WorldWideScience

Sample records for material hypergravity exposure

  1. Reduction of the elevator illusion from continued hypergravity exposure and visual error-corrective feedback

    Science.gov (United States)

    Welch, R. B.; Cohen, M. M.; DeRoshia, C. W.

    1996-01-01

    Ten subjects served as their own controls in two conditions of continuous, centrifugally produced hypergravity (+2 Gz) and a 1-G control condition. Before and after exposure, open-loop measures were obtained of (1) motor control, (2) visual localization, and (3) hand-eye coordination. During exposure in the visual feedback/hypergravity condition, subjects received terminal visual error-corrective feedback from their target pointing, and in the no-visual feedback/hypergravity condition they pointed open loop. As expected, the motor control measures for both experimental conditions revealed very short lived underreaching (the muscle-loading effect) at the outset of hypergravity and an equally transient negative aftereffect on returning to 1 G. The substantial (approximately 17 degrees) initial elevator illusion experienced in both hypergravity conditions declined over the course of the exposure period, whether or not visual feedback was provided. This effect was tentatively attributed to habituation of the otoliths. Visual feedback produced a smaller additional decrement and a postexposure negative after-effect, possible evidence for visual recalibration. Surprisingly, the target-pointing error made during hypergravity in the no-visual-feedback condition was substantially less than that predicted by subjects' elevator illusion. This finding calls into question the neural outflow model as a complete explanation of this illusion.

  2. Neurobehavioural Effects of Hypergravity Exposure in CD-1 Mice

    Science.gov (United States)

    Santucci, Daniela; Francia, Nadia; Aloe, Luigi; Enrico, Alleva

    The effects of spaceflight on the nervous system physiology could have important implications for the prolonged stay outside Earth's gravitational field. In this view, both ground-based and space research using animal models represent useful tools to investigate the impact of gravity (hypergravity, microgravity and weightlessness) on the nervous system and behaviour. Data coming from these studies, besides acquisition of knowledge relevant for spaceflights and pro-longed permanence of both humans and animals in space, could provide insight into basic bio-logical phenomena underlying the plasticity of the nervous system and its adaptive responses to a changing environment. Most ground experiments employing animal models use the paradigm of hypergravity exposure with the expectation that behavioural and physiological reactions to this environment might help to explain reactions to the microgravity challenge faced by or-biting animals. An overview of ground-based experiments set up to investigate the effects of changes of gravitational environment on the neurobehavioural responses of CD-1 mouse will be reported, and will illustrate the short-, medium-and long-term behavioural and neurobiological consequences of hypergravity exposure both at adulthood and during early and late postnatal development. Moreover, since mother-pup interaction is critical for the survival and the devel-opment of neonatal rodents, especially in an extreme environment such as that of space, we characterized, exploiting ethological methods, changes in maternal behaviour of CD-1 outbred mouse dams exposed to mild hypergravity. The results of these experiments will be discussed.

  3. Effects of Short-term Hypergravity Exposure on Germination, Growth and Photosynthesis of Triticum aestivum L.

    Science.gov (United States)

    Vidyasagar, Pandit B.; Jagtap, Sagar S.; Dixit, Jyotsana P.; Kamble, Shailendra M.; Dhepe, Aarti P.

    2014-12-01

    Numerous studies have been carried out to investigate the hypergravity effect on plants, where seedlings (4-5 days old) were continuously exposed and grown under hypergravity condition. Here, we have used a novel `shortterm hypergravity exposure experimental method' where imbibed caryopses (instead of seedlings) were exposed to higher hypergravity values ranging from 500 g to 2500 g for a short interval time of 10 minutes and post short-term hypergravity treated caryopses were grown under 1 g conditions for five days. Changing patterns in caryopsis germination and growth, along with various photosynthetic and biochemical parameters were studied. Results revealed the significant inhibition of caryopsis germination and growth in short-term hypergravity treated seeds over control. Photosynthesis parameters such as chlorophyll content, rate of photosynthesis (PN), transpiration rate (Evap) and stomatal conductance (Gs), along with intracellular CO2 concentration (Cint) were found to be affected significantly in 5 days old seedlings exposed to short-term hypergravity treatment. In order to investigate the cause of observed inhibition, we examined the α-amylase activity and antioxidative enzyme activities. α-amylase activity was found to be inhibited, along with the reduction of sugars necessary for germination and earlier growth in short-term hypergravity treated caryopses. The activities of antioxidant enzymes such as catalase and guaiacol peroxidase were increased in short-term hypergravity treated caryopses, suggesting that caryopses might have experienced oxidative stress upon short-term hypergravity exposure.

  4. Effects of Short-Term Hypergravity Exposure are Reversible in Triticum aestivum L. Caryopses

    Science.gov (United States)

    Dixit, Jyotsana P.; Jagtap, Sagar S.; Kamble, Shailendra M.; Vidyasagar, Pandit B.

    2017-10-01

    Short-term hypergravity exposure is shown to retard seed germination, growth and photosynthesis in wheat caryopses. This study investigates the reversibility of effects of short-term hypergravity on imbibed wheat ( Triticum aestivum var L.) caryopses. After hypergravity exposure (500 × g - 2500 × g for 10 min) on a centrifuge, exposed caryopses were kept under normal gravity (1 × g) up to six days and then sown on agar. Results of the present study showed that percentage germination and growth were completely restored for DAY 6 compared to DAY 0. Restoration of germination and growth was accompanied by increased α-amylase activity. The specific activity of antioxidative enzyme viz. catalase and guaiacol peroxidase was lowered on DAY 6 compared to DAY 0 suggesting an alleviation of oxidative cellular damage against hypergravity stress. Chlorophyll pigment recovery along with chlorophyll fluorescence (PI and Fv/Fm) on DAY 6 indicates a transient rather than permanent damage of the photosynthetic apparatus. Thus, our findings demonstrate that short-term hypergravity effects are reversible in wheat caryopses. The metabolic cause of restoration of seed germination and growth upon transferring the caryopses to normal gravity is performed by a reactivation of carbohydrate- metabolizing enzymes, α-amylase and alleviation of oxidative stress damage with subsequent recovery of chlorophyll biosynthesis and photosynthetic activity.

  5. Human manual control performance in hyper-gravity.

    Science.gov (United States)

    Clark, Torin K; Newman, Michael C; Merfeld, Daniel M; Oman, Charles M; Young, Laurence R

    2015-05-01

    Hyper-gravity provides a unique environment to study how misperceptions impact control of orientation relative to gravity. Previous studies have found that static and dynamic roll tilts are perceptually overestimated in hyper-gravity. The current investigation quantifies how this influences control of orientation. We utilized a long-radius centrifuge to study manual control performance in hyper-gravity. In the dark, subjects were tasked with nulling out a pseudo-random roll disturbance on the cab of the centrifuge using a rotational hand controller to command their roll rate in order to remain perceptually upright. The task was performed in 1, 1.5, and 2 G's of net gravito-inertial acceleration. Initial performance, in terms of root-mean-square deviation from upright, degraded in hyper-gravity relative to 1 G performance levels. In 1.5 G, initial performance degraded by 26 % and in 2 G, by 45 %. With practice, however, performance in hyper-gravity improved to near the 1 G performance level over several minutes. Finally, pre-exposure to one hyper-gravity level reduced initial performance decrements in a different, novel, hyper-gravity level. Perceptual overestimation of roll tilts in hyper-gravity leads to manual control performance errors, which are reduced both with practice and with pre-exposure to alternate hyper-gravity stimuli.

  6. Effect of Short-Term Hypergravity Treatment on Mouse 2-Cell Embryo Development

    Science.gov (United States)

    Ning, Li-Na; Lei, Xiao-Hua; Cao, Yu-Jing; Zhang, Yun-Fang; Cao, Zhong-Hong; Chen, Qi; Duan, En-Kui

    2015-11-01

    Though there are numerous biological experiments, which have been performed in a space environment, to study the physiological effect of space travel on living organisms, while the potential effect of weightlessness or short-term hypergravity on the reproductive system in most species, particularly in mammalian is still controversial and unclear. In our previous study, we investigated the effect of space microgravity on the development of mouse 4-cell embryos by using Chinese SJ-8. .Unexpectedly, we did not get any developed embryo during the space-flight. Considering that the process of space experiment is quite different from most experiments done on earth in several aspects such as, the vibration and short-term hypergravity during the rock launching and landing. Thus we want to know whether the short-term hypergravity produced by the launch process affect the early embryo development in mice, and howthe early embryos respond to the hypergravity. In present study, we are mimicking the short-term hypergravity during launch by using a centrifuge to investigate its influence on the development of early embryo (2-cell) in mice. We also examined the actin filament distribution in 2-cell embryos by immunostaining to test their potential capacity of development under short-term hypergravity exposure. Our results showed that most 2-cell embryos in the hypergravity exposure groups developed into blastocysts with normal morphology after 72h cultured in vitro, and there is no obvious difference in the development rate of blastocyst formation compared to the control. Moreover, there were no statistically significant differences in birth rates after oviduct transfer of 2-cell mouse embryos exposed on short-term hypergravity compared with 1 g condition. In addition, the well-organized actin distribution appeared in 2-cell embryos after exposed on hypergravity and also in the subsequent developmental blastocysts. Taken together, our data shows that short-term exposure in

  7. Transcriptomic Response of Drosophila Melanogaster Pupae Developed in Hypergravity

    Science.gov (United States)

    Hosamani, Ravikumar; Hateley, Shannon; Bhardwaj, Shilpa R.; Pachter, Lior; Bhattacharya, Sharmila

    2016-01-01

    The metamorphosis of Drosophila is evolutionarily adapted to Earth's gravity, and is a tightly regulated process. Deviation from 1g to microgravity or hypergravity can influence metamorphosis, and alter associated gene expression. Understanding the relationship between an altered gravity environment and developmental processes is important for NASA's space travel goals. In the present study, 20 female and 20 male synchronized (Canton S, 2 to 3day old) flies were allowed to lay eggs while being maintained in a hypergravity environment (3g). Centrifugation was briefly stopped to discard the parent flies after 24hrs of egg laying, and then immediately continued until the eggs developed into P6-staged pupae (25 - 43 hours after pupation initiation). Post hypergravity exposure, P6-staged pupae were collected, total RNA was extracted using Qiagen RNeasy mini kits. We used RNA-Seq and qRT-PCR techniques to profile global transcriptomic changes in early pupae exposed to chronic hypergravity. During the pupal stage, Drosophila relies upon gravitational cues for proper development. Assessing gene expression changes in the pupa under altered gravity conditions helps highlight gravity dependent genetic pathways. A robust transcriptional response was observed in hypergravity-exposed pupae compared to controls, with 1,513 genes showing a significant (q Drosophila pupae in response to hypergravity.

  8. Chronic Hypergravity Induces Changes in the Dopaminergic Neuronal System in Drosophila Melanogaster

    Science.gov (United States)

    Pelos, Andrew; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2017-01-01

    Upon atmospheric exitre-entry and during training, astronauts are subjected to temporary periods of hypergravity, which has been implicated in the activation of oxidative stress pathways contributing to mitochondrial dysfunction and neuronal degeneration. The pathogenesis of Parkinsons disease and other neurodegenerative disorders is associated with oxidative damage to neurons involved in dopamine systems of the brain. Our study aims to examine the effects of a hypergravitational developmental environment on the degeneration of dopaminergic systems in Drosophila melanogaster. Male and female flies (Gal4-UAS transgenic line) were hatched and raised to adulthood in centrifugal hypergravity (97rpm, 3g). The nuclear expression of the reporter, Green Fluorescent Protein (GFP) is driven by the dopaminergic enzyme tyrosine hydroxylase (TH) promoter, allowing for the targeted visualization of dopamine producing neurons. After being raised to adulthood and kept in hypergravity until 18 days of age, flies were dissected and the expression of TH was measured by fluorescence confocal microscopy. TH expression in the fly brains was used to obtain counts of healthy dopaminergic neurons for flies raised in chronic hypergravity and control groups. Dopaminergic neuron expression data were compared with those of previous studies that limited hypergravity exposure to late life in order to determine the flies adaptability to the gravitational environment when raised from hatching through adulthood. Overall, we observed a significant effect of chronic hypergravity exposure contributing to deficits in dopaminergic neuron expression (p 0.003). Flies raised in 3g had on average lower dopaminergic neuron counts (mean 97.7) when compared with flies raised in 1g (mean 122.8). We suspect these lower levels of TH expression are a result of oxidative dopaminergic cell loss in flies raised in hypergravity. In future studies, we hope to further elucidate the mechanism by which hypergravity

  9. Effects of Chronic Hypergravity on the Dopaminergic Neuronal System in Drosophila Melanogaster

    Science.gov (United States)

    Pelos, Andrew; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2017-01-01

    Upon atmospheric exitre-entry and during training, astronauts are subjected to temporary periods of hypergravity, which has been implicated in the activation of oxidative stress pathways contributing to mitochondrial dysfunction and neuronal degeneration. The pathogenesis of Parkinsons disease and other neurodegenerative disorders is associated with oxidative damage to neurons involved in dopamine systems of the brain. Our study aims to examine the effects of a hypergravitational developmental environment on the degeneration of dopaminergic systems in Drosophila melanogaster. Male and female flies (Gal4-UAS transgenic line) were hatched and raised to adulthood in centrifugal hypergravity (97rpm, 3g). The nuclear expression of the reporter, Green Fluorescent Protein (GFP) is driven by the dopaminergic enzyme tyrosine hydroxylase (TH) promoter, allowing for the targeted visualization of dopamine producing neurons. After being raised to adulthood and kept in hypergravity until 18 days of age, flies were dissected and the expression of TH was measured by fluorescence confocal microscopy. TH expression in the fly brains was used to obtain counts of healthy dopaminergic neurons for flies raised in chronic hypergravity and control groups. Dopaminergic neuron expression data were compared with those of previous studies that limited hypergravity exposure to late life in order to determine the flies adaptability to the gravitational environment when raised from hatching through adulthood. Overall, we observed a significant effect of chronic hypergravity exposure contributing to deficits in dopaminergic neuron expression (p 0.003). Flies raised in 3g had on average lower dopaminergic neuron counts (mean 97.7) when compared with flies raised in 1g (mean 122.8). We suspect these lower levels of TH expression are a result of oxidative dopaminergic cell loss in flies raised in hypergravity. In future studies, we hope to further elucidate the mechanism by which hypergravity

  10. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Tavakolinejad, Alireza [Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rabbani, Mohsen, E-mail: m.rabbani@eng.ui.ac.ir [Department of Biomedical Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of); Janmaleki, Mohsen [Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-08-21

    Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation was assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravity (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs.

  11. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation

    International Nuclear Information System (INIS)

    Tavakolinejad, Alireza; Rabbani, Mohsen; Janmaleki, Mohsen

    2015-01-01

    Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation was assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravity (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs

  12. Hypergravity-induced altered behavior in Drosophila

    Science.gov (United States)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  13. Effect of Hypergravity on the Level of Heat Shock Proteins 70 and 90 in Pea Seedlings

    Science.gov (United States)

    Kozeko, Liudmyla; Kordyum, Elizabeth

    2009-01-01

    Exposure to hypergravity induces significant changes in gene expression of plants which are indicative of stress conditions. A substantial part of the general stress response is up-regulation of heat shock proteins (Hsp) which function as molecular chaperones. The objective of this research was to test the possible changes in the Hsp70 and Hsp90 level in response to short-term hypergravity exposure. In this study 5-day-old etiolated pea seedlings were exposed to centrifuge-induced hypergravity (3-14 g) for 15 min and 1 h and a part of the seedlings was sampled at 1.5 and 24 h after the exposures. Western blot analysis showed time-dependent changes in Hsp70 and Hsp90 levels: an increase under hypergravity and a tendency towards recovery of the normal content during re-adaptation. The quantity and time of their expression was correlated with the g-force level. These data suggest that short-term hypergravity acts as a stress which could increase the risk of protein denaturation and aggregation. Molecular chaperons induced during the stress may have an essential role in counteracting this risk.

  14. Hypergravity Stimulates the Extracellular Matrix/Integrin-Signaling Axis and Proliferation in Primary Osteoblasts

    Science.gov (United States)

    Parra, M.; Vercoutere, W.; Roden, C.; Banerjee, I.; Krauser, W.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.

    2003-01-01

    We set out to determine the molecular mechanisms involved in the proliferative response of primary rat osteoblasts to mechanical stimulation using cell culture centrifugation as a model for hypergravity. We hypothesized that this proliferative response is mediated by specific integrin/Extracellular Matrix (ECM) interactions. To investigate this question we developed a cell culture centrifuge and an automated system that performs cell fixation during hypergravity loading. We generated expression vectors for various focal adhesion and cytoskeletal proteins fused to GFP or dsRed and visualized these structures in transfected (or infected) osteoblasts. The actin cytoskeleton was also visualized using rhodamine-phalloidin staining and Focal Adhesion Kinase (FAK) levels were assessed biochemically. We observed that a 24 hour exposure to 50-g stimulated proliferation compared to the 1-g control when cells were plated on fibronectin, collagen Type I , and collagen Type IV, but not on uncoated tissue culture plastic surfaces. This proliferative response was greatest for osteoblasts grown on fibronectin (2-fold increase over 1-g control) and collagen Type I (1.4 fold increase over 1-g control), suggesting that specific matrices and integrins are involved in the signaling pathways required for proliferation. Exposing osteoblasts grown on different matrices to 10-g or 25-g showed that effects on proliferation depended on both matrix type and loading level. We found that osteoblasts exposed to a short pulse of hypergravity during adhesion spread further and had more GFP-FAK containing focal adhesions compared to their 1-g controls. While overall levels of FAK did not change, more FAK was in the active (phosphorylated) form under hypergravity than in the 1-g controls. Cytoskeletal F-actin organization into filaments was also more prominent after brief exposures to hypergravity during the first five minutes of adhesion. These results suggest that specific integrins sense

  15. The unresponsiveness of the immune system of the rat to hypergravity

    Science.gov (United States)

    Scibetta, S. M.; Caren, L. D.; Oyama, J.

    1984-01-01

    The immune response in rats exposed to simulated hypergravity (2.1 G and 3.1 G) by chronic centrifugation was assessed. Rats were immunized with sheep red blood cells (SRBC), either on the day of initial exposure to hypergravity (hyper-G), or after being centrifuged for 28 d and remaining on the centrifuge thereafter. Pair-fed and ad libitum fed noncentrifuged controls were used. Although there were some alterations in leukocyte counts, hyper-G did not systematically affect the primary or secondary anti-SRBC response, hematocrits, or the sizes of the liver, spleen, kidneys, thymus, or adrenal glands. The immune system is thus remarkably homeostatic under hypergravity conditions which do affect other physiologic parameters.

  16. Rapid increase of inositol 1,4,5-trisphosphate in the HeLa cells after hypergravity exposure

    Science.gov (United States)

    Kumei, Yasuhiro; Whitson, Peggy A.; Cintron, Nitza M.; Sato, Atsushige

    1990-01-01

    The IP3 level in HeLa cells has been elevated through the application in hypergravity in a time-dependent manner. The data obtained for the hydrolytic products of PIP2, IP3, and DG are noted to modulate c-myc gene expression. It is also established that the cAMP accumulation by the IBMX in hypergravity-exposed cells was suppressed relative to the control. In light of IP3 increase and cAMP decrease results, a single GTP-binding protein may play a role in the hypergravity signal transduction of HeLa cells by stimulating PLC while inhibiting adenylate cyclase.

  17. Effect of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Rupiasih, N. Nyoman, E-mail: rupiasih@gmail.com [Department of Physics, Udayana University, Bali (Indonesia); Vidyasagar, Pandit B., E-mail: prof-pbv@yahoo.com [Biophysics Laboratory, Department of Physics, University of Pune, Pune-411007 (India)

    2016-03-11

    An investigation of the effects of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings has been done. The UV-C irradiation periods of exposure were 30, 60, 90, 120 and 180 minutes. The hypergravity used were 1000 g, 2000 g and 2500 g. The combination treatment is UV-C irradiation for 180 min followed by each hypergravity. The results showed that irradiation of UV-C on wheat seeds have stimulated the seed germination, but hypergravity and combination treatments on wheat seeds have inhibited the seed germination. Those treatments gave negative effects to growth rate, the content of chlorophyll a, b and total chlorophyll of wheat seedlings.

  18. Effect of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings

    International Nuclear Information System (INIS)

    Rupiasih, N. Nyoman; Vidyasagar, Pandit B.

    2016-01-01

    An investigation of the effects of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings has been done. The UV-C irradiation periods of exposure were 30, 60, 90, 120 and 180 minutes. The hypergravity used were 1000 g, 2000 g and 2500 g. The combination treatment is UV-C irradiation for 180 min followed by each hypergravity. The results showed that irradiation of UV-C on wheat seeds have stimulated the seed germination, but hypergravity and combination treatments on wheat seeds have inhibited the seed germination. Those treatments gave negative effects to growth rate, the content of chlorophyll a, b and total chlorophyll of wheat seedlings.

  19. Body Mass Changes Associated With Hyper-Gravity are Independent of Adrenal Derived Hormones

    Science.gov (United States)

    Wade, Charles E.; Moran, Megan M.; Wang, Tommy J.; Baer, Lisa A.; Yuan, Fang; Fung, Cyra K.; Stein, T. Peter; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Exposure to hyper-gravity results in a number of metabolic changes associated with increases in catecholamines and corticosterone. These changes result in a loss of body and fat mass. To assess the role of hormones derived from the adrenal gland in the changes we studied sham operated (SO) and adrenalectomized (ADX) male rats exposed to hyper-gravity of 2 G for 14 days. Control groups at 1 G were also studied. Urinary epinephrine (EPI) and corticosterone (CORT) were reduced in ADX animals. In response to 2 G there was an increase in urinary EPI and CORT in SO rats, while levels were unchanged in ADX animals. Both groups of animals had similar increases in urinary norepinephrine levels. The reductions of body mass gain in response to 2 G were the same in both groups. The decrease in relative fat mass was greater in ADX. Energy intake and expenditure were not different between groups. In response of returning to 1 G for 24 hours and reexposure to hyper-gravity there were no differences between SO and ADX in the changes of food and water intake, body mass or activity. The changes in metabolism with exposure to hyper-gravity do not appear to require hormones derived from the adrenal gland. The increase in lypolysis and alterations body and fat mass appear to be modulated by sympathetically derived norepinehrine.

  20. Plasma Catecholamines (CA) and Gene Expression of CA Biosynthetic Enzymes in Adrenal Medulla and Sympathetic Ganglia of Rats Exposed to Single or Repeated Hypergravity

    Science.gov (United States)

    Petrak, J.; Jurani, M.; Baranovska, M.; Hapala, I.; Frollo, I.; Kvetnansky, R.

    2008-06-01

    The aim of this study was to evaluate plasma epinephrine (EPI) and norepinephrine (NE) levels in blood collected directly during a single or 8-times repeated centrifugation at hypergravity 4G, using remote controlled equipment. Plasma EPI levels showed a huge hypergravity-induced increase. After the last blood collection during hypergravity, the centrifuge was turned off and another blood sampling was performed immediately after the centrifuge decelerated and stopped (10 min). In these samples plasma EPI showed significantly lower levels compared to centrifugation intervals. Plasma NE levels showed none or small changes. Repeated exposure to hypergravity 4G (8 days for 60 min) eliminated the increase in plasma EPI levels at the 15 min interval but did not markedly affect plasma NE levels. To explain these findings we measured mRNA levels of CA biosynthetic enzymes tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) in the adrenal medulla (AM) and stellate ganglia (SG) of rats exposed to continuous hypergravity (2G) up to 6 days. In AM, TH, DBH and PNMT mRNA levels were significantly increased in intervals up to 3 days, however, after 6 day hypergravity exposure, no significant elevation was found. In SG, no significant changes in gene expression of CA enzymes were seen both after a single or repeated hypergravity. Thus, our data show that hypergravity highly activates the adrenomedullary system, whereas the sympathoneural system is not significantly changed. In conclusion, our results demonstrate that during repeated or continuous exposure of the organism to hypergravity the adrenomedullary system is adapted, whereas sympathoneural system is not affected.

  1. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    Science.gov (United States)

    Nguon, K.; Li, G.-H.; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum [Exp. Biol. Med. 226 (2000) 790]. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion moiecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum.

  2. Report on ESA Topical Team on the Large Radius Human Centrifuge: "The Human Hypergravity Habitat; H3"

    Science.gov (United States)

    van Loon, Jack J. W. A.; Bücker, N.; Berte, J.; Bok, K.; Bos, J.; Boyle, R.; Bravenoer, N.; Chouker, A.; Clement, G.; Cras, P.; Denise, D.; Eekhoff, M.; Felsenberg, D.; Fong, K.; Fuller, C.; Groen, E.; Heer, M.; Hinghofer-Szalkay, H.; Iwase, S.; Karemaker, J. M.; Linnarsson, D.; Lüthen, C.; Narici, M.; Norsk, P.; Paloski, W.; Rutten, M.; Saggini, R.; Stephan, A.; Ullrich, O.; Vautmans, V.; Wuyts, F.; Young, L.

    Over the last decades a significant amount of knowledge has been accumulated on the adap-tation of the human body going into near weightless conditions and on its re-adaptation to 1g Earth conditions after space flight. Ground-based paradigms for microgravity simulation have been developed such as head down tilted bed rest and dry-immersion. In such systems the adaptations to long term immobilization and to head-ward fluid shifts have been studied. Questions we address here are: can long-term ground-based centrifugation help us to under-stand and even predict the adaptations to long-term increased gravity conditions? How does the body adapt to chronic (days, weeks or longer) exposure to a hypergravity environment? And, once the body has fully adapted to a hypergravity environment, how does it re-adapt going from a hypergravity state back to a relatively hypo-gravity condition of 1g, or even going from a centrifuge / hypergravity environment into a bed-rest setting? Can such transitions in well-controlled studies bring us closer to understanding the consequences of gravity transitions that the crews will likely experience going to the Moon or to Mars. Is hypergravity a good model to study the effect of re-entry in gravitational environments after long duration space flight? In an ESA -supported Topical Team we address all organ systems known so far to change directly or indirectly by altered gravity conditions. We will identify to which gravity levels the human body can be exposed for longer periods of time and what protocols could be applied to address the questions at hand. We also identify the technology required to ac-complish such long duration hypergravity and re-adaptation studies. Issues like ethics, safety and required logistics should be addressed. As there is limited experience with exposure of hu-man test subjects to prolonged periods of moderately increased g-forces, unexpected harm may occur. Therefore, the information, disclosure and informed consent

  3. Response of Haloalkaliphilic Archaeon Natronococcus Jeotgali RR17 to Hypergravity

    Science.gov (United States)

    Thombre, Rebecca S.; Bhalerao, Aniruddha R.; Shinde, Vinaya D.; Dhar, Sunil Kumar; Shouche, Yogesh S.

    2017-06-01

    The survival of archaeabacteria in extreme inhabitable environments on earth that challenge organismic survival is ubiquitously known. However, the studies related to the effect of hypergravity on the growth and proliferation of archaea are unprecedented. The survival of organisms in hypergravity and rocks in addition to resistance to cosmic radiations, pressure and other extremities is imperative to study the possibilities of microbial travel between planets and endurance in hyperaccelerative forces faced during ejection of rocks from planets. The current investigation highlights the growth of an extremophilic archaeon isolated from a rocky substrate in hypergravity environment. The haloalkaliphilic archaeon, Natronococcus jeotgali RR17 was isolated from an Indian laterite rock, submerged in the Arabian sea lining Coastal Maharashtra, India. The endolithic haloarchaeon was subjected to hypergravity from 56 - 893 X gusing acceleration generated by centrifugal rotation. The cells of N. jeotgali RR17 proliferated and demonstrated good growth in hypergravity (223 X g). This is the first report on isolation of endolithic haloarchaeon N. jeotgali RR17 from an Indian laterite rock and its ability to proliferate in hypergravity. The present study demonstrates the ability of microbial life to survive and proliferate in hypergravity. Thus the inability of organismic growth in hypergravity may no longer be a limitation for astrobiology studies related to habitability of substellar objects, brown dwarfs and other planetary bodies in the universe besides planet earth.

