Efficacy of Low-Cost PC-Based Aviation Training Devices

    Directory of Open Access Journals (Sweden)

    Savern l Reweti

    2017-03-01

    Full Text Available Aim/Purpose: The aim of this study was to explore whether a full cost flight training device (FTD was significantly better for simulator training than a low cost PC-Based Aviation Training Device (PCATD. Background: A quasi-transfer study was undertaken to ascertain whether a Civil Aviation Authority certified Flight Training Device (FTD was more effective at improving pilot proficiency in the performance of a standard VFR traffic pattern (Overhead Rejoin Procedure than a customised low cost PCATD. Methodology: In this quasi-transfer study, a high fidelity FTD rather than an aircraft was used to test both training and transfer tasks. Ninety-three pilots were recruited to participate in the study. Contribution: The use of PCATDs is now well established for pilot training, especially for Instrument Flight Rules (IFR skills training. However, little substantive research has been undertaken to examine their efficacy for VFR training. Findings: There was no evidence of a pre-test/post-test difference in VFR task perfor-mance between participants trained on the PCATD and the FTD, when post tested on the FTD. The use of both PCATD and FTD demonstrated signifi-cant improvements in VFR task performance compared to a control group that received no PCATD or FTD training. Recommendations for Practitioners\t: We discuss the possibility that low cost PCATDs may be a viable alternative for flight schools wishing to use a flight simulator but not able to afford a FTD. Recommendation for Researchers: We discuss the introduction of improved low cost technologies that allow PCATDs to be used more effectively for training in VFR procedures. The development and testing of new technologies requires more research. Impact on Society: Flight training schools operate in a difficult economic environment with continued increases in the cost of aircraft maintenance, compliance costs, and aviation fuel. The increased utilisation of low cost PCATD’s especially for VFR

  2. Partitioning the Metabolic Cost of Human Running: A Task-by-Task Approach

    Science.gov (United States)

    Arellano, Christopher J.; Kram, Rodger

    2014-01-01

    Compared with other species, humans can be very tractable and thus an ideal “model system” for investigating the metabolic cost of locomotion. Here, we review the biomechanical basis for the metabolic cost of running. Running has been historically modeled as a simple spring-mass system whereby the leg acts as a linear spring, storing, and returning elastic potential energy during stance. However, if running can be modeled as a simple spring-mass system with the underlying assumption of perfect elastic energy storage and return, why does running incur a metabolic cost at all? In 1980, Taylor et al. proposed the “cost of generating force” hypothesis, which was based on the idea that elastic structures allow the muscles to transform metabolic energy into force, and not necessarily mechanical work. In 1990, Kram and Taylor then provided a more explicit and quantitative explanation by demonstrating that the rate of metabolic energy consumption is proportional to body weight and inversely proportional to the time of foot-ground contact for a variety of animals ranging in size and running speed. With a focus on humans, Kram and his colleagues then adopted a task-by-task approach and initially found that the metabolic cost of running could be “individually” partitioned into body weight support (74%), propulsion (37%), and leg-swing (20%). Summing all these biomechanical tasks leads to a paradoxical overestimation of 131%. To further elucidate the possible interactions between these tasks, later studies quantified the reductions in metabolic cost in response to synergistic combinations of body weight support, aiding horizontal forces, and leg-swing-assist forces. This synergistic approach revealed that the interactive nature of body weight support and forward propulsion comprises ∼80% of the net metabolic cost of running. The task of leg-swing at most comprises ∼7% of the net metabolic cost of running and is independent of body weight support and forward

  3. Microstructural Properties of Cement Paste and Mortar Modified by Low Cost Nanoplatelets Sourced from Natural Materials

    Directory of Open Access Journals (Sweden)

    Piao Huang

    2018-05-01

    Full Text Available Nanomaterials have been widely used in cement-based materials. Graphene has excellent properties for improving the durability of cement-based materials. Given its high production budget, it has limited its wide potential for application in the field of engineering. Hence, it is very meaningful to obtain low cost nanoplatelets from natural materials that can replace graphene nanoplatelets (GNPs The purpose of this paper is to improve the resistance to chloride ion penetration by optimizing the pore structure of cement-based materials, and another point is to reduce investment costs. The results illustrated that low cost CaCO3 nanoplatelets (CCNPs were successfully obtained under alkali treatment of seashell powder, and the chloride ion permeability of cement-based materials significantly decreased by 15.7% compared to that of the control samples when CCNPs were incorporated. Furthermore, the compressive strength of cement pastes at the age of 28 days increased by 37.9% than that of the plain sample. Improvement of performance of cement-based materials can be partly attributed to the refinement of the pore structure. In addition, AFM was employed to characterize the nanoplatelet thickness of CCNPs and the pore structures of the cement-based composites were analyzed by MIP, respectively. CCNPs composite cement best performance could lay the foundation for further study of the durability of cement-based materials and the application of decontaminated seashells.

  4. Task switching costs in preschool children and adults.

    Science.gov (United States)

    Peng, Anna; Kirkham, Natasha Z; Mareschal, Denis

    2018-08-01

    Past research investigating cognitive flexibility has shown that preschool children make many perseverative errors in tasks that require switching between different sets of rules. However, this inflexibility might not necessarily hold with easier tasks. The current study investigated the developmental differences in cognitive flexibility using a task-switching procedure that compared reaction times and accuracy in 4- and 6-year-olds with those in adults. The experiment involved simple target detection tasks and was intentionally designed in a way that the stimulus and response conflicts were minimal together with a long preparation window. Global mixing costs (performance costs when multiple tasks are relevant in a context), and local switch costs (performance costs due to switching to an alternative task) are typically thought to engage endogenous control processes. If this is the case, we should observe developmental differences with both of these costs. Our results show, however, that when the accuracy was good, there were no age differences in cognitive flexibility (i.e., the ability to manage multiple tasks and to switch between tasks) between children and adults. Even though preschool children had slower reaction times and were less accurate, the mixing and switch costs associated with task switching were not reliably larger for preschool children. Preschool children did, however, show more commission errors and greater response repetition effects than adults, which may reflect differences in inhibitory control. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Efforts of the occupant to change physical quality of residential unit through the change of building material at low cost flats in Jakarta

    Science.gov (United States)

    Nurdiani, N.

    2018-03-01

    Low cost flats in Jakarta – Indonesia is provided by the government for low-income people in urban areas, in line with the program to redevelop or renew slum areas. Low cost flat is built with the minimum standard of building materials. The purpose of this study is to know efforts of the occupants to change of building materials at residential unit of low cost flats. The research was conducted by descriptive method at four of low cost housing in Jakarta: Rusuna Bendungan Hilir 1, Rusuna Tambora IIIA, Rusuna Bidara Cina, and Rusuna Sukapura. The results showed that physical changes which happened in low cost flats are aesthetic (residence paint color change), or improvement of physical quality of residential unit (change of building material), become dominant aspects done by residents in four rusuna.

  6. Development of polymer concrete for dike insulation at LNG facilities: Phase 4, Low cost materials

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E.

    1991-01-01

    Earlier GRI-sponsored work at Brookhaven National Laboratory has resulted in the development and utilization of insulating polymer concrete composites (IPC) as a means of reducing the evaporation rate of liquified natural gas in the event of a spill into a containment dike, thereby improving the safety at these sites. Although all of the required properties can be attained with the IPC, it was estimated that a low-cost replacement for the expensive organic binder would be necessary before use of the material would be cost-effective. In the current program, several latex modified cement formulations were evaluated and the most promising one identified. A mixture of two carboxylated styrene-butadiene latexes was selected for use in detailed laboratory property characterizations and a subsequent field evaluation. When compared to the properties of IPC, the latex-modified insulating materials display somewhat higher thermal conductivities, greater permeability to water, and reduced strength. However, these properties still meet most of the performance criteria, and the unit cost of the material is less than one-fifth that of IPC made with epoxy binders. When installed as a 0.75-in. thick overlay, material costs are estimated to be $1.00/ft{sup 2}.

  7. MoS2: a two-dimensional hole-transporting material for high-efficiency, low-cost perovskite solar cells

    Science.gov (United States)

    Kohnehpoushi, Saman; Nazari, Pariya; Abdollahi Nejand, Bahram; Eskandari, Mehdi

    2018-05-01

    In this work MoS2 thin film was studied as a potential two-dimensional (2D) hole-transporting material for fabrication of low-cost, durable and efficient perovskite solar cells. The thickness of MoS2 was studied as a potential factor in reaching high power conversion efficiency in perovskite solar cells. The thickness of the perovskite layer and the different metal back contacts gave distinct photovoltaic properties to the designed cells. The results show that a single sheet of MoS2 could considerably improve the power conversion efficacy of the device from 10.41% for a hole transport material (HTM)-free device to 20.43% for a device prepared with a 0.67 nm thick MoS2 layer as a HTM. On the back, Ag and Al collected the carriers more efficiently than Au due to the value of their metal contact work function with the TiO2 conduction band. The present work proposes a new architecture for the fabrication of low-cost, durable and efficient perovskite solar cells made from a low-cost and robust inorganic HTM and electron transport material.

  8. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Pedersen, Steffen Hindborg

    2017-01-01

    Widespread application of thermoelectric devices for waste heat recovery requires low-cost high-performance materials. The currently available n-type thermoelectric materials are limited either by their low efficiencies or by being based on expensive, scarce or toxic elements. Here we report a low-cost...... because of the multi-valley band behaviour dominated by a unique near-edge conduction band with a sixfold valley degeneracy. This makes Te-doped Mg3Sb1.5Bi0.5 a promising candidate for the low- and intermediate-temperature thermoelectric applications....

  9. Experimental analysis of a low cost phase change material emulsion for its use as thermal storage system

    International Nuclear Information System (INIS)

    Delgado, Mónica; Lázaro, Ana; Mazo, Javier; Peñalosa, Conchita; Dolado, Pablo; Zalba, Belén

    2015-01-01

    Highlights: • A low cost PCM emulsion has been analyzed as thermal energy storage system. • Its thermophysical and rheological properties have been determined. • The system shows advantages in terms of energy density and heat transfer rate. • The PCM emulsion system has been compared to other thermal energy storage systems. - Abstract: A 46 l commercial tank with a helical coil heat exchanger and containing a low cost phase change material emulsion has been experimentally analyzed as a thermal energy storage system in terms of volumetric energy density and heat transfer rate, for its subsequent comparison with other thermal energy storage systems. This phase change material emulsion shows a phase change temperature range between 30 and 50 °C, its solids content is about 60% with an average particle size of 1 μm. The low cost phase change material emulsion shows a thermal storage capacity by mass 50% higher than water and an increase in viscosity up to 2–5 orders of magnitude. The results have shown that the global heat transfer coefficient of the phase change material emulsion tank is around 2–6 times higher than for conventional latent systems previously analyzed in literature, although 5 times lower than if it contains water. The phase change material emulsion tank presents an energy density 34% higher than the water tank, which makes it a promising solution. Measures to improve its performance are also studied in this work.

  10. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    Science.gov (United States)

    Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.

  11. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    Directory of Open Access Journals (Sweden)

    Simon J Leigh

    Full Text Available 3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping' before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.

  12. A novel low cost pulse excitation source to study trap spectroscopy of persistent luminescent materials

    Science.gov (United States)

    Chandrasekhar, Ngangbam; Singh, Nungleppam Monorajan; Gartia, R. K.

    2018-04-01

    Luminescent techniques require one or the other source of excitations which may vary from high cost X-rays, γ-rays, β-rays etc. to low cost LED. Persistent luminescent materials or Glow-in-the-Dark phosphors are the optical harvesters which store the optical energy from day light illuminating a whole night. They are so sensitive that they can be excited even with the low light of firefly. Therefore, instead of using a high cost excitation source authors have developed a low cost functioning of excitation source controlling short pulses of LED to excite persistent phosphors with the aid of ExpEYES Junior (Hardware/software framework developed by IUAC, New Delhi). Using this, the authors have excited the sample under investigation upto 10 ms. Trap spectroscopy of the pre-excited sample with LED is studied using Thermoluminescence (TL) technique. In this communication, development of the excitation source is discussed and demonstrate the its usefulness in the study of trap spectroscopy of commercially available CaS:Eu2+, Sm3+. Trapping parameters are also evaluated using Computerized Glow Curve Deconvolution (CGCD) technique.

  13. Cost effective material control and accountability training

    International Nuclear Information System (INIS)

    Robichaux, J.J.; Shull, L.M.; Salizzoni, L.M.

    1995-01-01

    DOE Order 5630.15, ''Safeguards and Security Training Program'' is being implemented at the Savannah River Site within the Westinghouse Savannah River Company's material control and accountability program. This paper reviews the development of a material control and accountability task analysis, the development of specific material control and accountability courses, and the cost effective and innovative strategies employed to implement the training program. The paper also discusses how the site material control and accountability policies and procedures are incorporated into the Westinghouse Savannah River Company training program to ensure that personnel receive the most current information

  14. Digital resources and low cost of teaching materials for astronomical education

    Science.gov (United States)

    Paladino, L.; Voelzke, M. R.

    2017-12-01

    This work presents the results of the application of two questionnaires about Astronomical concepts in three classes in the first year High School of a public school in the periphery of São Paulo. In the first questionnaire was verified the prior knowledge of students. Then the intervention strategies were carried out: use of digital resources of the school, construction of mock-ups using low cost materials and the use of educational books, such as Couper & Henbest (1997), Horvath (2008). After four months, the second questionnaire was applied to verify the occurence of meaningful learning.

  15. Low-Cost Phase Change Material for Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Abhari, Ramin [Renewable Energy Group

    2015-08-06

    A low-cost PCM process consisting of conversion of fats and oils to PCM-range paraffins, and subsequent “encapsulation” of the paraffin using conventional plastic compounding/pelletizing equipment was demonstrated. The PCM pellets produced were field-tested in a building envelope application. This involved combining the PCM pellets with cellulose insulation, whereby 33% reduction in peak heat flux and 12% reduction in heat gain was observed (average summertime performance). The selling price of the PCM pellets produced according to this low-cost process is expected to be in the $1.50-$3.00/lb range, compared to current encapsulated PCM price of about $7.00/lb. Whole-building simulations using corresponding PCM thermal analysis data suggest a payback time of 8 to 16 years (at current energy prices) for an attic insulation retrofit project in the Phoenix climate area.

  16. Report of the Material Control and Material Accounting Task Force

    International Nuclear Information System (INIS)

    1978-03-01

    In September 1977 a Task Force was formed to complete a study of the role of material control and material accounting in NRC's safeguards program. The Task Force's assignment was to: define the roles and objectives of material control and material accounting in the NRC safeguards program; recommend goals for the material control and material accounting systems based on their roles and objectives; assess the extent to which the existing safeguards regulatory base meets or provides the capability to meet the recommended goals; and provide direction for material control and material accounting development, including both near-term and long-term upgrades. The study was limited to domestic nuclear facilities possessing significant amounts of plutonium, uranium-233 or highly enriched uranium in unsealed form. The Task Force findings are reported

  17. Silicon materials task of the Low Cost Solar Array Project: Effect of impurities and processing on silicon solar cells

    Science.gov (United States)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Hanes, M. H.; Rai-Choudhury, P.; Mollenkopf, H. C.

    1982-01-01

    The effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells were defined in order to develop cost benefit relationships for the use of cheaper, less pure solar grades of silicon. The amount of concentrations of commonly encountered impurities that can be tolerated in typical p or n base solar cells was established, then a preliminary analytical model from which the cell performance could be projected depending on the kinds and amounts of contaminants in the silicon base material was developed. The impurity data base was expanded to include construction materials, and the impurity performace model was refined to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, synergic behavior, and nonuniform impurity distributions. A preliminary assessment of long term (aging) behavior of impurities was also undertaken.

  18. Rehabilitating acid soils for increasing crop productivity through low-cost liming material.

    Science.gov (United States)

    Bhat, Javid Ahmad; Kundu, Manik Chandra; Hazra, Gora Chand; Santra, Gour Hari; Mandal, Biswapati

    2010-09-15

    Productivity of red and lateritic soils is low because of their acidity and deficiencies in few essential nutrients viz., nitrogen, phosphorus, calcium, zinc, boron, molybdenum etc. We compared the effectiveness of basic slag, a low-cost liming material, with that of calcite as an ameliorant for these soils using mustard followed by rice as test crops. Experiments were conducted with three levels of each of basic slag and calcite along with a control on farmers' fields at 14 different locations. Influence of farmyard manure (FYM) and poultry manure (PM) on the effectiveness of the slag was also tested. On an average, basic slag performed better than calcite in increasing yields of both mustard and rice and left over higher amounts of available Ca, Si and Zn in residual soils. The slag also improved N, P, K and Ca nutrition of mustard and Si and Zn nutrition of rice with a favorable benefit:cost (B:C) ratio over the calcite (4.82 vs. 1.44). Effectiveness of the basic slag improved when it was applied in combination with FYM or PM (B:C, 5.83 and 6.27). Basic slag can, therefore, be advocated for use in the acidic red and lateritic soils for economically improving their productivity. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Rehabilitating acid soils for increasing crop productivity through low-cost liming material

    International Nuclear Information System (INIS)

    Bhat, Javid Ahmad; Kundu, Manik Chandra; Hazra, Gora Chand; Santra, Gour Hari; Mandal, Biswapati

    2010-01-01

    Productivity of red and lateritic soils is low because of their acidity and deficiencies in few essential nutrients viz., nitrogen, phosphorus, calcium, zinc, boron, molybdenum etc. We compared the effectiveness of basic slag, a low-cost liming material, with that of calcite as an ameliorant for these soils using mustard followed by rice as test crops. Experiments were conducted with three levels of each of basic slag and calcite along with a control on farmers' fields at 14 different locations. Influence of farmyard manure (FYM) and poultry manure (PM) on the effectiveness of the slag was also tested. On an average, basic slag performed better than calcite in increasing yields of both mustard and rice and left over higher amounts of available Ca, Si and Zn in residual soils. The slag also improved N, P, K and Ca nutrition of mustard and Si and Zn nutrition of rice with a favorable benefit:cost (B:C) ratio over the calcite (4.82 vs. 1.44). Effectiveness of the basic slag improved when it was applied in combination with FYM or PM (B:C, 5.83 and 6.27). Basic slag can, therefore, be advocated for use in the acidic red and lateritic soils for economically improving their productivity.

  20. Rehabilitating acid soils for increasing crop productivity through low-cost liming material

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Javid Ahmad [Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani - 741 235, West Bengal (India); Kundu, Manik Chandra, E-mail: mckundu@rediffmail.com [Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani - 741 235, West Bengal (India); Hazra, Gora Chand [Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani - 741 235, West Bengal (India); Santra, Gour Hari [Department of Soil Science and Agril. Chemistry, Orissa University of Agriculture and Technology, Bhubaneswar - 751003, Orissa (India); Mandal, Biswapati [Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani - 741 235, West Bengal (India)

    2010-09-15

    Productivity of red and lateritic soils is low because of their acidity and deficiencies in few essential nutrients viz., nitrogen, phosphorus, calcium, zinc, boron, molybdenum etc. We compared the effectiveness of basic slag, a low-cost liming material, with that of calcite as an ameliorant for these soils using mustard followed by rice as test crops. Experiments were conducted with three levels of each of basic slag and calcite along with a control on farmers' fields at 14 different locations. Influence of farmyard manure (FYM) and poultry manure (PM) on the effectiveness of the slag was also tested. On an average, basic slag performed better than calcite in increasing yields of both mustard and rice and left over higher amounts of available Ca, Si and Zn in residual soils. The slag also improved N, P, K and Ca nutrition of mustard and Si and Zn nutrition of rice with a favorable benefit:cost (B:C) ratio over the calcite (4.82 vs. 1.44). Effectiveness of the basic slag improved when it was applied in combination with FYM or PM (B:C, 5.83 and 6.27). Basic slag can, therefore, be advocated for use in the acidic red and lateritic soils for economically improving their productivity.

  1. Low-Cost Production of Photonic Bandgap Materials Through Bubbling

    National Research Council Canada - National Science Library

    O'Brien, Daniel J; Wetzel, Eric D

    2007-01-01

    .... This report proposes a simple low-cost method for PBGM production. A device has been constructed that produces micrometer-sized, monodisperse bubbles that can be assembled into a crystal lattice by surface tension...

  2. Cost-driven materials selection criteria for redox flow battery electrolytes

    Science.gov (United States)

    Dmello, Rylan; Milshtein, Jarrod D.; Brushett, Fikile R.; Smith, Kyle C.

    2016-10-01

    Redox flow batteries show promise for grid-scale energy storage applications but are presently too expensive for widespread adoption. Electrolyte material costs constitute a sizeable fraction of the redox flow battery price. As such, this work develops a techno-economic model for redox flow batteries that accounts for redox-active material, salt, and solvent contributions to the electrolyte cost. Benchmark values for electrolyte constituent costs guide identification of design constraints. Nonaqueous battery design is sensitive to all electrolyte component costs, cell voltage, and area-specific resistance. Design challenges for nonaqueous batteries include minimizing salt content and dropping redox-active species concentration requirements. Aqueous battery design is sensitive to only redox-active material cost and cell voltage, due to low area-specific resistance and supporting electrolyte costs. Increasing cell voltage and decreasing redox-active material cost present major materials selection challenges for aqueous batteries. This work minimizes cost-constraining variables by mapping the battery design space with the techno-economic model, through which we highlight pathways towards low price and moderate concentration. Furthermore, the techno-economic model calculates quantitative iterations of battery designs to achieve the Department of Energy battery price target of 100 per kWh and highlights cost cutting strategies to drive battery prices down further.

  3. An overview of recent progress using low-cost and cost-effective composite materials and processes to produce SSC magnet coils and associated non-metallic parts

    International Nuclear Information System (INIS)

    Morena, J.

    1992-01-01

    Thermoplastic and thermoset polymer systems have been used in high-energy physics applications throughout the world for many years. Like other industries and industrial communities, the materials and processes requirements of these polymers have recently taken on new meanings. New accelerators and other machines are pushing all material parameters beyond limits. New polymeric and composite materials are being developed, invented, and formulated, as is new process and application equipment. This is a decade of change. Composite materials are being chosen for performance characteristics and cost-effective processing as well. The information that follows will note some of the recent progress in the development of composite materials and processes for producing low-cost and cost-effective, high-quality, non-metallic composite components for use in SSC magnets and in other accelerators. The materials and methods for making composite molds, tools, and structural parts for magnet coils and other components are demonstrated. New, unique, and innovative approaches for processing thermoset polymers are presented. The formulated polymer systems are used to form semi and structural insulators, spacers, supports, coil end parts, blocks, housings, adhesives, and other composite applications

  4. Neural Mechanisms Underlying the Cost of Task Switching: An ERP Study

    Science.gov (United States)

    Li, Ling; Wang, Meng; Zhao, Qian-Jing; Fogelson, Noa

    2012-01-01

    Background When switching from one task to a new one, reaction times are prolonged. This phenomenon is called switch cost (SC). Researchers have recently used several kinds of task-switching paradigms to uncover neural mechanisms underlying the SC. Task-set reconfiguration and passive dissipation of a previously relevant task-set have been reported to contribute to the cost of task switching. Methodology/Principal Findings An unpredictable cued task-switching paradigm was used, during which subjects were instructed to switch between a color and an orientation discrimination task. Electroencephalography (EEG) and behavioral measures were recorded in 14 subjects. Response-stimulus interval (RSI) and cue-stimulus interval (CSI) were manipulated with short and long intervals, respectively. Switch trials delayed reaction times (RTs) and increased error rates compared with repeat trials. The SC of RTs was smaller in the long CSI condition. For cue-locked waveforms, switch trials generated a larger parietal positive event-related potential (ERP), and a larger slow parietal positivity compared with repeat trials in the short and long CSI condition. Neural SC of cue-related ERP positivity was smaller in the long RSI condition. For stimulus-locked waveforms, a larger switch-related central negative ERP component was observed, and the neural SC of the ERP negativity was smaller in the long CSI. Results of standardized low resolution electromagnetic tomography (sLORETA) for both ERP positivity and negativity showed that switch trials evoked larger activation than repeat trials in dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex (PPC). Conclusions/Significance The results provide evidence that both RSI and CSI modulate the neural activities in the process of task-switching, but that these have a differential role during task-set reconfiguration and passive dissipation of a previously relevant task-set. PMID:22860090

  5. Neural mechanisms underlying the cost of task switching: an ERP study.

    Directory of Open Access Journals (Sweden)

    Ling Li

    Full Text Available BACKGROUND: When switching from one task to a new one, reaction times are prolonged. This phenomenon is called switch cost (SC. Researchers have recently used several kinds of task-switching paradigms to uncover neural mechanisms underlying the SC. Task-set reconfiguration and passive dissipation of a previously relevant task-set have been reported to contribute to the cost of task switching. METHODOLOGY/PRINCIPAL FINDINGS: An unpredictable cued task-switching paradigm was used, during which subjects were instructed to switch between a color and an orientation discrimination task. Electroencephalography (EEG and behavioral measures were recorded in 14 subjects. Response-stimulus interval (RSI and cue-stimulus interval (CSI were manipulated with short and long intervals, respectively. Switch trials delayed reaction times (RTs and increased error rates compared with repeat trials. The SC of RTs was smaller in the long CSI condition. For cue-locked waveforms, switch trials generated a larger parietal positive event-related potential (ERP, and a larger slow parietal positivity compared with repeat trials in the short and long CSI condition. Neural SC of cue-related ERP positivity was smaller in the long RSI condition. For stimulus-locked waveforms, a larger switch-related central negative ERP component was observed, and the neural SC of the ERP negativity was smaller in the long CSI. Results of standardized low resolution electromagnetic tomography (sLORETA for both ERP positivity and negativity showed that switch trials evoked larger activation than repeat trials in dorsolateral prefrontal cortex (DLPFC and posterior parietal cortex (PPC. CONCLUSIONS/SIGNIFICANCE: The results provide evidence that both RSI and CSI modulate the neural activities in the process of task-switching, but that these have a differential role during task-set reconfiguration and passive dissipation of a previously relevant task-set.

  6. Report of the Material Control and Material Accounting Task Force: summary

    International Nuclear Information System (INIS)

    1978-03-01

    A special review was made of the safeguards maintained by licensees possessing 5 kg or more of strategic special nuclear material (SSNM), i.e., plutonium, uranium-233, or uranium enriched in the uranium-235 isotope to 20 percent or more. A Task Force was formed to define the roles and objectives of material control and material accounting in the NRC safeguards program; recommend goals for material control and material accounting systems based on their roles and objectives; assess the extent to which the existing regulatory base meets or provides the capability to meet the recommended goals; and to provide direction for material control and material accounting development, including both near-term and long-term upgrades. Based on results of Task Force investigations it is recommended that licensee plans for measurement control programs be submitted in response to Section 70.57(c) of Title 10 of the Code of Federal Regulations. Other recommendations include the review and upgrading, as necessary, of measurement error propagation models used by each licensee; revision of Nuclear Materials Management and Safeguards System (NMMSS) reporting entities for SSNM licensees to be consistent with the partitioning of facilities into plants or, if appropriate, accounting units; review of NMMSS reporting entities for SSNM licensees to assure that data for high enriched uranium operations are clearly separated from low enriched uranium operations; upgrading of the editing by NMMSS of reported licensee safeguards data for accuracy and consistency; and the acquisition of (a) a secure interactive computer capability for use in collecting, storing, sorting, and analyzing special nuclear material accounting data, and (b) associated flexible computer software that presents safeguards information in a succinct and comprehensive manner

  7. The effects of response cost and species-typical behaviors on a daily time-place learning task.

    Science.gov (United States)

    Deibel, Scott H; Thorpe, Christina M

    2013-03-01

    Two theories that have been hypothesized to mediate acquisition in daily time-place learning (TPL) tasks were investigated in a free operant daily TPL task: the response cost hypothesis and the species-typical behavior hypothesis. One lever at the end of one of the choice arms of a T-maze provided food in the morning, and 6 h later, a lever in the other choice arm provided food. Four groups were used to assess the effect of two possible sources of response cost: physical effort of the task and costs associated with foraging ecology. One group was used to assess the effect of explicitly allowing for species-typical behaviors. If only first arm choice data were considered, there was little evidence of learning. However, both first press and percentage of presses on the correct lever prior to the first reinforcement revealed evidence of TPL in most rats tested. Unexpectedly, the high response cost groups for both of the proposed sources did not perform better than the low response cost groups. The groups that allowed animals to display species-typical behaviors performed the worst. Skip session probe trials confirmed that the majority of the rats that acquired the task were using a circadian timing strategy. The results from the present study suggest that learning in free operant daily TPL tasks might not be dependent on response cost.

  8. Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells.

    Science.gov (United States)

    Nejand, Bahram Abdollahi; Ahmadi, Vahid; Gharibzadeh, Saba; Shahverdi, Hamid Reza

    2016-02-08

    Inorganic hole-transport materials are commercially desired to decrease the fabrication cost of perovskite solar cells. Here, Cu2O is introduced as a potential hole-transport material for stable, low-cost devices. Considering that Cu2O formation is highly sensitive to the underlying mixture of perovskite precursors and their solvents, we proposed and engineered a technique for reactive magnetron sputtering. The rotational angular deposition of Cu2O yields high surface coverage of the perovskite layer for high rate of charge extraction. Deposition of this Cu2O layer on the pinhole-free perovskite layer produces devices with power conversion efficiency values of up to 8.93%. The engineered Cu2O layers showed uniform, compact, and crack-free surfaces on the perovskite layer without affecting the perovskite structure, which is desired for deposition of the top metal contact and for surface shielding against moisture and mechanical damages. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. New techniques provide low-cost X-ray inspection of highly attenuating materials

    International Nuclear Information System (INIS)

    Stupin, D.M.; Mueller, K.H.; Viskoe, D.A.; Howard, B.; Poland, R.W.; Schneberk, D.; Dolan, K.; Thompson, K.; Stoker, G.

    1995-01-01

    As a result of an arms reduction treaty between the United States and the Russian Federation, both countries will each be storing over 40,000 containers of plutonium. To help detect any deterioration of the containers and prevent leakage, the authors are designing a digital radiography and computed tomography system capable of handling this volume reliably, efficiently, and at a lower cost. The materials to be stored have very high x-ray attenuations, and, in the past, were inspected using 1- to 24-MV x-ray sources. This inspection system, however, uses a new scintillating (Lockheed) glass and an integrating CCD camera. Preliminary experiments show that this will permit the use of a 450-kV x-ray source. This low-energy system will cost much less than others designed to use a higher-energy x-ray source because it will require a less expensive source, less shielding, and less floor space. Furthermore, they can achieve a tenfold improvement in spatial resolution by using their knowledge of the point-spread function of the x-ray imaging system and a least-squares fitting technique

  10. Low-Cost High-Concentration Photovoltaic Systems for Utility Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.; Garboushian, V.; Gordon, R.; Dutra, D.; Kinsey, G.; Geer, S.; Gomez, H.; Cameron, C.

    2012-03-31

    Under DOE's Technology Pathway Partnership (TPP) program, Amonix, Inc. developed a new generation of high-concentration photovoltaic systems using multijunction technology and established the manufacturing capacity needed to supply multi-megawatt power plants buing using the new Amonix 7700-series solar energy systems. For this effort, Amonix Collaborated with a variety of suppliers and partners to complete project tasks. Subcontractors included: Evonik/Cyro; Hitek; the National Renewable Energy Laboratory (NREL); Raytech; Spectrolab; UL; University of Nevada, Las Vegas; and TUV Rheinland PTL. The Amonix TPP tasks included: Task 1: Multijunction Cell Optimization for Field Operation, Task 2: Fresnel Lens R&D, Task 3: Cell Package Design & Production, Task 4: Standards Compliance and Reliability Testing, Task 5: Receiver Plate Production, Task 6: MegaModule Performance, Task 7: MegaModule Cost Reduction, Task 8: Factory Setup and MegaModule Production, Task 9: Tracker and Tracking Controller, Task 10: Installation and Balance of System (BOS), Task 11: Field Testing, and Task 12: Solar Advisor Modeling and Market Analysis. Amonix's TPP addressed nearly the complete PV value chain from epitaxial layer design and wafer processing through system design, manufacturing, deployment and O&M. Amonix has made progress toward achieving these reduced costs through the development of its 28%+ efficient MegaModule, reduced manufacturing and installation cost through design for manufacturing and assembly, automated manufacturing processes, and reduced O&M costs. Program highlights include: (1) Optimized multijunction cell and cell package design to improve performance by > 10%; (2) Updated lens design provided 7% increased performance and higher concentration; (3) 28.7% DC STC MegaModule efficiency achieved in Phase II exceeded Phase III performance goal; (4) New 16' focal length MegaModule achieved target materials and manufacturing cost reduction; (5) Designed and

  11. Cognitive pitfall! Videogame players are not immune to dual-task costs.

    Science.gov (United States)

    Donohue, Sarah E; James, Brittany; Eslick, Andrea N; Mitroff, Stephen R

    2012-07-01

    With modern technological advances, we often find ourselves dividing our attention between multiple tasks. While this may seem a productive way to live, our attentional capacity is limited, and this yields costs in one or more of the many tasks that we try to do. Some people believe that they are immune to the costs of multitasking and commonly engage in potentially dangerous behavior, such as driving while talking on the phone. But are some groups of individuals indeed immune to dual-task costs? This study examines whether avid action videogame players, who have been shown to have heightened attentional capacities, are particularly adept multitaskers. Participants completed three visually demanding experimental paradigms (a driving videogame, a multiple-object-tracking task, and a visual search), with and without answering unrelated questions via a speakerphone (i.e., with and without a dual-task component). All of the participants, videogame players and nonvideogame players alike, performed worse while engaging in the additional dual task for all three paradigms. This suggests that extensive videogame experience may not offer immunity from dual-task costs.

  12. A Low-Cost, Precision Hydrometer for Classroom Use.

    Science.gov (United States)

    Murphy, Michael D.

    1983-01-01

    Describes a low cost hydrometer which can be assembled by students using stock laboratory items with a total retail cost of 17 cents. Includes list of required materials (with supplies) and experimental results on the instrument's accuracy. (JM)

  13. Evaluation of a low-cost, 3D-printed model for bronchoscopy training.

    Science.gov (United States)

    Parotto, Matteo; Jiansen, Joshua Qua; AboTaiban, Ahmed; Ioukhova, Svetlana; Agzamov, Alisher; Cooper, Richard; O'Leary, Gerald; Meineri, Massimiliano

    2017-01-01

    Flexible bronchoscopy is a fundamental procedure in anaesthesia and critical care medicine. Although learning this procedure is a complex task, the use of simulation-based training provides significant advantages, such as enhanced patient safety. Access to bronchoscopy simulators may be limited in low-resource settings. We have developed a low-cost 3D-printed bronchoscopy training model. A parametric airway model was obtained from an online medical model repository and fabricated using a low-cost 3D printer. The participating physicians had no prior bronchoscopy experience. Participants received a 30-minute lecture on flexible bronchoscopy and were administered a 15-item pre-test questionnaire on bronchoscopy. Afterwards, participants were instructed to perform a series of predetermined bronchoscopy tasks on the 3D printed simulator on 4 consecutive occasions. The time needed to perform the tasks and the quality of task performance (identification of bronchial anatomy, technique, dexterity, lack of trauma) were recorded. Upon completion of the simulator tests, participants were administered the 15-item questionnaire (post-test) once again. Participant satisfaction data on the perceived usefulness and accuracy of the 3D model were collected. A statistical analysis was performed using the t-test. Data are reported as mean values (± standard deviation). The time needed to complete all tasks was 152.9 ± 71.5 sec on the 1st attempt vs. 98.7 ± 40.3 sec on the 4th attempt (P = 0.03). Likewise, the quality of performance score improved from 8.3 ± 6.7 to 18.2 ± 2.5 (P 3D-printed model for bronchoscopy training. This model improved trainee performance and may represent a valid, low-cost bronchoscopy training tool.

  14. Planning and production of a low cost cryostat for electrical characterization of materials

    International Nuclear Information System (INIS)

    Torsoni, G.B.; Carvalho, C.L.; Brito, G.A.

    2010-01-01

    The system BSCCO can show three main Bi 2 Sr 2 CuO, Bi 2 Sr 2 CaCu 2 O and Bi 2 Sr 2 Ca 2 Cu 3 O with critical temperatures around 20 K, 80 K and 110 K, respectively. Therefore, it is fundamental to study these materials in details at lowest temperatures, with simple systems and low cost equipment. In this work was projected a cryogenic system with capacity to reach temperatures below the liquid nitrogen temperature (77 K). Based on thermodynamic principles, which is used with liquid nitrogen system, with the vacuum application and control, it has been achieved temperatures about 63 K (freezing nitrogen temperature) in the sample holder. With the availability of a large range temperature becomes possible to identify at least two superconducting phases as in system BSCCO, which also involves a cost/benefit ratio more favorable, avoiding the use of more expensive refrigerates as liquid helium. (author)

  15. Integration of Kinect and Low-Cost Gnss for Outdoor Navigation

    Science.gov (United States)

    Pagliaria, D.; Pinto, L.; Reguzzoni, M.; Rossi, L.

    2016-06-01

    Since its launch on the market, Microsoft Kinect sensor has represented a great revolution in the field of low cost navigation, especially for indoor robotic applications. In fact, this system is endowed with a depth camera, as well as a visual RGB camera, at a cost of about 200. The characteristics and the potentiality of the Kinect sensor have been widely studied for indoor applications. The second generation of this sensor has been announced to be capable of acquiring data even outdoors, under direct sunlight. The task of navigating passing from an indoor to an outdoor environment (and vice versa) is very demanding because the sensors that work properly in one environment are typically unsuitable in the other one. In this sense the Kinect could represent an interesting device allowing bridging the navigation solution between outdoor and indoor. In this work the accuracy and the field of application of the new generation of Kinect sensor have been tested outdoor, considering different lighting conditions and the reflective properties of the emitted ray on different materials. Moreover, an integrated system with a low cost GNSS receiver has been studied, with the aim of taking advantage of the GNSS positioning when the satellite visibility conditions are good enough. A kinematic test has been performed outdoor by using a Kinect sensor and a GNSS receiver and it is here presented.

  16. High-Efficient Low-Cost Photovoltaics Recent Developments

    CERN Document Server

    Petrova-Koch, Vesselinka; Goetzberger, Adolf

    2009-01-01

    A bird's-eye view of the development and problems of recent photovoltaic cells and systems and prospects for Si feedstock is presented. High-efficient low-cost PV modules, making use of novel efficient solar cells (based on c-Si or III-V materials), and low cost solar concentrators are in the focus of this book. Recent developments of organic photovoltaics, which is expected to overcome its difficulties and to enter the market soon, are also included.

  17. Key issues for low-cost FGD installations

    Energy Technology Data Exchange (ETDEWEB)

    DePriest, W.; Mazurek, J.M. [Sargent & Lundy LLC, Chicago, IL (United States)

    1995-12-01

    This paper will discuss various methods for installing low-cost FGD systems. The paper will include a discussion of various types of FGD systems available, both wet and dry, and will compare the relative cost of each type. Important design issues, such as use of spare equipment, materials of construction, etc. will be presented. An overview of various low-cost construction techniques (i.e., modularization) will be included. This paper will draw heavily from Sargent & Lundy`s database of past and current FGD projects together with information we gathered for several Electric Power Research Institute (EPRI) studies on the subject.

  18. An opportunity cost model of subjective effort and task performance

    Science.gov (United States)

    Kurzban, Robert; Duckworth, Angela; Kable, Joseph W.; Myers, Justus

    2013-01-01

    Why does performing certain tasks cause the aversive experience of mental effort and concomitant deterioration in task performance? One explanation posits a physical resource that is depleted over time. We propose an alternate explanation that centers on mental representations of the costs and benefits associated with task performance. Specifically, certain computational mechanisms, especially those associated with executive function, can be deployed for only a limited number of simultaneous tasks at any given moment. Consequently, the deployment of these computational mechanisms carries an opportunity cost – that is, the next-best use to which these systems might be put. We argue that the phenomenology of effort can be understood as the felt output of these cost/benefit computations. In turn, the subjective experience of effort motivates reduced deployment of these computational mechanisms in the service of the present task. These opportunity cost representations, then, together with other cost/benefit calculations, determine effort expended and, everything else equal, result in performance reductions. In making our case for this position, we review alternate explanations both for the phenomenology of effort associated with these tasks and for performance reductions over time. Likewise, we review the broad range of relevant empirical results from across subdisciplines, especially psychology and neuroscience. We hope that our proposal will help to build links among the diverse fields that have been addressing similar questions from different perspectives, and we emphasize ways in which alternate models might be empirically distinguished. PMID:24304775

  19. Low-cost, low-weight CNG cylinder development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Mark E.; Melford, K.; Wong, J.; Gambone, L.

    1999-09-01

    This program was established to develop and commercialize new high-strength steel-lined, composite hoop-wrapped compressed natural gas (CNG) cylinders for vehicular applications. As much as 70% of the cost of natural gas vehicles can be related to on-board natural gas storage costs. The cost and weight targets for this program represent significant savings in each characteristic when compared to comparable containers available at the initiation of the program. The program objectives were to optimize specific weight and cost goals, yielding CNG cylinders with dimensions that should, allowing for minor modifications, satisfy several vehicle market segments. The optimization process encompassed material, design, and process improvement. In optimizing the CNG cylinder design, due consideration was given to safety aspects relative to national, international, and vehicle manufacturer cylinder standards and requirements. The report details the design and development effort, encompassing plant modifications, material selection, design issues, tooling development, prototype development, and prototype testing. Extenuating circumstances prevented the immediate commercialization of the cylinder designs, though significant progress was made towards improving the cost and performance of CNG cylinders. A new low-cost fiber was successfully employed while the weight target was met and the cost target was missed by less than seven percent.

  20. Low-cost, highly transparent flexible low-e coating film to enable electrochromic windows with increased energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian [ITN Energy Systems, Inc., Littleton, CO (United States); Hollingsworth, Russell [ITN Energy Systems, Inc., Littleton, CO (United States)

    2015-03-31

    Five Quads of energy are lost through windows annually in the U.S. Low-e coatings are increasingly employed to reduce the wasted energy. Most commonly, the low-e coating is an oxide material applied directly to the glass at high temperature. With over 100,000,000 existing homes, a retrofit product is crucial to achieve widespread energy savings. Low-e films, i.e. coatings on polymeric substrates, are now also available to meet this need. However, the traditional oxide materials and process is incompatible with low temperature plastics. Alternate high performing low-e films typically incorporate materials that limit visible transmission to 35% or less. Further, the cost is high. The objective of this award was to develop a retrofit, integrated low-e/electrochromic window film to dramatically reduce energy lost through windows. While field testing of state-of-the-art electrochromic (EC) windows show the energy savings are maximized if a low-e coating is used in conjunction with the EC, available low-e films have a low visible transmission (~70% or less) that limits the achievable clear state and therefore, appearance and energy savings potential. Comprehensive energy savings models were completed at Lawrence Berkeley National Lab (LBNL). A parametric approach was used to project energy usage for windows with a large range of low-e properties across all U.S. climate zones, without limiting the study to materials that had already been produced commercially or made in a lab. The model enables projection of energy savings for low-e films as well as integrated low-e/EC products. This project developed a novel low-e film, optimized for compatibility with EC windows, using low temperature, high deposition rate processes for the growth of low-e coatings on plastic films by microwave plasma enhanced chemical vapor deposition. Silica films with good density and optical properties were demonstrated at deposition rates as high as 130Å/sec. A simple bi-layer low-e stack of

  1. Development of New Low-Cost, High-Performance, PV Module Encapsulant/Packaging Materials: Final Technical Progress Report, 22 October 2002 - 15 November 2007

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, R.

    2008-04-01

    Report on objectives to work with U.S.-based PV module manufacturers (c-Si, a-Si, CIS, other thin films) to develop/qualify new low-cost, high-performance PV module encapsulant/packaging materials, and processes using the packaging materials.

  2. Segmentation of low‐cost high efficiency oxide‐based thermoelectric materials

    DEFF Research Database (Denmark)

    Le, Thanh Hung; Van Nong, Ngo; Linderoth, Søren

    2015-01-01

    Thermoelectric (TE) oxide materials have attracted great interest in advanced renewable energy research owing to the fact that they consist of abundant elements, can be manufactured by low-cost processing, sustain high temperatures, be robust and provide long lifetime. However, the low conversion...... efficiency of TE oxides has been a major drawback limiting these materials to broaden applications. In this work, theoretical calculations are used to predict how segmentation of oxide and semimetal materials, utilizing the benefits of both types of materials, can provide high efficiency, high temperature...... oxide-based segmented legs. The materials for segmentation are selected by their compatibility factors and their conversion efficiency versus material cost, i.e., “efficiency ratio”. Numerical modelling results showed that conversion efficiency could reach values of more than 10% for unicouples using...

  3. Adapting to the 30-degree visual perspective by emulating the angled laparoscope: a simple and low-cost solution for basic surgical training.

    Science.gov (United States)

    Daniel, Lorias Espinoza; Tapia, Fernando Montes; Arturo, Minor Martínez; Ricardo, Ordorica Flores

    2014-12-01

    The ability to handle and adapt to the visual perspectives generated by angled laparoscopes is crucial for skilled laparoscopic surgery. However, the control of the visual work space depends on the ability of the operator of the camera, who is often not the most experienced member of the surgical team. Here, we present a simple, low-cost option for surgical training that challenges the learner with static and dynamic visual perspectives at 30 degrees using a system that emulates the angled laparoscope. A system was developed using a low-cost camera and readily available materials to emulate the angled laparoscope. Nine participants undertook 3 tasks to test spatial adaptation to the static and dynamic visual perspectives at 30 degrees. Completing each task to a predefined satisfactory level ensured precision of execution of the tasks. Associated metrics (time and error rate) were recorded, and the performance of participants were determined. A total of 450 repetitions were performed by 9 residents at various stages of training. All the tasks were performed with a visual perspective of 30 degrees using the system. Junior residents were more proficient than senior residents. This system is a viable and low-cost alternative for developing the basic psychomotor skills necessary for the handling and adaptation to visual perspectives of 30 degrees, without depending on a laparoscopic tower, in junior residents. More advanced skills may then be acquired by other means, such as in the operating theater or through clinical experience.

  4. Towards low cost, efficient and stable organic photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Andriessen, R. [Holst Centre - Solliance, PO Box 8550, 5605 KN Eindhoven (Netherlands); Kroon, J.M. [ECN - Solliance, Petten (Netherlands); Aernouts, T. [Imec, Solliance, Kapeldreef 75, B-3001 Leuven (Belgium); Janssen, R. [Eindhoven University of Technology, Solliance, Eindhoven (Netherlands)

    2012-09-15

    This article describes how the Solliance Organic PhotoVoltaics (OPV) shared research Program addresses efficiency, lifetime and production costs for (near) future OPV applications. The balance of these three parameters depends of the envisaged application, but at the end, OPV should be able to compete somehow with Si PV in the future. Efficiency improvements are realized by developing new materials, by exploring and optimizing new device structures and novel interconnection technologies. Lifetime improvements are realized by using stabilized device stacks and materials and by applying high end flexible barriers. Production cost control is done by using a home made Cost of Ownership tool which guides towards the use of low-cost materials and processes.

  5. Multi-robot system using low-cost infrared sensors

    Directory of Open Access Journals (Sweden)

    Anubhav Kakkar

    2013-03-01

    Full Text Available This paper presents a proposed set of the novel technique, methods, and algorithm for simultaneous path planning, area exploration, area retrieval, obstacle avoidance, object detection, and object retrieval   autonomously by a multi-robot system. The proposed methods and algorithms are built considering the use of low cost infrared sensors with the ultimate function of efficiently exploring the given unknown area and simultaneously identifying desired objects by analyzing the physical characteristics of several of the objects that come across during exploration. In this paper, we have explained the scenario by building a coordinative multi-robot system consisting of two autonomously operated robots equipped with low-cost and low-range infrared sensors to perform the assigned task by analyzing some of the sudden changes in their environment. Along with identifying and retrieving the desired object, the proposed methodology also provide an inclusive analysis of the area being explored. The novelties presented in the paper may significantly provide a cost-effective solution to the problem of area exploration and finding a known object in an unknown environment by demonstrating an innovative approach of using the infrared sensors instead of high cost long range sensors and cameras. Additionally, the methodology provides a speedy and uncomplicated method of traversing a complicated arena while performing all the necessary and inter-related tasks of avoiding the obstacles, analyzing the area as well as objects, and reconstructing the area using all these information collected and interpreted for an unknown environment. The methods and algorithms proposed are simulated over a complex arena to depict the operations and manually tested over a physical environment which provided 78% correct results with respect to various complex parameters set randomly.

  6. Technical considerations for designing low-cost, long-wave infrared objectives

    Science.gov (United States)

    Desroches, Gerard; Dalzell, Kristy; Robitaille, Blaise

    2014-06-01

    With the growth of uncooled infrared imaging in the consumer market, the balance between cost implications and performance criteria in the objective lens must be examined carefully. The increased availability of consumer-grade, long-wave infrared cameras is related to a decrease in military usage but it is also due to the decreasing costs of the cameras themselves. This has also driven up demand for low-cost, long-wave objectives that can resolve smaller pixels while maintaining high performance. Smaller pixels are traditionally associated with high cost objectives because of higher resolution requirements but, with careful consideration of all the requirements and proper selection of materials, costs can be moderated. This paper examines the cost/performance trade-off implications associated with optical and mechanical requirements of long-wave infrared objectives. Optical performance, f-number, field of view, distortion, focus range and thermal range all affect the cost of the objective. Because raw lens material cost is often the most expensive item in the construction, selection of the material as well as the shape of the lens while maintaining acceptable performance and cost targets were explored. As a result of these considerations, a low-cost, lightweight, well-performing objective was successfully designed, manufactured and tested.

  7. Low technology tissue culture materials for initiation and ...

    African Journals Online (AJOL)

    Low technology tissue culture materials for initiation and multiplication of banana plants. ... African Crop Science Journal ... locally available macronutrients, micronutrients, sugar, equipment and facility reduced the cost of consumable material

  8. Task Uncertainty Can Account for Mixing and Switch Costs in Task-Switching

    Science.gov (United States)

    Rennie, Jaime L.

    2015-01-01

    Cognitive control is required in situations that involve uncertainty or change, such as when resolving conflict, selecting responses and switching tasks. Recently, it has been suggested that cognitive control can be conceptualised as a mechanism which prioritises goal-relevant information to deal with uncertainty. This hypothesis has been supported using a paradigm that requires conflict resolution. In this study, we examine whether cognitive control during task switching is also consistent with this notion. We used information theory to quantify the level of uncertainty in different trial types during a cued task-switching paradigm. We test the hypothesis that differences in uncertainty between task repeat and task switch trials can account for typical behavioural effects in task-switching. Increasing uncertainty was associated with less efficient performance (i.e., slower and less accurate), particularly on switch trials and trials that afford little opportunity for advance preparation. Interestingly, both mixing and switch costs were associated with a common episodic control process. These results support the notion that cognitive control may be conceptualised as an information processor that serves to resolve uncertainty in the environment. PMID:26107646

  9. Low-Cost Bio-Based Phase Change Materials as an Energy Storage Medium in Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL; Abhari, Mr. Ramin [Renewable Energy Group, Inc.; Shukla, Dr. Nitin [Fraunhofer USA, Center for Sustainable Energy Systems (CSE), Boston; Kosny, Dr. Jan [Fraunhofer USA, Center for Sustainable Energy Systems (CSE), Boston

    2015-01-01

    A promising approach to increasing the energy efficiency of buildings is the implementation of phase change material (PCM) in building envelope systems. Several studies have reported the energy saving potential of PCM in building envelopes. However, wide application of PCMs in building applications has been inhibited, in part, by their high cost. This article describes a novel paraffin product made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application, with the ultimate goal of commercializing a low-cost PCM platform. The low-cost PCM pellets were mixed with cellulose insulation, installed in external walls and field-tested under natural weatherization conditions for a period of several months. In addition, several PCM samples and PCM-cellulose samples were prepared under controlled conditions for laboratory-scale testing. The laboratory tests were performed to determine the phase change properties of PCM-enhanced cellulose insulation both at microscopic and macroscopic levels. This article presents the data and analysis from the exterior test wall and the laboratory-scale test data. PCM behavior is influenced by the weather and interior conditions, PCM phase change temperature and PCM distribution within the wall cavity, among other factors. Under optimal conditions, the field data showed up to 20% reduction in weekly heat transfer through an external wall due to the PCM compared to cellulose-only insulation.

  10. Argobots: A Lightweight Low-Level Threading and Tasking Framework

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Sangmin; Amer, Abdelhalim; Balaji, Pavan; Bordage, Cyril; Bosilca, George; Brooks, Alex; Carns, Philip; Castello, Adrian; Genet, Damien; Herault, Thomas; Iwasaki, Shintaro; Jindal, Prateek; Kale, Laxmikant V.; Krishnamoorthy, Sriram; Lifflander, Jonathan; Lu, Huiwei; Meneses, Esteban; Snir, Marc; Sun, Yanhua; Taura, Kenjiro; Beckman, Pete

    2018-03-01

    In the past few decades, a number of user-level threading and tasking models have been proposed in the literature to address the shortcomings of OS-level threads, primarily with respect to cost and flexibility. Current state-of-the-art user-level threading and tasking models, however, either are too specific to applications or architectures or are not as powerful or flexible. In this paper, we present Argobots, a lightweight, low-level threading and tasking framework that is designed as a portable and performant substrate for high-level programming models or runtime systems. Argobots offers a carefully designed execution model that balances generality of functionality with providing a rich set of controls to allow specialization by end users or high-level programming models. We describe the design, implementation, and performance characterization of Argobots and present integrations with three high-level models: OpenMP, MPI, and colocated I/O services. Evaluations show that (1) Argobots, while providing richer capabilities, is competitive with existing simpler generic threading runtimes; (2) our OpenMP runtime offers more efficient interoperability capabilities than production OpenMP runtimes do; (3) when MPI interoperates with Argobots instead of Pthreads, it enjoys reduced synchronization costs and better latency-hiding capabilities; and (4) I/O services with Argobots reduce interference with colocated applications while achieving performance competitive with that of a Pthreads approach.

  11. Argobots: A Lightweight Low-Level Threading and Tasking Framework

    International Nuclear Information System (INIS)

    Seo, Sangmin; Amer, Abdelhalim; Balaji, Pavan; Bordage, Cyril; Bosilca, George

    2017-01-01

    In the past few decades, a number of user-level threading and tasking models have been proposed in the literature to address the shortcomings of OS-level threads, primarily with respect to cost and flexibility. Current state-of-the-art user-level threading and tasking models, however, are either too specific to applications or architectures or are not as powerful or flexible. In this article, we present Argobots, a lightweight, low-level threading and tasking framework that is designed as a portable and performant substrate for high-level programming models or runtime systems. Argobots offers a carefully designed execution model that balances generality of functionality with providing a rich set of controls to allow specialization by the user or high-level programming model. Here, we describe the design, implementation, and optimization of Argobots and present integrations with three example high-level models: OpenMP, MPI, and co-located I/O service. Evaluations show that (1) Argobots outperforms existing generic threading runtimes; (2) our OpenMP runtime offers more efficient interoperability capabilities than production OpenMP runtimes do; (3) when MPI interoperates with Argobots instead of Pthreads, it enjoys reduced synchronization costs and better latency hiding capabilities; and (4) I/O service with Argobots reduces interference with co-located applications, achieving performance competitive with that of the Pthreads version.

  12. Air Muscle Actuated Low Cost Humanoid Hand

    Directory of Open Access Journals (Sweden)

    Peter Scarfe

    2008-11-01

    Full Text Available The control of humanoid robot hands has historically been expensive due to the cost of precision actuators. This paper presents the design and implementation of a low-cost air muscle actuated humanoid hand developed at Curtin University of Technology. This hand offers 10 individually controllable degrees of freedom ranging from the elbow to the fingers, with overall control handled through a computer GUI. The hand is actuated through 20 McKibben-style air muscles, each supplied by a pneumatic pressure-balancing valve that allows for proportional control to be achieved with simple and inexpensive components. The hand was successfully able to perform a number of human-equivalent tasks, such as grasping and relocating objects.

  13. Air Muscle Actuated Low Cost Humanoid Hand

    Directory of Open Access Journals (Sweden)

    Peter Scarfe

    2006-06-01

    Full Text Available The control of humanoid robot hands has historically been expensive due to the cost of precision actuators. This paper presents the design and implementation of a low-cost air muscle actuated humanoid hand developed at Curtin University of Technology. This hand offers 10 individually controllable degrees of freedom ranging from the elbow to the fingers, with overall control handled through a computer GUI. The hand is actuated through 20 McKibben-style air muscles, each supplied by a pneumatic pressure-balancing valve that allows for proportional control to be achieved with simple and inexpensive components. The hand was successfully able to perform a number of human-equivalent tasks, such as grasping and relocating objects.

  14. System identification of a small low-cost unmanned aerial vehicle using flight data from low-cost sensors

    Science.gov (United States)

    Hoffer, Nathan Von

    Remote sensing has traditionally been done with satellites and manned aircraft. While. these methods can yield useful scientificc data, satellites and manned aircraft have limitations in data frequency, process time, and real time re-tasking. Small low-cost unmanned aerial vehicles (UAVs) provide greater possibilities for personal scientic research than traditional remote sensing platforms. Precision aerial data requires an accurate vehicle dynamics model for controller development, robust flight characteristics, and fault tolerance. One method of developing a model is system identification (system ID). In this thesis system ID of a small low-cost fixed-wing T-tail UAV is conducted. The linerized longitudinal equations of motion are derived from first principles. Foundations of Recursive Least Squares (RLS) are presented along with RLS with an Error Filtering Online Learning scheme (EFOL). Sensors, data collection, data consistency checking, and data processing are described. Batch least squares (BLS) and BLS with EFOL are used to identify aerodynamic coecoefficients of the UAV. Results of these two methods with flight data are discussed.

  15. External costs of material recycling strategies for fusion power plants

    International Nuclear Information System (INIS)

    Hallberg, B.; Aquilonius, K.; Lechon, Y.; Cabal, H.; Saez, R.M.; Schneider, T.; Lepicard, S.; Ward, D.; Hamacher, T.; Korhonen, R.

    2003-01-01

    This paper is based on studies performed within the framework of the project Socio-Economic Research on Fusion (SERF3). Several fusion power plant designs (SEAFP Models 1-6) were compared focusing on part of the plant's life cycle: environmental impact of recycling the materials. Recycling was considered for materials replaced during normal operation, as well as materials from decommissioning of the plant. Environmental impact was assessed and expressed as external cost normalised with the total electrical energy output during plant operation. The methodology used for this study has been developed by the Commission of the European Union within the frame of the ExternE project. External costs for recycling, normalised with the energy production during plant operation, are very low compared with those for other energy sources. Results indicate that a high degree of recycling is preferable, at least when considering external costs, because external costs of manufacturing of new materials and disposal costs are higher

  16. Low-cost far infrared bolometer camera for automotive use

    Science.gov (United States)

    Vieider, Christian; Wissmar, Stanley; Ericsson, Per; Halldin, Urban; Niklaus, Frank; Stemme, Göran; Källhammer, Jan-Erik; Pettersson, Håkan; Eriksson, Dick; Jakobsen, Henrik; Kvisterøy, Terje; Franks, John; VanNylen, Jan; Vercammen, Hans; VanHulsel, Annick

    2007-04-01

    A new low-cost long-wavelength infrared bolometer camera system is under development. It is designed for use with an automatic vision algorithm system as a sensor to detect vulnerable road users in traffic. Looking 15 m in front of the vehicle it can in case of an unavoidable impact activate a brake assist system or other deployable protection system. To achieve our cost target below €100 for the sensor system we evaluate the required performance and can reduce the sensitivity to 150 mK and pixel resolution to 80 x 30. We address all the main cost drivers as sensor size and production yield along with vacuum packaging, optical components and large volume manufacturing technologies. The detector array is based on a new type of high performance thermistor material. Very thin Si/SiGe single crystal multi-layers are grown epitaxially. Due to the resulting valence barriers a high temperature coefficient of resistance is achieved (3.3%/K). Simultaneously, the high quality crystalline material provides very low 1/f-noise characteristics and uniform material properties. The thermistor material is transferred from the original substrate wafer to the read-out circuit using adhesive wafer bonding and subsequent thinning. Bolometer arrays can then be fabricated using industry standard MEMS process and materials. The inherently good detector performance allows us to reduce the vacuum requirement and we can implement wafer level vacuum packaging technology used in established automotive sensor fabrication. The optical design is reduced to a single lens camera. We develop a low cost molding process using a novel chalcogenide glass (GASIR®3) and integrate anti-reflective and anti-erosion properties using diamond like carbon coating.

  17. Task uncertainty can account for mixing and switch costs in task-switching.

    Directory of Open Access Journals (Sweden)

    Patrick S Cooper

    Full Text Available Cognitive control is required in situations that involve uncertainty or change, such as when resolving conflict, selecting responses and switching tasks. Recently, it has been suggested that cognitive control can be conceptualised as a mechanism which prioritises goal-relevant information to deal with uncertainty. This hypothesis has been supported using a paradigm that requires conflict resolution. In this study, we examine whether cognitive control during task switching is also consistent with this notion. We used information theory to quantify the level of uncertainty in different trial types during a cued task-switching paradigm. We test the hypothesis that differences in uncertainty between task repeat and task switch trials can account for typical behavioural effects in task-switching. Increasing uncertainty was associated with less efficient performance (i.e., slower and less accurate, particularly on switch trials and trials that afford little opportunity for advance preparation. Interestingly, both mixing and switch costs were associated with a common episodic control process. These results support the notion that cognitive control may be conceptualised as an information processor that serves to resolve uncertainty in the environment.

  18. Directions of organisational and low-cost energy saving of engineering enterprises

    Directory of Open Access Journals (Sweden)

    Dzhedzhula Viacheslav V.

    2014-01-01

    Full Text Available The article analyses directions of energy saving of industrial enterprises. Taking into account the tendency to continuous growth of cost of energy resources, introduction of measures that would allow reduction of energy consumption of enterprises is an urgent task. One of the most important obstacles in the process of introduction of energy efficient solutions are fund limits and low awareness of owners and managers of industrial enterprises. The article offers a new classification of energy saving measures: apart from traditional expense and organisation measures it introduces the low-cost measures notion. It offers to consider low-cost those measures that are realised by the enterprise by means of own funds, moreover, their repayment term is not more than one year. It offers analytical expression for identification of annual funds saving from introduction of low-cost measures. It considers the process of identification of saving of funds from introduction of some of the main low-cost measures in detail: replacement of lighting units, balancing of ventilation networks and elimination of water leakages from pipelines and water supply equipment. Based on the analysis of bibliography information the article provides a list of main measures on energy saving, which could be referred to the low-cost ones. The proposed approaches would allow paying more attention to practical aspects of realisation of the concept of energy saving in the industry.

  19. 48 CFR 31.205-26 - Material costs.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Material costs. 31.205-26... CONTRACTING REQUIREMENTS CONTRACT COST PRINCIPLES AND PROCEDURES Contracts With Commercial Organizations 31.205-26 Material costs. (a) Material costs include the costs of such items as raw materials, parts...

  20. A new semantic vigilance task: vigilance decrement, workload, and sensitivity to dual-task costs.

    Science.gov (United States)

    Epling, Samantha L; Russell, Paul N; Helton, William S

    2016-01-01

    Cognitive resource theory is a common explanation for both the performance decline in vigilance tasks, known as the vigilance decrement, and the limited ability to perform multiple tasks simultaneously. The limited supply of cognitive resources may be utilized faster than they are replenished resulting in a performance decrement, or may need to be allocated among multiple tasks with some performance cost. Researchers have proposed both domain-specific, for example spatial versus verbal processing resources, and domain general cognitive resources. One challenge in testing the domain specificity of cognitive resources in vigilance is the current lack of difficult semantic vigilance tasks which reliably produce a decrement. In the present research, we investigated whether the vigilance decrement was found in a new abbreviated semantic discrimination vigilance task, and whether there was a performance decrement in said vigilance task when paired with a word recall task, as opposed to performed individually. As hypothesized, a vigilance decrement in the semantic vigilance task was found in both the single-task and dual-task conditions, along with reduced vigilance performance in the dual-task condition and reduced word recall in the dual-task condition. This is consistent with cognitive resource theory. The abbreviated semantic vigilance task will be a useful tool for researchers interested in determining the specificity of cognitive resources utilized in vigilance tasks.

  1. Technology for low cost solid rocket boosters.

    Science.gov (United States)

    Ciepluch, C.

    1971-01-01

    A review of low cost large solid rocket motors developed at the Lewis Research Center is given. An estimate is made of the total cost reduction obtainable by incorporating this new technology package into the rocket motor design. The propellant, case material, insulation, nozzle ablatives, and thrust vector control are discussed. The effect of the new technology on motor cost is calculated for a typical expandable 260-in. booster application. Included in the cost analysis is the influence of motor performance variations due to specific impulse and weight changes. It is found for this application that motor costs may be reduced by up to 30% and that the economic attractiveness of future large solid rocket motors will be improved when the new technology is implemented.

  2. Coaxial MoS2@Carbon Hybrid Fibers: A Low-Cost Anode Material for High-Performance Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2017-02-01

    Full Text Available A low-cost bio-mass-derived carbon substrate has been employed to synthesize MoS2@carbon composites through a hydrothermal method. Carbon fibers derived from natural cotton provide a three-dimensional and open framework for the uniform growth of MoS2 nanosheets, thus hierarchically constructing coaxial architecture. The unique structure could synergistically benefit fast Li-ion and electron transport from the conductive carbon scaffold and porous MoS2 nanostructures. As a result, the MoS2@carbon composites—when serving as anodes for Li-ion batteries—exhibit a high reversible specific capacity of 820 mAh·g−1, high-rate capability (457 mAh·g−1 at 2 A·g−1, and excellent cycling stability. The use of bio-mass-derived carbon makes the MoS2@carbon composites low-cost and promising anode materials for high-performance Li-ion batteries.

  3. A Task-Based Approach to Materials Development

    Science.gov (United States)

    Nunan, David

    2010-01-01

    The purpose of this chapter is to present a task-based approach to materials development. In the first part of the chapter, I sketch out the evolution of task based language teaching, drawing on a distinction between synthetic and analytical approaches to syllabus design first articulated by Wilkins (1976).

  4. Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review

    Science.gov (United States)

    Malik, D. S.; Jain, C. K.; Yadav, Anuj K.

    2017-09-01

    Heavy metal pollution is a major problems in the environment. The impact of toxic metal ions can be minimized by different technologies, viz., chemical precipitation, membrane filtration, oxidation, reverse osmosis, flotation and adsorption. But among them, adsorption was found to be very efficient and common due to the low concentration of metal uptake and economically feasible properties. Cellulosic materials are of low cost and widely used, and very promising for the future. These are available in abundant quantity, are cheap and have low or little economic value. Different forms of cellulosic materials are used as adsorbents such as fibers, leaves, roots, shells, barks, husks, stems and seed as well as other parts also. Natural and modified types of cellulosic materials are used in different metal detoxifications in water and wastewater. In this review paper, the most common and recent materials are reviewed as cellulosic low-cost adsorbents. The elemental properties of cellulosic materials are also discussed along with their cellulose, hemicelluloses and lignin contents.

  5. Engineering a responsive, low cost, tactical satellite, TACSAT-1

    Science.gov (United States)

    Hurley, M.; Duffey, T.; Huffine, Christopher; Weldy, Ken; Clevland, Jeff; Hauser, Joe

    2004-11-01

    The Secretary of Defense's Office of Force Transformation (OFT) is currently undertaking an initiative to develop a low-cost, responsive, operationally relevant space capability using small satellites. The Naval Research Laboratory (NRL) is tasked to be program manger for this initiative, which seeks to make space assets and capabilities available to operational users. TacSat-1 is the first in a series of small satellites that will result in rapid, tailored, and operationally relevant experimental space capabilities for tactical forces. Components of the resulting tactical architecture include a highly automated small satellite bus, modular payloads, common launch and payload interfaces, tasking and data dissemination using the SIPRNET (Secret Internet Protocol Routing Network), and low cost, rapid response launches. The overall goal of TacSat-1 is to demonstrate the utility of a broader complementary business model and provide a catalyst for energizing DoD and industry in the operational space area. This paper first provides a brief overview of the TacSat- 1 experiment and then discusses the engineering designs and practices used to achieve the aggressive cost and schedule goals. Non-standard approaches and engineering philosophies that allowed the TacSat-1 spacecraft to be finished in twelve months are detailed and compared with "normal" satellite programs where applicable. Specific subsystem design, integration and test techniques, which contributed to the successful completion of the TacSat-1 spacecraft, are reviewed. Finally, lessons learned are discussed.

  6. Low cost sic coated erosion resistant graphite

    International Nuclear Information System (INIS)

    Zafar, M.F.; Nicholls, J.R.

    2007-01-01

    The development of materials with unique and improved properties using low cost processes is essential to increase performance and reduce cost of the solid rocket motors. Specifically advancements are needed for boost phase nozzle. As these motors operate at very high pressure and temperatures, the nozzle must survive high thermal stresses with minimal erosion to maintain performance. Currently three material choices are being exploited; which are refractory metals, graphite and carbon-carbon composites. Of these three materials graphite is the most attractive choice because of its low cost, light weight, and easy forming. However graphite is prone to erosion, both chemical and mechanical, which may affect the ballistic conditions and mechanical properties of the nozzle. To minimize this erosion high density graphite is usually preferred; which is again very expensive. Another technique used to minimize the erosion is Pyrolytic Graphite (PG) coating inside the nozzle. However PG coating is prone to cracking and spallation along with very cumbersome deposition process. Another possible methodology to avoid this erosion is to convert the inside surface of the rocket nozzle to Silicon Carbide (SiC), which is very erosion resistant and have much better thermal stability compared to graphite and even PG. Due to its functionally gradient nature such a layer will be very adherent and resistant to spallation. The current research is focused on synthesizing, characterizing and oxidation testing of such a converted SiC layer on commercial grade graphite. (author)

  7. A low-cost vector processor boosting compute-intensive image processing operations

    Science.gov (United States)

    Adorf, Hans-Martin

    1992-01-01

    Low-cost vector processing (VP) is within reach of everyone seriously engaged in scientific computing. The advent of affordable add-on VP-boards for standard workstations complemented by mathematical/statistical libraries is beginning to impact compute-intensive tasks such as image processing. A case in point in the restoration of distorted images from the Hubble Space Telescope. A low-cost implementation is presented of the standard Tarasko-Richardson-Lucy restoration algorithm on an Intel i860-based VP-board which is seamlessly interfaced to a commercial, interactive image processing system. First experience is reported (including some benchmarks for standalone FFT's) and some conclusions are drawn.

  8. MOCA: A Low-Power, Low-Cost Motion Capture System Based on Integrated Accelerometers

    Directory of Open Access Journals (Sweden)

    Elisabetta Farella

    2007-01-01

    Full Text Available Human-computer interaction (HCI and virtual reality applications pose the challenge of enabling real-time interfaces for natural interaction. Gesture recognition based on body-mounted accelerometers has been proposed as a viable solution to translate patterns of movements that are associated with user commands, thus substituting point-and-click methods or other cumbersome input devices. On the other hand, cost and power constraints make the implementation of a natural and efficient interface suitable for consumer applications a critical task. Even though several gesture recognition solutions exist, their use in HCI context has been poorly characterized. For this reason, in this paper, we consider a low-cost/low-power wearable motion tracking system based on integrated accelerometers called motion capture with accelerometers (MOCA that we evaluated for navigation in virtual spaces. Recognition is based on a geometric algorithm that enables efficient and robust detection of rotational movements. Our objective is to demonstrate that such a low-cost and a low-power implementation is suitable for HCI applications. To this purpose, we characterized the system from both a quantitative point of view and a qualitative point of view. First, we performed static and dynamic assessment of movement recognition accuracy. Second, we evaluated the effectiveness of user experience using a 3D game application as a test bed.

  9. Do Cost Functions for Tracking Error Generalize across Tasks with Different Noise Levels?

    Directory of Open Access Journals (Sweden)

    Jonathon Sensinger

    Full Text Available Control of human-machine interfaces are well modeled by computational control models, which take into account the behavioral decisions people make in estimating task dynamics and state for a given control law. This control law is optimized according to a cost function, which for the sake of mathematical tractability is typically represented as a series of quadratic terms. Recent studies have found that people actually use cost functions for reaching tasks that are slightly different than a quadratic function, but it is unclear which of several cost functions best explain human behavior and if these cost functions generalize across tasks of similar nature but different scale. In this study, we used an inverse-decision-theory technique to reconstruct the cost function from empirical data collected on 24 able-bodied subjects controlling a myoelectric interface. Compared with previous studies, this experimental paradigm involved a different control source (myoelectric control, which has inherently large multiplicative noise, a different control interface (control signal was mapped to cursor velocity, and a different task (the tracking position dynamically moved on the screen throughout each trial. Several cost functions, including a linear-quadratic; an inverted Gaussian, and a power function, accurately described the behavior of subjects throughout this experiment better than a quadratic cost function or other explored candidate cost functions (p<0.05. Importantly, despite the differences in the experimental paradigm and a substantially larger scale of error, we found only one candidate cost function whose parameter was consistent with the previous studies: a power function (cost ∝ errorα with a parameter value of α = 1.69 (1.53-1.78 interquartile range. This result suggests that a power-function is a representative function of user's error cost over a range of noise amplitudes for pointing and tracking tasks.

  10. Development of Low-Cost Method for Fabrication of Metal Neutron Guides

    Energy Technology Data Exchange (ETDEWEB)

    Engelhaupt, Darell [Dawn Research Inc., Madison, AL (United States); Khaykovich, Boris [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Romaine, Suzanne [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2017-12-19

    Neutron scattering is one of the most useful methods of studying the structure and dynamics of matter. US DOE neutron scattering research facilities at Oak Ridge National Laboratory are among the World’s most advanced, providing researchers with unmatched capabilities for probing the structure and properties of materials, including engineering and biological systems. This task is to develop a lower cost process to optimize and produce the required neutron guides capable of efficiently delivering neutron beams for tens of meters between neutron moderators and instruments. Therefore, our effort is to improve the performance and lower the production cost of neutron guides. Our approach aims at improving guide quality while controlling their rising costs by adopting a novel electroforming replication approach to their fabrication. These guides will be especially advantageous when used near the neutron source since the radiation resistance of nickel is superior to glass. Additionally, we are depositing low-stress nickel from an extremely low impurity solution completely free of stress-reducing agents, which nominally contain and impart sulfur, carbon and other elements that potentially activate in the neutron environment. This is achieved by using a pulsed periodically reversed current methodology. The best guides quote waviness of 0.1 mrad. It is reasonable to prepare just one mandrel of about 0.5 m long, for production of tens of guide segments, saving both the cost and supply time of guides to neutron facilities. We estimate that we can fabricate a single mandrel for the current cost of an individual one-meter guide, but from this, we can produce tens of meters of guide very inexpensively without mandrel refurbishment. While a multilayer coating will add to the overall cost, we expect this will be less than that of commercially available guides today. Therefore, we will produce higher quality guides, which are less susceptible to radiation damage, at the lower cost

  11. Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. D. Vora

    2008-02-01

    Progress in tasks seeking greater cell power density and lower cost through new cell designs, new cell materials and lower operating temperature is summarized. The design of the program required Proof-of-Concept unit of residential capacity scale is reviewed along with a summary of results from its successful test. Attachment 1 summarizes the status of cell development. Attachment 2 summarizes the status of generator design, and Attachment 3 of BOP design.

  12. Fundamental understanding and development of low-cost, high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

    2000-05-01

    The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

  13. Beyond waste: new sustainable fillers from fly ashes stabilization, obtained by low cost raw materials

    Directory of Open Access Journals (Sweden)

    N. Rodella

    2016-09-01

    Full Text Available A sustainable economy can be achieved only by assessing processes finalized to optimize the use of resources. Waste can be a relevant source of energy thanks to energy-from-waste processes. Concerns regarding the toxic fly ashes can be solved by transforming them into resource as recycled materials. The commitment to recycle is driven by the need to conserve natural resources, reduce imports of raw materials, save landfill space and reduce pollution. A new method to stabilize fly ash from Municipal Solid Waste Incinerator (MSWI at room temperature has been developed thanks to COSMOS-RICE LIFE+ project (www.cosmos-rice.csmt.eu. This process is based on a chemical reaction that occurs properly mixing three waste fly ashes with rice husk ash, an agricultural by-product. COSMOS inert can replace critical raw materials (i.e. silica, fluorspar, clays, bentonite, antimony and alumina as filler. Moreover the materials employed in the stabilization procedure may be not available in all areas. This paper investigates the possibility of substituting silica fume with corresponding condensed silica fume and to substitute flue-gas desulfurization (FGD residues with low-cost calcium hydroxide powder. The removal of coal fly ash was also considered. The results will be presented and a possible substitution of the materials to stabilize fly ash will be discussed.

  14. Trait Cheerfulness Does Not Influence Switching Costs But Modulates Preparation and Repetition Effects in a Task-Switching Paradigm

    Directory of Open Access Journals (Sweden)

    Raúl López-Benítez

    2017-06-01

    Full Text Available Many studies have shown the beneficial effect of positive emotions on various cognitive processes, such as creativity and cognitive flexibility. Cheerfulness, understood as an affective predisposition to sense of humor, has been associated with positive emotions. So far, however, no studies have shown the relevance of this dimension in cognitive flexibility processes. The aim of this research was to analyze the relationship between cheerfulness and these processes. To this end, we carried out two studies using a task-switching paradigm. Study 1 aimed at analyzing whether high trait cheerfulness was related to better cognitive flexibility (as measured by reduced task-switching costs, whereas Study 2 aimed at replicating the pattern of data observed in Study 1. The total sample was composed of 139 participants (of which 86 were women selected according to their high versus low scores in trait cheerfulness. In a random way, participants had to judge whether the face presented to them in each trial was that of a man or a woman (gender recognition task or whether it expressed anger or happiness (expressed emotion recognition task. We expected participants with high versus low trait cheerfulness to show a lower task-switching cost (i.e., higher cognitive flexibility. Results did not confirm this hypothesis. However, in both studies, participants with high versus low trait cheerfulness showed a higher facilitation effect when the stimuli attributes were repeated and also when a cue was presented anticipating the demand to perform. We discuss the relevance of these results for a better understanding of cheerfulness.

  15. Near net shape, low cost ceramic valves for advanced engine applications

    Energy Technology Data Exchange (ETDEWEB)

    Pidria, M.; Merlone, E.; Parussa, F. [Fiat Research Centre, Orbassano (Italy); Handelsman, J.; Gorodnev, A. [Ceracom Materials Ltd., Yavneh (Israel)

    2003-07-01

    Future gasoline and diesel engines with electro-hydraulic or electro-mechanical valve control systems require the development of lighter valves to achieve the best results in terms of increased performances, lower fuel consumption and overall efficiency. Ceramic materials can adequately satisfy the required mechanical and thermal properties, nevertheless they still lack as far as manufacturing costs are concerned. Objective of the work was the development of a low-cost forming and sintering process, to produce near-net shape ceramic valves thus requiring very low finishing operations and significantly minimizing material waste. Between available technical ceramic materials, silicon nitride has been chosen to replace conventional steels and Ni-based alloys for the exhaust valves application. The work was then devoted to (i) the selection of the best starting materials composition, taking into account the requirements of a cost effective and high volume production, (ii) the development of an innovative pressure-injection molding process to produce near-net shape parts via a thermosetting feedstock and (iii) the optimization of a proper pressure-less sintering route to obtain cost-competitive, real scale components with adequate final density and mechanical properties. (orig.)

  16. Oil prices touch fifty year low - industry gears up for further cuts in operating costs

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    International crude oil prices hit a 50-year low (inflation adjusted) in December 1998. Prices are now lower than in 1973 and are expected to remain low for several years; so much so that the future of production activities are under threat. The paper goes on to discuss the UK Government's initiative to tackle the problem and of the activities of the CRINE (Cost Reduction in the New Era) Network to reduce operating costs. The Government Oil and Gas Task Force aimed to develop strategies to reduce the cost base of UK gas and oil operations and recommend action by Government and/or the industry by summer 1999. The concern is that current costs of production on the UK continental shelf will make new offshore development uneconomic. A meeting in January 1999 agreed six key areas for action. The work of the Task Force overlaps that of Crine which, since 1992 has been working to drive down capital costs of developing oil and gas fields by innovative approaches including cooperation between companies. (UK)

  17. Succumbing to Bottom-Up Biases on Task Choice Predicts Increased Switch Costs in the Voluntary Task Switching Paradigm

    Science.gov (United States)

    Orr, Joseph M.; Weissman, Daniel H.

    2010-01-01

    Bottom-up biases are widely thought to influence task choice in the voluntary task switching paradigm. Definitive support for this hypothesis is lacking, however, because task choice and task performance are usually confounded. We therefore revisited this hypothesis using a paradigm in which task choice and task performance are temporally separated. As predicted, participants tended to choose the task that was primed by bottom-up biases. Moreover, such choices were linked to increased switch costs during subsequent task performance. These findings provide compelling evidence that bottom-up biases influence voluntary task choice. They also suggest that succumbing to such biases reflects a reduction of top-down control that persists to influence upcoming task performance. PMID:21713192

  18. Low-cost evacuated-tube solar collector appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beecher, D.T.

    1980-05-31

    A low cost solar heat energy collector module and array has been designed using the evacuated tube, selective absorber, air cooled concept. Glass tubing as used in fluorescent lamps with automatic sealing methods is a key feature of the evacuated tube design. A molded fiber glass concentrating reflector panel and sheet metal header assembly are proposed. Major design problems involved included the cost of materials and labor, thermal expansion and distortion problems, high stagnation and operating temperatures, isolation, thermal efficiency, sealing, joining, air pressure drop, and weight of the preassembled module. A cost of less than $5 per active square foot of collecting surface has been estimated for materials and labor of the module and its mounting frame.

  19. Development of polymer concrete for dike insulation at LNG facilities: Phase 4, Low cost materials. Final report, September 1, 1987--April 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E.

    1991-01-01

    Earlier GRI-sponsored work at Brookhaven National Laboratory has resulted in the development and utilization of insulating polymer concrete composites (IPC) as a means of reducing the evaporation rate of liquified natural gas in the event of a spill into a containment dike, thereby improving the safety at these sites. Although all of the required properties can be attained with the IPC, it was estimated that a low-cost replacement for the expensive organic binder would be necessary before use of the material would be cost-effective. In the current program, several latex modified cement formulations were evaluated and the most promising one identified. A mixture of two carboxylated styrene-butadiene latexes was selected for use in detailed laboratory property characterizations and a subsequent field evaluation. When compared to the properties of IPC, the latex-modified insulating materials display somewhat higher thermal conductivities, greater permeability to water, and reduced strength. However, these properties still meet most of the performance criteria, and the unit cost of the material is less than one-fifth that of IPC made with epoxy binders. When installed as a 0.75-in. thick overlay, material costs are estimated to be $1.00/ft{sup 2}.

  20. Additive Manufacturing of Low Cost Upper Stage Propulsion Components

    Science.gov (United States)

    Protz, Christopher; Bowman, Randy; Cooper, Ken; Fikes, John; Taminger, Karen; Wright, Belinda

    2014-01-01

    NASA is currently developing Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. These Low Cost Upper Stage Propulsion (LCUSP) tasks are funded through NASA's Game Changing Development Program in the Space Technology Mission Directorate. The LCUSP project will develop a copper alloy additive manufacturing design process and develop and optimize the Electron Beam Freeform Fabrication (EBF3) manufacturing process to direct deposit a nickel alloy structural jacket and manifolds onto an SLM manufactured GRCop chamber and Ni-alloy nozzle. In order to develop these processes, the project will characterize both the microstructural and mechanical properties of the SLMproduced GRCop-84, and will explore and document novel design techniques specific to AM combustion devices components. These manufacturing technologies will be used to build a 25K-class regenerative chamber and nozzle (to be used with tested DMLS injectors) that will be tested individually and as a system in hot fire tests to demonstrate the applicability of the technologies. These tasks are expected to bring costs and manufacturing time down as spacecraft propulsion systems typically comprise more than 70% of the total vehicle cost and account for a significant portion of the development schedule. Additionally, high pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design to be time consuming and costly to build. LCUSP presents an opportunity to develop and demonstrate a process that can infuse these technologies into industry, build competition, and drive down costs of future engines.

  1. Cost-effective treatment of low-risk carcinoma not invading bladder muscle.

    Science.gov (United States)

    Green, David A; Rink, Michael; Cha, Eugene K; Xylinas, Evanguelos; Chughtai, Bilal; Scherr, Douglas S; Shariat, Shahrokh F; Lee, Richard K

    2013-03-01

    Study Type - Therapy (cost effectiveness analysis) Level of Evidence 2a What's known on the subject? and What does the study add? Bladder cancer is one of the costliest malignancies to treat throughout the life of a patient. The most cost-effective management for low-risk non-muscle-invasive bladder cancer is not known. The current study shows that employing cystoscopic office fulguration for low-risk appearing bladder cancer recurrences can materially impact the cost-effectiveness of therapy. In a follow-up protocol where office fulguration is routinely employed for low-risk bladder cancers, peri-operative intravesical chemotherapy may not provide any additional cost-effectiveness benefit. To examine the cost-effectiveness of fulguration vs transurethral resection of bladder tumour (TURBT) with and without perioperative intravesical chemotherapy (PIC) for managing low-risk carcinoma not invading bladder muscle (NMIBC). Low-risk NMIBC carries a low progression rate, lending support to the use of office-based fulguration for small recurrences rather than traditional TURBT. A Markov state transition model was created to simulate treatment of NMIBC with vs without PIC, with recurrence treated by formal TURBT vs treatment with fulguration. Costing data were obtained from the Medicare Resource Based Relative Value Scale. Data regarding the success of PIC were obtained from the peer-reviewed literature, as were corresponding utilities for bladder cancer-related procedures. Sensitivity analyses were performed. At 5-year follow-up, a strategy of fulguration without PIC was the most cost-effective (mean cost-effectiveness = US $654.8/quality-adjusted life year), despite a lower recurrence rate with PIC. Both fulguration strategies dominated each TURBT strategy. Sensitivity analysis showed that fulguration without PIC dominated all other strategies when the recurrence rate after PIC was increased to ≥14.2% per year. Similarly, the cost-effectiveness of TURBT becomes more

  2. Low Cost Polymer heat Exchangers for Condensing Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Thomas [Brookhaven National Lab. (BNL), Upton, NY (United States); Trojanowski, Rebecca [Brookhaven National Lab. (BNL), Upton, NY (United States); Wei, George [Brookhaven National Lab. (BNL), Upton, NY (United States); Worek, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    Work in this project sought to develop a suitable design for a low cost, corrosion resistant heat exchanger as part of a high efficiency condensing boiler. Based upon the design parameters and cost analysis several geometries and material options were explored. The project also quantified and demonstrated the durability of the selected polymer/filler composite under expected operating conditions. The core material idea included a polymer matrix with fillers for thermal conductivity improvement. While the work focused on conventional heating oil, this concept could also be applicable to natural gas, low sulfur heating oil, and biodiesel- although these are considered to be less challenging environments. An extruded polymer composite heat exchanger was designed, built, and tested during this project, demonstrating technical feasibility of this corrosion-resistant material approach. In such flue gas-to-air heat exchangers, the controlling resistance to heat transfer is in the gas-side convective layer and not in the tube material. For this reason, the lower thermal conductivity polymer composite heat exchanger can achieve overall heat transfer performance comparable to a metal heat exchanger. However, with the polymer composite, the surface temperature on the gas side will be higher, leading to a lower water vapor condensation rate.

  3. Transformational Electronics: Towards Flexible Low-Cost High Mobility Channel Materials

    KAUST Repository

    Nassar, Joanna M.

    2014-05-01

    For the last four decades, Si CMOS technology has been advancing with Moore’s law prediction, working itself down to the sub-20 nm regime. However, fundamental problems and limitations arise with the down-scaling of transistors and thus new innovations needed to be discovered in order to further improve device performance without compromising power consumption and size. Thus, a lot of studies have focused on the development of new CMOS compatible architectures as well as the discovery of new high mobility channel materials that will allow further miniaturization of CMOS transistors and improvement of device performance. Pushing the limits even further, flexible and foldable electronics seem to be the new attractive topic. By being able to make our devices flexible through a CMOS compatible process, one will be able to integrate hundreds of billions of more transistors in a small volumetric space, allowing to increase the performance and speed of our electronics all together with making things thinner, lighter, smaller and even interactive with the human skin. Thus, in this thesis, we introduce for the first time a cost-effective CMOS compatible approach to make high-k/metal gate devices on flexible Germanium (Ge) and Silicon-Germanium (SiGe) platforms. In the first part, we will look at the various approaches in the literature that has been developed to get flexible platforms, as well as we will give a brief overview about epitaxial growth of Si1-xGex films. We will also examine the electrical properties of the Si1-xGex alloys up to Ge (x=1) and discuss how strain affects the band structure diagram, and thus the mobility of the material. We will also review the material growth properties as well as the state-of-the-art results on high mobility metal-oxide semiconductor capacitors (MOSCAPs) using strained SiGe films. Then, we will introduce the flexible process that we have developed, based on a cost-effective “trench-protect-release-reuse” approach, utilizing

  4. Using Task-based Materials in Teaching Writing for EFL Classes in Indonesia

    Directory of Open Access Journals (Sweden)

    Hanna Sundari

    2018-05-01

    Full Text Available Task-based language teaching has been widely used for language classroom. Using tasks as main activities, task-based materials was developed particularly for writing class. This article is intended to present the study of effectiveness of task-based materials in improving writing class for university. To accommodate the research purposes, mixed method approach was carried out by using quasi experimental research and content analysis of sentence complexity. The respondents were 210 students from writing classes as experiment and control with writing test as instrument. The results of data analysis showed that there were significant differences of writing skill to those who taught using developed task-based materials. Despite the fact that the score did not significantly differ on the aspect of writing mechanics, a developed task-based material has been proved to improve students’ writing skill in the aspect of format, content, organization and grammar. Moreover, the levels of lexical complexity and accuracy from the students whose materials use task-based design are higher than those who do not use it. Then, it can be drawn a conclusion that the use of developed task-based materials brings significant effects toward writing performance.

  5. Performances of some low-cost counter electrode materials in CdS and CdSe quantum dot-sensitized solar cells.

    Science.gov (United States)

    Jun, Hieng Kiat; Careem, Mohamed Abdul; Arof, Abdul Kariem

    2014-02-10

    Different counter electrode (CE) materials based on carbon and Cu2S were prepared for the application in CdS and CdSe quantum dot-sensitized solar cells (QDSSCs). The CEs were prepared using low-cost and facile methods. Platinum was used as the reference CE material to compare the performances of the other materials. While carbon-based materials produced the best solar cell performance in CdS QDSSCs, platinum and Cu2S were superior in CdSe QDSSCs. Different CE materials have different performance in the two types of QDSSCs employed due to the different type of sensitizers and composition of polysulfide electrolytes used. The poor performance of QDSSCs with some CE materials is largely due to the lower photocurrent density and open-circuit voltage. The electrochemical impedance spectroscopy performed on the cells showed that the poor-performing QDSSCs had higher charge-transfer resistances and CPE values at their CE/electrolyte interfaces.

  6. A Low-cost Multi-channel Analogue Signal Generator

    CERN Document Server

    Muller, F; Shen, W; Stamen, R

    2009-01-01

    A scalable multi-channel analogue signal generator is presented. It uses a commercial low-cost graphics card with multiple outputs in a standard PC as signal source. Each color signal serves as independent channel to generate an analogue signal. A custom-built external PCB was developed to adjust the graphics card output voltage levels for a specific task, which needed differential signals. The system furthermore comprises a software package to program the signal shape. The implementation of the signal generator is presented as well as an application where it was successfully utilized.

  7. Performance and cost of materials for lithium-based rechargeable automotive batteries

    Science.gov (United States)

    Schmuch, Richard; Wagner, Ralf; Hörpel, Gerhard; Placke, Tobias; Winter, Martin

    2018-04-01

    It is widely accepted that for electric vehicles to be accepted by consumers and to achieve wide market penetration, ranges of at least 500 km at an affordable cost are required. Therefore, significant improvements to lithium-ion batteries (LIBs) in terms of energy density and cost along the battery value chain are required, while other key performance indicators, such as lifetime, safety, fast-charging ability and low-temperature performance, need to be enhanced or at least sustained. Here, we review advances and challenges in LIB materials for automotive applications, in particular with respect to cost and performance parameters. The production processes of anode and cathode materials are discussed, focusing on material abundance and cost. Advantages and challenges of different types of electrolyte for automotive batteries are examined. Finally, energy densities and costs of promising battery chemistries are critically evaluated along with an assessment of the potential to fulfil the ambitious targets of electric vehicle propulsion.

  8. Low Cost Processing of Commingled Thermoplastic Composites

    Science.gov (United States)

    Chiasson, Matthew Lee

    A low cost vacuum consolidation process has been investigated for use with commingled thermoplastic matrix composites. In particular, the vacuum consolidation behaviour of commingled polypropylene/glass fibre and commingled nylon/carbon fibre precursors were studied. Laminates were consolidated in a convection oven under vacuum pressure. During processing, the consolidation of the laminate packs was measured by use of non-contact eddy current sensors. The consolidation curves are then used to tune an empirical consolidation model. The overall quality of the resulting laminates is also discussed. Dynamic mechanical analysis, differential scanning calorimetry and mechanical tensile testing were also performed in order to determine the effects of varying processing parameters on the physical and mechanical properties of the laminates. Through this analysis, it was determined that the nylon/carbon fibre blend was not suitable for vacuum consolidation, while the polypropylene/glass fibre blend is a viable option for vacuum consolidation. The ultimate goal of this work is to provide a foundation from which low cost unmanned aerial vehicle (UAV) components can be designed and manufactured from thermoplastic matrix composites using a low cost processing technique as an alternative to traditional thermoset composite materials.

  9. Waste management facilities cost information for transportation of radioactive and hazardous materials

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled ( 200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations

  10. Waste management facilities cost information for transportation of radioactive and hazardous materials

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  11. Low-cost route for synthesis of mesoporous silica materials with high silanol groups and their application for Cu(II) removal

    International Nuclear Information System (INIS)

    Wang Yangang; Huang Sujun; Kang Shifei; Zhang Chengli; Li Xi

    2012-01-01

    Graphical abstract: A simple and low-cost route to synthesize mesoporous silica materials with high silanol groups has been demonstrated by means of a sol–gel process using citric acid as the template and acid catalyst, further studies on the adsorption of Cu(II) onto the representative amine-functionalized mesoporous silica showed that it had a high Cu(II) removal efficiency. Highlights: ► A low-cost route to synthesize mesoporous silica with high silanol groups was demonstrated. ► Citric acid as the template and acid catalyst for the reaction of tetraethylorthosilicate. ► Water extraction method was an effective technique to remove template which can be recycled. ► The mesoporous silica with high silanol groups was easily modified by functional groups. ► A high Cu(II) removal efficiency on the amine-functionalized mesoporous silica. - Abstract: We report a simple and low-cost route for the synthesis of mesoporous silica materials with high silanol groups by means of a sol–gel process using citric acid as the template, tetraethylorthosilicate (TEOS) as the silica source under aqueous solution system. The citric acid can directly work as an acid catalyst for the hydrolysis of TEOS besides the function as a pore-forming agent in the synthesis. It was found that by using a water extraction method the citric acid template in as-prepared mesoporous silica composite can be easily removed and a high degree of silanol groups were retained in the mesopores, moreover, the citric acid template in the filtrate can be recycled after being dried. The structural properties of the obtained mesoporous silica materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and nitrogen adsorption–desorption analysis. Furthermore, an adsorption of Cu(II) from aqueous solution on the representative amine-functionalized mesoporous silica was investigated

  12. Array Automated Assembly Task Low Cost Silicon Solar Array Project. Phase 2. Annual technical report, September 20, 1977-December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Sang S.; Jones, Gregory T.; Allison, Kimberly L.

    1978-01-01

    This program was conducted to develop and demonstrate those solar cells and module process steps which have the technological readiness or capability to achieve the 1986 LSA goals. Results are reported. Seventeen process groups were investigated. Very promising results were achieved. A laserscribe computer program was developed. It demonstrated that silicon solar cells could be trimmed and holed by laser without causing mechanical defects (i.e., microcracks) nor any major degradation in solar cell electrical performance. The silicon wafer surface preparation task demonstrated a low-cost, high throughput texturizing process readily adaptable to automation. Performance verification tests of a laser scanning system showed a limited capability to detect hidden cracks or defects in solar cells. A general review of currently available thick film printing equipment provided the indication that state-of-the-art technology can adequately transform the capability of current printing machines to the elevated rate of 7200 wafers per hour. The LFE System 8000 silicon nitride plasma deposition system with the inclusion of minor equipment modifications was shown to be consistent with the 1986 LSA pricing goals. The performance verification test of the silicon nitride A.R. coating process provided the result that texturized, A.R. coated solar cells display a 14.1% improvement in electrical performance over identical solar cells without an A.R. coating. A new electroless nickel plating system was installed and demonstrated a low-cost, high throughput process readily adaptable to automation. A multiple wafer dipping method was investigated and operational parameters defined. A flux removal method consisting of a three stage D.I. water cascade rinse system with ultrasonic agitator was found to be very promising. Also, a SAMICS cost analysis was performed. (WHK)

  13. Development of Low Cost Soil Stabilization Using Recycled Material

    Science.gov (United States)

    Ahmad, F.; Yahaya, A. S.; Safari, A.

    2016-07-01

    Recycled tyres have been used in many geotechnical engineering projects such as soil improvement, soil erosion and slope stability. Recycled tyres mainly in chip and shredded form are highly compressible under low and normal pressures. This characteristic would cause challenging problems in some applications of soil stabilization such as retaining wall and river bank projects. For high tensile stress and low tensile strain the use of fiberglass would be a good alternative for recycled tyre in some cases. To evaluate fiberglass as an alternative for recycled tyre, this paper focused on tests of tensile tests which have been carried out between fiberglass and recycled tyre strips. Fibreglass samples were produced from chopped strand fibre mat, a very low-cost type of fibreglass, which is cured by resin and hardener. Fibreglass samples in the thickness of 1 mm, 2 mm, 3 mm and 4 mm were developed 100 mm x 300 mm pieces. It was found that 3 mm fibreglass exhibited the maximum tensile load (MTL) and maximum tensile stress (MTS) greater than other samples. Statistical analysis on 3 mm fibreglass indicated that in the approximately equal MTL fibreglass samples experienced 2% while tyre samples experienced 33.9% ultimate tensile strain (UTST) respectively. The results also showed an approximately linear relationship between stress and strain for fibreglass samples and Young's modulus (E), ranging from 3581 MPa to 4728 MPa.

  14. Low cost thermal solar collector

    International Nuclear Information System (INIS)

    Abugderah, M. M.; Schneider, E. L.; Tontini, M. V.

    2006-01-01

    Solar energy is a good alternative in the economy of the electric energy mainly for the water heating. However, the solar heaters used demand a high initial investment, becoming the warm water from solar energy inaccessible to a large part of the society. Thus, a low cost solar heater was developed, constructed and tested in the chemical engineering department of West Parana State University-Unioeste. This equipment consists of 300 cans, divided in 30 columns of 10 cans each, all painted in black to enhance the obsorption of the solar radiation. The columns are connected to a pipe of pvc of 8 liters with 0.085m of external diameter. The equipment is capable to heat 120 liters of water in temperatures around 60 degree centigrade. The heater is insolated in its inferior part with cardboard and aluminum, covered with a transparent plastic in its superior. The system still counts with a insulated thermal reservoir, which can conserve the water in temperatures adjusted for the night non-solar days domestic use. The advantage of the constructed is it low cost material. The results are given an graphical tabular from showing acceptable efficiencies.(Autho

  15. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D.; Schubert, Ulrich S.

    2015-11-01

    For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials.

  16. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials.

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D; Schubert, Ulrich S

    2015-11-05

    For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials.

  17. Low-cost inertial measurement unit.

    Energy Technology Data Exchange (ETDEWEB)

    Deyle, Travis Jay

    2005-03-01

    Sandia National Laboratories performs many expensive tests using inertial measurement units (IMUs)--systems that use accelerometers, gyroscopes, and other sensors to measure flight dynamics in three dimensions. For the purpose of this report, the metrics used to evaluate an IMU are cost, size, performance, resolution, upgradeability and testing. The cost of a precision IMU is very high and can cost hundreds of thousands of dollars. Thus the goals and results of this project are as follows: (1) Examine the data flow in an IMU and determine a generic IMU design. (2) Discuss a high cost IMU implementation and its theoretically achievable results. (3) Discuss design modifications that would save money for suited applications. (4) Design and implement a low cost IMU and discuss its theoretically achievable results. (5) Test the low cost IMU and compare theoretical results with empirical results. (6) Construct a more streamlined printed circuit board design reducing noise, increasing capabilities, and constructing a self-contained unit. Using these results, we can compare a high cost IMU versus a low cost IMU using the metrics from above. Further, we can examine and suggest situations where a low cost IMU could be used instead of a high cost IMU for saving cost, size, or both.

  18. Low cost, small form factor, and integration as the key features for the optical component industry takeoff

    Science.gov (United States)

    Schiattone, Francesco; Bonino, Stefano; Gobbi, Luigi; Groppi, Angelamaria; Marazzi, Marco; Musio, Maurizio

    2003-04-01

    In the past the optical component market has been mainly driven by performances. Today, as the number of competitors has drastically increased, the system integrators have a wide range of possible suppliers and solutions giving them the possibility to be more focused on cost and also on footprint reduction. So, if performances are still essential, low cost and Small Form Factor issues are becoming more and more crucial in selecting components. Another evolution in the market is the current request of the optical system companies to simplify the supply chain in order to reduce the assembling and testing steps at system level. This corresponds to a growing demand in providing subassemblies, modules or hybrid integrated components: that means also Integration will be an issue in which all the optical component companies will compete to gain market shares. As we can see looking several examples offered by electronic market, to combine low cost and SFF is a very challenging task but Integration can help in achieving both features. In this work we present how these issues could be approached giving examples of some advanced solutions applied to LiNbO3 modulators. In particular we describe the progress made on automation, new materials and low cost fabrication methods for the parts. We also introduce an approach in integrating optical and electrical functionality on LiNbO3 modulators including RF driver, bias control loop, attenuator and photodiode integrated in a single device.

  19. Synthesis and characterization of low cost magnetorheological (MR) fluids

    Science.gov (United States)

    Sukhwani, V. K.; Hirani, H.

    2007-04-01

    Magnetorheological fluids have great potential for engineering applications due to their variable rheological behavior. These fluids find applications in dampers, brakes, shock absorbers, and engine mounts. However their relatively high cost (approximately US600 per liter) limits their wide usage. Most commonly used magnetic material "Carbonyl iron" cost more than 90% of the MR fluid cost. Therefore for commercial viability of these fluids there is need of alternative economical magnetic material. In the present work synthesis of MR fluid has been attempted with objective to produce low cost MR fluid with high sedimentation stability and greater yield stress. In order to reduce the cost, economical electrolytic Iron powder (US 10 per Kg) has been used. Iron powder of relatively larger size (300 Mesh) has been ball milled to reduce their size to few microns (1 to 10 microns). Three different compositions have been prepared and compared for MR effect produced and stability. All have same base fluid (Synthetic oil) and same magnetic phase i.e. Iron particles but they have different additives. First preparation involves organic additives Polydimethylsiloxane (PDMS) and Stearic acid. Other two preparations involve use of two environmental friendly low-priced green additives guar gum (US 2 per Kg) and xanthan gum (US 12 per Kg) respectively. Magnetic properties of Iron particles have been measured by Vibrating Sample Magnetometer (VSM). Morphology of Iron particles and additives guar gum and xanthan gum has been examined by Scanning Electron Microscopy (SEM) and Particles Size Distribution (PSD) has been determined using Particle size analyzer. Microscopic images of particles, MH plots and stability of synthesized MR fluids have been reported. The prepared low cost MR fluids showed promising performance and can be effectively used for engineering applications demanding controllability in operations.

  20. Report of the Task Force on Low-Level Radioactive Waste. Position paper

    International Nuclear Information System (INIS)

    1980-01-01

    The Radiation Policy Council formed a Task Force in May 1980 to consider the problems associated with low-level radioactive waste disposal. Two major objectives were developed by the Task Force: (1) To recommend Federal policy for improving coordination and implementation of Federal and non-Federal programs that have been established to obtain solutions to existing low-level waste disposal problems, and (2) to recommend Federal policy for disposal of low-level waste containing minimal activity for which alternative disposal methods to existing shallow land burial practices may be acceptable for protecting the public health. These wastes constitute a significant fraction of what is currently classified as low-level radioactive wastes. Included are most of the wastes currently destined for shallow land burial from medical and research institutions, as well as from other sources. Such wastes include liquid scintillation vials, dry solids, animal carcasses, and paper trash; there are many items included which are needlessly classified, on a purely arbitrary basis, as radioactive waste merely because they contain detectable radioactive materials. It is this waste which is of major concern

  1. A Low-cost Multi-channel Analogue Signal Generator

    CERN Document Server

    Müller, F; The ATLAS collaboration; Shen, W; Stamen, R

    2009-01-01

    A scalable multi-channel analogue signal generator is presented. It uses a commercial low-cost graphics card with multiple outputs in a standard PC as signal source. Each color signal serves as independent channel to generate an analogue signal. A custom-built external PCB was developed to adjust the graphics card output voltage levels for a specific task, which needed differential signals. The system furthermore comprises a software package to program the signal shape. The signal generator was successfully used as independent test bed for the ATLAS Level-1 Trigger Pre-Processor, providing up to 16 analogue signals.

  2. Low-cost distributed solar-thermal-electric power generation

    Science.gov (United States)

    Der Minassians, Artin; Aschenbach, Konrad H.; Sanders, Seth R.

    2004-01-01

    Due to their high relative cost, solar electric energy systems have yet to be exploited on a widespread basis. It is believed in the energy community that a technology similar to photovoltaic (PV), but offered at about $1/W would lead to widespread deployment at residential and commercial sites. This paper addresses the investigation and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed deployment. Specifically, we discuss a system based on nonimaging solar concentrators, integrated with free-piston Stirling engine devices incorporating integrated electric generation. We target concentrator-collector operation at moderate temperatures, in the range of 125°C to 150°C. This temperature is consistent with use of optical concentrators with concentration ratios on the order of 1-2. These low ratio concentrators admit wide angles of radiation acceptance and are thus compatible with no diurnal tracking, and no or only a few seasonal adjustments. Thus, costs and reliability hazards associated with tracking hardware systems are avoided. Further, we note that in the intended application, there is no shortage of incident solar energy, but rather it is the capital cost of the solar-electric system that is most precious. Thus, we outline a strategy for exploiting solar resources in a cost constrained manner. The paper outlines design issues, and a specific design for an appropriately dimensioned free-piston Stirling engine. Only standard low-cost materials and manufacturing methods are required to realize such a machine.

  3. Low-cost, solution processable carbon nanotube supercapacitors and their characterization

    Science.gov (United States)

    Lehtimäki, Suvi; Tuukkanen, Sampo; Pörhönen, Juho; Moilanen, Pasi; Virtanen, Jorma; Honkanen, Mari; Lupo, Donald

    2014-06-01

    We report ecological and low-cost carbon nanotube (CNT) supercapacitors fabricated using a simple, scalable solution processing method, where the use of a highly porous and electrically conductive active material eliminates the need for a current collector. Electrodes were fabricated on a poly(ethylene terephthalate) substrate from a printable multi-wall CNT ink, where the CNTs are solubilized in water using xylan as a dispersion agent. The dispersion method facilitates a very high concentration of CNTs in the ink. Supercapacitors were assembled using a paper separator and an aqueous NaCl electrolyte and the devices were characterized with a galvanostatic discharge method defined by an industrial standard. The capacitance of the 2 cm^2 devices was 6 mF/cm^2 (2.3 F/g) and equivalent series resistance 80 Ω . Low-cost supercapacitors fabricated from safe and environmentally friendly materials have potential applications as energy storage devices in ubiquitous and autonomous intelligence as well as in disposable low-end products.

  4. A low-cost Raman spectrometer design used to study Raman ...

    Indian Academy of Sciences (India)

    Unknown

    The paper discusses the design of a low cost Raman spectrometer. ... system. We observe both the radial-breathing mode (RBM) and the tangential mode ... broadened due to the inherent tube diameter distribution present in the material.

  5. Engineering a Responsive, Low Cost, Tactical Satellite, TacSat-1

    OpenAIRE

    Hurley, Michael; Duffey, Timothy; Huffine, Christopher; Weldy, Ken; Cleveland, Jeff; Hauser, Joe

    2004-01-01

    The Secretary of Defense’s Office of Force Transformation (OFT) is currently undertaking an initiative to develop a low-cost, responsive, operationally relevant space capability using small satellites. The Naval Research Laboratory (NRL) is tasked to be program manger for this initiative, which seeks to make space assets and capabilities available to operational users. TacSat-1 is the first in a series of small satellites that will result in rapid, tailored, and operationally relevant experim...

  6. Good research practices for measuring drug costs in cost-effectiveness analyses: a societal perspective: the ISPOR Drug Cost Task Force report--Part II.

    Science.gov (United States)

    Garrison, Louis P; Mansley, Edward C; Abbott, Thomas A; Bresnahan, Brian W; Hay, Joel W; Smeeding, James

    2010-01-01

    Major guidelines regarding the application of cost-effectiveness analysis (CEA) have recommended the common and widespread use of the "societal perspective" for purposes of consistency and comparability. The objective of this Task Force subgroup report (one of six reports from the International Society for Pharmacoeconomics and Outcomes Research [ISPOR] Task Force on Good Research Practices-Use of Drug Costs for Cost Effectiveness Analysis [Drug Cost Task Force (DCTF)]) was to review the definition of this perspective, assess its specific application in measuring drug costs, identify any limitations in theory or practice, and make recommendations regarding potential improvements. Key articles, books, and reports in the methodological literature were reviewed, summarized, and integrated into a draft review and report. This draft report was posted for review and comment by ISPOR membership. Numerous comments and suggestions were received, and the report was revised in response to them. The societal perspective can be defined by three conditions: 1) the inclusion of time costs, 2) the use of opportunity costs, and 3) the use of community preferences. In practice, very few, if any, published CEAs have met all of these conditions, though many claim to have taken a societal perspective. Branded drug costs have typically used actual acquisition cost rather than the much lower social opportunity costs that would reflect only short-run manufacturing and distribution costs. This practice is understandable, pragmatic, and useful to current decision-makers. Nevertheless, this use of CEA focuses on static rather than dynamic efficacy and overlooks the related incentives for innovation. Our key recommendation is that current CEA practice acknowledge and embrace this limitation by adopting a new standard for the reference case as one of a "limited societal" or "health systems" perspective, using acquisition drug prices while including indirect costs and community preferences. The

  7. Low-cost NORM concentrations measuring technique for building materials of Uzbekistan

    Science.gov (United States)

    Safarov, Akmal; Safarov, Askar; Azimov, Askarali; Darby, Iain G.

    2016-04-01

    Concentrations of natural radionuclides of building materials are important in order to estimate exposure of humans to radiation, who can spend up to 80% of their time indoors. One of the indicators of building materials' safety is the radium equivalent activity, which is regulated by national and international normative documents [1,2,3]. Materials with Ra(eq) =stone, red sand, granite, white marble and concrete cubes was performed both before and after ageing of samples (10, 20, 30 and 40 days). Measurement times of samples were 1, 3, 6 and 12 hours. Samples were measured in 1 liter Marinelli beaker geometry, using NaI(Tl) spectrometers with crystal sizes 2.5 x 2.5 in and 3.1 x 3.1 in. Efficiency calibration of spectrometers was done using certified volumetric (1 liter Marinelli beaker) Ra-226, Th-232 and K-40 sources filled with silica sand and density 1,7 kg/l. Herein we present results indicating that one hour measuring may be sufficient for samples in 1 liter Marinelli beakers offering prospect of significant time and cost improvements. References: 1. NEA-OECD (1979): Exposure to radiation from natural radioactivity in building materials. Report by Group of Experts of the OECD Nuclear Energy Agency (NEA) Paris 2. STUK (Radiation and Nuclear Safety Authority) (2003): The radioactivity of building materials and ash. Regulatory Guides on Radiation Safety (ST Guides) ST 12.2 (Finland) (8 October 2003) 3. GOST 30108-94 (1995): Building materials and elements. Determination of specific activity of natural radioactive nuclei. Interstate Standard. 4. Krisiuk E.M. et al., (1971). A study on Radioactivity in Building Materials (Leningrad: Research Institute for radiation Hygiene) 5. Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian building materials, waste and by-products. Health Physics, 48, 87-95. 6. Uosif M.A.M. (2014). Estimation of Radiological Hazards of Some Egyptian Building Materials Due to Natural Radioactivity. International Journal

  8. Evaluation of a low-cost open-source gaze tracker

    DEFF Research Database (Denmark)

    San Agustin, Javier; Jensen, Henrik Tomra Skovsgaard Hegner; Møllenbach, Emilie

    2010-01-01

    This paper presents a low-cost gaze tracking system that is based on a webcam mounted close to the user's eye. The performance of the gaze tracker was evaluated in an eye-typing task using two different typing applications. Participants could type between 3.56 and 6.78 words per minute, depending...... on the typing system used. A pilot study to assess the usability of the system was also carried out in the home of a user with severe motor impairments. The user successfully typed on a wall-projected interface using his eye movements....

  9. Low-cost electrodes for stable perovskite solar cells

    Science.gov (United States)

    Bastos, João P.; Manghooli, Sara; Jaysankar, Manoj; Tait, Jeffrey G.; Qiu, Weiming; Gehlhaar, Robert; De Volder, Michael; Uytterhoeven, Griet; Poortmans, Jef; Paetzold, Ulrich W.

    2017-06-01

    Cost-effective production of perovskite solar cells on an industrial scale requires the utilization of exclusively inexpensive materials. However, to date, highly efficient and stable perovskite solar cells rely on expensive gold electrodes since other metal electrodes are known to cause degradation of the devices. Finding a low-cost electrode that can replace gold and ensure both efficiency and long-term stability is essential for the success of the perovskite-based solar cell technology. In this work, we systematically compare three types of electrode materials: multi-walled carbon nanotubes (MWCNTs), alternative metals (silver, aluminum, and copper), and transparent oxides [indium tin oxide (ITO)] in terms of efficiency, stability, and cost. We show that multi-walled carbon nanotubes are the only electrode that is both more cost-effective and stable than gold. Devices with multi-walled carbon nanotube electrodes present remarkable shelf-life stability, with no decrease in the efficiency even after 180 h of storage in 77% relative humidity (RH). Furthermore, we demonstrate the potential of devices with multi-walled carbon nanotube electrodes to achieve high efficiencies. These developments are an important step forward to mass produce perovskite photovoltaics in a commercially viable way.

  10. Hot forming and quenching pilot process development for low cost and low environmental impact manufacturing.

    Science.gov (United States)

    Hall, Roger W.; Foster, Alistair; Herrmann Praturlon, Anja

    2017-09-01

    The Hot Forming and in-tool Quenching (HFQ®) process is a proven technique to enable complex shaped stampings to be manufactured from high strength aluminium. Its widespread uptake for high volume production will be maximised if it is able to wholly amortise the additional investment cost of this process compared to conventional deep drawing techniques. This paper discusses the use of three techniques to guide some of the development decisions taken during upscaling of the HFQ® process. Modelling of Process timing, Cost and Life-cycle impact were found to be effective tools to identify where development budget could be focused in order to be able to manufacture low cost panels of different sizes from many different alloys in a sustainable way. The results confirm that raw material cost, panel trimming, and artificial ageing were some of the highest contributing factors to final component cost. Additionally, heat treatment and lubricant removal stages played a significant role in the overall life-cycle assessment of the final products. These findings confirmed development priorities as novel furnace design, fast artificial ageing and low-cost alloy development.

  11. A low cost, light weight cenosphere–aluminium composite for brake ...

    Indian Academy of Sciences (India)

    . Home; Journals; Bulletin of Materials Science; Volume 39; Issue 1. A low cost, light weight cenosphere–aluminium composite for brake disc application. V Saravanan P R Thyla S R Balakrishnan. Volume 39 Issue 1 February 2016 pp 299-305 ...

  12. Hidden costs of low-cost screening mammography

    International Nuclear Information System (INIS)

    Cyrlak, D.

    1987-01-01

    Twenty-two hundred women in Orange County, California, took part in a low-cost mammography screening project sponsored by the American Cancer Society and the KCBS-TV. Patients were followed up by telephone and questioned about actual costs incurred as a result of screening mammography, including costs of repeated and follow-up mammograms, US examinations and surgical consultations. The total number of biopsies, cancers found, and the costs involved were investigated. The authors' results suggest that particularly in centers with a high positive call rate, the cost of screening mammograms accounts for only a small proportion of the medical costs

  13. Multilevel integration of patternable lowmaterial into advanced Cu BEOL

    Science.gov (United States)

    Lin, Qinghuang; Chen, S. T.; Nelson, A.; Brock, P.; Cohen, S.; Davis, B.; Fuller, N.; Kaplan, R.; Kwong, R.; Liniger, E.; Neumayer, D.; Patel, J.; Shobha, H.; Sooriyakumaran, R.; Purushothaman, S.; Spooner, T.; Miller, R.; Allen, R.; Wisnieff, R.

    2010-04-01

    In this paper, we wish to report, for the first time, on a simple, low-cost, novel way to form dual-damascene copper (Cu) on-chip interconnect or Back-End-Of-the-Line (BEOL) structures using a patternable low dielectric constant (low-κ) dielectric material concept. A patternable low-κ dielectric material combines the functions of a traditional resist and a dielectric material into one single material. It acts as a traditional resist during patterning and is subsequently converted to a low-κ dielectric material during a post-patterning curing process. No sacrificial materials (separate resists or hardmasks) and their related deposition, pattern transfer (etch) and removal (strip) are required to form dual-damascene BEOL patterns. We have successfully demonstrated multi-level dual-damascene integration of a novel patternable low-κ dielectric material into advanced Cu BEOL. This κ=2.7 patternable lowmaterial is based on the industry standard SiCOH-based (silsesquioxane polymer) material platform and is compatible with 248 nm optical lithography. Multilevel integration of this patternable lowmaterial at 45 nm node Cu BEOL fatwire levels has been demonstrated with very high electrical yields using the current manufacturing infrastructure.

  14. Radioactive materials transportation life-cycle cost

    International Nuclear Information System (INIS)

    Gregory, P.C.; Donovan, K.S.; Spooner, O.R.

    1993-01-01

    This paper discusses factors that should be considered when estimating the life-cycle cost of shipping radioactive materials and the development of a working model that has been successfully used. Today's environmental concerns have produced an increased emphasis on cleanup and restoration of production plants and interim storage sites for radioactive materials. The need to transport these radioactive materials to processing facilities or permanent repositories is offset by the reality of limited resources and ever-tightening budgets. Obtaining the true cost of transportation is often difficult because of the many direct and indirect costs involved and the variety of methods used to account for fixed and variable expenses. In order to make valid comparisons between the cost of alternate transportation systems for new and/or existing programs, one should consider more than just the cost of capital equipment or freight cost per mile. Of special interest is the cost of design, fabrication, use, and maintenance of shipping containers in accordance with the requirements of the U.S. Nuclear Regulatory Commission. A spread sheet model was developed to compare the life-cycle costs of alternate fleet configurations of TRUPACT-II, which will be used to ship transuranic waste from U.S. Department of Energy sites to the Waste Isolation Pilot Plant near Carlsbad, New Mexico

  15. A low cost, adaptive mixed reality system for home-based stroke rehabilitation.

    Science.gov (United States)

    Chen, Yinpeng; Baran, Michael; Sundaram, Hari; Rikakis, Thanassis

    2011-01-01

    This paper presents a novel, low-cost, real-time adaptive multimedia environment for home-based upper extremity rehabilitation of stroke survivors. The primary goal of this system is to provide an interactive tool with which the stroke survivor can sustain gains achieved within the clinical phase of therapy and increase the opportunity for functional recovery. This home-based mediated system has low cost sensing, off the shelf components for the auditory and visual feedback, and remote monitoring capability. The system is designed to continue active learning by reducing dependency on real-time feedback and focusing on summary feedback after a single task and sequences of tasks. To increase system effectiveness through customization, we use data from the training strategy developed by the therapist at the clinic for each stroke survivor to drive automated system adaptation at the home. The adaptation includes changing training focus, selecting proper feedback coupling both in real-time and in summary, and constructing appropriate dialogues with the stroke survivor to promote more efficient use of the system. This system also allows the therapist to review participant's progress and adjust the training strategy weekly.

  16. Low-cost glass ionomer cement as ART sealant in permanent molars: a randomized clinical trial

    NARCIS (Netherlands)

    Hesse, D.; Bonifácio, C.C.; Guglielmi, C. de Almeida Brandao; da Franca, C.; Mendes, F.M.; Raggio, D.P.

    2015-01-01

    Clinical trials are normally performed with well-known brands of glass ionomer cement (GIC), but the cost of these materials is high for public healthcare in less-affluent communities. Given the need to research cheaper materials, it seems pertinent to investigate the retention rate of a low-cost

  17. Design and analysis of a gravity balanced low-cost hybrid arm support for stroke rehabilitation

    OpenAIRE

    Cannella, Giuseppe

    2015-01-01

    Worldwide 12.6 million people live with moderate to severe disability following a stroke, and the number is increasing. Associated personal and societal care costs strongly motivate the development of effective low-cost technology for upper limb stroke rehabilitation. In order to be therapeutically effective, rehabilitation devices must assist repeated performance of a range of functional tasks whilst promoting voluntary effort, thereby enabling motor re-learning. This specification encourage...

  18. Advances in low-cost long-wave infrared polymer windows

    Science.gov (United States)

    Weimer, Wayne A.; Klocek, Paul

    1999-07-01

    Recent improvements in engineered polymeric material compositions and advances in processing methodologies developed and patented at Raytheon Systems Company have produced long wave IR windows at exceptionally low costs. These UV stabilized, high strength windows incorporating subwavelength structured antireflection surfaces are enabling IR imaging systems to penetrate commercial markets and will reduce the cost of systems delivered to the military. The optical and mechanical properties of these windows will be discussed in detail with reference to the short and long-term impact on military IR imaging systems.

  19. Low-cost high purity production

    Science.gov (United States)

    Kapur, V. K.

    1978-01-01

    Economical process produces high-purity silicon crystals suitable for use in solar cells. Reaction is strongly exothermic and can be initiated at relatively low temperature, making it potentially suitable for development into low-cost commercial process. Important advantages include exothermic character and comparatively low process temperatures. These could lead to significant savings in equipment and energy costs.