  4. Chronic exposure to hypergravity affects thyrotropin-releasing hormone levels in rat brainstem and cerebellum

    Science.gov (United States)

    Daunton, N. G.; Tang, F.; Corcoran, M. L.; Fox, R. A.; Man, S. Y.

    1998-01-01

    In studies to determine the neurochemical mechanisms underlying adaptation to altered gravity we have investigated changes in neuropeptide levels in brainstem, cerebellum, hypothalamus, striatum, hippocampus, and cerebral cortex by radioimmunoassay. Fourteen days of hypergravity (hyperG) exposure resulted in significant increases in thyrotropin-releasing hormone (TRH) content of brainstem and cerebellum, but no changes in levels of other neuropeptides (beta-endorphin, cholecystokinin, met-enkephalin, somatostatin, and substance P) examined in these areas were found, nor were TRH levels significantly changed in any other brain regions investigated. The increase in TRH in brainstem and cerebellum was not seen in animals exposed only to the rotational component of centrifugation, suggesting that this increase was elicited by the alteration in the gravitational environment. The only other neuropeptide affected by chronic hyperG exposure was met-enkephalin, which was significantly decreased in the cerebral cortex. However, this alteration in met-enkephalin was found in both hyperG and rotation control animals and thus may be due to the rotational rather than the hyperG component of centrifugation. Thus it does not appear as if there is a generalized neuropeptide response to chronic hyperG following 2 weeks of exposure. Rather, there is an increase only of TRH and that occurs only in areas of the brain known to be heavily involved with vestibular inputs and motor control (both voluntary and autonomic). These results suggest that TRH may play a role in adaptation to altered gravity as it does in adaptation to altered vestibular input following labyrinthectomy, and in cerebellar and vestibular control of locomotion, as seen in studies of ataxia.

  5. Planarians Sense Simulated Microgravity and Hypergravity

    Directory of Open Access Journals (Sweden)

    Teresa Adell

    2014-01-01

    Full Text Available Planarians are flatworms, which belong to the phylum Platyhelminthes. They have been a classical subject of study due to their amazing regenerative ability, which relies on the existence of adult totipotent stem cells. Nowadays they are an emerging model system in the field of developmental, regenerative, and stem cell biology. In this study we analyze the effect of a simulated microgravity and a hypergravity environment during the process of planarian regeneration and embryogenesis. We demonstrate that simulated microgravity by means of the random positioning machine (RPM set at a speed of 60 °/s but not at 10 °/s produces the dead of planarians. Under hypergravity of 3 g and 4 g in a large diameter centrifuge (LDC planarians can regenerate missing tissues, although a decrease in the proliferation rate is observed. Under 8 g hypergravity small planarian fragments are not able to regenerate. Moreover, we found an effect of gravity alterations in the rate of planarian scission, which is its asexual mode of reproduction. No apparent effects of altered gravity were found during the embryonic development.

  6. Hypergravity and multiple reflections in wave propagation in the aorta

    NARCIS (Netherlands)

    Kroot, J.M.B.; Giannopapa, C.G.

    2013-01-01

    Hypergravity and gravity changes encountered in, e.g., airplanes, rollercoasters, and spaceflight can result in headaches or loss of consciousness due to decreased cerebral blood flow. This paper describes the effect of hypergravity and gravity changes on the pressure in the aorta and the distension

  7. Hormonal modulation of food intake in response to low leptin levels induced by hypergravity

    Science.gov (United States)

    Moran, M. M.; Stein, T. P.; Wade, C. E.

    2001-01-01

    A loss in fat mass is a common response to centrifugation and it results in low circulating leptin concentrations. However, rats adapted to hypergravity are euphagic. The focus of this study was to examine leptin and other peripheral signals of energy balance in the presence of a hypergravity-induced loss of fat mass and euphagia. Male Sprague-Dawley rats were centrifuged for 14 days at gravity levels of 1.25, 1.5, or 2 G, or they remained stationary at 1 G. Urinary catecholamines, urinary corticosterone, food intake, and body mass were measured on Days 11 to 14. Plasma hormones and epididymal fat pad mass were measured on Day 14. Mean body mass of the 1.25, 1.5, and 2 G groups were significantly (P < 0.05) lower than controls, and no differences were found in food intake (g/day/100 g body mass) between the hypergravity groups and controls. Epididymal fat mass was 14%, 14%, and 21% lower than controls in the 1.25, 1.5, and 2.0 G groups, respectively. Plasma leptin was significantly reduced from controls by 46%, 45%, and 65% in the 1.25, 1.5, and 2 G groups, respectively. Plasma insulin was significantly lower in the 1.25, 1.5, and 2.0 G groups than controls by 35%, 38%, and 33%. No differences were found between controls and hypergravity groups in urinary corticosterone. Mean urinary epinephrine was significantly higher in the 1.5 and 2.0 G groups than in controls. Mean urinary norepinephrine was significantly higher in the 1.25, 1.5 and 2.0 G groups than in controls. Significant correlations were found between G load and body mass, fat mass, leptin, urinary epinephrine, and norepinephrine. During hypergravity exposure, maintenance of food intake is the result of a complex relationship between multiple pathways, which abates the importance of leptin as a primary signal.

  8. Hypergravity As a Tool for Cell Stimulation: Implications in Biomedicine

    International Nuclear Information System (INIS)

    Genchi, Giada G.; Rocca, Antonella; Marino, Attilio; Grillone, Agostina; Mattoli, Virgilio; Ciofani, Gianni

    2016-01-01

    Gravity deeply influences numerous biological events in living organisms. Variations in gravity values induce adaptive reactions that have been shown to play important roles, for instance in cell survival, growth, and spatial organization. In this paper, we summarize effects of gravity values higher than that one experienced by cells and tissues on Earth, i.e., hypergravity, with particular attention to the nervous and the musculoskeletal systems. Besides the biological consequences that hypergravity induces in the living matter, we will discuss the possibility of exploiting this augmented force in tissue engineering and regenerative medicine, and thus hypergravity significance as a new therapeutic approach both in vitro and in vivo.

  9. Hypergravity As a Tool for Cell Stimulation: Implications in Biomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Genchi, Giada G. [Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Pisa (Italy); Rocca, Antonella; Marino, Attilio; Grillone, Agostina [Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Pisa (Italy); BioRobotics Institute, Scuola Superiore Sant' Anna, Pisa (Italy); Mattoli, Virgilio [Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Pisa (Italy); Ciofani, Gianni, E-mail: giada.genchi@iit.it [Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Pisa (Italy); Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino (Italy)

    2016-08-19

    Gravity deeply influences numerous biological events in living organisms. Variations in gravity values induce adaptive reactions that have been shown to play important roles, for instance in cell survival, growth, and spatial organization. In this paper, we summarize effects of gravity values higher than that one experienced by cells and tissues on Earth, i.e., hypergravity, with particular attention to the nervous and the musculoskeletal systems. Besides the biological consequences that hypergravity induces in the living matter, we will discuss the possibility of exploiting this augmented force in tissue engineering and regenerative medicine, and thus hypergravity significance as a new therapeutic approach both in vitro and in vivo.

  10. The effect of hypergravity on the lens, cornea and tail regeneration in Urodela

    Science.gov (United States)

    Grigoryan, E. N.; Dvorochkin, N.; Poplinskaya, V. A.; Yousuf, R.; Radugina, E. A.; Almeida, E. A.

    2017-09-01

    In previous experiments onboard Russian Bion/Foton satellites it was found that exposure to microgravity causes changes in eye lens regeneration of Urodela. The changes included higher rate of regeneration, increased cell proliferation in lens anlage, and synchronization of lens restoration. Similar changes were observed regarding tail regeneration. Recently, investigations were performed to find out whether exposure to hypergravity could also alter lens, cornea and tail regeneration in the newt P. waltl. Nine days prior to exposure the left lens was surgically removed through corneal incision and distal 1/3 of the tail was amputated, thus initiating regeneration. The experimental animals were allowed to recover for 9 days at 1 g and then exposed to 2 g for 12 days in an 8 ft diameter centrifuge at NASA Ames Research Center. The experimental animals were divided into 1 g controls, 2 g centrifugation animals, basal controls, and aquarium controls. Lens and corneal regeneration appeared to be inhibited in 2 g group compared to 1 g animals. In all 1 g controls, lens regeneration reached stages VII-IX in a synchronous fashion and corneal regeneration was nearly complete. In the 2 g newts, neural retinal detachment from the pigmented epithelium was seen in most operated eyes. It was also observed in the non-operated (right) eyes of the animals exposed to 2 g. The level of retinal detachment varied and could have been caused by hypergravity-induced high intraocular pressure. Regeneration (when it could be assessed) proceeded asynchronously, reaching stages from II to IX. Corneal restoration was also noticeably delayed and corneal morphology changed. Cell proliferation was measured using BrdU; the results were not comparable to the 1 g data because of retinal detachment. Previous investigations demonstrated that lens regeneration was controlled by the neural retina; therefore, lower regeneration rate at 2 g was, at least in part, associated with retinal detachment. FGF2

  11. Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts

    Directory of Open Access Journals (Sweden)

    Rocca A

    2015-01-01

    Full Text Available Antonella Rocca,1,2 Attilio Marino,1,2 Veronica Rocca,3 Stefania Moscato,4 Giuseppe de Vito,5,6 Vincenzo Piazza,5 Barbara Mazzolai,1 Virgilio Mattoli,1 Thu Jennifer Ngo-Anh,7 Gianni Ciofani1 1Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @SSSA, Pontedera, Italy, 2Scuola Superiore Sant’Anna, The BioRobotics Institute, Pontedera, Italy, 3Università di Pisa, Dipartimento di Ingegneria dell’Informazione, Pisa, Italy, 4Università di Pisa, Dipartimento di Medicina Clinica e Sperimentale, Pisa, Italy, 5Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation @NEST, Pisa, Italy, 6Scuola Normale Superiore, NEST, Pisa, Italy, 7Directorate of Human Spaceflight and Operations, European Space Agency, Noordwijk, the Netherlands Background: Enhancement of the osteogenic potential of mesenchymal stem cells (MSCs is highly desirable in the field of bone regeneration. This paper proposes a new approach for the improvement of osteogenesis combining hypergravity with osteoinductive nanoparticles (NPs.Materials and methods: In this study, we aimed to investigate the combined effects of hypergravity and barium titanate NPs (BTNPs on the osteogenic differentiation of rat MSCs, and the hypergravity effects on NP internalization. To obtain the hypergravity condition, we used a large-diameter centrifuge in the presence of a BTNP-doped culture medium. We analyzed cell morphology and NP internalization with immunofluorescent staining and coherent anti-Stokes Raman scattering, respectively. Moreover, cell differentiation was evaluated both at the gene level with quantitative real-time reverse-transcription polymerase chain reaction and at the protein level with Western blotting.Results: Following a 20 g treatment, we found alterations in cytoskeleton conformation, cellular shape and morphology, as well as a significant increment of expression of osteoblastic markers both at the gene and protein levels, jointly pointing to a substantial

  12. Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hypergravity and simulated microgravity (2-D/3-D clinorotation, magnetic levitation)

    Science.gov (United States)

    Babbick, M.; Dijkstra, C.; Larkin, O. J.; Anthony, P.; Davey, M. R.; Power, J. B.; Lowe, K. C.; Cogoli-Greuter, M.; Hampp, R.

    Gravity is an important environmental factor that controls plant growth and development. Studies have shown that the perception of gravity is not only a property of specialized cells, but can also be performed by undifferentiated cultured cells. In this investigation, callus of Arabidopsis thaliana cv. Columbia was used to investigate the initial steps of gravity-related signalling cascades, through altered expression of transcription factors (TFs). TFs are families of small proteins that regulate gene expression by binding to specific promoter sequences. Based on microarray studies, members of the gene families WRKY, MADS-box, MYB, and AP2/EREBP were selected for investigation, as well as members of signalling chains, namely IAA 19 and phosphoinositol-4-kinase. Using qRT-PCR, transcripts were quantified within a period of 30 min in response to hypergravity (8 g), clinorotation [2-D clinostat and 3-D random positioning machine (RPM)] and magnetic levitation (ML). The data indicated that (1) changes in gravity induced stress-related signalling, and (2) exposure in the RPM induced changes in gene expression which resemble those of magnetic levitation. Two dimensional clinorotation resulted in responses similar to those caused by hypergravity. It is suggested that RPM and ML are preferable to simulate microgravity than clinorotation.

  13. Involvement of membrane sterols in hypergravity-induced modifications of growth and cell wall metabolism in plant stems

    Science.gov (United States)

    Koizumi, T.; Soga, K.; Wakabayashi, K.; Suzuki, M.; Muranaka, T.; Hoson, T.

    Organisms living on land resist the gravitational force by constructing a tough body Plants have developed gravity resistance responses after having first went ashore more than 500 million years ago The mechanisms of gravity resistance responses have been studied under hypergravity conditions which are easily produced on earth by centrifugation In Arabidopsis hypocotyls hypergravity treatment greatly increased the expression level of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase HMGR which is involved in synthesis of terpenoids such as membrane sterols In the present study we examined the role of membrane sterols in gravity resistance in plants by analyzing sterol levels of stem organs grown under hypergravity conditions and by analyzing responses to hypergravity of the organs whose sterol level was modulated Hypergravity inhibited elongation growth but stimulated lateral expansion of Arabidopsis hypocotyls and azuki bean epicotyls Under hypergravity conditions sterol levels were kept high as compared with 1 g controls during incubation Lovastatin an inhibitor HMGR prevented lateral expansion as the gravity resistance response in azuki bean epicotyls Similar results were obtained in analyses with loss of function mutants of HMGR in Arabidopsis It has been shown that sterols play a role in cellulose biosynthesis probably as the primer In wild type Arabidopsis hypocotyls hypergravity increased the cellulose content but it did not influence the content in HMGR mutants These results suggest that hypergravity increases

  14. Hypergravity disruption of homeorhetic adaptations to lactation in rat dams include changes in circadian clocks

    Directory of Open Access Journals (Sweden)

    Theresa Casey

    2012-04-01

    Altered gravity load induced by spaceflight (microgravity and centrifugation (hypergravity is associated with changes in circadian, metabolic, and reproductive systems. Exposure to 2-g hypergravity (HG during pregnancy and lactation decreased rate of mammary metabolic activity and increased pup mortality. We hypothesize HG disrupted maternal homeorhetic responses to pregnancy and lactation are due to changes in maternal metabolism, hormone concentrations, and maternal behavior related to gravity induced alterations in circadian clocks. Effect of HG exposure on mammary, liver and adipose tissue metabolism, plasma hormones and maternal behavior were analyzed in rat dams from mid-pregnancy (Gestational day [G]11 through early lactation (Postnatal day [P]3; comparisons were made across five time-points: G20, G21, P0 (labor and delivery, P1 and P3. Blood, mammary, liver, and adipose tissue were collected for analyzing plasma hormones, glucose oxidation to CO2 and incorporation into lipids, or gene expression. Maternal behavioral phenotyping was conducted using time-lapse videographic analyses. Dam and fetal-pup body mass were significantly reduced in HG in all age groups. HG did not affect labor and delivery; however, HG pups experienced a greater rate of mortality. PRL, corticosterone, and insulin levels and receptor genes were altered by HG. Mammary, liver and adipose tissue metabolism and expression of genes that regulate lipid metabolism were altered by HG exposure. Exposure to HG significantly changed expression of core clock genes in mammary and liver and circadian rhythms of maternal behavior. Gravity load alterations in dam's circadian system may have impacted homeorhetic adaptations needed for a successful lactation.

  15. Exposure to altered gravity during specific developmental periods differentially affects growth, development, the cerebellum and motor functions in male and female rats

    Science.gov (United States)

    Nguon, K.; Ladd, B.; Sajdel-Sulkowska, E. M.

    2006-01-01

    We previously reported that perinatal exposure to hypergravity affects cerebellar structure and motor coordination in rat neonates. In the present study, we explored the hypothesis that neonatal cerebellar structure and motor coordination may be particularly vulnerable to the effects of hypergravity during specific developmental stages. To test this hypothesis, we compared neurodevelopment, motor behavior and cerebellar structure in rat neonates exposed to 1.65 G on a 24-ft centrifuge during discrete periods of time: the 2nd week of pregnancy [gestational day (G) 8 through G15; group A], the 3rd week of pregnancy (G15 through birth on G22/G23; group B), the 1st week of nursing [birth through postnatal day (P) 6; group C], the 2nd and 3rd weeks of nursing (P6 through P21; group D), the combined 2nd and 3rd weeks of pregnancy and nursing (G8 through P21; group E) and stationary control (SC) neonates (group F). Prenatal exposure to hypergravity resulted in intrauterine growth retardation as reflected by a decrease in the number of pups in a litter and lower average mass at birth. Exposure to hypergravity immediately after birth impaired the righting response on P3, while the startle response in both males and females was most affected by exposure during the 2nd and 3rd weeks after birth. Hypergravity exposure also impaired motor functions, as evidenced by poorer performance on a rotarod; while both males and females exposed to hypergravity during the 2nd and 3rd weeks after birth performed poorly on P21, male neonates were most dramatically affected by exposure to hypergravity during the second week of gestation, when the duration of their recorded stay on the rotarod was one half that of SC males. Cerebellar mass was most reduced by later postnatal exposure. Thus, for the developing rat cerebellum, the postnatal period that overlaps the brain growth spurt is the most vulnerable to hypergravity. However, male motor behavior is also affected by midpregnancy exposure to

  16. Isolation of New Gravitropic Mutants under Hypergravity Conditions.

    Science.gov (United States)

    Mori, Akiko; Toyota, Masatsugu; Shimada, Masayoshi; Mekata, Mika; Kurata, Tetsuya; Tasaka, Masao; Morita, Miyo T

    2016-01-01

    Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upward. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes). In the present study, we report a new screening system using hypergravity conditions to isolate enhancers of gravitropism mutants, and we also describe a rapid and efficient genome mapping method, using next-generation sequencing (NGS) and single nucleotide polymorphism (SNP)-based markers. Using the endodermal-amyloplast less 1 ( eal1 ) mutant, which exhibits defective development of endodermal cells and gravitropism, we found that hypergravity (10 g) restored the reduced gravity responsiveness in eal1 hypocotyls and could, therefore, be used to obtain mutants with further reduction in gravitropism in the eal1 background. Using the new screening system, we successfully isolated six ene ( enhancer of eal1 ) mutants that exhibited little or no gravitropism under hypergravity conditions, and using NGS and map-based cloning with SNP markers, we narrowed down the potential causative genes, which revealed a new genetic network for shoot gravitropism in Arabidopsis .

  17. Brassica rapa L. seed development in hypergravity

    NARCIS (Netherlands)

    Musgrave, M.E.; Kuang, A.; Allen, J.; Blasiak, J.; van Loon, J.J.W.A.

    2009-01-01

    Previous experiments had shown that microgravity adversely affected seed development in Brassica rapa L. We tested the hypothesis that gravity controls seed development via modulation of gases around the developing seeds, by studying how hypergravity affects the silique microenvironment and seed

  18. Isolation of new gravitropic mutants under hypergravity conditions

    Directory of Open Access Journals (Sweden)

    Akiko Mori

    2016-09-01

    Full Text Available Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upwards. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes. In the present study, we report a new screening system using hypergravity conditions to isolate enhancers of gravitropism mutants, and we also describe a rapid and efficient genome mapping method, using Next-Generation Sequencing (NGS and Single Nucleotide Polymorphism (SNP-based markers. Using the endodermal-amyloplast less 1 (eal1 mutant, which exhibits defective development of endodermal cells and gravitropism, we found that hypergravity (10 g restored the reduced gravity responsiveness in eal1 hypocotyls and could, therefore, be used to obtain mutants with further reduction in gravitropism in the eal1 background. Using the new screening system, we successfully isolated six ene (enhancer of eal1 mutants that exhibited little or no gravitropism under hypergravity conditions, and using NGS and map-based cloning with SNP markers, we narrowed down the potential causative genes, which revealed a new genetic network for shoot gravitropism in Arabidopsis.

  19. Potential Role of Oxidative Stress in mediating the Effect of Hypergravity on the Developing CNS.

    Science.gov (United States)

    Sajdel-Sulkowska, E. M.; Nguon, K.; Sulkowski, Z. L.; Lipinski, B.

    The present studies will explore the mechanisms through which altered gravity affects the developing CNS We have previously shown that exposure to hypergravity during the perinatal period adversely impacts cerebellar structure and function Pregnant rat dams were exposed to 1 65 G on a 24-ft centrifuge at NASA-ARC from gestational day G 5 through giving birth Both dams and their offspring remained at 1 65 G until pups reached postnatal day P 21 Control rats were raised under identical conditions in stationary cages On P21 motor behavior as determined by performance on a rotorod was more negatively impacted in hypergravity-exposed HG male 39 5 than in HG female pups 29 1 The total number of Purkinje cells determined stereologically in cerebella isolated from a subset of P21 rats was decreased in both HG males and HG female pups but the correlation between Purkinje cell number and rotorod performance was more consistent in male pups The level of 3-nitrosotyrosine 3-NT an index of oxidative damage to proteins was determined by ELISA in cerebellar tissue derived from a separate subset of P21 rats The level of 3-NT was increased by 127 in HG males but only 42 in HG females These results suggest that the effect of altered gravity on the developing brain may be mediated by oxidative stress These results also suggest that the developing male CNS may be more sensitive to hypergravity-induced oxidative stress than the developing female CNS Supported by NIEHS grant ES11946-01

  20. Analysis of the hematopoietic tissue in Pleurodeles waltl newts exposed to 2 g hypergravity

    Science.gov (United States)

    Domaratskaya, Elena; Nikonova, Tatyana M.; Grigoryan, Eleonora N.; Dvorochkin, Natalya; Yousuf, Rukhsana; Almeida, Eduardo; Butorina, Nina N.

    2012-07-01

    Gravity is an important factor in creating biologically-relevant mechanical loads, and in spaceflight living organisms encounter both microgravity as well as hypergravity conditions. Here we studied the influence of hypergravity on the hematopoietic tissue of P. waltl newts in parallel with tissue regeneration experiments of the newt lens and tail. At day 9 post-surgery one group of newts was subjected to centrifugation at 2 g (2G, 12 days), while another was kept at 1 g. In addition, a basal control in wet mats, at 1g, (BC, 1G), and an aquarium control, neutrally buoyant, (AC, low G), were also performed. Differential blood counts and histological analysis of the spleen and liver were carried out in experimental and control groups of animals. At day 21 post-surgery in all groups (AC, 1G, and 2G), the number of neutrophils in the blood was significantly lower than in BC indicating a decrease in the inflammation induced by surgery. The 2G group however, showed numbers of neutrophils significantly higher than AC (neutrally buoyant) animals. This result suggests that post-operative inflammation can persist longer at 2 g that under unloaded aquarium conditions. In contrast we did not observe any significant differences in lymphocyte numbers between any experimental and control groups. Histological examination of the liver and spleen also did not show any significant morphological alterations due to hypergravity. These results indicate that 12 day exposure to hypergravity at 2 g, had only partial influence on newt hematopoiesis, possibly extending the duration of surgery-related inflammatory responses. Data obtained with newts in our previous experiments on Foton-M2 and Foton-M3 flights in microgravity also showed only slight effect on blood cells. Furthermore microgravity also did not cause any morphological changes in the hematopoietic and lymphoid tissues, and did not impair the proliferative capacity of newt hematopoietic cells. In sum these results indicate the

  1. Hypergravity and estrogen effects on avian anterior pituitary growth hormone and prolactin levels

    Science.gov (United States)

    Fiorindo, R. P.; Negulesco, J. A.

    1980-01-01

    Developing female chicks with fractured right radii were maintained for 14 d at either earth gravity (1 g) or a hypergravity state (2 g). The birds at 1 g were divided into groups which received daily injections of (1) saline, (2) 200 micrograms estrone, and (3) 400 micrograms estrone for 14 d. The 2-g birds were divided into three similarly treated groups. All 2-g birds showed significantly lower body weights than did 1-g birds. Anterior pituitary (AP) glands were excised and analyzed for growth hormone and prolactin content by analytical electrophoresis. The 1-g chicks receiving either dose of daily estrogen showed increased AP growth hormone levels, whereas hypergravity alone did not affect growth hormone content. Chicks exposed to daily estrogen and hypergravity displayed reduced growth hormone levels. AP prolactin levels were slightly increased by the lower daily estrogen dose in 1-g birds, but markedly reduced in birds exposed only to hypergravity. Doubly-treated chicks displayed normal prolactin levels. Reduced growth in 2-g birds might be due, in part, to reduced AP levels of prolactin and/or growth hormone.

  2. Genetic Analysis of Mice Skin Exposed by Hyper-Gravity

    Science.gov (United States)

    Takahashi, Rika; Terada, Masahiro; Seki, Masaya; Higashibata, Akira; Majima, Hideyuki J.; Ohira, Yoshinobu; Mukai, Chiaki; Ishioka, Noriaki

    2013-02-01

    In the space environment, physiological alterations, such as low bone density, muscle weakness and decreased immunity, are caused by microgravity and cosmic radiation. On the other hand, it is known that the leg muscles are hypertrophy by 2G-gravity. An understanding of the effects on human body from microgravity to hyper-gravity is very important. Recently, the Japan Aerospace Exploration Agency (JAXA) has started a project to detect the changes on gene expression and mineral metabolism caused by microgravity by analyzing the hair of astronauts who stay in the international Space Station (ISS) for a long time. From these results of human hair’s research, the genetic effects of human hair roots by microgravity will become clear. However, it is unclear how the gene expression of hair roots was effected by hypergravity. Therefore, in this experiment, we analyzed the effect on mice skin contained hair roots by comparing microgravity or hypergravity exposed mice. The purpose of this experiment is to evaluate the genetic effects on mice skin by microgravity or 2G-gravity. The samples were taken from mice exposed to space flight (FL) or hypergravity environment (2G) for 3-months, respectively. The extracted and amplified RNA from these mice skin was used to DNA microarray analysis. in this experiment, we analyzed the effect of gravity by using mice skin contained hair roots, which exposed space (FL) and hyper-gravity (2G) for 3 months and each control. By DNA microarray analysis, we found the common 98 genes changed in both FL and 2G. Among these 98 genes, the functions and pathways were identified by Gene Ontology (GO) analysis and Ingenuity Pathways Analysis (IPA) software. Next, we focused the one of the identified pathways and compared the effects on each molecules in this pathways by the different environments, such as FL and 2G. As the results, we could detect some interesting molecules, which might be depended on the gravity levels. In addition, to investigate

  3. Development of life sciences equipment for microgravity and hypergravity simulation

    Science.gov (United States)

    Mulenburg, G. M.; Evans, J.; Vasques, M.; Gundo, D. P.; Griffith, J. B.; Harper, J.; Skundberg, T.

    1994-01-01

    The mission of the Life Science Division at the NASA Ames Research Center is to investigate the effects of gravity on living systems in the spectrum from cells to humans. The range of these investigations is from microgravity, as experienced in space, to Earth's gravity, and hypergravity. Exposure to microgravity causes many physiological changes in humans and other mammals including a headward shift of body fluids, atrophy of muscles - especially the large muscles of the legs - and changes in bone and mineral metabolism. The high cost and limited opportunity for research experiments in space create a need to perform ground based simulation experiments on Earth. Models that simulate microgravity are used to help identify and quantify these changes, to investigate the mechanisms causing these changes and, in some cases, to develop countermeasures.