  20. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries.

    Science.gov (United States)

    Badi, Nacer; Erra, Abhinay Reddy; Hernandez, Francisco C Robles; Okonkwo, Anderson O; Hobosyan, Mkhitar; Martirosyan, Karen S

    2014-01-01

    The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for

  1. Alternative ceramic circuit constructions for low cost, high reliability applications

    International Nuclear Information System (INIS)

    Modes, Ch.; O'Neil, M.

    1997-01-01

    The growth in the use of hybrid circuit technology has recently been challenged by recent advances in low cost laminate technology, as well as the continued integration of functions into IC's. Size reduction of hybrid 'packages' has turned out to be a means to extend the useful life of this technology. The suppliers of thick film materials technology have responded to this challenge by developing a number of technology options to reduce circuit size, increase density, and reduce overall cost, while maintaining or increasing reliability. This paper provides an overview of the processes that have been developed, and, in many cases are used widely to produce low cost, reliable microcircuits. Comparisons of each of these circuit fabrication processes are made with a discussion of advantages and disadvantages of each technology. (author)

  2. Low cost, high yield IFE reactors: Revisiting Velikhov's vaporizing blankets

    International Nuclear Information System (INIS)

    Logan, B.G.

    1992-01-01

    The performance (efficiency and cost) of IFE reactors using MHD conversion is explored for target blanket shells of various materials vaporized and ionized by high fusion yields (5 to 500 GJ). A magnetized, prestressed reactor chamber concept is modeled together with previously developed models for the Compact Fusion Advanced Rankine II (CFARII) MHD Balance-of-Plant (BoP). Using conservative 1-D neutronics models, high fusion yields (20 to 80 GJ) are found necessary to heat Flibe, lithium, and lead-lithium blankets to MHD plasma temperatures, at initial solid thicknesses sufficient to capture most of the fusion yield. Advanced drivers/targets would need to be developed to achieve a ''Bang per Buck'' figure-of-merit approx-gt 20 to 40 joules yield per driver $ for this scheme to be competitive with these blanket materials. Alternatively, more realistic neutronics models and better materials such as lithium hydride may lower the minimum required yields substantially. The very low CFARII BoP costs (contributing only 3 mills/kWehr to CoE) allows this type of reactor, given sufficient advances that non-driver costs dominate, to ultimately produce electricity at a much lower cost than any current nuclear plant

  3. Rapid, low-cost, image analysis through video processing

    International Nuclear Information System (INIS)

    Levinson, R.A.; Marrs, R.W.; Grantham, D.G.

    1976-01-01

    Remote Sensing now provides the data necessary to solve many resource problems. However, many of the complex image processing and analysis functions used in analysis of remotely-sensed data are accomplished using sophisticated image analysis equipment. High cost of this equipment places many of these techniques beyond the means of most users. A new, more economical, video system capable of performing complex image analysis has now been developed. This report describes the functions, components, and operation of that system. Processing capability of the new video image analysis system includes many of the tasks previously accomplished with optical projectors and digital computers. Video capabilities include: color separation, color addition/subtraction, contrast stretch, dark level adjustment, density analysis, edge enhancement, scale matching, image mixing (addition and subtraction), image ratioing, and construction of false-color composite images. Rapid input of non-digital image data, instantaneous processing and display, relatively low initial cost, and low operating cost gives the video system a competitive advantage over digital equipment. Complex pre-processing, pattern recognition, and statistical analyses must still be handled through digital computer systems. The video system at the University of Wyoming has undergone extensive testing, comparison to other systems, and has been used successfully in practical applications ranging from analysis of x-rays and thin sections to production of color composite ratios of multispectral imagery. Potential applications are discussed including uranium exploration, petroleum exploration, tectonic studies, geologic mapping, hydrology sedimentology and petrography, anthropology, and studies on vegetation and wildlife habitat

  4. Design, Build and Validation of a Low-Cost Programmable Battery Cycler

    DEFF Research Database (Denmark)

    Propp, Karsten; Fotouhi, Abbas; Knap, Vaclav

    2016-01-01

    The availability of laboratory grade equipment for battery tests is usually limited due to high costs of the hardware. Especially for lithium-sulfur (Li-S) batteries these experiments can be time intensive since the cells need to be precycled and are usually cycled with relatively low loads....... To improve the availability of test hardware, this paper conducts a study to design and test a low cost solution for cycling and testing batteries for tasks that do not necessarily need the high precision of professional hardware. While the described solution is in principle independent of the cell chemistry......, here it is specifically optimized to fit to Li-S batteries. To evaluate the accuracy of the presented battery cycler, the hardware is tested and compared with a professional Kepco bipolar power source. The results indicate the usefulness for application oriented battery tests with real life cycles...

  5. Database of Low-E Storm Window Energy Performance across U.S. Climate Zones (Task ET-WIN-PNNL-FY13-01_5.3)

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Culp, Thomas D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    This report describes process, assumptions, and modeling results produced in support of the Emerging Technologies Low-e Storm Windows Task 5.3: Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone. Both sets of calculation results will be made publicly available through the Building America Solution Center.

  6. Low-cost, flexible battery packaging materials

    Science.gov (United States)

    Jansen, Andrew N.; Amine, Khalil; Newman, Aron E.; Vissers, Donald R.; Henriksen, Gary L.

    2002-03-01

    Considerable cost savings can be realized if the metal container used for lithium-based batteries is replaced with a flexible multi-laminate containment commonly used in the food packaging industry. This laminate structure must have air, moisture, and electrolyte barrier capabilities, be resistant to hydrogen-fluoride attack, and be heat-sealable. After extensive screening of commercial films, the polyethylene and polypropylene classes of polymers were found to have an adequate combination of mechanical, permeation, and seal-strength properties. The search for a better film and adhesive is ongoing.

  7. Innovative manufacturing and materials for low cost lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Steven [Optodot Corporation, Woburn, MA (United States)

    2015-12-29

    This project demonstrated entirely new manufacturing process options for lithium ion batteries with major potential for improved cost and performance. These new manufacturing approaches are based on the use of the new electrode-coated separators instead of the conventional electrode-coated metal current collector foils. The key enabler to making these electrode-coated separators is a new and unique all-ceramic separator with no conventional porous plastic separator present. A simple, low cost, and high speed manufacturing process of a single coating of a ceramic pigment and polymer binder onto a re-usable release film, followed by a subsequent delamination of the all-ceramic separator and any layers coated over it, such as electrodes and metal current collectors, was utilized. A suitable all-ceramic separator was developed that demonstrated the following required features needed for making electrode-coated separators: (1) no pores greater than 100 nanometer (nm) in diameter to prevent any penetration of the electrode pigments into the separator; (2) no shrinkage of the separator when heated to the high oven heats needed for drying of the electrode layer; and (3) no significant compression of the separator layer by the high pressure calendering step needed to densify the electrodes by about 30%. In addition, this nanoporous all-ceramic separator can be very thin at 8 microns thick for increased energy density, while providing all of the performance features provided by the current ceramic-coated plastic separators used in vehicle batteries: improved safety, longer cycle life, and stability to operate at voltages up to 5.0 V in order to obtain even more energy density. The thin all-ceramic separator provides a cost savings of at least 50% for the separator component and by itself meets the overall goal of this project to reduce the cell inactive component cost by at least 20%. The all-ceramic separator also enables further cost savings by its excellent heat stability

  8. Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David M. Bowden; Dr. William H. Peter

    2012-03-31

    The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operations to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical

  9. Metacognition of Multi-Tasking: How Well Do We Predict the Costs of Divided Attention?

    OpenAIRE

    Finley, Jason R.; Benjamin, Aaron S.; McCarley, Jason S.

    2014-01-01

    Risky multi-tasking, such as texting while driving, may occur because people misestimate the costs of divided attention. In two experiments, participants performed a computerized visual-manual tracking task in which they attempted to keep a mouse cursor within a small target that moved erratically around a circular track. They then separately performed an auditory n-back task. After practicing both tasks separately, participants received feedback on their single-task tracking performance and ...

  10. Dynamic Task Allocation in Multi-Hop Multimedia Wireless Sensor Networks with Low Mobility

    Directory of Open Access Journals (Sweden)

    Klaus Moessner

    2013-10-01

    Full Text Available This paper presents a task allocation-oriented framework to enable efficient in-network processing and cost-effective multi-hop resource sharing for dynamic multi-hop multimedia wireless sensor networks with low node mobility, e.g., pedestrian speeds. The proposed system incorporates a fast task reallocation algorithm to quickly recover from possible network service disruptions, such as node or link failures. An evolutional self-learning mechanism based on a genetic algorithm continuously adapts the system parameters in order to meet the desired application delay requirements, while also achieving a sufficiently long network lifetime. Since the algorithm runtime incurs considerable time delay while updating task assignments, we introduce an adaptive window size to limit the delay periods and ensure an up-to-date solution based on node mobility patterns and device processing capabilities. To the best of our knowledge, this is the first study that yields multi-objective task allocation in a mobile multi-hop wireless environment under dynamic conditions. Simulations are performed in various settings, and the results show considerable performance improvement in extending network lifetime compared to heuristic mechanisms. Furthermore, the proposed framework provides noticeable reduction in the frequency of missing application deadlines.

  11. Thermoelectric materials evaluation program. Quarterly technical task report No. 46

    International Nuclear Information System (INIS)

    Hampl, E.F. Jr.

    1976-02-01

    This forty-sixth Technical Task Report prepared under contract E(11-1)-2331 with the U.S. AEC and U.S. ERDA covers the performance period from October 1, 1975, to December 31, 1975. Highlights include the following tasks: N-type material development (material synthesis--gadolinium selenide compositions; material analyses; material processing; element contacting; ingradient compatibility and life testing; mechanical property characterization), TPM-217 P-type characterization (material preparation and analyses; element contacting; thermodynamic stability; isothermal chemical compatibility; ingradient compatibility and ingradient life testing; performance mapping of contacted and noncontacted elements; high-temperature partitioned P-legs), couple development (design and development of TPM-217/gadolinium selenide rare earth chalcogenide couple; design and development of TPM-217/3N-PbTe couples; advanced generator concepts), module development, liaison with Jet Propulsion Laboratory and material supply, liaison with GGA, and program management. 24 figures, 27 tables

  12. Health workforce skill mix and task shifting in low income countries: a review of recent evidence

    Directory of Open Access Journals (Sweden)

    Auh Erica

    2011-01-01

    Full Text Available Abstract Background Health workforce needs-based shortages and skill mix imbalances are significant health workforce challenges. Task shifting, defined as delegating tasks to existing or new cadres with either less training or narrowly tailored training, is a potential strategy to address these challenges. This study uses an economics perspective to review the skill mix literature to determine its strength of the evidence, identify gaps in the evidence, and to propose a research agenda. Methods Studies primarily from low-income countries published between 2006 and September 2010 were found using Google Scholar and PubMed. Keywords included terms such as skill mix, task shifting, assistant medical officer, assistant clinical officer, assistant nurse, assistant pharmacist, and community health worker. Thirty-one studies were selected to analyze, based on the strength of evidence. Results First, the studies provide substantial evidence that task shifting is an important policy option to help alleviate workforce shortages and skill mix imbalances. For example, in Mozambique, surgically trained assistant medical officers, who were the key providers in district hospitals, produced similar patient outcomes at a significantly lower cost as compared to physician obstetricians and gynaecologists. Second, although task shifting is promising, it can present its own challenges. For example, a study analyzing task shifting in HIV/AIDS in sub-Saharan Africa noted quality and safety concerns, professional and institutional resistance, and the need to sustain motivation and performance. Third, most task shifting studies compare the results of the new cadre with the traditional cadre. Studies also need to compare the new cadre's results to the results from the care that would have been provided--if any care at all--had task shifting not occurred. Conclusions Task shifting is a promising policy option to increase the productive efficiency of the delivery of health

  13. Low cost silicon-on-ceramic photovoltaic solar cells

    Science.gov (United States)

    Koepke, B. G.; Heaps, J. D.; Grung, B. L.; Zook, J. D.; Sibold, J. D.; Leipold, M. H.

    1980-01-01

    A technique has been developed for coating low-cost mullite-based refractory substrates with thin layers of solar cell quality silicon. The technique involves first carbonizing one surface of the ceramic and then contacting it with molten silicon. The silicon wets the carbonized surface and, under the proper thermal conditions, solidifies as a large-grained sheet. Solar cells produced from this composite silicon-on-ceramic material have exhibited total area conversion efficiencies of ten percent.

  14. Low cost bare-plate solar air collector

    Science.gov (United States)

    Maag, W. L.; Wenzler, C. J.; Rom, F. E.; Vanarsdale, D. R.

    1980-09-01

    A low cost, bare plate solar collector for preheating ambient air was developed. This type of solar heating system would be applicable for preheating ventilation air for public buildings or other commercial and industrial ventilation requirements. Two prototype collectors were designed, fabricated and installed into an instrumented test system. Tests were conducted for a period of five months. Results of the tests showed consistent operating efficiencies of 60 percent or greater with air preheat temperature uses up to 20 degrees for one of the prototypes. The economic analyses indicated that this type of solar system was economically viable. For the materials of construction and the type of fabrication and installation perceived, costs for the bare plate solar collector are attainable. Applications for preheating ventilation air for schools were evaluated and judged to be economically viable.

  15. Division of Development and Technology Plasma/Materials Interaction and High Heat Flux Materials and Components Task Groups: Report on the joint meeting, July 9, 1986

    International Nuclear Information System (INIS)

    Watson, R.D.

    1986-09-01

    This paper contains a collection of viewgraphs from a joint meeting of the Division of Development and Technology Plasma/Materials Interaction and High Heat Flux Materials and Components Task Groups. A list of contributing topics is: PPPL update, ATF update, Los Alamos RFP program update, status of DIII-D, PMI graphite studies at ORNL, PMI studies for low atomic number materials, high heat flux materials issues, high heat flux testing program, particle confinement in tokamaks, helium self pumping, self-regenerating coatings technical planning activity and international collaboration update

  16. Low cost solar air heater

    International Nuclear Information System (INIS)

    Gill, R.S.; Singh, Sukhmeet; Singh, Parm Pal

    2012-01-01

    Highlights: ► Single glazed low cost solar air heater is more efficient during summer while double glazed is better in winter. ► For the same initial investment, low cost solar air heaters collect more energy than packed bed solar air heater. ► During off season low cost solar air heater can be stored inside as it is light in weight. - Abstract: Two low cost solar air heaters viz. single glazed and double glazed were designed, fabricated and tested. Thermocole, ultraviolet stabilised plastic sheet, etc. were used for fabrication to reduce the fabrication cost. These were tested simultaneously at no load and with load both in summer and winter seasons along with packed bed solar air heater using iron chips for absorption of radiation. The initial costs of single glazed and double glazed are 22.8% and 26.8% of the initial cost of packed bed solar air heater of the same aperture area. It was found that on a given day at no load, the maximum stagnation temperatures of single glazed and double glazed solar air heater were 43.5 °C and 62.5 °C respectively. The efficiencies of single glazed, double glazed and packed bed solar air heaters corresponding to flow rate of 0.02 m 3 /s-m 2 were 30.29%, 45.05% and 71.68% respectively in winter season. The collector efficiency factor, heat removal factor based on air outlet temperature and air inlet temperature for three solar air heaters were also determined.

  17. Low cost tooling material and process for graphite and Kevlar composites

    Science.gov (United States)

    Childs, William I.

    1987-01-01

    An Extruded Sheet Tooling Compound (ESTC) was developed for use in quickly building low cost molds for fabricating composites. The ESTC is a very highly mineral-filled resin system formed into a 6 mm thick sheet. The sheet is laid on the pattern, vacuum (bag) is applied to remove air from the pattern surface, and the assembly is heat cured. The formed ESTC is then backed and/or framed and ready for use. The cured ESTC exhibits low coefficient of thermal expansion and maintains strength at temperatures of 180 to 200 C. Tools were made and used successfully for: Compression molding of high strength epoxy sheet molding compound, stamping of aluminum, resin transfer molding of polyester, and liquid resin molding of polyester. Several variations of ESTC can be made for specific requirements. Higher thermal conductivity can be achieved by using an aluminum particle filler. Room temperature gel is possible to allow use of foam patterns.

  18. Low-Cost alpha Alane for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, Tibor [Ardica Technologies, San Francisco, CA (United States); Petrie, Mark [SRI International, Menlo Park, CA (United States); Crouch-Baker, Steven [SRI International, Menlo Park, CA (United States); Fong, Henry [SRI International, Menlo Park, CA (United States)

    2017-10-10

    This project was directed towards the further development of the Savannah River National Laboratory (SRNL) lab-scale electrochemical synthesis of the hydrogen storage material alpha-alane and Ardica Technologies-SRI International (SRI) chemical downstream processes that are necessary to meet DoE cost metrics and transition alpha-alane synthesis to an industrial scale. Ardica has demonstrated the use of alpha-alane in a fuel-cell system for the U.S. Army WFC20 20W soldier power system that has successfully passed initial field trials with individual soldiers. While alpha-alane has been clearly identified as a desirable hydrogen storage material, cost-effective means for its production and regeneration on a scale of use applicable to the industry have yet to be established. We focused on three, principal development areas: 1. The construction of a comprehensive engineering techno-economic model to establish the production costs of alpha-alane by both electrochemical and chemical routes at scale. 2. The identification of critical, cost-saving design elements of the electrochemical cell and the quantification of the product yields of the primary electrochemical process. A moving particle-bed reactor design was constructed and operated. 3. The experimental quantification of the product yields of candidate downstream chemical processes necessary to produce alpha-alane to complete the most cost-effective overall manufacturing process. Our techno-economic model shows that under key assumptions most 2015 and 2020 DOE hydrogen storage system cost targets for low and medium power can be achieved using the electrochemical alane synthesis process. To meet the most aggressive 2020 storage system cost target, $1/g, our model indicates that 420 metric tons per year (MT/y) production of alpha-alane is required. Laboratory-scale experimental work demonstrated that the yields of two of the three critical component steps within the overall “electrochemical process” were

  19. Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

  20. A low cost general purpose portable programmable master/slave manipulative appliance

    International Nuclear Information System (INIS)

    Cameron, W.

    1984-01-01

    The TRIUMF 100 μA 500 MeV cyclotron, located at the University of British Columbia, required a low cost, portable master/slave manipulative capability for experimental beam line servicing. A programmable capability was also required for the hot cell manipulators. A general purpose unit was developed that might also have applications in light manufacturing and medical rehabilitation. The project now in prototype testing represents a modular portable robot costing less than $5000 that is lead-through-teach programmable by either a master controller or hands-on lead-through. Task programs are stored and retrieved on any 32 k personal computer. An on-board proportional integral derivative controller (Motorola 6809 based) gives discrete positioning of the six degrees of freedom 2 kg capacity end effector

  1. Portable low-cost flat panel detectors for real-time digital radiography

    International Nuclear Information System (INIS)

    Iovea, Mihai; Neagu, Marian; Stefanescu, Bogdan; Mateiasi, Gabriela; Porosnicu, Ioana; Angheluta, Elena

    2015-01-01

    The X-ray inspection is one of the most common used non-destructive testing methods in industry applications, but for the portable X-ray digital solution are not so many accessible, low-cost and versatile detection devices. The efficiency of a non-destructive X-ray portable device is represented by the quality of digital images, by its low acquisition time combined with a high resolution, in condition of low noise and at an affordable cost. The paper presents two X-ray portable imaging systems developed by us, suitable also for aerospace NDT applications, which are also very versatile for being easily adapted for other fields that requires mobile solutions. The first device described in the paper represent a portable large-size (210 mm X 550 mm) and high-resolution (27/54 microns) flat panel detector based on linear translation of a X-Ray TDI detector, destined for various components/parts real-time transmission measurements. The second system it is also a flat panel detectors, with a size of 510 mm X 610 mm, with the detector size from 0.2 mm until 1.5 mm, which can operate by applying the dual-energy method, very useful for discriminating materials by evaluating their Atomic effective number. The high resolution and low-cost of this flat-panels widens their applicability by covering large requirements, from identifying unwanted materials within a structure until detection of very thin cracks in complex components.

  2. Portable low-cost flat panel detectors for real-time digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Iovea, Mihai; Neagu, Marian; Stefanescu, Bogdan; Mateiasi, Gabriela; Porosnicu, Ioana; Angheluta, Elena [Accent Pro 2000 S.R.L., Bucharest (Romania)

    2015-07-01

    The X-ray inspection is one of the most common used non-destructive testing methods in industry applications, but for the portable X-ray digital solution are not so many accessible, low-cost and versatile detection devices. The efficiency of a non-destructive X-ray portable device is represented by the quality of digital images, by its low acquisition time combined with a high resolution, in condition of low noise and at an affordable cost. The paper presents two X-ray portable imaging systems developed by us, suitable also for aerospace NDT applications, which are also very versatile for being easily adapted for other fields that requires mobile solutions. The first device described in the paper represent a portable large-size (210 mm X 550 mm) and high-resolution (27/54 microns) flat panel detector based on linear translation of a X-Ray TDI detector, destined for various components/parts real-time transmission measurements. The second system it is also a flat panel detectors, with a size of 510 mm X 610 mm, with the detector size from 0.2 mm until 1.5 mm, which can operate by applying the dual-energy method, very useful for discriminating materials by evaluating their Atomic effective number. The high resolution and low-cost of this flat-panels widens their applicability by covering large requirements, from identifying unwanted materials within a structure until detection of very thin cracks in complex components.

  3. SiC/C components for nuclear applications from low cost precursor

    International Nuclear Information System (INIS)

    Narciso, J.; Calderon, N.R.

    2009-01-01

    The development of structural materials with the desired properties to produce the components facing the plasma in fusion reactors is one of the key problems in fusion technology. The structural materials used in the first wall and breeder blanket limits the operating temperature of the system, and higher operating temperatures means higher efficiency. Among the advanced material under consideration for those parts (first wall and breeder blanket) SiC based composites offers the greatest potential. However, considerable research is still required in order to solve engineering feasibility and manufacturing issues, as the improvement of the maximum working temperature and the capability of fabrication of components with homogeneous properties at reasonable cost. Last decade, there has been a strong effort in blanket design using SiC f /SiC composites which are rather expensive while excellent mechanical properties are not so mandatory as resistance to neutron irradiation for this application. In this work, an experimental procedure for manufacturing SiC/C composite materials with homogeneous properties from low cost precursors is described. The process consists in classical reactive infiltration of porous carbon preforms by liquid silicon to produce RBSC where the porous carbon preforms are tailor-made for the fabrication of SiC components without residual Si. The proper selection of the feedstock nature and the pyrolysis conditions determine the microstructure and sinterability of the carbon particles, respectively. These two features control the reactivity of the carbon substrate and porosity of the carbon preform for complete infiltration. The absence of silicon and the homogeneous microstructure of the SiC materials produced by this procedure make them suitable for structural applications at temperatures higher than 1200 deg. C. Furthermore, the technique allows near-net-shape capability and the carbon source is a low cost material. (author)

  4. Report by the International Space Station (ISS) Management and Cost Evaluation (IMCE) Task Force

    Science.gov (United States)

    Young, A. Thomas; Kellogg, Yvonne (Technical Monitor)

    2001-01-01

    The International Space Station (ISS) Management and Cost Evaluation Task Force (IMCE) was chartered to conduct an independent external review and assessment of the ISS cost, budget, and management. In addition, the Task Force was asked to provide recommendations that could provide maximum benefit to the U.S. taxpayers and the International Partners within the President's budget request. The Task Force has made the following principal findings: (1) The ISS Program's technical achievements to date, as represented by on-orbit capability, are extraordinary; (2) The Existing ISS Program Plan for executing the FY 02-06 budget is not credible; (3) The existing deficiencies in management structure, institutional culture, cost estimating, and program control must be acknowledged and corrected for the Program to move forward in a credible fashion; (4) Additional budget flexibility, from within the Office of Space Flight (OSF) must be provided for a credible core complete program; (5) The research support program is proceeding assuming the budget that was in place before the FY02 budget runout reduction of $1B; (6) There are opportunities to maximize research on the core station program with modest cost impact; (7) The U.S. Core Complete configuration (three person crew) as an end-state will not achieve the unique research potential of the ISS; (8) The cost estimates for the U.S.-funded enhancement options (e.g., permanent seven person crew) are not sufficiently developed to assess credibility. After these findings, the Task Force has formulated several primary recommendations which are published here and include: (1) Major changes must be made in how the ISS program is managed; (2) Additional cost reductions are required within the baseline program; (3) Additional funds must be identified and applied from the Human Space Flight budget; (4) A clearly defined program with a credible end-state, agreed to by all stakeholders, must be developed and implemented.

  5. Silicon web process development. [for low cost solar cells

    Science.gov (United States)

    Duncan, C. S.; Hopkins, R. H.; Seidensticker, R. G.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, a single crystal ribbon shaped during growth by crystallographic forces and surface tension (rather than dies), is a highly promising base material for efficient low cost solar cells. The form of the product smooth, flexible strips 100 to 200 microns thick, conserves expensive silicon and facilitates automation of crystal growth and the subsequent manufacturing of solar cells. These characteristics, coupled with the highest demonstrated ribbon solar cell efficiency-15.5%-make silicon web a leading candidate to achieve, or better, the 1986 Low Cost Solar Array (LSA) Project cost objective of 50 cents per peak watt of photovoltaic output power. The main objective of the Web Program, technology development to significantly increase web output rate, and to show the feasibility for simultaneous melt replenishment and growth, have largely been accomplished. Recently, web output rates of 23.6 sq cm/min, nearly three times the 8 sq cm/min maximum rate of a year ago, were achieved. Webs 4 cm wide or greater were grown on a number of occassions.

  6. A post-contract project analysis of material waste and cost overrun ...

    African Journals Online (AJOL)

    Material waste and cost overrun have been identified as common problems in the construction industry. These problems occur at both pre- and post-contract stages of a construction project. As a result of a dearth of empirical research and low level of awareness, the majority of managers of construction projects in Nigeria ...

  7. Bi2S3microspheres grown on graphene sheets as low-cost counter-electrode materials for dye-sensitized solar cells

    Science.gov (United States)

    Li, Guang; Chen, Xiaoshuang; Gao, Guandao

    2014-02-01

    In this work, we synthesized 3D Bi2S3 microspheres comprised of nanorods grown along the (211) facet on graphene sheets by a solvothermal route, and investigated its catalytic activities through I-V curves and conversion efficiency tests as the CE in DSSCs. Although the (211) facet has a large band gap for a Bi2S3 semiconductor, owing to the introduction of graphene into the system, its short-circuit current density, open-circuit voltage, fill factor, and efficiency were Jsc = 12.2 mA cm-2, Voc = 0.75 V, FF = 0.60, and η = 5.5%, respectively. By integrating it with graphene sheets, our material achieved the conversion efficiency of 5.5%, which is almost triple the best conversion efficiency value of the DSSCs with (211)-faceted 3D Bi2S3 without graphene (1.9%) reported in the latest literature. Since this conversion-efficient 3D material grown on the graphene sheets significantly improves its catalytic properties, it paves the way for designing and applying low-cost Pt-free CE materials in DSSC from inorganic nanostructures.In this work, we synthesized 3D Bi2S3 microspheres comprised of nanorods grown along the (211) facet on graphene sheets by a solvothermal route, and investigated its catalytic activities through I-V curves and conversion efficiency tests as the CE in DSSCs. Although the (211) facet has a large band gap for a Bi2S3 semiconductor, owing to the introduction of graphene into the system, its short-circuit current density, open-circuit voltage, fill factor, and efficiency were Jsc = 12.2 mA cm-2, Voc = 0.75 V, FF = 0.60, and η = 5.5%, respectively. By integrating it with graphene sheets, our material achieved the conversion efficiency of 5.5%, which is almost triple the best conversion efficiency value of the DSSCs with (211)-faceted 3D Bi2S3 without graphene (1.9%) reported in the latest literature. Since this conversion-efficient 3D material grown on the graphene sheets significantly improves its catalytic properties, it paves the way for

  8. DEVELOPMENT OF A LOW COST CAMERA FOR AGING ACCELERATED POLYMERS

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Duarte Felisbino

    2018-03-01

    Full Text Available The objective of this paper is to describe the design, construction and testing of a low cost chamber for accelerated aging of polymers that meets a low and high ultraviolet radiation cycle on the test specimens in accordance with ASTM G154. The methodology was based on the survey of the standards related to the tests of accelerated aging of polymers and of the existing equipment, providing the subsidies for the development of the project, which was validated by the construction and evaluation of its performance. The camera control is performed by an Arduino-based electronic system and uses commercially available components that meet project specifications. The equipment met the requirements for both the specifications and the low cost and will integrate the laboratories of the University of Mogi das Cruzes (UMC, Villa-Lobos campus, to carry out tests on polymer materials.

  9. Low cost plastic scintillator by using commercial polystyrene

    International Nuclear Information System (INIS)

    Oktar, O.; Ari, G.; Guenduez, O.; Demirel, H.; Demirbas, A.

    2009-01-01

    Plastic scintillation detectors have been used in nuclear and high energy physics for many decades. Among their benefits are fast response, ease of manufacture and versatility. Their main drawbacks are radiation resistance and cost. Plastic Scintillators can be described as solid materials which contain organic fluorescent compounds dissolved within a polymer matri10. Transparent plastics commonly used for light scintillation are Polystyrene (or PS, poly-vinyl-benzene) and polyvinyl-toluene (or PVT, poly-methyl-styron). In this activity, preliminary studies for low cost plastic scintillator production by using commercial polystyrene pellets and extrusion method were aimed. For this purpose, PS blocks consist of commercial fluorescent dopant were prepared by an extruder in SANAEM. Molds suitable for extruder were designed and manufactured and optimum production parameters such as extrusion temperature profile, extrusion rate and pressure were obtained. Plastic blocks prepared were optically and mechanically tested and its response against various radioactive sources was measured.This study has shown that plastic scintillators imported can be produced in SANAEM domestically and be used for detection of radioactive materials within the country or border gates.

  10. A Low-Cost Production Method of FeSi2 Power Generation Thermoelectric Modules

    Science.gov (United States)

    Inoue, Hiroyuki; Kobayashi, Takahide; Kato, Masahiko; Yoneda, Seiji

    2016-03-01

    A method is proposed to reduce the production cost of power generation thermoelectric modules. FeSi2 is employed as the thermoelectric material because of its low cost, low environmental load, and oxidation resistance. The raw materials were prepared in the composition of Fe0.96Si2.1Co0.04 for n-type and Fe0.92Si2.1Mn0.08 for p-type, which were added with 0.5 wt.% Cu as the starting materials. They were sintered without pressure at 1446 K to be formed into elements. The Seebeck coefficient and resistivity at room temperature were determined to be -182 μV/K and 0.13 mΩm for n-type, and 338 μV/K and 1.13 mΩm for p-type, respectively. The brazing conditions of the direct joining between the element and the solder were examined. Pastes of BNi-6, BNi-7 or TB-608T were tried as the solder. TB-608T was useable for metallizing of insulation substrates and joining of thermoelectric elements in order to manufacture thermoelectric modules. The joining strength was determined to be 50 MPa between the alumina plate and the elements. No mechanical failure was observed in the modules after repetition of 10 or more exposures to a heat source of 670 K. No change was found in the internal resistance. The present production method will provide modules with high durability and low production cost, which will enable high-power multi-stage cascade modules at a reasonable cost.

  11. Low energy, low cost, efficient CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Trachtenberg; Lihong Bao; David A. Smith; Remy Dumortier [Carbozyme, Inc., Monmouth Junction, NJ (United States)

    2006-07-01

    This paper discusses the development and some characteristics of a new, enzyme-based, contained liquid membrane contactor to capture CO{sub 2}. The enzyme carbonic anhydrase catalyzes the removal of CO{sub 2} while the membrane contactor increases the surface area to allow the reduction of the size of the system. The modular system design is easily scaled to any required size reducing the investment costs. The system captures CO{sub 2} at a low energy and low cost promising to be a cost effective technology for CO{sub 2} capture. 5 refs., 7 figs.

  12. Production low cost plastic scintillator by using commercial polystyrene

    International Nuclear Information System (INIS)

    2011-01-01

    Plastic Scintillators can be described as solid materials which contain organic fluorescent compounds dissolved within a polymer matrix. Transparent plastics commonly used for light scintillation are Polystyrene (or PS, poly-vinyl-benzene) and polyvinyl-toluene (or PVT, poly-methyl-styron). By changing the composition of plastic Scintillators some features such as light yield, radiation hardening, decay time etc. can be controlled. Plastic scintillation detectors have been used in nuclear and high energy physics for many decades. Among their benefits are fast response, ease of manufacture and versatility. Their main drawbacks are radiation resistance and cost. Many research projects have concentrated on improving the fundamental properties of plastic scintillators, but little attention has focussed on their cost and easier manufacturing techniques. First plastic Scintillators were produced in 1950's. Activities for production of low cost Scintillators accelerated in second half of 1970's. In 1975 acrylic based Plexipop Scintillator was developed. Despite its low cost, since its structure was not aromatic the light yield of Plexipop was about one quarter of classical Scintillators. Problems arising from slow response time and weak mechanical properties in scintillators developed, has not been solved until 1980. Within the last decade extrusion method became very popular in preparation of low cost and high quality plastic scintillators. In this activity, preliminary studies for low cost plastic scintillator production by using commercial polystyrene pellets and extrusion plus compression method were aimed. For this purpose, PS blocks consist of commercial fluorescent dopant were prepared in June 2008 by use of the extruder and pres in SANAEM. Molds suitable for accoupling to extruder were designed and manufactured and optimum production parameters such as extrusion temperature profile, extrusion rate and moulding pressure were obtained hence, PS Scintillator Blocks

  13. Low Cost DIY Lenses kit For High School Teaching

    Science.gov (United States)

    Thepnurat, Meechai; Saphet, Parinya; Tong-on, Anusorn

    2017-09-01

    A set of lenses was fabricated from a low cost materials in a DIY (Do it yourself) process. The purpose was to demonstrate to teachers and students in high schools how to construct lenses by themselves with the local available materials. The lenses could be applied in teaching Physics, about the nature of a lens such as focal length and light rays passing through lenses in either direction, employing a set of simple laser pointers. This instrumental kit was made from a transparent 2 mm thick of acrylic Perspex. It was cut into rectangular pieces with dimensions of 2x15 cm2 and bent into curved shape by a hot air blower on a cylindrical wooden rod with curvature radii of about 3-4.5 cm. Then a pair of these Perspex were formed into a hollow thick lenses with a base supporting platform, so that any appropriate liquids could be filled in. The focal length of the lens was measured from laser beam drawing on a paper. The refractive index, n (n) of a filling liquid could be calculated from the measured focal length (f). The kit was low cost and DIY but was greatly applicable for optics teaching in high school laboratory.

  14. Application of low-cost adsorbents for dye removal--a review.

    Science.gov (United States)

    Gupta, V K; Suhas

    2009-06-01

    Dyes are an important class of pollutants, and can even be identified by the human eye. Disposal of dyes in precious water resources must be avoided, however, and for that various treatment technologies are in use. Among various methods adsorption occupies a prominent place in dye removal. The growing demand for efficient and low-cost treatment methods and the importance of adsorption has given rise to low-cost alternative adsorbents (LCAs). This review highlights and provides an overview of these LCAs comprising natural, industrial as well as synthetic materials/wastes and their application for dyes removal. In addition, various other methods used for dye removal from water and wastewater are also complied in brief. From a comprehensive literature review, it was found that some LCAs, in addition to having wide availability, have fast kinetics and appreciable adsorption capacities too. Advantages and disadvantages of adsorbents, favourable conditions for particular adsorbate-adsorbent systems, and adsorption capacities of various low-cost adsorbents and commercial activated carbons as available in the literature are presented. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  15. Evaluation of low-cost commercial-off-the-shelf autopilot systems for SUAS operations

    Science.gov (United States)

    Brown, Calvin Thomas

    With this increase in unmanned aircraft system (UAS) operations, there is a need for a structured process to evaluate different commercially available systems, particularly autopilots. The Remotely Operated Aircraft Management, Interpretation, and Navigation from Ground or ROAMING scale was developed to meet this need. This scale is a modification of the widely accepted Handling Qualities Rating scale developed by George Cooper and Robert Harper Jr. The Cooper-Harper scale allows pilots to rate a vehicle's performance in completing some task. Similarly, the ROAMING scale allows UAS operators to evaluate the management and observability of UAS in completing some task. The standardized evaluative process consists of cost, size, weight, and power (SWAP) analysis, ease of implementation through procedural description of setup, ROAMING scale rating, a slightly modified NASA TLX rating, and comparison of manual operation to autonomous operation of the task. This standard for evaluation of autopilots and their software will lead to better understanding of the workload placed on UAS operators and indicate where improvements to design and operational procedures can be made. An assortment of low-cost commercial-off-the-shelf (COTS) autopilots were selected for use in the development of the evaluation and results of these tests demonstrate the commonalities and differences in these systems.

  16. Low cost solar array project production process and equipment task. A Module Experimental Process System Development Unit (MEPSDU)

    Science.gov (United States)

    1981-01-01

    Technical readiness for the production of photovoltaic modules using single crystal silicon dendritic web sheet material is demonstrated by: (1) selection, design and implementation of solar cell and photovoltaic module process sequence in a Module Experimental Process System Development Unit; (2) demonstration runs; (3) passing of acceptance and qualification tests; and (4) achievement of a cost effective module.

  17. Developing low-cost carbon-based sorbents for Hg capture from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Ron Perry; Janos Lakatos; Colin E. Snape; Cheng-gong Sun [University of Nottingham (United Kingdom). UK Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2005-07-01

    To help reduce the cost of Hg capture, a number of low-cost carbons are being investigated, including tyre char, PFA carbons and gasification residues. This contribution reports the breakthrough capacities in fixed-bed screening tests for these materials in relation to those for commercial active carbons, including Norit FGD and the extent to which breakthrough capacities can be improved by MnO{sub 2} impregnation. 7 refs., 3 figs., 1 tab.

  18. Low-cost carriers fare competition effect

    NARCIS (Netherlands)

    Carmona Benitez, R.B.; Lodewijks, G.

    2010-01-01

    This paper examines the effects that low-cost carriers (LCC’s) produce when entering new routes operated only by full-service carriers (FSC’s) and routes operated by low-cost carriers in competition with full-service carriers. A mathematical model has been developed to determine what routes should

  19. Low-Cost Spectral Sensor Development Description.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Yellowhair, Julius

    2014-11-01

    Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

  20. Low Cost Carbon Fiber From Renewable Resources

    International Nuclear Information System (INIS)

    Compere, A.L.

    2001-01-01

    The Department of Energy Partnership for a New Generation of Vehicles has shown that, by lowering overall weight, the use of carbon fiber composites could dramatically decrease domestic vehicle fuel consumption. For the automotive industry to benefit from carbon fiber technology, fiber production will need to be substantially increased and fiber price decreased to$7/kg. To achieve this cost objective, alternate precursors to pitch and polyacrylonitrile (PAN) are being investigated as possible carbon fiber feedstocks. Additionally, sufficient fiber to provide 10 to 100 kg for each of the 13 million cars and light trucks produced annually in the U.S. will require an increase of 5 to 50-fold in worldwide carbon fiber production. High-volume, renewable or recycled materials, including lignin, cellulosic fibers, routinely recycled petrochemical fibers, and blends of these components, appear attractive because the cost of these materials is inherently both low and insensitive to changes in petroleum price. Current studies have shown that a number of recycled and renewable polymers can be incorporated into melt-spun fibers attractive as carbon fiber feedstocks. Highly extrudable lignin blends have attractive yields and can be readily carbonized and graphitized. Examination of the physical structure and properties of carbonized and graphitized fibers indicates the feasibility of use in transportation composite applications

  1. Analogous selection processes in declarative and procedural working memory: N-2 list-repetition and task-repetition costs.

    Science.gov (United States)

    Gade, Miriam; Souza, Alessandra S; Druey, Michel D; Oberauer, Klaus

    2017-01-01

    Working memory (WM) holds and manipulates representations for ongoing cognition. Oberauer (Psychology of Learning and Motivation, 51, 45-100, 2009) distinguishes between two analogous WM sub-systems: a declarative WM which handles the objects of thought, and a procedural WM which handles the representations of (cognitive) actions. Here, we assessed whether analogous effects are observed when participants switch between memory sets (declarative representations) and when they switch between task sets (procedural representations). One mechanism assumed to facilitate switching in procedural WM is the inhibition of previously used, but currently irrelevant task sets, as indexed by n-2 task-repetition costs (Mayr & Keele, Journal of Experimental Psychology: General, 129(1), 4-26, 2000). In this study we tested for an analogous effect in declarative WM. We assessed the evidence for n-2 list-repetition costs across eight experiments in which participants switched between memory lists to perform speeded classifications, mental arithmetic, or a local recognition test. N-2 list-repetition costs were obtained consistently in conditions assumed to increase interference between memory lists, and when lists formed chunks in long-term memory. Further analyses across experiments revealed a substantial contribution of episodic memory to n-2 list-repetition costs, thereby questioning the interpretation of n-2 repetition costs as reflecting inhibition. We reanalyzed the data of eight task-switching experiments, and observed that episodic memory also contributes to n-2 task-repetition costs. Taken together, these results show analogous processing principles in declarative and procedural WM, and question the relevance of inhibitory processes for efficient switching between mental sets.

  2. Low-Cost Impact Detection and Location for Automated Inspections of 3D Metallic Based Structures

    Directory of Open Access Journals (Sweden)

    Carlos Morón

    2015-05-01

    Full Text Available This paper describes a new low-cost means to detect and locate mechanical impacts (collisions on a 3D metal-based structure. We employ the simple and reasonably hypothesis that the use of a homogeneous material will allow certain details of the impact to be automatically determined by measuring the time delays of acoustic wave propagation throughout the 3D structure. The location of strategic piezoelectric sensors on the structure and an electronic-computerized system has allowed us to determine the instant and position at which the impact is produced. The proposed automatic system allows us to fully integrate impact point detection and the task of inspecting the point or zone at which this impact occurs. What is more, the proposed method can be easily integrated into a robot-based inspection system capable of moving over 3D metallic structures, thus avoiding (or minimizing the need for direct human intervention. Experimental results are provided to show the effectiveness of the proposed approach.

  3. Advanced storage concepts for solar and low energy buildings, IEA-SHC Task 32. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.M.; Andersen, Elsa; Furbo, S.

    2008-01-15

    This report reports on the results of the activities carried through in connection with the Danish part of the IEA SHC Task 32 project: Advanced Storage Concepts for Solar and Low Energy Buildings. The Danish involvement has focused on Subtask C: Storage Concepts Based on Phase Change Materials and Subtask D: Storage Concepts Based on Advanced Water Tanks and Special Devices. The report describes activities concerning heat-of-fusion storage and advanced water storage. (BA)

  4. Estimating Total Program Cost of a Long-Term, High-Technology, High-Risk Project with Task Durations and Costs That May Increase Over Time

    National Research Council Canada - National Science Library

    Brown, Gerald G; Grose, Roger T; Koyak, Robert A

    2006-01-01

    .... Each task suffers some risk of delay and changed cost. Ignoring budget constraints, we use Monte Carlo simulation of the duration of each task in the project to infer the probability distribution of the project completion time...

  5. Recent developments in low cost stable structures for space

    International Nuclear Information System (INIS)

    Thompson, T.C.; Grastataro, C.; Smith, B.G.

    1994-01-01

    The Los Alamos National Laboratory (LANL) in partnership with Composite Optics Incorporated (COI) is advancing the development of low cost, lightweight, composite technology for use in spacecraft and stable structures. The use of advanced composites is well developed, but the application of an all-composite tracker structure has never been achieved. This paper investigates the application of composite technology to the design and fabrication of an all-composite spacecraft bus for small satellites, using technology directly applicable to central tracking in a high luminosity environment. The satellite program Fast On-Orbit Recording of Transient Events (FORTE) is the second in a series of satellites to be launched into orbit for the US Department of Energy (DOE). This paper will discuss recent developments in the area of low cost composites, used for either spacecraft or ultra stable applications in high energy physics (HEP) detectors. The use of advanced composites is a relatively new development in the area of HEP. The Superconducting Super Collider (SSC) spawned a new generation of Trackers which made extensive use of graphite fiber reinforced plastic (GFRP) composite systems. LANL has designed a structure employing new fabrication technology. This concept will lower the cost of composite structures to a point that they may now compete with conventional materials. This paper will discuss the design, analysis and proposed fabrication of a small satellite structure. Central tracking structures using advanced materials capable of operating in an adverse environment typical of that found in a high luminosity collider could use identical concepts

  6. Low cost anti-soiling coatings for CSP collector mirrors and heliostats

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton Barton [ORNL; Polyzos, Georgios [ORNL; Schaeffer, Daniel A [ORNL; Lee, Dominic F [ORNL; Datskos, Panos G [ORNL

    2014-01-01

    Most concentrating solar power (CSP) facilities in the USA are located in the desert southwest of the country where land and sunshine are abundant. But one of the significant maintenance problems and cost associated with operating CSP facilities in this region is the accumulation of dust, sand and other pollutants on the collector mirrors and heliostats. In this paper we describe the development of low cost, easy to apply anti-soiling coatings based on superhydrophobic (SH) functionalized nano silica materials and polymer binders that posses the key requirements necessary to inhibit particulate deposition on and sticking to CSP mirror surfaces, and thereby significantly reducing mirror cleaning costs and facility downtime.

  7. Automated packaging platform for low-cost high-performance optical components manufacturing

    Science.gov (United States)

    Ku, Robert T.

    2004-05-01

    Delivering high performance integrated optical components at low cost is critical to the continuing recovery and growth of the optical communications industry. In today's market, network equipment vendors need to provide their customers with new solutions that reduce operating expenses and enable new revenue generating IP services. They must depend on the availability of highly integrated optical modules exhibiting high performance, small package size, low power consumption, and most importantly, low cost. The cost of typical optical system hardware is dominated by linecards that are in turn cost-dominated by transmitters and receivers or transceivers and transponders. Cost effective packaging of optical components in these small size modules is becoming the biggest challenge to be addressed. For many traditional component suppliers in our industry, the combination of small size, high performance, and low cost appears to be in conflict and not feasible with conventional product design concepts and labor intensive manual assembly and test. With the advent of photonic integration, there are a variety of materials, optics, substrates, active/passive devices, and mechanical/RF piece parts to manage in manufacturing to achieve high performance at low cost. The use of automation has been demonstrated to surpass manual operation in cost (even with very low labor cost) as well as product uniformity and quality. In this paper, we will discuss the value of using an automated packaging platform.for the assembly and test of high performance active components, such as 2.5Gb/s and 10 Gb/s sources and receivers. Low cost, high performance manufacturing can best be achieved by leveraging a flexible packaging platform to address a multitude of laser and detector devices, integration of electronics and handle various package bodies and fiber configurations. This paper describes the operation and results of working robotic assemblers in the manufacture of a Laser Optical Subassembly

  8. Autonomous Wheeled Robot Platform Testbed for Navigation and Mapping Using Low-Cost Sensors

    Science.gov (United States)

    Calero, D.; Fernandez, E.; Parés, M. E.

    2017-11-01

    This paper presents the concept of an architecture for a wheeled robot system that helps researchers in the field of geomatics to speed up their daily research on kinematic geodesy, indoor navigation and indoor positioning fields. The presented ideas corresponds to an extensible and modular hardware and software system aimed at the development of new low-cost mapping algorithms as well as at the evaluation of the performance of sensors. The concept, already implemented in the CTTC's system ARAS (Autonomous Rover for Automatic Surveying) is generic and extensible. This means that it is possible to incorporate new navigation algorithms or sensors at no maintenance cost. Only the effort related to the development tasks required to either create such algorithms needs to be taken into account. As a consequence, change poses a much small problem for research activities in this specific area. This system includes several standalone sensors that may be combined in different ways to accomplish several goals; that is, this system may be used to perform a variety of tasks, as, for instance evaluates positioning algorithms performance or mapping algorithms performance.

  9. Low Cost Rapid Response Spacecraft, (LCRRS): A Research Project in Low Cost Spacecraft Design and Fabrication in a Rapid Prototyping Environment

    Science.gov (United States)

    Spremo, Stevan; Bregman, Jesse; Dallara, Christopher D.; Ghassemieh, Shakib M.; Hanratty, James; Jackson, Evan; Kitts, Christopher; Klupar, Pete; Lindsay, Michael; Ignacio, Mas; hide

    2009-01-01

    The Low Cost Rapid Response Spacecraft (LCRRS) is an ongoing research development project at NASA Ames Research Center (ARC), Moffett Field, California. The prototype spacecraft, called Cost Optimized Test for Spacecraft Avionics and Technologies (COTSAT) is the first of what could potentially be a series of rapidly produced low-cost satellites. COTSAT has a target launch date of March 2009 on a SpaceX Falcon 9 launch vehicle. The LCRRS research system design incorporates use of COTS (Commercial Off The Shelf), MOTS (Modified Off The Shelf), and GOTS (Government Off The Shelf) hardware for a remote sensing satellite. The design concept was baselined to support a 0.5 meter Ritchey-Chretien telescope payload. This telescope and camera system is expected to achieve 1.5 meter/pixel resolution. The COTSAT team is investigating the possibility of building a fully functional spacecraft for $500,000 parts and $2,000,000 labor. Cost is dramatically reduced by using a sealed container, housing the bus and payload subsystems. Some electrical and RF designs were improved/upgraded from GeneSat-1 heritage systems. The project began in January 2007 and has yielded two functional test platforms. It is expected that a flight-qualified unit will be finished in December 2008. Flight quality controls are in place on the parts and materials used in this development with the aim of using them to finish a proto-flight satellite. For LEO missions the team is targeting a mission class requiring a minimum of six months lifetime or more. The system architecture incorporates several design features required by high reliability missions. This allows for a true skunk works environment to rapidly progress toward a flight design. Engineering and fabrication is primarily done in-house at NASA Ames with flight certifications on materials. The team currently employs seven Full Time Equivalent employees. The success of COTSATs small team in this effort can be attributed to highly cross trained

  10. Cost Comparison of Fundamentals of Laparoscopic Surgery Training Completed With Standard Fundamentals of Laparoscopic Surgery Equipment versus Low-Cost Equipment.

    Science.gov (United States)

    Franklin, Brenton R; Placek, Sarah B; Wagner, Mercy D; Haviland, Sarah M; O'Donnell, Mary T; Ritter, E Matthew

    Training for the Fundamentals of Laparoscopic Surgery (FLS) skills test can be expensive. Previous work demonstrated that training on an ergonomically different, low-cost platform does not affect FLS skills test outcomes. This study compares the average training cost with standard FLS equipment and medical-grade consumables versus training on a lower cost platform with non-medical-grade consumables. Subjects were prospectively randomized to either the standard FLS training platform (n = 19) with medical-grade consumables (S-FLS), or the low-cost platform (n = 20) with training-grade products (LC-FLS). Both groups trained to proficiency using previously established mastery learning standards on the 5 FLS tasks. The fixed and consumable cost differences were compared. Training occurred in a surgical simulation center. Laparoscopic novice medical student and resident physician health care professionals who had not completed the national FLS proficiency curriculum and who had performed less than 10 laparoscopic cases. The fixed cost of the platform was considerably higher in the S-FLS group (S-FLS, $3360; LC-FLS, $879), and the average consumable training cost was significantly higher for the S-FLS group (S-FLS, $1384.52; LC-FLS, $153.79; p group had a statistically discernable cost reduction for each consumable (Gauze $9.24 vs. $0.39, p = 0.002; EndoLoop $540.00 vs. $40.60, p group versus $1647.95 in the LC-FLS group. This study shows that the average cost to train a single trainee to proficiency using a lower fixed-cost platform and non-medical-grade equipment results in significant financial savings. A 5-resident program will save approximately $8500 annually. Residency programs should consider adopting this strategy to reduce the cost of FLS training. Published by Elsevier Inc.

  11. Low-Cost Alternative External Rotation Shoulder Brace and Review of Treatment in Acute Shoulder Dislocations

    Directory of Open Access Journals (Sweden)

    Lacy, Kyle

    2015-01-01

    Full Text Available Traumatic dislocations of the shoulder commonly present to emergency departments (EDs. Immediate closed reduction of both anterior and posterior glenohumeral dislocations is recommended and is frequently performed in the ED. Recurrence of dislocation is common, as anteroinferior labral tears (Bankart lesions are present in many anterior shoulder dislocations.14,15,18,23 Immobilization of the shoulder following closed reduction is therefore recommended; previous studies support the use of immobilization with the shoulder in a position of external rotation, for both anterior and posterior shoulder dislocations.7-11,19 In this study, we present a technique for assembling a low-cost external rotation shoulder brace using materials found in most hospitals: cotton roll, stockinette, and shoulder immobilizers. This brace is particularly suited for the uninsured patient, who lacks the financial resources to pay for a pre-fabricated brace out of pocket. We also performed a cost analysis for our low-cost external rotation shoulder brace, and a cost comparison with pre-fabricated brand name braces. At our institution, the total materials cost for our brace was $19.15. The cost of a pre-fabricated shoulder brace at our institution is $150 with markup, which is reimbursed on average at $50.40 according to our hospital billing data. The low-cost external rotation shoulder brace is therefore a more affordable option for the uninsured patient presenting with acute shoulder dislocation. [West J Emerg Med. 2015;16(1:114–120.

  12. Strategies to fight low-cost rivals.

    Science.gov (United States)

    Kumar, Nirmalya

    2006-12-01

    Companies find it challenging and yet strangely reassuring to take on opponents whose strategies, strengths, and weaknesses resemble their own. Their obsession with familiar rivals, however, has blinded them to threats from disruptive, low-cost competitors. Successful price warriors, such as the German retailer Aldi, are changing the nature of competition by employing several tactics: focusing on just one or a few consumer segments, delivering the basic product or providing one benefit better than rivals do, and backing low prices with superefficient operations. Ignoring cutprice rivals is a mistake because they eventually force companies to vacate entire market segments. Price wars are not the answer, either: Slashing prices usually lowers profits for incumbents without driving the low-cost entrants out of business. Companies take various approaches to competing against cut-price players. Some differentiate their products--a strategy that works only in certain circumstances. Others launch low-cost businesses of their own, as many airlines did in the 1990s--a so-called dual strategy that succeeds only if companies can generate synergies between the existing businesses and the new ventures, as the financial service providers HSBC and ING did. Without synergies, corporations are better off trying to transform themselves into low-cost players, a difficult feat that Ryanair accomplished in the 1990s, or into solution providers. There will always be room for both low-cost and value-added players. How much room each will have depends not only on the industry and customers' preferences, but also on the strategies traditional businesses deploy.

  13. Quality indexes for selecting control materials of the nuclear reactors

    International Nuclear Information System (INIS)

    Martinez-Val, J.M.; Pena, J.; Esteban Naudin, A.

    1981-01-01

    Quality indexes are established and valued for selecting control materials, The requirements for accomplishing such purposes are explained with detailed analysis: absortion cross section must be as high as possible, adequate reactivity evolution versus depletion, good resistance to radiation, appropiate thermal stability, mechanical resistance and ductility, chemical compatibility with the environment, good heat transfer properties, abundant in the nature and low costs. At present Westinghouse desire to commercialize hafnium as control material shows the exciting task of looking for new materials controlling nuclear reactors. (auth.)

  14. A Low Cost and High Speed Electrical Capacitance Tomography System Design

    Directory of Open Access Journals (Sweden)

    Ruzairi ABDUL RAHIM

    2010-03-01

    Full Text Available Electrical capacitance tomography system is a system which can be used for imaging industrial multi-component processes involving non-conducting fluids in pipelines. In order to make an ECT system applicable in all kinds of industries, the cost factor of building an ECT system is essential. In this research, we focus on reducing the cost of the system while not affecting the quality of the results. In the past, most of the researches in tomography system have concentrated more on the design of the sensor, and use DAS card as the interface to the PC. This will increase the cost of the system. In this case, the cost of the data acquisition system will be needed to be taken into consideration. To develop a low cost and fast data acquisition system, a Universal Serial Bus (USB is found to be the most ideal technology. In order to further reduce the cost of the ECT system, a very low cost material, aluminium plates are used as the electrodes of the system. The information obtained in the PC will be reconstructed using iterative algorithm in order to obtain a precise image of the flow in the pipeline. The information obtained from the system will be useful for the purpose of controlling the flow in the pipeline.

  15. Low Cost Benefit Suggestions.

    Science.gov (United States)

    Doyel, Hoyt W.; McMillan, John D.

    1980-01-01

    Outlines eight low-cost employee benefits and summarizes their relative advantages. The eight include a stock ownership program, a sick leave pool, flexible working hours, production incentives, and group purchase plans. (IRT)

  16. Novel Low Cost, High Reliability Wind Turbine Drivetrain

    Energy Technology Data Exchange (ETDEWEB)

    Chobot, Anthony; Das, Debarshi; Mayer, Tyler; Markey, Zach; Martinson, Tim; Reeve, Hayden; Attridge, Paul; El-Wardany, Tahany

    2012-09-13

    Clipper Windpower, in collaboration with United Technologies Research Center, the National Renewable Energy Laboratory, and Hamilton Sundstrand Corporation, developed a low-cost, deflection-compliant, reliable, and serviceable chain drive speed increaser. This chain and sprocket drivetrain design offers significant breakthroughs in the areas of cost and serviceability and addresses the key challenges of current geared and direct-drive systems. The use of gearboxes has proven to be challenging; the large torques and bending loads associated with use in large multi-MW wind applications have generally limited demonstrated lifetime to 8-10 years [1]. The large cost of gearbox replacement and the required use of large, expensive cranes can result in gearbox replacement costs on the order of $1M, representing a significant impact to overall cost of energy (COE). Direct-drive machines eliminate the gearbox, thereby targeting increased reliability and reduced life-cycle cost. However, the slow rotational speeds require very large and costly generators, which also typically have an undesirable dependence on expensive rare-earth magnet materials and large structural penalties for precise air gap control. The cost of rare-earth materials has increased 20X in the last 8 years representing a key risk to ever realizing the promised cost of energy reductions from direct-drive generators. A common challenge to both geared and direct drive architectures is a limited ability to manage input shaft deflections. The proposed Clipper drivetrain is deflection-compliant, insulating later drivetrain stages and generators from off-axis loads. The system is modular, allowing for all key parts to be removed and replaced without the use of a high capacity crane. Finally, the technology modularity allows for scalability and many possible drivetrain topologies. These benefits enable reductions in drivetrain capital cost by 10.0%, levelized replacement and O&M costs by 26.7%, and overall cost of

  17. Low Cost, Low Power, High Sensitivity Magnetometer

    Science.gov (United States)

    2008-12-01

    which are used to measure the small magnetic signals from brain. Other types of vector magnetometers are fluxgate , coil based, and magnetoresistance...concentrator with the magnetometer currently used in Army multimodal sensor systems, the Brown fluxgate . One sees the MEMS fluxgate magnetometer is...Guedes, A.; et al., 2008: Hybrid - LOW COST, LOW POWER, HIGH SENSITIVITY MAGNETOMETER A.S. Edelstein*, James E. Burnette, Greg A. Fischer, M.G

  18. 48 CFR 9904.411 - Cost accounting standard-accounting for acquisition costs of material.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Cost accounting standard-accounting for acquisition costs of material. 9904.411 Section 9904.411 Federal Acquisition Regulations System COST ACCOUNTING STANDARDS BOARD, OFFICE OF FEDERAL PROCUREMENT POLICY, OFFICE OF MANAGEMENT AND...

  19. Steering Control in a Low-Cost Driving Simulator: A Case for the Role of Virtual Vehicle Cab.

    Science.gov (United States)

    Mecheri, Sami; Lobjois, Régis

    2018-04-01

    The aim of this study was to investigate steering control in a low-cost driving simulator with and without a virtual vehicle cab. In low-cost simulators, the lack of a vehicle cab denies driver access to vehicle width, which could affect steering control, insofar as locomotor adjustments are known to be based on action-scaled visual judgments of the environment. Two experiments were conducted in which steering control with and without a virtual vehicle cab was investigated in a within-subject design, using cornering and straight-lane-keeping tasks. Driving around curves without vehicle cab information made drivers deviate more from the lane center toward the inner edge in right (virtual cab = 4 ± 19 cm; no cab = 42 ± 28 cm; at the apex of the curve, p vehicle width. This produces considerable differences in the steering trajectory. Providing a virtual vehicle cab must be encouraged for more effectively capturing drivers' steering control in low-cost simulators.

  20. Low-cost glass ionomer cement as ART sealant in permanent molars: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Daniela HESSE

    2015-01-01

    Full Text Available Clinical trials are normally performed with well-known brands of glass ionomer cement (GIC, but the cost of these materials is high for public healthcare in less-affluent communities. Given the need to research cheaper materials, it seems pertinent to investigate the retention rate of a low-cost GIC applied as atraumatic restorative treatment (ART sealants in two centers in Brazil. Four hundred and thirty-seven 6-to-8-year-old schoolchildren were selected in two cities in Brazil. The children were randomly divided into two groups, according to the tested GIC applied in the first permanent molars. The retention rate was evaluated after 3, 6 and 12 months. Kaplan-Meier survival analysis and the log-rank test were performed. The variables were tested for association with sealant longevity, using logistic regression analyses (α = 5%. The retention rate of sealants after 12 months was 19.1%. The high-cost GIC brand presented a 2-fold-more-likely-to-survive rate than the low-cost brand (p < 0.001. Significant difference was also found between the cities where the treatments were performed, in that Barueri presented a higher sealant survival rate than Recife (p < 0.001. The retention rate of a low-cost GIC sealant brand was markedly lower than that of a well-known GIC sealant brand.

  1. Characterization of low cost orally disintegrating film (ODF

    Directory of Open Access Journals (Sweden)

    Riana Jordao Barrozo Heinemann

    Full Text Available Abstract Orally disintegrating films (ODF produced with a hydrophilic polymers are a thin and flexible material, wich disintegrate in contact with saliva and can vehicule bioactive materials. The aim of this study was to develop and characterize ODF formulation with potential to act as a carrier for different bioactives compounds prepared with low cost polymers. Gelatin (G, starch (S, carboxymethyl cellulose (CMC and their blends (G:S, CMC:S, CMC:G, and CMC:S:G were prepared by casting technique with sorbitol as a plasticizer. The formulations were characterized in terms of visual aspects, FTIR, SEM, mechanical characteristics, hygroscopicity, dissolution (in vitro and in vivo and swelling index. FTIR analysis revealed that no interaction between polymers in ODF was observed. By SEM, it was possible to observe differences on surfaces by different polymers. ODF made with CMC and CMC:G presented higher water absorption (P<0.05 and higher swelling index probably due to the higher water affinity by CMC. Formulations with G, CMC:G and CMC:S:G presented the highest values of tensile strength (P<0.05. ODF prepared with S alone presented the highest disintegration time, the others formulations showed in vitro dissolution ranging from 5.22 to 8.50 min, while in vivo dissolution time ranged from 2.15 to 3.38 min. By the formulations made with G and blend of G:S and CMC:S:G it is possible to develop a ODF of low cost with desired characteristics being an alternative vehicle to deliver functional compounds for continuous use.

  2. People with chronic low back pain have poorer balance than controls in challenging tasks.

    Science.gov (United States)

    da Silva, Rubens A; Vieira, Edgar R; Fernandes, Karen B P; Andraus, Rodrigo A; Oliveira, Marcio R; Sturion, Leandro A; Calderon, Mariane G

    2018-06-01

    To compare the balance of individuals with and without chronic low back pain during five tasks. The participants were 20 volunteers, 10 with and 10 without nonspecific chronic low back pain, mean age 34 years, 50% females. The participants completed the following balance tasks on a force platform in random order: (1) two-legged stance with eyes open, (2) two-legged stance with eyes closed, (3) semi-tandem with eyes open, (4) semi-tandem with eyes closed and (5) one-legged stance with eyes open. The participants completed three 60-s trials of tasks 1-4, and three 30-s trials of task 5 with 30-s rests between trials. The center of pressure area, velocity and frequency in the antero-posterior and medio-lateral directions were computed during each task, and compared between groups and tasks. Participants with chronic low back pain presented significantly larger center of pressure area and higher velocity than the healthy controls (p chronic low back pain group than two-legged stance tasks 1 and 2 (effect size >1.37 vs. effect size chronic low back pain presented poorer postural control using center of pressure measurements than the healthy controls, mainly during more challenging balance tasks such as semi-tandem and one-legged stance conditions. Implications for Rehabilitation People with chronic low back had poorer balance than those without it. Balance tasks need to be sensitive to capture impairments. Balance assessments during semi-tandem and one-legged stance were the most sensitive tasks to determine postural control deficit in people with chronic low back. Balance assessment should be included during rehabilitation programs for individuals with chronic low back pain for better clinical decision making related to balance re-training as necessary.

  3. Using 3D Printing (Additive Manufacturing) to Produce Low-Cost Simulation Models for Medical Training.

    Science.gov (United States)

    Lichtenberger, John P; Tatum, Peter S; Gada, Satyen; Wyn, Mark; Ho, Vincent B; Liacouras, Peter

    2018-03-01

    This work describes customized, task-specific simulation models derived from 3D printing in clinical settings and medical professional training programs. Simulation models/task trainers have an array of purposes and desired achievements for the trainee, defining that these are the first step in the production process. After this purpose is defined, computer-aided design and 3D printing (additive manufacturing) are used to create a customized anatomical model. Simulation models then undergo initial in-house testing by medical specialists followed by a larger scale beta testing. Feedback is acquired, via surveys, to validate effectiveness and to guide or determine if any future modifications and/or improvements are necessary. Numerous custom simulation models have been successfully completed with resulting task trainers designed for procedures, including removal of ocular foreign bodies, ultrasound-guided joint injections, nerve block injections, and various suturing and reconstruction procedures. These task trainers have been frequently utilized in the delivery of simulation-based training with increasing demand. 3D printing has been integral to the production of limited-quantity, low-cost simulation models across a variety of medical specialties. In general, production cost is a small fraction of a commercial, generic simulation model, if available. These simulation and training models are customized to the educational need and serve an integral role in the education of our military health professionals.

  4. The influence of management and construction methods in the repair costs of Spain’s low-volume road network

    Directory of Open Access Journals (Sweden)

    Eutiquio Gallego

    2016-06-01

    Full Text Available This paper describes the entire process of the implementation of the Spanish low volume road network, including the design criteria, the construction techniques and the management policies during all the periods. The current situation of low volume roads in Spain was analyzed with respect to the legal framework and their actual condition. In addition, the budget required for the repair of 41 low volume roads throughout Spain was calculated in order to statistically analyze the influence of the pavement materials and the period of construction. The main conclusions were that low volume roads constructed during the 1970´s are currently those in the best state of repair and those requiring the lower repair costs, even lower than those constructed after 1980´s. In addition, low volume roads constructed with higher quality materials and using standardized techniques required five times lower repair costs than those made of lower quality materials.

  5. Low-Cost 3D Printing Orbital Implant Templates in Secondary Orbital Reconstructions.

    Science.gov (United States)

    Callahan, Alison B; Campbell, Ashley A; Petris, Carisa; Kazim, Michael

    Despite its increasing use in craniofacial reconstructions, three-dimensional (3D) printing of customized orbital implants has not been widely adopted. Limitations include the cost of 3D printers able to print in a biocompatible material suitable for implantation in the orbit and the breadth of available implant materials. The authors report the technique of low-cost 3D printing of orbital implant templates used in complex, often secondary, orbital reconstructions. A retrospective case series of 5 orbital reconstructions utilizing a technique of 3D printed orbital implant templates is presented. Each patient's Digital Imaging and Communications in Medicine data were uploaded and processed to create 3D renderings upon which a customized implant was designed and sent electronically to printers open for student use at our affiliated institutions. The mock implants were sterilized and used intraoperatively as a stencil and mold. The final implant material was chosen by the surgeons based on the requirements of the case. Five orbital reconstructions were performed with this technique: 3 tumor reconstructions and 2 orbital fractures. Four of the 5 cases were secondary reconstructions. Molded Medpor Titan (Stryker, Kalamazoo, MI) implants were used in 4 cases and titanium mesh in 1 case. The stenciled and molded implants were adjusted no more than 2 times before anchored in place (mean 1). No case underwent further revision. The technique and cases presented demonstrate 1) the feasibility and accessibility of low-cost, independent use of 3D printing technology to fashion patient-specific implants in orbital reconstructions, 2) the ability to apply this technology to the surgeon's preference of any routinely implantable material, and 3) the utility of this technique in complex, secondary reconstructions.

  6. Residual standard deviation: Validation of a new measure of dual-task cost in below-knee prosthesis users.

    Science.gov (United States)

    Howard, Charla L; Wallace, Chris; Abbas, James; Stokic, Dobrivoje S

    2017-01-01

    We developed and evaluated properties of a new measure of variability in stride length and cadence, termed residual standard deviation (RSD). To calculate RSD, stride length and cadence are regressed against velocity to derive the best fit line from which the variability (SD) of the distance between the actual and predicted data points is calculated. We examined construct, concurrent, and discriminative validity of RSD using dual-task paradigm in 14 below-knee prosthesis users and 13 age- and education-matched controls. Subjects walked first over an electronic walkway while performing separately a serial subtraction and backwards spelling task, and then at self-selected slow, normal, and fast speeds used to derive the best fit line for stride length and cadence against velocity. Construct validity was demonstrated by significantly greater increase in RSD during dual-task gait in prosthesis users than controls (group-by-condition interaction, stride length p=0.0006, cadence p=0.009). Concurrent validity was established against coefficient of variation (CV) by moderate-to-high correlations (r=0.50-0.87) between dual-task cost RSD and dual-task cost CV for both stride length and cadence in prosthesis users and controls. Discriminative validity was documented by the ability of dual-task cost calculated from RSD to effectively differentiate prosthesis users from controls (area under the receiver operating characteristic curve, stride length 0.863, p=0.001, cadence 0.808, p=0.007), which was better than the ability of dual-task cost CV (0.692, 0.648, respectively, not significant). These results validate RSD as a new measure of variability in below-knee prosthesis users. Future studies should include larger cohorts and other populations to ascertain its generalizability. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Low-cost satellite mechanical design and construction

    Science.gov (United States)

    Boisjolie-Gair, Nathaniel; Straub, Jeremy

    2017-05-01

    This paper presents a discussion of techniques for low-cost design and construction of a CubeSat mechanical structure that can serve as a basis for academic programs and a starting point for government, military and commercial large-scale sensing networks, where the cost of each node must be minimized to facilitate system affordability and lower the cost and associated risk of losing any node. Spacecraft Design plays a large role in manufacturability. An intentionally simplified mechanical design is presented which reduces machining costs, as compared to more intricate designs that were considered. Several fabrication approaches are evaluated relative to the low-cost goal.

  8. A low-cost iron-cadmium redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Jiang, H. R.

    2016-10-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies that offer a potential solution to the intermittency of renewable sources such as wind and solar. The prerequisite for widespread utilization of RFBs is low capital cost. In this work, an iron-cadmium redox flow battery (Fe/Cd RFB) with a premixed iron and cadmium solution is developed and tested. It is demonstrated that the coulombic efficiency and energy efficiency of the Fe/Cd RFB reach 98.7% and 80.2% at 120 mA cm-2, respectively. The Fe/Cd RFB exhibits stable efficiencies with capacity retention of 99.87% per cycle during the cycle test. Moreover, the Fe/Cd RFB is estimated to have a low capital cost of 108 kWh-1 for 8-h energy storage. Intrinsically low-cost active materials, high cell performance and excellent capacity retention equip the Fe/Cd RFB to be a promising solution for large-scale energy storage systems.

  9. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    International Nuclear Information System (INIS)

    Graham, David E.; Moon, Ji-Won; Armstrong, Beth L.; Datskos, Panos G.; Duty, Chad E.; Gresback, Ryan; Ivanov, Ilia N.; Jacobs, Christopher B.; Jellison, Gerald Earle; Jang, Gyoung Gug; Joshi, Pooran C.; Jung, Hyunsung; Meyer, Harry M.; Phelps, Tommy

    2015-01-01

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  10. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graham, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moon, Ji-Won [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Datskos, Panos G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gresback, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Ilia N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobs, Christopher B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jellison, Gerald Earle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jang, Gyoung Gug [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joshi, Pooran C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jung, Hyunsung [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Phelps, Tommy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  11. Design, construction and testing of a low-cost flat plate solar energy ...

    African Journals Online (AJOL)

    A low-cost flat plate solar energy collector has been designed and constructed with locally available materials such as mild steel and black paint of absorptance 0.94. On testing, an average daily efficiency of 55.6% was obtained. The methods are simple and illustrate the fact that construction of efficient collectors are ...

  12. A task shifting approach to primary mental health care for adults in South Africa: human resource requirements and costs for rural settings.

    Science.gov (United States)

    Petersen, Inge; Lund, Crick; Bhana, Arvin; Flisher, Alan J

    2012-01-01

    BACKGROUND A recent situational analysis suggests that post-apartheid South Africa has made some gains with respect to the decentralization and integration of mental health into primary health care. However, service gaps within and between provinces remain, with rural areas particularly underserved. Aim This study aims to calculate and cost a hypothetical human resource mix required to populate a framework for district adult mental health services. This framework embraces the concept of task shifting, where dedicated low cost mental health workers at the community and clinic levels supplement integrated care. METHOD The expected number and cost of human resources was based on: (a) assumptions of service provision derived from existing services in a sub-district demonstration site and a literature review of evidence-based packages of care in low- and middle-income countries; and (b) assumptions of service needs derived from other studies. RESULTS For a nominal population of 100 000, minimal service coverage estimates of 50% for schizophrenia, bipolar affective disorder, major depressive disorder and 30% for post-traumatic stress disorder and maternal depression would require that the primary health care staffing package include one post for a mental health counsellor or equivalent and 7.2 community mental health worker posts. The cost of these personnel amounts to £28 457 per 100 000 population. This cost can be offset by a reduction in the number of other specialist and non-specialist health personnel required to close service gaps at primary care level. CONCLUSION The adoption of the concept of task shifting can substantially reduce the expected number of health care providers otherwise needed to close mental health service gaps at primary health care level in South Africa at minimal cost and may serve as a model for other middle-income countries.

  13. A self-synchronizing and low-cost structural health monitoring scheme based on zero crossing detection

    International Nuclear Information System (INIS)

    Guyomar, Daniel; Lallart, Mickaël; Li, Kaixiang; Gauthier, Jean-Yves; Monnier, Thomas

    2010-01-01

    Owing to their high specific strength and stiffness, composite materials are increasingly being used in aeronautics and astronautics, but such materials are vulnerable to impact damage and delamination. Structural health monitoring (SHM) techniques have been developed for detecting such defects in recent years. In situ, self-powered and low-cost SHM systems are a developmental tendency of this technique. This paper introduces the principles of a low-cost and self-synchronizing scheme for SHM. Based on the Lamb wave interactions with the structure, the proposed technique relies on detecting zero crossing time instants in order to derive an estimation of the structural state. It is shown that such a method provides a very simple and low-cost way to assess the structural integrity while being computationally efficient. Experimental investigations carried out on a composite plate with an increasing penetration hold validating the proposed technique show its effectiveness for detecting the damage. The proposed approach has also been applied on an aircraft outboard flap to detect the impact damage. The robustness is discussed versus time-shift and magnitude jitter assumptions by using the plate case. The temperature effect is also considered by defining a coefficient array in order to compensate for the material property changes. Finally, an embedded implementation of such a SHM technique is presented by using the proposed damage index

  14. Developmental changes in using verbal self-cueing in task-switching situations: the impact of task practice and task-sequencing demands

    Science.gov (United States)

    Kray, Jutta; Gaspard, Hanna; Karbach, Julia; Blaye, Agnès

    2013-01-01

    In this study we examined whether developmental changes in using verbal self-cueing for task-goal maintenance are dependent on the amount of task practice and task-sequencing demands. To measure task-goal maintenance we applied a switching paradigm in which children either performed only task A or B in single-task blocks or switched between them on every second trial in mixed-task blocks. Task-goal maintenance was determined by comparing the performance between both blocks (mixing costs). The influence of verbal self-cueing was measured by instructing children to either name the next task aloud or not to verbalize during task preparation. Task-sequencing demands were varied between groups whereas one group received spatial task cues to support keeping track of the task sequence, while the other group did not. We also varied by the amount of prior practice in task switching while one group of participants practiced task switching first, before performing the task naming in addition, and the other group did it vice versa. Results of our study investigating younger (8–10 years) and older children (11–13 years) revealed no age differences in beneficial effects of verbal self-cueing. In line with previous findings, children showed reduced mixing costs under task-naming instructions and under conditions of low task-sequence demands (with the presence of spatial task cues). Our results also indicated that these benefits were only obtained for those groups of children that first received practice in task switching alone with no additional verbalization instruction. These findings suggest that internal task-cueing strategies can be efficiently used in children but only if they received prior practice in the underlying task so that demands on keeping and coordinating various instructions are reduced. Moreover, children benefitted from spatial task cues for better task-goal maintenance only if no verbal task-cueing strategy was introduced first. PMID:24381566

  15. IFMIF (International Fusion Materials Irradiation Facility) key element technology phase task description

    Energy Technology Data Exchange (ETDEWEB)

    Ida, M.; Nakamura, H.; Sugimoto, M.; Yutani, T.; Takeuchi, H. [eds.] [Japan Atomic Energy Research Inst., Tokai Research Establishment, Fusion Neutron Laboratory, Tokai, Ibaraki (Japan)

    2000-08-01

    In 2000, a 3 year Key Element technology Phase (KEP) of the International Fusion Materials Irradiation Facility (IFMIF) has been initiated to reduce the key technology risk factors needed to achieve continuous wave (CW) beam with the desired current and energy and to reach the corresponding power handling capabilities in the liquid lithium target system. In the KEP, the IFMIF team (EU, Japan, Russian Federation, US) will perform required tasks. The contents of the tasks are described in the task description sheet. As the KEP tasks, the IFMIF team have proposed 27 tasks for Test Facilities, 12 tasks for Target, 26 tasks for Accelerator and 18 tasks for Design Integration. The task description by RF is not yet available. The task items and task descriptions may be added or revised with the progress of KEP activities. These task description sheets have been compiled in this report. After 3 years KEP, the results of the KEP tasks will be reviewed. Following the KEP, 3 years Engineering Validation Phase (EVP) will continue for IFMIF construction. (author)

  16. Low Cost Integrated Navigation System for Unmanned Vessel

    Directory of Open Access Journals (Sweden)

    Yang Changsong

    2017-11-01

    Full Text Available Large errors of low-cost MEMS inertial measurement unit (MIMU lead to huge navigation errors, even wrong navigation information. An integrated navigation system for unmanned vessel is proposed. It consists of a low-cost MIMU and Doppler velocity sonar (DVS. This paper presents an integrated navigation method, to improve the performance of navigation system. The integrated navigation system is tested using simulation and semi-physical simulation experiments, whose results show that attitude, velocity and position accuracy has improved awfully, giving exactly accurate navigation results. By means of the combination of low-cost MIMU and DVS, the proposed system is able to overcome fast drift problems of the low cost IMU.

  17. ITER task T48 (1994); low-inventory cryogenic distillation tests

    Energy Technology Data Exchange (ETDEWEB)

    Woodall, K; Robins, J; Bellamy, D [Ontario Hydro, Toronto, ON (Canada). Research Div.; Sood, S; Fong, C [Ontario Hydro, Toronto, ON (Canada)

    1995-01-01

    Previous work at Ontario Hydro Technologies (OHT) had shown that small cryogenic columns could be stably controlled and designed to much lower inventories than had been previously thought possible. Among the results were measurements of Height-of-Equivalent-Theoretical-Plate (HETP) versus holdup for Heli-Pak A and B in columns up to 20 mm diameter. ITER cryogenic distillation column designs suggest that the final high-tritium columns could be 30-70 mm diameter. The objective of this ITER task was to design and construct a column section for demonstration of scale-up of low inventory cryogenic distillation. The experiments were to be carried out in an upgraded Cryogenics Distillation Laboratory at OHT, in the facility used for previous low-inventory column tests. The ITER scaled-up test system as the following characteristics: 55 W condenser capacity; 30 mm diameter column loaded with Helipak B; 1500 mm packed height. The first task was to design and build the scaled-up test facility. In order to reduce costs, it was necessary to use existing 30-35 W helium refrigerators. Therefore, to provide 60-W duty to the scaled-up column, the two refrigerators had to be well coupled thermally, but not mechanically, since the refrigerator cold heads have very thin shells. The solution was to attach the column firmly to one cold head and indirectly to an adjacent cold head through flexible copper braid. Several iterations were required to obtain the desired good heat transfer with flexible mechanical connection. This facility is now operational and ready to begin measurements on the 30 mm column. Also during 1994, the Princeton Tritium Processing System (TPS) was installed and commissioned. The results from this experience are relevant to the ITER distillation system. 2 refs., 10 figs.

  18. ITER task T48 (1994); low-inventory cryogenic distillation tests

    International Nuclear Information System (INIS)

    Woodall, K.; Robins, J.; Bellamy, D.

    1995-01-01

    Previous work at Ontario Hydro Technologies (OHT) had shown that small cryogenic columns could be stably controlled and designed to much lower inventories than had been previously thought possible. Among the results were measurements of Height-of-Equivalent-Theoretical-Plate (HETP) versus holdup for Heli-Pak A and B in columns up to 20 mm diameter. ITER cryogenic distillation column designs suggest that the final high-tritium columns could be 30-70 mm diameter. The objective of this ITER task was to design and construct a column section for demonstration of scale-up of low inventory cryogenic distillation. The experiments were to be carried out in an upgraded Cryogenics Distillation Laboratory at OHT, in the facility used for previous low-inventory column tests. The ITER scaled-up test system as the following characteristics: 55 W condenser capacity; 30 mm diameter column loaded with Helipak B; 1500 mm packed height. The first task was to design and build the scaled-up test facility. In order to reduce costs, it was necessary to use existing 30-35 W helium refrigerators. Therefore, to provide 60-W duty to the scaled-up column, the two refrigerators had to be well coupled thermally, but not mechanically, since the refrigerator cold heads have very thin shells. The solution was to attach the column firmly to one cold head and indirectly to an adjacent cold head through flexible copper braid. Several iterations were required to obtain the desired good heat transfer with flexible mechanical connection. This facility is now operational and ready to begin measurements on the 30 mm column. Also during 1994, the Princeton Tritium Processing System (TPS) was installed and commissioned. The results from this experience are relevant to the ITER distillation system. 2 refs., 10 figs

  19. Potential impact of task-shifting on costs of antiretroviral therapy and physician supply in Uganda

    Directory of Open Access Journals (Sweden)

    Stergachis Andy

    2009-10-01

    Full Text Available Abstract Background Lower-income countries face severe health worker shortages. Recent evidence suggests that this problem can be mitigated by task-shifting--delegation of aspects of health care to less specialized health workers. We estimated the potential impact of task-shifting on costs of antiretroviral therapy (ART and physician supply in Uganda. The study was performed at the Infectious Diseases Institute (IDI clinic, a large urban HIV clinic. Methods We built an aggregate cost-minimization model from societal and Ministry of Health (MOH perspectives. We compared physician-intensive follow-up (PF, the standard of care, with two methods of task-shifting: nurse-intensive follow-up (NF and pharmacy-worker intensive follow-up (PWF. We estimated personnel and patient time use using a time-motion survey. We obtained unit costs from IDI and the literature. We estimated physician personnel impact by calculating full time equivalent (FTE physicians saved. We made national projections for Uganda. Results Annual mean costs of follow-up per patient were $59.88 (societal and $31.68 (medical for PF, $44.58 (societal and $24.58 (medical for NF and $18.66 (societal and $10.5 (medical for PWF. Annual national societal ART follow-up expenditure was $5.92 million using PF, $4.41 million using NF and $1.85 million using PWF, potentially saving $1.51 million annually by using NF and $4.07 million annually by using PWF instead of PF. Annual national MOH expenditure was $3.14 million for PF, $2.43 million for NF and $1.04 for PWF, potentially saving $0.70 million by using NF and $2.10 million by using PWF instead of PF. Projected national physician personnel needs were 108 FTE doctors to implement PF and 18 FTE doctors to implement NF or PWF. Task-shifting from PF to NF or PWF would potentially save 90 FTE physicians, 4.1% of the national physician workforce or 0.3 FTE physicians per 100,000 population. Conclusion Task-shifting results in substantial cost and

  20. Cost-benefit analysis of decreased ventilation rates and radon exhalation from building materials

    International Nuclear Information System (INIS)

    Ericson, S.O.

    1984-01-01

    Decreased ventilation, achieved by weather stripping and other tightening measures, is the most cost effective way to energy conservation. A very low investment can result in a considerable decrease in ventilation rate. For a typical detached house in Sweden this can be equivalent to a decrease in oil consumption of 0.5 m 3 . At present price this corresponds to a saving of SEK 1200, 150 US dollars per annum. The contribution of the building materials to the concentration of radon in indoor air is approximately the inverse to air exchange rate. For a small change in ventilation rate and cost, in SEK/man Sv or US dollar/man Sv, is a function of ventilation rate, exhalation from building materials, the ratio between surface of walls, floor and ceiling to the volume of air. Thus, it is possible to find the specific ventilation rate where the marginal cost for a small increase in ventilation rate and the marginal reduction in radon concentration will give a specific amount of money for each man Sv. Examples are given. Conclusions are that for most building materials in a climate like the Swedish, there are other factors than exhalation of radon from building materials that sets the lower limit of recommendable ventilation rate. (Author)

  1. Report of the Material Control and Material Accounting Task Force: the role of material control and material accounting in the safeguards program

    International Nuclear Information System (INIS)

    1978-03-01

    Results are presented of NRC Task Force investigations to identify the functions of a safeguards program in relation to the NRC safeguards objective, define the role and objectives of material control and material accounting systems within that program, develop goals for material control and material accounting based on those roles and objectives, assess current material control and material accounting requirements and performance levels in the light of the goals, and recommend future actions needed to attain the proposed goals. It was found that the major contribution of material accounting to the safeguards program is in support of the assurance function. It also can make secondary contributions to the prevention and response functions. In the important area of loss detection, a response measure, it is felt that limitations inherent in material accounting for some fuel cycle operations limit its ability to operate as a primary detection system to detect a five formula kilogram loss with high assurance (defined by the Task Force as a probability of detection of 90 percent or more) and that, in those cases, material accounting can act only in a backup role. Physical security and material control must make the primary contributions to the prevention and detection of theft, so that safeguards do not rely primarily for detection capabilities on material accounting. There are several areas of accounting that require more emphasis than is offered by the current regulatory base. These areas include: timely shipper-receiver difference analysis and reconciliation; a demand physical inventory capability; improved loss localization;discard measurement verification; timely recovery of scrap; improved measurement and record systems; and limits on cumulative inventory differences and shipper-receiver differences. An increased NRC capability for monitoring and analyzing licensee accounting data and more timely and detailed submittals of data to NRC by licensees are recommended

  2. Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires

    Energy Technology Data Exchange (ETDEWEB)

    Tarsa, Eric [Cree, Inc., Goleta, CA (United States)

    2015-08-31

    During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimally distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.

  3. The effect of episodic retrieval on inhibition in task switching.

    Science.gov (United States)

    Grange, James A; Kowalczyk, Agnieszka W; O'Loughlin, Rory

    2017-08-01

    Inhibition in task switching is inferred from n-2 repetition costs: the observation that ABA task switching sequences are responded to slower than CBA sequences. This is thought to reflect the persisting inhibition of Task A, which slows reactivation attempts. Mayr (2002) reported an experiment testing a critical noninhibitory account of this effect, namely episodic retrieval: If the trial parameters for Task A match across an ABA sequence, responses should be facilitated because of priming from episodic retrieval; a cost would occur if trial parameters mismatch. In a rule-switching paradigm, Mayr reported no significant difference in n-2 repetition cost when the trial parameters repeated or switched across an ABA sequence, in clear contrast to the episodic retrieval account. What remains unclear is whether successful episodic retrieval modulates the n-2 repetition cost. Across 3 experiments-including a close replication of Mayr-we find clear evidence of reduced n-2 task repetition costs when episodic retrieval is controlled. We find that the effect of episodic retrieval on the n-2 task repetition cost is increased when the cue-task relationship is made more abstract, suggesting the effect is because of interference in establishing the relevant attentional set. We also demonstrate that the episodic retrieval effect is not influenced by retrieval of low-level, perceptual, elements. Together, the data suggest the n-2 task repetition cost-typically attributable to an inhibitory mechanism-also reflects episodic retrieval effects. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Reliable, Low-Cost, Low-Weight, Non-Hermetic Coating for MCM Applications

    Science.gov (United States)

    Jones, Eric W.; Licari, James J.

    2000-01-01

    Through an Air Force Research Laboratory sponsored STM program, reliable, low-cost, low-weight, non-hermetic coatings for multi-chip-module(MCK applications were developed. Using the combination of Sandia Laboratory ATC-01 test chips, AvanTeco's moisture sensor chips(MSC's), and silicon slices, we have shown that organic and organic/inorganic overcoatings are reliable and practical non-hermetic moisture and oxidation barriers. The use of the MSC and unpassivated ATC-01 test chips provided rapid test results and comparison of moisture barrier quality of the overcoatings. The organic coatings studied were Parylene and Cyclotene. The inorganic coatings were Al2O3 and SiO2. The choice of coating(s) is dependent on the environment that the device(s) will be exposed to. We have defined four(4) classes of environments: Class I(moderate temperature/moderate humidity). Class H(high temperature/moderate humidity). Class III(moderate temperature/high humidity). Class IV(high temperature/high humidity). By subjecting the components to adhesion, FTIR, temperature-humidity(TH), pressure cooker(PCT), and electrical tests, we have determined that it is possible to reduce failures 50-70% for organic/inorganic coated components compared to organic coated components. All materials and equipment used are readily available commercially or are standard in most semiconductor fabrication lines. It is estimated that production cost for the developed technology would range from $1-10/module, compared to $20-200 for hermetically sealed packages.

  5. Low Cost Lithography Tool for High Brightness LED Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Hawryluk; Emily True

    2012-06-30

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  6. Design Of A Low Cost Anthropomorphic Robot Hand For Industrial Applications

    Science.gov (United States)

    Allen, P.; Raleigh, B.

    2009-11-01

    Autonomous grasping systems using anthropomorphic robotic end effectors have many applications, and the potential of such devices has inspired researchers to develop many types of grasping systems over the past 30 years. Their research has yielded significant advances in end effector dexterity and functionality. However, due to the cost and complexity associated with such devices, their role has been largely confined to that of being research tools in laboratories. Industry, by contrast, has largely opted for simple, single task, devices. This paper presents a novel low cost anthropomorphic robotic end effector, and in particular the design characteristics that make it more applicable to industrial application. The design brief was (i) to be broadly similar to the human hand in terms of size and performance (ii) be low cost (less than €5000 for the system) and (iii) to provide sufficient performance to allow use in industrial applications. Consisting of three fingers and an opposing thumb, the robotic hand developed has a total of 12 automated degrees of freedom. Another 4 degrees of freedom can be set manually. The specific design of the fingers and thumb, together with the drive arrangement utilizing synchronous belts, yields a simplified kinematics solution for the control of movement. The modular nature of the design is extended also to the palm, which can be easily modified to produce different overall work envelopes for the hand. The drive system and grasping strategies are also detailed.

  7. Ultra-low cost and highly stable hydrated FePO4 anodes for aqueous sodium-ion battery

    Science.gov (United States)

    Wang, Yuesheng; Feng, Zimin; Laul, Dharminder; Zhu, Wen; Provencher, Manon; Trudeau, Michel L.; Guerfi, Abdelbast; Zaghib, Karim

    2018-01-01

    The growing demands for large-scale energy storage devices have put a spotlight on aqueous sodium-ion batteries, which possess a number of highly desirable features, such as sodium abundance, low cost and safety over organic electrolytes. While lots of cathode materials were reported, only few candidate materials like active carbon and NaTi2(PO4)3 were proposed as anodes. It is a long-standing common knowledge that the low cost, non-toxicity, and highly reversible FePO4·2H2O is known as an attractive cathode material for non-aqueous lithium- and sodium-ion batteries, but we demonstrate for the first time that nano-size non-carbon coated amorphous FePO4·2H2O can be used as the anode for an aqueous sodium-ion battery. Its optimum operating voltage (∼2.75 V vs. Na+/Na) avoids hydrogen evolution. The capacity is as high as 80 mAh/g at a rate of 0.5 C in a three-electrode system. The full cell, using the Na0.44MnO2 as cathode, maintained 90% of the capacity at 300 cycles at a rate of 3 C. The calculations also show that its volume change during the intercalation of Na ions is below 2%. Its low cost, high safety, along with its outstanding electrochemical performance makes amorphous FePO4·2H2O a promising anode material for aqueous sodium-ion batteries.

  8. ISS Operations Cost Reductions Through Automation of Real-Time Planning Tasks

    Science.gov (United States)

    Hall, Timothy A.

    2011-01-01

    In 2008 the Johnson Space Center s Mission Operations Directorate (MOD) management team challenged their organization to find ways to reduce the costs of International Space station (ISS) console operations in the Mission Control Center (MCC). Each MOD organization was asked to identify projects that would help them attain a goal of a 30% reduction in operating costs by 2012. The MOD Operations and Planning organization responded to this challenge by launching several software automation projects that would allow them to greatly improve ISS console operations and reduce staffing and operating costs. These projects to date have allowed the MOD Operations organization to remove one full time (7 x 24 x 365) ISS console position in 2010; with the plan of eliminating two full time ISS console support positions by 2012. This will account for an overall 10 EP reduction in staffing for the Operations and Planning organization. These automation projects focused on utilizing software to automate many administrative and often repetitive tasks involved with processing ISS planning and daily operations information. This information was exchanged between the ground flight control teams in Houston and around the globe, as well as with the ISS astronaut crew. These tasks ranged from managing mission plan changes from around the globe, to uploading and downloading information to and from the ISS crew, to even more complex tasks that required multiple decision points to process the data, track approvals and deliver it to the correct recipient across network and security boundaries. The software solutions leveraged several different technologies including customized web applications and implementation of industry standard web services architecture between several planning tools; as well as a engaging a previously research level technology (TRL 2-3) developed by Ames Research Center (ARC) that utilized an intelligent agent based system to manage and automate file traffic flow

  9. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  10. IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy; Work Package 1 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Schwabe, P.; Lensink, S.; Hand, M.

    2011-03-01

    The lifetime cost of wind energy is comprised of a number of components including the investment cost, operation and maintenance costs, financing costs, and annual energy production. Accurate representation of these cost streams is critical in estimating a wind plant's cost of energy. Some of these cost streams will vary over the life of a given project. From the outset of project development, investors in wind energy have relatively certain knowledge of the plant's lifetime cost of wind energy. This is because a wind energy project's installed costs and mean wind speed are known early on, and wind generation generally has low variable operation and maintenance costs, zero fuel cost, and no carbon emissions cost. Despite these inherent characteristics, there are wide variations in the cost of wind energy internationally, which is the focus of this report. Using a multinational case-study approach, this work seeks to understand the sources of wind energy cost differences among seven countries under International Energy Agency (IEA) Wind Task 26 - Cost of Wind Energy. The participating countries in this study include Denmark, Germany, the Netherlands, Spain, Sweden, Switzerland, and the United States. Due to data availability, onshore wind energy is the primary focus of this study, though a small sample of reported offshore cost data is also included.

  11. Robust Spectrum Sensing Demonstration Using a Low-Cost Front-End Receiver

    Directory of Open Access Journals (Sweden)

    Daniele Borio

    2015-01-01

    Full Text Available Spectrum Sensing (SS is an important function in Cognitive Radio (CR to detect primary users. The design of SS algorithms is one of the most challenging tasks in CR and requires innovative hardware and software solutions to enhance detection probability and minimize low false alarm probability. Although several SS algorithms have been developed in the specialized literature, limited work has been done to practically demonstrate the feasibility of this function on platforms with significant computational and hardware constraints. In this paper, SS is demonstrated using a low cost TV tuner as agile front-end for sensing a large portion of the Ultra-High Frequency (UHF spectrum. The problems encountered and the limitations imposed by the front-end are analysed along with the solutions adopted. Finally, the spectrum sensor developed is implemented on an Android device and SS implementation is demonstrated using a smartphone.

  12. Project-based physics labs using low-cost open-source hardware

    Science.gov (United States)

    Bouquet, F.; Bobroff, J.; Fuchs-Gallezot, M.; Maurines, L.

    2017-03-01

    We describe a project-based physics lab, which we proposed to third-year university students. These labs are based on new open-source low-cost equipment (Arduino microcontrollers and compatible sensors). Students are given complete autonomy: they develop their own experimental setup and study the physics topic of their choice. The goal of these projects is to let students to discover the reality of experimental physics. Technical specifications of the acquisition material and case studies are presented for practical implementation in other universities.

  13. Time-driven activity-based costing of low-dose-rate and high-dose-rate brachytherapy for low-risk prostate cancer.

    Science.gov (United States)

    Ilg, Annette M; Laviana, Aaron A; Kamrava, Mitchell; Veruttipong, Darlene; Steinberg, Michael; Park, Sang-June; Burke, Michael A; Niedzwiecki, Douglas; Kupelian, Patrick A; Saigal, Christopher

    Cost estimates through traditional hospital accounting systems are often arbitrary and ambiguous. We used time-driven activity-based costing (TDABC) to determine the true cost of low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy for prostate cancer and demonstrate opportunities for cost containment at an academic referral center. We implemented TDABC for patients treated with I-125, preplanned LDR and computed tomography based HDR brachytherapy with two implants from initial consultation through 12-month followup. We constructed detailed process maps for provision of both HDR and LDR. Personnel, space, equipment, and material costs of each step were identified and used to derive capacity cost rates, defined as price per minute. Each capacity cost rate was then multiplied by the relevant process time and products were summed to determine total cost of care. The calculated cost to deliver HDR was greater than LDR by $2,668.86 ($9,538 vs. $6,869). The first and second HDR treatment day cost $3,999.67 and $3,955.67, whereas LDR was delivered on one treatment day and cost $3,887.55. The greatest overall cost driver for both LDR and HDR was personnel at 65.6% ($4,506.82) and 67.0% ($6,387.27) of the total cost. After personnel costs, disposable materials contributed the second most for LDR ($1,920.66, 28.0%) and for HDR ($2,295.94, 24.0%). With TDABC, the true costs to deliver LDR and HDR from the health system perspective were derived. Analysis by physicians and hospital administrators regarding the cost of care afforded redesign opportunities including delivering HDR as one implant. Our work underscores the need to assess clinical outcomes to understand the true difference in value between these modalities. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  14. The segregation of silver nanoparticles in low-cost ceramic water filters

    International Nuclear Information System (INIS)

    Larimer, Curtis; Ostrowski, Nicole; Speakman, Jacquelyn; Nettleship, Ian

    2010-01-01

    As an impregnated constituent in low-cost ceramic water filters, silver nanoparticles have a demonstrated antibacterial effect. The bactericidal mechanism is believed to be based on direct contact between silver and the cell wall of a contaminant organism. In this study microstructural analysis was used to examine the effect of the processing method on the distribution of silver nanoparticles in the filter material. Silver nanofluid was impregnated into fired clay ceramic samples by a low-cost soak-and-dry method. Analyses of filter samples by scanning electron microscopy, energy dispersive spectroscopy, and digital optical topological mapping showed that silver was concentrated in near surface pores, a condition that is not optimal for highest probability of silver contact. A simple experiment showed that segregation of silver occurs during the drying phase of impregnation. Drying curves showed that 90% of contained liquid evaporates from the external surface.

  15. A low-cost colorimeter.

    Science.gov (United States)

    Jones, N B; Riley, C; Sheya, M S; Hosseinmardi, M M

    1984-01-01

    A need for a colorimeter with low capital and maintenance costs has been suggested for countries with foreign exchange problems and no local medical instrumentation industry. This paper puts forward a design for such a device based on a domestic light-bulb, photographic filters and photovoltaic cells. The principle of the design is the use of a balancing technique involving twin light paths for test solution and reference solution and an electronic bridge circuit. It is shown that proper selection of the components will allow the cost objectives to be met and also provide acceptable linearity, precision, accuracy and repeatability.

  16. Low-cost solar array progress and plans

    Science.gov (United States)

    Callaghan, W. T.

    It is pointed out that significant redirection has occurred in the U.S. Department of Energy (DOE) Photovoltaics Program, and thus in the Flat-Plate Solar Array Project (FSA), since the 3rd European Communities Conference. The Silicon Materials Task has now the objective to sponsor theoretical and experimental research on silicon material refinement technology suitable for photovoltaic flat-plate solar arrays. With respect to the hydrochlorination reaction, a process proof of concept was completed through definition of reaction kinetics, catalyst, and reaction characteristics. In connection with the dichlorosilane chemical vapor desposition process, a preliminary design was completed of an experimental process system development unit with a capacity of 100 to 200 MT/yr of Si.Attention is also given to the silicon-sheet formation research area, environmental isolation research, the cell and module formation task, the engineering sciences area, and the module performance and failure analysis area.

  17. Low-Cost Inkjet-Printed Wireless Sensor Nodes for Environmental and Health Monitoring Applications

    KAUST Repository

    Farooqui, Muhammad Fahad

    2016-11-01

    Increase in population and limited resources have created a growing demand for a futuristic living environment where technology enables the efficient utilization and management of resources in order to increase quality of life. One characteristic of such a society, which is often referred to as a ‘Smart City’, is that the people are well informed about their physiological being as well as the environment around them, which makes them better equipped to handle crisis situations. There is a need, therefore, to develop wireless sensors which can provide early warnings and feedback during calamities such as floods, fires, and industrial leaks, and provide remote health care facilities. For these situations, low-cost sensor nodes with small form factors are required. For this purpose, the use of a low-cost, mass manufacturing technique such as inkjet printing can be beneficial due to its digitally controlled additive nature of depositing material on a variety of substrates. Inkjet printing can permit economical use of material on cheap flexible substrates that allows for the development of miniaturized freeform electronics. This thesis describes how low-cost, inkjet-printed, wireless sensors have been developed for real-time monitoring applications. A 3D buoyant mobile wireless sensor node has been demonstrated that can provide early warnings as well as real-time data for flood monitoring. This disposable paper-based module can communicate while floating in water up to a distance of 50 m, regardless of its orientation in the water. Moreover, fully inkjet-printed sensors have been developed to monitor temperature, humidity and gas levels for wireless environmental monitoring. The sensors are integrated and packaged using 3D inkjet printing technology. Finally, in order to demonstrate the benefits of such wireless sensor systems for health care applications, a low-cost, wearable, wireless sensing system has been developed for chronic wound monitoring. The system

  18. Seminar Cum Meeting Report: Codata Task Group for Exchangeable Material Data Representation to Support Research and Education

    Directory of Open Access Journals (Sweden)

    T Ashino

    2008-11-01

    Full Text Available On March 4-5, 2008, the CODATA Task Group for Exchangeable Material Data Representation to Support Research and Education held a two day seminar cum meeting at the National Physical Laboratory (NPL, New Delhi, India, with NPL materials researchers and task group members representing material activities and databases from seven countries: European Union (The Czech Republic, France, and the Netherlands, India, Korea, Japan, and the United States. The NPL seminar included presentations about the researchers' work. The Task Group meeting included presentations about current data related activities of the members. Joint discussions between NPL researchers and CODATA task group members began an exchange of viewpoints among materials data producers, users, and databases developers. The seminar cum meeting included plans to continue and expand Task Group activities at the 2008 CODATA 21st Meeting in Kyiv, Ukraine.

  19. Low Cost/Low Noise Variable Pitch Ducted Fan, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ACI proposes a design for a Propulsor (Low Cost/Low Noise Variable Pitch Ducted Fan) that has wide application in all sectors of Aviation. Propulsor hardware of this...

  20. Digitizing pediatric chest radiographs: comparison of low-cost, commercial off-the-shelf technologies

    International Nuclear Information System (INIS)

    Ruess, L.; Shiels, K.C.; Cho, K.H.; O'Connor, S.C.; Uyehara, C.F.T.; Person, D.A.; Whitton, R.K.

    2001-01-01

    Objective: To compare low-cost, off-the-shelf technology for digitizing pediatric chest radiographs. Materials and methods: Forty pediatric chest radiographs (hard copy), each with a single abnormality, were digitized using a commercial film digitizer and two low-cost methods: a digital camera and a flatbed scanner. A stratified, randomized, block design was used where 20 readers evaluated 40 different images to determine the ability to accurately detect the abnormality. Readers then rated all 160 images (40 images x 4 methods) for conspicuity of the abnormality and overall image quality. Results: Abnormalities were correctly identified on 82.3 % of hard copy images, 82.9 % of flatbed scanner images, 74.3 % of film digitizer images, and 69.7 % of digital camera images (p flatbed scanner > film digitizer > digital camera images. Conclusion: A low-cost flatbed scanner yielded digital pediatric chest images which were significantly superior to digital camera images While flatbed scanner images were interpreted with the equivalent diagnostic accuracy of hard copy images, they were rated lower for image quality and lesion conspicuity. (orig.)

  1. The production of reduced graphene oxide by a low-cost vacuum system for supercapacitors applications

    International Nuclear Information System (INIS)

    Cardoso, Q.A.; Sakata, S.K.; Faria, R.N.; Silva, F.M.; Vieira, L.S.; Casini, J.C.S.

    2016-01-01

    Graphene (G) has attracted great interest for its excellent electrical properties. However, the large-scale production of graphene is still currently under investigations. Graphene oxide (GO) can be partially reduced to graphene-like sheets by removing the oxygen-containing groups with the recovery of a conjugated structure. It can be produced using inexpensive graphite as raw material by cost-effective chemical methods. High vacuum and temperature (10 -7 mbar/1100 deg C) is well established as an effective route for reduced powder preparation on a laboratory scale. However, a high vacuum reduction system, which can be routinely operated at 10 -7 mbar, has a considerable capital, operational and maintenance cost to be used in a large scale. In the present work, a low-cost route aiming large scale reduction of graphene oxide has been investigated. A stainless steel vessel has been evacuated to backing-pump pressure (10 -2 mbar) to process graphene oxide at low and high temperatures. Attempts of reducing GO powder using low vacuum pressures have been carried out and investigated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The experimental results of processing graphene oxide powder at various temperatures (200-1000°C) at relatively low pressures have been reported. The microstructures of the processed material have been investigated using scanning electron microscopy (SEM) and chemical microanalyses employing energy dispersive X-ray analysis (EDX). (author)

  2. Successive self-propagating sintering process using carbonaceous materials: A novel low-cost remediation approach for dioxin-contaminated solids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Long, E-mail: zhaolong@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Beijing 100012 (China); Hou, Hong, E-mail: houhong@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Beijing 100012 (China); Zhu, Tengfei; Li, Fasheng [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Beijing 100012 (China); Terada, Akihiko; Hosomi, Masaaki [Department of Chemical Engineering, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2015-12-15

    Highlights: • A SSPSP using carbonaceous materials for removing dioxin pollutants was developed. • Removal and degradation efficiencies of DL-PCBs were higher than those of PCDD/Fs. • Compositions of PCDD/Fs were dependent on the available precursors in raw materials. • Dechlorination of O{sub 8}CDD and formation pathways of PCDFs were deduced. • Dioxin levels in the effluent gas complied with the International emission limit. - Abstract: The disposal of dioxin-contaminated solids was studied using a novel successive self-propagating sintering process (SSPSP) incorporating a carbonaceous material. Among the five types of carbonaceous materials investigated, Charcoal B displayed optimum adsorbent properties and was selected as the best thermal source in the current remediation approach based on economical efficiency aspects. The feasibility of this proposed approach, removal efficiencies, and congener compositions of dioxins were examined using two types of dioxin-contaminated solids (Fugan sediment and Toyo soil) that displayed different characteristics including the initial concentrations of dioxins. The removal efficiencies of DL-PCBs (“dioxin-like” polychlorinated biphenyls) were higher than those of PCDD/Fs (polychlorinated dibenzo-p-dioxins/dibenzofurans), achieving 99.9 and 92% removal in the Fugan sediment and Toyo soil, respectively. In contrast, the degradation efficiencies of DL-PCBs were lower (i.e., 89.3 and 88.8%, respectively). The initial concentrations of dioxins, available precursors, and properties of the solids strongly influenced the congener compositions and removal efficiencies of dioxins. Furthermore, the dechlorination reaction pathways of high-chlorinated PCDDs and potential regeneration pathways of PCDFs from PCBs were deduced using isotope labeling. The proposed novel low-cost remediation approach for the removal of dioxins from solids is a highly efficient and environmentally sound treatment technology.

  3. Successive self-propagating sintering process using carbonaceous materials: A novel low-cost remediation approach for dioxin-contaminated solids

    International Nuclear Information System (INIS)

    Zhao, Long; Hou, Hong; Zhu, Tengfei; Li, Fasheng; Terada, Akihiko; Hosomi, Masaaki

    2015-01-01

    Highlights: • A SSPSP using carbonaceous materials for removing dioxin pollutants was developed. • Removal and degradation efficiencies of DL-PCBs were higher than those of PCDD/Fs. • Compositions of PCDD/Fs were dependent on the available precursors in raw materials. • Dechlorination of O_8CDD and formation pathways of PCDFs were deduced. • Dioxin levels in the effluent gas complied with the International emission limit. - Abstract: The disposal of dioxin-contaminated solids was studied using a novel successive self-propagating sintering process (SSPSP) incorporating a carbonaceous material. Among the five types of carbonaceous materials investigated, Charcoal B displayed optimum adsorbent properties and was selected as the best thermal source in the current remediation approach based on economical efficiency aspects. The feasibility of this proposed approach, removal efficiencies, and congener compositions of dioxins were examined using two types of dioxin-contaminated solids (Fugan sediment and Toyo soil) that displayed different characteristics including the initial concentrations of dioxins. The removal efficiencies of DL-PCBs (“dioxin-like” polychlorinated biphenyls) were higher than those of PCDD/Fs (polychlorinated dibenzo-p-dioxins/dibenzofurans), achieving 99.9 and 92% removal in the Fugan sediment and Toyo soil, respectively. In contrast, the degradation efficiencies of DL-PCBs were lower (i.e., 89.3 and 88.8%, respectively). The initial concentrations of dioxins, available precursors, and properties of the solids strongly influenced the congener compositions and removal efficiencies of dioxins. Furthermore, the dechlorination reaction pathways of high-chlorinated PCDDs and potential regeneration pathways of PCDFs from PCBs were deduced using isotope labeling. The proposed novel low-cost remediation approach for the removal of dioxins from solids is a highly efficient and environmentally sound treatment technology.

  4. A low-cost real color picker based on Arduino.

    Science.gov (United States)

    Agudo, Juan Enrique; Pardo, Pedro J; Sánchez, Héctor; Pérez, Ángel Luis; Suero, María Isabel

    2014-07-07

    Color measurements have traditionally been linked to expensive and difficult to handle equipment. The set of mathematical transformations that are needed to transfer a color that we observe in any object that doesn't emit its own light (which is usually called a color-object) so that it can be displayed on a computer screen or printed on paper is not at all trivial. This usually requires a thorough knowledge of color spaces, colorimetric transformations and color management systems. The TCS3414CS color sensor (I2C Sensor Color Grove), a system for capturing, processing and color management that allows the colors of any non-self-luminous object using a low-cost hardware based on Arduino, is presented in this paper. Specific software has been developed in Matlab and a study of the linearity of chromatic channels and accuracy of color measurements for this device has been undertaken. All used scripts (Arduino and Matlab) are attached as supplementary material. The results show acceptable accuracy values that, although obviously do not reach the levels obtained with the other scientific instruments, for the price difference they present a good low cost option.

  5. Elementary Students' Learning of Materials Science Practices Through Instruction Based on Engineering Design Tasks

    Science.gov (United States)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-12-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine students who participated in engineering design-based science instruction with the goal of constructing a stable, quiet, thermally comfortable model house. The learning outcome of materials science practices was assessed by clinical interviews conducted before and after the instruction, and the learning process was assessed by students' workbooks completed during the instruction. The interviews included two materials selection tasks for designing a sturdy stepstool and an insulated pet habitat. Results indicate that: (1) students significantly improved on both materials selection tasks, (2) their gains were significantly positively associated with the degree of completion of their workbooks, and (3) students who were highly engaged with the workbook's reflective record-keeping tasks showed the greatest improvement on the interviews. These findings suggest the important role workbooks can play in facilitating elementary students' learning of science through authentic activity such as engineering design.

  6. Comparison between low-cost marker-less and high-end marker-based motion capture systems for the computer-aided assessment of working ergonomics.

    Science.gov (United States)

    Patrizi, Alfredo; Pennestrì, Ettore; Valentini, Pier Paolo

    2016-01-01

    The paper deals with the comparison between a high-end marker-based acquisition system and a low-cost marker-less methodology for the assessment of the human posture during working tasks. The low-cost methodology is based on the use of a single Microsoft Kinect V1 device. The high-end acquisition system is the BTS SMART that requires the use of reflective markers to be placed on the subject's body. Three practical working activities involving object lifting and displacement have been investigated. The operational risk has been evaluated according to the lifting equation proposed by the American National Institute for Occupational Safety and Health. The results of the study show that the risk multipliers computed from the two acquisition methodologies are very close for all the analysed activities. In agreement to this outcome, the marker-less methodology based on the Microsoft Kinect V1 device seems very promising to promote the dissemination of computer-aided assessment of ergonomics while maintaining good accuracy and affordable costs. PRACTITIONER’S SUMMARY: The study is motivated by the increasing interest for on-site working ergonomics assessment. We compared a low-cost marker-less methodology with a high-end marker-based system. We tested them on three different working tasks, assessing the working risk of lifting loads. The two methodologies showed comparable precision in all the investigations.

  7. Modification and Performance Evaluation of a Low Cost Electro-Mechanically Operated Creep Testing Machine

    Directory of Open Access Journals (Sweden)

    John J. MOMOH

    2010-12-01

    Full Text Available Existing mechanically operated tensile and creep testing machine was modified to a low cost, electro-mechanically operated creep testing machine capable of determining the creep properties of aluminum, lead and thermoplastic materials as a function of applied stress, time and temperature. The modification of the testing machine was necessitated by having an electro-mechanically operated creep testing machine as a demonstration model ideal for use and laboratory demonstrations, which will provide an economical means of performing standard creep experiments. The experimental result is a more comprehensive understanding of the laboratory experience, as the technology behind the creep testing machine, the test methodology and the response of materials loaded during experiment are explored. The machine provides a low cost solution for Mechanics of Materials laboratories interested in creep testing experiment and demonstration but not capable of funding the acquisition of commercially available creep testing machines. Creep curves of strain versus time on a thermoplastic material were plotted at a stress level of 1.95MPa, 3.25MPa and 4.55MPa and temperature of 20oC, 40oC and 60oC respectively. The machine is satisfactory since it is always ready for operation at any given time.

  8. Design and validation of low-cost assistive glove for hand assessment and therapy during activity of daily living-focused robotic stroke therapy.

    Science.gov (United States)

    Nathan, Dominic E; Johnson, Michelle J; McGuire, John R

    2009-01-01

    Hand and arm impairment is common after stroke. Robotic stroke therapy will be more effective if hand and upper-arm training is integrated to help users practice reaching and grasping tasks. This article presents the design, development, and validation of a low-cost, functional electrical stimulation grasp-assistive glove for use with task-oriented robotic stroke therapy. Our glove measures grasp aperture while a user completes simple-to-complex real-life activities, and when combined with an integrated functional electrical stimulator, it assists in hand opening and closing. A key function is a new grasp-aperture prediction model, which uses the position of the end-effectors of two planar robots to define the distance between the thumb and index finger. We validated the accuracy and repeatability of the glove and its capability to assist in grasping. Results from five nondisabled subjects indicated that the glove is accurate and repeatable for both static hand-open and -closed tasks when compared with goniometric measures and for dynamic reach-to-grasp tasks when compared with motion analysis measures. Results from five subjects with stroke showed that with the glove, they could open their hands but without it could not. We present a glove that is a low-cost solution for in vivo grasp measurement and assistance.

  9. Simulation Based Low-Cost Composite Process Development at the US Air Force Research Laboratory

    Science.gov (United States)

    Rice, Brian P.; Lee, C. William; Curliss, David B.

    2003-01-01

    Low-cost composite research in the US Air Force Research Laboratory, Materials and Manufacturing Directorate, Organic Matrix Composites Branch has focused on the theme of affordable performance. Practically, this means that we use a very broad view when considering the affordability of composites. Factors such as material costs, labor costs, recurring and nonrecurring manufacturing costs are balanced against performance to arrive at the relative affordability vs. performance measure of merit. The research efforts discussed here are two projects focused on affordable processing of composites. The first topic is the use of a neural network scheme to model cure reaction kinetics, then utilize the kinetics coupled with simple heat transport models to predict, in real-time, future exotherms and control them. The neural network scheme is demonstrated to be very robust and a much more efficient method that mechanistic cure modeling approach. This enables very practical low-cost processing of thick composite parts. The second project is liquid composite molding (LCM) process simulation. LCM processing of large 3D integrated composite parts has been demonstrated to be a very cost effective way to produce large integrated aerospace components specific examples of LCM processes are resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM), and other similar approaches. LCM process simulation is a critical part of developing an LCM process approach. Flow simulation enables the development of the most robust approach to introducing resin into complex preforms. Furthermore, LCM simulation can be used in conjunction with flow front sensors to control the LCM process in real-time to account for preform or resin variability.

  10. Integration mockup and process material management system

    Science.gov (United States)

    Verble, Adas James, Jr.

    1992-01-01

    Work to define and develop a full scale Space Station Freedom (SSF) mockup with the flexibility to evolve into future designs, to validate techniques for maintenance and logistics and verify human task allocations and support trade studies is described. This work began in early 1985 and ended in August, 1991. The mockups are presently being used at MSFC in Building 4755 as a technology and design testbed, as well as for public display. Micro Craft also began work on the Process Material Management System (PMMS) under this contract. The PMMS simulator was a sealed enclosure for testing to identify liquids, gaseous, particulate samples, and specimen including, urine, waste water, condensate, hazardous gases, surrogate gasses, liquids, and solids. The SSF would require many trade studies to validate techniques for maintenance and logistics and verify system task allocations; it was necessary to develop a full scale mockup which would be representative of current SSF design with the ease of changing those designs as the SSF design evolved and changed. The tasks defined for Micro Craft were to provide the personnel, services, tools, and materials for the SSF mockup which would consist of four modules, nodes, interior components, and part task mockups of MSFC responsible engineering systems. This included the Engineering Control and Life Support Systems (ECLSS) testbed. For the initial study, the mockups were low fidelity, soft mockups of graphics art bottle, and other low cost materials, which evolved into higher fidelity mockups as the R&D design evolved, by modifying or rebuilding, an important cost saving factor in the design process. We designed, fabricated, and maintained the full size mockup shells and support stands. The shells consisted of cylinders, end cones, rings, longerons, docking ports, crew airlocks, and windows. The ECLSS required a heavier cylinder to support the ECLSS systems test program. Details of this activity will be covered. Support stands were

  11. Self-Powered, Flexible, and Solution-Processable Perovskite Photodetector Based on Low-Cost Carbon Cloth.

    Science.gov (United States)

    Sun, Haoxuan; Lei, Tianyu; Tian, Wei; Cao, Fengren; Xiong, Jie; Li, Liang

    2017-07-01

    Flexible perovskite photodetectors are usually constructed on indium-tin-oxide-coated polymer substrates, which are expensive, fragile, and not resistant to high temperature. Herein, for the first time, a high-performance flexible perovskite photodetector is fabricated based on low-cost carbon cloth via a facile solution processable strategy. In this device, perovskite microcrystal and Spiro-OMeTAD (hole transporting material) blended film act as active materials for light detection, and carbon cloth serves as both a flexible substrate and a conductive electrode. The as-fabricated photodetector shows a broad spectrum response from ultraviolet to near-infrared light, high responsivity, fast response speed, long-term stability, and self-powered capability. Flexible devices show negligible degradation after several tens of bending cycles and at the extremely bending angle of 180°. This work promises a new technique to construct flexible, high-performance photodetectors with low cost and self-powered capability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Low-Cost Servomotor Driver for PFM Control.

    Science.gov (United States)

    Aragon-Jurado, David; Morgado-Estevez, Arturo; Perez-Peña, Fernando

    2017-12-31

    Servomotors have already been around for some decades and they are extremely popular among roboticists due to their simple control technique, reliability and low-cost. They are usually controlled by using Pulse Width Modulation (PWM) and this paper aims to keep the idea of simplicity and low-cost, while introducing a new control technique: Pulse Frequency Modulation (PFM). The objective of this paper is to focus on our development of a low-cost servomotor controller which will allow the research community to use them with PFM. A low-cost commercial servomotor is used as the base system for the development: a small PCB that fits inside the case and allocates all the electronic components to control the motor has been designed to replace the original. The potentiometer is retained as the feedback sensor and a microcontroller is responsible for controlling the position of the motor. The paper compares the performance of a PWM and a PFM controlled servomotor. The comparison shows that the servomotor with our controller achieves a faster mechanism for switching targets and a lower latency. This controller can be used with neuromorphic systems to remove the conversion from events to PWM.

  13. Low profile, low cost, new geometry integrated inductors

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2011-01-01

    windings with well-defined thickness. Many advantages and disadvantages are described in depth. In this work, inverse coupling and direct coupling in the new geometry integrated inductors have been analyzed. Coupling characteristic caused by a special saturation behavior has been emphasis. And also...... variable inductors caused by the special saturation behavior may be utilized in some applications. The new integrated inductors make it possible to build low-profile, low-cost, flexibility DC/DC converters, and it can be extensively designed for the low-voltage and high-current required by the modern...

  14. Development of concepts for low-cost energy storage assemblies for annual cycle energy system applications

    Science.gov (United States)

    Alexander, G. H.; Cooper, D. L.; Cummings, C. A.; Reiber, E. E.

    1981-10-01

    Low cost energy storage assemblies were developed. In the search for low overall cost assemblies, many diverse concepts and materials were postulated and briefly evaluated. Cost rankings, descriptions, and discussions of the concepts were presented from which ORNL selected the following three concepts for the Phase 2 development: (1) a site constructed tank with reinforced concrete walls formed with specialized modular blocks which eliminates most concrete form work and provides integral R-20 insulation designated ORNLFF; (2) a site constructed tank with earth supported walls that are formed from elements common to residential, in-ground swimming pools, designated SWPL; (3) and a site assembled tank used in underground utility vaults, designated UTLBX. Detailed designs of free standing versions of the three concepts are presented.

  15. Novel, low-cost alternative technologies to tackle practical, industrial conundrums – a case study of batteries

    Directory of Open Access Journals (Sweden)

    Chan Victor K. Y.