  4. Protein Kinases Possibly Mediate Hypergravity-Induced Changes in F-Actin Expression by Endothelial Cells

    Science.gov (United States)

    Love, Felisha D.; Melhado, Caroline D.; Bosah, Francis N.; Harris-Hooker, Sandra A.; Sanford, Gary L.

    1998-01-01

    Basic cellular functions such as electrolyte concentration, cell growth rate, glucose utilization, bone formation, response to growth stimulation, and exocytosis are modified in microgravity. These studies indicate that microgravity affects a number of physiological systems and included in this are cell signaling mechanisms. Rijken and coworkers performed growth factor studies that showed PKC signaling and actin microfilament organization appears to be sensitive to microgravity, suggesting that the inhibition of signal transduction by microgravity may be related to alterations in actin microfilament organization. However, similar studies have not been done for vascular cells. Vascular endothelial cells play critical roles in providing nutrients to organ and tissues and in wound repair. The major deterrent to ground-based microgravity studies is that it is impossible to achieved true microgravity for longer than a few minutes on earth. Hence, it has not been possible to conduct prolonged microgravity studies except for two models that simulate certain aspects of microgravity. However, hypergravity is quite easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell lines while decreasing cell motility and slowing liver regeneration following partial hepatectomy, These studies indicate the hypergravity also alters the behavior of most cells. Several investigators have shown that hypergravity affects the activation of several protein kinases (PKs) in cells. In this study, we investigated whether hypergravity alters the expression of f-actin by bovine aortic endothelial cells (BAECs) and the role of PK's (calmodulin 11 dependent, PKA and PKC) as mediators of these effects.

  5. The Impact of Hypergravity and Vibration on Gene and Protein Expression of Thyroid Cells

    Science.gov (United States)

    Wehland, Markus; Warnke, Elisabeth; Frett, Timo; Hemmersbach, Ruth; Hauslage, Jens; Ma, Xiao; Aleshcheva, Ganna; Pietsch, Jessica; Bauer, Johann; Grimm, Daniela

    2016-06-01

    Experiments in space either on orbital missions on-board the ISS, or in suborbital missions using sounding rockets, like TEXUS as well as parabolic flight campaigns are still the gold standard to achieve real microgravity conditions in the field of gravitational biology and medicine. However, during launch, and in flight, hypergravity and vibrations occur which might interfere with the effects of microgravity. It is therefore important to know these effects and discriminate them from the microgravity effects. This can be achieved by ground-based facilities like centrifuges or vibration platforms. Recently, we have conducted several experiments with different thyroid cancer cell lines. This study, as part of the ESA-CORA-GBF 2010-203 project, focused on the influence of vibration and hypergravity on benign human thyroid follicular epithelial cells (Nthy-ori 3-1 cell line). Gene and in part protein expression regulation under both conditions were analyzed for VCAN, ITGA10, ITGB1, OPN, ADAM19, ANXA1, TNFA, ABL2, ACTB, PFN2, TLN1, EZR, RDX, MSN, CTGF, PRKCA, and PRKAA1 using quantitative real-time PCR and Western Blot. We found that hypergravity and vibration affected genes and proteins involved in the extracellular matrix, the cytoskeleton, apoptosis, cell growth and signaling. Vibration always led to a down-regulation, whereas hypergravity resulted in a more heterogeneous expression pattern. Overall we conclude that both conditions can influence gene regulation and production of various genes and proteins. As a consequence, it is important to perform control experiments on hypergravity and vibration facilities in parallel to flight experiments.

  6. Hypergravity-induced increase in plasma catecholamine and corticosterone levels in telemetrically collected blood of rats during centrifugation.

    Science.gov (United States)

    Petrak, Juraj; Mravec, Boris; Jurani, Marian; Baranovska, Magda; Tillinger, Andrej; Hapala, Ivan; Frollo, Ivan; Kvetnanský, Richard

    2008-12-01

    Rats subjected to various accelerations (+G) exhibited increased levels of plasma epinephrine (EPI), norepinephrine (NE), and corticosterone. However, the collection of blood was performed after a centrifugation finished, and therefore the levels could be affected by the process of deceleration. The aim of this study was to evaluate plasma EPI, NE, and corticosterone levels in blood collected directly during centrifugation after reaching different G (2-6), using newly developed remote-controlled equipment. Animals placed into the centrifuge cabins had inserted polyethylene tubing in the tail artery, which was connected with a preprogrammed device for blood withdrawals. Plasma EPI, NE, and corticosterone levels were measured at different time intervals of hypergravity of 2-6G. Plasma EPI levels showed a huge, hypergravity-level-dependent increase. After the last blood collection was completed during hypergravity, the centrifuge was turned off and another blood sampling was performed immediately after the centrifuge stopped (10 min). In these samples, plasma EPI showed significantly lower levels compared to centrifugation intervals. Plasma NE levels were significantly increased after 6G only. The increase in plasma corticosterone was dependent on level of G, however after the centrifuge stopped, corticosterone levels remained elevated. Thus, our data show that hypergravity highly activates the adrenomedullary and hypothalamo-pituitary-adrenocortical systems, whereas the sympathoneural system is activated only at high hypergravity. Immediately after centrifugation is over, EPI levels quickly return to control values. Our technique of blood collection during centrifugation allows assessment of the real hormonal levels at the particular hypergravity value.

  7. Hypergravity exposure decreases gamma-aminobutyric acid immunoreactivity in axon terminals contacting pyramidal cells in the rat somatosensory cortex: a quantitative immunocytochemical image analysis

    Science.gov (United States)

    D'Amelio, F.; Wu, L. C.; Fox, R. A.; Daunton, N. G.; Corcoran, M. L.; Polyakov, I.

    1998-01-01

    Quantitative evaluation of gamma-aminobutyric acid immunoreactivity (GABA-IR) in the hindlimb representation of the rat somatosensory cortex after 14 days of exposure to hypergravity (hyper-G) was conducted by using computer-assisted image processing. The area of GABA-IR axosomatic terminals apposed to pyramidal cells of cortical layer V was reduced in rats exposed to hyper-G compared with control rats, which were exposed either to rotation alone or to vivarium conditions. Based on previous immunocytochemical and behavioral studies, we suggest that this reduction is due to changes in sensory feedback information from muscle receptors. Consequently, priorities for muscle recruitment are altered at the cortical level, and a new pattern of muscle activity is thus generated. It is proposed that the reduction observed in GABA-IR of the terminal area around pyramidal neurons is the immunocytochemical expression of changes in the activity of GABAergic cells that participate in reprogramming motor outputs to achieve effective movement control in response to alterations in the afferent information.

  8. Effect of hypergravity on catecholamine levels in telemetrically collected blood of rats during centrifugation

    Science.gov (United States)

    Kvetnansky, R.; Petrak, J.; Mravec, B.; Tillinger, A.; Jurani, M.; Baranovska, M.; Hapala, I.; Frollo, I.

    2005-08-01

    Hypergravity is known to activate the sympathoadrenal system (SAS). Rats subjected to various accelerations (+G) exhibited increased levels of plasma epinephrine (EPI) and partly also norepinephrine (NE). However, the collection of blood was performed after centrifugation finished and therefore plasma NE and EPI levels could have been affected by the process of deceleration. The aim of this study was to evaluate plasma EPI and NE levels in blood collected directly during the centrifugation after reaching different +G, using newly developed remote controlled equipment. Such telemetrically regulated equipment for multiple blood sampling allows us to investigate selective effects of hypergravity during centrifugation. All animals had a polyethylene tubing in the tail artery which was connected to a pre-programmed device for three blood withdrawals (0.6 ml each) into individual syringes, performed at any chosen time intervals. Plasma EPI and NE levels were measured at hypergravity between +1G - +5G. Plasma EPI levels showed a huge, hypergravity dependent increase at the interval of 10-20 min. After the blood collection was completed, the centrifuge was turned off and another blood sampling was performed immediately after the centrifuge stopped (10 min). In these samples plasma EPI levels showed a significant reduction compared to the 20 min interval of centrifugation but the EPI levels at 4G-6G were still significantly elevated compared to pre- centrifugation levels. Plasma NE levels showed less pronounced changes (increased after 6G only) with a slower return to control levels.Thus, our data has shown completely different responses of the adrenomedullary (epinephrine) and sympathoneural (norepinephrine) systems to hypergravitation. This data shows that the increased gravitation and not the stressful situations connected with centrifugation is the factor responsible for massive activation of the adrenomedullary system. The mechanism of small activation of the

  9. Elevator Illusion and Gaze Direction in Hypergravity

    Science.gov (United States)

    Cohen, Malcolm M.; Hargens, Alan (Technical Monitor)

    1995-01-01

    A luminous visual target in a dark hypergravity (Gz greater than 1) environment appears to be elevated above its true physical position. This "elevator illusion" has been attributed to changes in oculomotor control caused by increased stimulation of the otolith organs. Data relating the magnitude of the illusion to the magnitude of the changes in oculomotor control have been lacking. The present study provides such data.

  10. Calmodulin-Dependent Protein Kinase mediates Hypergravity-Induced Changes in F-Actin Expression by Endothelial Cells

    Science.gov (United States)

    Love, Felisha D.; Melhado, Caroline; Bosah, Francis; Harris-Hooker, Sandra A.; Sanford, Gary L.

    1997-01-01

    A number of basic cellular functions, e.g., electrolyte concentration cell growth rate, glucose utilization, bone formation, response to growth stimulation and exocytosis are modified by microgravity or during spaceflight. Studies with intact animal during spaceflights have found lipid accumulations within the lumen of the vasculature and degeneration of the vascular wall. Capillary alterations with extensive endothelial invaginations were also seen. Hemodynamic studies have shown that there is a redistribution of blood from the lower extremities to the upper part of the body; this will alter vascular permeability, resulting in leakage into surrounding tissues. These studies indicate that changes in gravity will affect a number of physiological systems, including the vasculature. However, few studies have addressed the effect of microgravity on vascular cell function and metabolism. A major problem with ground based studies is that achieving a true microgravity hand, environment for prolonged period is not possible. On the other increasing gravity (i.e., hypergravity) is easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell limes (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. These studies suggest that hypergravity will alter the behavior of most cells. Several investigators have shown that hypergravity affects the expression of the early response genes (c-fos and c-myc) and the activation of several protein kinases (PK's) in cells (10,11). In this study we investigated whether hypergravity alters the expression of f-actin by aortic endothelial cells, and the possible role of protein kinases (calmodulin(II)-dependent and PKA) as mediators of these effects.

  11. Resting energy expenditure of rats acclimated to hypergravity

    Science.gov (United States)

    Wade, Charles E.; Moran, Megan M.; Oyama, Jiro

    2002-01-01

    BACKGROUND: The use of centrifugation at 1 G has been advocated as a control condition during spaceflight and as a countermeasure to compensate for the adverse effects of spaceflight. Rodents are the primary animal model for the study of the effects of spaceflight and will be used in the evaluation of centrifugation as a countermeasure and means of control at 1 G during flight. HYPOTHESIS: The present study was designed to assess whether resting energy expenditure (EER) of male rats was increased in relation to the magnitude of the level of gravity to which the animals were exposed. The influence of body mass and age on resting energy expenditure (EER) of male rats (n = 42, age 40-400 d) was determined following 2 wk of acclimation to 1, 2.3, or 4.1 G. Hypergravity environments were created by centrifugation. Measurements were made at the gravity level to which the animal was acclimated and during the lights-on period. RESULTS: In rats matched for body mass (approximately 400 g), mean O2 consumption and CO2 production were higher (18% and 27%, respectively) in the 2.3- and 4.1 -G groups than controls. Mean respiratory exchange ratio (RER) increased from 0.80 to 0.87. EER was increased from 47 +/- 0.1 kcal x d(-1) at 1 G, to 57 +/- 1.5 and 58 +/- 2.2 kcal x d(-1) at 2.3 and 4.1 G, respectively. There was no difference in EER between the hypergravity groups. When age differences were considered, EER (kcal x kg(-1) x d(-1)) with increased gravity was 40% higher than at 1 G. The increase in EER was not proportional over gravity levels. CONCLUSION: Acclimation of rats to hypergravity increases their EER, dependent on body mass and age, and may alter substrate metabolism. The increase in EER was not related to the level of gravity increase.

  12. Protective effect of prone posture against hypergravity-induced arterial hypoxaemia in humans

    Science.gov (United States)

    Rohdin, M; Petersson, J; Mure, M; Glenny, R W; Lindahl, S G E; Linnarsson, D

    2003-01-01

    Patients with acute respiratory distress syndrome have increased lung tissue weight and therefore an increased hydrostatic pressure gradient down the lung. Also, they have a better arterial oxygenation in prone (face down) than in supine (face up) posture. We hypothesized that this effect of the direction of gravity also existed in healthy humans, when increased hydrostatic gradients were induced by hypergravity. Ten healthy subjects were studied in a human centrifuge while exposed to 1 or 5 G in anterio-posterior (supine) or posterio-anterior (prone) direction. We measured blood gases using remote-controlled sampling and gas exchange by mass spectrometry. Hypergravity led to marked impairments of arterial oxygenation in both postures and more so in supine posture. At 5 G, the arterial oxygen saturation was 84.6 ± 1.2 % (mean ±s.e.m.) in supine and 89.7 ± 1.4 % in prone posture (P postures. The alveolar-to-arterial PO2 difference increased at 5 G to 8.0 ± 0.2 kPa and 6.6 ± 0.3 kPa in supine and prone postures (P = 0.003). Arterial oxygenation was less impaired in prone during hypergravity due to a better-preserved alveolo-arterial oxygen transport. We speculate that mammals have developed a cardiopulmonary structure that favours function with the gravitational vector in the posterio-anterior direction. PMID:12598589

  13. Motor Control of Landing from a Jump in Simulated Hypergravity.

    Directory of Open Access Journals (Sweden)

    Clément N Gambelli

    Full Text Available On Earth, when landing from a counter-movement jump, muscles contract before touchdown to anticipate imminent collision with the ground and place the limbs in a proper position. This study assesses how the control of landing is modified when gravity is increased above 1 g. Hypergravity was simulated in two different ways: (1 by generating centrifugal forces during turns of an aircraft (A300 and (2 by pulling the subject downwards in the laboratory with a Subject Loading System (SLS. Eight subjects were asked to perform counter-movement jumps at 1 g on Earth and at 3 hypergravity levels (1.2, 1.4 and 1.6 g both in A300 and with SLS. External forces applied to the body, movements of the lower limb segments and muscular activity of 6 lower limb muscles were recorded. Our results show that both in A300 and with SLS, as in 1 g: (1 the anticipation phase is present; (2 during the loading phase (from touchdown until the peak of vertical ground reaction force, lower limb muscles act like a stiff spring, whereas during the second part (from the peak of vertical ground reaction force until the return to the standing position, they act like a compliant spring associated with a damper. (3 With increasing gravity, the preparatory adjustments and the loading phase are modified whereas the second part does not change drastically. (4 The modifications are similar in A300 and with SLS, however the effect of hypergravity is accentuated in A300, probably due to altered sensory inputs. This observation suggests that otolithic information plays an important role in the control of the landing from a jump.

  14. Hypergravity signal transduction in HeLa cells with concomitant phosphorylation of proteins immunoprecipitated with anti-microtubule-associated protein antibodies

    Science.gov (United States)

    Kumei, Yasuhiro; Whitson, Peggy A.; Sato, Atsushige; Cintron, Nitza M.

    1991-01-01

    It is shown that hypergravity (35g) stimulates the production of inositol 1,4,5-trisphosphate (IP3) and decreases adenosine 3-prime,5-prime-cyclic monophosphate (cAMP) levels in HeLa cells. It is proposed that IP3 and cAMP may act as second messengers in hypergravity signal transduction. Phosphorylation of microtubule-associated proteins in both the detergent-soluble and -insoluble fractions suggests that cytoskeletal structures may be influenced by gravity.

  15. Simulated microgravity, Mars gravity, and 2g hypergravity affect cell cycle regulation, ribosome biogenesis, and epigenetics in Arabidopsis cell cultures.

    Science.gov (United States)

    Kamal, Khaled Y; Herranz, Raúl; van Loon, Jack J W A; Medina, F Javier

    2018-04-23

    Gravity is the only component of Earth environment that remained constant throughout the entire process of biological evolution. However, it is still unclear how gravity affects plant growth and development. In this study, an in vitro cell culture of Arabidopsis thaliana was exposed to different altered gravity conditions, namely simulated reduced gravity (simulated microgravity, simulated Mars gravity) and hypergravity (2g), to study changes in cell proliferation, cell growth, and epigenetics. The effects after 3, 14, and 24-hours of exposure were evaluated. The most relevant alterations were found in the 24-hour treatment, being more significant for simulated reduced gravity than hypergravity. Cell proliferation and growth were uncoupled under simulated reduced gravity, similarly, as found in meristematic cells from seedlings grown in real or simulated microgravity. The distribution of cell cycle phases was changed, as well as the levels and gene transcription of the tested cell cycle regulators. Ribosome biogenesis was decreased, according to levels and gene transcription of nucleolar proteins and the number of inactive nucleoli. Furthermore, we found alterations in the epigenetic modifications of chromatin. These results show that altered gravity effects include a serious disturbance of cell proliferation and growth, which are cellular functions essential for normal plant development.

  16. Cardiovascular responses of snakes to hypergravity

    Science.gov (United States)

    Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.; Rosenberg, H. I.

    1997-01-01

    Snakes have provided useful vertebrate models for understanding circulatory adaptation to gravity, attributable to their elongate body shape and evolutionary diversificaton in terms of ecology and behavior. Recently we have studied cardiovascular responses of snakes to hypergravic acceleration forces produced acutely in the head-to-tail direction (+Gz) on a short-arm centrifuge. Snakes were held in a nearly straight position within a horizontal plastic tube and subjected to a linear force gradient during acceleration. Carotid blood flow provided an integrated measure of cardiovascular performance. Thus, cardiovascular tolerance of snakes to stepwise increments of Gz was measured as the caudal Gz force at which carotid blood flow ceased. Tolerance to increasing Gz varies according to adaptive evolutionary history inferred from the ecology and behavior of species. With respect to data for six species we investigated, multiple regression analysis demonstrates that Gz tolerance correlates with gravitational habitat, independently of body length. Relative to aquatic and non-climbing species, carotid blood flow is better maintained in arboreal or scansorial species, which tolerate hypergravic forces of +2 to +3.5 Gz. Additionally, semi-arboreal rat snakes (Elaphe obsoleta) exhibit plasticity of responses to long-term, intermittent +1.5 Gz stress. Compared to non-acclimated controls, acclimated snakes show greater increases of heart rate during head-up tilt or acceleration, greater sensitivity of arterial pressure to circulating catecholamines, higher blood levels of prostaglandin ratios favorable to maintenance of arterial blood pressure, and medial hypertrophy in major arteries and veins. As in other vertebrates, Gz tolerance of snakes is enhanced by acclimation, high arterial pressure, comparatively large blood volume, and body movements. Vascular studies of snakes suggest the importance to acclimation of local responses involving vascular tissue, in addition to

  17. Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments.

    Science.gov (United States)

    Morita, Hironobu; Obata, Koji; Abe, Chikara; Shiba, Dai; Shirakawa, Masaki; Kudo, Takashi; Takahashi, Satoru

    2015-01-01

    To elucidate the pure impact of microgravity on small mammals despite uncontrolled factors that exist in the International Space Station, it is necessary to construct a 1 g environment in space. The Japan Aerospace Exploration Agency has developed a novel mouse habitat cage unit that can be installed in the Cell Biology Experiment Facility in the Kibo module of the International Space Station. The Cell Biology Experiment Facility has a short-arm centrifuge to produce artificial 1 g gravity in space for mouse experiments. However, the gravitational gradient formed inside the rearing cage is larger when the radius of gyration is shorter; this may have some impact on mice. Accordingly, biological responses to hypergravity induced by a short-arm centrifuge were examined and compared with those induced by a long-arm centrifuge. Hypergravity induced a significant Fos expression in the central nervous system, a suppression of body mass growth, an acute and transient reduction in food intake, and impaired vestibulomotor coordination. There was no difference in these responses between mice raised in a short-arm centrifuge and those in a long-arm centrifuge. These results demonstrate the feasibility of using a short-arm centrifuge for mouse experiments.

  18. Neurovestibular adaptation in the utricular otolith in fish to hypergravity exposure and re-adaptation to 1G

    Science.gov (United States)

    Boyle, R.; Popova, Ye.; Varelas, J.; Mofrad, A.

    after 16-day exposure. Return to control values following 16-day exposure is on the order of 8 days. On-Center Controls (228/s rotation about Earth vertical) at 4-and 16-days do not show any difference compare to ground controls. Utricular sensitivity is strongly regulated by altered gravity exposure, and transition from hypergravity to normal gravity seem to resemble the transfer from 1G to microgravity, and might be used as a ground-based model to study the neural response to transitions in gravity. Preliminary analysis of the afferent distributions changes caused by adaptation to hyper-G and re-adaptation to 1G that uses PDF allows us to assume that hyper-G and G cause the redistribution of afferents with different gains: those with higher gains become more activated (sensitive) than those with lower gains. The case of down-regulation corresponds to decrease of the PDF dispersion. It should be noted that efferent vestibular actions are not uniform on hair cells and afferents, and it is proposed that the changes brought on in otolith afferents by the transitions from one gravity state to another will be most prevalent and coincident in afferents strongly affected by efferent activation. Support Contributed By: NASA 03-OBPR-04

  19. Otolith mass asymmetry: natural, and after weightlessness and hypergravity

    Science.gov (United States)

    Lychakov, Dmitri

    It is believed that otolith mass asymmetry (OA) can play an essential role in genesis of vestibular space disturbances in human subjects and fish. This review poster presents data on values and characters of OA in animals of various species and classes and on the effect of weightlessness and hypergravity on OA; the issue of the effect of OA on vestibular and auditory functions also is considered (Lychakov, Rebane, 2004, 2005; Lychakov et al., 2006, 2008). In symmetric vertebrates, OA was shown to be fluctuating, its coefficient chiχ ranges from - 0.2 to + 0.2 (±± 20%). It should be stressed that in the overwhelming majority of individuals absolute values of chiχ selection. Unlike symmetric vertebrates, labyrinths of many Pleuronectiformes have pronounced OA. Otoliths in the lower labyrinth, on average, are significantly heavier than those in the upper labyrinth. The organs of flatfish represent the only example when OA, being directional, seem to play an essential role in lateralized behavior and are suggested to be used in the spatial localization of the source of sound. The short-term weightlessness and relatively weak hypergravity (> 3g as well as some diseases and age-related changes can indirectly enhance OA and cause some functional disturbances. This work was partly supported by Russian grant RFFI 14-04-00601.

  20. Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments.

    Directory of Open Access Journals (Sweden)

    Hironobu Morita

    Full Text Available To elucidate the pure impact of microgravity on small mammals despite uncontrolled factors that exist in the International Space Station, it is necessary to construct a 1 g environment in space. The Japan Aerospace Exploration Agency has developed a novel mouse habitat cage unit that can be installed in the Cell Biology Experiment Facility in the Kibo module of the International Space Station. The Cell Biology Experiment Facility has a short-arm centrifuge to produce artificial 1 g gravity in space for mouse experiments. However, the gravitational gradient formed inside the rearing cage is larger when the radius of gyration is shorter; this may have some impact on mice. Accordingly, biological responses to hypergravity induced by a short-arm centrifuge were examined and compared with those induced by a long-arm centrifuge. Hypergravity induced a significant Fos expression in the central nervous system, a suppression of body mass growth, an acute and transient reduction in food intake, and impaired vestibulomotor coordination. There was no difference in these responses between mice raised in a short-arm centrifuge and those in a long-arm centrifuge. These results demonstrate the feasibility of using a short-arm centrifuge for mouse experiments.

  1. Osteoblast Differentiation Decreases Hypergravity-Stimulated Release of PGE(sub 2)

    Science.gov (United States)

    Searby, Nancy D.; Steele, Charles R.; Globus, Ruth K.

    2002-01-01

    We determined if progressive differentiation of osteoblasts influences their sensitivity to gravitational loading. Osteoblasts were cultured for 4 days (confluent monolayer), 6 days (prenodules), 9 days (nodules) and 19 days (mineralized nodules), then centrifuged at 10 times gravity (g) or 50-g for 3 hours using the NASA Ames 1-ft. Diameter Centrifuge. Stationary controls were placed in an adjacent incubator. Following centrifugation, conditioned media were collected and analyzed for PGE, by ELISA. Microtubules were fluorescently labeled and analyzed by confocal microscopy to determine microtubule network morphology and height. Centrifugation at 10-g reduced microtubule network height by 15% on d4 and 10% on d6, with variable changes in more mature cultures. No major changes in microtubule morphology were observed. PGE(sub 2) release by d4 cultures increased in a dose-dependent fashion (3-fold at 10-g and 6-fold at 50-g relative to controls). D6 cultures produced a 5-fold increase for both 10-g and 50-g. PGE(sub 2) increased only 1.5-fold by d9, and by d19, PGE(sub 2) was not delectable in either the control or hypergravity-stimulated cells. Thus, as osteoblasts differentiate in culture, responsiveness of the microtubule cytoskeleton and the PGE(sub 2) pathway to hypergravity declines.

  2. Effect of hypergravity on lignin formation and expression of lignin-related genes in inflorescence stems of an ethylene-insensitive Arabidopsis mutant ein3-1

    Science.gov (United States)

    Karahara, Ichirou; Kobayashi, Mai; Tamaoki, Daisuke; Kamisaka, Seiichiro

    Our previous studies have shown that hypergravity inhibits growth and promotes lignin forma-tion in inflorescence stems of Arabidopsis thaliana by up-regulation of genes involved in lignin biosynthesis (Tamaoki et al. 2006, 2009). In the present study, we have examined whether ethylene is involved in these responses using an ethylene-insensitive Arabidopsis mutant ein3-1. Our results revealed that hypergravity treatment at 300 G for 24 h significantly inhibited growth of inflorescence stems, promoted both deposition of acetyl bromide extractable lignin and gene expression involved in lignin formation in inflorescence stems of wild type plants. Growth inhibition of inflorescence stems was also observed in ein3-1. However, the effects of hypergravity on the promotion of the deposition of acetyl bromide lignin and the expression of genes involved in lignin formation were not observed in ein3-1, indicating that ethylene sig-naling is involved in the up-regulation of the expression of lignin-related genes as well as the promotion of deposition of lignin by hypergravity in Arabidopsis inflorescence stems.

  3. Stimulation of cyclic GMP efflux in human melanocytes by hypergravity generated by centrifugal acceleration

    NARCIS (Netherlands)

    Ivanova, Krassimira; Zadeh, Nahid Hamidi; Block, Ingrid; Das, Pranab K.; Gerzer, Rupert

    2004-01-01

    Gravity alteration (micro- and hypergravity) is known to influence cell functions. As guanosine 3',5'-cyclic monophosphate (cGMP) plays an important role in human melanocyte functions and different guanylyl cyclase isoforms are responsible for cGMP synthesis in human non-metastatic and metastatic

  4. Gravity effects on a gliding arc in four noble gases: from normal to hypergravity

    NARCIS (Netherlands)

    Potocnakova, L.; Sperka, J.; Zikan, P.; van Loon, J.J.W.A.; Beckers, J.; Kudrle, V.

    2015-01-01

    A gliding arc in four noble gases (He, Ne, Ar, Kr) has been studied under previously unexplored conditions of varying artificial gravity, from normal 1 g gravity up to 18 g hypergravity. Significant differences, mainly the visual thickness of the plasma channel, its maximum elongation and general

  5. Asymptotically flat structure of hypergravity in three spacetime dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Fuentealba, Oscar [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Matulich, Javier; Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)

    2015-10-02

    The asymptotic structure of three-dimensional hypergravity without cosmological constant is analyzed. In the case of gravity minimally coupled to a spin-5/2 field, a consistent set of boundary conditions is proposed, being wide enough so as to accommodate a generic choice of chemical potentials associated to the global charges. The algebra of the canonical generators of the asymptotic symmetries is given by a hypersymmetric nonlinear extension of BMS{sub 3}. It is shown that the asymptotic symmetry algebra can be recovered from a subset of a suitable limit of the direct sum of the W{sub (2,4)} algebra with its hypersymmetric extension. The presence of hypersymmetry generators allows to construct bounds for the energy, which turn out to be nonlinear and saturate for spacetimes that admit globally-defined “Killing vector-spinors”. The null orbifold or Minkowski spacetime can then be seen as the corresponding ground state in the case of fermions that fulfill periodic or antiperiodic boundary conditions, respectively. The hypergravity theory is also explicitly extended so as to admit parity-odd terms in the action. It is then shown that the asymptotic symmetry algebra includes an additional central charge, being proportional to the coupling of the Lorentz-Chern-Simons form. The generalization of these results in the case of gravity minimally coupled to arbitrary half-integer spin fields is also carried out. The hypersymmetry bounds are found to be given by a suitable polynomial of degree s+(1/2) in the energy, where s is the spin of the fermionic generators.

  6. Tolerance of snakes to hypergravity

    Science.gov (United States)

    Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.

    1996-01-01

    Sensitivity of carotid blood flow to increased gravitational force acting in the head-to-tail direction(+Gz) was studied in diverse species of snakes hypothesized to show adaptive variation of response. Tolerance to increased gravity was measured red as the maximum graded acceleration force at which carotid blood flow ceased and was shown to vary according to gravitational adaptation of species defined by their ecology and behavior. Multiple regression analysis showed that gravitational habitat, but not body length, had a significant effect on Gz tolerance. At the extremes, carotid blood flow decreased in response to increasing G force and approached zero near +1 Gz in aquatic and ground-dwelling species, whereas in climbing species carotid flow was maintained at forces in excess of +2 Gz. Tolerant (arboreal) species were able to withstand hypergravic forces of +2 to +3 Gz for periods up to 1 h without cessation of carotid blood flow or loss of body movement and tongue flicking. Data suggest that the relatively tight skin characteristic of tolerant species provides a natural antigravity suit and is of prime importance in counteracting Gz stress on blood circulation.

  7. Loss of parafollicular cells during gravitational changes (microgravity, hypergravity and the secret effect of pleiotrophin.

    Directory of Open Access Journals (Sweden)

    Elisabetta Albi

    Full Text Available It is generally known that bone loss is one of the most important complications for astronauts who are exposed to long-term microgravity in space. Changes in blood flow, systemic hormones, and locally produced factors were indicated as important elements contributing to the response of osteoblastic cells to loading, but research in this field still has many questions. Here, the possible biological involvement of thyroid C cells is being investigated. The paper is a comparison between a case of a wild type single mouse and a over-expressing pleiotrophin single mouse exposed to hypogravity conditions during the first animal experiment of long stay in International Space Station (91 days and three similar mice exposed to hypergravity (2Gs conditions. We provide evidence that both microgravity and hypergravity induce similar loss of C cells with reduction of calcitonin production. Pleiotrophin over-expression result in some protection against negative effects of gravity change. Potential implication of the gravity mechanic forces in the regulation of bone homeostasis via thyroid equilibrium is discussed.

  8. Hypergravity of 10 g Changes Plant Growth, Anatomy, Chloroplast Size, and Photosynthesis in the Moss Physcomitrella patens

    Science.gov (United States)

    Takemura, Kaori; Watanabe, Rina; Kameishi, Ryuji; Sakaguchi, Naoya; Kamachi, Hiroyuki; Kume, Atsushi; Karahara, Ichirou; Hanba, Yuko T.; Fujita, Tomomichi

    2017-12-01

    The photosynthetic and anatomical responses of bryophytes to changes in gravity will provide crucial information for estimating how these plant traits evolved to adapt to changes in gravity in land plant history. We performed long-term hypergravity experiments at 10 g for 4 and 8 weeks using the moss Physcomitrella patens with two centrifuges equipped with lighting systems that enable long-term plant growth under hypergravity with irradiance. The aims of this study are (1) to quantify changes in the anatomy and morphology of P. patens, and (2) to analyze the post-effects of hypergravity on photosynthesis by P. patens in relation to these changes. We measured photosynthesis by P. patens for a population of gametophores (e.g., canopy) in Petri dishes and plant culture boxes. Gametophore numbers increased by 9% for a canopy of P. patens, with 24-27% increases in chloroplast sizes (diameter and thickness) in leaf cells. In a canopy of P. patens, the area-based photosynthesis rate ( A canopy) was increased by 57% at 10 g. The increase observed in A canopy was associated with greater plant numbers and chloroplast sizes, both of which involved enhanced CO2 diffusion from the atmosphere to chloroplasts in the canopies of P. patens. These results suggest that changes in gravity are important environmental stimuli to induce changes in plant growth and photosynthesis by P. patens, in which an alteration in chloroplast size is one of the key traits. We are now planning an ISS experiment to investigate the responses of P. patens to microgravity.

  9. Influence of long-term hyper-gravity on the reactivity of succinic acid dehydrogenase and NADPH-diaphorase in the central nervous system of fish: a histochemical study

    Science.gov (United States)

    Anken, R. H.; Rahmann, H.

    In the course of a densitometric evaluation, the histochemically demonstrated reactivity of succinic acid dehydrogenase (SDH) and of NADPH-diaphorase (NADPHD) was determined in different brain nuclei of two teleost fish (cichlid fish Oreochromis mossambicus, swordtail fish Xiphophorus helleri), which had been kept under 3g hyper-gravity for 8 days. SDH was chosen since it is a rate limiting enzyme of the Krebs cycle and therefore it is regarded as a marker for metabolic and neuronal activity. NADPHD reactivity reflects the activity of nitric oxide synthase. Nitric oxide (NO) is a gaseous intercellular messenger that has been suggested to play a major role in several different in vivo models of neuronal plasticity including learning. Within particular vestibulum-connected brain centers, significant effects of hyper-gravity were obtained, e.g., in the magnocellular nucleus, a primary vestibular relay ganglion of the brain stem octavolateralis area, in the superior rectus subdivision of the oculomotoric nucleus and within cerebellar eurydendroid cells, which in teleosts possibly resemble the deep cerebellar nucleus of higher vertebrates. Non-vestibulum related nuclei did not respond to hypergravity in a significant way. The effect of hyper-gravity found was much less distinct in adult animals as compared to the circumstances seen in larval fish (Anken et al., Adv. Space Res. 17, 1996), possibly due to a development correlated loss of neuronal plasticity.

  10. A hypergravity environment induced by centrifugation alters plant cell proliferation and growth in an opposite way to microgravity

    NARCIS (Netherlands)

    Manzano, A.I.; Herranz, R.; van Loon, J.J.W.A.; Medina, F.J.

    2012-01-01

    Seeds of Arabidopsis thaliana were exposed to hypergravity environments (2g and 6g) and germinated during centrifugation. Seedlings grew for 2 and 4 days before fixation. In all cases, comparisons were performed against an internal (subjected to rotational vibrations and other factors of the

  11. Longevity of a Paramecium cell clone in space: Hypergravity experiments as a basis for microgravity experiments

    Science.gov (United States)

    Kato, Yuko; Mogami, Yoshihiro; Baba, Shoji A.

    We proposed a space experiment aboard International Space Station to explore the effects of microgravity on the longevity of a Paramecium cell clone. Earlier space experiments in CYTOS and Space Lab D-1 demonstrated that Paramecium proliferated faster in space. In combination with the fact that aging process in Paramecium is largely related to the fission age, the results of the proliferation experiment in space may predict that the longevity of Paramecium decreases when measured by clock time. In preparation of the space experiment, we assessed the aging process under hypergravity, which is known to reduce the proliferation rate. As a result, the length of autogamy immaturity increased when measured by clock time, whereas it remained unchanged by fission age. It is therefore expected that autogamy immaturity in the measure of the clock time would be shortened under microgravity. Since the length of clonal life span of Paramecium is related to the length of autogamy immaturity, the result of hypergravity experiment supports the prediction that the clonal longevity of Paramecium under microgravity decreases. Effects of gravity on proliferation are discussed in terms of energetics of swimming during gravikinesis and gravitaxis of Paramecium.

  12. Effect of 8 days of a hypergravity condition on the sprinting speed and lower-body power of elite rugby players.

    Science.gov (United States)

    Barr, Matthew J; Gabbett, Tim J; Newton, Robert U; Sheppard, Jeremy M

    2015-03-01

    -Sprinting speed and lower-body power are considered to be key physical abilities for rugby players. A method of improving the lower-body power of athletes is simulated hypergravity. This method involves wearing a weighted vest at all times during the day for an extended period of time. There are no studies that have examined the effect of hypergravity on speed or the benefit for rugby players. An experimental group (n = 8) and a control group (n = 7) of national team rugby players took part in the study, which consisted of rugby, conditioning, speed, and strength sessions. The experimental group wore a weighted vest equating to 12% of their body mass for 8 days. All players were tested for speed and lower-body power before, 2 days after, and 9 days after the intervention. Speed testing involved the athletes completing 40-m sprints with timing lights and high-speed video cameras assessing acceleration and maximal velocity sprinting kinematics. Lower-body power was assessed using weighted countermovement jumps (CMJs). No group differences were found for sprinting speed at any point. The experimental group displayed a large decrease in acceleration ground contact time (-0.01 ± 0.005 s, d = 1.07) and a moderate increase in 15-kg CMJ velocity (0.07 ± 0.11 m·s, d = 0.71). Individual responses showed that players in the experimental group had both negative and positive speed and power responses to the training intervention. Simulated hypergravity for 8 days is likely ineffective at improving sprinting speed while undergoing standard rugby training.

  13. Planarian regeneration under micro- and hyper-gravity simulated contexts

    Science.gov (United States)

    Auletta, Gennaro; Van Loon, ing.. Jack J. W. A.; Adell, Teresa; Salo, Emili

    collectively and in synchrony to propel the mucus and allow the locomotion. The assembly of ciliary structures could be affected by gravity changes. Our strategy consists in the histological, immunological and transcriptomic analysis of planarians that have completely regenerated head and tail structures under different gravity conditions: earth gravity (1g), micro-gravity (in the random positioning machine) and hyper-gravity (in a large diameter centrifuge, at 4g and 8g). Our data shows that planarians regenerate properly head and tail structures, including the eyes and the brain, in all those conditions. However some differences between the groups could be detected: 1) a slight decrease in the number of mitotic cells is observed in hyper-gravity conditions with respect to normal and micro- gravity conditions; 2) an increase in the number of animals that fissioned the tail, which is a mechanism to reproduce asexually for planarians, was observed in hyper-gravity conditions with respect to the rest; 3) although trunk fragments regenerate head and tail properly, smaller fragments, that is, head or tail pieces, could not regenerate the missing tissues under 8g conditions, and they died. Under 4g conditions they could regenerate but not properly; 4) defects in the density and length of the cilia were observed under micro- and hyper- gravity. A transcriptomic analysis is being conducted with samples from all the groups, with the aim to detect gene categories differentially regulated under micro- and hyper- gravity contexts.

  14. Tolerance of Snakes to Hypergravity

    Science.gov (United States)

    Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.

    1994-01-01

    Sensitivity of carotid blood flow to +Gz (head-to-tail) acceleration was studied in six species of snakes hypothesized to show varied adaptive cardiovascular responses to gravity. Blood flow in the proximal carotid artery was measured in 15 snakes before, during and following stepwise increments of +0.25Gz force produced on a 2.4 m diameter centrifuge. During centrifugation each snake was confined to a straight position within an individually- fitted acrylic tube with the head facing the center of rotation. We measured the centrifugal force at the tail of the snake in order to quantify the maximum intensity of force gradient promoting antero-posterior pooling of blood. Tolerance to increased gravity was quantified as the acceleration force at which carotid blood flow ceased. This parameter varied according to the gravitational adaptation of species defined by their ecology and behavior. At the extremes, carotid blood flow decreased in response to increasing gravity and approached zero near +1Gz in aquatic and ground-dwelling species, whereas in climbing species carotid flow was maintained at forces in excess of +2Gz. Surprisingly, tolerant (arboreal) species withstood hypergravic forces of +2 to +3 G. for periods up to 1 h without cessation of carotid blood flow or apparent loss of consciousness. Data suggest that relatively tight skin of the tolerant species provides a natural antigravity suit which is of prime importance in counteracting Gz stress on blood circulation.

  15. The effects of hypergravity and substrate vibration on vestibular function in developing chickens.

    Science.gov (United States)

    Jones, S M; Warren, L E; Shukla, R; Browning, A; Fuller, C A; Jones, T A

    2000-12-01

    We used linear vestibular evoked potentials (VsEPs) to characterize peripheral and central vestibular function in birds following embryogenesis at 2G centrifugation or at elevated levels of vibration (+20dB re: background levels). Additionally, we characterized peripheral and central vestibular adaptation to 2G centrifugation in early post-hatch birds. Linear VsEP response peak latencies, amplitudes, thresholds and input/output functions were quantified and compared between experimental and control animals. Birds vibrated throughout embryogenesis and up to one-week post-hatch revealed no changes in linear VsEP response components compared to control siblings. Birds centrifuged at 2G throughout embryogenesis also evidenced no changes in the linear VsEP measured at hatch (P0). Significant changes were seen, however, for linear VsEPs of post-hatch birds placed at 2G for 7 days beginning on post-hatch day 5. Linear VsEPs for these animals displayed significant reductions in response amplitudes associated with peaks P2, N2 and P3, response peaks generated by central neural relays of gravity receptors. The earliest response components, generated by the peripheral vestibular nerve (i.e., P1, N1), were not significantly altered with the 7-day exposure to 2G. Thus, there was no evidence of generalized changes in peripheral gravity receptor excitability or in the rate of maturation in developing animals under increased levels of gravity or vibration. If gravity level plays a critical role in shaping peripheral vestibular ontogeny at magnitudes between 1 and 2G, then it may serve to stabilize function under changing G-fields or it may operate on physiological features that can not be resolved by the VsEP. In contrast, exposure to elevated gravity during post-hatch periods does alter central vestibular function thus providing direct evidence for central vestibular adaptation to the gravitational environment. The fact that central functional change was observed in hatchlings

  16. Occupational radiation exposure in work with radioactive materials

    International Nuclear Information System (INIS)

    Georgiev, G.V.

    1975-01-01

    Radiation exposure to personnel dealing with radioactive materials is studied on a national scale. The survey covers any type of radiation work except for mining and milling of radioactive ore, fuel production, and nuclear reactor operation. Assessments are based on a decade's collection of personnel monitoring data obtained by film dosimetry techniques, as well as on data from systematic operational site monitoring. Statistical analysis indicated exposures based on personal records to follow a normal distribution pattern and, hence, arithmetic averages to be representative. Airborne concontrations of radioactive materials and aerosols in working areas are shown to follow a logarithmic normal distribution pattern, so that geometric means are representative. Radiation exposures are generally found to be well below annual maximum permissible doses for radiation workers. However, their distribution among employee groups is nonuniform. Group A, comprising about 700 subjects, received mean annual gonad doses of more than 1000 mrem; group B, about 670 subjects, had doses ranging from 100 to 500 mrem per year; and group C, 1610 subjects, received less than 100 mrem per year. Most of the radiation dose is accounted for by external radiation, which contributed 0.327 mrem to the genetically significant population dose (0.227 from exposure to males, and 0.025 mrem from exposure to females). Analysis of accidental exposures occurring over the period 1963-1973 indicated that the contribution of this source is substantial as compared to routine work (1.0:0.3). Based on the results obtained, a number of preventive measures are developed and introduced into practice to improve radiological safety in work with radioactive materials. (A.B.)

  17. Expression of c-fos gene in central nervous system of adult medaka (Oryzias latipes) after hypergravity stimulation

    Science.gov (United States)

    Shimomura, S.; Ijiri, K.

    The immediate-early genes serve as useful neurobiological tools for mapping brain activity induced by a sensory stimulation. In this study, we have examined brain activity related to gravity perception of medaka (Oryzias latipes) by use of c-fos. The gene, which is homologous to the c-fos genes of other vertebrates, was identified in medaka. Functionally important domains are highly conserved among all the vertebrate species analyzed. Intraperitoneal administration of kainic acid transiently induced the c-fos mRNAs in medaka brain. The results indicate that the expression of c-fos can be utilized as a suitable anatomical marker for the increased neural activities in the central nervous system of medaka. Fish were continuously exposed to 3G hypergravity by centrifugation. Investigation of c-fos mRNA expression showed that c-fos mRNA significantly increased 30 minutes after a start of 3G exposure. The distribution of its transcripts within brains was analyzed by an in situ hybridization method. The 3G-treated medakas displayed c-fos positive cells in their brainstem regions, which are related to vestibular function, such as torus semicircularis, posterior octavu nucleus, nucleus tangentialis and inferior olive. Our results established the method to trace the activated area in the fish brain following gravity stimulation. The method will be a useful tool for understanding gravity perception in the brain.

  18. Building materials as sources of indoor exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Mustonen, R.

    1992-11-01

    The thesis deals with the radioactivity of Finnish building materials and of industrial wastes or residues which can be used as building materials or as mixing substances of such materials. The external and internal exposure to radiation from building materials is described. The study also discusses with the methods used for measuring concentrations of natural and artificial gamma emitters in different kinds of materials and the amount of radon exhaling from building materials. A computational method for assessing the gamma ray exposure inside dwellings is desribed, and the results are compared with those of other corresponding methods. The results of the simple method described here are in good agreement with those obtained with the more refined Monte Carlo technique

  19. Factors associated with occupational exposure to biological material among nursing professionals.

    Science.gov (United States)

    Negrinho, Nádia Bruna da Silva; Malaguti-Toffano, Silmara Elaine; Reis, Renata Karina; Pereira, Fernanda Maria Vieira; Gir, Elucir

    2017-01-01

    to identify factors associated with occupational exposure to biological material among nursing professionals. a cross-sectional study was conducted in a high complexity hospital of a city in the state of São Paulo, Brazil. Nursing professionals were interviewed from March to November 2015. All ethical aspects were observed. among the 226 professionals interviewed, 17.3% suffered occupational exposure to potentially contaminated biological material, with 61.5% being percutaneous. Factors such as age (p=0.003), professional experience in nursing (p=0.015), and experience at the institution (p=0.032) were associated with the accidents with biological material. most accidents with biological material among nursing professionals were percutaneous. Age, professional experience, and experience at the institution were considered factors associated with occupational exposure.

  20. Radiation exposure by man-modified materials containing natural radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Becker, D.E. [Technical Inspection Agency of Bavaria, Munich (Germany); Eder, E. [Government of Bavaria, Ministry for State Development and Environmental Affairs Development, Munich (Germany); Reichelt, A. [Technical Inspection Agency of Bavaria, Munich (Germany)

    1992-07-01

    More than one hundred materials, containing natural radioactive nuclides, are being investigated due to radiation exposure to people. This paper deals with thoriated gas mantles and shows that the radiation exposure by inhalation of radionuclides released while burning and exchange is not negligible. (author)

  1. The preliminary Long Duration Exposure Facility (LDEF) materials data base

    International Nuclear Information System (INIS)

    Funk, J.G.; Strickland, J.W.; Davis, J.M.

    1992-10-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated for LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux), and author(s) or principal investigator(s). The LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which was computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. This paper describes the LDEF Materials Data Base and includes step-by-step example searches using the data base. Information on how to become an authorized user of the system is included

  2. The preliminary Long Duration Exposure Facility (LDEF) materials data base

    Science.gov (United States)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1992-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated for LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux), and author(s) or principal investigator(s). The LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which was computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. This paper describes the LDEF Materials Data Base and includes step-by-step example searches using the data base. Information on how to become an authorized user of the system is included.

  3. Optospectroscopic Detection of Primary Reactions Associated with the Graviperception of Phycomyces. Effects of Micro- and Hypergravity1

    Science.gov (United States)

    Schmidt, Werner; Galland, Paul

    2004-01-01

    The graviperception of sporangiophores of the fungus Phycomyces blakesleeanus involves gravity-induced absorbance changes (GIACs) that represent primary responses of gravitropism (Schmidt and Galland, 2000). GIACs (ΔA460–665) of sporangiophores were measured in vivo with a micro-dual wavelength spectrometer at 460 and 665 nm. Sporangiophores that were placed horizontally displayed an instant increase of the GIACs while the return to the vertical position elicited an instant decrease. The GIACs are specific for graviperception, because they were absent in a gravitropism mutant with a defective madJ gene. During parabola flights hypergravity (1.8g) elicited a decrease of the GIACs, while microgravity (0 ± 3 × 10−2g) elicited an instant increase. Hypergravity that was generated in a centrifuge (1.5–6.5g) elicited also a decrease of the GIACs that saturated at about 5g. The GIACs have a latency of about 20 ms or shorter and are thus the fastest graviresponses ever measured for fungi, protists, and plants. The threshold for eliciting the GIACs is near 3 × 10−2g, which coincides numerically with the threshold for gravitropic bending. In contrast to gravitropic bending, which requires long-term stimulation, GIACs can be elicited by stimuli as short as 20 to 100 ms, leading to an extremely low threshold dose (acceleration × time) of about 3 × 10−3g s, a value, which is four orders of magnitude below the ones described for other organisms and which makes the GIACs of Phycomyces blakesleeanus the most sensitive gravi-response in literature. PMID:15122026

  4. Building materials as a source of a possible radiation exposure of the population

    International Nuclear Information System (INIS)

    Pensko, J.; Burkart, W.

    1986-12-01

    Two main pathways of exposure contribute to the human radiation exposure indoors: external whole body irradiation from gamma-rays originating from the walls, and exposure of lung tissue by alpha-rays emitted by radon daughters present in the inhaled air. Natural radioactive elements present in building materials produce both kinds of radioactive exposure. Uranium, thorium and potassium are sources of gamma radiations. Materials containing radium can create an alpha-radiation hazard for the human respiratory system through the exhalation of radon from room surfaces. Measurements of the natural radioactivity of building materials made in several European countries are reviewed. A preliminary assessment of the radioactivity content of potentially hazardous materials on the Swiss market shows elevated levels in imported phosphogypsum and tuff. (author)

  5. Occupational radiation Exposure at Agreement State-Licensed Materials Facilities, 1997-2010

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

    2012-07-07

    The purpose of this report is to examine occupational radiation exposures received under Agreement State licensees. As such, this report reflects the occupational radiation exposure data contained in the Radiation Exposure Information and Reporting System (REIRS) database, for 1997 through 2010, from Agreement State-licensed materials facilities.

  6. Methodology of external exposure calculation for reuse of conditional released materials from decommissioning - 59138

    International Nuclear Information System (INIS)

    Ondra, Frantisek; Vasko, Marek; Necas, Vladimir

    2012-01-01

    The article presents methodology of external exposure calculation for reuse of conditional released materials from decommissioning using VISIPLAN 3D ALARA planning tool. Production of rails has been used as an example application of proposed methodology within the CONRELMAT project. The article presents a methodology for determination of radiological, material, organizational and other conditions for conditionally released materials reuse to ensure that workers and public exposure does not breach the exposure limits during scenario's life cycle (preparation, construction and operation of scenario). The methodology comprises a proposal of following conditions in the view of workers and public exposure: - radionuclide limit concentration of conditionally released materials for specific scenarios and nuclide vectors, - specific deployment of conditionally released materials eventually shielding materials, workers and public during the scenario's life cycle, - organizational measures concerning time of workers or public stay in the vicinity on conditionally released materials for individual performed scenarios and nuclide vectors. The above mentioned steps of proposed methodology have been applied within the CONRELMAT project. Exposure evaluation of workers for rail production is introduced in the article as an example of this application. Exposure calculation using VISIPLAN 3D ALARA planning tool was done within several models. The most exposed profession for scenario was identified. On the basis of this result, an increase of radionuclide concentration in conditional released material was proposed more than two times to 681 Bq/kg without no additional safety or organizational measures being applied. After application of proposed safety and organizational measures (additional shielding, geometry changes and limitation of work duration) it is possible to increase concentration of radionuclide in conditional released material more than ten times to 3092 Bq/kg. Storage

  7. Extension of the Poincaré group with half-integer spin generators: hypergravity and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Fuentealba, Oscar [Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Matulich, Javier; Troncoso, Ricardo [Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia (Chile)

    2015-09-01

    An extension of the Poincaré group with half-integer spin generators is explicitly constructed. We start discussing the case of three spacetime dimensions, and as an application, it is shown that hypergravity can be formulated so as to incorporate this structure as its local gauge symmetry. Since the algebra admits a nontrivial Casimir operator, the theory can be described in terms of gauge fields associated to the extension of the Poincaré group with a Chern-Simons action. The algebra is also shown to admit an infinite-dimensional non-linear extension, that in the case of fermionic spin-3/2 generators, corresponds to a subset of a contraction of two copies of WB{sub 2}. Finally, we show how the Poincaré group can be extended with half-integer spin generators for d≥3 dimensions.

  8. How absolute EIT reflects the dependence of unilateral lung aeration on hyper-gravity and weightlessness?

    Science.gov (United States)

    Hahn, G; Just, A; Hellige, G; Dittmar, J; Quintel, M

    2013-09-01

    We studied the influence of three gravity levels (0, 1 and 1.8 g) on unilateral lung aeration in a left lateral position by the application of absolute electrical impedance tomography. The electrical resistivity of the lung tissue was considered to be a meaningful indicator for lung aeration since changes in resistivity have already been validated in other studies to be proportional to changes in lung volume. Twenty-two healthy volunteers were studied during parabolic flights with three phases of different gravity, each lasting ∼20-22 s. Spontaneous breathing at normal tidal volume VT and at increased VT was performed. During transition to hyper-gravity mean expiratory resistivities (±SD in Ωm) increased at normal VT in the upper (right) lung from 7.6 ± 1.5 to 8.0 ± 1.7 and decreased from 5.8 ± 1.2 to 5.7 ± 1.2 in the lower (left) lung. Inspiratory resistivity values are 8.3 ± 1.6 to 8.8 ± 1.8 (right) and 6.3 ± 1.3 to 6.0 ± 1.3 (left). At increased VT, the changes in resistivities at end-expiration were 7.7 ± 1.5 to 8.0 ± 1.7 (right) and 5.8 ± 1.2 to 5.7 ± 1.2 (left). Corresponding end-inspiratory values are 9.9 ± 1.9 to 10.0 ± 2.0 (right) and 8.6 ± 2.1 to 7.9 ± 2.0 (left). During weightlessness, the distortion in the lungs disappeared and both lungs showed a nearly identical aeration, which was between the levels displayed at normal gravity. The small increase in resistivity for the upper lung during transition to hyper-gravity from 1 to 1.8 g at increased VT suggests that the degressive part of the pressure-volume curve has already been reached at end-inspiration. The results for a left lateral position are in agreement with West's lung model which has been introduced for cranio-caudal gravity dependence in the lungs.

  9. The influence of bedding materials on bio-aerosol exposure in dairy barns exposure in dairy barns

    NARCIS (Netherlands)

    Samadi, S.; van Eerdenburg, F.J.C.M.; Jamshidifard, A.R.; Otten, G.P.; Droppert, M.; Heederik, D.J.J.; Wouters, I.M.