    2016-01-01

    Full Text Available Whereas batteries in comparison with most other means of energy storage are more environmentally friendly and economical in their operation, they are beset by low energy replenishment rates, low energy storage density, high capital cost of themselves, and high capital cost of energy replenishment infrastructures. Mainly based on ergonomics, this paper proposes a novel, low-cost alternative technology to practically and industrially make these weaknesses irrelevant to some extent without calling for revolutionary technological breakthroughs in material science, batteries’ microstructures, or battery manufacturing technologies. The technology takes advantage of modularization of battery systems, prioritization of charging and discharging of battery module(s according to ease of unloading and/or loading the battery module(s and/or ease of loading replacement battery module(s of the battery module(s.

  16. The high cost of low-acuity ICU outliers.

    Science.gov (United States)

    Dahl, Deborah; Wojtal, Greg G; Breslow, Michael J; Holl, Randy; Huguez, Debra; Stone, David; Korpi, Gloria

    2012-01-01

    Direct variable costs were determined on each hospital day for all patients with an intensive care unit (ICU) stay in four Phoenix-area hospital ICUs. Average daily direct variable cost in the four ICUs ranged from $1,436 to $1,759 and represented 69.4 percent and 45.7 percent of total hospital stay cost for medical and surgical patients, respectively. Daily ICU cost and length of stay (LOS) were higher in patients with higher ICU admission acuity of illness as measured by the APACHE risk prediction methodology; 16.2 percent of patients had an ICU stay in excess of six days, and these LOS outliers accounted for 56.7 percent of total ICU cost. While higher-acuity patients were more likely to be ICU LOS outliers, 11.1 percent of low-risk patients were outliers. The low-risk group included 69.4 percent of the ICU population and accounted for 47 percent of all LOS outliers. Low-risk LOS outliers accounted for 25.3 percent of ICU cost and incurred fivefold higher hospital stay costs and mortality rates. These data suggest that severity of illness is an important determinant of daily resource consumption and LOS, regardless of whether the patient arrives in the ICU with high acuity or develops complications that increase acuity. The finding that a substantial number of long-stay patients come into the ICU with low acuity and deteriorate after ICU admission is not widely recognized and represents an important opportunity to improve patient outcomes and lower costs. ICUs should consider adding low-risk LOS data to their quality and financial performance reports.

  17. 4273π: bioinformatics education on low cost ARM hardware.

    Science.gov (United States)

    Barker, Daniel; Ferrier, David Ek; Holland, Peter Wh; Mitchell, John Bo; Plaisier, Heleen; Ritchie, Michael G; Smart, Steven D

    2013-08-12

    Teaching bioinformatics at universities is complicated by typical computer classroom settings. As well as running software locally and online, students should gain experience of systems administration. For a future career in biology or bioinformatics, the installation of software is a useful skill. We propose that this may be taught by running the course on GNU/Linux running on inexpensive Raspberry Pi computer hardware, for which students may be granted full administrator access. We release 4273π, an operating system image for Raspberry Pi based on Raspbian Linux. This includes minor customisations for classroom use and includes our Open Access bioinformatics course, 4273π Bioinformatics for Biologists. This is based on the final-year undergraduate module BL4273, run on Raspberry Pi computers at the University of St Andrews, Semester 1, academic year 2012-2013. 4273π is a means to teach bioinformatics, including systems administration tasks, to undergraduates at low cost.

  18. Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Fogash, Kevin [Air Products and Chemicals, Inc., Allentown, PA (United States)

    2015-12-15

    Air Products carried out a scope of work under DOE Award No. DE-FE0012065 “Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications” with subcontractors Ceramatec, Penn State, and WorleyParsons. The scope of work under this award was aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration-scale facility known as the Oxygen Development Facility (ODF). Specific activities will help to enable design and construction of the ODF through advancement of a number of challenging technical elements that are required to manage risk in the initial deployment of ITM technology. Major objectives of the work included developing ITM Oxygen ceramic membrane materials with improved performance and reliability, optimizing ceramic module geometry and fabrication methods, testing module performance, trialing the improved fabrication process at commercial scale in the Ceramic Membrane Module Fabrication Facility (CerFab), and advancing engineering development of the ITM oxygen production process, including vessel design and contaminant control measures to prepare for deployment of the ODF. The comprehensive report that follows details the team’s work, which includes several notable accomplishments: 1) compressive creep, a likely limiter of ceramic module lifetime in service, was demonstrated to be retarded by an order of magnitude by changes in material formulation, module joining dimensions, and internal wafer geometry; 2) two promising new materials were shown to be superior to the incumbent ITM material in a key material parameter related to oxygen flux; 3) module degradation mechanisms were identified following operation in large pilot-scale equipment; 4) options for utilizing ITM in a coal-to-liquids (CTL) facility to enable liquids production with carbon capture were identified and studied; and 5) the benefits of potential improvements to the technology

  19. Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Fogash, Kevin [Air Products and Chemicals, Inc., Allentown, PA (United States)

    2017-05-17

    Air Products carried out a scope of work under DOE Award No. DE-FE0012065 “Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications” with subcontractors Ceramatec, Penn State, and WorleyParsons. The scope of work under this award was aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration-scale facility known as the Oxygen Development Facility (ODF). Specific activities will help to enable design and construction of the ODF through advancement of a number of challenging technical elements that are required to manage risk in the initial deployment of ITM technology. Major objectives of the work included developing ITM Oxygen ceramic membrane materials with improved performance and reliability, optimizing ceramic module geometry and fabrication methods, testing module performance, trialing the improved fabrication process at commercial scale in the Ceramic Membrane Module Fabrication Facility (CerFab), and advancing engineering development of the ITM oxygen production process, including vessel design and contaminant control measures to prepare for deployment of the ODF. The comprehensive report that follows details the team’s work, which includes several notable accomplishments: 1) compressive creep, a likely limiter of ceramic module lifetime in service, was demonstrated to be retarded by an order of magnitude by changes in material formulation, module joining dimensions, and internal wafer geometry; 2) two promising new materials were shown to be superior to the incumbent ITM material in a key material parameter related to oxygen flux; 3) module degradation mechanisms were identified following operation in large pilot-scale equipment; 4) options for utilizing ITM in a coal-to-liquids (CTL) facility to enable liquids production with carbon capture were identified and studied; and 5) the benefits of potential improvements to the technology

  20. Low-cost in vitro fertilization: current insights

    Directory of Open Access Journals (Sweden)

    Teoh PJ

    2014-08-01

    Full Text Available Pek Joo Teoh, Abha MaheshwariAberdeen Fertility Centre, Aberdeen Maternity Hospital, University of Aberdeen, Aberdeen, UKAbstract: Despite the development of in vitro fertilization (IVF more than 30 years ago, the cost of treatment remains high. Furthermore, over the years, more sophisticated technologies and expensive medications have been introduced, making IVF increasingly inaccessible despite the increasing need. Globally, the option to undergo IVF is only available to a privileged few. In recent years, there has been growing interest in exploring strategies to reduce the cost of IVF treatment, which would allow the service to be provided in low-resource settings. In this review, we explore the various ways in which the cost of this treatment can be reduced.Keywords: IVF, low-cost, accessible, developing world

  1. Holovideo for everyone: a low-cost holovideo monitor

    International Nuclear Information System (INIS)

    Smalley, D; Barabas, J; Bove, V M; Jolly, S; DellaSilva, C; Smithwick, Q

    2013-01-01

    This work presents an architecture for a relatively low-cost, pc-driven holovideo monitor. The geometry uses minimal optics and is built to host a multi-channel acousto-optic modulator that can be driven by up-converted VGA signals. The display's target specifications include a standard vertical resolution (480 lines) output driven by an 18 channel acousto-optic modulator, 30Hz refresh-rate and multiple color operation. This paper reports early tests of this geometry with a single acousto-optic channel. The goal is to create a small but functional holographic display that can be readily replicated, easily driven and provide basic monitor functionality with a bill of materials in the hundreds, rather than thousands, of dollars.

  2. Low Cost, Epitaxial Growth of II-VI Materials for Multijunction Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Brian E. [PLANT PV, Inc., Oakland, CA (United States); Peters, Craig H. [PLANT PV, Inc., Oakland, CA (United States)

    2014-04-30

    Multijunction solar cells have theoretical power conversion efficiencies in excess of 29% under one sun illumination and could become a highly disruptive technology if fabricated using low cost processing techniques to epitaxially grow defect tolerant, thin films on silicon. The PLANT PV/Molecular Foundry team studied the feasibility of using cadmium selenide (CdSe) as the wide band-gap, top cell and Si as the bottom cell in monolithically integrated tandem architecture. The greatest challenge in developing tandem solar cells is depositing wide band gap semiconductors that are both highly doped and have minority carrier lifetimes greater than 1 ns. The proposed research was to determine whether it is possible to rapidly grow CdSe films with sufficient minority carrier lifetimes and doping levels required to produce an open-circuit voltage (Voc) greater than 1.1V using close-space sublimation (CSS).

  3. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    Science.gov (United States)

    Holmes, Richard; Elam, Sandra; Ellis, David L.; McKechnie, Timothy; Hickman, Robert; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. Fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of shrinking budgets. Three technologies have been combined to produce an advanced liquid rocket engine combustion chamber at NASA-Marshall Space Flight Center (MSFC) using relatively low-cost, vacuum-plasma-spray (VPS) techniques. Copper alloy NARloy-Z was replaced with a new high performance Cu-8Cr-4Nb alloy developed by NASA-Glenn Research Center (GRC), which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. Functional gradient technology, developed building composite cartridges for space furnaces was incorporated to add oxidation resistant and thermal barrier coatings as an integral part of the hot wall of the liner during the VPS process. NiCrAlY, utilized to produce durable protective coating for the space shuttle high pressure fuel turbopump (BPFTP) turbine blades, was used as the functional gradient material coating (FGM). The FGM not only serves as a protection from oxidation or blanching, the main cause of engine failure, but also serves as a thermal barrier because of its lower thermal conductivity, reducing the temperature of the combustion liner 200 F, from 1000 F to 800 F producing longer life. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost VPS process. VPS formed combustion chamber test articles have been formed with the FGM hot wall built in and hot fire tested, demonstrating for the first time a coating that will remain intact through the hot firing test, and with

  4. Development of Fully Automated Low-Cost Immunoassay System for Research Applications.

    Science.gov (United States)

    Wang, Guochun; Das, Champak; Ledden, Bradley; Sun, Qian; Nguyen, Chien

    2017-10-01

    Enzyme-linked immunosorbent assay (ELISA) automation for routine operation in a small research environment would be very attractive. A portable fully automated low-cost immunoassay system was designed, developed, and evaluated with several protein analytes. It features disposable capillary columns as the reaction sites and uses real-time calibration for improved accuracy. It reduces the overall assay time to less than 75 min with the ability of easy adaptation of new testing targets. The running cost is extremely low due to the nature of automation, as well as reduced material requirements. Details about system configuration, components selection, disposable fabrication, system assembly, and operation are reported. The performance of the system was initially established with a rabbit immunoglobulin G (IgG) assay, and an example of assay adaptation with an interleukin 6 (IL6) assay is shown. This system is ideal for research use, but could work for broader testing applications with further optimization.

  5. Does the radiologically isolated syndrome exist? A dual-task cost pilot study.

    Science.gov (United States)

    Dattola, Vincenzo; Logiudice, Anna Lisa; Bonanno, Lilla; Famà, Fausto; Milardi, Demetrio; Chillemi, Gaetana; D'Aleo, Giangaetano; Marino, Silvia; Calabrò, Rocco Salvatore; Russo, Margherita

    2017-11-01

    Simultaneous performance of motor and cognitive tasks may compete for common brain network resources in aging or patients with some neurological diseases, suggesting the occurrence of a cognitive-motor interference. While this phenomenon has been well described for multiple sclerosis (MS) patients, it never has been tested on asymptomatic subject with magnetic resonance imaging (MRI) findings suggestive of demyelinating disease (i.e., radiologically isolated syndrome: RIS). In this pilot study, 10 RIS subjects and 10 sex/age-matched healthy controls were tested by means of static posturography under eyes opened (single-task trial) and while performing two different cognitive tasks (semantic modified word list generation for first dual-task trial and phonemic semantic modified word list generation for second dual-task trial), to estimate the dual-task cost (DTC) of standing balance. In our sample, under cognitive interference (without any substantial differences between semantic and phonemic modified word list generation), the RIS group showed significance differences in CoP (center of pressure) total sway area, ellipse eccentricity, CoP sway path length, CoP median sway velocity along the AP (anteroposterior) axis and along the ML (mediolateral) axis, reflecting a higher negative DTC respect to healthy subjects (which have simply shown a statistical trend, failing to reach a significance, in some trials). The phenomenon of cognitive-motor interference might be unmasked by a dual-task posturography in RIS subjects, too. We hypothesize that this approach could be useful to early reveal the presence of a demyelinating disease and to reach a MS diagnosis in subjects otherwise classified as RIS.

  6. Cost analysis of low energy electron accelerator for film curing

    International Nuclear Information System (INIS)

    Ochi, Masafumi

    2003-01-01

    Low energy electron accelerators are recognized as one of the advanced curing means of converting processes for films and papers. In the last three years the price of the accelerator equipment has been greatly reduced. The targeted application areas are mainly processes of curing inks, coatings, and adhesives to make packaging materials. The operating cost analyses were made for electron beam (EB) processes over the conventional ones without EB. Then three new proposals for cost reduction of EB processes are introduced. Also being developed are new EB chemistries such as coatings, laminating adhesives and inks. EB processes give instantaneous cure and EB chemistries are basically non solvent causing less VOC emission to the environment. These developments of both equipment and chemistries might have a potential to change conventional packaging film industries. (author)

  7. Low cost design of microprocessor EDAC circuit

    International Nuclear Information System (INIS)

    Hao Li; Yu Lixin; Peng Heping; Zhuang Wei

    2015-01-01

    An optimization method of error detection and correction (EDAC) circuit design is proposed. The method involves selecting or constructing EDAC codes of low cost hardware, associated with operation scheduling implementation based on 2-input XOR gates structure, and two actions for reducing hardware cells, which can reduce the delay penalties and area costs of the EDAC circuit effectively. The 32-bit EDAC circuit hardware implementation is selected to make a prototype, based on the 180 nm process. The delay penalties and area costs of the EDAC circuit are evaluated. Results show that the time penalty and area cost of the EDAC circuitries are affected with different parity-check matrices and different hardware implementation for the EDAC codes with the same capability of correction and detection code. This method can be used as a guide for low-cost radiation-hardened microprocessor EDAC circuit design and for more advanced technologies. (paper)

  8. High performance of low cost soft magnetic materials

    Indian Academy of Sciences (India)

    Administrator

    The consistent interest in supporting research and development of magnetic materials during the last century is revealed in their ... type of nanocrystalline alloys, i.e. crystals 10–20 nm in ..... nonetheless useful for a qualitative analysis of phase.

  9. Utilizing time-driven activity-based costing to understand the short- and long-term costs of treating localized, low-risk prostate cancer.

    Science.gov (United States)

    Laviana, Aaron A; Ilg, Annette M; Veruttipong, Darlene; Tan, Hung-Jui; Burke, Michael A; Niedzwiecki, Douglas R; Kupelian, Patrick A; King, Chris R; Steinberg, Michael L; Kundavaram, Chandan R; Kamrava, Mitchell; Kaplan, Alan L; Moriarity, Andrew K; Hsu, William; Margolis, Daniel J A; Hu, Jim C; Saigal, Christopher S

    2016-02-01

    Given the costs of delivering care for men with prostate cancer remain poorly described, this article reports the results of time-driven activity-based costing (TDABC) for competing treatments of low-risk prostate cancer. Process maps were developed for each phase of care from the initial urologic visit through 12 years of follow-up for robotic-assisted laparoscopic prostatectomy (RALP), cryotherapy, high-dose rate (HDR) and low-dose rate (LDR) brachytherapy, intensity-modulated radiation therapy (IMRT), stereotactic body radiation therapy (SBRT), and active surveillance (AS). The last modality incorporated both traditional transrectal ultrasound (TRUS) biopsy and multiparametric-MRI/TRUS fusion biopsy. The costs of materials, equipment, personnel, and space were calculated per unit of time and based on the relative proportion of capacity used. TDABC for each treatment was defined as the sum of its resources. Substantial cost variation was observed at 5 years, with costs ranging from $7,298 for AS to $23,565 for IMRT, and they remained consistent through 12 years of follow-up. LDR brachytherapy ($8,978) was notably cheaper than HDR brachytherapy ($11,448), and SBRT ($11,665) was notably cheaper than IMRT, with the cost savings attributable to shorter procedure times and fewer visits required for treatment. Both equipment costs and an inpatient stay ($2,306) contributed to the high cost of RALP ($16,946). Cryotherapy ($11,215) was more costly than LDR brachytherapy, largely because of increased single-use equipment costs ($6,292 vs $1,921). AS reached cost equivalence with LDR brachytherapy after 7 years of follow-up. The use of TDABC is feasible for analyzing cancer services and provides insights into cost-reduction tactics in an era focused on emphasizing value. By detailing all steps from diagnosis and treatment through 12 years of follow-up for low-risk prostate cancer, this study has demonstrated significant cost variation between competing treatments. © 2015

  10. ISS Operations Cost Reductions Through Automation of Real-Time Planning Tasks

    Science.gov (United States)

    Hall, Timothy A.; Clancey, William J.; McDonald, Aaron; Toschlog, Jason; Tucker, Tyson; Khan, Ahmed; Madrid, Steven (Eric)

    2011-01-01

    In 2007 the Johnson Space Center s Mission Operations Directorate (MOD) management team challenged their organizations to find ways to reduce the cost of operations for supporting the International Space Station (ISS) in the Mission Control Center (MCC). Each MOD organization was asked to define and execute projects that would help them attain cost reductions by 2012. The MOD Operations Division Flight Planning Branch responded to this challenge by launching several software automation projects that would allow them to greatly improve console operations and reduce ISS console staffing and intern reduce operating costs. These tasks ranged from improving the management and integration mission plan changes, to automating the uploading and downloading of information to and from the ISS and the associated ground complex tasks that required multiple decision points. The software solutions leveraged several different technologies including customized web applications and implementation of industry standard web services architecture; as well as engaging a previously TRL 4-5 technology developed by Ames Research Center (ARC) that utilized an intelligent agent-based system to manage and automate file traffic flow, archive data, and generate console logs. These projects to date have allowed the MOD Operations organization to remove one full time (7 x 24 x 365) ISS console position in 2010; with the goal of eliminating a second full time ISS console support position by 2012. The team will also reduce one long range planning console position by 2014. When complete, these Flight Planning Branch projects will account for the elimination of 3 console positions and a reduction in staffing of 11 engineering personnel (EP) for ISS.

  11. Low cost options for tissue culture technology in developing countries. Proceedings of a technical meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    Tissue culture technology is used for the production of doubled haploids, cryopreservation, propagating new plant varieties, conserving rare and endangered plants, difficult-to-propagate plants, and to produce secondary metabolites and transgenic plants. The production of high quality planting material of crop plants and fruit trees, propagated from vegetative parts, has created new opportunities in global trading, benefited growers, farmers, and nursery owners, and improved rural employment. However, there are still major opportunities to produce and distribute high quality planting material, e.g. crops like banana, date palm, cassava, pineapple, plantain, potato, sugarcane, sweet potato, yams, ornamentals, fruit and forest trees. The main advantage of tissue culture technology lies in the production of high quality and uniform planting material that can be multiplied on a year-round basis under disease-free conditions anywhere irrespective of the season and weather. However, the technology is capital, labor and energy intensive. Although, labor is cheap in many developing countries, the resources of trained personnel and equipment are often not readily available. In addition, energy, particularly electricity, and clean water are costly. The energy requirements for tissue culture technology depend on day temperature, day-length and relative humidity, and they have to be controlled during the process of propagation. Individual plant species also differ in their growth requirements. Hence, it is necessary to have low cost options for weaning, hardening of micropropagated plants and finally growing them in the field. This publication describes options for reducing costs to establish and operate tissue culture facilities and primarily focus on plant micropropagation. It includes papers on the basics of tissue culture technology, low cost options for the design of laboratories, use of culture media and containers, energy and labor saving, integration and adoption of

  12. Low cost options for tissue culture technology in developing countries. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2004-02-01

    Tissue culture technology is used for the production of doubled haploids, cryopreservation, propagating new plant varieties, conserving rare and endangered plants, difficult-to-propagate plants, and to produce secondary metabolites and transgenic plants. The production of high quality planting material of crop plants and fruit trees, propagated from vegetative parts, has created new opportunities in global trading, benefited growers, farmers, and nursery owners, and improved rural employment. However, there are still major opportunities to produce and distribute high quality planting material, e.g. crops like banana, date palm, cassava, pineapple, plantain, potato, sugarcane, sweet potato, yams, ornamentals, fruit and forest trees. The main advantage of tissue culture technology lies in the production of high quality and uniform planting material that can be multiplied on a year-round basis under disease-free conditions anywhere irrespective of the season and weather. However, the technology is capital, labor and energy intensive. Although, labor is cheap in many developing countries, the resources of trained personnel and equipment are often not readily available. In addition, energy, particularly electricity, and clean water are costly. The energy requirements for tissue culture technology depend on day temperature, day-length and relative humidity, and they have to be controlled during the process of propagation. Individual plant species also differ in their growth requirements. Hence, it is necessary to have low cost options for weaning, hardening of micropropagated plants and finally growing them in the field. This publication describes options for reducing costs to establish and operate tissue culture facilities and primarily focus on plant micropropagation. It includes papers on the basics of tissue culture technology, low cost options for the design of laboratories, use of culture media and containers, energy and labor saving, integration and adoption of

  13. Ecological Relevance Determines Task Priority in Older Adults' Multitasking.

    Science.gov (United States)

    Doumas, Michail; Krampe, Ralf Th

    2015-05-01

    Multitasking is a challenging aspect of human behavior, especially if the concurrently performed tasks are different in nature. Several studies demonstrated pronounced performance decrements (dual-task costs) in older adults for combinations of cognitive and motor tasks. However, patterns of costs among component tasks differed across studies and reasons for participants' resource allocation strategies remained elusive. We investigated young and older adults' multitasking of a working memory task and two sensorimotor tasks, one with low (finger force control) and one with high ecological relevance (postural control). The tasks were performed in single-, dual-, and triple-task contexts. Working memory accuracy was reduced in dual-task contexts with either sensorimotor task and deteriorated further under triple-task conditions. Postural and force performance deteriorated with age and task difficulty in dual-task contexts. However, in the triple-task context with its maximum resource demands, older adults prioritized postural control over both force control and memory. Our results identify ecological relevance as the key factor in older adults' multitasking. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. A Low-Cost, Passive Navigation Training System for Image-Guided Spinal Intervention.

    Science.gov (United States)

    Lorias-Espinoza, Daniel; Carranza, Vicente González; de León, Fernando Chico-Ponce; Escamirosa, Fernando Pérez; Martinez, Arturo Minor

    2016-11-01

    Navigation technology is used for training in various medical specialties, not least image-guided spinal interventions. Navigation practice is an important educational component that allows residents to understand how surgical instruments interact with complex anatomy and to learn basic surgical skills such as the tridimensional mental interpretation of bidimensional data. Inexpensive surgical simulators for spinal surgery, however, are lacking. We therefore designed a low-cost spinal surgery simulator (Spine MovDigSys 01) to allow 3-dimensional navigation via 2-dimensional images without altering or limiting the surgeon's natural movement. A training system was developed with an anatomical lumbar model and 2 webcams to passively digitize surgical instruments under MATLAB software control. A proof-of-concept recognition task (vertebral body cannulation) and a pilot test of the system with 12 neuro- and orthopedic surgeons were performed to obtain feedback on the system. Position, orientation, and kinematic variables were determined and the lateral, posteroanterior, and anteroposterior views obtained. The system was tested with a proof-of-concept experimental task. Operator metrics including time of execution (t), intracorporeal length (d), insertion angle (α), average speed (v¯), and acceleration (a) were obtained accurately. These metrics were converted into assessment metrics such as smoothness of operation and linearity of insertion. Results from initial testing are shown and the system advantages and disadvantages described. This low-cost spinal surgery training system digitized the position and orientation of the instruments and allowed image-guided navigation, the generation of metrics, and graphic recording of the instrumental route. Spine MovDigSys 01 is useful for development of basic, noninnate skills and allows the novice apprentice to quickly and economically move beyond the basics. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Evaluating low-resolution tomography neurofeedback by single dissociation of mental grotation task from stop signal task performance.

    Science.gov (United States)

    Getter, Nir; Kaplan, Zeev; Todder, Doron

    2015-10-01

    Electroencephalography source localization neurofeedback, i.e Standardized low-resolution tomography (sLORETA) neurofeedback are non-invasive method for altering region specific brain activity. This is an improvement over traditional neurofeedback which were based on recordings from a single scalp-electrode. We proposed three criteria clusters as a methodological framework to evaluate electroencephalography source localization neurofeedback and present relevant data. Our objective was to evaluate standardized low resolution EEG tomography neurofeedback by examining how training one neuroanatomical area effects the mental rotation task (which is related to the activity of bilateral Parietal regions) and the stop-signal test (which is related to frontal structures). Twelve healthy participants were enrolled in a single session sLORETA neurofeedback protocol. The participants completed both the mental rotation task and the stop-signal test before and after one sLORETA neurofeedback session. During sLORETA neurofeedback sessions participants watched one sitcom episode while the picture quality co-varied with activity in the superior parietal lobule. Participants were rewarded for increasing activity in this region only. Results showed a significant reaction time decrease and an increase in accuracy after sLORETA neurofeedback on the mental rotation task but not after stop signal task. Together with behavioral changes a significant activity increase was found at the left parietal brain after sLORETA neurofeedback compared with baseline. We concluded that activity increase in the parietal region had a specific effect on the mental rotation task. Tasks unrelated to parietal brain activity were unaffected. Therefore, sLORETA neurofeedback could be used as a research, or clinical tool for cognitive disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Low-cost phase change material as an energy storage medium in building envelopes: Experimental and numerical analyses

    International Nuclear Information System (INIS)

    Biswas, Kaushik; Abhari, Ramin

    2014-01-01

    Highlights: • Testing of a low-cost bio-PCM in an exterior wall under varying weather conditions. • Numerical model validation and annual simulations of PCM-enhanced cellulose insulation. • Reduced wall-generated cooling electricity consumption due to the application of PCM. • PCM performance was sensitive to its location and distribution within the wall. - Abstract: A promising approach to increasing the energy efficiency of buildings is the implementation of a phase change material (PCM) in the building envelope. Numerous studies over the last two decades have reported the energy saving potential of PCMs in building envelopes, but their wide application has been inhibited, in part, by their high cost. This article describes a novel PCM made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application. The PCM–HDPE pellets were mixed with cellulose insulation and then added to an exterior wall of a test building in a hot and humid climate, and tested over a period of several months. To demonstrate the efficacy of the PCM-enhanced cellulose insulation in reducing the building envelope heat gains and losses, a side-by-side comparison was performed with another wall section filled with cellulose-only insulation. Further, numerical modeling of the test wall was performed to determine the actual impact of the PCM–HDPE pellets on wall-generated heating and cooling loads and the associated electricity consumption. The model was first validated using experimental data and then used for annual simulations using typical meteorological year (TMY3) weather data. This article presents the experimental data and numerical analyses showing the energy-saving potential of the new PCM

  17. The production of reduced graphene oxide by a low-cost vacuum system for supercapacitors applications

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Q.A.; Sakata, S.K.; Faria, R.N. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Silva, F.M.; Vieira, L.S.; Casini, J.C.S., E-mail: julio.casini@ifro.edu.br [Instituto Federal de Ciencia e Tecnologia de Rondonia (IFRO), RO (Brazil)

    2016-07-01

    Graphene (G) has attracted great interest for its excellent electrical properties. However, the large-scale production of graphene is still currently under investigations. Graphene oxide (GO) can be partially reduced to graphene-like sheets by removing the oxygen-containing groups with the recovery of a conjugated structure. It can be produced using inexpensive graphite as raw material by cost-effective chemical methods. High vacuum and temperature (10{sup -7}mbar/1100 deg C) is well established as an effective route for reduced powder preparation on a laboratory scale. However, a high vacuum reduction system, which can be routinely operated at 10{sup -7} mbar, has a considerable capital, operational and maintenance cost to be used in a large scale. In the present work, a low-cost route aiming large scale reduction of graphene oxide has been investigated. A stainless steel vessel has been evacuated to backing-pump pressure (10{sup -2} mbar) to process graphene oxide at low and high temperatures. Attempts of reducing GO powder using low vacuum pressures have been carried out and investigated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The experimental results of processing graphene oxide powder at various temperatures (200-1000°C) at relatively low pressures have been reported. The microstructures of the processed material have been investigated using scanning electron microscopy (SEM) and chemical microanalyses employing energy dispersive X-ray analysis (EDX). (author)

  18. Thin film CIGS solar cells with a novel low cost process - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, A. N.; Romanyuk, Y.

    2010-01-15

    Novel manufacturing routes for efficient and low-cost Cu(In,Ga)Se{sub 2} (called CIGS) thin film solar cells are explored and patented. CIGS has proven its suitability for highly efficient and extremely stable solar cells. The low-cost methods allow impurity free material synthesis, fast large-area deposition, high material utilization and a very short energy payback time with drastically lower manufacturing costs. Two non-vacuum, solution-based approaches are investigated to deposit thin layers of CIGS. The first approach considers incorporation of copper into indium gallium selenide precursor layers by ion-exchange from aqueous or organic solutions. Organic solutions provide faster copper incorporation and do not corrode the metal back contact. Solar cells processed from selenized precursor films exhibit efficiencies of up to 4.1%. The second approach with paste coating of inorganic salt solution results in a solar cell efficiency of 4% (record 6.7%), where further improvements are hindered by the presence of the residual carbon layer. Using alternative organic binders, pre-deposited selenium layers, non-binder recipes helps to avoid the carbon layer although the obtained layers are inhomogeneous and contain impurity phases. A patent for the ion-exchange approach is pending, and the obtained research results on the paste coating approach will be scrutinized during new European FP7 project 'NOVA-CIGS'. (authors)

  19. A demonstration of a low cost approach to security at shipping facilities and ports

    Science.gov (United States)

    Huck, Robert C.; Al Akkoumi, Mouhammad K.; Herath, Ruchira W.; Sluss, James J., Jr.; Radhakrishnan, Sridhar; Landers, Thomas L.

    2010-04-01

    Government funding for the security at shipping facilities and ports is limited so there is a need for low cost scalable security systems. With over 20 million sea, truck, and rail containers entering the United States every year, these facilities pose a large risk to security. Securing these facilities and monitoring the variety of traffic that enter and leave is a major task. To accomplish this, the authors have developed and fielded a low cost fully distributed building block approach to port security at the inland Port of Catoosa in Oklahoma. Based on prior work accomplished in the design and fielding of an intelligent transportation system in the United States, functional building blocks, (e.g. Network, Camera, Sensor, Display, and Operator Console blocks) can be assembled, mixed and matched, and scaled to provide a comprehensive security system. The following functions are demonstrated and scaled through analysis and demonstration: Barge tracking, credential checking, container inventory, vehicle tracking, and situational awareness. The concept behind this research is "any operator on any console can control any device at any time."

  20. a Precise, Low-Cost Rtk Gnss System for Uav Applications

    Science.gov (United States)

    Stempfhuber, W.; Buchholz, M.

    2011-09-01

    High accuracy with real-time positioning of moving objects has been considered a standard task of engineering geodesy for 10 to 15 years. An absolute positioning accuracy of 1-3 cm is generally possible worldwide and is further used in many areas of machine guidance (machine control and guidance), and farming (precision farming) as well as for various special applications (e.g. railway trolley, mining, etc.). The cost of the measuring instruments required for the use of geodetic L1/L2 receivers with a local reference station amounts to approximately USD 30,000 to 50,000. Therefore, dual frequency RTK GNSS receivers are not used in the mass market. Affordable GPS/GNSS modules have already reached the mass market in various areas such as mobile phones, car navigation, the leisure industry, etc. Kinematic real-time positioning applications with centimetre or decimetre levels could also evolve into a mass product. In order for this to happen, the costs for such systems must lie between USD 1,000 to 2,000. What exactly low-cost means is determined by the precise specifications of the given individual application. Several university studies in geodesy focus on the approach of high-accuracy positioning by means of single frequency receivers for static applications [e.g. GLABSCH et. al. 2009, SCHWIEGER and GLÄSER 2005, ALKAN 2010, REALINI et. al. 2010, KORTH and HOFMANN 2011]. Although intelligent approaches have been developed that compute a trajectory in the post-processing mode [REALINI et. al., 2010], at present, there are only a very few GNSS Low-Cost Systems that enable real-time processing. This approach to precise position determination by means of the computation of static raw data with single frequency receivers is currently being explored in a research project at the Beuth Hochschule für Technik Berlin - and is being further developed for kinematic applications. The project is embedded in the European Social Fund. It is a follow-up project in the area of

  1. Subjective costs drive overly patient foraging strategies in rats on an intertemporal foraging task.

    Science.gov (United States)

    Wikenheiser, Andrew M; Stephens, David W; Redish, A David

    2013-05-14

    Laboratory studies of decision making often take the form of two-alternative, forced-choice paradigms. In natural settings, however, many decision problems arise as stay/go choices. We designed a foraging task to test intertemporal decision making in rats via stay/go decisions. Subjects did not follow the rate-maximizing strategy of choosing only food items associated with short delays. Instead, rats were often willing to wait for surprisingly long periods, and consequently earned a lower rate of food intake than they might have by ignoring long-delay options. We tested whether foraging theory or delay discounting models predicted the behavior we observed but found that these models could not account for the strategies subjects selected. Subjects' behavior was well accounted for by a model that incorporated a cost for rejecting potential food items. Interestingly, subjects' cost sensitivity was proportional to environmental richness. These findings are at odds with traditional normative accounts of decision making but are consistent with retrospective considerations having a deleterious influence on decisions (as in the "sunk-cost" effect). More broadly, these findings highlight the utility of complementing existing assays of decision making with tasks that mimic more natural decision topologies.

  2. Effect of the Enabling Perception of Costing Systems by Managers in the Performance of their Tasks

    Directory of Open Access Journals (Sweden)

    Guilherme Eduardo de Souza

    2017-12-01

    Full Text Available The goal of this study is to analyze the effect of the enabling perception of costing systems by managers in the performance of their tasks, mediated by the intensity in of use of these costing systems and the level of psychological empowerment. The research was carried out through a survey of 62 companies listed in the Perfil das Empresas com Projetos Aprovados ou em Implantação na Zona Franca de Manaus Profile of Companies, in 2014. With a view to analyzing the hypotheses replicated from Mahama’s and Cheng’s (2013 study, the Structural Equations Modeling technique wasused. The research results show that the managers’ enabling perception of costing systems does not affect their  intensity of use, but it impacts on psychological empowerment, and this is directly reflected in the performance of tasks, indicating that the greater the empowerment, the better manager performance will be. It isconcluded that the model partially supports the relationships delineated and that the antecedents related to the costing systems require further study.

  3. A Low-Cost Data Acquisition System for Automobile Dynamics Applications.

    Science.gov (United States)

    González, Alejandro; Olazagoitia, José Luis; Vinolas, Jordi

    2018-01-27

    This project addresses the need for the implementation of low-cost acquisition technology in the field of vehicle engineering: the design, development, manufacture, and verification of a low-cost Arduino-based data acquisition platform to be used in <80 Hz data acquisition in vehicle dynamics, using low-cost accelerometers. In addition to this, a comparative study is carried out of professional vibration acquisition technologies and low-cost systems, obtaining optimum results for low- and medium-frequency operations with an error of 2.19% on road tests. It is therefore concluded that these technologies are applicable to the automobile industry, thereby allowing the project costs to be reduced and thus facilitating access to this kind of research that requires limited resources.

  4. Enhanced safety in the storage of fissile materials

    International Nuclear Information System (INIS)

    Williams, G.E.; Alvares, N.J.

    1978-01-01

    An inexpensive boron-loaded liner of epoxy resin for fissile-material storage containers was developed that can be easily fabricated of readily available, low-cost materials. Computer calculations indicate reactivity will be reduced substantially if this neutron-absorbing liner is added to containers in a typical storage array. These calculations compare favorably with neutron-attenuation experiments with thermal and fission neutron spectra, and tests at the Fire Test Facility indicate the epoxy resin will survive extreme environmental and accident conditions. The fire-resistant and insulating properties of the epoxy-resin liner further augment its ability to protect fissile materials. Boron-loaded epoxy resin is adaptable to many tasks but is particularly useful for providing enhanced criticality safety in the packaging and storage of fissile materials

  5. Revisa milestones report. Task 2.1: development of material models

    International Nuclear Information System (INIS)

    Nicolas, L.

    1998-01-01

    This report is the CEA contribution to the Milestone report of the REVISA project (Task 2.1). This task is particularly devoted to the development of advanced material models. CEA uses two different constitutive concepts. The first model is a coupled damage-visco-plasticity model proposed by Lemaitre and Chaboche. The second model is a non unified visco-plasticity model proposed by Contesti and Cailletaud, where the classical decomposition of the total inelastic strain into a time independent plastic part and a time dependent creep part is assumed. The introduction of isotropic damage in this model is part of the developments presented in this report. (author)

  6. Task E container corrosion studies: Annual report

    International Nuclear Information System (INIS)

    Bunnell, L.R.; Doremus, L.A.; Topping, J.B.; Duncan, D.R.

    1994-06-01

    The Pacific Northwest Laboratory is conducting the Solid Waste Technology Support Program (SWTSP) for Westinghouse Hanford Company (WHC). Task E is the Container Corrosion Study Portion of the SWTSP that will perform testing to provide defensible data on the corrosion of low-carbon steel, as used in drums to contain chemical and radioactive wastes at the Hanford Site. A second objective of Task E is to provide and test practical alternative materials that have higher corrosion resistance than low-carbon steel. The scope of work for fiscal year (FY) 1993 included initial testing of mild steel specimens buried in Hanford soils or exposed to atmospheric corrosion in metal storage sheds. During FY 1993, progress was made in three areas of Task E. First, exposure of test materials began at the Soil Corrosion Test Site where low-carbon steel specimens were placed in the soil in five test shafts at depths of 9 m (30 ft). Second, the corrosion measurement of low-carbon steel in the soil of two solid waste trenches continued. The total exposure time is ∼ 500 days. Third, an atmospheric corrosion test of low-carbon steel was put initiated in a metal shed (Building 2401-W) in the 200 West Area. This annual report describes the Task E efforts and provides a current status

  7. Low-cost real-time automatic wheel classification system

    Science.gov (United States)

    Shabestari, Behrouz N.; Miller, John W. V.; Wedding, Victoria

    1992-11-01

    This paper describes the design and implementation of a low-cost machine vision system for identifying various types of automotive wheels which are manufactured in several styles and sizes. In this application, a variety of wheels travel on a conveyor in random order through a number of processing steps. One of these processes requires the identification of the wheel type which was performed manually by an operator. A vision system was designed to provide the required identification. The system consisted of an annular illumination source, a CCD TV camera, frame grabber, and 386-compatible computer. Statistical pattern recognition techniques were used to provide robust classification as well as a simple means for adding new wheel designs to the system. Maintenance of the system can be performed by plant personnel with minimal training. The basic steps for identification include image acquisition, segmentation of the regions of interest, extraction of selected features, and classification. The vision system has been installed in a plant and has proven to be extremely effective. The system properly identifies the wheels correctly up to 30 wheels per minute regardless of rotational orientation in the camera's field of view. Correct classification can even be achieved if a portion of the wheel is blocked off from the camera. Significant cost savings have been achieved by a reduction in scrap associated with incorrect manual classification as well as a reduction of labor in a tedious task.

  8. Methods for cost-benefit-risk analysis of material-accounting upgrades

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Gordon, D.M.; Higinbotham, W.; Keisch, B.

    1988-01-01

    The authors have developed a cost-benefit-risk methodology for evaluating material-accounting upgrades at key measurement points in nuclear facilities. The focus of this methodology is on nuclear-material measurements and their effects on inventory differences and shipper/receiver differences. The methodology has three main components: cost, benefits, and risk factors. The fundamental outcome of the methodology is therefore cost-benefit ratios characterizing the proposed upgrades, with the risk factors applied as necessary to the benefits. Examples illustrate the methodology's use

  9. Dyes removal from water using low cost absorbents

    Science.gov (United States)

    Giraldo, S.; Ramirez, A. P.; Ulloa, M.; Flórez, E.; Y Acelas, N.

    2017-12-01

    In this study, the removal capacity of low cost adsorbents during the adsorption of Methylene Blue (MB) and Congo Red (CR) at different concentrations (50 and 100mg·L-1) was evaluated. These adsorbents were produced from wood wastes (cedar and teak) by chemical activation (ZnCl2). Both studied materials, Activated Cedar (AC) and activated teak (AT) showed a good fit of their experimental data to the pseudo second order kinetic model and Langmuir isotherms. The maximum adsorption capacities for AC were 2000.0 and 444.4mg·g-1 for MB and CR, respectively, while for AT, maximum adsorption capacities of 1052.6 and 86.4mg·g-1 were found for MB and CR, respectively.

  10. Low-Cost Open-Source Voltage and Current Monitor for Gas Metal Arc Weld 3D Printing

    Directory of Open Access Journals (Sweden)

    A. Pinar

    2015-01-01

    Full Text Available Arduino open-source microcontrollers are well known in sensor applications for scientific equipment and for controlling RepRap 3D printers. Recently low-cost open-source gas metal arc weld (GMAW RepRap 3D printers have been developed. The entry-level welders used have minimal controls and therefore lack any real-time measurement of welder voltage or current. The preliminary work on process optimization of GMAW 3D printers requires a low-cost sensor and data logger system to measure welder current and voltage. This paper reports on the development of a low-cost open-source power measurement sensor system based on Arduino architecture. The sensor system was designed, built, and tested with two entry-level MIG welders. The full bill of materials and open source designs are provided. Voltage and current were measured while making stepwise adjustments to the manual voltage setting on the welder. Three conditions were tested while welding with steel and aluminum wire on steel substrates to assess the role of electrode material, shield gas, and welding velocity. The results showed that the open source sensor circuit performed as designed and could be constructed for <$100 in components representing a significant potential value through lateral scaling and replication in the 3D printing community.

  11. Low-dose cone-beam CT via raw counts domain low-signal correction schemes: Performance assessment and task-based parameter optimization (Part II. Task-based parameter optimization).

    Science.gov (United States)

    Gomez-Cardona, Daniel; Hayes, John W; Zhang, Ran; Li, Ke; Cruz-Bastida, Juan Pablo; Chen, Guang-Hong

    2018-05-01

    Different low-signal correction (LSC) methods have been shown to efficiently reduce noise streaks and noise level in CT to provide acceptable images at low-radiation dose levels. These methods usually result in CT images with highly shift-variant and anisotropic spatial resolution and noise, which makes the parameter optimization process highly nontrivial. The purpose of this work was to develop a local task-based parameter optimization framework for LSC methods. Two well-known LSC methods, the adaptive trimmed mean (ATM) filter and the anisotropic diffusion (AD) filter, were used as examples to demonstrate how to use the task-based framework to optimize filter parameter selection. Two parameters, denoted by the set P, for each LSC method were included in the optimization problem. For the ATM filter, these parameters are the low- and high-signal threshold levels p l and p h ; for the AD filter, the parameters are the exponents δ and γ in the brightness gradient function. The detectability index d' under the non-prewhitening (NPW) mathematical observer model was selected as the metric for parameter optimization. The optimization problem was formulated as an unconstrained optimization problem that consisted of maximizing an objective function d'(P), where i and j correspond to the i-th imaging task and j-th spatial location, respectively. Since there is no explicit mathematical function to describe the dependence of d' on the set of parameters P for each LSC method, the optimization problem was solved via an experimentally measured d' map over a densely sampled parameter space. In this work, three high-contrast-high-frequency discrimination imaging tasks were defined to explore the parameter space of each of the LSC methods: a vertical bar pattern (task I), a horizontal bar pattern (task II), and a multidirectional feature (task III). Two spatial locations were considered for the analysis, a posterior region-of-interest (ROI) located within the noise streaks region

  12. Optical incremental rotary encoder in low-cost-design; Optischer inkrementaler Drehgeber in Low-Cost-Bauweise

    Energy Technology Data Exchange (ETDEWEB)

    Hopp, David; Pruss, Christof; Osten, Wolfgang [Stuttgart Univ. (Germany). Inst. fuer Technische Optik; Seybold, Jonathan; Mayer, Volker [Hans-Schickard-Gesellschaft, Stuttgart (DE). Inst. fuer Mikroaufbautechnik (IMAT); Kueck, Heinz [Hans-Schickard-Gesellschaft, Stuttgart (DE). Inst. fuer Mikroaufbautechnik (IMAT); Stuttgart Univ. (Germany). Inst. fuer Zeitmesstechnik, Fein- und Mikrotechnik

    2010-07-01

    We have developed a new concept for low-cost optical encoders to come up to meet the increasing demand for inexpensive rotary sensors. The principal idea is to use a micro patterned plastic disc with metal coating, as it is used for Compact Discs or DVDs. Such encoder discs can be manufactured by an efficient injection compression moulding process. With this well established technique it is possible to achieve highly precise micro patterns while running a cost effective process for high volume production. (orig.)

  13. Low activation material design methodology for reduction of radio-active wastes of nuclear power plant

    International Nuclear Information System (INIS)

    Hasegawa, A.; Satou, M.; Nogami, S.; Kakinuma, N.; Kinno, M.; Hayashi, K.

    2007-01-01

    Most of the concrete shielding walls and pipes around a reactor pressure vessel of a light water reactor become low level radioactive waste at decommission phase because they contain radioactive nuclides by thermal-neutron irradiation during its operation. The radioactivity of some low level radioactive wastes is close to the clearance level. It is very desirable in terms of life cycle cost reduction that the radioactivity of those low level radioactive wastes is decreased below clearance level. In case of light water reactors, however, methodology of low activation design of a nuclear plant has not been established yet because the reactor is a large-scale facility and has various structural materials. The Objectives of this work are to develop low activation material design methodology and material fabrication for reduction of radio-active wastes of nuclear power plant such as reinforced concrete. To realize fabrication of reduced radioactive concrete, it is necessary to develop (1) the database of the chemical composition of raw materials to select low activation materials, (2) the tool for calculation of the neutron flux and the spectrum distribution of nuclear plants to evaluate radioactivity of reactor components, (3) optimization of material process conditions to produce the low activation cement and the low activation steels. Results of the data base development, calculation tools and trial production of low activation cements will be presented. (authors)

  14. Low-cost formation of bulk and localized polymer-derived carbon nanodomains from polydimethylsiloxane.

    Science.gov (United States)

    Alcántara, Juan Carlos Castro; Cerda Zorrilla, Mariana; Cabriales, Lucia; Rossano, Luis Manuel León; Hautefeuille, Mathieu

    2015-01-01

    We present two simple alternative methods to form polymer-derived carbon nanodomains in a controlled fashion and at low cost, using custom-made chemical vapour deposition and selective laser ablation with a commercial CD-DVD platform. Both processes presented shiny and dark residual materials after the polymer combustion and according to micro-Raman spectroscopy of the domains, graphitic nanocrystals and carbon nanotubes have successfully been produced by the combustion of polydimethylsiloxane layers. The fabrication processes and characterization of the byproduct materials are reported. We demonstrate that CVD led to bulk production of graphitic nanocrystals and single-walled carbon nanotubes while direct laser ablation may be employed for the formation of localized fluorescent nanodots. In the latter case, graphitic nanodomains and multi-wall carbon nanotubes are left inside microchannels and preliminary results seem to indicate that laser ablation could offer a tuning control of the nature and optical properties of the nanodomains that are left inside micropatterns with on-demand geometries. These low-cost methods look particularly promising for the formation of carbon nanoresidues with controlled properties and in applications where high integration is desired.

  15. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

  16. Development of low-cost digital subtraction angiography system

    International Nuclear Information System (INIS)

    Ando, Yutaka; Kobayashi, Takeshi; Imai, Yutaka; Yagishita, Akira; Kunieda, Etsuo.

    1983-01-01

    We developed a simple and low-cost DSA system. This system consists of a conventional fluoroscopic equipment for the GI tract and a mini-computer (GAMMA-11) which are connected each other with a video-disc recorder. The uniqueness of our system are 1. low-cost, 2. low-radiation dose, 3. off-line processing, 4. flexibility of software. The analysis of the time-density curve and image processing will bring us a more usefull information than DSA alone. (author)

  17. Task conflict in the Stroop task: When Stroop interference decreases as Stroop facilitation increases in a low task conflict context

    Directory of Open Access Journals (Sweden)

    Benjamin Andrew Parris

    2014-10-01

    Full Text Available In the present study participants completed two blocks of the Stroop task, one in which the Response-Stimulus Interval (RSI was 3500ms and one in which RSI was 200ms. It was expected that, in line with previous research, the shorter RSI would induce a low Task Conflict context by increasing focus on the colour identification goal in the Stroop task. Based on previous research showing the role of Task Conflict in the presence or absence Stroop facilitation, this was expected to lead to the novel finding of an increase in facilitation and simultaneous decrease in interference. Such a finding would be problematic for models of Stroop effects that predict these indices of performance should be affected in tandem. A crossover interaction is reported supporting these predictions. As predicted, the shorter RSI resulted in incongruent and congruent trial RTs decreasing relative to a static neutral baseline condition; hence interference decreased as facilitation increased. An explanatory model (expanding on the work of Goldfarb, Henik and colleagues is presented that: 1 Shows how under certain conditions the predictions from single mechanism models hold true (i.e. when Task conflict is held constant; 2 Shows how it is possible that interference can be affected by an experimental manipulation that leaves facilitation apparently untouched and; 3 Predicts that facilitation cannot be independently affected by an experimental manipulation.

  18. Low-Cost energy contraption design using playground seesaw

    Science.gov (United States)

    Banlawe, I. A. P.; Acosta, N. J. E. L.

    2017-05-01

    The study was conducted at Western Philippines University, San Juan, Aborlan, Palawan. The study used the mechanical motion of playground seesaw as a means to produce electrical energy. The study aimed to design a low-cost prototype energy contraption using playground seesaw using locally available and recycled materials, to measure the voltage, current and power outputs produced at different situations and estimate the cost of the prototype. Using principle of pneumatics, two hand air pumps were employed on the two end sides of the playground seesaw and the mechanical motion of the seesaw up and down produces air that is used to rotate a DC motor to produce electrical energy. This electricity can be utilized for powering basic or low-power appliances. There were two trials of testing, each trial tests the different pressure level of the air tank and tests the opening of on-off valve (Full open and half open) when the compressed air was released. Results showed that all pressure level at full open produced significantly higher voltage, than the half open. However, the mean values of the current and power produced in all pressure level at full and half open have negligible variation. These results signify that the energy contraption using playground seesaw is an alternative viable source of electrical energy in the playgrounds, parks and other places and can be used as an auxiliary or back-up source for electricity.

  19. Improvement of technical purpose materials performance characteristics with the radio frequency low pressure plasma

    Science.gov (United States)

    Makhotkina, L. Yu; Khristoliubova, V. I.

    2017-11-01

    The main aim of the work is to solve the actual problem of increasing the competitiveness of tanning products by reducing the prime cost and improving the quality of finished products due to the increased durability of the working elements of tanneries. The impact of the low pressure radio frequency (RF) plasma in the processes of treating for modification of the materials for special purposes is considered in the article. The results of working elements of tanneries and the materials for special purposes sample processing by a RF low pressure plasma are described. As a result of leather materials nano structuring and nano modifying physical, mechanical and hygienic characteristics were increased. Processing of the technical purpose materials allows to increase operational performance of products and extend their lifespan.

  20. Development of low-cost open source 3D gel printer "RepRap SWIM-ER"

    Science.gov (United States)

    Sato, Kei; Basher, Samiul; Ota, Takafumi; Tase, Taishi; Takamatsu, Kyuichiro; Saito, Azusa; Khosla, Ajit; Kawakami, Masaru; Furuawa, Hidemitsu

    2017-04-01

    Gels are soft and wet materials having low friction, good biocompatibility, and material permeability. It is expected that gel materials will be used as new kinds of industrial materials in the engineering and medical applications. But it cannot build a complicated shape. Soft & Wet Matter Engineering Laboratory developed a 3D gel Printer "SWIM-ER", has enabled modeling of complex shapes of the gel. However, this is expensive. Therefore not all of the gel researchers and the companies have such a device. To solve this problem, we manufacture a low-cost open-source 3D gel printer "RepRap SWIM-ER" from the RepRap. We made the components required to manufacture the "RepRap SWIM-ER" from the 3D printer and chose a light source. In addition, we produced the P-DN gel for RepRap SWIM-ER and conducted the molding test to confirm whether RepRap SWIM-ER can used it.

  1. Development and evaluation of low-cost walker with trunk support for senior citizen.

    Science.gov (United States)

    Poier, Paloma Hohmann; Godke, Francisco; Foggiatto, José Aguiomar; Ulbricht, Leandra

    2017-10-09

    Develop and evaluate a low-cost walker with trunk support for senior citizens. Two-stage descriptive study: development of a walker with trunk support and evaluation with fourth age senior citizens. Twenty-three fourth age senior citizens were selected. The evaluated criteria were the immediate influence of the walker on the static stabilometry with baropodometer and the evaluation of gait with accelerometers monitoring time and amplitude of the hip movement. There was a significant decrease in the body oscillation of senior citizens with the use of the developed walker, and there were changes in the joint amplitudes of the hip, but they were not significant. Using low-cost materials, it was possible to develop and equipment that met resistance and effectiveness requirements. The walker interfered in the balance of the senior citizens, reducing significantly the static body oscillation.

  2. Low Cost Advanced Thermoelectric (TE) Technology for Automotive Waste Heat Recovery

    Science.gov (United States)

    Meisner, G. P.

    2014-03-01

    Low cost, fully integrated TE generators (TEGs) to recover waste heat from vehicle exhaust will reduce transportation sector energy consumption and emissions. TEGs will be the first application of high-temperature TE materials for high-volume use and establish new industrial sectors with scaled up production capability of TEG materials and components. We will create a potential supply chain for practical automotive TEGs and identify manufacturing and assembly processes for large scale production of TEG materials and components. Our work focusses on several innovative R&D paths: (1) enhanced TE material performance by doping and compositional tuning, (2) optimized TE material fabrication and processing to reduce thermal conductivity and improve fracture strength, (3) high volume production for successful skutterudite commercialization, (4) new material, nanostructure, and nanoscale approaches to reduce thermal interface and electrical contact resistances, (5) innovative heat exchangers for high efficiency heat flows and optimum temperature profiles despite highly variable exhaust gas operating conditions, (6) new modeling and simulation tools, and (7) inexpensive materials for thermal insulation and coatings for TE encapsulation. Recent results will be presented. Supported by the U.S. DOE Vehicle Technology Program.

  3. Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells

    KAUST Repository

    Tenca, Alberto; Cusick, Roland D.; Schievano, Andrea; Oberti, Roberto; Logan, Bruce E.

    2013-01-01

    Microbial electrolysis cells (MECs) can be used to treat wastewater and produce hydrogen gas, but low cost cathode catalysts are needed to make this approach economical. Molybdenum disulfide (MoS2) and stainless steel (SS) were evaluated

  4. Polypyrrole/sargassum activated carbon modified stainless-steel sponge as high-performance and low-cost bioanode for microbial fuel cells

    Science.gov (United States)

    Wu, Gaoming; Bao, Han; Xia, Zheng; Yang, Bin; Lei, Lecheng; Li, Zhongjian; Liu, Chunxian

    2018-04-01

    Anode materials, as the core component of microbial fuel cells (MFCs), have huge impacts on power generation performance and overall cost. Stainless-steel sponge (SS) can be a promising material for MFC anodes, due to its open continuous three-dimensional structure, high conductivity and low cost. However, poor biocompatibility limits its application. In this paper, a polypyrrole/sargassum activated carbon modified SS anode (Ppy/SAC/SS) is developed by electrochemical polymerization of pyrrole on the SS with the SAC as a dopant. The maximum power density achieved with the Ppy/SAC/SS anode is 45.2 W/m3, which is increased by 2 orders of magnitude and 2.9 times compared with an unmodified SS anode and a solely Ppy modified SS anode (Ppy/SS), respectively. In addition, the Ppy/SAC layer effectively eliminates electrochemical corrosion of the SS substrate. Electrochemical impedance spectroscopy reveals that Ppy/SAC modification decreases electron transfer resistance between the bacteria and the electrode. Furthermore, in vivo fluorescence imaging indicates that a more uniform biofilm is formed on the Ppy/SAC/SS compared to the unmodified SS and Ppy/SS. Due to the low cost of the materials, easy fabrication process and relatively high performance, our developed Ppy/SAC/SS can be a cost efficient anode material for MFCs in practical applications.

  5. Low Cost Upper Stage-Class Propulsion (LCUSP)

    Science.gov (United States)

    Vickers, John

    2015-01-01

    NASA is making space exploration more affordable and viable by developing and utilizing innovative manufacturing technologies. Technology development efforts at NASA in propulsion are committed to continuous innovation of design and manufacturing technologies for rocket engines in order to reduce the cost of NASA's journey to Mars. The Low Cost Upper Stage-Class Propulsion (LCUSP) effort will develop and utilize emerging Additive Manufacturing (AM) to significantly reduce the development time and cost for complex rocket propulsion hardware. Benefit of Additive Manufacturing (3-D Printing) Current rocket propulsion manufacturing techniques are costly and have lengthy development times. In order to fabricate rocket engines, numerous complex parts made of different materials are assembled in a way that allow the propellant to collect heat at the right places to drive the turbopump and simultaneously keep the thrust chamber from melting. The heat conditioned fuel and oxidizer come together and burn inside the combustion chamber to provide thrust. The efforts to make multiple parts precisely fit together and not leak after experiencing cryogenic temperatures on one-side and combustion temperatures on the other is quite challenging. Additive manufacturing has the potential to significantly reduce the time and cost of making rocket parts like the copper liner and Nickel-alloy jackets found in rocket combustion chambers where super-cold cryogenic propellants are heated and mixed to the extreme temperatures needed to propel rockets in space. The Selective Laser Melting (SLM) machine fuses 8,255 layers of copper powder to make a section of the chamber in 10 days. Machining an equivalent part and assembling it with welding and brazing techniques could take months to accomplish with potential failures or leaks that could require fixes. The design process is also enhanced since it does not require the 3D model to be converted to 2-D drawings. The design and fabrication process

  6. Construction of a low cost wind energy generator; Construcao de um gerador de energia eolica de baixo custo

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Jonathan Penha de; Almeida, Silvio Carlos Anibal de [Universidade Federal do Rio de Janeiro (DEM/EP/UFRJ), RJ (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica], Emails: jonathan_penha@poli.ufrj.br, silvioa@gmail.com

    2010-07-01

    This project presents a low cost wind electric power generator constituted of cheap and easy access materials. The necessary materials are presented for it construction and the expected efficiency, having as reference the city of Fernando de Noronha, Brazil. The elaboration of the generator was initially developed as alternative energy source during blackout.

  7. Organizing for low cost space operations - Status and plans

    Science.gov (United States)

    Lee, C.

    1976-01-01

    Design features of the Space Transportation System (vehicle reuse, low cost expendable components, simple payload interfaces, standard support systems) must be matched by economical operational methods to achieve low operating and payload costs. Users will be responsible for their own payloads and will be charged according to the services they require. Efficient use of manpower, simple documentation, simplified test, checkout, and flight planning are firm goals, together with flexibility for quick response to varying user needs. Status of the Shuttle hardware, plans for establishing low cost procedures, and the policy for user charges are discussed.

  8. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries

    Science.gov (United States)

    Hameed, A. Shahul; Reddy, M. V.; Nagarathinam, M.; Runčevski, Tomče; Dinnebier, Robert E.; Adams, Stefan; Chowdari, B. V. R.; Vittal, Jagadese J.

    2015-11-01

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity.

  9. Very low level radioactive material

    International Nuclear Information System (INIS)

    Schaller, K.H.; Linsley, G.; Elert, M.

    1993-01-01

    Man's environment contains naturally occurring radionuclides and doses from exposures to these radionuclides mostly cannot be avoided. Consequently, almost everything may be considered as very low level radioactive material. In practical terms, management and the selection of different routes for low level material is confined to material which was subject to industrial processing or which is under a system of radiological control. Natural radionuclides with concentrations reaching reporting or notification levels will be discussed below; nevertheless, the main body of this paper will be devoted to material, mainly of artificial origin, which is in the system involving notification, registration and licensing of practices and sources. It includes material managed in the nuclear sector and sources containing artificially produced radionuclides used in hospitals, and in industry. Radioactive materials emit ionising radiations which are harmful to man and his environment. National and international regulations provide the frame for the system of radiation protection. Nevertheless, concentrations, quantities or types of radionuclide may be such, that the material presents a very low hazard, and may therefore be removed from regulatory control, as it would be a waste of time and effort to continue supervision. These materials are said to be exempted from regulatory control. Material exempted in a particular country is no longer distinguishable from ''ordinary'' material and may be moved from country to country. Unfortunately, criteria for exempting radioactive materials differ strongly between countries and free trade. Therefore there is a necessity for an international approach to be developed for exemption levels

  10. Interagency cooperation in the development of a cost-effective transportation and disposal solution for vitrified radium bearing material

    International Nuclear Information System (INIS)

    Smith, M.L.; Nixon, D.A.; Stone, T.J.; Tope, W.G.; Vogel, R.A.; Allen, R.B.; Schofield, W.D.