    2012-01-01

    Bio-aerosol is a well-known cause of respiratory diseases. Exposure to bio-aerosols has been reported previously in dairy barns, but little is known about the sources of bio-aerosol. Bedding materials might be a significant source or substrate for bio-aerosol exposure. The aim of this study was to

  10. Role of Neurotrophins in Mediating the Effect of Altered Gravity on the Developing Rat Cerebellum.

    Science.gov (United States)

    Sajdel-Sulkowska, Elizabeth

    We previously reported that perinatal exposure to hypergravity resulted in oxidative stress that may contribute to the decrease in Purkinje cell number and the impairment of motor coordination in hypergravity-exposed rat neonates. However, the increase in oxidative stress markers was not uniformly observed in males and females. In the present study we explored the possibility that exposure to hypergravity may result in altered level of neurotrophins, which have been recognized as mediators of both neurodegenerative and neuroprotective mechanisms in the central nervous system. An elevation of neurotrophin-3 (NT-3) has been observed in animal models of hypoxia. To test this hypothesis we compared cerebellar levels of NT-3 between stationary control (SC) and rat neonates exposed perinatally to 1.65 G on a 24-ft centrifuge. The levels of NT-3 were determined by specific ELISA. Preliminary data suggests a 123

  11. Exposure to radiation from the natural radioactivity in building materials

    International Nuclear Information System (INIS)

    1979-05-01

    Radiation exposure of members of the public can be increased appreciably by the use of building materials containing above-normal levels of natural radioactivity. This phenomenon has attracted attention in recent years, and in this review, an attempt is made to the quantify exposures incurred under various circumstances. The second section of the review is a general survey of those building materials, mostly industrial wastes, that have aroused interest in Member countries. The probability that environmental pressures may cause such wastes to be used more and more by building industries may lead to similar situations in the future. Other review material of a relevant nature is described in the third section. Primordial radionuclides only are considered here. They are: potassium-40 (K-40); radium-226 (Ra-226) and its decay products; the series headed by thorium-232 (Th-232). The important radiological consequences of the natural radioactivity in building materials are two-fold, irradiation of the body by gamma rays and irradiation of the lung tissues by radon-222 (Rn-222) decay products or daughters. These consequences cannot be explored quantitatively except in relation to the specific activities of the nuclides of interest, and the approach adopted in this review is to assess the consequences in terms of the incremental radiation exposures that would be incurred by occupants of substantial dwellings entirely constructed of materials with various specific activities or combinations thereof. Gamma rays are dealt with in the fourth section and radon daughters in the fifth

  12. External exposure model for various geometries of contaminated materials

    International Nuclear Information System (INIS)

    LePoire, D.; Kamboj, S.; Yu, C.

    1996-01-01

    A computational model for external exposure was developed for the U.S. Department of Energy's residual radioactive material guideline computer code (RESRAD) on the basis of dose coefficients from Federal Guidance Report No. 12 and the point-kernel method. This model includes the effects of different materials and exposure distances, as well as source geometry (cover thickness, source depth, area, and shape). A material factor is calculated on the basis of the point-kernel method using material-specific photon cross-section data and buildup factors. This present model was incorporated into RESRAD-RECYCLE (a RESRAD family code used for computing radiological impacts of metal recycling) and is being incorporated into RESRAD-BUILD (a DOE recommended code for computing impacts of building decontamination). The model was compared with calculations performed with the Monte Carlo N-Particle Code (MCNP) and the Microshield code for three different source geometries, three different radionuclides ( 234 U, 238 U, and 60 Co, representing low, medium, and high energy, respectively), and five different source materials (iron, copper, aluminum, water, and soil). The comparison shows that results of this model are in very good agreement with MCNP calculations (within 5% for 60 Co and within 30% for 238 U and 234 U for all materials and source geometries). Significant differences (greater than 100%) were observed with Microshield for thin 234 U sources

  13. Reactivity of Acetylcholine Esterase in inner Ear Maculae of Fish after Development at Hypergravity

    Science.gov (United States)

    Feucht, I.; Hilbig, R.; Anken, R.

    It has been shown earlier that the growth of inner ear otoliths of larval fish is (among other environmental factors) guided by the gravity vector. This guidance most probably is effected by the efferent vestibular system in the brainstem, because a transection of the nervus vestibularis has been shown to effect a cessation of the supply of calcium to the otoliths. The efferent innervation of fish inner ear maculae uses the synaptic transmitter acetylcholine (ACh). Therefore, we were - in order to further assess the role of the efferent system for otolith growth - prompted to determine ACh esterase-reactivity in the sensory epithelium of the utricle and the saccule (as well as in a non-gravity relevant brain region for control) in larval cichlid fish (Oreochromis mossambicus), which had been maintained at hypergravity during their development. The respective data will be communicated at the meeting. Acknowledgement: This work was financially supported by the German Aerospace Center (DLR) (FKZ: 50 WB 9997).

  14. Internal exposure from building materials exhaling (222)Rn and (220)Rn as compared to external exposure due to their natural radioactivity content.

    Science.gov (United States)

    Ujić, Predrag; Celiković, Igor; Kandić, Aleksandar; Vukanac, Ivana; Durasević, Mirjana; Dragosavac, Dusan; Zunić, Zora S

    2010-01-01

    The main scope of this paper is to point out the importance of introducing radon and thoron exhalation measurements from building materials in the regulating frame. Currently (2009), such a regulation of this kind of exposure is not explicitly included in the Serbian regulating network. To this end, this work reports concentration measurements of (226)Ra, (232)Th and (40)K and radon and thoron exhalation rates from building materials used in Serbia. Following detailed analysis, it was noticed that both internal exposures to radon and/or thoron exhaling from building materials may exceed external exposures to their precursors contained therein.

  15. Evaluation of internal/external exposure from interior building materials

    International Nuclear Information System (INIS)

    Furuta, Etsuko; Morita-Murase, Yuko; Yoshizawa, Yukio

    2008-01-01

    Internal exposure to alpha particles emitted from 222 Rn (radon) and its daughters is the second leading cause of lung cancer. As a source of indoor radon in home, there are interior building materials that contain radioactive minerals. These radioactive consumer products have been claimed by distributors to have effect of 'minus-ion' or 'radon spring' for healthy promotion. We analyzed radioactive nuclides contained in the interior building materials, and measured radon levels released from them. The results of gamma-ray spectrometry revealed that these interior building materials contain U- and Th-series nuclides. The densities of some radioactive nuclides in the tile used for a bathroom exceeded the exempt limits of International Basic Safety Standards. However, the radon densities released from the tile was lower than detectable limit. In contrast, one of the wallpaper released 34 Bq·m -3 of radon gas in a 50-liter container. This value is two times higher than the average radon level in Japanese homes. The minus-ion effect' wallpapers are thought to be a cause of residential exposure to radon. (author)

  16. How absolute EIT reflects the dependence of unilateral lung aeration on hyper-gravity and weightlessness?

    International Nuclear Information System (INIS)

    Hahn, G; Just, A; Hellige, G; Dittmar, J; Quintel, M

    2013-01-01

    We studied the influence of three gravity levels (0, 1 and 1.8 g) on unilateral lung aeration in a left lateral position by the application of absolute electrical impedance tomography. The electrical resistivity of the lung tissue was considered to be a meaningful indicator for lung aeration since changes in resistivity have already been validated in other studies to be proportional to changes in lung volume. Twenty-two healthy volunteers were studied during parabolic flights with three phases of different gravity, each lasting ∼20–22 s. Spontaneous breathing at normal tidal volume V T and at increased V T was performed. During transition to hyper-gravity mean expiratory resistivities (±SD in Ωm) increased at normal V T in the upper (right) lung from 7.6 ± 1.5 to 8.0 ± 1.7 and decreased from 5.8 ± 1.2 to 5.7 ± 1.2 in the lower (left) lung. Inspiratory resistivity values are 8.3 ± 1.6 to 8.8 ± 1.8 (right) and 6.3 ± 1.3 to 6.0 ± 1.3 (left). At increased V T , the changes in resistivities at end-expiration were 7.7 ± 1.5 to 8.0 ± 1.7 (right) and 5.8 ± 1.2 to 5.7 ± 1.2 (left). Corresponding end-inspiratory values are 9.9 ± 1.9 to 10.0 ± 2.0 (right) and 8.6 ± 2.1 to 7.9 ± 2.0 (left). During weightlessness, the distortion in the lungs disappeared and both lungs showed a nearly identical aeration, which was between the levels displayed at normal gravity. The small increase in resistivity for the upper lung during transition to hyper-gravity from 1 to 1.8 g at increased V T suggests that the degressive part of the pressure–volume curve has already been reached at end-inspiration. The results for a left lateral position are in agreement with West's lung model which has been introduced for cranio-caudal gravity dependence in the lungs. (paper)

  17. Human exposure to emissions from building materials

    DEFF Research Database (Denmark)

    Kjærgaard, S.; Hauschildt, P.; Pejtersen, Jan

    1999-01-01

    found on peak flow, eye foam formation, tear fluid cells, or conjunctival epithelial damage. Among subjective evaluations only sound intensity rating was significant. A correlation was found between acute nose irritation rating and change in nasal volume.Conclusions. The findings indicate physiological......Objectives. Reactions to emissions from building matrials were studied in a climate chamber as part of an intervention study in an office building. New and existing flooring materials were compared with regard to comfort and health.Methods. Twenty subjects were exposed four times for six hours...... respectively to clean air, to emissions from linoleum, from carpet, and from an alternative new vinyl. Measurements of objective and subjective effects were made.Results. Tear film stability decreased after exposure to linoleum. The nasal volume decreased near-significantly for all exposures. No effects were...

  18. Characterization of a Newly Developed Contrast Enhancement Material for G-line Exposure

    Science.gov (United States)

    Nakase, Makoto; Niki, Hirokazu; Satoh, Takashi; Kumagae, Akitoshi

    1987-02-01

    The bleaching characteristics for a contrast enhancement layer (CEL) material were succesfully described by parameters A, B and C; these were used for the modeling of a positive photoresist exposure. As a result, it was clarified that both the A and C values should be large, but the B value must be as small as possible. According to the obtained information, a new CEL material was proposed, which consists of the diazonium compound and the alkyl modified phenol resin. Using the composed CEL material, a submicron resist pattern with a steep profile was obtained. Furthermore, it was found that the development latitude increases, but that the exposure latitude does not change upon using the CEL.

  19. Effects of hypergravity on the development of cell number and asymmetry in fish brain nuclei

    Science.gov (United States)

    Anken, R. H.; Werner, K.; Rahmann, H.

    Larval cichlid fish ( Oreochromis mossambicus) siblings were subjected to 3g hypergravity (hg) and total darkness for 21 days during development and subsequently processed for conventional histology. Further siblings reared at 1g and alternating light/dark (12h:12h) conditions served as contros. Cell number counts of the visual Nucleus isthmi (Ni) versus the vestibular Nucleus magnocellularis (Nm) revealed that in experimental animals total cell number was decreased in the Ni, possibly due to retarded growth as a result of the lack of visual input whereas no effect was observed in the Nm. Calculating the percentual asymmetry in cell number (i.e., right vs. the left side of the brain), no effects of hg/darkness were seen in the Ni, whereas asymmetry was slightly increased in the Nm. Since the asymmetry of inner ear otoliths is decreased under hg, this finding may indicate efferent vestibular action of the CNS on the level of the Nm by means of a feedback mechanism.

  20. Investigation of Deuterium Loaded Materials Subject to X-Ray Exposure

    Science.gov (United States)

    Benyo, Theresa L.; Steinetz, Bruce M.; Hendricks, Robert C.; Martin, Richard E.; Forsley, Lawrence P.; Daniels, Christopher C.; Chait, Arnon; Pines, Vladimir; Pines, Marianna; Penney, Nicholas; hide

    2017-01-01

    Results are presented from an exploratory study involving x-ray irradiation of select deuterated materials. Titanium deuteride plus deuterated polyethylene, deuterated polyethylene alone, and for control, hydrogen-based polyethylene samples and nondeuterated titanium samples were exposed to x-ray irradiation. These samples were exposed to various energy levels from 65 to 280 kV with prescribed electron flux from 500 to 9000 µA impinging on a tungsten braking target, with total exposure times ranging from 55 to 280 min. Gamma activity was measured using a high-purity germanium (HPGe) detector, and for all samples no gamma activity above background was detected. Alpha and beta activities were measured using a gas proportional counter, and for select samples beta activity was measured with a liquid scintillator spectrometer. The majority of the deuterated materials subjected to the microfocus x-ray irradiation exhibited postexposure beta activity above background and several showed short-lived alpha activity. The HPE and nondeuterated titanium control samples exposed to the x-ray irradiation showed no postexposure alpha or beta activities above background. Several of the samples (SL10A, SL16, SL17A) showed beta activity above background with a greater than 4s confidence level, months after exposure. Portions of SL10A, SL16, and SL17A samples were also scanned using a beta scintillator and found to have beta activity in the tritium energy band, continuing without noticeable decay for over 12 months. Beta scintillation investigation of as-received materials (before x-ray exposure) showed no beta activity in the tritium energy band, indicating the beta emitters were not in the starting materials.

  1. Occupational exposure to potentially infectious biological material in a dental teaching environment.

    Science.gov (United States)

    Machado-Carvalhais, Helenaura P; Ramos-Jorge, Maria L; Auad, Sheyla M; Martins, Laura H P M; Paiva, Saul M; Pordeus, Isabela A

    2008-10-01

    The aims of this cross-sectional study were to determine the prevalence of occupational accidents with exposure to biological material among undergraduate students of dentistry and to estimate potential risk factors associated with exposure to blood. Data were collected through a self-administered questionnaire (86.4 percent return rate), which was completed by a sample of 286 undergraduate dental students (mean age 22.4 +/-2.4 years). The students were enrolled in the clinical component of the curriculum, which corresponds to the final six semesters of study. Descriptive, bivariate, simple logistic regression and multiple logistic regression (Forward Stepwise Procedure) analyses were performed. The level of statistical significance was set at 5 percent. Percutaneous and mucous exposures to potentially infectious biological material were reported by 102 individuals (35.6 percent); 26.8 percent reported the occurrence of multiple episodes of exposure. The logistic regression analyses revealed that the incomplete use of individual protection equipment (OR=3.7; 95 percent CI 1.5-9.3), disciplines where surgical procedures are carried out (OR=16.3; 95 percent CI 7.1-37.2), and handling sharp instruments (OR=4.4; 95 percent CI 2.1-9.1), more specifically, hollow-bore needles (OR=6.8; 95 percent CI 2.1-19.0), were independently associated with exposure to blood. Policies of reviewing the procedures during clinical practice are recommended in order to reduce occupational exposure.

  2. Radiation exposures of workers and the public associated with the transport of radioactive material in Germany

    International Nuclear Information System (INIS)

    Schwarz, G.; Fett, H.J.; Lange, F.

    2004-01-01

    Most radioactive material packages transported emit penetrating ionising radiation and radiation exposures of transport workers and the public may occur during their transport. The radiation exposures incurred by transport workers and members of the public can vary significantly depending on a number of factors: most important is the type of radiation emitted (primarily gamma and neutron radiation), the radiation field intensity in the surrounding of a package and conveyance and the duration of exposure to ionising radiation. The information and guidance material on occupational exposures has primarily been derived from a survey and analysis of personal monitoring data provided by a number of commercial transport operators in Germany known as major carrier and handler organisations of fuel cycle and non-fuel cycle material (in terms of the number of pack-ages and the activity carriaged). To some extent advantage was taken of compilations of statistical transport and exposure data collated within other transport safety analysis studies including research projects funded by the European Commission. The exposure data collected cover the time period of the last 4 - 8 years and are most representative for routine transport operations closely related to the movement phase of packaged radioactive material, i.e. receipt, vehicle loading, carriage, in-transit storage, intra-/intermodal transfer, vehicle unloading and delivery at the final destination of loads of radioactive material and packages and the related supervisory and health physics functions. Radiation dose monitoring of members of the public, however, is generally impracticable and, consequently, the information available relies on employing dose assessment models and reflects radiation exposures incurred by hypothetical or critical group individuals of members of the public under normal conditions of transport

  3. Exposures to asbestos arising from bandsawing gasket material.

    Science.gov (United States)

    Fowler, D P

    2000-05-01

    A simulation of bandsawing sheet asbestos gasket material was performed as part of a retrospective exposure evaluation undertaken to assist in determining causation of a case of mesothelioma. The work was performed by bandsawing a chrysotile asbestos (80%)/neoprene gasket sheet with a conventional 16-inch woodworking bandsaw inside a chamber. Measurements of airborne asbestos were made using conventional area and personal sampling methods, with analysis of collected samples by transmission electron microscopy (TEM) and phase contrast microscopy (PCM). These were supplemented by qualitative scanning electron microscopy (SEM) examinations of some of the airborne particles collected on the filters. In contrast with findings from studies examining manual handling (installation and removal) of gaskets, airborne asbestos concentrations from this operation were found to be well above current Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) (eight-hour time-weighted average [TWA]) and excursion limit (30-minute) standards. Although some "encapsulation" effect of the neoprene matrix was seen on the particles in the airborne dust, unencapsulated individual fiber bundles were also seen. Suggestions for the implications of the work are given. In summary, the airborne asbestos concentrations arising from this work were quite high, and point to the need for careful observation of common sense precautions when manipulation of asbestos-containing materials (even those believed to have limited emissions potential) may involved machining operations.

  4. A novel centrifuge for animal physiological researches in hypergravity and variable gravity forces

    Science.gov (United States)

    Kumei, Yasuhiro; Hasegawa, Katsuya; Inoue, Katarzyna; Zeredo, . Jorge; Kimiya Narikiyo, .; Maezawa, Yukio; Yuuki Watanabe, .; Aou, Shuji

    2012-07-01

    Understanding the physiological responses to altered gravitational environments is essential for space exploration and long-term human life in space. Currently available centrifuges restrict experimentation due to limited space for laboratory equipments. We developed a medium-sized disc-type centrifuge to conduct ground-based studies on animal physiological response to hypergravity and variable gravity forces, which features the following advantages: 1) It enables simultaneous examination into the effects of various gravity levels including rotation control. 2) Beside the constant G force, variable G forces (delta-G) can be loaded to generate gravitational acceleration and deceleration. 3) Multiple imaging techniques can be used, such as high-speed video (16 channels wireless) and photography, X-ray, and infra-red imaging. 4) Telemetry is available on the disc table of the centrifuge through 128-channel analog and 32-channel digital signals, with sampling rate of 100 kHz for 2 hours. Our dynamic-balanced centrifuge can hold payloads of 600 kg that enable experimentation on various models of living organisms, from cells to animals and plants. We use this novel centrifuge for neurochemical and neurophysiological approaches such as microdialysis and telemetrical recording of neuronal activity in the rat brain. Financial supports from JSPS to K. Hasegawa (2011) and from JAXA to Y. Kumei (2011).

  5. Effects of Advertising Exposure on Materialism and Self-Esteem: Advertised Luxuries as a Feel-Good Strategy?

    OpenAIRE

    Lens, I.; Pandelaere, Mario; Warlop, L.

    2010-01-01

    Two experiments investigate the relations between advertising exposure, self-esteem and materialism. Evidence is found that ads for luxury products may influence consumers’ levels of materialism and self-esteem. Consumers who claim being able to buy advertised luxuries report increased levels of materialism and an enhanced self-esteem after the exposure. In contrast, not being able to buy advertised luxuries appears to threaten consumers’ self-esteem and to diminish their materialistic pursui...

  6. Development of a Method to Assess the Radiation Dose due to Internal Exposure to Short-lived Radioactive Materials

    International Nuclear Information System (INIS)

    Benmaman, D.; Koch, J.; Ribak, J.

    2014-01-01

    Work with radioactive materials requires monitoring of the employees' exposure to ionizing radiation. Employees may be exposed to radiation from internal and/or external exposure. Control of external exposure is mostly conducted through personal radiation dosimeters provided to employees. Control of internal exposure can be performed by measuring the concentration of radioactive substances excreted in urine or through whole-body counting in which the entire body or target organs are scanned with a sensitive detector system (1). According to the regulations in Israel an employee that may be internally exposed must undergo an exposure control at least once every three months. The idea lying behind the control of internal exposure by urine testing is that if radioactive material has penetrated into the employee body, it can be detected even if the test is performed once every three months. A model was fitted for each element describing its dispersion in the body and its excretion therefrom (2). By means of this model, one can estimate the activity that entered the body and calculate the resulting radiation dose to which the worker was exposed. There is a problem to implement this method when it comes to short-lived radioactive materials, for which it is very likely that the material that penetrated into the body has decayed and cannot be detected by testing once every three months. As a result, workers with short-lived radioactive materials are presently not monitored for internal exposure, in contradiction to the requirements of the Safety at Work Regulations. The purpose of the study is to develop an alternative method to assess the amount of radioactive material absorbed in the body and the resulting radiation dose due to internal exposure of workers to short-lived radioactive materials

  7. Characterization of commercial proton exchange membrane materials after exposure to beta and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, S.N.; Carson, R.; Muirhead, C.; Li, H.; Castillo, I.; Boniface, H.; Suppiah, S. [Canadian Nuclear Laboratories, Chalk River, ON (Canada); Ratnayake, A.; Robinson, J. [Tyne Engineering Inc., Burlington, ON (Canada)

    2015-03-15

    Proton Exchange Membrane (PEM) type electrolysis cells have a potential use for tritium removal and heavy water upgrading. AECL is currently exposing various commercial PEM materials to both gamma (Cobalt-60 source) and beta (tritiated water) radiation to study the effects of radiation on these materials. This paper summarizes the testing methods and results that have been collected to date. The PEM materials that are or have been exposed to radiation are: Nafion 112, 212, 117 and 1110. Membrane characterization pre- and post- exposure consists of non-destructive inspection (FTIR, SEM/XPS), mechanical (tensile strength, percentage elongation, and modulus), electrical (resistance), or chemical (ion-exchange capacity - IEC). It has appeared that the best characterization techniques to compare exposed versus unexposed membranes were IEC, ultimate tensile strength and percent elongation. These testing techniques are easy and cheap to perform. The non-destructive tests, such as SEM and FTIR did not provide particularly useful information on radiation-induced degradation. Where changes in material properties were measured after radiation exposure, they would be expected to result in poorer cell performance. However, for modest γ-radiation exposure, all membranes showed a slight decrease in cell voltage (better performance). In contrast, the one β-radiation exposed membrane did show the expected increase in cell voltage. The counterintuitive trend for γ-radiation exposed membranes is not yet understood. Based on these preliminary results, it appears that γ- and β-radiation exposures have different effects.

  8. Children's advertising exposure, advertised product desire, and materialism: a longitudinal study

    NARCIS (Netherlands)

    Opree, S.J.; Buijzen, M.; van Reijmersdal, E.A.; Valkenburg, P.M.

    2014-01-01

    Previous studies have suggested that advertising exposure affects materialism among youth. However, this causal effect has not been investigated among children in middle childhood, who are in the midst of consumer development. Furthermore, the mechanism underlying this relation has not been studied.

  9. Vectorization of nuclear codes for atmospheric transport and exposure calculation of radioactive materials

    International Nuclear Information System (INIS)

    Asai, Kiyoshi; Shinozawa, Naohisa; Ishikawa, Hirohiko; Chino, Masamichi; Hayashi, Takashi

    1983-02-01

    Three computer codes MATHEW, ADPIC of LLNL and GAMPUL of JAERI for prediction of wind field, concentration and external exposure rate of airborne radioactive materials are vectorized and the results are presented. Using the continuous equation of incompressible flow as a constraint, the MATHEW calculates the three dimensional wind field by a variational method. Using the particle-in -cell method, the ADPIC calculates the advection and diffusion of radioactive materials in three dimensional wind field and terrain, and gives the concentration of the materials in each cell of the domain. The GAMPUL calculates the external exposure rate assuming Gaussian plume type distribution of concentration. The vectorized code MATHEW attained 7.8 times speedup by a vector processor FACOM230-75 APU. The ADPIC and GAMPUL are estimated to attain 1.5 and 4 times speedup respectively on CRAY-1 type vector processor. (author)

  10. 41 CFR 50-204.22 - Exposure to airborne radioactive material.

    Science.gov (United States)

    2010-07-01

    ... employer shall possess, use or transport radioactive material in such a manner as to cause any employee... excess of the limits specified in Table I of Appendix B to 10 CFR Part 20. The limits given in Table I... table may be increased proportionately. In any such period where the number of hours of exposure is...

  11. Predictive modeling of terrestrial radiation exposure from geologic materials

    Science.gov (United States)

    Haber, Daniel A.

    Aerial gamma ray surveys are an important tool for national security, scientific, and industrial interests in determining locations of both anthropogenic and natural sources of radioactivity. There is a relationship between radioactivity and geology and in the past this relationship has been used to predict geology from an aerial survey. The purpose of this project is to develop a method to predict the radiologic exposure rate of the geologic materials in an area by creating a model using geologic data, images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), geochemical data, and pre-existing low spatial resolution aerial surveys from the National Uranium Resource Evaluation (NURE) Survey. Using these data, geospatial areas, referred to as background radiation units, homogenous in terms of K, U, and Th are defined and the gamma ray exposure rate is predicted. The prediction is compared to data collected via detailed aerial survey by our partner National Security Technologies, LLC (NSTec), allowing for the refinement of the technique. High resolution radiation exposure rate models have been developed for two study areas in Southern Nevada that include the alluvium on the western shore of Lake Mohave, and Government Wash north of Lake Mead; both of these areas are arid with little soil moisture and vegetation. We determined that by using geologic units to define radiation background units of exposed bedrock and ASTER visualizations to subdivide radiation background units of alluvium, regions of homogeneous geochemistry can be defined allowing for the exposure rate to be predicted. Soil and rock samples have been collected at Government Wash and Lake Mohave as well as a third site near Cameron, Arizona. K, U, and Th concentrations of these samples have been determined using inductively coupled mass spectrometry (ICP-MS) and laboratory counting using radiation detection equipment. In addition, many sample locations also have

  12. Radiation exposure resulting from the transport of radioactive materials within the United Kingdom

    International Nuclear Information System (INIS)

    Shaw, K.B.; Mairs, J.H.; Gelder, R.; Hughes, J.S.; Holyoak, B.

    1983-01-01

    The transport of technetium generators for hospital use accounts for some 50% of the occupational exposure from the normal transport of radioactive materials. Other isotopes for medical and industrial use contribute about 35% of the occupational exposure and some 15% can be attributed to transportation as a result of the nuclear fuel cycle including the transport of irradiated nuclear fuel. 5 references, 6 tables

  13. Standard Practice for Exposure of Solar Collector Cover Materials to Natural Weathering Under Conditions Simulating Stagnation Mode

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1992-01-01

    1.1 This practice covers a procedure for the exposure of solar collector cover materials to the natural weather environment at elevated temperatures that approximate stagnation conditions in solar collectors having a combined back and edge loss coefficient of less than 1.5 W/(m2 · °C). 1.2 This practice is suitable for exposure of both glass and plastic solar collector cover materials. Provisions are made for exposure of single and double cover assemblies to accommodate the need for exposure of both inner and outer solar collector cover materials. 1.3 This practice does not apply to cover materials for evacuated collectors, photovoltaic cells, flat-plate collectors having a combined back and edge loss coefficient greater than 1.5 W/(m2 ·° C), or flat-plate collectors whose design incorporates means for limiting temperatures during stagnation. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard t...

  14. Effects of LDEF flight exposure on selected polymer matrix resin composite materials

    Science.gov (United States)

    Slemp, Wayne S.; Young, Philip R.; Witte, William G., Jr.; Shen, James Y.

    1992-01-01

    The characterization of selected graphite fiber reinforced epoxy (934 and 5208) and polysulfone (P1700) matrix resin composites materials which received over five years and nine months of exposure to the low earth orbit (LEO) environment in experiment AO134 on the Long Duration Exposure Facility is reported. The changes in mechanical properties of ultimate tensile strength and tensile modulus for exposed flight specimens are compared to the three sets of control specimens. Marked changes in surface appearance are discussed, and resin loss is reported. The chemical characterization including infrared, thermal, and selected solution property measurements showed that the molecular structure of the polymetric matrix had not changed significantly in response to this exposure.

  15. 3. Impact of altered gravity on CNS development and behavior in male and female rats

    Science.gov (United States)

    Sajdel-Sulkowska, E. M.; Nguon, K.; Ladd, B.; Sulkowski, V. A.; Sulkowski, Z. L.; Baxter, M. G.

    The present study examined the effect of altered gravity on CNS development. Specifically, we compared neurodevelopment, behavior, cerebellar structure and protein expression in rat neonates exposed perinatally to hypergravity. Pregnant Sprague-Dawley rats were exposed to 1.5G-1.75G hypergravity on a 24-ft centrifuge starting on gestational day (G) 10, through giving birth on G22/G23, and nursing their offspring through postnatal day (P) 21. Cerebellar mass on P6 was decreased in 1.75G-exposed male pups by 27.5 percent; in 1.75G-exposed female pups it was decreased by 22.5 percent. The observed cerebellar changes were associated with alterations in neurodevelopment and motor behavior. Exposure to hypergravity impaired performance on the following neurocognitive tests: (1) righting time on P3 was more than doubled in 1.75G-exposed rats and the effect appeared more pronounced in female pups, (2) startle response on P10 was delayed in both male and female HG pups; HG pups were one-fifth as likely to respond to a clapping noise as SC pups, and (3) performance on a rotorod on P21 was decreased in HG pups; the duration of the stay on rotorod recorded for HG pups of both sexes was one tenth of the SC pups. Furthermore, Western blot analysis of selected cerebellar proteins suggested gender-specific changes in glial and neuronal proteins. On P6, GFAP expression was decreased by 59.2 percent in HG males, while no significant decrease was observed in female cerebella. Synaptophysin expression was decreased in HG male neonates by 29.9 percent and in HG female neonates by 20.7 percent as compared to its expression in SC cerebella. The results of this experiment suggest that perinatal exposure to hypergravity affects cerebellar development and behavior differently in male and female neonates. If one accepts that hypergravity is a good paradigm to study the effect of microgravity on the CNS, and since males and females were shown to respond differently to hypergravity, it can be

  16. Standard Practice for Exposure of Cover Materials for Solar Collectors to Natural Weathering Under Conditions Simulating Operational Mode

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This practice provides a procedure for the exposure of cover materials for flat-plate solar collectors to the natural weather environment at temperatures that are elevated to approximate operating conditions. 1.2 This practice is suitable for exposure of both glass and plastic solar collector cover materials. Provisions are made for exposure of single and double cover assemblies to accommodate the need for exposure of both inner and outer solar collector cover materials. 1.3 This practice does not apply to cover materials for evacuated collectors or photovoltaics. 1.4 The values stated in SI units are to be regarded as the standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  17. Effect of acute exposure to hypergravity (GX vs. GZ) on dynamic cerebral autoregulation

    Science.gov (United States)

    Serrador, J. M.; Wood, S. J.; Picot, P. A.; Stein, F.; Kassam, M. S.; Bondar, R. L.; Rupert, A. H.; Schlegel, T. T.

    2001-01-01

    We examined the effects of 30 min of exposure to either +3GX (front-to-back) or +GZ (head-to-foot) centrifugation on cerebrovascular responses to 80 degrees head-up tilt (HUT) in 14 healthy individuals. Both before and after +3 GX or +3 GZ centrifugation, eye-level blood pressure (BP(eye)), end tidal PCO2 (PET(CO2)), mean cerebral flow velocity (CFV) in the middle cerebral artery (transcranial Doppler ultrasound), cerebral vascular resistance (CVR), and dynamic cerebral autoregulatory gain (GAIN) were measured with subjects in the supine position and during subsequent 80 degrees HUT for 30 min. Mean BP(eye) decreased with HUT in both the GX (n = 7) and GZ (n = 7) groups (P centrifugation only in the GZ group (P centrifugation. CFV decreased during HUT more significantly after centrifugation than before centrifugation in both groups (P centrifugation compared with before centrifugation, GAIN increased in both groups (P centrifugation resulted in a leftward shift of the cerebral autoregulation curve. We speculate that this leftward shift may have been due to vestibular activation (especially during +GX) or potentially to an adaptation to reduced cerebral perfusion pressure during +GZ.

  18. Plasma exposure behavior of re-deposited tungsten on structural materials of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yu-Ping; Wang, Jing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230031 (China); Zhou, Hai-Shan, E-mail: haishanzhou@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Liu, Feng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Zeng-De [General Research Institute for Nonferrous Metals, Beijing 100088 (China); Li, Xiao-Chun; Lu, Tao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Liu, Hao-Dong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230031 (China); Ding, Fang; Mao, Hong-Min; Zhao, Ming-Zhong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Lin, Chen-Guang [General Research Institute for Nonferrous Metals, Beijing 100088 (China); Luo, Guang-Nan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230031 (China); Hefei Center for Physical Science and Technology, Hefei 230031 (China); Hefei Science Center of Chinese Academy of Science, Hefei 230027 (China)

    2017-05-15

    To evaluate the effects of re-deposited tungsten (W) on the surface modification and hydrogen isotope retention behavior of fusion structural materials, the plasma exposure behavior of re-deposited W samples prepared by magnetron sputtering on the F82H steel, the V-5Cr-5Ti alloy as well as bare substrate samples was investigated. All the samples were exposed to 367 shots of deuterium plasmas in the 2015 spring EAST campaign. After the plasma exposure, large area of W layer was exfoliated, while big blisters were found at the interface between the remaining W layer and the substrate materials. The deuterium retention behavior of the samples with re-deposited W layer was characterized by thermal desorption spectroscopy and compared with the bare substrate samples.

  19. Organizational influence on the occurrence of work accidents involving exposure to biological material.

    Science.gov (United States)

    Marziale, Maria Helena Palucci; Rocha, Fernanda Ludmilla Rossi; Robazzi, Maria Lúcia do Carmo Cruz; Cenzi, Camila Maria; dos Santos, Heloisa Ehmke Cardoso; Trovó, Marli Elisa Mendes

    2013-01-01

    to analyze work accidents involving exposure to biological materials which took place among personnel working in nursing and to evaluate the influence of the organizational culture on the occurrence of these accidents. a retrospective, analytical study, carried out in two stages in a hospital that was part of the Network for the Prevention of Work Accidents. The first stage involved the analysis of the characteristics of the work accidents involving exposure to biological materials as recorded over a seven-year period by the nursing staff in the hospital studied, and registered in the Network databank. The second stage involved the analysis of 122 nursing staff members' perception of the institutional culture, who were allocated to the control group (workers who had not had an accident) and the case group (workers who had had an accident). 386 accidents had been recorded: percutaneous lesions occurred in 79% of the cases, needles were the materials involved in 69.7% of the accidents, and in 81.9% of the accident there was contact with blood. Regarding the influence of the organizational culture on the occurrence of accidents, the results obtained through the analysis of the two groups did not demonstrate significant differences between the average scores attributed by the workers in each organizational value or practice category. It is concluded that accidents involving exposure to biological material need to be avoided, however, it was not possible to confirm the influence of organizational values or practices on workers' behavior concerning the occurrence of these accidents.

  20. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    International Nuclear Information System (INIS)

    Rapp, Juergen; Aaron, A. M.; Bell, Gary L.; Burgess, Thomas W.; Ellis, Ronald James; Giuliano, D.; Howard, R.; Kiggans, James O.; Lessard, Timothy L.; Ohriner, Evan Keith; Perkins, Dale E.; Varma, Venugopal Koikal

    2015-01-01

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma-material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panel reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a ''. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.'' The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma-material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL's proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL's strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the ''signature facility'' FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material-Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady-state heat fluxes of

  1. Quantitative assessment of image artifacts from root filling materials on CBCT scans made using several exposure parameters

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo, Katharina Alves; Cavalcanti, Yuri Wanderley; De Oliveira Pinto, Martina Gerlane; De Melo, Daniela Pita [Dept. of Oral Diagnosis, State University of Paraiba, Campina Grande (Brazil); Melo, Saulo Leonardo Sousa [Dept. of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City (United States); Campos, Paulo Sergio Flores; De Andrade Freitas Oliveira, Luciana Soares [Federal University of Bahia, Salvador (Brazil)

    2017-09-15

    To quantify artifacts from different root filling materials in cone-beam computed tomography (CBCT) images acquired using different exposure parameters. Fifteen single-rooted teeth were scanned using 8 different exposure protocols with 3 different filling materials and once without filling material as a control group. Artifact quantification was performed by a trained observer who made measurements in the central axial slice of all acquired images in a fixed region of interest using ImageJ. Hyperdense artifacts, hypodense artifacts, and the remaining tooth area were identified, and the percentages of hyperdense and hypodense artifacts, remaining tooth area, and tooth area affected by the artifacts were calculated. Artifacts were analyzed qualitatively by 2 observers using the following scores: absence (0), moderate presence (1), and high presence (2) for hypodense halos, hypodense lines, and hyperdense lines. Two-way ANOVA and the post-hoc Tukey test were used for quantitative and qualitative artifact analysis. The Dunnet test was also used for qualitative analysis. The significance level was set at P<.05. There were no significant interactions among the exposure parameters in the quantitative or qualitative analysis. Significant differences were observed among the studied filling materials in all quantitative analyses. In the qualitative analyses, all materials differed from the control group in terms of hypodense and hyperdense lines (P<.05). Fiberglass posts did not differ statistically from the control group in terms of hypodense halos (P>.05). Different exposure parameters did not affect the objective or subjective observations of artifacts in CBCT images; however, the filling materials used in endodontic restorations did affect both types of assessments.

  2. Calculation of radiation exposures from patients to whom radioactive materials have been administered

    Science.gov (United States)

    Cormack, John; Shearer, Jane

    1998-03-01

    Spreadsheet templates which calculate cumulative exposures to other persons from patients to whom radioactive materials have been administered have been developed by the authors. Calculations can be based on any specified single-, bi- or tri-exponential whole-body clearance rate and a diurnal (or any other periodic) contact pattern. The time (post-administration) during which close contact should be avoided in order to constrain the radiation exposure and exposure rates to selected limits is also calculated using an iterative technique (Newton's method), and the residual activity at the time when contact can resume is also calculated. These templates find particular application in the calculation of exposures to persons who are in contact with patients who have received for therapeutic purposes. The effect of changing dose limits, contact patterns and using individually derived clearance rates may be readily modelled.

  3. Scenarios identified internationally for occupational and public exposure to naturally occurring radioactive materials

    International Nuclear Information System (INIS)

    Fernandez Gomez, Isis Maria

    2012-01-01

    Natural radiation for decades was considered a normal phenomenon that existed in nature, so that man was conditioned to ignore; unlike artificial ionizing radiation. This mindset has changed, in the late seventies of the last century, because it has became aware of the danger that exposure to natural radiation could pose health. Studies on it have been initiated to conduct and publish. All humans are exposed to natural radiation; but, this exposure is not uniform, has depended on where they live and work, whether they have been in areas with rocks or soils particularly radioactive, their way of life, of the use of certain building materials in their homes, the use of natural gas, the use of home heating with coal. Air travel also have increased exposure to natural radiation. Ionizing radiation, whether natural or artificial, have interacted with the human body in the same way, there fore have failed to say that the natural are less or more harmful than artificial. Natural sources are grouped into two major categories. The first are the external sources: from abroad as cosmic radiation (the sun and interstellar spaces of the universe), terrestrial radiation (emitted by rocks and soil), the radiation of some buildings (e.g. granite, which can emit radon gas) and radiation contained in some foods. The second category are the internal resources: due to the presence in the human body from the environment radionuclides that are able to ionize (potassium-40, carbon-14). The naturally occurring radioactive materials (NORM for its acronym in English) have been referred to those naturally occurring radioactive materials on which any human technological activity has increased its exposure potential compared with the situation unchanged. (author) [es

  4. Exposure to space radiation of high-performance infrared multilayer filters and materials technology experiments (A0056)

    Science.gov (United States)

    Seeley, J. S.; Hunneman, R.; Whatley, A.; Lipscombe, D. R.

    1984-01-01

    Infrared multilayer interface filter which were used in satellite radiometers were examined. The ability of the filters to withstand the space environment in these applications is critical. An experiment on the LDEF subjects the filters to authoritative spectral measurements following space exposure to ascertain their suitability for spacecraft use and to permit an understanding of degradation mechanisms. The understanding of the effects of prolonged space exposure on spacecraft materials, surface finishes, and adhesive systems is important to the spacecraft designer. Materials technology experiments and experiment on infrared multilayer filters are discussed.

  5. Evaluating use stage exposure to food contact materials in a LCA framework

    DEFF Research Database (Denmark)

    Ernstoff, Alexi; Jolliet, Olivier; Fantke, Peter

    2015-01-01

    We present novel methods to incorporate exposure to chemicals within food contact materials (FCM) (e.g. packaging) into life cycle impact assessment (LCIA). Chemical migration into food is modeled as a function of contact temperature, time, and various chemical, FCM, and food properties. In order...... in a way compatible with intake fraction, iF, a metric traditionally used in LCIA. The model predicts PiF increases with temperature and for compounds with lower octanol-water partition coefficients within more permeable materials which are in contact with foods with high ethanol equivalencies (fatty foods)....

  6. Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas

    International Nuclear Information System (INIS)

    Smith, A.R.; Hurley, D.L.

    1991-08-01

    Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite have been studied by a variety of techniques. Among the most powerful is low-background Ge-semiconductor detector gamma-ray spectrometry, illustrated here by results obtained at the Lawrence Berkeley Laboratory's (LBL) Low Bakground Facilities, in a multi-laboratory collaboration coordinated by Dr. Thomas Parnell's team at the Marshall Spacecraft Center, Huntsville, Alabama

  7. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Juergen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aaron, A. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bell, Gary L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burgess, Thomas W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ellis, Ronald James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giuliano, D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lessard, Timothy L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ohriner, Evan Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Perkins, Dale E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Varma, Venugopal Koikal [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-20

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panel reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady

  8. Occupational exposure to contaminated biological material: perceptions and feelings experienced among dental students

    Directory of Open Access Journals (Sweden)

    Camila PINELLI

    Full Text Available INTRODUCTION: Dental students may be a particularly vulnerable group exposed to the risk of acquiring infections through occupational injuries.OBJECTIVE: To investigate the perceptions with regard to their occupational exposure to potentially infectious biologic materials.MATERIAL AND METHOD: Interviews were conducted by means of a script with open questions. The speeches were recorded, transcribed and qualitative analysis was performed with the aid of QUALIQUANTISOFT® software. The Collective Subject Discourse (CSD was obtained.RESULT: The feeling most frequently experienced was related to the fear of contagion. Most accidents occurred during the handling of sharp dental instruments. Respondents attributed the occurrence of accidents especially the lack of attention, carelessness while handling sharp instruments, and lack of use of Personal Protective Equipment. As regards the measures taken right after the exposure, they "washed the local area". Other respondents reported they "continued the dental treatment". They complained mostly about the fear of having been infected, and because they had to leave the faculty to take blood exams for HIV screening. As part of the learning experience the injured reported they paid more attention when handling sharp instruments. The students informed that any type of injury due to contact with contaminated material must be notified. However, they were neglectful about reporting their own injury.CONCLUSION: Education strategies for preventive measures related to occupational exposure must be restructured, because the knowledge and the fear of contagion among dental students were not always sufficient for a complete adherence to treatment protocols and notification.

  9. Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity Using Human Keratinocyte Cells

    Science.gov (United States)

    Shvedova, Anna A.; Castranova, Vincent; Kisin, Elena R.; Schwegler-Berry, Diane; Murray, Ashley R.; Gandelsman, Vadim Z.; Maynard, Andrew; Baron, Paul

    2003-01-01

    Carbon nanotubes are new members of carbon allotropes similar to fullerenes and graphite. Because of their unique electrical, mechanical, and thermal properties, carbon nanotubes are important for novel applications in the electronics, aerospace, and computer industries. Exposure to graphite and carbon materials has been associated with increased incidence of skin diseases, such as carbon fiber dermatitis, hyperkeratosis, and naevi. We investigated adverse effects of single-wall carbon nanotubes (SWCNT) using a cell culture of immortalized human epidermal keratinocytes (HaCaT). After 18 h of exposure of HaCaT to SWCNT, oxidative stress and cellular toxicity were indicated by formation of free radicals, accumulation of peroxidative products, antioxidant depletion, and loss of cell viability. Exposure to SWCNT also resulted in ultrastructural and morphological changes in cultured skin cells. These data indicate that dermal exposure to unrefined SWCNT may lead to dermal toxicity due to accelerated oxidative stress in the skin of exposed workers.

  10. Anthropogenic materials and products containing natural radionuclides. Pt. 1. Survey of the major exposure pathways

    International Nuclear Information System (INIS)

    Becker, D.E.; Reichelt, A.

    1991-06-01

    Knowledge of the possible exposure pathways permits to perform an overall assessment of the radiation doses and qualities affecting the population, as well as their inter-relations: A catalogue was established of products, raw materials and waste materials containing natural radioactivity that are processed, produced or dumped in Bavaria and that contribute above negligible level to the radiation exposure of the population and to occupational radiation doses. A literature study rounds up the information on anthropogenic sources containing natural radioactivity and thus representing a radiation source generally to be considered for assessments. Some of these sources are discussed in more detail, indicating their radiological significance for the population and the environment in Bavaria. (Orig./DG) [de

  11. Quantitative assessment of image artifacts from root filling materials on CBCT scans made using several exposure parameters

    International Nuclear Information System (INIS)

    Rabelo, Katharina Alves; Cavalcanti, Yuri Wanderley; De Oliveira Pinto, Martina Gerlane; De Melo, Daniela Pita; Melo, Saulo Leonardo Sousa; Campos, Paulo Sergio Flores; De Andrade Freitas Oliveira, Luciana Soares

    2017-01-01

    To quantify artifacts from different root filling materials in cone-beam computed tomography (CBCT) images acquired using different exposure parameters. Fifteen single-rooted teeth were scanned using 8 different exposure protocols with 3 different filling materials and once without filling material as a control group. Artifact quantification was performed by a trained observer who made measurements in the central axial slice of all acquired images in a fixed region of interest using ImageJ. Hyperdense artifacts, hypodense artifacts, and the remaining tooth area were identified, and the percentages of hyperdense and hypodense artifacts, remaining tooth area, and tooth area affected by the artifacts were calculated. Artifacts were analyzed qualitatively by 2 observers using the following scores: absence (0), moderate presence (1), and high presence (2) for hypodense halos, hypodense lines, and hyperdense lines. Two-way ANOVA and the post-hoc Tukey test were used for quantitative and qualitative artifact analysis. The Dunnet test was also used for qualitative analysis. The significance level was set at P .05). Different exposure parameters did not affect the objective or subjective observations of artifacts in CBCT images; however, the filling materials used in endodontic restorations did affect both types of assessments

  12. Modular Extended-Stay HyperGravity Facility Design Concept: An Artificial-Gravity Space-Settlement Ground Analogue

    Science.gov (United States)

    Dorais, Gregory A.

    2015-01-01

    This document defines the design concept for a ground-based, extended-stay hypergravity facility as a precursor for space-based artificial-gravity facilities that extend the permanent presence of both human and non-human life beyond Earth in artificial-gravity settlements. Since the Earth's current human population is stressing the environment and the resources off-Earth are relatively unlimited, by as soon as 2040 more than one thousand people could be living in Earthorbiting artificial-gravity habitats. Eventually, the majority of humanity may live in artificialgravity habitats throughout this solar system as well as others, but little is known about the longterm (multi-generational) effects of artificial-gravity habitats on people, animals, and plants. In order to extend life permanently beyond Earth, it would be useful to create an orbiting space facility that generates 1g as well as other gravity levels to rigorously address the numerous challenges of such an endeavor. Before doing so, developing a ground-based artificial-gravity facility is a reasonable next step. Just as the International Space Station is a microgravity research facility, at a small fraction of the cost and risk a ground-based artificial-gravity facility can begin to address a wide-variety of the artificial-gravity life-science questions and engineering challenges requiring long-term research to enable people, animals, and plants to live off-Earth indefinitely.

  13. Relation Between Motility, Accelerated Aging and Gene Expression in Selected Drosophila Strains under Hypergravity Conditions

    Science.gov (United States)

    Serrano, Paloma; van Loon, Jack J. W. A.; Medina, F. Javier; Herranz, Raúl

    2013-02-01

    Motility and aging in Drosophila have proven to be highly modified under altered gravity conditions (both in space and ground simulation facilities). In order to find out how closely connected they are, five strains with altered geotactic response or survival rates were selected and exposed to an altered gravity environment of 2 g. By analysing the different motile and behavioural patterns and the median survival rates, we show that altered gravity leads to changes in motility, which will have a negative impact on the flies' survival. Previous results show a differential gene expression between sessile samples and adults and confirm that environmentally-conditioned behavioural patterns constrain flies' gene expression and life span. Therefore, hypergravity is considered an environmental stress factor and strains that do not respond to this new environment experience an increment in motility, which is the major cause for the observed increased mortality also under microgravity conditions. The neutral-geotaxis selected strain (strain M) showed the most severe phenotype, unable to respond to variations in the gravitational field. Alternatively, the opposite phenotype was observed in positive-geotaxis and long-life selected flies (strains B and L, respectively), suggesting that these populations are less sensitive to alterations in the gravitational load. We conclude that the behavioural response has a greater contribution to aging than the modified energy consumption in altered gravity environments.

  14. Exposure testing and evaluation of solar utilization materials. Semiannual report, May 1, 1975--October 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Gilligan, J.E.; Brzuskiewicz, J.

    1975-01-01

    The initial efforts of a program of research and experimental testing is described in which the optical performance of materials for use in solar energy utilization devices will be determined before and after exposure to outdoor weathering tests. Materials which are currently in use and others which are being considered or developed for these applications will be characterized and exposed to natural solar radiation. Outdoor testing will be accomplished in Phoenix (Ariz.), Miami (Fla.), and Chicago (Ill.). The results of these tests, primarily the effects of outdoor exposure on optical and physical properties, will be compiled in a handbook, along with cost, availability and other pertinent information. These data are vital to the intelligent selection of solar utilization materials, since a knowledge of the cost performance and lifetime characteristics of candidate materials will greatly assist the design of efficient and reliable solar energy utilization devices. Primary accomplishments include the definition of sample requirements, specification of test samples and test configurations, formulation of acceptance/rejection criteria and contacts with numerous potential materials suppliers.

  15. Comparative exposure to DEHP from food contact materials: application of the product intake fraction

    DEFF Research Database (Denmark)

    Ernstoff, Alexi; Jolliet, Olivier; Fantke, Peter

    Quantitative Sustainability Assessment Food contact materials (FCM), e.g. bottles and food handling gloves, can contain potentially endocrine disrupting chemicals, such as di-2-ethylhexyl phthalate(DEHP, CAS: 117-81-7). To investigate the contribution of FCM to dietary DEHP exposure we apply...... thresholds. A hypothetical average PiF for the FCM sector was calculated via production volume and oral exposure doses estimated from NHANES data. In both cases the indication was gloves may contribute more to DEHP exposure when used with certain food items than bottled water. DEHP content in gloves greater...... than 5% would cause exceedance of US EPA threshold when used with certain food items,e.g. radishes based on PiF calculated here. The PiF used in thís context has applications for regulations related to FCM and exposure assessments on a per unit kilo basis....

  16. Assessment of 222Rn occupational exposure at IPEN nuclear materials storage site, SP, Brazil

    International Nuclear Information System (INIS)

    Caccuri, Lilian Saueia

    2007-01-01

    In this study it was assessed the occupational exposure to 222 Rn at IPEN, SP, Brazil, nuclear materials storage site through the committed effective dose received by workers exposed to this radionuclide. The radiation dose was calculated through the radon concentrations at nuclear materials storage site. Radon concentrations were determined by passive detection method with solid state nuclear detectors (SSNTD). The SSNTD used in this study was the polycarbonate Makrofol E; each detector is a small square plastic of 1 cm 2 , placed into a diffusion chamber type KFK. It was monitored 14 points at nuclear materials storage site and one external point, over a period of 21 months, changing the detectors every three months, from December 2004 to September 2006. The 222 Rn concentrations varied from 196 ± 9 and 2048 ± 81 Bq·m -3 . The committed effective dose due to radon inhalation at IPEN nuclear materials storage site was obtained from radon activity incorporated and dose conversion factor, according to International Commission on Radiological Protection procedures. The effective committed dose received by workers is below 20 mSv·y -1 . This value is suggested as an annual effective dose limit for occupational exposure by ICRP 60. (author)

  17. Development of regulatory criteria applicable to control of radiation exposures to the population from products containing radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L R; Western, F [U.S. Atomic Energy Commission, Germantown, MD (United States)

    1969-07-01

    Under the Atomic Energy Act of 1954 as amended, the Atomic Energy Commission is responsible for regulating the possession, use and transfer of byproduct, source and special nuclear materials in accordance with safety standards established by rule of the Commission to protect health and minimize danger to life and property. This paper describes some of the basic considerations in establishing safety criteria and regulations for authorizing the transfer and use of byproduct material (radioisotopes) in products for distribution to the general public. It discusses problems encountered in extending the broad guidance provided by the Federal Radiation Council (FRC) and by the International Commission of Radiological Protection and the National Council on Radiation Protection and Measurements (ICRP-NCRP), which is limited to total exposures of individuals and population groups to radiation from many sources, to appropriate controls on radioactivity in an individual consumer product which represents only one source of population exposures. The paper also discusses possible approaches to accomplishing the regulatory objectives of providing reasonable assurance that (1) the contribution of an individual product to total exposures that might be permitted under FRC and ICRP-NCRP guidance should not be disproportionate to the benefits to be derived, and (2) appropriate efforts are made to limit exposures to the population from individual classes of sources of exposure as far as practicable. Existing criteria and regulations pertaining to the control of radiation exposure to the population from products into which radioactive material is purposely introduced are described, and additional considerations which must be taken into account for the development of further criteria and regulations which are applicable to the possible wide-scale distribution of products containing radioactive material as a result of the Plowshare Programs are explored. (author)

  18. Development of regulatory criteria applicable to control of radiation exposures to the population from products containing radioactive material

    International Nuclear Information System (INIS)

    Rogers, L.R.; Western, F.

    1969-01-01

    Under the Atomic Energy Act of 1954 as amended, the Atomic Energy Commission is responsible for regulating the possession, use and transfer of byproduct, source and special nuclear materials in accordance with safety standards established by rule of the Commission to protect health and minimize danger to life and property. This paper describes some of the basic considerations in establishing safety criteria and regulations for authorizing the transfer and use of byproduct material (radioisotopes) in products for distribution to the general public. It discusses problems encountered in extending the broad guidance provided by the Federal Radiation Council (FRC) and by the International Commission of Radiological Protection and the National Council on Radiation Protection and Measurements (ICRP-NCRP), which is limited to total exposures of individuals and population groups to radiation from many sources, to appropriate controls on radioactivity in an individual consumer product which represents only one source of population exposures. The paper also discusses possible approaches to accomplishing the regulatory objectives of providing reasonable assurance that (1) the contribution of an individual product to total exposures that might be permitted under FRC and ICRP-NCRP guidance should not be disproportionate to the benefits to be derived, and (2) appropriate efforts are made to limit exposures to the population from individual classes of sources of exposure as far as practicable. Existing criteria and regulations pertaining to the control of radiation exposure to the population from products into which radioactive material is purposely introduced are described, and additional considerations which must be taken into account for the development of further criteria and regulations which are applicable to the possible wide-scale distribution of products containing radioactive material as a result of the Plowshare Programs are explored. (author)

  19. Difficulties in using Material Safety Data Sheets to analyse occupational exposures to contact allergens

    DEFF Research Database (Denmark)

    Friis, Ulrik F; Menné, Torkil; Flyvholm, Mari-Ann

    2015-01-01

    BACKGROUND: Information on the occurrence of contact allergens and irritants is crucial for the diagnosis of occupational contact dermatitis. Material Safety Data Sheets (MSDS) are important sources of information concerning exposures in the workplace. OBJECTIVE: From a medical viewpoint...