    1996-01-01

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3 waste, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, shielding requirements, packaging, and transportation alternatives was completed to identify the safest, most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-resonably-achievable principles, and material handling costs were factored into the recommended approach. Through cooperative work between the U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT), the vitrified K-65 and Silo 3 radioactive material will be classified consistent with the regulations promulgated by DOT in the September 28, 1995 Federal Register. These new regulations adopt International Atomic Energy Agency language to promote a consistent approach for the transportation and management of radioactive material between the international community and the DOT. Use of the new regulations allows classification of the vitrified radioactive material from the Fernald silos under the designation of low specific activity-II and allows the development of a container that is optimized to maximize payload while minimizing internal void space, external surface radiation levels, and external volume. This approach minimizes the required number of containers and shipments, and the related transportation and disposal costs

  11. Interagency cooperation in the development of a cost-effective transportation and disposal solution for vitrified radium bearing material

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.L.; Nixon, D.A.; Stone, T.J.; Tope, W.G.; Vogel, R.A. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Allen, R.B. [USDOE, Fernald Area Office, Cincinnati, OH (United States); Schofield, W.D. [Foster Wheeler Environmental Corp. (United States)

    1996-02-01

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3 waste, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, shielding requirements, packaging, and transportation alternatives was completed to identify the safest, most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-resonably-achievable principles, and material handling costs were factored into the recommended approach. Through cooperative work between the U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT), the vitrified K-65 and Silo 3 radioactive material will be classified consistent with the regulations promulgated by DOT in the September 28, 1995 Federal Register. These new regulations adopt International Atomic Energy Agency language to promote a consistent approach for the transportation and management of radioactive material between the international community and the DOT. Use of the new regulations allows classification of the vitrified radioactive material from the Fernald silos under the designation of low specific activity-II and allows the development of a container that is optimized to maximize payload while minimizing internal void space, external surface radiation levels, and external volume. This approach minimizes the required number of containers and shipments, and the related transportation and disposal costs.

  12. Low-cost uncooled VOx infrared camera development

    Science.gov (United States)

    Li, Chuan; Han, C. J.; Skidmore, George D.; Cook, Grady; Kubala, Kenny; Bates, Robert; Temple, Dorota; Lannon, John; Hilton, Allan; Glukh, Konstantin; Hardy, Busbee

    2013-06-01

    The DRS Tamarisk® 320 camera, introduced in 2011, is a low cost commercial camera based on the 17 µm pixel pitch 320×240 VOx microbolometer technology. A higher resolution 17 µm pixel pitch 640×480 Tamarisk®640 has also been developed and is now in production serving the commercial markets. Recently, under the DARPA sponsored Low Cost Thermal Imager-Manufacturing (LCTI-M) program and internal project, DRS is leading a team of industrial experts from FiveFocal, RTI International and MEMSCAP to develop a small form factor uncooled infrared camera for the military and commercial markets. The objective of the DARPA LCTI-M program is to develop a low SWaP camera (costs less than US $500 based on a 10,000 units per month production rate. To meet this challenge, DRS is developing several innovative technologies including a small pixel pitch 640×512 VOx uncooled detector, an advanced digital ROIC and low power miniature camera electronics. In addition, DRS and its partners are developing innovative manufacturing processes to reduce production cycle time and costs including wafer scale optic and vacuum packaging manufacturing and a 3-dimensional integrated camera assembly. This paper provides an overview of the DRS Tamarisk® project and LCTI-M related uncooled technology development activities. Highlights of recent progress and challenges will also be discussed. It should be noted that BAE Systems and Raytheon Vision Systems are also participants of the DARPA LCTI-M program.

  13. Low-cost housing design and provision: A case study of Kenya

    Science.gov (United States)

    Kabo, Felichism W.

    Shelter is as basic a human need as food and water. Today, many people in Third World countries live in sub-standard housing, or lack shelter altogether. Prior research addresses either one of two housing dimensions: broader provision processes, or specific aspects of design. This dissertation is an effort at addressing both dimensions, the underlying premise being that their inter-connectedness demands an integrative approach. More specifically, this dissertation is a combined strategy case study of housing design and provision in Kenya, a sub-Saharan African country with serious shelter problems. A majority of Kenya's urban population lives in slums or squatter settlements. This dissertation covers four major areas of housing design and provision in Kenya: building materials, user preferences for building materials and housing designs, interior layouts, and the organizational context of the housing sector. These four areas are theoretically unified by Canter's (1977) model of place. Each of the first three areas (housing design) relates to one or more of the three domains in the model. The fourth area (housing provision) pertains to the model's context and framework. The technical building materials research reveals the feasibility of making low-cost materials (soil-cements) with satisfactory engineering performance. The research in preference for building materials reveals that the two independent variables, soil and mix, have a significant effect on potential users' ratings. The housing preference study reveals that of the four independent variables, design and type had a significant effect on potential users' ratings, while materials and construction method did not have a significant effect. The interior layout studies reveal important associations between spatial configurations and a key space (the kitchen), and between configuration and conceptualizations of living, cooking, and sleeping spaces. The findings from the studies of preferences and interior

  14. Task Switching in a Hierarchical Task Structure: Evidence for the Fragility of the Task Repetition Benefit

    Science.gov (United States)

    Lien, Mei-Ching; Ruthruff, Eric

    2004-01-01

    This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms.…

  15. MPEG-1 low-cost encoder solution

    Science.gov (United States)

    Grueger, Klaus; Schirrmeister, Frank; Filor, Lutz; von Reventlow, Christian; Schneider, Ulrich; Mueller, Gerriet; Sefzik, Nicolai; Fiedrich, Sven

    1995-02-01

    A solution for real-time compression of digital YCRCB video data to an MPEG-1 video data stream has been developed. As an additional option, motion JPEG and video telephone streams (H.261) can be generated. For MPEG-1, up to two bidirectional predicted images are supported. The required computational power for motion estimation and DCT/IDCT, memory size and memory bandwidth have been the main challenges. The design uses fast-page-mode memory accesses and requires only one single 80 ns EDO-DRAM with 256 X 16 organization for video encoding. This can be achieved only by using adequate access and coding strategies. The architecture consists of an input processing and filter unit, a memory interface, a motion estimation unit, a motion compensation unit, a DCT unit, a quantization control, a VLC unit and a bus interface. For using the available memory bandwidth by the processing tasks, a fixed schedule for memory accesses has been applied, that can be interrupted for asynchronous events. The motion estimation unit implements a highly sophisticated hierarchical search strategy based on block matching. The DCT unit uses a separated fast-DCT flowgraph realized by a switchable hardware unit for both DCT and IDCT operation. By appropriate multiplexing, only one multiplier is required for: DCT, quantization, inverse quantization, and IDCT. The VLC unit generates the video-stream up to the video sequence layer and is directly coupled with an intelligent bus-interface. Thus, the assembly of video, audio and system data can easily be performed by the host computer. Having a relatively low complexity and only small requirements for DRAM circuits, the developed solution can be applied to low-cost encoding products for consumer electronics.

  16. Low cost materials of construction for biological processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-13

    The workshop was held, May 1993 in conjunction with the 15th Symposium on Biotechnology for Fuels and Chemicals. The purpose of this workshop was to present information on the biomass to ethanol process in the context of materials selection and through presentation and discussion, identify promising avenues for future research. Six technical presentations were grouped into two sessions: process assessment and technology assessment. In the process assessment session, the group felt that the pretreatment area would require the most extensive materials research due the complex chemical, physical and thermal environment. Discussion centered around the possibility of metals being leached into the process stream and their effect on the fermentation mechanics. Linings were a strong option for pretreatment assuming the economics were favorable. Fermentation was considered an important area for research also, due to the unique complex of compounds and dual phases present. Erosion in feedstock handling equipment was identified as a minor concern. In the technology assessment session, methodologies in corrosion analysis were presented in addition to an overview of current coatings/linings technology. Widely practiced testing strategies, including ASTM methods, as well as novel procedures for micro-analysis of corrosion were discussed. Various coatings and linings, including polymers and ceramics, were introduced. The prevailing recommendations for testing included keeping the testing simple until the problem warranted a more detailed approach and developing standardized testing procedures to ensure the data was reproducible and applicable. The need to evaluate currently available materials such as coatings/linings, carbon/stainless steels, or fiberglass reinforced plastic was emphasized. It was agreed that economic evaluation of each material candidate must be an integral part of any research plan.

  17. Assessment of a Low-Cost Ultrasound Pericardiocentesis Model

    Directory of Open Access Journals (Sweden)

    Marco Campo dell'Orto

    2013-01-01

    Full Text Available Introduction. The use of ultrasound during resuscitation is emphasized in the latest European resuscitation council guidelines of 2013 to identify treatable conditions such as pericardial tamponade. The recommended standard treatment of tamponade in various guidelines is pericardiocentesis. As ultrasound guidance lowers the complication rates and increases the patient’s safety, pericardiocentesis should be performed under ultrasound guidance. Acute care physicians actually need to train emergency pericardiocentesis. Methods. We describe in detail a pericardiocentesis ultrasound model, using materials at a cost of about 60 euros. During training courses of focused echocardiography n=67, participants tested the phantom and completed a 16-item questionnaire, assessing the model using a visual analogue scale (VAS. Results. Eleven of fourteen questions were answered with a mean VAS score higher than 60% and thus regarded as showing the strengths of the model. Unrealistically outer appearance and heart shape were rated as weakness of the model. A total mean VAS score of all questions of 63% showed that participants gained confidence for further interventions. Conclusions. Our low-cost pericardiocentesis model, which can be easily constructed, may serve as an effective training tool of ultrasound-guided pericardiocentesis for acute and critical care physicians.

  18. Assessment of a Low-Cost Ultrasound Pericardiocentesis Model

    Science.gov (United States)

    Campo dell'Orto, Marco; Hempel, Dorothea; Starzetz, Agnieszka; Seibel, Armin; Hannemann, Ulf; Walcher, Felix; Breitkreutz, Raoul

    2013-01-01

    Introduction. The use of ultrasound during resuscitation is emphasized in the latest European resuscitation council guidelines of 2013 to identify treatable conditions such as pericardial tamponade. The recommended standard treatment of tamponade in various guidelines is pericardiocentesis. As ultrasound guidance lowers the complication rates and increases the patient's safety, pericardiocentesis should be performed under ultrasound guidance. Acute care physicians actually need to train emergency pericardiocentesis. Methods. We describe in detail a pericardiocentesis ultrasound model, using materials at a cost of about 60 euros. During training courses of focused echocardiography n = 67, participants tested the phantom and completed a 16-item questionnaire, assessing the model using a visual analogue scale (VAS). Results. Eleven of fourteen questions were answered with a mean VAS score higher than 60% and thus regarded as showing the strengths of the model. Unrealistically outer appearance and heart shape were rated as weakness of the model. A total mean VAS score of all questions of 63% showed that participants gained confidence for further interventions. Conclusions. Our low-cost pericardiocentesis model, which can be easily constructed, may serve as an effective training tool of ultrasound-guided pericardiocentesis for acute and critical care physicians. PMID:24288616

  19. When predictions take control: The effect of task predictions on task switching performance

    Directory of Open Access Journals (Sweden)

    Wout eDuthoo

    2012-08-01

    Full Text Available In this paper, we aimed to investigate the role of self-generated predictions in the flexible control of behaviour. Therefore, we ran a task switching experiment in which participants were asked to try to predict the upcoming task in three conditions varying in switch rate (30%, 50% and 70%. Irrespective of their predictions, the colour of the target indicated which task participants had to perform. In line with previous studies (Mayr, 2006; Monsell & Mizon, 2006, the switch cost was attenuated as the switch rate increased. Importantly, a clear task repetition bias was found in all conditions, yet the task repetition prediction rate dropped from 78% over 66% to 49% with increasing switch probability in the three conditions. Irrespective of condition, the switch cost was strongly reduced in expectation of a task alternation compared to the cost of an unexpected task alternation following repetition predictions. Hence, our data suggest that the reduction in the switch cost with increasing switch probability is caused by a diminished expectancy for the task to repeat. Taken together, this paper highlights the importance of predictions in the flexible control of behaviour, and suggests a crucial role for task repetition expectancy in the context-sensitive adjusting of task switching performance.

  20. Low cost 3D-printing used in an undergraduate project: an integrating sphere for measurement of photoluminescence quantum yield

    International Nuclear Information System (INIS)

    Tomes, John J; Finlayson, Chris E

    2016-01-01

    We report upon the exploitation of the latest 3D printing technologies to provide low-cost instrumentation solutions, for use in an undergraduate level final-year project. The project addresses prescient research issues in optoelectronics, which would otherwise be inaccessible to such undergraduate student projects. The experimental use of an integrating sphere in conjunction with a desktop spectrometer presents opportunities to use easily handled, low cost materials as a means to illustrate many areas of physics such as spectroscopy, lasers, optics, simple circuits, black body radiation and data gathering. Presented here is a 3rd year undergraduate physics project which developed a low cost (£25) method to manufacture an experimentally accurate integrating sphere by 3D printing. Details are given of both a homemade internal reflectance coating formulated from readily available materials, and a robust instrument calibration method using a tungsten bulb. The instrument is demonstrated to give accurate and reproducible experimental measurements of luminescence quantum yield of various semiconducting fluorophores, in excellent agreement with literature values. (paper)

  1. Low cost 3D-printing used in an undergraduate project: an integrating sphere for measurement of photoluminescence quantum yield

    Science.gov (United States)

    Tomes, John J.; Finlayson, Chris E.

    2016-09-01

    We report upon the exploitation of the latest 3D printing technologies to provide low-cost instrumentation solutions, for use in an undergraduate level final-year project. The project addresses prescient research issues in optoelectronics, which would otherwise be inaccessible to such undergraduate student projects. The experimental use of an integrating sphere in conjunction with a desktop spectrometer presents opportunities to use easily handled, low cost materials as a means to illustrate many areas of physics such as spectroscopy, lasers, optics, simple circuits, black body radiation and data gathering. Presented here is a 3rd year undergraduate physics project which developed a low cost (£25) method to manufacture an experimentally accurate integrating sphere by 3D printing. Details are given of both a homemade internal reflectance coating formulated from readily available materials, and a robust instrument calibration method using a tungsten bulb. The instrument is demonstrated to give accurate and reproducible experimental measurements of luminescence quantum yield of various semiconducting fluorophores, in excellent agreement with literature values.

  2. Performance Assessment of a Custom, Portable, and Low-Cost Brain-Computer Interface Platform.

    Science.gov (United States)

    McCrimmon, Colin M; Fu, Jonathan Lee; Wang, Ming; Lopes, Lucas Silva; Wang, Po T; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An Hong

    2017-10-01

    Conventional brain-computer interfaces (BCIs) are often expensive, complex to operate, and lack portability, which confines their use to laboratory settings. Portable, inexpensive BCIs can mitigate these problems, but it remains unclear whether their low-cost design compromises their performance. Therefore, we developed a portable, low-cost BCI and compared its performance to that of a conventional BCI. The BCI was assembled by integrating a custom electroencephalogram (EEG) amplifier with an open-source microcontroller and a touchscreen. The function of the amplifier was first validated against a commercial bioamplifier, followed by a head-to-head comparison between the custom BCI (using four EEG channels) and a conventional 32-channel BCI. Specifically, five able-bodied subjects were cued to alternate between hand opening/closing and remaining motionless while the BCI decoded their movement state in real time and provided visual feedback through a light emitting diode. Subjects repeated the above task for a total of 10 trials, and were unaware of which system was being used. The performance in each trial was defined as the temporal correlation between the cues and the decoded states. The EEG data simultaneously acquired with the custom and commercial amplifiers were visually similar and highly correlated ( ρ = 0.79). The decoding performances of the custom and conventional BCIs averaged across trials and subjects were 0.70 ± 0.12 and 0.68 ± 0.10, respectively, and were not significantly different. The performance of our portable, low-cost BCI is comparable to that of the conventional BCIs. Platforms, such as the one developed here, are suitable for BCI applications outside of a laboratory.

  3. The effects of glucose dose and dual-task performance on memory for emotional material.

    Science.gov (United States)

    Brandt, Karen R; Sünram-Lea, Sandra I; Jenkinson, Paul M; Jones, Emma

    2010-07-29

    Whilst previous research has shown that glucose administration can boost memory performance, research investigating the effects of glucose on memory for emotional material has produced mixed findings. Whereas some research has shown that glucose impairs memory for emotional material, other research has shown that glucose has no effect on emotional items. The aim of the present research was therefore to provide further investigation of the role of glucose on the recognition of words with emotional valence by exploring effects of dose and dual-task performance, both of which affect glucose facilitation effects. The results replicated past research in showing that glucose administration, regardless of dose or dual-task conditions, did not affect the memorial advantage enjoyed by emotional material. This therefore suggests an independent relationship between blood glucose levels and memory for emotional material. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Costs of mixed low-level waste stabilization options

    International Nuclear Information System (INIS)

    Schwinkendorf, W.E.; Cooley, C.R.

    1998-01-01

    Selection of final waste forms to be used for disposal of DOE's mixed low-level waste (MLLW) depends on the waste form characteristics and total life cycle cost. In this paper the various cost factors associated with production and disposal of the final waste form are discussed and combined to develop life-cycle costs associated with several waste stabilization options. Cost factors used in this paper are based on a series of treatment system studies in which cost and mass balance analyses were performed for several mixed low-level waste treatment systems and various waste stabilization methods including vitrification, grout, phosphate bonded ceramic and polymer. Major cost elements include waste form production, final waste form volume, unit disposal cost, and system availability. Production of grout costs less than the production of a vitrified waste form if each treatment process has equal operating time (availability) each year; however, because of the lower volume of a high temperature slag, certification and handling costs and disposal costs of the final waste form are less. Both the total treatment cost and life cycle costs are higher for a system producing grout than for a system producing high temperature slag, assuming equal system availability. The treatment costs decrease with increasing availability regardless of the waste form produced. If the availability of a system producing grout is sufficiently greater than a system producing slag, then the cost of treatment for the grout system will be less than the cost for the slag system, and the life cycle cost (including disposal) may be less depending on the unit disposal cost. Treatment and disposal costs will determine the return on investment in improved system availability

  5. Task reports of INFCE Working Group 6

    International Nuclear Information System (INIS)

    Task 1 Report summarizes on a country-by-country basis the data supplied by the participating states related to nuclear power forecast, spent fuel generation, AR storage capacity, AFR storage capacity, AFR storage and transport systems. Task Reports 2-5 analyse the spent fuel storage and transport situation according to reactor types. Information on the technical description of spent fuel existing storage and transport techniques and techniques under development and on costs is given. Task 6 summarizes the present legal framework for spent fuel management related to licensing, safety, environmental and physical protection, accounting and control of nuclear material by states, non-proliferation of nuclear weapons, assurances for national access to nuclear material contained in spent fuel, and protection of technology. The institutional practice for spent fuel storage and transport is described. For the period up to the year 2025 a prognosis and recommendations related to legal framework and institutional models are given. The special needs of developing countries and industrialized countries with a limited nuclear power programme with respect to spent fuel management are analysed in Task Reports 7 and 8

  6. Optical properties of low-dimensional materials

    CERN Document Server

    Ogawa, T

    1998-01-01

    This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promis

  7. Development of a low cost, low environmental impact process for disposal of nitrate wastes

    International Nuclear Information System (INIS)

    Napier, J.M.

    1975-01-01

    A uranium recycle process in the Y-12 Plant generates nitrate ions which must be discarded. Scrap enriched uranium is dissolved in nitric acid and solvent extracted to remove impurities from the uranium. Aluminum nitrate is also used in the process to remove the purified uranium from the solvent extraction process. Dilute nitric acid, aluminum nitrate, and metallic impurities must be discarded from this process. A program was started to develop a low cost, low environmental impact process for disposal of these nitrate wastes. Several disposal methods were considered. A process was selected which included: distillation and recycle of nitric acid; crystallization and recycle of aluminum nitrate; and biodegradation of the remaining nitrate waste solutions. For this presentation, only the biodegradation process will be discussed. A colony of Pseudomonas stutzeri, which is capable of using the nitrate ion as the oxygen supply, was used. An excess of organic material was used to insure that the maximum amount of nitrate was destroyed

  8. Quality upgrading and cost reducing effects of using an operation control system for performance of maintenance tasks

    International Nuclear Information System (INIS)

    Ramler, K.

    1996-01-01

    According to available results, the use of an operation control system has come up to expections with respect to a quality enhancement of maintenance work. The tasks are performed more safely and there is more insight into the processes. so that, as indirect results, cost savings and rationalisation effects are to be expected. However, the cost savings achieved through the operation control system for maintenance tasks will remain modest. The truly cost-effective optimisation potentials in the maintenance area primarily consist in a reduction of preventive measures to the required scope, i.e reduction of the envisaged quantity of processes for maintenance and recurrent inspection. In order to extend savings to the organisational level, with respect to personnel expenditure, by DP supported maintenance planning, a suitable optimisation of the organisational structure and personnel employment is inevitable, because otherwise the rationalisation potentials will remain utopia. (orig.) [de

  9. A low-cost MRI compatible keyboard

    DEFF Research Database (Denmark)

    Jensen, Martin Snejbjerg; Heggli, Ole Adrian; Alves da Mota, Patricia

    2017-01-01

    , presenting a challenging environment for playing an instrument. Here, we present an MRI-compatible polyphonic keyboard with a materials cost of 850 $, designed and tested for safe use in 3T (three Tesla) MRI-scanners. We describe design considerations, and prior work in the field. In addition, we provide...

  10. The Evaluation of Material Properties of Low-pH Cement Grout for the Application of Cementitious Materials to Deep Radioactive Waste Repository Tunnels

    International Nuclear Information System (INIS)

    Kim, Jin Seop; Kwon, S. K.; Cho, W. J.; Kim, G. W.

    2009-12-01

    Considering the current construction technology and research status of deep repository tunnels for radioactive waste disposal, it is inevitable to use cementitious materials in spite of serious concern about their long-term environmental stability. Thus, it is an emerging task to develop low pH cementitious materials. This study reviews the state of the technology on low pH cements developed in Sweden, Switzerland, France, and Japan as well as in Finland which is constructing a real deep repository site for high-level radioactive waste disposal. Considering the physical and chemical stability of bentonite which acts as a buffer material, a low pH cement limits to pH ≤11 and pozzolan-type admixtures are used to lower the pH of cement. To attain this pH requirement, silica fume, which is one of the most promising admixtures, should occupy at least 40 wt% of total dry materials in cement and the Ca/Si ratio should be maintained below 0.8 in cement. Additionally, selective super-plasticizer needs to be used because a high amount of water is demanded from the use of a large amount of silica fume. In this report, the state of the technology on application of cementitious materials to deep repository tunnels for radioactive waste disposal was analysed. And the material properties of low-pH and high-pH cement grouts were evaluated base on the grout recipes of ONKALO in Finlan

  11. a Low-Cost Panoramic Camera for the 3d Documentation of Contaminated Crime Scenes

    Science.gov (United States)

    Abate, D.; Toschi, I.; Sturdy-Colls, C.; Remondino, F.

    2017-11-01

    Crime scene documentation is a fundamental task which has to be undertaken in a fast, accurate and reliable way, highlighting evidence which can be further used for ensuring justice for victims and for guaranteeing the successful prosecution of perpetrators. The main focus of this paper is on the documentation of a typical crime scene and on the rapid recording of any possible contamination that could have influenced its original appearance. A 3D reconstruction of the environment is first generated by processing panoramas acquired with the low-cost Ricoh Theta 360 camera, and further analysed to highlight potentials and limits of this emerging and consumer-grade technology. Then, a methodology is proposed for the rapid recording of changes occurring between the original and the contaminated crime scene. The approach is based on an automatic 3D feature-based data registration, followed by a cloud-to-cloud distance computation, given as input the 3D point clouds generated before and after e.g. the misplacement of evidence. All the algorithms adopted for panoramas pre-processing, photogrammetric 3D reconstruction, 3D geometry registration and analysis, are presented and currently available in open-source or low-cost software solutions.

  12. Preparation, characterization and environmental/electrochemical energy storage testing of low-cost biochar from natural chitin obtained via pyrolysis at mild conditions

    Science.gov (United States)

    Magnacca, Giuliana; Guerretta, Federico; Vizintin, Alen; Benzi, Paola; Valsania, Maria C.; Nisticò, Roberto

    2018-01-01

    Chitin (a biopolymer obtained from shellfish industry) was used as precursor for the production of biochars obtained via pyrolysis treatments performed at mild conditions (in the 290-540 °C range). Biochars were physicochemical characterized in order to evaluate the pyrolysis-induced effects in terms of both functional groups and material structure. Moreover, such carbonaceous materials were tested as adsorbent substrates for the removal of target molecules from aqueous environment as well as in solid-gas experiments, to measure the adsorption capacities and selectivity toward CO2. Lastly, biochars were also investigated as possible cathode materials in sustainable and low-cost electrochemical energy storage devices, such as lithium-sulphur (Li-S) batteries. Interestingly, experimental results evidenced that such chitin-derived biochars obtained via pyrolysis at mild conditions are sustainable, low-cost and easy scalable alternative materials suitable for both environmental and energetic applications.

  13. Low-Cost Gas Heat Pump for Building Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Garrabrant, Michael [Stone Mountain Technologies, Inc., Johnson City, TN (United States); Keinath, Christopher [Stone Mountain Technologies, Inc., Johnson City, TN (United States)

    2016-10-11

    Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiency encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2:1 modulation

  14. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries

    Science.gov (United States)

    Hameed, A. Shahul; Reddy, M. V.; Nagarathinam, M.; Runčevski, Tomče; Dinnebier, Robert E; Adams, Stefan; Chowdari, B. V. R.; Vittal, Jagadese J.

    2015-01-01

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity. PMID:26593096

  15. A cost-benefit analysis for materials management information systems.

    Science.gov (United States)

    Slapak-Iacobelli, L; Wilde, A H

    1993-02-01

    The cost-benefit analysis provided the system planners with valuable information that served many purposes. It answered the following questions: Why was the CCF undertaking this project? What were the alternatives? How much was it going to cost? And what was the expected outcome? The process of developing cost-benefit the document kept the project team focused. It also motivated them to involve additional individuals from materials management and accounts payable in its development. A byproduct of this involvement was buy-in and commitment to the project by everyone in these areas. Consequently, the project became a team effort championed by many and not just one. We were also able to introduce two new information system processes: 1) a management review process with goals and anticipated results, and 2) a quality assurance process that ensured the CCF had a better product in the end. The cost-benefit analysis provided a planning tool that assisted in successful implementation of an integrated materials management information system.

  16. Low Cost, Light Weight Materials for Mirrors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — During the phase I program Northwestern and APS, Inc., have manufactured several different materials systems that are lighter than Beryllium and stiffer than...

  17. Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation.

    Science.gov (United States)

    Xue, Guobin; Liu, Kang; Chen, Qian; Yang, Peihua; Li, Jia; Ding, Tianpeng; Duan, Jiangjiang; Qi, Bei; Zhou, Jun

    2017-05-03

    Solar-enabled steam generation has attracted increasing interest in recent years because of its potential applications in power generation, desalination, and wastewater treatment, among others. Recent studies have reported many strategies for promoting the efficiency of steam generation by employing absorbers based on carbon materials or plasmonic metal nanoparticles with well-defined pores. In this work, we report that natural wood can be utilized as an ideal solar absorber after a simple flame treatment. With ultrahigh solar absorbance (∼99%), low thermal conductivity (0.33 W m -1 K -1 ), and good hydrophilicity, the flame-treated wood can localize the solar heating at the evaporation surface and enable a solar-thermal efficiency of ∼72% under a solar intensity of 1 kW m -2 , and it thus represents a renewable, scalable, low-cost, and robust material for solar steam applications.

  18. Parametric optimization for the low cost production of nanostructure ...

    African Journals Online (AJOL)

    In recent years, nanocrystalline materials have drawn the attention of researchers in the field of materials science engineering due to its enhanced mechanical properties such as high strength and high hardness. However, the cost of nanocrystalline materials is prohibitively high, primarily due to the expensive equipments ...

  19. Design of teletherapy facility: effect of space and occupancy on the material cost

    International Nuclear Information System (INIS)

    Dash Sharma, P.K.; Janakiraman, G.; Shirva, V.K.

    2000-01-01

    In this paper, the material cost involved by making the room spacious, orientation of the layout with regards to occupancy around the installation, for 15 MV accelerator and telecobalt facility has been worked out. Here, the cost of RCC (2.35 gm/cc), which is generally used as shielding material is only considered and not the cost of other materials, transportation and labour. This paper may be useful for users to optimise the plan so as to reduce the cost of construction

  20. In search of low cost biological analysis: Wax or acrylic glue bonded paper microfluidic devices

    KAUST Repository

    Kodzius, Rimantas

    2011-01-22

    In this body of work we have been developing and characterizing paper based microfluidic fabrication technologies to produce low cost biological analysis. Specifically we investigated the performance of paper microfluidics that had been bonded using wax or acrylic glue, and characterized the affect of these and other microfluidic materials on the polymerase chain reaction (PCR). We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax or cyanoacrylate-based resin as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes. The hot-melt adhesive wax or simple cyanoacrylate-based resin can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate film, glass sheets, or metal plate. The wax bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by evacuating the channels of adhesive material in a hot-water. We applied the wax-paper based microfluidic chip to HeLa cell electroporation. Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein recombinant E. coli bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration. The chip bonded with cyanoacrylate-based resin was tested by measuring protein concentration and carrying out DNA capillary electrophoresis. To study the biocompatibility and applicability of our microfluidic chip fabrication technology, we tested the PCR compatibility of our chip materials along with various other common materials

  1. A PRECISE, LOW-COST RTK GNSS SYSTEM FOR UAV APPLICATIONS

    Directory of Open Access Journals (Sweden)

    W. Stempfhuber

    2012-09-01

    Full Text Available High accuracy with real-time positioning of moving objects has been considered a standard task of engineering geodesy for 10 to 15 years. An absolute positioning accuracy of 1–3 cm is generally possible worldwide and is further used in many areas of machine guidance (machine control and guidance, and farming (precision farming as well as for various special applications (e.g. railway trolley, mining, etc.. The cost of the measuring instruments required for the use of geodetic L1/L2 receivers with a local reference station amounts to approximately USD 30,000 to 50,000. Therefore, dual frequency RTK GNSS receivers are not used in the mass market. Affordable GPS/GNSS modules have already reached the mass market in various areas such as mobile phones, car navigation, the leisure industry, etc. Kinematic real-time positioning applications with centimetre or decimetre levels could also evolve into a mass product. In order for this to happen, the costs for such systems must lie between USD 1,000 to 2,000. What exactly low-cost means is determined by the precise specifications of the given individual application. Several university studies in geodesy focus on the approach of high-accuracy positioning by means of single frequency receivers for static applications [e.g. GLABSCH et. al. 2009, SCHWIEGER and GLÄSER 2005, ALKAN 2010, REALINI et. al. 2010, KORTH and HOFMANN 2011]. Although intelligent approaches have been developed that compute a trajectory in the post-processing mode [REALINI et. al., 2010], at present, there are only a very few GNSS Low-Cost Systems that enable real-time processing. This approach to precise position determination by means of the computation of static raw data with single frequency receivers is currently being explored in a research project at the Beuth Hochschule für Technik Berlin – and is being further developed for kinematic applications. The project is embedded in the European Social Fund. It is a follow-up project

  2. Design and Testing of Low Cost Chair with Round Mortise and Tenon Joints

    Directory of Open Access Journals (Sweden)

    Jaroslav Začal

    2016-01-01

    Full Text Available The present paper focuses on construction of school seats for developing countries from locally available resources using the local industry and low-end technology. Aim of the work is experimental assessment of mechanical properties of joints flexion in angular plane. Furthermore work considers assessment of joint firmness and comparison between various joint types. Paper encloses the review of various joint manufacturing designs (tenon and mortise, which were proposed for its suitable mechanical properties and simplicity of manufacturing. Designated joint type is easiest form of joint construction and technologically feasible for chair manufacturing. The joints were constructed from fir wood. Further the work introduces design of simple seat construction made from massive wood material manufactured by low-end technology with regards to achieving the due specifications. The task of this work is to design the viable manufacturing process of seats and chairs from raw wood and scrap material. Essential part of work is also manufacturing of seat prototype and simplified model of proposed mortise and tenon drill.

  3. The development of a model to predict the effects of worker and task factors on foot placements in manual material handling tasks.

    Science.gov (United States)

    Wagner, David W; Reed, Matthew P; Chaffin, Don B

    2010-11-01

    Accurate prediction of foot placements in relation to hand locations during manual materials handling tasks is critical for prospective biomechanical analysis. To address this need, the effects of lifting task conditions and anthropometric variables on foot placements were studied in a laboratory experiment. In total, 20 men and women performed two-handed object transfers that required them to walk to a shelf, lift an object from the shelf at waist height and carry the object to a variety of locations. Five different changes in the direction of progression following the object pickup were used, ranging from 45° to 180° relative to the approach direction. Object weights of 1.0 kg, 4.5 kg, 13.6 kg were used. Whole-body motions were recorded using a 3-D optical retro-reflective marker-based camera system. A new parametric system for describing foot placements, the Quantitative Transition Classification System, was developed to facilitate the parameterisation of foot placement data. Foot placements chosen by the subjects during the transfer tasks appeared to facilitate a change in the whole-body direction of progression, in addition to aiding in performing the lift. Further analysis revealed that five different stepping behaviours accounted for 71% of the stepping patterns observed. More specifically, the most frequently observed behaviour revealed that the orientation of the lead foot during the actual lifting task was primarily affected by the amount of turn angle required after the lift (R(2) = 0.53). One surprising result was that the object mass (scaled by participant body mass) was not found to significantly affect any of the individual step placement parameters. Regression models were developed to predict the most prevalent step placements and are included in this paper to facilitate more accurate human motion simulations and ergonomics analyses of manual material lifting tasks. STATEMENT OF RELEVANCE: This study proposes a method for parameterising the steps

  4. Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

    2007-12-31

    tubes. Also, these fluctuating air flow patterns can result in deposition of black liquor on the wall tubes, and during periods when deposition is high, there is a noticeable increase in the concentrations of sulfur-bearing gases like hydrogen sulfide and methyl mercaptan. Laboratory studies have shown that chromized and aluminized surface treatments on carbon steel improve the resistance to sulfidation attack. Studies of superheater corrosion and cracking have included laboratory analyses of cracked tubes, laboratory corrosion studies designed to simulate the superheater environment and field tests to study the movement of superheater tubes and to expose a corrosion probe to assess the corrosion behavior of alternate superheater alloys, particularly alloys that would be used for superheaters operating at higher temperatures and higher pressures than most current boilers. In the laboratory corrosion studies, samples of six alternate materials were immersed in an aggressive, low melting point salt mixture and exposed for times up to 336 h, at temperatures of 510, 530 or 560°C in an inert or reactive cover gas. Using weight change and results of metallographic examination, the samples were graded on their resistance to the various environments. For the superheater corrosion probe studies, samples of the same six materials were exposed on an air-cooled corrosion probe exposed in the superheater section of a recovery boiler for 1000 h. Post exposure examination showed cracking and/or subsurface attack in the samples exposed at the higher temperatures with the attack being more severe for samples 13 exposed above the first melting temperature of the deposits that collected on the superheater tubes. From these superheater studies, a ranking was developed for the six materials tested. The task addressing cracking and corrosion of primary air port tubes that was part of this project produced results that have been extensively implemented in recovery boilers in North America

  5. Design of cascaded low cost solar cell with CuO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Samson, Mil' shtein; Anup, Pillai; Shiv, Sharma; Garo, Yessayan [Advanced Electronic Technology Center, ECE Dept., University of Massachusetts, Lowell, MA-01851 (United States)

    2013-12-04

    For many years the main focus of R and D in solar cells was the development of high-efficiency solar convertors. However with solar technology beginning to be a part of national grids and stand-alone power supplies for variety of individual customers, the emphasis has changed, namely, the cost per kilowatt- hour (kW-hr) started to be an important figure of merit. Although Si does dominate the market of solar convertors, this material has total cost of kilowatt-hour much higher than what the power grid is providing presently to customers. It is well known that the cost of raw semiconductor material is a major factor in formulation of the final cost of a solar cell. That motivated us to search and design a novel solar cell using cheap materials. The new p-i-n solar cell consists of hetero-structure cascade of materials with step by step decreasing energy gap. Since the lattice constant of these three materials do differ not more than 2%, the more expensive epitaxial fabrication methods can be used as well. It should be emphasized that designed solar cell is not a cascade of three solar cells connected in series. Our market study shows that Si solar panel which costs $250–400 / m{sup 2} leads to a cost of $0.12–0.30 / kW-hr. To the contrary, CuO based solar cells with Cadmium compounds on top, would cost $100 / m{sup 2}. This will allow the novel solar cell to produce electricity at a cost of $0.06–0.08 / kW-hr.

  6. Low-Arousal Speech Noise Improves Performance in N-Back Task: An ERP Study

    Science.gov (United States)

    Zhang, Dandan; Jin, Yi; Luo, Yuejia

    2013-01-01

    The relationship between noise and human performance is a crucial topic in ergonomic research. However, the brain dynamics of the emotional arousal effects of background noises are still unclear. The current study employed meaningless speech noises in the n-back working memory task to explore the changes of event-related potentials (ERPs) elicited by the noises with low arousal level vs. high arousal level. We found that the memory performance in low arousal condition were improved compared with the silent and the high arousal conditions; participants responded more quickly and had larger P2 and P3 amplitudes in low arousal condition while the performance and ERP components showed no significant difference between high arousal and silent conditions. These findings suggested that the emotional arousal dimension of background noises had a significant influence on human working memory performance, and that this effect was independent of the acoustic characteristics of noises (e.g., intensity) and the meaning of speech materials. The current findings improve our understanding of background noise effects on human performance and lay the ground for the investigation of patients with attention deficits. PMID:24204607

  7. Low-arousal speech noise improves performance in N-back task: an ERP study.

    Science.gov (United States)

    Han, Longzhu; Liu, Yunzhe; Zhang, Dandan; Jin, Yi; Luo, Yuejia

    2013-01-01

    The relationship between noise and human performance is a crucial topic in ergonomic research. However, the brain dynamics of the emotional arousal effects of background noises are still unclear. The current study employed meaningless speech noises in the n-back working memory task to explore the changes of event-related potentials (ERPs) elicited by the noises with low arousal level vs. high arousal level. We found that the memory performance in low arousal condition were improved compared with the silent and the high arousal conditions; participants responded more quickly and had larger P2 and P3 amplitudes in low arousal condition while the performance and ERP components showed no significant difference between high arousal and silent conditions. These findings suggested that the emotional arousal dimension of background noises had a significant influence on human working memory performance, and that this effect was independent of the acoustic characteristics of noises (e.g., intensity) and the meaning of speech materials. The current findings improve our understanding of background noise effects on human performance and lay the ground for the investigation of patients with attention deficits.

  8. Low-arousal speech noise improves performance in N-back task: an ERP study.

    Directory of Open Access Journals (Sweden)

    Longzhu Han

    Full Text Available The relationship between noise and human performance is a crucial topic in ergonomic research. However, the brain dynamics of the emotional arousal effects of background noises are still unclear. The current study employed meaningless speech noises in the n-back working memory task to explore the changes of event-related potentials (ERPs elicited by the noises with low arousal level vs. high arousal level. We found that the memory performance in low arousal condition were improved compared with the silent and the high arousal conditions; participants responded more quickly and had larger P2 and P3 amplitudes in low arousal condition while the performance and ERP components showed no significant difference between high arousal and silent conditions. These findings suggested that the emotional arousal dimension of background noises had a significant influence on human working memory performance, and that this effect was independent of the acoustic characteristics of noises (e.g., intensity and the meaning of speech materials. The current findings improve our understanding of background noise effects on human performance and lay the ground for the investigation of patients with attention deficits.

  9. Low cost phantom for computed radiology; Objeto de teste de baixo custo para radiologia computadorizada

    Energy Technology Data Exchange (ETDEWEB)

    Travassos, Paulo Cesar B.; Magalhaes, Luis Alexandre G., E-mail: pctravassos@ufrj.br [Universidade do Estado do Rio de Janeiro (IBRGA/UERJ), RJ (Brazil). Laboratorio de Ciencias Radiologicas; Augusto, Fernando M.; Sant' Yves, Thalis L.A.; Goncalves, Elicardo A.S. [Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ (Brazil); Botelho, Marina A. [Hospital Universitario Pedro Ernesto (UERJ), Rio de Janeiro, RJ (Brazil)

    2012-08-15

    This article presents the results obtained from a low cost phantom, used to analyze Computed Radiology (CR) equipment. The phantom was constructed to test a few parameters related to image quality, as described in [1-9]. Materials which can be easily purchased were used in the construction of the phantom, with total cost of approximately U$100.00. A bar pattern was placed only to verify the efficacy of the grids in the spatial resolution determination, and was not included in the budget because the data was acquired from the grids. (author)

  10. A low-cost touchscreen operant chamber using a Raspberry Pi™.

    Science.gov (United States)

    O'Leary, James D; O'Leary, Olivia F; Cryan, John F; Nolan, Yvonne M

    2018-03-08

    The development of a touchscreen platform for rodent testing has allowed new methods for cognitive testing that have been back-translated from clinical assessment tools to preclinical animal models. This platform for cognitive assessment in animals is comparable to human neuropsychological tests such as those employed by the Cambridge Neuropsychological Test Automated Battery, and thus has several advantages compared to the standard maze apparatuses typically employed in rodent behavioral testing, such as the Morris water maze. These include improved translation of preclinical models, as well as high throughput and the automation of animal testing. However, these systems are relatively expensive, which can impede progress for researchers with limited resources. Here we describe a low-cost touchscreen operant chamber based on the single-board computer, Raspberry Pi TM , which is capable of performing tasks similar to those supported by current state-of-the-art systems. This system provides an affordable alternative for cognitive testing in a touchscreen operant paradigm for researchers with limited funding.

  11. Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Scott, David; Hamer, John

    2017-06-30

    In this project, OLEDWorks developed and demonstrated the innovative high-performance deposition technology required to deliver dramatic reductions in the cost of manufacturing OLED lighting in production equipment. The current high manufacturing cost of OLED lighting is the most urgent barrier to its market acceptance. The new deposition technology delivers solutions to the two largest parts of the manufacturing cost problem – the expense per area of good product for organic materials and for the capital cost and depreciation of the equipment. Organic materials cost is the largest expense item in the bill of materials and is predicted to remain so through 2020. The high-performance deposition technology developed in this project, also known as the next generation source (NGS), increases material usage efficiency from 25% found in current Gen2 deposition technology to 60%. This improvement alone results in a reduction of approximately $25/m2 of good product in organic materials costs, independent of production volumes. Additionally, this innovative deposition technology reduces the total depreciation cost from the estimated value of approximately $780/m2 of good product for state-of-the-art G2 lines (at capacity, 5-year straight line depreciation) to $170/m2 of good product from the OLEDWorks production line.

  12. PEM Low Cost Endplates. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Martin; Clyens, S.; Steenstrup, F.R.; Christiansen, Jens [Danish Technological Institute. Plastics Technology, Taastrup (Denmark); Yde-Andersen, S. [IRD Fuel Cell A/S, Svendborg (Denmark)

    2013-03-15

    In the project, an endplate for the PEM-type fuel cells has been developed. The initial idea was to use an injection mouldable fibre reinforced polymer to produce the endplate and thereby exploit the opportunities of greater geometrical freedom to reduce weight and material consumption. Different PPS/glass-fibre compounds were produced and tested in order to use the results to optimize the results on the computer through FEM simulations. As it turned out, it was impossible to achieve adequate stiffness for the endplates within the given geometrical limitations. At the relatively high temperatures at which the endplates operate the material simply goes to soft. Material focus shifted to fibre reinforced high strength concrete composite. Test specimens were produced and tested so the results again could be used for FEM-simulations which also accounted for the technical limitations the concrete composite has regarding casting ability. In the process, the way the endplate is mounted was also alternated to better accommodate the properties of the concrete composite. A number of endplates were cast in specially produced moulds in order to map the optimum process parameters, and a final endplate was tested at IRD Fuel Cells A/S. The field test was in many aspects successful. However, the gas sealing and the surface finish can be further improved. The weight may still be an issue for some applications, even though it is lower than the endplate currently used. This issue can be addressed in a future project. The work has resulted in a new endplate design, which makes the stack assembly simpler and with fewer components. The endplates fabrication involves low cost methods, which can be scaled up as demand of fuel cells begin to take off. (Author)

  13. Solution-deposited CIGS thin films for ultra-low-cost photovoltaics

    Science.gov (United States)

    Eldada, Louay A.; Hersh, Peter; Stanbery, Billy J.

    2010-09-01

    We describe the production of photovoltaic modules with high-quality large-grain copper indium gallium selenide (CIGS) thin films obtained with the unique combination of low-cost ink-based precursors and a reactive transfer printing method. The proprietary metal-organic inks contain a variety of soluble Cu-, In- and Ga- multinary selenide materials; they are called metal-organic decomposition (MOD) precursors, as they are designed to decompose into the desired precursors. Reactive transfer is a two-stage process that produces CIGS through the chemical reaction between two separate precursor films, one deposited on the substrate and the other on a printing plate in the first stage. In the second stage, these precursors are rapidly reacted together under pressure in the presence of heat. The use of two independent thin films provides the benefits of independent composition and flexible deposition technique optimization, and eliminates pre-reaction prior to the synthesis of CIGS. In a few minutes, the process produces high quality CIGS films, with large grains on the order of several microns, and preferred crystallographic orientation, as confirmed by compositional and structural analysis by XRF, SIMS, SEM and XRD. Cell efficiencies of 14% and module efficiencies of 12% were achieved using this method. The atmospheric deposition processes include slot die extrusion coating, ultrasonic atomization spraying, pneumatic atomization spraying, inkjet printing, direct writing, and screen printing, and provide low capital equipment cost, low thermal budget, and high throughput.

  14. 48 CFR 1631.205-78 - FEHBP printed material costs.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true FEHBP printed material... carrier orders printed material that is available from the Government Printing Office (GPO) under the... COST PRINCIPLES AND PROCEDURES Contracts With Commercial Organizations 1631.205-78 FEHBP printed...

  15. Results and recommendations from the reactor chemistry and corrosion tasks of the reactor materials program

    International Nuclear Information System (INIS)

    Baumann, E.W.; Ondrejcin, R.S.

    1990-11-01

    Within the general context of extended service life, the Reactor Materials Program was initiated in 1984. This comprehensive program addressed material performance in SRS reactor tanks and the primary coolant or Process Water System (PWS) piping. Three of the eleven tasks concerned moderator quality and corrosion mitigation. Definition and control of the stainless steel aqueous environment is a key factor in corrosion mitigation. The Reactor Materials Program systematically investigated the SRS environment and its effect on crack initiation and propagation in stainless steel, with the objective of improving this environment. The purpose of this report is to summarize the contributions of Tasks 6, 7 and 10 of the Reactor Materials Program to the understanding and control of moderator quality and its relationship to mitigation of stress corrosion cracking

  16. A Low-Cost Data Acquisition System for Automobile Dynamics Applications

    Science.gov (United States)

    González, Alejandro; Vinolas, Jordi

    2018-01-01

    This project addresses the need for the implementation of low-cost acquisition technology in the field of vehicle engineering: the design, development, manufacture, and verification of a low-cost Arduino-based data acquisition platform to be used in project costs to be reduced and thus facilitating access to this kind of research that requires limited resources. PMID:29382039

  17. Low-Cost Metal Hydride Thermal Energy Storage System for Concentrating Solar Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hardy, B. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Corgnale, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ward, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Motyka, Ted [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-31

    The objective of this research was to evaluate and demonstrate a metal hydride-based TES system for use with a CSP system. A unique approach has been applied to this project that combines our modeling experience with the extensive material knowledge and expertise at both SRNL and Curtin University (CU). Because of their high energy capacity and reasonable kinetics many metal hydride systems can be charged rapidly. Metal hydrides for vehicle applications have demonstrated charging rates in minutes and tens of minutes as opposed to hours. This coupled with high heat of reaction allows metal hydride TES systems to produce very high thermal power rates (approx. 1kW per 6-8 kg of material). A major objective of this work is to evaluate some of the new metal hydride materials that have recently become available. A problem with metal hydride TES systems in the past has been selecting a suitable high capacity low temperature metal hydride material to pair with the high temperature material. A unique aspect of metal hydride TES systems is that many of these systems can be located on or near dish/engine collectors due to their high thermal capacity and small size. The primary objective of this work is to develop a high enthalpy metal hydride that is capable of reversibly storing hydrogen at high temperatures (> 650 °C) and that can be paired with a suitable low enthalpy metal hydride with low cost materials. Furthermore, a demonstration of hydrogen cycling between the two hydride beds is desired.

  18. Low-cost solar array structure development

    Science.gov (United States)

    Wilson, A. H.

    1981-06-01

    Early studies of flat-plate arrays have projected costs on the order of $50/square meter for installed array support structures. This report describes an optimized low-cost frame-truss structure that is estimated to cost below $25/square meter, including all markups, shipping an installation. The structure utilizes a planar frame made of members formed from light-gauge galvanized steel sheet and is supposed in the field by treated-wood trusses that are partially buried in trenches. The buried trusses use the overburden soil to carry uplift wind loads and thus to obviate reinforced-concrete foundations. Details of the concept, including design rationale, fabrication and assembly experience, structural testing and fabrication drawings are included.

  19. Design and development of low cost thermoluminescence measurement system using PIC16F877 microcontroller

    International Nuclear Information System (INIS)

    Neelamegam, P; Rajendran, A

    2006-01-01

    A real time microcontroller based thermoluminescence system has been developed to measure light intensity and temperature and to control linear heating. This instruments permits to conduct investigations on thermoluminescent materials, such as alkali halides, phosphors and related compounds, which have important applications in materials science and in dosimetry. A low cost dedicated PIC16F877 based microcontroller board was employed for the hardware. The detail of its interface and software to measure thermoluminescence and to send data to PC is explained in this paper

  20. Design and development of low cost thermoluminescence measurement system using PIC16F877 microcontroller

    Energy Technology Data Exchange (ETDEWEB)

    Neelamegam, P [Department of Electronics and Instrumentation Engineering, Shunmuga Arts, Science, Technology and Research Academy (SASTRA), Deemed University, Thanjavur-613 402, Tamil Nadu (India); Rajendran, A [PG and Research Department of Applied Physics, Nehru Memorial College (Autonomous), Puthanampatti-621 007, Tiruchirappalli, Tamil Nadu (India)

    2006-05-15

    A real time microcontroller based thermoluminescence system has been developed to measure light intensity and temperature and to control linear heating. This instruments permits to conduct investigations on thermoluminescent materials, such as alkali halides, phosphors and related compounds, which have important applications in materials science and in dosimetry. A low cost dedicated PIC16F877 based microcontroller board was employed for the hardware. The detail of its interface and software to measure thermoluminescence and to send data to PC is explained in this paper.

  1. Low-cost safety enhancements for stop-controlled and signalized intersections

    Science.gov (United States)

    2009-05-01

    The purpose of this document is to present information on suggested effective, low-cost intersection countermeasures developed using intersection safety research results and input from an intersection safety expert panel. These low-cost countermeasur...

  2. Testing low cost anaerobic digestion (AD) systems

    Science.gov (United States)

    To evaluate the potential for low technology and low cost digesters for small dairies, BARC and researchers from the University of Maryland installed six modified Taiwanese-model field-scale (FS) digesters near the original dairy manure digester. The FS units receive the same post-separated liquid ...

  3. Construction of pipelines. Materials for the distribution of gas in the open country at operational pressures of up to 4 bar (gauge)

    Energy Technology Data Exchange (ETDEWEB)

    Hering, S [Westfaelische Ferngas-A.G., Dortmund (Germany, F.R.)

    1978-01-01

    The gas industry has recently faced the task of supplying regions with low energy demand, too. Because of the unfavourable ratio of pipe length to embed to the amount of gas to sell, projects can only be relaized if distribution expenses can be reduced by making use of cost-effective piping systems. Of all material suitable hard poly ethylene and the composite material polystal are examined. Material properties are discussed, which are considered in particular to avoid disadvantages when using the new system. Finally, cost relations are given resulting from the bedding of the piping system mentioned, compared with the conventional bedding of steel pipes.

  4. An Open-source Low-cost Portable Apparatus for Soil Fauna Sampling

    Science.gov (United States)

    Daliakopoulos, Ioannis; Wagner, Karl; Grillakis, Manolis; Apostolakis, Antonios; Tsanis, Ioannis

    2016-04-01

    A low-cost apparatus for the extraction of living soil animals from soil or litter samples is presented. The main unit consists of a modular bank system with three horizontal shelves designed to accommodate lamps and soil samples over funnel and jar systems for animal collection, thus serving as a practical and standardized modification of the well-documented Berlese-Tullgren funnel. Shelves are vertically adjustable, sliding on 5 mm threaded rods and securing with wing nuts for easy assembly/disassembly and stability. Shelf material is 4 mm plywood (or similar), laser-cut (or similar) to accommodate lamp sockets, tubes and funnels at respective levels. Soil samples are inserted in 10 cm tubes from standard Ø50 mm PVC piping that can also function as direct collection corers for softer soils. Tubes are fitted in the tube bank shelf, each directly under a 25 W reflector lamp and over a funnel and jar system. Lamps are located 25 mm over the tubes' top creating a relatively constant 10 oC temperature gradient that drives soil animals away from heat and light, and towards the bottom end of the tube which is fitted with a suitable fabric mesh. Standard 106 ml panelled jars, filled with a safe-to-handle preservative (e.g. propylene glycol) to the lower end of the funnel fitted in them, trap and preserve soil organisms until identification. The apparatus offers flat-pack portability and scalability using low-cost standard material. Design specifications and Drawing eXchange Format (dxf) files for apparatus reproduction are provided.

  5. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.

    Science.gov (United States)

    Cao, Xuan; Chen, Haitian; Gu, Xiaofei; Liu, Bilu; Wang, Wenli; Cao, Yu; Wu, Fanqi; Zhou, Chongwu

    2014-12-23

    Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V(-1) s(-1), on/off ratio of 10(4)∼10(5), minimal hysteresis, and low operation voltage (transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics.

  6. Low-Cost, Rapidly Responsive, Controllable, and Reversible Photochromic Hydrogel for Display and Storage.

    Science.gov (United States)

    Yang, Yongqi; Guan, Lin; Gao, Guanghui

    2018-04-25

    Traditional optoelectronic devices without stretchable performance could be limited for substrates with irregular shape. Therefore, it is urgent to explore a new generation of flexible, stretchable, and low-cost intelligent vehicles as visual display and storage devices, such as hydrogels. In the investigation, a novel photochromic hydrogel was developed by introducing the negatively charged ammonium molybdate as a photochromic unit into polyacrylamide via ionic and covalent cross-linking. The hydrogel exhibited excellent properties of low cost, easy preparation, stretchable deformation, fatigue resistance, high transparency, and second-order response to external signals. Moreover, the photochromic and fading process of hydrogels could be precisely controlled and repeated under the irradiation of UV light and exposure of oxygen at different time and temperature. The photochromic hydrogel could be considered applied for artificial intelligence system, wearable healthcare device, and flexible memory device. Therefore, the strategy for designing a soft photochromic material would open a new direction to manufacture flexible and stretchable devices.

  7. Preliminary design of a low-cost greenhouse for salt production in Indonesia

    Science.gov (United States)

    Jaziri, A. A.; Guntur; Setiawan, W.; Prihanto, A. A.; Kurniawan, A.

    2018-04-01

    Salt is an assential material of industry, not only in food industry point of view but also in various industries such as chemical, oil drilling, and animal feed industries, even less than half of salt needs used to household consumption. It is crucial to ensure salt production in Indonesia reaches the national target (3.7 million tons) due to relatively low technology and production level. Thus salt production technology is developed to facilitate farmers consisted of geomembrane and filtering-threaded technology. However, the use of those technologies in producing salt was proved less effective due to unpredictable weather conditions. Therefore, greenhouse technology is proposed to be used for salt production for several good reasons. This paper describes the preliminary design of a low-cost greenhouse designed as a pyramid model that uses bamboo, mono-layer and high density polyethylene plastics. The results confirmed that the yield of salt produced by greenhouse significantly incresed compared with prior technology and the NaCl content increased as well. The cost of greenhouse was IDR 5,688,000 and easy to assembly.

  8. Hybrid” airlines – Generating value between low-cost and traditional

    Directory of Open Access Journals (Sweden)

    Stoenescu Cristina

    2017-07-01

    Full Text Available Over the last years, the rise of low-cost airlines has determined significant changes in the airline industry and has shaped the evolution of the existing business models. Low-cost airlines started by offering basic services at very low prices; traditional airlines responded by equally cutting costs and reinventing the services offered, with an orientation towards braking down the fare and implementing add-ons, in order to become cost-efficient. As traditional airlines developed strategies to become competitive in this new environment, low-cost airlines started focusing on new ways of enhancing passenger experience and attracting new market segments. As a result, the fragmentation of the market segments addressed by low cost carriers and traditional airlines became less obvious and the characteristics of both business models started to blend at all levels (airline operation, distribution channels, loyalty programs, fleet selection. Thus, this new competition became the foundation of the development of a new „hybrid” carrier, between the low-cost and the traditional models. This article investigates the characteristics of the newly created business model, both from a theoretical perspective and by analysing several case studies. A particular attention will be granted to the evolution of the Romanian carrier Blue Air towards the “hybrid” model. The article focuses on determining the position of the “hybrid” airline in a market with carriers situated along both sides of this business model: lower cost vs. “better” experience and raises the question on how value can be generated in this context. Another aspect tackled is the understanding of the new segmentation of the market, as a consequence of the development of the new business model. In order to achieve this purpose, a survey has been conducted, aiming to mark out the travel preferences of the passengers travelling through the Henri Coandă International Airport.

  9. Melt-and-mold fabrication (MnM-Fab) of reconfigurable low-cost devices for use in resource-limited settings.

    Science.gov (United States)

    Li, Zhi; Tevis, Ian D; Oyola-Reynoso, Stephanie; Newcomb, Lucas B; Halbertsma-Black, Julian; Bloch, Jean-Francis; Thuo, Martin

    2015-12-01

    Interest in low-cost analytical devices (especially for diagnostics) has recently increased; however, concomitant translation to the field has been slow, in part due to personnel and supply-chain challenges in resource-limited settings. Overcoming some of these challenges require the development of a method that takes advantage of locally available resources and/or skills. We report a Melt-and-mold fabrication (MnM Fab) approach to low-cost and simple devices that has the potential to be adapted locally since it requires a single material that is recyclable and simple skills to access multiple devices. We demonstrated this potential by fabricating entry level bio-analytical devices using an affordable low-melting metal alloy, Field's metal, with molds produced from known materials such as plastic (acrylonitrile-butadiene-styrene (ABS)), glass, and paper. We fabricated optical gratings then 4×4 well plates using the same recycled piece of metal. We then reconfigured the well plates into rapid prototype microfluidic devices with which we demonstrated laminar flow, droplet generation, and bubble formation from T-shaped channels. We conclude that this MnM-Fab method is capable of addressing some challenges typically encountered with device translation, such as technical know-how or material supply, and that it can be applied to other devices, as needed in the field, using a single moldable material. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Contrast in low-cost operational concepts for orbiting satellites

    Science.gov (United States)

    Walyus, Keith D.; Reis, James; Bradley, Arthur J.

    2002-12-01

    Older spacecraft missions, especially those in low Earth orbit with telemetry intensive requirements, required round-the-clock control center staffing. The state of technology relied on control center personnel to continually examine data, make decisions, resolve anomalies, and file reports. Hubble Space Telescope (HST) is a prime example of this description. Technological advancements in hardware and software over the last decade have yielded increases in productivity and operational efficiency, which result in lower cost. The re-engineering effort of HST, which has recently concluded, utilized emerging technology to reduce cost and increase productivity. New missions, of which NASA's Transition Region and Coronal Explorer Satellite (TRACE) is an example, have benefited from recent technological advancements and are more cost-effective than when HST was first launched. During its launch (1998) and early orbit phase, the TRACE Flight Operations Team (FOT) employed continually staffed operations. Yet once the mission entered its nominal phase, the FOT reduced their staffing to standard weekday business hours. Operations were still conducted at night and during the weekends, but these operations occurred autonomously without compromising their high standards for data collections. For the HST, which launched in 1990, reduced cost operations will employ a different operational concept, when the spacecraft enters its low-cost phase after its final servicing mission in 2004. Primarily due to the spacecraft"s design, the HST Project has determined that single-shift operations will introduce unacceptable risks for the amount of dollars saved. More importantly, significant cost-savings can still be achieved by changing the operational concept for the FOT, while still maintaining round-the-clock staffing. It"s important to note that the low-cost solutions obtained for one satellite may not be applicable for other satellites. This paper will contrast the differences between

  11. Task E container corrosion studies: Annual report. Revision 1

    International Nuclear Information System (INIS)

    Bunnell, L.R.; Doremus, L.A.; Topping, J.B.; Duncan, D.R.