  20. Ocular torsion before and after 1 hour centrifugation

    NARCIS (Netherlands)

    Groen, Eric; De Graaf, Bernd; Bles, Willem; Bos, Jelte E.

    1996-01-01

    To assess a possible otolith contribution to effects observed following prolonged exposure to hypergravity, we used video oculography to measure ocular torsion during static and dynamic conditions of lateral body tilt (roll) before and after t h of centrifugation with a G(x)-load of 3 G. Static tilt

  1. Adolescents’ exposure to sexually explicit internet material, sexual uncertainty, and attitudes toward uncommitted sexual exploration: is there a link?

    NARCIS (Netherlands)

    Peter, J.; Valkenburg, P.M.

    2008-01-01

    The link between adolescents' exposure to sexual media content and their sexual socialization has hardly been approached from an identity development framework. Moreover, existing research has largely ignored the role of adolescents' exposure to sexually explicit Internet material in that

  2. Effect of Acute Exposure to Hypergravity (Gx vs. Gz) on Dynamic Cerebral Autoregulation

    Science.gov (United States)

    Serrador, Jorge M.; Wood, S. J.; Picot, P. A.; Stein, F.; Kassam, M. S.; Bondar, R. L.; Rupert, A. H.; Schlegel, T. T.

    2001-01-01

    We examined the effects of 30 min of exposure to either +3G(sub x) or +3G(sub z) centrifugation on cerebrovascular responses to 800 head-up tilt (HUT) in 14 healthy individuals. Both before and after +3G(sub x) or +3G(sub z) centrifugation, eye-level blood pressure (BP(sub eye)), end tidal CO2 (P(sub ET)CO2), mean cerebral flow velocity (CFV) in the middle cerebral artery (trans cranial Doppler ultrasound), cerebral vascular resistance (CVR) and dynamic cerebral autoregulatory gain (GAIN) were measured with subjects in the supine position and during subsequent 800 HUT for 30 min. Mean BP(sub eye) decreased with HUT in both the G(sub x) (n= 7) and G(sub z) (n=7) groups (P less than 0.00l), with the decrease being greater after centrifugation only in the G(sub z) group (P less than 0.05). P(sub ET)CO2 also decreased with HUT in both groups (P less than 0.0l), but the absolute level of decrease was unaffected by centrifugation. CFV decreased during HUT more significantly after than before centrifugation in both groups (P less than 0.02). However, these greater decreases were not associated with greater increases in CVR. In the supine position after compared to before centrifugation, GAIN increased in both groups (P less than 0.05, suggesting an autoregulatory deficit), with the change being correlated to a measure of otolith function (the linear vestibulo-ocular reflex) in the G(sub x) group (R=0.76, P less than 0.05) but not in the G(sub z) group (R=0.24, P=0.60). However, GAIN was subsequently restored to pre-centrifugation levels during post-centrifugation HUT (i.e., as BP(sub eye) decreased), suggesting that both types of centrifugation resulted in a leftward shift of the cerebral autoregulation curve. We speculate that this leftward shift may have been due to vestibular activation (especially during +G(sub x)) or potentially to an adaptation to reduced cerebral perfusion pressure during +G(sub z).

  3. Influence of materials choice on occupational radiation exposure in ITER

    International Nuclear Information System (INIS)

    Forty, C.B.A.; Firth, J.D.; Butterworth, G.J.

    1998-01-01

    In fission reactor plant, the radiation doses associated with inspection and maintenance of the primary cooling circuit account for a substantial fraction of the collective occupational radiation exposure (ORE). Similarly, it is anticipated that much of the ORE occurring during normal operation of ITER will arise from active deposits in the cooling loop. Using a number of calculation steps ranging from neutron activation analysis, mobilisation and transport modelling and Monte Carlo simulation, estimates for the gamma photon flux and radiation dose fields around a typical 'hot-leg' cooling pipe have been made taking SS316, OPTSTAB, MANET-II and F-82H steels as alternative candidate loop materials. (orig.)

  4. Unpredictable Variable Prenatal Stress Programs Expression of Genes Involved in Appetite Control and Energy Expenditure

    Science.gov (United States)

    Moyer, E. L.; Al-Shayeb, B.; Baer, L. A.; Ronca, A. E.

    2016-01-01

    Exposure to stress in the womb shapes neurobiological and physiological outcomes of offspring in later life, including body weight regulation and metabolic profiles. Our previous work utilizing a centrifugation-induced hyper-gravity demonstrated significantly increased (8-15%) body mass in male, but not female, rats exposed throughout gestation to chronic 2-g from conception to birth. We reported a similar outcome in adult offspring exposed throughout gestation to Unpredictable Variable Prenatal Stress (UVPS). Here we examine gene expression changes and the plasma of animals treated with our UVPS model to identify a potential role for prenatal stress in this hypergravity programming effect. Specifically we focused on appetite control and energy expenditure pathways in prenatally stressed adult (90-day-old) male Sprague-Dawley rats.

  5. Fire victim identification by post-mortem dental CT: Radiologic evaluation of restorative materials after exposure to high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Woisetschlaeger, Mischa, E-mail: Mischa.woisetschlager@lio.se [Center for Medical Image Science and Visualisation (CMIV), University Hospital Linkoeping, Linkoeping University, 58185 Linkoeping (Sweden); Lussi, Adrian, E-mail: anders.persson@cmiv.lio.se [Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern (Switzerland); Persson, Anders, E-mail: adrian.lussi@zmk.unibe.ch [Center for Medical Image Science and Visualisation (CMIV), University Hospital Linkoeping, Linkoeping University, 58185 Linkoeping (Sweden); Jackowski, Christian, E-mail: christian.jackowski@irm.uzh.ch [Center for Medical Image Science and Visualisation (CMIV), University Hospital Linkoeping, Linkoeping University, 58185 Linkoeping (Sweden); Institute of Legal Medicine, University of Zuerich, Winterthurerstrasse 190/52, 8057 Zuerich (Switzerland)

    2011-11-15

    Objectives: The aim of this study was to evaluate the use of high resolution CT to radiologically define teeth filling material properties in terms of Hounsfield units after high temperature exposure. Methods: 122 human molars with 10 different filling materials at defined filling diameters were examined. The teeth were CT scanned both before and after the exposure to different temperatures. After image reconstruction, the teeth and filling materials were analyzed regarding their morphology and Hounsfield units (HU) using an extended HU scale. Results: The majority of filling materials diminished in size at temperatures {>=}400 deg. C. HU values were stable for all materials up till 200 deg. C, and only slightly changed up to 600 deg. C. Cerec, Dyract and dentin showed only minor changes in HU at all temperatures. The other materials, inclusive enamel, showed specific patterns, either increasing or decreasing in HU with increasing temperatures over 600 deg. C. Conclusions: Over 600 deg. C the filling materials show specific patterns that can be used to discriminate filling materials. Ultra high resolution CT may improve the identification processes in fire victims. Existing 3D visualization presets for the dentition can be used until 600 deg. C and have to be optimized for bodies exposed to higher temperatures.

  6. Fire victim identification by post-mortem dental CT: Radiologic evaluation of restorative materials after exposure to high temperatures

    International Nuclear Information System (INIS)

    Woisetschlaeger, Mischa; Lussi, Adrian; Persson, Anders; Jackowski, Christian

    2011-01-01

    Objectives: The aim of this study was to evaluate the use of high resolution CT to radiologically define teeth filling material properties in terms of Hounsfield units after high temperature exposure. Methods: 122 human molars with 10 different filling materials at defined filling diameters were examined. The teeth were CT scanned both before and after the exposure to different temperatures. After image reconstruction, the teeth and filling materials were analyzed regarding their morphology and Hounsfield units (HU) using an extended HU scale. Results: The majority of filling materials diminished in size at temperatures ≥400 deg. C. HU values were stable for all materials up till 200 deg. C, and only slightly changed up to 600 deg. C. Cerec, Dyract and dentin showed only minor changes in HU at all temperatures. The other materials, inclusive enamel, showed specific patterns, either increasing or decreasing in HU with increasing temperatures over 600 deg. C. Conclusions: Over 600 deg. C the filling materials show specific patterns that can be used to discriminate filling materials. Ultra high resolution CT may improve the identification processes in fire victims. Existing 3D visualization presets for the dentition can be used until 600 deg. C and have to be optimized for bodies exposed to higher temperatures.

  7. Calculation of radiation exposures from patients to whom radioactive materials have been administered

    International Nuclear Information System (INIS)

    McCormack, J.; Shearer, J.

    1998-01-01

    Spreadsheet templates have been developed by the authors to calculate radiation exposures to others from patients to whom radioactive materials have been administered (or, indeed, from any source of radiation exposure) to be readily calculated. The time during which contact should be avoided, along with the residual activity at resumption of contact is also calculated using an iterative technique. These spreadsheets allow a great deal of flexibility in the specification of clearance rates and close contact patterns for individual patients. Estimates of doses, restriction times and residual activities for 131 l thyrotoxic therapy, for various contact patterns and group of patients, were calculated. The spreadsheets are implemented using Microsoft EXCEL for both PC and Macintosh computers, and are readily available from the authors

  8. Simulated Irradiation of Samples in HFIR for use as Possible Test Materials in the MPEX (Material Plasma Exposure Experiment) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Ronald James [ORNL; Rapp, Juergen [ORNL

    2014-01-01

    The importance of Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) facility will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. The project presented in this paper involved performing assessments of the induced radioactivity and resulting radiation fields of a variety of potential fusion reactor materials. The scientific code packages MCNP and SCALE were used to simulate irradiation of the samples in HFIR; generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. These state-of-the-art simulation methods were used in addressing the challenge of the MPEX project to minimize the radioactive inventory in the preparation of the samples for inclusion in the MPEX facility.

  9. Corrosion of candidate materials in Lake Rotokawa geothermal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Estill, J.C.; McCright, R.D.

    1995-05-01

    Corrosion rates were determined for CDA 613, CDA 715, A-36 carbon steel, 1020 carbon steel, and Alloy 825 flat coupons which were exposed to geothermal spring water at Paraiki site number 9 near Lake Rotokawa, New Zealand. Qualitative observations of the corrosion performance of Type 304L stainless steel and CDA 102 exposed to the same environment were noted. CDA 715, Alloy 825, 1020 carbon steel, and other alloys are being considered for the materials of construction for high-level radioactive waste containers for the United States civilian radioactive waste disposal program. Alloys CDA 613 and CDA 102 were tested to provide copper-based materials for corrosion performance comparison purposes. A36 was tested to provide a carbon steel baseline material for comparison purposes, and alloy 304L stainless steel was tested to provide an austenitic stainless steel baseline material for comparison purposes. In an effort to gather corrosion data from an environment that is rooted in natural sources of water and rock, samples of some of the proposed container materials were exposed to a geothermal spring environment. At the proposed site at Yucca Mountain, Nevada, currently under consideration for high-level nuclear waste disposal, transient groundwater may come in contact with waste containers over the course of a 10,000-year disposal period. The geothermal springs environment, while extremely more aggressive than the anticipated general environment at Yucca Mountain, Nevada, could have similarities to the environment that arises at selected local sites on a container as a result of crevice corrosion, pitting corrosion, microbiologically influenced corrosion (MIC), or the concentration of the ionic species due to repetitive evaporation or boiling of the groundwater near the containers. The corrosion rates were based on weight loss data obtained after six weeks exposure in a 90{degrees}C, low-pH spring with relatively high concentrations of SO{sub 4}{sup 2-} and Cl{sup -}.

  10. Hypergravity Loading the Cultured Osteoblasts: Modeling and Experimental Analysis of Cellular Morphology and the Cytoskeleton

    Science.gov (United States)

    Searby, N. D.; Steele, C. R.; Globus, R. K.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Bone forming cells, osteoblasts, respond to various mechanical forces, including mechanical strain and fluid-induced shear stress. This study examined whether osteoblasts detect changes in gravity as a mechanical force, as assessed by cellular morphology and dimensions of the cytoskeletal network. We used modeling to evaluate how gravity influences cell morphology given theoretical differences in densities between the surrounding medium, cytoplasm, and nucleus. A mechanical model was built based on analysis of axisymmetric shell structures (Fast4 software) to study the effects of 10 times gravity (10G) on cell height. The model indicated 0.02% decrease in overall cell height when the medium was 10% denser than the nucleus or cytoplasm, 5.9 x 10(exp-5)% decrease when the nucleus was 10% denser than the cytoplasm or medium, and 1.3 x 10(exp-5)% decrease when the cell cytoplasm was 10% denser than the nucleus or medium. To experimentally evaluate the influence of gravity, cultured primary fetal rat osteoblasts were grown to near confluence and centrifuged at 10G for 3 hours. Actin, microtubules, and nuclei were fluorescently labeled and analyzed by confocal microscopy to determine overall microtubule and actin network height. Centrifugation led to an apparent reduction in height of both the microtubule (-16%) and the actin (-20%) networks relative to stationary controls. Thus, both modeling and experiments indicate that hypergravity reduces the height of the osteoblast cell layer and their microtubule and actin networks. This combination of modeling and experimental analyses will help us to better understand the mechanical loading of osteoblasts.

  11. The Material Plasma Exposure eXperiment (MPEX)

    Science.gov (United States)

    Rapp, J.; Biewer, T. M.; Bigelow, T. S.; Canik, J.; Caughman, J. B. O.; Duckworth, R. C.; Goulding, R. H.; Hillis, D. L.; Lore, J. D.; Lumsdaine, A.; McGinnis, W. D.; Meitner, S. J.; Owen, L. W.; Shaw, G. C.; Luo, G.-N.

    2014-10-01

    Next generation plasma generators have to be able to access the plasma conditions expected on the divertor targets in ITER and future devices. The Material Plasma Exposure eXperiment (MPEX) will address this regime with electron temperatures of 1--10 eV and electron densities of 1021--1020 m-3. The resulting heat fluxes are about 10 MW/m2. MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with Electron Bernstein Wave (EBW) heating and Ion Cyclotron Resonance Heating (ICRH). Preliminary modeling has been used for pre-design studies of MPEX. MPEX will be capable to expose neutron irradiated samples. In this concept targets will be irradiated in ORNL's High Flux Isotope Reactor (HFIR) or possibly at the Spallation Neutron Source (SNS) and then subsequently (after a sufficient long cool-down period) exposed to fusion reactor relevant plasmas in MPEX. The current state of the pre-design of MPEX including the concept of handling irradiated samples will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC-05-00OR22725.

  12. Proposal of a monitoring program of occupational exposure by incorporation of radioactive material for nuclear medicine services in the Caja Costarricense del Seguro Social

    International Nuclear Information System (INIS)

    Badilla Segura, Mirta

    2013-01-01

    A monitoring program of the occupational exposure by incorporation of radioactive material is proposed. Nuclear medicine services of the Caja Costarricense del Seguro Social (CCSS) are evaluated. The monitoring program is based on the provisions of the International Atomic Energy Agency and of study of nuclear medicine services of the CCSS. Radionuclides are determined for monitoring of the occupational exposure, according to the radioactive material that is worked in nuclear medicine services of the CCSS. The appropriate and alternative techniques are established for the monitoring of the occupational exposure by incorporation of radioactive material, depending on the type of radionuclide that is worked in nuclear medicine services. The worker occupationally exposed (TOE) should be subject of monitoring and how often should be realized the monitoring of the occupational exposure. The monitoring of the radiation by radioactive material must be applied to personnel working in radiopharmacies and the worker has carried out therapeutic procedures for handling of significant amounts of 13 1 I. The calculation of the committed effective dose is proposed by incorporation of radioactive material with the TOE [es

  13. Determination of Adsorption Capacity and Kinetics of Amidoxime-Based Uranium Adsorbent Braided Material in Unfiltered Seawater Using a Flume Exposure System

    International Nuclear Information System (INIS)

    Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.; Park, Jiyeon; Bonheyo, George T.; Jeters, Robert T.; Schlafer, Nicholas J.; Wood, Jordana R.

    2015-01-01

    PNNL has developed a recirculating flume system for exposing braided adsorbent material to natural seawater under realistic temperature and flow-rate exposure conditions. The flumes are constructed of transparent acrylic material; they allow external light to pass into the flumes and permit photosynthetic growth of naturally present marine organisms (biofouling). Because the system consists of two flumes, replicate experiments can be conducted in which one of the flumes can be manipulated relative to the other. For example, one flume can be darkened to eliminate light exposure by placing a black tarp over the flume such that dark/light experiments can be conducted. Alternatively, two different braided adsorbents can be exposed simultaneously with no potential cross contamination issues. This report describes the first use of the PNNL flume system to study the impact of biofouling on adsorbent capacity. Experiments were conducted with the ORNL AI8 braided adsorbent material in light-exposed and darkened flumes for a 42-day exposure experiment. The major objective of this effort is to develop a system for the exposure of braided adsorbent material to unfiltered seawater, and to demonstrate the system by evaluating the performance of adsorption material when it is exposed to natural marine biofouling as it would be when the technology is used in the marine environment. Exposures of amidoxime-based polymeric braid adsorbents prepared by Oak Ridge Natural Laboratory (ORNL) were exposed to ambient seawater at 20°C in a flume system. Adsorption kinetics and adsorption capacity were assessed using time series determinations of uranium adsorption and one-site ligand saturation modeling. Biofouling in sunlight surface seawater has the potential to significantly add substantial biogenic mass to adsorption material when it is exposed for periods greater than 21 days. The observed biomass increase in the light flume was approximately 80% of the adsorbent mass after 42 days

  14. Determination of Adsorption Capacity and Kinetics of Amidoxime-Based Uranium Adsorbent Braided Material in Unfiltered Seawater Using a Flume Exposure System

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Strivens, Jonathan E. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Park, Jiyeon [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Bonheyo, George T. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Jeters, Robert T. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Schlafer, Nicholas J. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Wood, Jordana R. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.

    2015-08-31

    PNNL has developed a recirculating flume system for exposing braided adsorbent material to natural seawater under realistic temperature and flow-rate exposure conditions. The flumes are constructed of transparent acrylic material; they allow external light to pass into the flumes and permit photosynthetic growth of naturally present marine organisms (biofouling). Because the system consists of two flumes, replicate experiments can be conducted in which one of the flumes can be manipulated relative to the other. For example, one flume can be darkened to eliminate light exposure by placing a black tarp over the flume such that dark/light experiments can be conducted. Alternatively, two different braided adsorbents can be exposed simultaneously with no potential cross contamination issues. This report describes the first use of the PNNL flume system to study the impact of biofouling on adsorbent capacity. Experiments were conducted with the ORNL AI8 braided adsorbent material in light-exposed and darkened flumes for a 42-day exposure experiment. The major objective of this effort is to develop a system for the exposure of braided adsorbent material to unfiltered seawater, and to demonstrate the system by evaluating the performance of adsorption material when it is exposed to natural marine biofouling as it would be when the technology is used in the marine environment. Exposures of amidoxime-based polymeric braid adsorbents prepared by Oak Ridge Natural Laboratory (ORNL) were exposed to ambient seawater at 20°C in a flume system. Adsorption kinetics and adsorption capacity were assessed using time series determinations of uranium adsorption and one-site ligand saturation modeling. Biofouling in sunlight surface seawater has the potential to significantly add substantial biogenic mass to adsorption material when it is exposed for periods greater than 21 days. The observed biomass increase in the light flume was approximately 80% of the adsorbent mass after 42 days

  15. Influence of instruments performance and material properties on exposure assessment of airborne engineered nanomaterials

    DEFF Research Database (Denmark)

    Levin, Marcus

    Over the last decades, materials engineered of nanosized structures have increased tremendously, in terms of both produced tonnage and economic market share. This, together with the fact that some of these engineered nanomaterials have shown an increased toxicological effect in humans as compared...... characteristics, and highlights necessary improvements for future adaptions of new metrics into regulatory testing and occupational exposure limits....

  16. Accidental exposure to biological material in healthcare workers at a university hospital: Evaluation and follow-up of 404 cases.

    Science.gov (United States)

    Gutierrez, Eliana Battaggia; Lopes, Marta Heloísa; Yasuda, Maria Aparecida Shikanai

    2005-01-01

    The care and follow-up provided to healthcare workers (HCWs) from a large teaching hospital who were exposed to biological material between 1 August 1998 and 31 January 2002 is described here. After exposure, the HCW is evaluated by a nurse and doctor in an emergency consultation and receives follow-up counselling. The collection of 10 ml of blood sample from each HCW and its source patient, when known, is made for immunoenzymatic testing for HIV, HBV and HCV. Evaluation and follow-up of 404 cases revealed that the exposures were concentrated in only a few areas of the hospital; 83% of the HCWs exposed were seen by a doctor responsible for the prophylaxis up to 3 h after exposure. Blood was involved in 76.7% (309) of the exposures. The patient source of the biological material was known in 80.7% (326) of the exposed individuals studied; 80 (24.5%) sources had serological evidence of infection with 1 or more agents: 16.2% were anti-HCV positive, 3.8% were HAgBs positive and 10.9% were anti-HIV positive. 67% (273) of the study population completed the proposed follow-up. No confirmed seroconversion occurred. In conclusion, the observed adherence to the follow-up was quite low, and measures to improve it must be taken. Surprisingly, no difference in adherence to the follow-up was observed among those exposed HCW at risk, i.e. those with an infected or unknown source patient. Analysis of post-exposure management revealed excess prescription of antiretroviral drugs, vaccine and immunoglobulin. Infection by HCV is the most important risk of concern, in our hospital, in accidents with biological material.

  17. [Alternative biological materials to detect prenatal exposure to drugs of abuse in the third trimester of pregnancy].

    Science.gov (United States)

    García-Serra, J; Ramis, J; Simó, S; Joya, X; Pichini, S; Vall, O; García-Algar, O

    2012-11-01

    Detection of prenatal drug abuse exposure is essential to ensure an appropriate monitoring of affected children. A maternal questionnaire is not an efficient screening tool. The usefulness of maternal hair and meconium as biological materials to assess this exposure has been described in last few years. The aim of this study was to compare both these alternative biological materials for prenatal drug exposure detection in the third trimester of pregnancy, in order to assess its use as a screening tool. Between January and March 2010, samples of maternal hair and meconium from 107 mother-infant dyads were collected in Can Misses Hospital, Ibiza. The presence of opiates, cocaine, cannabis, and amphetamines, was determined in both materials, using standard chromatographic techniques. Maternal hair analysis showed a 15.9% positivity for drugs of abuse (17 cases): 11 cannabis, 7 cocaine, 1 cannabis and ecstasy, and 1 cannabis and cocaine. Only one mother reported cannabis consumption and another one, cocaine. Of the 7 cocaine positive cases in hair, 6 were confirmed in meconium analysis, while of 11 cannabis positive cases, only 3 were confirmed in meconium. Two different consumer profiles were defined: cocaine consumers and cannabis consumers (with only 2 cases of multiple drug use). The highest level of cocaine ever published was detected (1.582ng/g) in one case. This study reveals a high prevalence of drug abuse in this cohort during pregnancy. Improved screening methods may optimize prevention and monitoring of exposed infants. Maternal hair seems to be more sensitive than meconium to detect prenatal exposure to cannabis during the third trimester, so it might become a good screening tool. Copyright © 2011 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  18. Effect of corrosive marine atmosphere on construction materials in Tanzania: Exposure sites and preliminary results

    International Nuclear Information System (INIS)

    Mmari, A.G.; Uiso, C.B.S.; Makundi, I.N.; Potgieter-Vermaak, S.S.; Potgieter, J.H.; Van Grieken, R.

    2007-01-01

    Air pollution studies in Africa are limited and the influence of ambient air quality on buildings and constructions have not been investigated in the larger part of Sub-Saharan Africa. The increasing burden of emission from industry, traffic and coal power plants on ambient air pollution in Sub-Saharan Africa necessitated reviewing previous and current studies. In South Africa a 20-year exposure program, focusing on the effect of ambient exposure on various metals and alloys, showed that the amount of rainfall, relative humidity, atmospheric pollution, wind speed, solar radiation and structural design are some of the factors controlling atmospheric corrosion. Tanzania, being among the Sub-Saharan African countries and partly bordered by Indian ocean, the main source of marine atmosphere, experiences corrosive degradation on metal roofing and cementitious materials. This paper describes the exposure site set-up and will report on some preliminary results of air quality and its relation with the meteorological conditions, as well as surface changes observed, for the year one of exposure. These will thereafter be compared to the completed European and Asian studies, as reported by CLRTAP and RAPIDC respectively. (author)

  19. Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hyper-g, and to simulated and sounding rocket micro-g

    Science.gov (United States)

    Hampp, R.; Babbick, M.

    Previous microarray studies with cell cultures of Arabidopsis thaliana cv Columbia have shown responses in gene expression which were partly specific to exposure to microgravity sounding rocket experiment TEXUS In order to get access to early responses upon changes in gravitational fields we used exposure times as short as 2 min For this purpose we selected a range of genes which code for different groups of transcription factors WRKY ERF MYB MADS Samples were taken in 5-min clinorotation 2- and 3-dimensional hypergravity 8g and 2-min intervals sounding rocket experiment Amounts of transcripts were determined by quantitative RT PCR Most transcripts showed a significant transient change in content within a time frame of up to 30 min after changing the external gravitational field strength They could be grouped into 1 basic stress responses which occurred under all conditions 2 clinorotation-related effects which were either identical or opposite between 2D 60 rpm 4x10 -2 g and 3D clinorotation random positioning machine and 3 alterations specific to the microgravity exposure under sounding rocket conditions MAXUS The data are discussed in relation to gravitation-dependent signalling chains and with regard to the simulation of microgravity by means of clinorotation Supported by a grant from the Deutsches Zentrum f u r Luft- und Raumfahrt e V grant no 50 WB 0143

  20. Vacuum System and Modeling for the Materials Plasma Exposure Experiment

    International Nuclear Information System (INIS)

    Lumsdaine, Arnold; Meitner, Steve; Graves, Van; Bradley, Craig; Stone, Chris

    2017-01-01

    Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breaking vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.

  1. Role of membrane sterols and cortical microtubules in gravity resistance in plants

    Science.gov (United States)

    Hoson, T.; Koizumi, T.; Matsumoto, S.; Kumasaki, S.; Soga, K.; Wakabayashi, K.; Sakaki, T.

    Resistance to the gravitational force is a principal graviresponse in plants comparable to gravitropism Nevertheless only limited information has been obtained for this graviresponse We have examined mechanisms of signal perception transformation and transduction of the perceived signal and response to the transduced signal in gravity resistance using hypergravity conditions produced by centrifugation In Arabidopsis hypocotyls hypergravity treatment greatly increased the expression level of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase HMGR which catalyzes a reaction producing mevalonic acid a key precursor of terpenoids such as membrane sterols Geranyl diphosphate synthase gene was also up-regulated by hypergravity whereas the expression of other genes involved in membrane lipid metabolism was not influenced Hypergravity caused an increase in sterol content in azuki bean epicotyls but not in phospholipid glycolipid or fatty acid content Also hypergravity did not influence fatty acid composition in any lipid class Thus the effect of hypergravity on membrane lipid metabolism was specific for sterol synthesis On the other hand alpha- and beta-tubulin genes were up-regulated by hypergravity treatment in Arabidopsis hypocotyls Hypergravity also induced reorientation of cortical microtubules in azuki epicotyls the percentage of epidermal cells with transverse microtubles was decreased whereas that with longitudinal microtubules was increased Inhibitors of HMGR action and microtubule-disrupting agents completely prevented the gravity resistance

  2. Positive enteric contrast material for abdominal and pelvic CT with automatic exposure control: What is the effect on patient radiation exposure?