    1994-06-01

    The Pacific Northwest Laboratory is conducting the Solid Waste Technology Support Program (SWTSP) for Westinghouse Hanford Company (WHC). Task E is the Container Corrosion Study Portion of the SWTSP that will perform testing to provide defensible data on the corrosion of low-carbon steel, as used in drums to contain chemical and radioactive wastes at the Hanford Site. A second objective of Task E is to provide and test practical alternative materials that have higher corrosion resistance than low-carbon steel. The scope of work for fiscal year (FY) 1993 included initial testing of mild steel specimens buried in Hanford soils or exposed to atmospheric corrosion in metal storage sheds. During FY 1993, progress was made in three areas of Task E. First, exposure of test materials began at the Soil Corrosion Test Site where low-carbon steel specimens were placed in the soil in five test shafts at depths of 9 m (30 ft). Second, the corrosion measurement of low-carbon steel in the soil of two solid waste trenches continued. The total exposure time is ∼ 500 days. Third, an atmospheric corrosion test of low-carbon steel was initiated in a metal shed (Building 2401-W) in the 200 West Area. This annual report describes the Task E efforts and provides a current status

  12. Quarterly progress report on the evaluation of critical materials for photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Pawlewicz, W.W.; Gurwell, W.E.; Jamieson, W.M.; Long, L.W.; Smith, S.A.; Teeter, R.R.

    1979-09-01

    The scope of the activities included in this program are as follows: (1) characterize new and improved photovoltaic cell designs and production processes for subsequent analysis; (2) review or screen these designs for potential material shortages or other constraints; (3) carry out investigations of the probable costs of new sources of materials potentially in short supply, concentrating on gallium and indium; and (4) identify options for coping with or mitigating the problems identified. The methodology and data base used in the CMAP (Critical Material Analysis Program) computer program were developed as part of a broad scale DOE program to review the potential material constraints of all solar programs. The photovoltaic report screened 13 cells in 15 systems and assumed 100% material utilization (process efficiency) in producing the photovoltaic cells. This study emphasizes the availability of cell fabrication feedstock materials and the effects of process efficiencies on material availability by adding characterizations of photovoltaic production processes. This quarterly report presents the results of work with emphasis on Task I, the characterization of photovoltaic cells and their production processes. Task IIA, CMAP Modification, Data Base Development and Operation has been initiated. Task IIB, Review, Integration, Interpretation and Analysis of Screening will begin once the baseline screening has been completed in Task IIA. Work on Task IIIA, the Assessment of Future Costs and Supplies of Gallium and Indium and Task IIIB, Economics of Coal Derived PV Materials have been initiated. Progress and initial results are reported. (WHK)

  13. Modification and Performance Evaluation of a Low Cost Electro-Mechanically Operated Creep Testing Machine

    OpenAIRE

    John J. MOMOH; Lanre Y. SHUAIB-BABATA; Gabriel O. ADELEGAN

    2010-01-01

    Existing mechanically operated tensile and creep testing machine was modified to a low cost, electro-mechanically operated creep testing machine capable of determining the creep properties of aluminum, lead and thermoplastic materials as a function of applied stress, time and temperature. The modification of the testing machine was necessitated by having an electro-mechanically operated creep testing machine as a demonstration model ideal for use and laboratory demonstrations, which will prov...

  14. Single-Phase Hybrid Switched Reluctance Motor for Low-Power Low-Cost Applications

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Jakobsen, Uffe

    2011-01-01

    This paper presents a new single-phase, Hybrid Switched Reluctance (HSR) motor for low-cost, low-power, pump or fan drive systems. Its single-phase configuration allows use of a simple converter to reduce the system cost. Cheap ferrite magnets are used and arranged in a special flux concentration...... manner to increase effectively the torque density and efficiency of this machine. The efficiency of this machine is comparable to the efficiency of a traditional permanent magnet machine in the similar power range. The cogging torque, due to the existence of the permanent magnetic field, is beneficially...

  15. Design of a Novel Low Cost Point of Care Tampon (POCkeT) Colposcope for Use in Resource Limited Settings

    Science.gov (United States)

    Lam, Christopher T.; Krieger, Marlee S.; Gallagher, Jennifer E.; Asma, Betsy; Muasher, Lisa C.; Schmitt, John W.; Ramanujam, Nimmi

    2015-01-01

    Introduction Current guidelines by WHO for cervical cancer screening in low- and middle-income countries involves visual inspection with acetic acid (VIA) of the cervix, followed by treatment during the same visit or a subsequent visit with cryotherapy if a suspicious lesion is found. Implementation of these guidelines is hampered by a lack of: trained health workers, reliable technology, and access to screening facilities. A low cost ultra-portable Point of Care Tampon based digital colposcope (POCkeT Colposcope) for use at the community level setting, which has the unique form factor of a tampon, can be inserted into the vagina to capture images of the cervix, which are on par with that of a state of the art colposcope, at a fraction of the cost. A repository of images to be compiled that can be used to empower front line workers to become more effective through virtual dynamic training. By task shifting to the community setting, this technology could potentially provide significantly greater cervical screening access to where the most vulnerable women live. The POCkeT Colposcope’s concentric LED ring provides comparable white and green field illumination at a fraction of the electrical power required in commercial colposcopes. Evaluation with standard optical imaging targets to assess the POCkeT Colposcope against the state of the art digital colposcope and other VIAM technologies. Results Our POCkeT Colposcope has comparable resolving power, color reproduction accuracy, minimal lens distortion, and illumination when compared to commercially available colposcopes. In vitro and pilot in vivo imaging results are promising with our POCkeT Colposcope capturing comparable quality images to commercial systems. Conclusion The POCkeT Colposcope is capable of capturing images suitable for cervical lesion analysis. Our portable low cost system could potentially increase access to cervical cancer screening in limited resource settings through task shifting to community

  16. A complete low cost radon detection system

    International Nuclear Information System (INIS)

    Bayrak, A.; Barlas, E.; Emirhan, E.; Kutlu, Ç.; Ozben, C.S.

    2013-01-01

    Monitoring the 222 Rn activity through the 1200 km long Northern Anatolian fault line, for the purpose of earthquake precursory, requires large number of cost effective radon detectors. We have designed, produced and successfully tested a low cost radon detection system (a radon monitor). In the detector circuit of this monitor, First Sensor PS100-7-CER-2 windowless PIN photodiode and a custom made transempedence/shaping amplifier were used. In order to collect the naturally ionized radon progeny to the surface of the PIN photodiode, a potential of 3500 V was applied between the conductive hemi-spherical shell and the PIN photodiode. In addition to the count rate of the radon progeny, absolute pressure, humidity and temperature were logged during the measurements. A GSM modem was integrated to the system for transferring the measurements from the remote locations to the data process center. - Author-Highlights: • Low cost radon detection. • Integrated GSM modem for early warning of radon anomalies. • Radon detection in environment

  17. Control Analysis Of Tobacco Raw Material Supplies Using Eoq Method Economic Order Quantity To Reach Efficiency Total Costs Of Raw Material In Pr. Sukun

    Directory of Open Access Journals (Sweden)

    Wiwik Sudarwati

    2017-07-01

    Full Text Available The raw material inventory control system determines and guarantees the availability of raw material stock in the right quantity quality and timing. The problem in this research is the procurement of raw materials of tobacco. PR. Sukun still often experiences the excess. This is related to the frequency of raw material purchases and the quantity of raw material purchases which can lead to waste of working capital embedded in raw material inventory raw material ordering costs and raw material storage costs. The purpose of this research is to know how to make an efficiency level in procurement of raw material inventory between EOQ method compared with policy of PR. Sukun. The type of research used is analytic descriptive type. Data analysis begins by analyzing raw material quantity comparison total raw material inventory cost and raw material cost between PR Sukun policy with EOQ method. Based on the results of research known that by using EOQ method can be much more efficient compared to policy of PR. Sukun. The quantity and frequency of purchasing raw materials is less but still take into account the safety stock and reorder point so the production process is not disturbed. In addition the cost of purchasing ordering costs and raw materials storage costs less so as to create efficiencies on the cost of raw materials inventory. PR. Sukun in the procurement of raw material inventory should use EOQ method to be more efficient and take into account the safety stock and reorder point to avoid the inventory excess of raw materials.

  18. Manufacturing of Low Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Busby, Colin [W. L. Gore & Associates Inc., Newark, DE (United States)

    2017-05-23

    Over the past 20 years significant progress in membrane-electrode assembly (MEA) technology development for polymer electrolyte fuel cells (PEMFCs) has resulted in the PEMFC technology approaching a commercial reality for transportation applications. However, there remain two primary technical challenges to be addressed in the MEA. First and foremost is meeting the automotive cost targets: Producing a fuel cell stack cost competitive with today’s internal combustion engine. In addition to the material cost, MEA (and other components) and stack assembly production methods must be amenable for use in low cost, high speed, automotive assembly line. One impediment to this latter goal is that stack components must currently go through a long and tedious conditioning procedure before they produce optimal power. This so-called “break-in” can take many hours, and can involve quite complex voltage, temperature and/or pressure steps. These break-in procedures must be simplified and the time required reduced if fuel cells are to become a viable automotive engine. The second challenge is to achieve the durability targets in real-world automotive duty cycle operations. Significant improvements in cost, break-in time, and durability for the key component of fuel cell stacks, MEAs were achieved in this project. Advanced modeling was used to guide design of the new MEA to maximize performance and durability. A new, innovative process and manufacturing approach utilizing direct in-line coating using scalable, cost-competitive, continuous high volume 3-layer rolled-good manufacturing processes was developed and validated by single cell and short stack testing. In addition, the direct coating methods employed were shown to reduce the cost for sacrificial films. Furthermore, Gore has demonstrated a 10 µm reinforced membrane that is used in the new low-cost process and can meet automotive power density and durability targets. Across a wide range of operating conditions, the

  19. Development of Low-Cost Solar Water Heater Using Recycled Solid Waste for Domestic Hot Water Supply

    Directory of Open Access Journals (Sweden)

    Talib Din Abdul

    2018-01-01

    Full Text Available This research is focused on the development of a low-cost solar water heater (SWH system by utilizing solid waste material as part of system elements. Available technologies of the solar water heater systems, heat collectors and its components were reviewed and the best system combinations for low cost design were chosen. The passive-thermosiphon system have been chosen due to its simplicity and independency on external power as well as conventional pump. For the heat collector, flat plate type was identified as the most suitable collector for low cost design and suits with Malaysia climate. Detail study on the flat plate collector components found that the heat absorber is the main component that can significantly reduce the solar collector price if it is replaced with recycled solid waste material. Review on common solid wastes concluded that crushed glass is a non-metal material that has potential to either enhance or become the main heat absorber in solar collector. A collector prototype were then designed and fabricated based on crashed glass heat collector media. Thermal performance test were conducted for three configurations where configuration A (black painted aluminum absorber used as benchmark, configuration B (crushed glass added partially that use glass for improvement, and lastly configuration C (black colored crushed glass that use colored glass as main absorber. Result for configuration B have shown a negative effect where the maximum collector efficiency is 26.8% lower than configuration A. Nevertheless, configuration C which use black crushed glass as main heat absorber shown a comparable maximum efficiency which is at 82.5% of the maximum efficiency for configuration A and furthermore have shown quite impressive increment of efficiency at the end of the experiment. Hence, black colored crushed glass is said to have quite a good potential as the heat absorber material and therefore turn out to be a new contender to other non

  20. Preliminary Tests of a New Low-Cost Photogrammetric System

    Science.gov (United States)

    Santise, M.; Thoeni, K.; Roncella, R.; Sloan, S. W.; Giacomini, A.

    2017-11-01

    This paper presents preliminary tests of a new low-cost photogrammetric system for 4D modelling of large scale areas for civil engineering applications. The system consists of five stand-alone units. Each of the units is composed of a Raspberry Pi 2 Model B (RPi2B) single board computer connected to a PiCamera Module V2 (8 MP) and is powered by a 10 W solar panel. The acquisition of the images is performed automatically using Python scripts and the OpenCV library. Images are recorded at different times during the day and automatically uploaded onto a FTP server from where they can be accessed for processing. Preliminary tests and outcomes of the system are discussed in detail. The focus is on the performance assessment of the low-cost sensor and the quality evaluation of the digital surface models generated by the low-cost photogrammetric systems in the field under real test conditions. Two different test cases were set up in order to calibrate the low-cost photogrammetric system and to assess its performance. First comparisons with a TLS model show a good agreement.

  1. PRELIMINARY TESTS OF A NEW LOW-COST PHOTOGRAMMETRIC SYSTEM

    Directory of Open Access Journals (Sweden)

    M. Santise

    2017-11-01

    Full Text Available This paper presents preliminary tests of a new low-cost photogrammetric system for 4D modelling of large scale areas for civil engineering applications. The system consists of five stand-alone units. Each of the units is composed of a Raspberry Pi 2 Model B (RPi2B single board computer connected to a PiCamera Module V2 (8 MP and is powered by a 10 W solar panel. The acquisition of the images is performed automatically using Python scripts and the OpenCV library. Images are recorded at different times during the day and automatically uploaded onto a FTP server from where they can be accessed for processing. Preliminary tests and outcomes of the system are discussed in detail. The focus is on the performance assessment of the low-cost sensor and the quality evaluation of the digital surface models generated by the low-cost photogrammetric systems in the field under real test conditions. Two different test cases were set up in order to calibrate the low-cost photogrammetric system and to assess its performance. First comparisons with a TLS model show a good agreement.

  2. Low cost nuclear data printer

    International Nuclear Information System (INIS)

    Punnachiya, S.; Aungkultewaraksa, S.; Pengphol, S.

    1988-01-01

    The data printer is essential for nuclear radiation measuring system. A low cost nuclear data printer is developed from an electronic printing calculator. It can transfer the counting data from scaler and printout. The basic concept is that the BCD data is transferred and converted to decimal data sequentially by the interfacing circuit. After the counting time is ended, each digit is transferred to the printing calculator by data bus, digit by digit, until all the data are transferred and printed out. The low cost nuclear data printer consists of a CASIO model HR-8 electronic printing calculator and a printer interface model either NT 2602 or NT 2603 which are designed for printing out 6 digit data from the counter/timer CANBERRA model 1772. In this research the NT 2602 interface is designed only to transfer and printing out data. While the NT 2603 interface is designed to transfer, print out and average data. The NT 2603 can average from 2 to 9 sets of counting data. This data interfacing technique can be applied to work with all scientific instruments having readout as digital display and all kinds of electronic printing calculator

  3. A simple and low-cost fully 3D-printed non-planar emulsion generator

    KAUST Repository

    Zhang, Jiaming

    2015-12-23

    Droplet-based microfluidic devices provide a powerful platform for material, chemical and biological applications based on droplet templates. The technique traditionally utilized to fabricate microfluidic emulsion generators, i.e. soft-lithography, is complex and expensive for producing three-dimensional (3D) structures. The emergent 3D printing technology provides an attractive alternative due to its simplicity and low-cost. Recently a handful of studies have already demonstrated droplet production through 3D-printed microfluidic devices. However, these devices invariably use purely two-dimensional (2D) flow structures. Herein we apply 3D printing technology to fabricate simple and low-cost 3D miniaturized fluidic devices for droplet generation (single emulsion) and droplet-in-droplet (double emulsion) without need for surface treatment of the channel walls. This is accomplished by varying the channel diameters at the junction, so the inner liquid does not touch the outer walls. This 3D-printed emulsion generator has been successfully tested over a range of conditions. We also formulate and demonstrate, for the first time, uniform scaling laws for the emulsion drop sizes generated in different regimes, by incorporating the dynamic contact angle effects during the drop formation. Magnetically responsive microspheres are also produced with our emulsion templates, demonstrating the potential applications of this 3D emulsion generator in chemical and material engineering.

  4. COTS low-cost 622-Mb/s free-space laser communications link for short-distance commercial applications

    Science.gov (United States)

    Morrison, Kenneth A.

    2000-05-01

    The results from a low cost 622 Mb/s, free-space laser communication link operating at 850 nm for short distance commercial applications is presented. The test results demonstrate the use of a free-space laser communications transceiver for building to building applications such as LAN, WAN and ATM operations, etc. This illustrates the potential for wide-use commercial computer network applications. The transceiver is constructed of commercial off-the-shelf materials for the development of a low-cost laser communications data link. The test system configuration utilizes standard Personal Computers with network cards and signal conversion cards for the copper to optical medical conversion. These tests precede the development of an increased data rate device operating at 2.5 Gb/s.

  5. LCX: Proposal for a low-cost commercial transport

    Science.gov (United States)

    Hartman, Troy; Hayatdavoudi, Maziar; Hettinga, Joel; Hooper, Matt; Nguyen, Phong

    1994-01-01

    The LCX has been developed in response to a request for proposal for an aircraft with 153 passenger capacity and a range of 3000 nautical miles. The goals of the LCX are to provide an aircraft which will achieve the stated mission requirements at the lowest cost possible, both for the manufacturer and the operator. Low cost in this request is defined as short and long term profitability. To achieve this objective, modern technologies attributing to low-cost operation without greatly increasing the cost of manufacturing were employed. These technologies include hybrid laminar flow control and the use of developing new manufacturing processes and philosophies. The LCX will provide a competitive alternative to the use of the Airbus A319/320/321 and the Boeing 737 series of aircraft. The LCX has a maximum weight of 150,000 lb. carried by a wing of 1140 ft(exp 2) and an aspect ratio of 10. The selling price of the LCX is 31 million in 1994 US dollars.

  6. Dependence of behavioral performance on material category in an object grasping task with monkeys.

    Science.gov (United States)

    Yokoi, Isao; Tachibana, Atsumichi; Minamimoto, Takafumi; Goda, Naokazu; Komatsu, Hidehiko

    2018-05-02

    Material perception is an essential part of our cognitive function that enables us to properly interact with our complex daily environment. One important aspect of material perception is its multimodal nature. When we see an object, we generally recognize its haptic properties as well as its visual properties. Consequently, one must examine behavior using real objects that are perceived both visually and haptically to fully understand the characteristics of material perception. As a first step, we examined whether there is any difference in the behavioral responses to different materials in monkeys trained to perform an object grasping task in which they saw and grasped rod-shaped real objects made of various materials. We found that the monkeys' behavior in the grasping task, measured based on the success rate and the pulling force, differed depending on the material category. Monkeys easily and correctly grasped objects of some materials, such as metal and glass, but failed to grasp objects of other materials. In particular, monkeys avoided grasping fur-covered objects. The differences in the behavioral responses to the material categories cannot be explained solely based on the degree of familiarity with the different materials. These results shed light on the organization of multimodal representation of materials, where their biological significance is an important factor. In addition, a monkey that avoided touching real fur-covered objects readily touched images of the same objects presented on a CRT display. This suggests employing real objects is important when studying behaviors related to material perception.

  7. High-precision and low-cost vibration generator for low-frequency calibration system

    Science.gov (United States)

    Li, Rui-Jun; Lei, Ying-Jun; Zhang, Lian-Sheng; Chang, Zhen-Xin; Fan, Kuang-Chao; Cheng, Zhen-Ying; Hu, Peng-Hao

    2018-03-01

    Low-frequency vibration is one of the harmful factors that affect the accuracy of micro-/nano-measuring machines because its amplitude is significantly small and it is very difficult to avoid. In this paper, a low-cost and high-precision vibration generator was developed to calibrate an optical accelerometer, which is self-designed to detect low-frequency vibration. A piezoelectric actuator is used as vibration exciter, a leaf spring made of beryllium copper is used as an elastic component, and a high-resolution, low-thermal-drift eddy current sensor is applied to investigate the vibrator’s performance. Experimental results demonstrate that the vibration generator can achieve steady output displacement with frequency range from 0.6 Hz to 50 Hz, an analytical displacement resolution of 3.1 nm and an acceleration range from 3.72 mm s-2 to 1935.41 mm s-2 with a relative standard deviation less than 1.79%. The effectiveness of the high-precision and low-cost vibration generator was verified by calibrating our optical accelerometer.

  8. Low-cost in vitro fertilization: current insights

    Science.gov (United States)

    Teoh, Pek Joo; Maheshwari, Abha

    2014-01-01

    Despite the development of in vitro fertilization (IVF) more than 30 years ago, the cost of treatment remains high. Furthermore, over the years, more sophisticated technologies and expensive medications have been introduced, making IVF increasingly inaccessible despite the increasing need. Globally, the option to undergo IVF is only available to a privileged few. In recent years, there has been growing interest in exploring strategies to reduce the cost of IVF treatment, which would allow the service to be provided in low-resource settings. In this review, we explore the various ways in which the cost of this treatment can be reduced. PMID:25187741

  9. The National Shipbuilding Research Program: Producibility Cost Reductions through Alternative Materials and Processes

    National Research Council Canada - National Science Library

    Horsmon, Jr., Albert W; Johnson, Karl; Gans-Devney, Barbara

    1999-01-01

    This report describes research into the use of alternative materials and processes to reduce material and labor costs while also looking at the influence of these choices on the life cycle costs of the vessel...

  10. THE MARKETING MIX FOR LOW COST HEALTHCARE

    OpenAIRE

    Julie George; Dr. Manita D. Shah

    2017-01-01

    The Indian health care industry has a history of dealing with poor doctor-patient ratio, shortage of medical professionals, poor health infrastructure, and low expenditure on healthcare information technology; steep out of pocket spending (OOP), low health insurance coverage, inadequate government spending, poor access to health care facilities and social stigma related to diseases. The unique mindset and ability for frugality has successfully been applied in offering low cost healthcare of u...

  11. Maximizing Efficiency and Reducing Robotic Surgery Costs Using the NASA Task Load Index.

    Science.gov (United States)

    Walters, Carrie; Webb, Paula J

    2017-10-01

    Perioperative leaders at our facility were struggling to meet efficiency targets for robotic surgery procedures while also maintaining the satisfaction of the surgical team. We developed a human resources time and motion study tool and used it in conjunction with the NASA Task Load Index to observe and analyze the required workload of personnel assigned to 25 robotic surgery procedures. The time and motion study identified opportunities to enlist the help of nonlicensed support personnel to ensure safe patient care and improve OR efficiency. Using the NASA Task Load Index demonstrated that high temporal, effort, and physical demands existed for personnel assisting with and performing robotic surgery. We believe that this process could be used to develop cost-effective staffing models, resulting in safe and efficient care for all surgical patients. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  12. Rapid and Low-cost Prototyping of Medical Devices Using 3D Printed Molds for Liquid Injection Molding

    Science.gov (United States)

    Chung, Philip; Heller, J. Alex; Etemadi, Mozziyar; Ottoson, Paige E.; Liu, Jonathan A.; Rand, Larry; Roy, Shuvo

    2014-01-01

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993

  13. Investment opportunity : the FPL low-cost solar dry kiln

    Science.gov (United States)

    George B. Harpole

    1988-01-01

    Two equations are presented that may be used to estimate a maximum investment limit and working capital requirements for the FPL low-cost solar dry kiln systems. The equations require data for drying cycle time, green lumber cost, and kiln-dried lumber costs. Results are intended to provide a preliminary estimate.

  14. Ignoring the sacroiliac joint in chronic low back pain is costly

    Directory of Open Access Journals (Sweden)

    Polly DW

    2016-01-01

    Full Text Available David W Polly,1,2 Daniel Cher3 1Department of Orthopedic Surgery, 2Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 3SI-BONE, Inc., San Jose, CA, USA Background: Increasing evidence supports minimally invasive sacroiliac joint (SIJ fusion as a safe and effective treatment for SIJ dysfunction. Failure to include the SIJ in the diagnostic evaluation of low back pain could result in unnecessary health care expenses. Design: Decision analytic cost model. Methods: A decision analytic model calculating 2-year direct health care costs in patients with chronic low back pain considering lumbar fusion surgery was used. Results: The strategy of including the SIJ in the preoperative diagnostic workup of chronic low back pain saves an expected US$3,100 per patient over 2 years. Cost savings were robust to reasonable ranges for costs and probabilities, such as the probability of diagnosis and the probability of successful surgical treatment. Conclusion: Including the SIJ as part of the diagnostic strategy in preoperative patients with chronic low back pain is likely to be cost saving in the short term. Keywords: chronic low back pain, lumbar fusion, sacroiliac joint pain, sacroiliac joint fusion, healthcare costs, decision modeling

  15. Materials for low-temperature fuel cells

    CERN Document Server

    Ladewig, Bradley; Yan, Yushan; Lu, Max

    2014-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in Low-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in low-temperature fuel cells. A related book will cover key materials in high-temperature fuel cells. The two books form part

  16. Cost analysis of various low pathogenic avian influenza surveillance systems in the Dutch egg layer sector.

    Directory of Open Access Journals (Sweden)

    Niels Rutten

    Full Text Available BACKGROUND: As low pathogenic avian influenza viruses can mutate into high pathogenic viruses the Dutch poultry sector implemented a surveillance system for low pathogenic avian influenza (LPAI based on blood samples. It has been suggested that egg yolk samples could be sampled instead of blood samples to survey egg layer farms. To support future decision making about AI surveillance economic criteria are important. Therefore a cost analysis is performed on systems that use either blood or eggs as sampled material. METHODOLOGY/PRINCIPAL FINDINGS: The effectiveness of surveillance using egg or blood samples was evaluated using scenario tree models. Then an economic model was developed that calculates the total costs for eight surveillance systems that have equal effectiveness. The model considers costs for sampling, sample preparation, sample transport, testing, communication of test results and for the confirmation test on false positive results. The surveillance systems varied in sampled material (eggs or blood, sampling location (farm or packing station and location of sample preparation (laboratory or packing station. It is shown that a hypothetical system in which eggs are sampled at the packing station and samples prepared in a laboratory had the lowest total costs (i.e. € 273,393 a year. Compared to this a hypothetical system in which eggs are sampled at the farm and samples prepared at a laboratory, and the currently implemented system in which blood is sampled at the farm and samples prepared at a laboratory have 6% and 39% higher costs respectively. CONCLUSIONS/SIGNIFICANCE: This study shows that surveillance for avian influenza on egg yolk samples can be done at lower costs than surveillance based on blood samples. The model can be used in future comparison of surveillance systems for different pathogens and hazards.

  17. Design of low cost glaucoma screening

    NARCIS (Netherlands)

    Niessen, A. G.; Langerhorst, C. T.; Geijssen, H. C.; Greve, E. L.

    1997-01-01

    In 1991 the Netherlands Glaucoma Patient Association organized a glaucoma screening survey. This survey was designed to evaluate the effectiveness of a low cost screening setting. During a screening period of 8 days, 1259 subjects over the age of 49 years were examined by a team of

  18. Innovative grinding wheel design for cost-effective machining of advanced ceramics. Phase I, final report

    Energy Technology Data Exchange (ETDEWEB)

    Licht, R.H.; Ramanath, S.; Simpson, M.; Lilley, E.

    1996-02-01

    Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics. This program was a cooperative effort involving three Norton groups representing a superabrasive grinding wheel manufacturer, a diamond film manufacturing division and a ceramic research center. The program was divided into two technical tasks, Task 1, Analysis of Required Grinding Wheel Characteristics, and Task 2, Design and Prototype Development. In Task 1 we performed a parallel path approach with Superabrasive metal-bond development and the higher technical risk, CVD diamond wheel development. For the Superabrasive approach, Task 1 included bond wear and strength tests to engineer bond-wear characteristics. This task culminated in a small-wheel screening test plunge grinding sialon disks. In Task 2, an improved Superabrasive metal-bond specification for low-cost machining of ceramics in external cylindrical grinding mode was identified. The experimental wheel successfully ground three types of advanced ceramics without the need for wheel dressing. The spindle power consumed by this wheel during test grinding of NC-520 sialon is as much as to 30% lower compared to a standard resin bonded wheel with 100 diamond concentration. The wheel wear with this improved metal bond was an order of magnitude lower than the resin-bonded wheel, which would significantly reduce ceramic grinding costs through fewer wheel changes for retruing and replacements. Evaluation of ceramic specimens from both Tasks 1 and 2 tests for all three ceramic materials did not show evidence of unusual grinding damage. The novel CVD-diamond-wheel approach was incorporated in this program as part of Task 1. The important factors affecting the grinding performance of diamond wheels made by CVD coating preforms were determined.

  19. The unit cost factors and calculation methods for decommissioning - Cost estimation of nuclear research facilities

    International Nuclear Information System (INIS)

    Kwan-Seong Jeong; Dong-Gyu Lee; Chong-Hun Jung; Kune-Woo Lee

    2007-01-01

    Available in abstract form only. Full text of publication follows: The uncertainties of decommissioning costs increase high due to several conditions. Decommissioning cost estimation depends on the complexity of nuclear installations, its site-specific physical and radiological inventories. Therefore, the decommissioning costs of nuclear research facilities must be estimated in accordance with the detailed sub-tasks and resources by the tasks of decommissioning activities. By selecting the classified activities and resources, costs are calculated by the items and then the total costs of all decommissioning activities are reshuffled to match with its usage and objectives. And the decommissioning cost of nuclear research facilities is calculated by applying a unit cost factor method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning costs of nuclear research facilities are composed of labor cost, equipment and materials cost. Of these three categorical costs, the calculation of labor costs are very important because decommissioning activities mainly depend on labor force. Labor costs in decommissioning activities are calculated on the basis of working time consumed in decommissioning objects and works. The working times are figured out of unit cost factors and work difficulty factors. Finally, labor costs are figured out by using these factors as parameters of calculation. The accuracy of decommissioning cost estimation results is much higher compared to the real decommissioning works. (authors)

  20. Low-Cost IoT: A Holistic Approach

    Directory of Open Access Journals (Sweden)

    Augusto Ciuffoletti

    2018-05-01

    Full Text Available The key factors for a successful smart-city project are its initial cost and its scalability. The initial cost depends on several inter-related aspects that cannot be designed and optimized separately. After the pilot deployment, scaling-up takes place only if the cost remains affordable: an initial financial support may induce dependencies from technologies that become unsustainable in the long period. In addition, the initial adoption of an emerging technology that fails to affirm may jeopardize investment return. This paper investigates a smart-village use case, the success of which strongly depends on the initial cost and scalability, exploring a low-cost way for Internet of Things (IoT. We propose a simple conceptual framework for cost evaluation, and we verify its effectiveness with an exhaustive use case: a prototype sensor designed and tested with its surrounding eco-system. Using experimental results, we can estimate both performance and cost for a pilot system made of fifty sensors deployed in an urban area. We show that such cost grows linearly with system size, taking advantage of widely adopted technologies. The code and the design of the prototype are available, so that all steps are reproducible.

  1. Large area, low cost space solar cells with optional wraparound contacts

    Science.gov (United States)

    Michaels, D.; Mendoza, N.; Williams, R.

    1981-01-01

    Design parameters for two large area, low cost solar cells are presented, and electron irradiation testing, thermal alpha testing, and cell processing are discussed. The devices are a 2 ohm-cm base resistivity silicon cell with an evaporated aluminum reflector produced in a dielectric wraparound cell, and a 10 ohm-cm silicon cell with the BSF/BSR combination and a conventional contact system. Both cells are 5.9 x 5.9 cm and require 200 micron thick silicon material due to mission weight constraints. Normalized values for open circuit voltage, short circuit current, and maximum power calculations derived from electron radiation testing are given. In addition, thermal alpha testing values of absorptivity and emittance are included. A pilot cell processing run produced cells averaging 14.4% efficiencies at AMO 28 C. Manufacturing for such cells will be on a mechanized process line, and the area of coverslide application technology must be considered in order to achieve cost effective production.

  2. Orion: Design of a system for assured low-cost human access to space

    Science.gov (United States)

    Elvander, Josh; Heifetz, Andy; Hunt, Teresa; Zhu, Martin

    1994-01-01

    In recent years, Congress and the American people have begun to seriously question the role and importance of future manned spaceflight. This is mainly due to two factors: a decline in technical competition caused by the collapse of communism, and the high costs associated with the Space Shuttle transportation system. With these factors in mind, the ORION system was designed to enable manned spaceflight at a low cost, while maintaining the ability to carry out diverse missions, each with a high degree of flexibility. It is capable of performing satellite servicing missions, supporting a space station via crew rotation and resupply, and delivering satellites into geosynchronous orbit. The components of the system are a primary launch module, an upper stage, and a manned spacecraft capable of dynamic reentry. For satellite servicing and space station resupply missions, the ORION system utilizes three primary modules, an upper stage, and the spacecraft, which is delivered to low earth orbit and used to rendezvous, transfer materials, and make repairs. For launching a geosynchronous satellite, one primary module and an upper stage are used to deliver the satellite, along with an apogee kick motor, into orbit. The system is designed with reusability and modularity in mind in an attempt to lower cost.

  3. Dielectric spectroscopy studies of low-disorder and low-dimensional materials

    OpenAIRE

    Tripathi, Pragya

    2016-01-01

    In this thesis we employ dielectric spectroscopy (in different implementations) to study the dielectric properties of different materials ranging from completely disordered supercooled liquids to low-disorder solids with only ratcheting reorientational motions, to low-dimensional systems such as thin films or needle-like crystals. The probed material properties include the electrical conductivity, the space-charge processes due to sample heterogeneities, molecular dynamics, hydrogen-bond dyna...

  4. Minimizing material damage using low temperature irradiation

    International Nuclear Information System (INIS)

    Craven, E.; Hasanain, F.; Winters, M.

    2012-01-01

    Scientific advancements in healthcare driven both by technological breakthroughs and an aging and increasingly obese population have lead to a changing medical device market. Complex products and devices are being developed to meet the demands of leading edge medical procedures. Specialized materials in these medical devices, including pharmaceuticals and biologics as well as exotic polymers present a challenge for radiation sterilization as many of these components cannot withstand conventional irradiation methods. The irradiation of materials at dry ice temperatures has emerged as a technique that can be used to decrease the radiation sensitivity of materials. The purpose of this study is to examine the effect of low temperature irradiation on a variety of polymer materials, and over a range of temperatures from 0 °C down to −80 °C. The effectiveness of microbial kill is also investigated under each of these conditions. The results of the study show that the effect of low temperature irradiation is material dependent and can alter the balance between crosslinking and chain scission of the polymer. Low temperatures also increase the dose required to achieve an equivalent microbiological kill, therefore dose setting exercises must be performed under the environmental conditions of use. - Highlights: ► A study is performed to quantify low temperature irradiation effects on polymer materials and BIs. ► Low temperature irradiation alters the balance of cross-linking and chain scissoning in polymers. ► Low temperatures provide radioprotection for BIs. ► Benefits of low temperatures are application specific and must be considered when dose setting.

  5. A cost-benefit analysis of landfill mining and material recycling in China

    International Nuclear Information System (INIS)

    Zhou, Chuanbin; Gong, Zhe; Hu, Junsong; Cao, Aixin; Liang, Hanwen

    2015-01-01

    Highlights: • Assessing the economic feasibility of landfill mining. • We applied a cost-benefit analysis model for landfill mining. • Four material cycling and energy recovery scenarios were designed. • We used net present value to evaluate the cost-benefit efficiency. - Abstract: Landfill mining is an environmentally-friendly technology that combines the concepts of material recycling and sustainable waste management, and it has received a great deal of worldwide attention because of its significant environmental and economic potential in material recycling, energy recovery, land reclamation and pollution prevention. This work applied a cost-benefit analysis model for assessing the economic feasibility, which is important for promoting landfill mining. The model includes eight indicators of costs and nine indicators of benefits. Four landfill mining scenarios were designed and analyzed based on field data. The economic feasibility of landfill mining was then evaluated by the indicator of net present value (NPV). According to our case study of a typical old landfill mining project in China (Yingchun landfill), rental of excavation and hauling equipment, waste processing and material transportation were the top three costs of landfill mining, accounting for 88.2% of the total cost, and the average cost per unit of stored waste was 12.7 USD ton −1 . The top three benefits of landfill mining were electricity generation by incineration, land reclamation and recycling soil-like materials. The NPV analysis of the four different scenarios indicated that the Yingchun landfill mining project could obtain a net positive benefit varying from 1.92 million USD to 16.63 million USD. However, the NPV was sensitive to the mode of land reuse, the availability of energy recovery facilities and the possibility of obtaining financial support by avoiding post-closure care

  6. A cost-benefit analysis of landfill mining and material recycling in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chuanbin, E-mail: cbzhou@rcees.ac.cn; Gong, Zhe; Hu, Junsong; Cao, Aixin; Liang, Hanwen

    2015-01-15

    Highlights: • Assessing the economic feasibility of landfill mining. • We applied a cost-benefit analysis model for landfill mining. • Four material cycling and energy recovery scenarios were designed. • We used net present value to evaluate the cost-benefit efficiency. - Abstract: Landfill mining is an environmentally-friendly technology that combines the concepts of material recycling and sustainable waste management, and it has received a great deal of worldwide attention because of its significant environmental and economic potential in material recycling, energy recovery, land reclamation and pollution prevention. This work applied a cost-benefit analysis model for assessing the economic feasibility, which is important for promoting landfill mining. The model includes eight indicators of costs and nine indicators of benefits. Four landfill mining scenarios were designed and analyzed based on field data. The economic feasibility of landfill mining was then evaluated by the indicator of net present value (NPV). According to our case study of a typical old landfill mining project in China (Yingchun landfill), rental of excavation and hauling equipment, waste processing and material transportation were the top three costs of landfill mining, accounting for 88.2% of the total cost, and the average cost per unit of stored waste was 12.7 USD ton{sup −1}. The top three benefits of landfill mining were electricity generation by incineration, land reclamation and recycling soil-like materials. The NPV analysis of the four different scenarios indicated that the Yingchun landfill mining project could obtain a net positive benefit varying from 1.92 million USD to 16.63 million USD. However, the NPV was sensitive to the mode of land reuse, the availability of energy recovery facilities and the possibility of obtaining financial support by avoiding post-closure care.

  7. The effects of stimulus modality and task integrality: Predicting dual-task performance and workload from single-task levels

    Science.gov (United States)

    Hart, S. G.; Shively, R. J.; Vidulich, M. A.; Miller, R. C.

    1986-01-01

    The influence of stimulus modality and task difficulty on workload and performance was investigated. The goal was to quantify the cost (in terms of response time and experienced workload) incurred when essentially serial task components shared common elements (e.g., the response to one initiated the other) which could be accomplished in parallel. The experimental tasks were based on the Fittsberg paradigm; the solution to a SternBERG-type memory task determines which of two identical FITTS targets are acquired. Previous research suggested that such functionally integrated dual tasks are performed with substantially less workload and faster response times than would be predicted by suming single-task components when both are presented in the same stimulus modality (visual). The physical integration of task elements was varied (although their functional relationship remained the same) to determine whether dual-task facilitation would persist if task components were presented in different sensory modalities. Again, it was found that the cost of performing the two-stage task was considerably less than the sum of component single-task levels when both were presented visually. Less facilitation was found when task elements were presented in different sensory modalities. These results suggest the importance of distinguishing between concurrent tasks that complete for limited resources from those that beneficially share common resources when selecting the stimulus modalities for information displays.

  8. Analysis of the influence of advanced materials for aerospace products R&D and manufacturing cost

    Science.gov (United States)

    Shen, A. W.; Guo, J. L.; Wang, Z. J.

    2015-12-01

    In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research & Development (R&D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R&D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable.

  9. Using Converter Dust to Produce Low Cost Cementitious Composites by in situ Carbon Nanotube and Nanofiber Synthesis

    Directory of Open Access Journals (Sweden)

    Péter Ludvig

    2011-03-01

    Full Text Available Carbon nanotubes (CNTs and nanofibers (CNFs were synthesized on clinker and silica fume particles in order to create a low cost cementitious nanostructured material. The synthesis was carried out by an in situ chemical vapor deposition (CVD process using converter dust, an industrial byproduct, as iron precursor. The use of these materials reduces the cost, with the objective of application in large-scale nanostructured cement production. The resulting products were analyzed by scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric analysis (TGA and were found to be polydisperse in size and to have defective microstructure. Some enhancement in the mechanical behavior of cement mortars was observed due to the addition of these nano-size materials. The contribution of these CNTs/CNFs to the mechanical strength of mortar specimens is similar to that of high quality CNTs incorporated in mortars by physical mixture.

  10. Low Cost Al-Si Casting Alloy As In-Situ Composite for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2000-01-01

    A new aluminum-silicon (Al-Si) alloy has been successfully developed at NASA- Marshall Space Flight Center (MSFC) that has significant improvement in tensile and fatigue strength at elevated temperatures (500 F-700 F). The alloy offers a number of benefits such as light weight, high hardness, low thermal expansion and high surface wear resistance. In hypereutectic form, this alloy is considered as an in-situ Al-Si composite with tensile strength of about 90% higher than the auto industry 390 alloy at 600 F. This composite is very economically produced by using either conventional permanent steel molds or die casting. The projected material cost is less than $0.90 per pound, and automotive components such as pistons can be cast for high production rate using conventional casting techniques with a low and fully accounted cost. Key Words: Metal matrix composites, In-situ composite, aluminum-silicon alloy, hypereutectic alloy, permanent mold casting, die casting.

  11. Water-Soluble Polymers with Strong Photoluminescence through an Eco-Friendly and Low-Cost Route.

    Science.gov (United States)

    Guo, Zhaoyan; Ru, Yue; Song, Wenbo; Liu, Zhenjie; Zhang, Xiaohong; Qiao, Jinliang

    2017-07-01

    Photoluminescence (PL) of nonconjugated polymers brings a favorable opportunity for low-cost and nontoxic luminescent materials, while most of them still exhibit relatively weak emission. Strong PL from poly[(maleic anhydride)-alt-(vinyl acetate)] (PMV) from low-cost monomer has been found in organic solvents, yet the necessity of noxious solvents would hinder its practical applications. Herein, through a novel, eco-friendly, and one-step route, PMV-derived PL polymers can be fabricated with the highest quantum yield of 87% among water-soluble nonconjugated PL polymers ever reported. These PMV-derived polymers emit strong blue emission in both solutions and solids, and can be transformed into red-emission agents easily. These PL polymers exhibit application potentials in light-conversion agricultural films. It is assumed that this work not only puts forward a convenient preparation routine for nonconjugated polymers with high PL, but also provides an industrial application possibility for them. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Calculation of coal power plant cost on agricultural and material building impact of emission

    International Nuclear Information System (INIS)

    Mochamad Nasrullah; Wiku Lulus Widodo

    2016-01-01

    Calculation for externally cost of Coal Power Plant (CPP) is very important. This paper is focus on CPP appear SO 2 impact on agricultural plant and material building. AGRIMAT'S model from International Atomic Energy Agency is model one be used to account environmental damage for air impact because SO 2 emission. Analysis method use Impact Pathways Assessment: Determining characteristic source, Exposure Response Functions (ERF), Impacts and Damage Costs, and Monetary Unit Cost. Result for calculate shows that SO 2 that issued CPP, if value of SO 2 is 19,3 μg/m3, damage cost begins valuably positive. It shows that the land around CPP has decrease prosperity, and it will disadvantage for agricultural plant. On material building, SO 2 resulting damage cost. The increase humidity price therefore damage cost on material building will increase cost. But if concentration SO 2 increase therefore damage cost that is appear on material building decrease. Expected this result can added with external cost on health impact of CPP. External cost was done at developed countries. If it is done at Indonesia, therefore generation cost with fossil as more expensive and will get implication on issue cut back gases greenhouse. On the other side, renewable energy and also alternative energy as nuclear have opportunity at national energy mix system. (author)

  13. Wastewater treatment using low cost activated carbons derived from agricultural byproducts-A case study

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Dinesh [Environmental Chemistry Division, Industrial Toxicology Research Centre, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001, U.P. (India)], E-mail: dm_1967@hotmail.com; Singh, Kunwar P.; Singh, Vinod K. [Environmental Chemistry Division, Industrial Toxicology Research Centre, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001, U.P. (India)

    2008-04-15

    A variety of low cost activated carbons were developed from agricultural waste materials viz., coconut shell, coconut shell fibers and rice husk. The low cost activated carbons were fully characterized and utilized for the remediation of various pollutants viz., chemical oxygen demand (COD), heavy metals, anions, etc., from industrial wastewater. Sorption studies were carried out at different temperatures and particle sizes to study the effect of temperatures and surface areas. The removal of chloride and fluoride increased with rise in temperature while COD and metal ions removal decreased with increase in temperature, thereby, indicating the processes to be endothermic and exothermic, respectively. The kinetics of COD adsorption was also carried out at different temperatures to establish the sorption mechanism and to determine various kinetic parameters. The COD removal was 47-72% by coconut shell fiber carbon (ATFAC), 50-74% by coconut shell carbon (ATSAC) and 45-73% by rice husk carbon (ATRHC). Furthermore, COD removal kinetics by rice husk carbon, coconut shell carbon and coconut fiber carbon at different temperatures was approximately represented by a first order rate law. Results of this fundamental study demonstrate the effectiveness and feasibility of low cost activated carbons. The parameters obtained in this study can be fully utilized to establish fixed bed reactors on large scale to treat the contaminated water.

  14. Wastewater treatment using low cost activated carbons derived from agricultural byproducts-A case study

    International Nuclear Information System (INIS)

    Mohan, Dinesh; Singh, Kunwar P.; Singh, Vinod K.

    2008-01-01

    A variety of low cost activated carbons were developed from agricultural waste materials viz., coconut shell, coconut shell fibers and rice husk. The low cost activated carbons were fully characterized and utilized for the remediation of various pollutants viz., chemical oxygen demand (COD), heavy metals, anions, etc., from industrial wastewater. Sorption studies were carried out at different temperatures and particle sizes to study the effect of temperatures and surface areas. The removal of chloride and fluoride increased with rise in temperature while COD and metal ions removal decreased with increase in temperature, thereby, indicating the processes to be endothermic and exothermic, respectively. The kinetics of COD adsorption was also carried out at different temperatures to establish the sorption mechanism and to determine various kinetic parameters. The COD removal was 47-72% by coconut shell fiber carbon (ATFAC), 50-74% by coconut shell carbon (ATSAC) and 45-73% by rice husk carbon (ATRHC). Furthermore, COD removal kinetics by rice husk carbon, coconut shell carbon and coconut fiber carbon at different temperatures was approximately represented by a first order rate law. Results of this fundamental study demonstrate the effectiveness and feasibility of low cost activated carbons. The parameters obtained in this study can be fully utilized to establish fixed bed reactors on large scale to treat the contaminated water

  15. Α4β2 and α7 nicotinic acetylcholine receptor binding predicts choice preference in two cost benefit decision-making tasks.

    Science.gov (United States)

    Mendez, I A; Damborsky, J C; Winzer-Serhan, U H; Bizon, J L; Setlow, B

    2013-01-29

    Nicotinic receptors have been linked to a wide range of cognitive and behavioral functions, but surprisingly little is known about their involvement in cost benefit decision making. The goal of these experiments was to determine how nicotinic acetylcholine receptor (nAChR) expression is related to two forms of cost benefit decision making. Male Long Evans rats were tested in probability- and delay-discounting tasks, which required discrete trial choices between a small reward and a large reward associated with varying probabilities of omission and varying delays to reward delivery, respectively. Following testing, radioligand binding to α4β2 and α7 nAChR subtypes in brain regions implicated in cost benefit decision making was examined. Significant linear relationships were observed between choice of the large delayed reward in the delay discounting task and α4β2 receptor binding in both the dorsal and ventral hippocampus. Additionally, trends were found suggesting that choice of the large costly reward in both discounting tasks was inversely related to α4β2 receptor binding in the medial prefrontal cortex and nucleus accumbens shell. Similar trends suggested that choice of the large delayed reward in the delay discounting task was inversely related to α4β2 receptor binding in the orbitofrontal cortex, nucleus accumbens core, and basolateral amygdala, as well as to α7 receptor binding in the basolateral amygdala. These data suggest that nAChRs (particularly α4β2) play both unique and common roles in decisions that require consideration of different types of reward costs. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. A Cost-Benefit Analysis of Low-Dose Aspirin Prophylaxis for the Prevention of Preeclampsia in the United States.

    Science.gov (United States)

    Werner, Erika F; Hauspurg, Alisse K; Rouse, Dwight J

    2015-12-01

    To develop a decision model to evaluate the risks, benefits, and costs of different approaches to aspirin prophylaxis for the approximately 4 million pregnant women in the United States annually. We created a decision model to evaluate four approaches to aspirin prophylaxis in the United States: no prophylaxis, prophylaxis per American College of Obstetricians and Gynecologists (the College) recommendations, prophylaxis per U.S. Preventive Services Task Force recommendations, and universal prophylaxis. We included the costs associated with aspirin, preeclampsia, preterm birth, and potential aspirin-associated adverse effects. TreeAge Pro 2011 was used to perform the analysis. The estimated rate of preeclampsia would be 4.18% without prophylaxis compared with 4.17% with the College approach in which 0.35% (n=14,000) of women receive aspirin, 3.83% with the U.S. Preventive Services Task Force approach in which 23.5% (n=940,800) receive aspirin, and 3.81% with universal prophylaxis. Compared with no prophylaxis, the U.S. Preventive Services Task Force approach would save $377.4 million in direct medical care costs annually, and universal prophylaxis would save $365 million assuming 4 million births each year. The U.S. Preventive Services Task Force approach is the most cost-beneficial in 79% of probabilistic simulations. Assuming a willingness to pay of $100,000 per neonatal quality-adjusted life-year gained, the universal approach is the most cost-effective in more than 99% of simulations. Both the U.S. Preventive Services Task Force approach and universal prophylaxis would reduce morbidity, save lives, and lower health care costs in the United States to a much greater degree than the approach currently recommended by the College.

  17. Low cost submarine robot

    Directory of Open Access Journals (Sweden)

    Ponlachart Chotikarn

    2010-10-01

    Full Text Available A submarine robot is a semi-autonomous submarine robot used mainly for marine environmental research. We aim todevelop a low cost, semi-autonomous submarine robot which is able to travel underwater. The robot’s structure was designedand patented using a novel idea of the diving system employing a volume adjustment mechanism to vary the robot’s density.A light weight, flexibility and small structure provided by PVC can be used to construct the torpedo-liked shape robot.Hydraulic seal and O-ring rubbers are used to prevent water leaking. This robot is controlled by a wired communicationsystem.

  18. All solution-processed micro-structured flexible electrodes for low-cost light-emitting pressure sensors fabrication.

    Science.gov (United States)

    Shimotsu, Rie; Takumi, Takahiro; Vohra, Varun

    2017-07-31

    Recent studies have demonstrated the advantage of developing pressure-sensitive devices with light-emitting properties for direct visualization of pressure distribution, potential application to next generation touch panels and human-machine interfaces. To ensure that this technology is available to everyone, its production cost should be kept as low as possible. Here, simple device concepts, namely, pressure sensitive flexible hybrid electrodes and OLED architecture, are used to produce low-cost resistive or light-emitting pressure sensors. Additionally, integrating solution-processed self-assembled micro-structures into the flexible hybrid electrodes composed of an elastomer and conductive materials results in enhanced device performances either in terms of pressure or spatial distribution sensitivity. For instance, based on the pressure applied, the measured values for the resistances of pressure sensors range from a few MΩ down to 500 Ω. On the other hand, unlike their evaporated equivalents, the combination of solution-processed flexible electrodes with an inverted OLED architectures display bright green emission when a pressure over 200 kPa is applied. At a bias of 3 V, their luminance can be tuned by applying a higher pressure of 500 kPa. Consequently, features such as fingernails and fingertips can be clearly distinguished from one another in these long-lasting low-cost devices.

  19. Low-cost fused taper polymer optical fiber (LFT-POF) splitters for environmental and home-networking solution

    Science.gov (United States)

    Supian, L. S.; Ab-Rahman, Mohammad Syuhaimi; Harun, Mohd Hazwan; Gunab, Hadi; Sulaiman, Malik; Naim, Nani Fadzlina

    2017-08-01

    In visible optical communication over the multimode PMMA fibers, the overall cost of optical network can be reduced by deploying economical splitters for distributing the optical data signals from a point to multipoint in transmission network. The low-cost splitters shall have two main characteristics; good uniformity and high power efficiency. The most cost-effective and environmental friendly optical splitter having those characteristics have been developed. The device material is 100% purely based on the multimode step-index PMMA Polymer Optical Fiber (POF). The region which all fibers merged as single fiber is called as fused-taper POF. This ensures that all fibers are melted and fused properly. The results for uniformity and power efficiency of all splitters have been revealed by injecting red LED transmitter with 650 nm wavelength into input port while each end of output fibers measured by optical power meter. Final analysis shows our fused-taper splitter has low excess loss 0.53 dB and each of the output port has low insertion loss, which the average value is below 7 dB. In addition, the splitter has good uniformity that is 32:37:31% in which it is suitably used for demultiplexer fabrication.

  20. Development of low friction materials for LMFBR components

    International Nuclear Information System (INIS)

    Johnson, R.N.; Aungst, R.C.; Hoffman, N.J.; Cowgill, M.G.; Whitlow, G.A.; Wilson, W.L.

    1976-01-01

    The number of materials capable of providing low friction, low wear, and good corrosion resistance in low-oxygen (less than 1 ppM) sodium at temperatures up to 650 0 C are extremely limited. The paper describes the development, evaluation, and qualification of low-friction materials for this environment with emphasis on chromium carbide base coatings and nickel aluminide diffusion coatings. Design criteria and typical applications in liquid-metal-cooled reactors are described and recommendations offered for conditions under which these materials should and, perhaps more importantly, should not be used. Design parameters required to achieve optimum performance of these materials are discussed

  1. Flipping the Calculus Classroom: A Cost-Effective Approach

    Science.gov (United States)

    Young, Andrea

    2015-01-01

    This article discusses a cost-effective approach to flipping the calculus classroom. In particular, the emphasis is on low-cost choices, both monetarily and with regards to faculty time, that make the daunting task of flipping a course manageable for a single instructor. Student feedback and overall impressions are also presented.

  2. Operation compatibility: a neglected contribution to dual-task costs

    NARCIS (Netherlands)

    Pannebakker, M.M.; Band, G.P.H.; Ridderinkhof, K.R.

    2009-01-01

    Traditionally, dual-task interference has been attributed to the consequences of task load exceeding capacity limitations. However, the current study demonstrates that in addition to task load, the mutual compatibility of the concurrent processes modulates whether 2 tasks can be performed in

  3. The OPEnSampler: A Low-Cost, Low-Weight, Customizable and Modular Open Source 24-Unit Automatic Water Sampler

    Science.gov (United States)

    Nelke, M.; Selker, J. S.; Udell, C.

    2017-12-01

    Reliable automatic water samplers allow repetitive sampling of various water sources over long periods of time without requiring a researcher on site, reducing human error as well as the monetary and time costs of traveling to the field, particularly when the scale of the sample period is hours or days. The high fixed cost of buying a commercial sampler with little customizability can be a barrier to research requiring repetitive samples, such as the analysis of septic water pre- and post-treatment. DIY automatic samplers proposed in the past sacrifice maximum volume, customizability, or scope of applications, among other features, in exchange for a lower net cost. The purpose of this project was to develop a low-cost, highly customizable, robust water sampler that is capable of sampling many sources of water for various analytes. A lightweight aluminum-extrusion frame was designed and assembled, chosen for its mounting system, strength, and low cost. Water is drawn from two peristaltic pumps through silicone tubing and directed into 24 foil-lined 250mL bags using solenoid valves. A programmable Arduino Uno microcontroller connected to a circuit board communicates with a battery operated real-time clock, initiating sampling stages. Period and volume settings are programmable in-field by the user via serial commands. The OPEnSampler is an open design, allowing the user to decide what components to use and the modular theme of the frame allows fast mounting of new manufactured or 3D printed components. The 24-bag system weighs less than 10kg and the material cost is under $450. Up to 6L of sample water can be drawn at a rate of 100mL/minute in either direction. Faster flowrates are achieved by using more powerful peristaltic pumps. Future design changes could allow a greater maximum volume by filling the unused space with more containers and adding GSM communications to send real time status information.

  4. Results of 4 years R&D in the IEA Task4224 on compact thermal energy storage: Materials development for system integration

    NARCIS (Netherlands)

    Helden, W. van; Hauer, A.; Furbo, S.; Skrylynk, O.; Nuytten, T.; Ristic, A.; Henninger, S.; Rindt, C.; Bruno, F.; Lázaro, A.; Luo, L.; Basciotti, D.; Heinz, A.; Weber, R.; Fernandez, I.; Cabeza, L.; Chiu, J.; Zondag, H.; Cuypers, R.; Jänchen, J.; Zettl, B.; Lävemann, E.

    2013-01-01

    Since January 2009, experts from the fields of material development and system integration are working together in the joint Task42/Annex24 to develop better materials for the compact storage of heat and to design, build and test systems in which these novel materials are being applied. In the Task,

  5. Gender involvement in manual material handling (mmh) tasks in agriculture and technology intervention to mitigate the resulting musculoskeletal disorders.

    Science.gov (United States)

    Singh, Suman; Sinwal, Neelima; Rathore, Hemu

    2012-01-01

    The lifting and carrying of loads in agriculture on small landholdings are unavoidable. Rural communities often lack access to appropriate technologies which may result in various health hazards. The objective was to study gender participation in agricultural activities involving manual material handling tasks, to assess MSDs experienced in various MMH tasks and to evaluate traditional method and designed technology. The study was conducted on 100 agricultural workers. Data on gender participation in MMH tasks in household, animal husbandry and agriculture and resulting MSDs was gathered. Pre and post assessment of technology intervention was done for NIOSH Lifting Index, QEC, and RPE. The results revealed greater susceptibility of females to musculoskeletal problems in most of the household and animal husbandry tasks. The hand trucks designed were pushing type with power grasp handle. The respondents were advised to carry 5 kg of weight per lift instead of lifting more weight in one lift/minute while filling the hand truck. By decreasing the weight and increasing the number of lifts per minute the respondents were seen falling in green zone indicating significant reduction in NIOSH lifting index. QEC scores concluded that for filling the hand truck 5 kg of weight should be carried to keep the exposure level low.

  6. Low Cost, High-Throughput 3-D Pulmonary Imager Using Hyperpolarized Contrast Agents and Low-Field MRI

    Science.gov (United States)

    2017-10-01

    greater gas polarizations and production amounts/ throughputs- benefiting in particular from the advent of com- pact, high-power, relatively low- cost ...Award Number: W81XWH-15-1-0271 TITLE: Low- Cost , High-Throughput 3-D Pulmonary Imager Using Hyperpolarized Contrast Agents and Low-Field MRI...DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the

  7. Pointo - a Low Cost Solution to Point Cloud Processing

    Science.gov (United States)

    Houshiar, H.; Winkler, S.

    2017-11-01

    With advance in technology access to data especially 3D point cloud data becomes more and more an everyday task. 3D point clouds are usually captured with very expensive tools such as 3D laser scanners or very time consuming methods such as photogrammetry. Most of the available softwares for 3D point cloud processing are designed for experts and specialists in this field and are usually very large software packages containing variety of methods and tools. This results in softwares that are usually very expensive to acquire and also very difficult to use. Difficulty of use is caused by complicated user interfaces that is required to accommodate a large list of features. The aim of these complex softwares is to provide a powerful tool for a specific group of specialist. However they are not necessary required by the majority of the up coming average users of point clouds. In addition to complexity and high costs of these softwares they generally rely on expensive and modern hardware and only compatible with one specific operating system. Many point cloud customers are not point cloud processing experts or willing to spend the high acquisition costs of these expensive softwares and hardwares. In this paper we introduce a solution for low cost point cloud processing. Our approach is designed to accommodate the needs of the average point cloud user. To reduce the cost and complexity of software our approach focuses on one functionality at a time in contrast with most available softwares and tools that aim to solve as many problems as possible at the same time. Our simple and user oriented design improve the user experience and empower us to optimize our methods for creation of an efficient software. In this paper we introduce Pointo family as a series of connected softwares to provide easy to use tools with simple design for different point cloud processing requirements. PointoVIEWER and PointoCAD are introduced as the first components of the Pointo family to provide a

  8. Investigating Perfect Timesharing: The Relationship between IM-Compatible Tasks and Dual-Task Performance

    Science.gov (United States)

    Halvorson, Kimberly M.; Ebner, Herschel; Hazeltine, Eliot

    2013-01-01

    Why are dual-task costs reduced with ideomotor (IM) compatible tasks (Greenwald & Shulman, 1973; Lien, Proctor & Allen, 2002)? In the present experiments, we first examine three different measures of single-task performance (pure single-task blocks, mixed blocks, and long stimulus onset asynchrony [SOA] trials in dual-task blocks) and two…

  9. Sliver Solar Cells: High-Efficiency, Low-Cost PV Technology

    Directory of Open Access Journals (Sweden)

    Evan Franklin

    2007-01-01

    Full Text Available Sliver cells are thin, single-crystal silicon solar cells fabricated using standard fabrication technology. Sliver modules, composed of several thousand individual Sliver cells, can be efficient, low-cost, bifacial, transparent, flexible, shadow tolerant, and lightweight. Compared with current PV technology, mature Sliver technology will need 10% of the pure silicon and fewer than 5% of the wafer starts per MW of factory output. This paper deals with two distinct challenges related to Sliver cell and Sliver module production: providing a mature and robust Sliver cell fabrication method which produces a high yield of highly efficient Sliver cells, and which is suitable for transfer to industry; and, handling, electrically interconnecting, and encapsulating billions of sliver cells at low cost. Sliver cells with efficiencies of 20% have been fabricated at ANU using a reliable, optimised processing sequence, while low-cost encapsulation methods have been demonstrated using a submodule technique.

  10. The Impact of Differentiated Instructional Materials on English Language Learner (ELL) Students' Comprehension of Science Laboratory Tasks

    Science.gov (United States)

    Manavathu, Marian; Zhou, George

    2012-01-01

    Through a qualitative research design, this article investigates the impacts of differentiated laboratory instructional materials on English language learners' (ELLs) laboratory task comprehension. The factors affecting ELLs' science learning experiences are further explored. Data analysis reveals a greater degree of laboratory task comprehension…

  11. Planning and production of a low cost cryostat for electrical characterization of materials; Planejamento e producao de um criostato de baixo custo para caracterizacao eletrica de materiais

    Energy Technology Data Exchange (ETDEWEB)

    Torsoni, G.B.; Carvalho, C.L.; Brito, G.A. [UNESP, Ilha Solteira, SP (Brazil). Dept. de Fisica e Quimica. Grupo de Vidros e Ceramicas

    2010-07-01

    The system BSCCO can show three main Bi{sub 2}Sr{sub 2}CuO, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O with critical temperatures around 20 K, 80 K and 110 K, respectively. Therefore, it is fundamental to study these materials in details at lowest temperatures, with simple systems and low cost equipment. In this work was projected a cryogenic system with capacity to reach temperatures below the liquid nitrogen temperature (77 K). Based on thermodynamic principles, which is used with liquid nitrogen system, with the vacuum application and control, it has been achieved temperatures about 63 K (freezing nitrogen temperature) in the sample holder. With the availability of a large range temperature becomes possible to identify at least two superconducting phases as in system BSCCO, which also involves a cost/benefit ratio more favorable, avoiding the use of more expensive refrigerates as liquid helium. (author)

  12. Design Options to Reduce Development Cost of First Generation Surface Reactors

    International Nuclear Information System (INIS)

    Poston, David I.; Marcille, Thomas F.

    2006-01-01

    Low-power surface reactors have the potential to have the lowest development cost of any space reactor application, primarily because system alpha (mass/kg) is not of utmost importance and mission lifetimes do not have to be a decade or more. Even then, the development cost of a surface reactor can vary substantially depending on the performance requirements (e.g. mass, power, lifetime, reliability) and technical development risk deemed acceptable by the end-user. It is important for potential users to be aware of these relationships before they determine their future architecture (i.e. decide what they need). Generally, the greatest potential costs of a space reactor program are a nuclear-powered ground test and extensive material development campaigns, so it is important to consider options that can minimize the need for or complexity of such tasks. The intended goal of this paper is to inform potential surface reactor users of the potential sensitivities of surface reactor development cost to design requirements, and areas where technical risk can be traded with development cost

  13. Biological and Biomimetic Low-Temperature Routes to Materials for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Morse, Daniel E. [Univ. of California, Santa Barbara, CA (United States). Inst. for Collaborative Biotechnologies

    2016-08-29

    New materials are needed to significantly improve the efficiencies of energy harnessing, transduction and storage, yet the synthesis of advanced composites and multi-metallic semiconductors with nanostructures optimized for these functions remains poorly understood and even less well controlled. To help address this need, we proposed three goals: (1) to further investigate the hierarchical structure of the biologically synthesized silica comprising the skeletal spicules of sponges that we discovered, to better resolve the role and mechanism of templating by the hierarchically assembled silicatein protein filament; (2) to extend our molecular and genetic analyses and engineering of silicatein, the self-assembling, structure-directing, silica-synthesizing enzyme we discovered and characterized, to better understand and manipulate the catalysis and templating of semiconductor synthesis,; and (3) to further investigate, scale up and harness the biologically inspired, low-temperature, kinetically controlled catalytic synthesis method we developed (based on the mechanism we discovered in silicatein) to investigate the kinetic control of the structure-function relationships in magnetic materials, and develop new materials for energy applications. The bio-inspired catalytic synthesis method we have developed is low-cost, low temperature, and operates without the use of polluting chemicals. In addition to direct applications for improvement of batteries and fuel cells, the broader impact of this research includes a deeper fundamental understanding of the factors governing kinetically controlled synthesis and its control of the emergent nanostructure and performance of a wide range of nanomaterials for energy applications.

  14. Low Cost Vision Based Personal Mobile Mapping System

    Science.gov (United States)

    Amami, M. M.; Smith, M. J.; Kokkas, N.

    2014-03-01

    Mobile mapping systems (MMS) can be used for several purposes, such as transportation, highway infrastructure mapping and GIS data collecting. However, the acceptance of these systems is not wide spread and their use is still limited due the high cost and dependency on the Global Navigation Satellite System (GNSS). A low cost vision based personal MMS has been produced with an aim to overcome these limitations. The system has been designed to depend mainly on cameras and use of low cost GNSS and inertial sensors to provide a bundle adjustment solution with initial values. The system has the potential to be used indoor and outdoor. The system has been tested indoors and outdoors with different GPS coverage, surrounded features, and narrow and curvy paths. Tests show that the system is able to work in such environments providing 3D coordinates of better than 10 cm accuracy.

  15. Low Cost Vision Based Personal Mobile Mapping System

    Directory of Open Access Journals (Sweden)

    M. M. Amami

    2014-03-01

    Full Text Available Mobile mapping systems (MMS can be used for several purposes, such as transportation, highway infrastructure mapping and GIS data collecting. However, the acceptance of these systems is not wide spread and their use is still limited due the high cost and dependency on the Global Navigation Satellite System (GNSS. A low cost vision based personal MMS has been produced with an aim to overcome these limitations. The system has been designed to depend mainly on cameras and use of low cost GNSS and inertial sensors to provide a bundle adjustment solution with initial values. The system has the potential to be used indoor and outdoor. The system has been tested indoors and outdoors with different GPS coverage, surrounded features, and narrow and curvy paths. Tests show that the system is able to work in such environments providing 3D coordinates of better than 10 cm accuracy.

  16. Low-Cost, High-Throughput 3-D Pulmonary Imager Using Hyperpolarized Contrast Agents and Low-Field MRI

    Science.gov (United States)

    2017-10-01

    low- cost and high-throughput was a key element proposed for this project, which we believe will be of significant benefit to the patients suffering...Award Number: W81XWH-15-1-0272 TITLE: Low- Cost , High-Throughput 3-D Pulmonary Imager Using Hyperpolarized Contrast Agents and Low-Field MRI...STATEMENT: Approved for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author(s

  17. Designing a Low-Cost Multifunctional Infant Incubator.

    Science.gov (United States)

    Tran, Kevin; Gibson, Aaron; Wong, Don; Tilahun, Dagmawi; Selock, Nicholas; Good, Theresa; Ram, Geetha; Tolosa, Leah; Tolosa, Michael; Kostov, Yordan; Woo, Hyung Chul; Frizzell, Michael; Fulda, Victor; Gopinath, Ramya; Prasad, J Shashidhara; Sudarshan, Hanumappa; Venkatesan, Arunkumar; Kumar, V Sashi; Shylaja, N; Rao, Govind

    2014-06-01

    Every year, an unacceptably large number of infant deaths occur in developing nations, with premature birth and asphyxia being two of the leading causes. A well-regulated thermal environment is critical for neonatal survival. Advanced incubators currently exist, but they are far too expensive to meet the needs of developing nations. We are developing a thermodynamically advanced low-cost incubator suitable for operation in a low-resource environment. Our design features three innovations: (1) a disposable baby chamber to reduce infant mortality due to nosocomial infections, (2) a passive cooling mechanism using low-cost heat pipes and evaporative cooling from locally found clay pots, and (3) insulated panels and a thermal bank consisting of water that effectively preserve and store heat. We developed a prototype incubator and visited and presented our design to our partnership hospital site in Mysore, India. After obtaining feedback, we have determined realistic, nontrivial design requirements and constraints in order to develop a new prototype incubator for clinical trials in hospitals in India. © 2014 Society for Laboratory Automation and Screening.

  18. Computer Aided Design of a Low-Cost Painting Robot

    Directory of Open Access Journals (Sweden)

    SYEDA MARIA KHATOON ZAIDI

    2017-10-01

    Full Text Available The application of robots or robotic systems for painting parts is becoming increasingly conventional; to improve reliability, productivity, consistency and to decrease waste. However, in Pakistan only highend Industries are able to afford the luxury of a robotic system for various purposes. In this study we propose an economical Painting Robot that a small-scale industry can install in their plant with ease. The importance of this robot is that being cost effective, it can easily be replaced in small manufacturing industries and therefore, eliminate health problems occurring to the individual in charge of painting parts on an everyday basis. To achieve this aim, the robot is made with local parts with only few exceptions, to cut costs; and the programming language is kept at a mediocre level. Image processing is used to establish object recognition and it can be programmed to paint various simple geometries. The robot is placed on a conveyer belt to maximize productivity. A four DoF (Degree of Freedom arm increases the working envelope and accessibility of painting different shaped parts with ease. This robot is capable of painting up, front, back, left and right sides of the part with a single colour. Initially CAD (Computer Aided Design models of the robot were developed which were analyzed, modified and improved to withstand loading condition and perform its task efficiently. After design selection, appropriate motors and materials were selected and the robot was developed. Throughout the development phase, minor problems and errors were fixed accordingly as they arose. Lastly the robot was integrated with the computer and image processing for autonomous control. The final results demonstrated that the robot is economical and reduces paint wastage.

  19. Computer aided design of a low-cost painting robot

    International Nuclear Information System (INIS)

    Zaidi, S.M.; Janejo, F.; Mujtaba, S.B.

    2017-01-01

    The application of robots or robotic systems for painting parts is becoming increasingly conventional; to improve reliability, productivity, consistency and to decrease waste. However, in Pakistan only highend Industries are able to afford the luxury of a robotic system for various purposes. In this study we propose an economical Painting Robot that a small-scale industry can install in their plant with ease. The importance of this robot is that being cost effective, it can easily be replaced in small manufacturing industries and therefore, eliminate health problems occurring to the individual in charge of painting parts on an everyday basis. To achieve this aim, the robot is made with local parts with only few exceptions, to cut costs; and the programming language is kept at a mediocre level. Image processing is used to establish object recognition and it can be programmed to paint various simple geometries. The robot is placed on a conveyer belt to maximize productivity. A four DoF (Degree of Freedom) arm increases the working envelope and accessibility of painting different shaped parts with ease. This robot is capable of painting up, front, back, left and right sides of the part with a single colour. Initially CAD (Computer Aided Design) models of the robot were developed which were analyzed, modified and improved to withstand loading condition and perform its task efficiently. After design selection, appropriate motors and materials were selected and the robot was developed. Throughout the development phase, minor problems and errors were fixed accordingly as they arose. Lastly the robot was integrated with the computer and image processing for autonomous control. The final results demonstrated that the robot is economical and reduces paint wastage. (author)

  20. Analysis on Occupants’ Satisfaction for Safety Performance Assessment in Low Cost Housing

    Directory of Open Access Journals (Sweden)

    Husin Husrul Nizam

    2014-01-01

    Full Text Available The delivery performance of the low cost housing is questioned since the occupants are prone towards safety hazards in the housing complex, such as structural instability and falling building fragments. Without defining the occupants’ requirements for the development of low cost housing, the prevailing safety factors are hard to be determined. This paper explores the rationale of safety performance assessment in the low cost housing by considering the occupants’ participation to achieve a better safety provision during occupancy period. Questionnaire survey was distributed to 380 occupants of the low cost housing in Kuala Lumpur and Selangor, Malaysia. The result shows that 80.8% of the respondents had expressed their dissatisfaction with the safety performance of the lift. By referring to the mode of ranking level, the most significant aspect rated by the respondents is Building Safety Features, with 51.6% respondents. The attained aspects can be fundamental parameters which can be considered in the future development of low cost housing.

  1. Waste Management Facilities cost information for low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  2. AUTOMATED LOW-COST PHOTOGRAMMETRY FOR FLEXIBLE STRUCTURE MONITORING

    Directory of Open Access Journals (Sweden)

    C. H. Wang

    2012-07-01

    Full Text Available Structural monitoring requires instruments which can provide high precision and accuracy, reliable measurements at good temporal resolution and rapid processing speeds. Long-term campaigns and flexible structures are regarded as two of the most challenging subjects in monitoring engineering structures. Long-term monitoring in civil engineering is generally considered to be labourintensive and financially expensive and it can take significant effort to arrange the necessary human resources, transportation and equipment maintenance. When dealing with flexible structure monitoring, it is of paramount importance that any monitoring equipment used is able to carry out rapid sampling. Low cost, automated, photogrammetric techniques therefore have the potential to become routinely viable for monitoring non-rigid structures. This research aims to provide a photogrammetric solution for long-term flexible structural monitoring purposes. The automated approach was achieved using low-cost imaging devices (mobile phones to replace traditional image acquisition stations and substantially reduce the equipment costs. A self-programmed software package was developed to deal with the hardware-software integration and system operation. In order to evaluate the performance of this low-cost monitoring system, a shaking table experiment was undertaken. Different network configurations and target sizes were used to determine the best configuration. A large quantity of image data was captured by four DSLR cameras and four mobile phone cameras respectively. These image data were processed using photogrammetric techniques to calculate the final results for the system evaluation.

  3. Low cost balancing unit design

    Science.gov (United States)

    Golembiovsky, Matej; Dedek, Jan; Slanina, Zdenek

    2017-06-01

    This article deals with the design of a low-cost balancing system which consist of battery balancing units, accumulator pack units and coordinator unit with interface for higher level of battery management system. This solution allows decentralized mode of operation and the aim of this work is implementation of controlling and diagnostic mechanism into an electric scooter project realized at Technical university of Ostrava. In todays world which now fully enjoys the prime of electromobility, off-grid battery systems and other, it is important to seek the optimal balance between functionality and the economy side of BMS that being electronics which deals with secondary cells of batery packs. There were numerous sophisticated, but not too practical BMS models in the past, such as centralized system or standalone balance modules of individual cells. This article aims at development of standalone balance modules which are able to communicate with the coordinator, adjust their parameters and ensure their cells safety in case of a communication failure. With the current worldwide cutting cost trend in mind, the emphasis was put on the lowest price possible for individual component. The article is divided into two major categories, the first one being desing of power electronics with emphasis on quality, safety (cooling) and also cost. The second part describes development of a communication interface with reliability and cost in mind. The article contains numerous graphs from practical measurements. The outcome of the work and its possible future is defined in the conclusion.

  4. Contextual control over task-set retrieval.

    Science.gov (United States)

    Crump, Matthew J C; Logan, Gordon D

    2010-11-01

    Contextual cues signaling task likelihood or the likelihood of task repetition are known to modulate the size of switch costs. We follow up on the finding by Leboe, Wong, Crump, and Stobbe (2008) that location cues predictive of the proportion of switch or repeat trials modulate switch costs. Their design employed one cue per task, whereas our experiment employed two cues per task, which allowed separate assessment of modulations to the cue-repetition benefit, a measure of lower level cue-encoding processes, and to the task-alternation cost, a measure of higher level processes representing task-set information. We demonstrate that location information predictive of switch proportion modulates performance at the level of task-set representations. Furthermore, we demonstrate that contextual control occurs even when subjects are unaware of the associations between context and switch likelihood. We discuss the notion that contextual information provides rapid, unconscious control over the extent to which prior task-set representations are retrieved in the service of guiding online performance.

  5. Age-related decrements in dual-task performance: Comparison of different mobility and cognitive tasks. A cross sectional study.

    Science.gov (United States)

    Brustio, Paolo Riccardo; Magistro, Daniele; Zecca, Massimiliano; Rabaglietti, Emanuela; Liubicich, Monica Emma

    2017-01-01

    This cross-sectional study investigated the age-related differences in dual-task performance both in mobility and cognitive tasks and the additive dual-task costs in a sample of older, middle-aged and young adults. 74 older adults (M = 72.63±5.57 years), 58 middle-aged adults (M = 46.69±4.68 years) and 63 young adults (M = 25.34±3.00 years) participated in the study. Participants performed different mobility and subtraction tasks under both single- and dual-task conditions. Linear regressions, repeated-measures and one-way analyses of covariance were used, The results showed: significant effects of the age on the dual and mobility tasks (ptask costs (pperformance under dual-task conditions in all groups (pperformance in the older group (ptask activity affected mobility and cognitive performance, especially in older adults who showed a higher dual-task cost, suggesting that dual-tasks activities are affected by the age and consequently also mobility and cognitive tasks are negatively influenced.

  6. SIMS studies of low-K materials

    International Nuclear Information System (INIS)

    Lin Xuefeng; Smith, Stephen P.

    2006-01-01

    We report progress in conducting quantitative SIMS analyses of low-K materials. Electron-beam (e-beam) pre-irradiation of SIMS measurement sites was used to study the e-beam-induced effects on SIMS depth profiling of a porous organosilicate low-K material. Pre-irradiation of the sample surface using the e-beam causes a reduction in the thickness of the low-K film. SIMS profiling was used to sputter to identifiable marker positions within the pre-irradiated film. Physical measurement of the thickness of the remaining film was used to show that the e-beam-induced reduction in thickness occurs uniformly throughout the pre-irradiated film. Exposure of the film to the e-beam prior to SIMS analysis also resulted in minor changes in the composition of the film. However, pre-irradiation of the film is not part of the normal SIMS measurement procedure. We conclude that when the e-beam irradiation is used only for charge compensation during SIMS depth profiling, the SIMS analysis of the low-K material will not be significantly affected

  7. Construction of a low-cost luximeter

    Science.gov (United States)

    Pedroso, L. S.; de Macedo, J. A.; de Araújo, M. S. T.; Voelzke, M. R.

    2016-04-01

    This paper proposes the construction of an electronic instrument called digital luximeter, combining simplicity and low cost, making it simpler and cheaper than those on the market. Its construction tends to facilitate dissemination and access to this type of measuring instrument between high school teachers and educational institutions, making it ideal to be a science lab.

  8. Cost-effectiveness evaluation of an RCT in rehabilitation after lumbar spinal fusion: a low-cost, behavioural approach is cost-effective over individual exercise therapy

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Laurberg, Ida; Christensen, Finn B

    2008-01-01

    Recently, Christensen et al. reported the clinical effects of a low-cost rehabilitation program equally efficient to a relatively intensive program of individual, physiotherapist-guided exercise therapy. Yet, the low-cost approach is not fully supported as an optimal strategy until a full......-scale economic evaluation, including extra-hospital effects such as service utilization in the primary health care sector and return-to-work, is conducted. The objective of this study was to conduct such evaluation i.e. investigate the cost-effectiveness of (1) a low-cost rehabilitation regimen...... with a behavioural element and (2) a regimen of individual exercise therapy, both in comparison with usual practice, from a health economic, societal perspective. Study design was a cost-effectiveness evaluation of an RCT with a 2-year follow-up. Ninety patients having had posterolateral or circumferential fusion...

  9. The role of metacognition in prospective memory: anticipated task demands influence attention allocation strategies.

    Science.gov (United States)

    Rummel, Jan; Meiser, Thorsten

    2013-09-01

    The present study investigates how individuals distribute their attentional resources between a prospective memory task and an ongoing task. Therefore, metacognitive expectations about the attentional demands of the prospective-memory task were manipulated while the factual demands were held constant. In Experiments 1a and 1b, we found attentional costs from a prospective-memory task with low factual demands to be significantly reduced when information about the low to-be-expected demands were provided, while prospective-memory performance remained largely unaffected. In Experiment 2, attentional monitoring in a more demanding prospective-memory task also varied with information about the to-be-expected demands (high vs. low) and again there were no equivalent changes in prospective-memory performance. These findings suggest that attention-allocation strategies of prospective memory rely on metacognitive expectations about prospective-memory task demands. Furthermore, the results suggest that attentional monitoring is only functional for prospective memory to the extent to which anticipated task demands reflect objective task demands. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. The cost analysis of material handling in Chinese traditional praying paper production plant

    Science.gov (United States)

    Nasution, H.; Budiman, I.; Salim, A.

    2018-02-01

    Chinese traditional praying paper industry is an industry which produced Chinese traditional religion praying paper. This kind of industry is rarely examined since it was only in Small and Medium Enterprise (SME’s- form). This industry produced various kinds of Chinese traditional paper products. The purpose of this research is to increase the amount of production, reduce waiting time and moving time, and reduce material handling cost. The research was conducted at prime production activities, consists of: calculate the capacity of the material handler, the frequency of movement, cost of material handling, and total cost of material handling. This displacement condition leads to an ineffective and inefficient production process. The alternative was developed using production judgment and aisle standard. Based on the observation results, it is possible to reduce displacement in the production. Using alternative which by-passed displacement from a rolled paper in the temporary warehouse to cutting and printing workstation, it can reduce material handling cost from 2.26 million rupiahs to 2.00 million rupiahs only for each batch of production. This result leads to increasing of production quantity, reducing waiting and moving time about 10% from the current condition.

  11. Design of a low-cost hybrid powertrain with large fuel savings

    NARCIS (Netherlands)

    Berkel, van K.; Romers, L.H.J.; Vroemen, B.G.; Hofman, T.; Steinbuch, M.

    2010-01-01

    This paper presents a new design of a low-cost hybrid powertrain with large fuel savings. The hybrid powertrain contains only low-cost mechanical components, such as a flywheel module and a continuously variable transmission (CVT). Noelectrical motor/generator or battery is used. Based on

  12. Providing strong Security and high privacy in low-cost RFID networks

    DEFF Research Database (Denmark)

    David, Mathieu; Prasad, Neeli R.

    2009-01-01

    Since the dissemination of Radio Frequency IDentification (RFID) tags is getting larger and larger, the requirement for strong security and privacy is also increasing. Low-cost and ultra-low-cost tags are being implemented on everyday products, and their limited resources constraints the security...

  13. Characterization of viscoelastic materials for low-magnitude blast mitigation

    Science.gov (United States)

    Bartyczak, S.; Mock, W.

    2014-05-01

    Recent research indicates that exposure to low amplitude blast waves, such as IED detonation or multiple firings of a weapon, causes damage to brain tissue resulting in Traumatic Brain Injury (TBI) and Post Traumatic Stress Disorder (PTSD). Current combat helmets are not sufficiently protecting warfighters from this danger and the effects are debilitating, costly, and long-lasting. The objective of the present work is to evaluate the blast mitigating behavior of current helmet materials and new materials designed for blast mitigation using a test fixture recently developed at the Naval Surface Warfare Center Dahlgren Division for use with an existing gas gun. The 40-mm-bore gas gun was used as a shock tube to generate blast waves (ranging from 0.5 to 2 bar) in the test fixture mounted on the gun muzzle. A fast opening valve was used to release helium gas from the breech which formed into a blast wave and impacted instrumented targets in the test fixture. Blast attenuation of selected materials was determined through the measurement of stress data in front of and behind the target. Materials evaluated in this research include polyurethane foam from currently fielded US Army and Marine Corps helmets, polyurea 1000, and three hardnesses of Sorbothane (48, 58, and 70 durometer, Shore 00). Polyurea 1000 and 6061-T6 aluminum were used to calibrate the stress gauges.

  14. R&D for Safety Codes and Standards: Materials and Components Compatibility

    Energy Technology Data Exchange (ETDEWEB)

    San Marchi, Christopher W. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2014-08-01

    A principal challenge to the widespread adoption of hydrogen infrastructure is the lack of quantifiable data on its safety envelope and concerns about additional risk from hydrogen. To convince regulatory officials, local fire marshals, fuel suppliers, and the public at large that hydrogen refueling is safe for consumer use, the risk to personnel and bystanders must be quantified and minimized to an acceptable level. Such a task requires strong confidence in the safety performance of high pressure hydrogen systems. Developing meaningful materials characterization and qualification methodologies in addition to enhancing understanding of performance of materials is critical to eliminating barriers to the development of safe, low-cost, high-performance high-pressure hydrogen systems for the consumer environment.

  15. Low-cost production of solar-cell panels

    Science.gov (United States)

    Bickler, D. B.; Gallagher, B. D.; Sanchez, L. E.

    1980-01-01

    Large-scale production model combines most modern manufacturing techniques to produce silicon-solar-cell panels of low costs by 1982. Model proposes facility capable of operating around the clock with annual production capacity of 20 W of solar cell panels.

  16. Sensorless control of low-cost single-phase hybrid switched reluctance motor drive

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Lu, Kaiyuan; Rasmussen, Peter Omand

    2013-01-01

    This paper presents a sensorless-controlled, low-cost, low-power, variable-speed drive system suitable for fan and pump applications. The main advantages of this drive system are the low system cost, simple converter structure, and simple but robust sensorless control technique. The drive motor...... is a special Hybrid Switched Reluctance Motor (HSRM). The proposed sensorless control method utilizes beneficially the stator side permanent magnet field and its performance is motor parameter independent. The unique low-cost drive system solution, simple and robust sensorless control features of this drive...

  17. Sensorless Control of Low-cost Single-phase Hybrid Switched Reluctance Motor Drive

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Lu, Kaiyuan; Rasmussen, Peter Omand

    2015-01-01

    This paper presents a sensorless-controlled, low-cost, low-power, and variable-speed drive system suitable for fan and pump applications. The main advantages of this drive system are the low system cost, simple converter structure, and simple but robust sensorless control technique. The drive motor...... is a special hybrid switched reluctance motor. The proposed sensorless control method beneficially utilizes the stator side PM field and its performance is motor parameter independent. The unique low-cost drive system solution, simple and robust sensorless control features of this drive system, is demonstrated...

  18. A Low-Cost Teaching Model of Inguinal Canal: A Useful Method to Teach Surgical Concepts in Hernia Repair

    Science.gov (United States)

    Ansaloni, Luca; Catena, Fausto; Coccolini, Frederico; Ceresoli, Marco; Pinna, Antonio Daniele

    2014-01-01

    Objectives: Inguinal canal anatomy and hernia repair is difficult for medical students and surgical residents to comprehend. Methods: Using low-cost material, a 3-dimensional inexpensive model of the inguinal canal was created to allow students to learn anatomical details and landmarks and to perform their own simulated hernia repair. In order to…

  19. Cost-effective and low-technology options for simulation and training in neonatology.

    Science.gov (United States)

    Bruno, Christie J; Glass, Kristen M

    2016-11-01

    The purpose of this review is to explore low-cost options for simulation and training in neonatology. Numerous cost-effective options exist for simulation and training in neonatology. Lower cost options are available for teaching clinical skills and procedural training in neonatal intubation, chest tube insertion, and pericardiocentesis, among others. Cost-effective, low-cost options for simulation-based education can be developed and shared in order to optimize the neonatal simulation training experience. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Advanced resin systems and 3D textile preforms for low cost composite structures

    Science.gov (United States)

    Shukla, J. G.; Bayha, T. D.

    1993-01-01

    Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.

  1. Analysis of the influence of advanced materials for aerospace products R and D and manufacturing cost

    International Nuclear Information System (INIS)

    Shen, A W; Guo, J L; Wang, Z J

    2015-01-01

    In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research and Development (R and D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R and D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable. (paper)

  2. Low Cost Night Vision System for Intruder Detection

    Science.gov (United States)

    Ng, Liang S.; Yusoff, Wan Azhar Wan; R, Dhinesh; Sak, J. S.

    2016-02-01

    The growth in production of Android devices has resulted in greater functionalities as well as lower costs. This has made previously more expensive systems such as night vision affordable for more businesses and end users. We designed and implemented robust and low cost night vision systems based on red-green-blue (RGB) colour histogram for a static camera as well as a camera on an unmanned aerial vehicle (UAV), using OpenCV library on Intel compatible notebook computers, running Ubuntu Linux operating system, with less than 8GB of RAM. They were tested against human intruders under low light conditions (indoor, outdoor, night time) and were shown to have successfully detected the intruders.

  3. IEA Wind Task 26. Wind Technology, Cost, and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States: 2007–2012

    Energy Technology Data Exchange (ETDEWEB)

    Vitina, Aisma [Ea Energy Analyses, Copenhagen (Denmark); Lüers, Silke [Deutsche WindGuard, Varel (Germany); Wallasch, Anna-Kathrin [Deutsche WindGuard, Varel (Germany); Berkhout, Volker [Fraunhofer IWES, Kassel (Germany); Duffy, Aidan [Dublin Inst. of Technology and Dublin Energy Lab. (Ireland); Cleary, Brendan [Dublin Inst. of Technology and Dublin Energy Lab. (Ireland); Husabø, Lief I. [Norwegian Water Resources and Energy Directorate (NVE), Oslo (Norway); Weir, David E. [Norwegian Water Resources and Energy Directorate (NVE), Oslo (Norway); Lacal-Arántegui, Roberto [European Commission, Ispra (Italy). Joint Research Centre; Hand, Maureen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Belyeu, Kathy [Belyeu Consulting, Takoma Park, MD (United States); Wiser, Ryan H [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-01

    The International Energy Agency Implementing Agreement for cooperation in Research, Development, and Deployment of Wind Energy Systems (IEA Wind) Task 26—The Cost of Wind Energy represents an international collaboration dedicated to exploring past, present and future cost of wind energy. This report provides an overview of recent trends in wind plant technology, cost, and performance in those countries that are currently represented by participating organizations in IEA Wind Task 26: Denmark, Germany, Ireland, Norway, and the United States as well as the European Union.

  4. Mars Relay Satellite: Key to Enabling Low-Cost Exploration Missions

    Science.gov (United States)

    Hastrup, R.; Cesarone, R.; Miller, A.

    1993-01-01

    Recently, there has been increasing evidence of a renewed focus on Mars exploration both by NASA and the international community. The thrust of this renewed interest appears to be manifesting itself in numerous low-cost missions employing small, light weight elements, which utilize advanced technologies including integrated microelectronics. A formidable problem facing these low-cost missions is communications with Earth. Providing adequate direct-link performance has very significant impacts on spacecraft power, pointing, mass and overall complexity. Additionally, for elements at or near the surface of Mars, there are serious connectivity constraints, especially at higher latitudes, which lose view of Earth for up to many months at a time. This paper will discuss the role a Mars relay satellite can play in enabling and enhancing low-cost missions to Mars...

  5. A low-cost, high-resolution, video-rate imaging optical radar

    Energy Technology Data Exchange (ETDEWEB)

    Sackos, J.T.; Nellums, R.O.; Lebien, S.M.; Diegert, C.F. [Sandia National Labs., Albuquerque, NM (United States); Grantham, J.W.; Monson, T. [Air Force Research Lab., Eglin AFB, FL (United States)

    1998-04-01

    Sandia National Laboratories has developed a unique type of portable low-cost range imaging optical radar (laser radar or LADAR). This innovative sensor is comprised of an active floodlight scene illuminator and an image intensified CCD camera receiver. It is a solid-state device (no moving parts) that offers significant size, performance, reliability, and simplicity advantages over other types of 3-D imaging sensors. This unique flash LADAR is based on low cost, commercially available hardware, and is well suited for many government and commercial uses. This paper presents an update of Sandia`s development of the Scannerless Range Imager technology and applications, and discusses the progress that has been made in evolving the sensor into a compact, low, cost, high-resolution, video rate Laser Dynamic Range Imager.

  6. Thermal efficiency of low cost solar collectors - CSBC; Eficiencia termica de coletores solares de baixo custo - CSBC

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Renato C.; Shiota, Robson T.; Mello, Samuel F.; Assis Junior, Valdir; Bartoli, Julio R. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica. Dept. de Tecnologia de Polimeros

    2006-07-01

    The thermal performance of a low cost flat panel solar collector was measured. This Low Cost Solar Collector is a novel concept for water heating using only thermoplastics materials, used on building: ceiling and tubes made of unplasticized PVC, but without transparent cover. The top side of the UPVC panel was black painted to be the solar radiation absorber surface. Prototypes were installed on two charity houses around Campinas and at the FEQ campus, being used without any trouble for one year. The thermal efficiency analysis followed ABNT NBR 10184 standard at the Green-Solar Laboratory, Brazilian Centre for Development of Solar Thermal Energy, PUC-Minas. It was measured a thermal efficiency of 67%, compared to the 75% usually found on conventional solar collectors made of copper tubes and with glass cover. (author)

  7. Continuous roll-to-roll a-Si photovoltaic manufacturing technology. Final subcontract report, 1 April 1992--30 September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Izu, M. [Energy Conversion Devices, Inc., Troy, MI (US)

    1996-02-01

    ECD has made important progress in the development of materials, device designs, and manufacturing processes required for the continued advancement of practical photovoltaic technology{sub 1-23}. ECD has pioneered and continues further development of two key proprietary technologies, with significant potential for achieving the cost goals necessary for widespread growth of the photovoltaic market: (1) a low cost, roll-to- roll continuous substrate thin-film solar cell manufacturing process; (2) a high efficiency, monolithic, multiple-junction, spectrum- splitting thin-film amorphous silicon alloy device structure. Commercial production of multiple-junction a-Si alloy modules has been underway at ECD and its joint venture company for a number of years using ECD's proprietary roll-to-roll process and numerous advantages of this technology have been demonstrated. These include relatively low semiconductor material cost, relatively low process cost, a light-weight, rugged and flexible substrate that results in lowered installed costs of PV systems, and environmentally safe materials. Nevertheless, the manufacturing cost per watt of PV modules from our current plant remains high. In order to achieve high stable efficiency and low manufacturing cost, ECD has, at ECD's expense, engineered and constructed a 2 MW production line and a 200 kW pilot line, incorporating earlier ECD research advances in device efficiency through the use of multi-junction spectrum-splitting and high performance back-reflector cell design. Under this subcontract six tasks were directed towards achieving this goal. They are: Task I: Optimization of back-reflector system; Task II: Optimization of the Si-Ge narrow bandgap solar cells; Task III: Optimization of the stable efficiency of photovoltaic modules; Task IV: Demonstration of serpentine web continuous roll-to-roll deposition technology; Task V: Material cost reductions; and Task VI: Improving the module assembly process.

  8. A Low-Cost, High-Precision Navigator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Toyon Research Corporation proposes to develop and demonstrate a prototype low-cost precision navigation system using commercial-grade gyroscopes and accelerometers....

  9. Low-cost amplifier for alpha detection with photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Domienikan, Cláudio; Costa, Priscila; Genezini, Frederico A.; Zahn, Guilherme S., E-mail: clanikan@ipen.br, E-mail: pcosta@ipen.br, E-mail: fredzini@ipen.br, E-mail: gzahn@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    A low-cost amplifier for Hamamatsu S3590-09 PIN photodiode to be used in alpha detection is presented. This amplifier consists basically of two circuits: a pulse preamplifier and a shaper-driver. The PIN photodiode is reverse-biased and connected to a charge preamplifier input. Incident alpha particles generate a small current pulse in the photodiode. The integrating circuit of the low noise preamplifier transforms current pulse into a voltage pulse with amplitude proportional to the charge carried by the current pulse. The shaper-driver consists of a differentiator and an integrator and is responsible for filtering and further amplifying the preamplifier signal, generating a NIM-compatible energy pulse. The performance of the set photodiode-amplifier was successively tested through the use of a {sup 243}Am radioactive source. The low-cost photodiode amplifier was designed and constructed at IPEN - CNEN/SP using national components and expertise. (author)

  10. Adsorption properties of regenerative materials for removal of low concentration of toluene.

    Science.gov (United States)

    Xie, Zhen-Zhen; Wang, Lin; Cheng, Ge; Shi, Lei; Zhang, Yi-Bo

    2016-12-01

    A specific type of material, activated carbon fiber (ACF), was modified by SiO 2 , and the final products ACF-x were obtained as ACF-12.5, ACF-20, ACF-40, and ACF-80 according to different dosages of tetraethoxysilane (TEOS). The modified material on the ACF surface had a significant and smooth cover layer with low content of silica from scanning electron microscope (SEM) image. The modified ACF-x showed the stronger hydrophobicity, thermal stability, and adsorption capacity, which had almost no effect in the presence of water vapor and no destruction in multiple cycles. ACF-20 was proven as the most efficient adsorbent in humid conditions. The dual-function system composed of the regenerative adsorbents and the combustion catalyst would be efficient in consecutive toluene adsorption/oxidation cycles, in which the combustion catalyst was prepared by the displacement reaction of H 2 PtCl 6 with foam Ni. Therefore, the adsorption/catalytic oxidation could be a promising technique in the indoor air purification, especially in the case of very low volatile organic compound (VOC; toluene) concentration levels. Exploring highly effective adsorptive materials with less expensive costs becomes an urgent issue in the indoor air protection. ACF-20 modified by SiO 2 with Pt/Ni catalysts shows stronger hydrophobicity, thermal stability, and adsorption capacity. This dual-function system composed of the regenerative materials and the combustion catalyst would be a promising technique in the indoor air purification, especially in the case of removal of very low concentration of toluene.

  11. Objectives, Budgets, Thresholds, and Opportunity Costs-A Health Economics Approach: An ISPOR Special Task Force Report [4].

    Science.gov (United States)

    Danzon, Patricia M; Drummond, Michael F; Towse, Adrian; Pauly, Mark V

    2018-02-01

    The fourth section of our Special Task Force report focuses on a health plan or payer's technology adoption or reimbursement decision, given the array of technologies, on the basis of their different values and costs. We discuss the role of budgets, thresholds, opportunity costs, and affordability in making decisions. First, we discuss the use of budgets and thresholds in private and public health plans, their interdependence, and connection to opportunity cost. Essentially, each payer should adopt a decision rule about what is good value for money given their budget; consistent use of a cost-per-quality-adjusted life-year threshold will ensure the maximum health gain for the budget. In the United States, different public and private insurance programs could use different thresholds, reflecting the differing generosity of their budgets and implying different levels of access to technologies. In addition, different insurance plans could consider different additional elements to the quality-adjusted life-year metric discussed elsewhere in our Special Task Force report. We then define affordability and discuss approaches to deal with it, including consideration of disinvestment and related adjustment costs, the impact of delaying new technologies, and comparative cost effectiveness of technologies. Over time, the availability of new technologies may increase the amount that populations want to spend on health care. We then discuss potential modifiers to thresholds, including uncertainty about the evidence used in the decision-making process. This article concludes by discussing the application of these concepts in the context of the pluralistic US health care system, as well as the "excess burden" of tax-financed public programs versus private programs. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  12. Bench scale testing - Phase I, Task 4. Topical progress report, September 1994--January 1995

    International Nuclear Information System (INIS)

    1995-07-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment

  13. A Low-Cost Part-Task Flight Training System: An Application of a Head Mounted Display

    Science.gov (United States)

    1990-12-01

    architecture. The task at hand was to develop a software emulation libary that would emulate the function calls used within the Flight and Dog programs. This...represented in two hexadecimal digits for each color. The format of the packed long integer looks like aaggbbrr with each color value representing a...Western Digital ethernet card as the cheapest compatible card available. Good fortune arrived, as I was calling to order the card, I saw an unused card

  14. A low-cost MRI compatible keyboard

    DEFF Research Database (Denmark)

    Jensen, Martin Snejbjerg; Heggli, Ole Adrian; Alves da Mota, Patricia

    2017-01-01

    , presenting a challenging environment for playing an instrument. Here, we present an MRI-compatible polyphonic keyboard with a materials cost of 850 $, designed and tested for safe use in 3T (three Tesla) MRI-scanners. We describe design considerations, and prior work in the field. In addition, we provide...... recommendations for future designs and comment on the possibility of using the keyboard in magnetoencephalography (MEG) systems. Preliminary results indicate a comfortable playing experience with no disturbance of the imaging process....

  15. Effects of material and non-material rewards on remembering to do things for others

    Directory of Open Access Journals (Sweden)

    Maria A. Brandimonte

    2015-12-01

    Full Text Available Recent research has shown that pro-social prospective memory, i.e., remembering to do something for others, is negatively affected by the presence of small material rewards. While this competition between pro-social and self-gain motives leads to poor memory for the intention, people do not seem to be aware of the possible collision effects of competing motives (Brandimonte, Ferrante, Bianco, & Villani, 2010. Extending research on this general topic, in two activity-based prospective memory experiments, we explored the effects of different types and amount of rewards on pro-social prospective remembering. In Experiment 1, participants could receive no reward, a low material reward (1 euro, or a high material reward (20 euro for their pro-social prospective memory action. In Experiment 2, their pro-social prospective memory performance could be rewarded or not with an image reward (publicity of their altruistic behavior. Results revealed that introducing a small material reward (Experiment 1 or a non-material reward (Experiment 2 impaired pro-social prospective memory. However, introducing a high material reward eliminated the impairment (Experiment 1. Importantly, in Experiment 1, ongoing task performance in the pro-social condition was faster than in the No PM condition. However, in Experiment 2, ongoing task costs emerged in the presence of a non-material reward, as compared to the pro-social condition. Also, results from two independent ratings showed that people’s predictions on their future pro-social actions were at odds (Experiment 1 or in line (Experiment 2 with actual PM performance. It is suggested that, according to the nature and amount of rewards, memory for a pro-social future action may be modulated by conscious or unconscious motivational mechanisms.

  16. Evaluation of selected chemical processes for production of low-cost silicon phase 2. silicon material task, low-cost silicon solar array project

    Science.gov (United States)

    Blocher, J. M., Jr.; Browning, M. F.; Rose, E. E.; Thompson, W. B.; Schmitt, W. A.; Fippin, J. S.; Kidd, R. W.; Liu, C. Y.; Kerbler, P. S.; Ackley, W. R.

    1978-01-01

    Progress from October 1, 1977, through December 31, 1977, is reported in the design of the 50 MT/year experimental facility for the preparation of high purity silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles to form a free flowing granular product.

  17. Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ramsden, T.

    2013-04-01

    This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

  18. In search of low cost biological analysis: Wax or acrylic glue bonded paper microfluidic devices

    KAUST Repository

    Kodzius, Rimantas; Gong, Xiuqing; Li, Shunbo; Qin, Jianhua; Wen, Weijia; Wu, Jinbo; Xiao, Kang; Yi, Xin

    2011-01-01

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax or cyanoacrylate-based resin as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes. The hot-melt adhesive wax or simple cyanoacrylate-based resin can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate film, glass sheets, or metal plate. The wax bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by evacuating the channels of adhesive material in a hot-water. We applied the wax-paper based microfluidic chip to HeLa cell electroporation. Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein recombinant E. coli bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration. The chip bonded with cyanoacrylate-based resin was tested by measuring protein concentration and carrying out DNA capillary electrophoresis. To study the biocompatibility and applicability of our microfluidic chip fabrication technology, we tested the PCR compatibility of our chip materials along with various other common materials employed in the fabrication of microfluidic chips including: silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives, etc. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most of the cases, addition of bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components

  19. Performance-based training: from job and task analysis to training materials

    International Nuclear Information System (INIS)

    Davis, L.T.; Spinney, R.W.

    1983-01-01

    Historically, the smoke filled room approach has been used to revise training programs: instructors would sit down and design a program based on existing training materials and any federal requirements that applied. This failure to reflect a systematic definition of required job functions, responsibilities and performance standards in training programs has resulted in generic program deficiencies: they do not provide complete training of required skills and knowledge. Recognition of this need for change, coupled with a decrease in experienced industry personnel inputs and long training pipelines, has heightened the need for efficient performance-based training programs which are derived from and referenced to job performance criteria. This paper presents the process for developing performance-based training materials based on job and task analysis products

  20. Final Project Report for DOE/EERE High-Capacity and Low-Cost Hydrogen-Storage Sorbents for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hong-Cai [Texas A & M Univ., College Station, TX (United States); Liu, Di-Jia [Texas A & M Univ., College Station, TX (United States)

    2017-12-01

    This report provides a review of the objectives, progress, and milestones of the research conducted during this project on the topic of developing innovative metal-organic frameworks (MOFs) and porous organic polymers (POPs) for high-capacity and low-cost hydrogen-storage sorbents in automotive applications.1 The objectives of the proposed research were to develop new materials as next-generation hydrogen storage sorbents that meet or exceed DOE’s 2017 performance targets of gravimetric capacity of 0.055 kg H2/kgsystem and volumetric capacity of 0.040 kg H2/Lsystem at a cost of $400/kg H2 stored. Texas A&M University (TAMU) and Argonne National Laboratory (ANL) collaborated in developing low-cost and high-capacity hydrogen-storage sorbents with appropriate stability, sorption kinetics, and thermal conductivity. The research scope and methods developed to achieve the project’s goals include the following: Advanced ligand design and synthesis to construct MOF sorbents with optimal hydrogen storage capacities, low cost and high stability; Substantially improve the hydrogen uptake capacity and chemical stability of MOF-based sorbents by incorporating high valent metal ions during synthesis or through the post-synthetic metal metathesis oxidation approach; Enhance sorbent storage capacity through material engineering and characterization; Generate a better understanding of the H2-sorbent interaction through advanced characterization and simulation. Over the course of the project 5 different MOFs were developed and studied: PCN-250, PCN-12, PCN-12’, PCN-608 and PCN-609.2-3 Two different samples were submitted to the National Renewable Energy Laboratory (NREL) in order to validate their hydrogen adsorption capacity, PCN-250 and PCN-12. Neither of these samples reached the project’s Go/No-Go requirements but the data obtained did further prove the hypothesis that the presence of open metal

  1. Use of low-cost aluminum in electric energy production

    Science.gov (United States)

    Zhuk, Andrey Z.; Sheindlin, Alexander E.; Kleymenov, Boris V.; Shkolnikov, Eugene I.; Lopatin, Marat Yu.

    Suppression of the parasitic corrosion while maintaining the electrochemical activity of the anode metal is one of the serious problems that affects the energy efficiency of aluminum-air batteries. The need to use high-purity aluminum or special aluminum-based alloys results in a significant increase in the cost of the anode, and thus an increase in the total cost of energy generated by the aluminum-air battery, which narrows the range of possible applications for this type of power source. This study considers the process of parasitic corrosion as a method for hydrogen production. Hydrogen produced in an aluminum-air battery by this way may be further employed in a hydrogen-air fuel cell (Hy-air FC) or in a heat engine, or it may be burnt to generate heat. Therefore, anode materials may be provided by commercially pure aluminum, commercially produced aluminum alloys, and secondary aluminum. These materials are much cheaper and more readily available than special anode alloys of aluminum and high-purity aluminum. The aim of present study is to obtain experimental data for comparison of energy and cost parameters of some commercially produced aluminum alloys, of high-purity aluminum, and of a special Al-ln anode alloy in the context of using these materials as anodes for an Al-air battery and for combined production of electrical power and hydrogen.

  2. Low Cost Multi-Sensor Robot Laser Scanning System and its Accuracy Investigations for Indoor Mapping Application

    Science.gov (United States)

    Chen, C.; Zou, X.; Tian, M.; Li, J.; Wu, W.; Song, Y.; Dai, W.; Yang, B.

    2017-11-01

    In order to solve the automation of 3D indoor mapping task, a low cost multi-sensor robot laser scanning system is proposed in this paper. The multiple-sensor robot laser scanning system includes a panorama camera, a laser scanner, and an inertial measurement unit and etc., which are calibrated and synchronized together to achieve simultaneously collection of 3D indoor data. Experiments are undertaken in a typical indoor scene and the data generated by the proposed system are compared with ground truth data collected by a TLS scanner showing an accuracy of 99.2% below 0.25 meter, which explains the applicability and precision of the system in indoor mapping applications.

  3. A robust two-way switching control system for remote piloting and stabilization of low-cost quadrotor UAVs

    Science.gov (United States)

    Ripamonti, Francesco; Resta, Ferruccio; Vivani, Andrea

    2015-04-01

    The aim of this paper is to present two control logics and an attitude estimator for UAV stabilization and remote piloting, that are as robust as possible to physical parameters variation and to other external disturbances. Moreover, they need to be implemented on low-cost micro-controllers, in order to be attractive for commercial drones. As an example, possible applications of the two switching control logics could be area surveillance and facial recognition by means of a camera mounted on the drone: the high computational speed logic is used to reach the target, when the high-stability one is activated, in order to complete the recognition tasks.

  4. Long-term heavy marijuana users make costly decisions on a gambling task.

    Science.gov (United States)

    Whitlow, Christopher T; Liguori, Anthony; Livengood, L Brooke; Hart, Stephanie L; Mussat-Whitlow, Becky J; Lamborn, Corey M; Laurienti, Paul J; Porrino, Linda J

    2004-10-05

    Chronic marijuana use has been associated with impairments of learning, memory, and executive functions. Little is known, however, about the effects of marijuana use on other cognitive domains, such as decision-making, which are thought to play an important role in addiction and drug abuse. The purpose of the present study was to determine if long-term heavy marijuana users employ different decision-making strategies than individuals with minimal marijuana exposure. Volunteers were assigned to a cannabis (n = 10) or control group (n = 10) based upon history of prior marijuana use. Demographic and neuropsychological variables were evaluated, and a decision-making task--the gambling task (GT) was administered. Although few demographic and neuropsychological differences were noted between groups, marijuana users made more decisions that led to larger immediate gains despite more costly losses than controls. These data suggest that long-term heavy marijuana users may have specific deficits in the ability to balance rewards and punishments that may contribute to continued drug-taking behavior. It is unknown, however, whether the basis for such deficits might be attributed directly to marijuana exposure or pre-existing genetic or behavioral differences.

  5. Cost-analysis of an oral health outreach program for preschool children in a low socioeconomic multicultural area in Sweden

    DEFF Research Database (Denmark)

    Wennhall, Inger; Norlund, Anders; Matsson, Lars

    2010-01-01

    to a comprehensive oral health outreach project for preschool children conducted in a low-socioeconomic multi-cultural urban area. The outcome was compared with historical controls from the same area with conventional dental care. The cost per minute for the various dental professions was added to the cost......The aim was to calculate the total and the net costs per child included in a 3-year caries preventive program for preschool children and to make estimates of expected lowest and highest costs in a sensitivity analysis. The direct costs for prevention and dental care were applied retrospectively...... of materials, rental facilities and equipment based on accounting data. The cost for fillings was extracted from a specified per diem list. Overhead costs were assumed to correspond to 50% of salaries and all costs were calculated as net present value per participating child in the program and expressed...

  6. Research and development of system to utilize photovoltaic energy. Survey on the high-durability and low-cost materials for constructing the solar-cell module and its structure; Taiyoko hatsuden riyo system no kenkyu. Taiyo denchi module yo kotaikyusei tei cost zairyo, kozo ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the results obtained during fiscal 1994 on a survey on the high-durability and low-cost materials for constructing the solar-cell module and on its structure. With respect to forms and materials used in the present solar-cell modules, identification was made on the current status of products commercially available and developed inside and outside Japan. Main types of solar cells used for electric power are of crystal-based silicon. Amorphous silicon and CdS-CdTe are used for consumer applications of indoor and outdoor use. As regards transparent resin materials, fluorine resin, PET, acryl, and polyimide are used as surface materials, and EVA, silicon and PVB are often used as fillers. Developments inside and outside Japan are limited to systems of polycarbonate, methacryl, fluorine, polyurethane, acryl and polyester. Butyl rubber and polyurethane are used as sealing materials. Developments are being performed on silicon rubber, polychloroprene rubber and EPT rubber for shaped materials, and silicon systems, urethane systems and polysulfide systems for non-shaped materials. 3 figs., 8 tabs.

  7. A low cost, high precision extreme/harsh cold environment, autonomous sensor data gathering and transmission platform.

    Science.gov (United States)

    Chetty, S.; Field, L. A.

    2014-12-01

    SWIMS III, is a low cost, autonomous sensor data gathering platform developed specifically for extreme/harsh cold environments. Arctic ocean's continuing decrease of summer-time ice is related to rapidly diminishing multi-year ice due to the effects of climate change. Ice911 Research aims to develop environmentally inert materials that when deployed will increase the albedo, enabling the formation and/preservation of multi-year ice. SWIMS III's sophisticated autonomous sensors are designed to measure the albedo, weather, water temperature and other environmental parameters. This platform uses low cost, high accuracy/precision sensors, extreme environment command and data handling computer system using satellite and terrestrial wireless solution. The system also incorporates tilt sensors and sonar based ice thickness sensors. The system is light weight and can be deployed by hand by a single person. This presentation covers the technical, and design challenges in developing and deploying these platforms.

  8. Dopamine antagonism decreases willingness to expend physical, but not cognitive, effort: a comparison of two rodent cost/benefit decision-making tasks.

    Science.gov (United States)

    Hosking, Jay G; Floresco, Stan B; Winstanley, Catharine A

    2015-03-01

    Successful decision making often requires weighing a given option's costs against its associated benefits, an ability that appears perturbed in virtually every severe mental illness. Animal models of such cost/benefit decision making overwhelmingly implicate mesolimbic dopamine in our willingness to exert effort for a larger reward. Until recently, however, animal models have invariably manipulated the degree of physical effort, whereas human studies of effort have primarily relied on cognitive costs. Dopamine's relationship to cognitive effort has not been directly examined, nor has the relationship between individuals' willingness to expend mental versus physical effort. It is therefore unclear whether willingness to work hard in one domain corresponds to willingness in the other. Here we utilize a rat cognitive effort task (rCET), wherein animals can choose to allocate greater visuospatial attention for a greater reward, and a previously established physical effort-discounting task (EDT) to examine dopaminergic and noradrenergic contributions to effort. The dopamine antagonists eticlopride and SCH23390 each decreased willingness to exert physical effort on the EDT; these drugs had no effect on willingness to exert mental effort for the rCET. Preference for the high effort option correlated across the two tasks, although this effect was transient. These results suggest that dopamine is only minimally involved in cost/benefit decision making with cognitive effort costs. The constructs of mental and physical effort may therefore comprise overlapping, but distinct, circuitry, and therapeutic interventions that prove efficacious in one effort domain may not be beneficial in another.

  9. Designer's unified cost model

    Science.gov (United States)

    Freeman, William T.; Ilcewicz, L. B.; Swanson, G. D.; Gutowski, T.

    1992-01-01

    A conceptual and preliminary designers' cost prediction model has been initiated. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state of the art preliminary design tools and computer aided design programs is being evaluated. The goal of this task is to establish theoretical cost functions that relate geometric design features to summed material cost and labor content in terms of process mechanics and physics. The output of the designers' present analytical tools will be input for the designers' cost prediction model to provide the designer with a data base and deterministic cost methodology that allows one to trade and synthesize designs with both cost and weight as objective functions for optimization. The approach, goals, plans, and progress is presented for development of COSTADE (Cost Optimization Software for Transport Aircraft Design Evaluation).

  10. Producing optical (contact) lenses by a novel low cost process

    Science.gov (United States)

    Skipper, Richard S.; Spencer, Ian D.

    2005-09-01

    The rapid and impressive growth of China has been achieved on the back of highly labour intensive industries, often in manufacturing, and at the cost of companies and jobs in Europe and America. Approaches that worked well in the 1990's to reduce production costs in the developed countries are no longer effective when confronted with the low labour costs of China and India. We have looked at contact lenses as a product that has become highly available to consumers here but as an industry that has reduced costs by moving to low labour cost countries. The question to be answered was, "Do we have the skill to still make the product in the UK, and can we make it cheap enough to export to China?" if we do not, then contact lens manufacture will move to China sooner or later. The challenge to enter the markets of the BRIC (Brazil, Russia, India and China) countries is extremely exciting as here is the new money, high growth and here is a product that sells to those with disposable incomes. To succeed we knew we had to be radical in our approach; the radical step was very simple: to devise a process in which each step added value to the customer and not cost to the product. The presentation examines the processes used by the major producers and how, by applying good manufacturing practice sound scientific principles to them, the opportunity to design a new low cost patented process was identified.

  11. New junctionless RADFET dosimeter design for low-cost radiation monitoring applications

    International Nuclear Information System (INIS)

    Arar, Djemai; Djeffal, Faycal; Bentrcia, Toufik; Chahdi, Mohamed

    2014-01-01

    This paper is devoted to the presentation of a quantitative analysis of the Junctionless Gate All Around RADFET (JL GAA RADFET) dosimeter, where the numerical simulation has been carried out using the Atlas 3-D simulator. The impact of the total dose, alternative gate materials and the channel doping on the threshold voltage of the JL GAA RADFET is addressed. The obtained results have indicated a significant improvement in the subthreshold parameters when compared to the conventional GAA RADFET dosimeter. Therefore, the implementation of junctionless-based sensors in the near future can provide more accurate results with low costs, in addition to alleviating many difficulties in the measurement procedure. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. New junctionless RADFET dosimeter design for low-cost radiation monitoring applications

    Energy Technology Data Exchange (ETDEWEB)

    Arar, Djemai; Djeffal, Faycal [Department of Electronics, University of Batna, Batna 05000 (Algeria); Bentrcia, Toufik; Chahdi, Mohamed [Department of Physics, University of Batna, Batna 05000 (Algeria)

    2014-01-15

    This paper is devoted to the presentation of a quantitative analysis of the Junctionless Gate All Around RADFET (JL GAA RADFET) dosimeter, where the numerical simulation has been carried out using the Atlas 3-D simulator. The impact of the total dose, alternative gate materials and the channel doping on the threshold voltage of the JL GAA RADFET is addressed. The obtained results have indicated a significant improvement in the subthreshold parameters when compared to the conventional GAA RADFET dosimeter. Therefore, the implementation of junctionless-based sensors in the near future can provide more accurate results with low costs, in addition to alleviating many difficulties in the measurement procedure. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Low-back and shoulder complaints among workers with pushing and pulling tasks

    NARCIS (Netherlands)

    Hoozemans, Marco J. M.; van der Beek, Allard J.; Fring-Dresen, Monique H. W.; van der Woude, Luc H. V.; van Dijk, Frank J. H.

    2002-01-01

    Objectives Low-back and shoulder complaints were examined in relation to self-reported and objectively assessed exposure to work-related pushing and pulling. Methods Workers from several companies (eg, nursing homes and flower auctions) with pushing and pulling tasks and, as reference, workers

  14. Low-cost wireless voltage & current grid monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hines, Jacqueline [SenSanna Inc., Arnold, MD (United States)

    2016-12-31

    This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distribution grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.

  15. A Low Cost Single Chip VDL Compatible Transceiver ASIC

    Science.gov (United States)

    Becker, Robert

    2004-01-01

    Recent trends in commercial communications system components have focussed almost exclusively on cellular telephone technology. As many of the traditional sources of receiver components have discontinued non-cellular telephone products, the designers of avionics and other low volume radio applications find themselves increasingly unable to find highly integrated components. This is particularly true for low power, low cost applications which cannot afford the lavish current consumption of the software defined radio approach increasingly taken by certified device manufacturers. In this paper, we describe a low power transceiver chip targeting applications from low VHF to low UHF frequencies typical of avionics systems. The chip encompasses a selectable single or double conversion design for the receiver and a low power IF upconversion transmitter. All local oscillators are synthesized and integrated into the chip. An on-chip I-Q modulator and demodulator provide baseband modulation and demodulation capability allowing the use of low power, fixed point signal processing components for signal demodulation. The goal of this program is to demonstrate a low cost VDL mode-3 transceiver using this chip to receive text weather information sent using 4-slot TDMA with no support for voice. The data will be sent from an experimental ground station. This work is funded by NASA Glenn Research Center.

  16. Development of Manufacturing Technology to Accelerate Cost Reduction of Low Concentration and

    Energy Technology Data Exchange (ETDEWEB)

    Detrick, Adam [The Solaria Corporation, Fremont, CA (United States)

    2017-09-27

    The purpose of this project was to accelerate deployment of cost-effective US-based manufacturing of Solaria’s unique c-Si module technology. This effort successfully resulted in the development of US-based manufacturing technology to support two highly-differentiated, market leading product platforms. The project was initially predicated on developing Solaria’s low-concentration PV (LCPV) module technology which at the time of the award was uniquely positioned to exceed the SunShot price goal of $0.50/Wp for standard c-Si modules. The Solaria LCPV module is a 2.5x concentrator that leverages proven, high-reliability PV module materials and low silicon cell usage into a technology package that already had the lowest direct material cost and leading Levelized Cost of Electricity (LCOE). With over 25 MW commercially deployed globally, the Solaria module was well positioned to continue to lead in PV module cost reduction. Throughout the term of the contract, market conditions changed dramatically and so to did Solaria’s product offerings to support this. However, the manufacturing technology developed for the LCPV module was successfully leveraged and optimized to support two new and different product platforms. BIPV “PowerVision” and High-efficiency “PowerXT” modules. The primary barrier to enabling high-volume PV module manufacturing in the US is the high manual labor component in certain unique aspects of our manufacturing process. The funding was used to develop unique manufacturing automation which makes the manual labor components of these key processes more efficient and increase throughput. At the core of Solaria’s product offerings are its unique and proprietary techniques for dicing and re-arranging solar cells into modules with highly-differentiated characteristics that address key gaps in the c-Si market. It is these techniques that were successfully evolved and deployed into US-based manufacturing site with SunShot funding. Today, Solaria

  17. Prosthetic design directives: Low-cost hands within reach.

    Science.gov (United States)

    Jones, G K; Rosendo, A; Stopforth, R

    2017-07-01

    Although three million people around the world suffer from the lack of one or both upper limbs 80% of this number is located within developing countries. While prosthetic prices soar with technology 3D printing and low cost electronics present a sensible solution for those that cannot afford expensive prosthetics. The electronic and control design of a low-cost prosthetic hand, the Touch Hand II, is discussed. This paper shows that sensorless techniques can be used to reduce design complexities, costs, and provide easier access to the electronics. A closing and opening finite state machine (COFSM) was developed to handle the actuated digit joint control state and a supervisory switching control scheme, used for speed and grip strength control. Three torque and speed settings were created to be preset for specific grasps. The hand was able to replicate ten frequently used grasps and grip some common objects. Future work is necessary to enable a user to control it with myoelectric signals (MESs) and to solve operational problems related to electromagnetic interference (EMI).

  18. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    International Nuclear Information System (INIS)

    Kumpová, I.; Jandejsek, I.; Jakůbek, J.; Vopálenský, M.; Vavřík, D.; Fíla, T.; Koudelka, P.; Kytýř, D.; Zlámal, P.; Gantar, A.

    2016-01-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical

  19. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    Science.gov (United States)

    Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.

    2016-02-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.

  20. Aiding operator performance at low power feedwater control

    International Nuclear Information System (INIS)

    Woods, D.D.

    1986-01-01

    Control of the feedwater system during low power operations (approximately 2% to 30% power) is a difficult task where poor performance (excessive trips) has a high cost to utilities. This paper describes several efforts in the human factors aspects of this task that are underway to improve feedwater control. A variety of knowledge acquisition techniques have been used to understand the details of what makes feedwater control at low power difficult and what knowledge and skill distinguishes expert operators at this task from less experienced ones. The results indicate that there are multiple factors that contribute to task difficulty