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen J., E-mail: jane.wang@radiology.ucsf.edu [Department of Radiology, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0628 (United States); Chen, Katherine S.; Gould, Robert; Coakley, Fergus V.; Fu Yanjun; Yeh, Benjamin M. [Department of Radiology, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0628 (United States)

    2011-08-15

    Objective: To assess the effect of positive enteric contrast administration on automatic exposure control (AEC) CT radiation exposure in (1) a CT phantom, and (2) a retrospective review of patients. Materials and methods: We scanned a CT phantom containing simulated bowel that was sequentially filled with water and positive enteric contrast, and recorded the mean volume CT dose index (CTDIvol). We also identified 17 patients who had undergone 2 technically comparable CT scans of the abdomen and pelvis, one with positive enteric contrast and the other with oral water. Paired Student's t-tests were used to compare the mean CTDIvol between scans performed with and without positive enteric contrast. Both the phantom and patient CT scans were performed using AEC with a fixed noise index. Results: The mean CTDIvol for the phantom with simulated bowel containing water and positive enteric contrast were 8.2 {+-} 0.2 mGy, and 8.7 {+-} 0.1 mGy (6.1% higher than water, p = 0.02), respectively. The mean CTDIvol for patients scanned with oral water and with positive enteric contrast were 11.8 mGy and 13.1 mGy, respectively (p = 0.003). This corresponded to a mean CTDIvol which was 11.0% higher (range: 0.0-20.7% higher) in scans with positive enteric contrast than those with oral water in patients. Conclusions: When automatic exposure control is utilized for abdominopelvic CT, the radiation exposure, as measured by CTDIvol, is higher for scans performed with positive enteric contrast than those with oral water.

  3. Study of the exposures received by the persons involved in the transportation of radioactive materials

    International Nuclear Information System (INIS)

    Hamard, J.; Sousselier, Y.

    1983-01-01

    An important step in the optimization process applied to exposures in the field of the transport of radioactive materials is an accurate inventory of the exposures actually received by the workers. The results of this study underlines that nearly all the doses received are well below the threshold values for the classification of the workers as occasionally exposed and a fortiori as professionally exposed and consequently no personal monitoring should be necessary for them. Thus the inventory of exposures is somewhat difficult as the workers implied in the transport process are not classified as exposed workers and not subject to personnal or collective dosimetry. Therefore a good knowledge of the exposures received during the transport of irradiated fuels should require a systematic follow up of this kind of transport all along their route including a careful dosimetric monitoring of the workers taking part in the transport. On the other hand, the reduction of the doses obtained by increasing the mechanization involves very high monetary costs as compared to the reduction of the detriment. Perhaps a more important reduction of the exposures could be attained by a better protection in the cars or lorries used for the transport of categories A and B packages. But it seems that in the case of the transports, the optimization is applied mainly during the conception and the testing of the packages and only little progress will be possible without involving disproportionated monetary costs. 4 references, 10 tables

  4. National survey of potential scenarios for occupational and public exposure to naturally occurring radioactive materials in the Republic of Cuba

    International Nuclear Information System (INIS)

    Fernandez Gomez, Isis Maria

    2012-01-01

    The naturally occurring radioactive materials (NORMs) unchanged in its natural state has been considered that can pose a problem from the radiological point of view; however, that are monitored by regulators has been rare. Furthermore, exposures to NORMs that have been altered during the exploitation of natural resources can in principle be regulated. The NORMs have found in some waste generated in various industries, e.g. metal scrap, sludge, slag and fluids. These materials, by-products and the end products of processing, can increase the exposure of both workers and members of the public. Besides, can have a significant environmental damage. Two important situations of exploitation of natural resources which may be present NORMs relevant in relation to the potential effects of these materials on human health and the environment, are: (1) when NORMs concentrations have risen above their natural levels in a product, byproduct or waste, (2) when the release of NORMs to the biosphere may increase due to physicochemical changes or the method by which the wastes are managed. This problem is considered and in Cuba has done a survey of all those potential scenarios of occupational and public exposure to naturally occurring radioactive materials. Documents and ongoing work carried out by the European Union and the International Atomic Energy Agency, have been taken as reference, to identify potential scenarios for occupational and public exposure to naturally occurring radioactive materials in Cuba. The availability of information is taken into account, and the level of care that has received this problem within the community of nations. Recommendatory criteria are developed for countries that can serve as an excellent reference for a study of this type. This issue is still in development in other regions, its relevance and importance from the point of view of radiation safety. The handling, storage, transport and use of equipment or contaminated waste with NORMs

  5. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis).

    Science.gov (United States)

    Böser, S; Dournon, C; Gualandris-Parisot, L; Horn, E

    2008-03-01

    During early periods of life, modifications of the gravitational environment affect the development of sensory, neuronal and motor systems. The vestibular system exerts significant effects on motor networks that control eye and body posture as well as swimming. The objective of the present study was to study whether altered gravity (AG) affects vestibuloocular and spinal motor systems in a correlated manner. During the French Soyuz taxi flight Andromède to the International Space Station ISS (launch: October 21, 2001; landing: October 31, 2001) Xenopus laevis embryos were exposed for 10 days to microgravity (microg). In addition, a similar experiment with 3g-hypergravity (3g) was performed in the laboratory. At onset of AG, embryos had reached developmental stages 24 to 27. After exposure to AG, each tadpole was tested for its roll-induced vestibuloocular reflex (rVOR) and 3 hours later it was tested for the neuronal activity recorded from the ventral roots (VR) during fictive swimming. During the post-AG recording periods tadpoles had reached developmental stages 45 to 47. It was observed that microgravity affected VR activity during fictive swimming and rVOR. In particular, VR activity changes included a significant decrease of the rostrocaudal delay and a significant increase of episode duration. The rVOR-amplitude was transiently depressed. Hypergravity was less effective on the locomotor pattern; occurring effects on fictive swimming were the opposite of microg effects. As after microgravity, the rVOR was depressed after 3g-exposure. All modifications of the rVOR and VR-activity recovered to normal levels within 4 to 7 days after termination of AG. Significant correlations between the rVOR amplitude and VR activity of respective tadpoles during the recording period have been observed in both tadpoles with or without AG experience. The data are consistent with the assumptions that during this period of life which is characterized by a progressive development

  6. Anthropogenic materials and products containing natural radionuclides. Pt. 2. Examination of radiation doses resulting from occupational exposure

    International Nuclear Information System (INIS)

    Reichelt, A.; Lehmann, K.H.

    1993-11-01

    The radiation doses are determined on the basis of dosimetric scanning of the materials and products and measurement of the ambient dose rates and inhaled doses at the place of work. For all places and conditions exmined, the average annual effective dose (ICRP) is of the order of 20mSv/annum. The substances and products examined are phosphate fertilizers. thoriated tungsten electrodes, or glass gas hoods, respectively, dental material containing uranium, and dental ceramics containing zirconium sands. The report also gives information on the occupational exposure in drinking-water conditioning plants. (Orig./DG) [de

  7. Structure of a mushy layer under hypergravity with implications for Earth's inner core

    Science.gov (United States)

    Huguet, Ludovic; Alboussière, Thierry; Bergman, Michael I.; Deguen, Renaud; Labrosse, Stéphane; Lesœur, Germain

    2016-03-01

    Crystallization experiments in the dendritic regime have been carried out in hypergravity conditions (from 1 to 1300 g) from an ammonium chloride solution (NH4Cl and H2O). A commercial centrifuge was equipped with a slip ring so that electric power (needed for a Peltier device and a heating element), temperature and ultrasonic signals could be transmitted between the experimental setup and the laboratory. Ultrasound measurements (2-6 MHz) were used to detect the position of the front of the mushy zone and to determine attenuation in the mush. Temperature measurements were used to control a Peltier element extracting heat from the bottom of the setup and to monitor the evolution of crystallization in the mush and in the liquid. A significant increase of solid fraction and attenuation in the mush is observed as gravity is increased. Kinetic undercooling is significant in our experiments and has been included in a macroscopic mush model. The other ingredients of the model are conservation of energy and chemical species, along with heat/species transfer between the mush and the liquid phase: boundary-layer exchanges at the top of the mush and bulk convection within the mush (formation of chimneys). The outputs of the model compare well with our experiments. We have then run the model in a range of parameters suitable for the Earth's inner core. This has shown the role of bulk mush convection for the inner core and the reason why a solid fraction very close to unity should be expected. We have also run melting experiments: after crystallization of a mush, the liquid has been heated from above until the mush started to melt, while the bottom cold temperature was maintained. These melting experiments were motivated by the possible local melting at the inner core boundary that has been invoked to explain the formation of the anomalously slow F-layer at the bottom of the outer core or inner core hemispherical asymmetry. Oddly, the consequences of melting are an increase in

  8. Pre-conceptual design activities for the materials plasma exposure experiment

    International Nuclear Information System (INIS)

    Lumsdaine, Arnold; Rapp, Juergen; Varma, Venugopal; Bjorholm, Thomas; Bradley, Craig; Caughman, John; Duckworth, Robert; Goulding, Richard; Graves, Van; Giuliano, Dominic; Lessard, Timothy; McGinnis, Dean; Meitner, Steven

    2016-01-01

    Highlights: • The development of long-pulse nuclear fusion devices requires testing plasma facing components at reactor relevant conditions. • The pre-conceptual design of a proposed linear plasma facility is presented. • Engineering considerations for multiple systems—plasma source and heating, magnet, vacuum, water cooling, and target, are presented. - Abstract: The development of next step fusion facilities such as DEMO or a Fusion Nuclear Science Facility (FNSF) requires first closing technology gaps in some critical areas. Understanding the material-plasma interface is necessary to enable the development of divertors for long-pulse plasma facilities. A pre-conceptual design for a proposed steady-state linear plasma device, the Materials Plasma Exposure Experiment (MPEX), is underway. A helicon plasma source along with ion cyclotron and electron Bernstein wave heating systems will produce ITER divertor relevant plasma conditions with steady-state parallel heat fluxes of up to 40 MW/m"2 with ion fluxes up to 10"2"4/m"2 s on target. Current plans are for the device to use superconducting magnets to produce 1–2 T fields. As a steady-state device, active cooling will be required for components that interact with the plasma (targets, limiters, etc.), as well as for other plasma facing components (transport regions, vacuum tanks, diagnostic ports). Design concepts for the vacuum system, the cooling system, and the plasma heating systems have been completed. The device will include the capability for handling samples that have been neutron irradiated in order to consider the multivariate effects of neutrons, plasma, and high heat-flux on the microstructure of divertor candidate materials. A vacuum cask, which can be disconnected from the high field environment in order to perform in-vacuo diagnosis of the surface evolution is also planned for the facility.

  9. Pre-conceptual design activities for the materials plasma exposure experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, Arnold, E-mail: lumsdainea@ornl.gov; Rapp, Juergen; Varma, Venugopal; Bjorholm, Thomas; Bradley, Craig; Caughman, John; Duckworth, Robert; Goulding, Richard; Graves, Van; Giuliano, Dominic; Lessard, Timothy; McGinnis, Dean; Meitner, Steven

    2016-11-01

    Highlights: • The development of long-pulse nuclear fusion devices requires testing plasma facing components at reactor relevant conditions. • The pre-conceptual design of a proposed linear plasma facility is presented. • Engineering considerations for multiple systems—plasma source and heating, magnet, vacuum, water cooling, and target, are presented. - Abstract: The development of next step fusion facilities such as DEMO or a Fusion Nuclear Science Facility (FNSF) requires first closing technology gaps in some critical areas. Understanding the material-plasma interface is necessary to enable the development of divertors for long-pulse plasma facilities. A pre-conceptual design for a proposed steady-state linear plasma device, the Materials Plasma Exposure Experiment (MPEX), is underway. A helicon plasma source along with ion cyclotron and electron Bernstein wave heating systems will produce ITER divertor relevant plasma conditions with steady-state parallel heat fluxes of up to 40 MW/m{sup 2} with ion fluxes up to 10{sup 24}/m{sup 2} s on target. Current plans are for the device to use superconducting magnets to produce 1–2 T fields. As a steady-state device, active cooling will be required for components that interact with the plasma (targets, limiters, etc.), as well as for other plasma facing components (transport regions, vacuum tanks, diagnostic ports). Design concepts for the vacuum system, the cooling system, and the plasma heating systems have been completed. The device will include the capability for handling samples that have been neutron irradiated in order to consider the multivariate effects of neutrons, plasma, and high heat-flux on the microstructure of divertor candidate materials. A vacuum cask, which can be disconnected from the high field environment in order to perform in-vacuo diagnosis of the surface evolution is also planned for the facility.

  10. Aircraft Carrier Exposure Testing of Aircraft Materials

    National Research Council Canada - National Science Library

    Lee, Eui

    2004-01-01

    .... Test and control specimens were affixed on exposure racks and installed on aircraft carriers to compare adhesive bonding primers for aluminum and to determine the static property behavior of various...

  11. Double blind placebo controlled exposure to molds

    DEFF Research Database (Denmark)

    Meyer, H W; Jensen, K A; Nielsen, K F

    2005-01-01

    non-significant, and at the same level as after placebo exposure. The developed exposure system based on the Particle-Field and Laboratory Emission Cell (P-FLEC) makes it possible to deliver a precise and highly controlled dose of mold spores from water-damaged building materials, imitating realistic......The objective was to develop an experimental setup for human exposure to mold spores, and to study the clinical effect of this exposure in sensitive subjects who had previously experienced potentially building-related symptoms (BRS) at work. From three water-damaged schools eight employees....... In conclusion this is, to our knowledge, the first study to successfully conduct a human exposure to a highly controlled dose of fungal material aerosolized directly from wet building materials. This short-term exposure to high concentrations of two different molds induced no more reactions than exposure...

  12. Assessment of exposure to chemical agents in in fill material for artificial turf soccer pitches: development and implementation of a survey protocol

    International Nuclear Information System (INIS)

    Castellano, P.; Proietto, A.R.; Gordiani, A.; Ferrante, R.; Tranfo, G.; Paci, E.; Pigini, D.

    2008-01-01

    Health concerns over the composition of the in fill material used to construct artificial turf pitches (e.g., for soccer and rugby), raised the need to develop a specific procedure to assess the risks of human exposure to pollutants that may be released by these materials. The aim of this paper was to develop and implement a survey protocol to assess exposure of artificial turf pitches users (e.g., coaches and maintenance personnel) through environmental and biological monitoring of toxic and carcinogenic substances contained in some types of in fill materials for artificial turf pitches. The exposure was assessed by personal and environmental sampling of hazardous substances - particularly of benzene, toluene, xylene (BTX), polycyclic aromatic hydrocarbons (PAHs) and heavy metals (lead, cadmium, chromium, tin and zinc) - for comparison with the occupational exposure limit values as per the Italian regulations and the lists of the American Conference of Industrial Governmental Hygienists (ACGIH). In addition, biological monitoring was performed for the quantitative and qualitative determination of the exposure bio markers of the substances of interest in potentially exposed individuals and in control group. Environmental sampling was performed on an outdoor, artificial turf soccer pitch in a sports facility in Rome characterized by recycled in fill material (rubber granules from recycled tyres, without any further processing); suction pumps were used as environmental samplers to collect the samples (located in areas of the soccer pitch deemed representative of exposure conditions) and personal samplers (in this latter case exclusively for monitoring PAHs) worn by the coaches during training sessions. For the various substances the following sampling systems were used: vials for BTX (benzene, toluene, and xylene), filters for metals and combined systems (filter plus vial) for the PAHs. The extracts were then analyzed by various instrumental techniques such as gas

  13. Evaluation of exposure pathways to man from disposal of radioactive materials into sanitary sewer systems

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E. Jr.; Parkhurst, M.A.; Aaberg, R.L.; Rhoads, K.C.; Hill, R.L.; Martin, J.B. [Pacific Northwest Lab., Richland, WA (United States)

    1992-05-01

    In accordance with 10 CFR 20, the US Nuclear Regulatory Commission (NRC) regulates licensees` discharges of small quantities of radioactive materials into sanitary sewer systems. This generic study was initiated to examine the potential radiological hazard to the public resulting from exposure to radionuclides in sewage sludge during its treatment and disposal. Eleven scenarios were developed to characterize potential exposures to radioactive materials during sewer system operations and sewage sludge treatment and disposal activities and during the extended time frame following sewage sludge disposal. Two sets of deterministic dose calculations were performed; one to evaluate potential doses based on the radionuclides and quantities associated with documented case histories of sewer system contamination and a second, somewhat more conservative set, based on theoretical discharges at the maximum allowable levels for a more comprehensive list of 63 radionuclides. The results of the stochastic uncertainty and sensitivity analysis were also used to develop a collective dose estimate. The collective doses for the various radionuclides and scenarios range from 0.4 person-rem for {sup 137}Cs in Scenario No. 5 (sludge incinerator effluent) to 420 person-rem for {sup 137}Cs in Scenario No. 3 (sewage treatment plant liquid effluent). None of the 22 scenario/radionuclide combinations considered have collective doses greater than 1000 person-rem/yr. However, the total collective dose from these 22 combinations was found to be about 2100 person-rem.

  14. Evaluation of exposure pathways to man from disposal of radioactive materials into sanitary sewer systems

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Parkhurst, M.A.; Aaberg, R.L.; Rhoads, K.C.; Hill, R.L.; Martin, J.B.

    1992-05-01

    In accordance with 10 CFR 20, the US Nuclear Regulatory Commission (NRC) regulates licensees' discharges of small quantities of radioactive materials into sanitary sewer systems. This generic study was initiated to examine the potential radiological hazard to the public resulting from exposure to radionuclides in sewage sludge during its treatment and disposal. Eleven scenarios were developed to characterize potential exposures to radioactive materials during sewer system operations and sewage sludge treatment and disposal activities and during the extended time frame following sewage sludge disposal. Two sets of deterministic dose calculations were performed; one to evaluate potential doses based on the radionuclides and quantities associated with documented case histories of sewer system contamination and a second, somewhat more conservative set, based on theoretical discharges at the maximum allowable levels for a more comprehensive list of 63 radionuclides. The results of the stochastic uncertainty and sensitivity analysis were also used to develop a collective dose estimate. The collective doses for the various radionuclides and scenarios range from 0.4 person-rem for 137 Cs in Scenario No. 5 (sludge incinerator effluent) to 420 person-rem for 137 Cs in Scenario No. 3 (sewage treatment plant liquid effluent). None of the 22 scenario/radionuclide combinations considered have collective doses greater than 1000 person-rem/yr. However, the total collective dose from these 22 combinations was found to be about 2100 person-rem

  15. Ultra-accelerated natural sunlight exposure testing

    Science.gov (United States)

    Jorgensen, Gary J.; Bingham, Carl; Goggin, Rita; Lewandowski, Allan A.; Netter, Judy C.

    2000-06-13

    Process and apparatus for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: a) concentrating solar flux uniformly; b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.

  16. Materializing Exposure: Developing an Indexical Method to Visualize Health Hazards Related to Fossil Fuel Extraction

    Directory of Open Access Journals (Sweden)

    Sara Wylie

    2017-09-01

    Full Text Available How can STS researchers collaborate with communities to design environmental monitoring devices that more effectively express their experiences and address gaps in regulation? This paper describes and shows the results of a novel method of visualizing environmental emissions of corrosive gases such as hydrogen sulfide (H2S exposure using photographic paper. H2S is a neurotoxic and flammable gas that smells like rotten eggs and is frequently associated with oil and natural gas extraction. Communities living with oil and gas development in Wyoming report odors of rotten eggs and describe symptoms of H2S exposure. H2S is recognized as an acute and chronic threat to human and environmental health and oil and gas companies are required to have plans in place to prevent and respond to accidental, high concentration releases of H2S. They are not, however, required to monitor, report or prevent routine daily emissions. Yet 15-25% of the oil and gas wells in the US are predicted to contain H2S, and some communities surrounded by multiple wells report chronic, routine exposure. Chronic exposure is difficult to represent with current tools for monitoring H2S because they are designed to measure acute workplace exposure. Informed by STS theories of black boxes and regimes of imperceptibility that focus on the need to revise not only regulations but also material tools of science, this paper describes the development of an indexical approach to visualizing this hazard. In indexical design, the reactive sensing element of a scientific instrument is brought to the foreground. The silver in the photopaper is an index as it tarnishes with H2S exposure. Discolored tests strips can be arranged together to form data-rich maps of the exposure landscape where this discoloration both represents how the gas spreads through a space and is a physical trace of the gas. Preliminary results in the form of data-rich maps show that regulating H2S emissions as primarily

  17. Determination of Radiological, Material and Organizational Measures for Reuse of Conditionally Released Materials from Decommissioning

    International Nuclear Information System (INIS)

    Ondra, F.; Vasko, M.; Necas, V.

    2012-01-01

    An important part of nuclear installation decommissioning is conditional release of materials. The mass of conditionally released materials can significantly influence radioactive waste management and capacity of radioactive waste repository. The influence on a total decommissioning cost is also not negligible. Several scenarios for reuse of conditionally released materials were developed within CONRELMAT project. Each scenario contains preparation phase, construction phase and operation phase. For each above mentioned phase is needed to determine radiological, material, organizational and other constraints for conditionally released materials reuse to not break exposure limits for staff and public. Constraints are determined on the basis of external and internal exposure calculations in created models for selected takes in particular scenarios phases. The paper presents a developed methodology for determination of part of above mentioned constraints concerning external exposure of staff or public. Values of staff external exposure are also presented in paper to ensure that staff or public exposure does not break the limits. The methodology comprises a proposal of following constraints: radionuclide limit concentration of conditionally released materials for specific scenarios and nuclide vectors, specific deployment of conditionally released materials eventually shielding materials, staff and public during the scenario's phases, organizational measures concerning time of staff's or public's stay in the vicinity of conditionally released materials for individual performed scenarios and nuclide vectors. The paper further describes VISIPLAN 3D ALARA calculation planning software tool used for calculation of staff's and public's external exposure for individual scenarios. Several other parallel papers proposed for HND2012 are presenting selected details of the project.(author).

  18. Exposures from external radiation and from inhalation of resuspended material

    International Nuclear Information System (INIS)

    Jacob, P.; Roth, P.; Golikov, V.; Balonov, M.; Erkin, V.; Likhtariov, I.; Garger, E.; Kashparov, V.

    1996-01-01

    In the modelling of external exposures due to cesium released during the reactor accident of Chernobyl, gamma dose rates in air over open undisturbed sites are considered to be different according to the unsoluble fraction in the deposit. This is taken into account by forming different classes according to the distance from the Chernobyl NPP. The effect of the different migration behavior in these distance classes on the gamma dose rate in air is found to increase with time. Predictions of gamma dose rates in air are based on measurements of the nuclear weapons tests fallout. Various population groups in the CIS countries are defined according to their place of residence (rural or urban), their occupation or age (indoor resp. outdoor workers, pensioners, school-children, or preschool-children), and their kind of residence (wooden, brick, or multi-storey house). Model results for various population groups are compared with the results of TLD-measurements of individual external exposures. For the calculation of inhalation doses, the new ICRP model for the respiratory tract was used. The dose assessments were conducted for measured size resolved activity distributions of resuspended material, obtained at different locations and for several kinds of agricultural operations. Inhalation doses vary considerably with respect to different kinds of work. Tractor drivers receive much higher doses than other agricultural workers, especially when the cabin window of the tractor is open. Effective doses due to the inhalation of resuspended plutonium are assessed to be a few μSv per initial deposit of one kBq/m 2 . Inhalation doses from 137 Cs are usually smaller by an order of magnitude than the doses from Pu, provided a high solubility is assumed for resuspended Cs

  19. Studies of the influence of nonequilibrium plasma thermal exposure on the characteristics of the capillary-porous polymer material

    International Nuclear Information System (INIS)

    Makhotkina, L Yu; Khristoliubova, V I

    2017-01-01

    Capillary-porous materials, which include natural macromolecular tanning material, are exposed to a number of factors during the treatment by a nonequilibrium plasma. Plasma particles exchange the charge and energy with the atoms of the material during the interaction of the plasma with the surface. The results of treatment are desorption of atoms and molecules from the body surface, sputtering and evaporation of material’s particles, changes of the structure and phase state. In real terms during the modification of solids by nonequilibrium low-temperature plasma thermal effect influences the process. The energy supplied from the discharge during the process with low pressure, which is converted into heat, is significantly less than during the atmospheric pressure, but the thermal stability of high-molecular compounds used in the manufacture of materials and products of the tanning industry, is very limited and depends on the duration of the effect of temperature. Even short heating of hydrophilic polymers (proteins) (100-180 °C) causes a change in their properties. It decreases the collagen ability to absorb water vapor, to swell in water, acids, alkalis, and thus decreases their durability. Prolonged heating leads to a deterioration of the physical and mechanical properties. Higher heating temperatures it leads to the polymer degradation. The natural leather temperature during plasma exposure does not rise to a temperature of collagen degradation and does not result in changes of physical phase of the dermis. However, the thermal plasma exposure must be considered, since the high temperatures influence on physical and mechanical properties. (paper)

  20. Assessment of radiation exposures from naturally occurring radioactive materials in the oil and gas industry

    International Nuclear Information System (INIS)

    Hamlat, M.S.; Djeffal, S.; Kadi, H.

    2001-01-01

    Radioactive deposits, often referred to as naturally occurring radioactive material scale, can, because of incompatibility of formation and injection waters, be formed inside production equipment of the oil and gas industry. These scales contain mainly 226 Ra and its daughter products, which can cause an exposure risk. The gamma ray dose rates, with the associated occupational doses in the oil and gas industry, and 226 Ra concentration in production water, crude oil and hard/soft scale samples were determined. Results obtained are discussed and compared to those from other studies

  1. Environmental, health, and safety decision making for naturally occurring radioactive materials in producing operations using pathway exposure analysis

    International Nuclear Information System (INIS)

    Miller, H.T.; Cook, L.M.

    1991-01-01

    A number of health and safety issues have arisen because of the occurrence of NORM, naturally occurring radioactive materials of the 226 radium and 228 radium decay chains, in production operations. Issues such as risk to workers or the general public, disposal of contaminated production fluids, disposal of NORM removed in cleaning equipment and tubing, and procedures to follow in well rework, equipment decontamination and other types of maintenance must be addressed. This paper describes the application of a procedural aid to decision making known as pathway exposure analysis to these issues. The procedure examines the radiation exposure of individuals and population groups by calculating the dose from each exposure route and pathway. The sum of these is used to calculate the overall risk to the individual or the group. This method can be used to examine management and procedural options to identify the option offering the smallest risk. Risk information coupled with cost estimates then permits management maximum utilization of its available resources

  2. Presenting of a material exposure health risk assessment model in Oil and Gas Industries (case study: Pars Economic and Energy Region)

    OpenAIRE

    M. Heydari; M. Omidvari; I. M. Fam

    2014-01-01

    Introduction: One of the most important threats for employees working in chemical industries is exposing to the chemical materials. Lack of precaution and control regulations during working with chemicals can have irreparable consequences. So, in order to achieve an effective control program, it is necessary to have an appropriate assessment of the procedures involving exposure to the chemicals. William-fine method can provide an acceptable insight into hazard risk rate. . Material...

  3. Diagnosis, injury and prevention of internal radiation exposure

    International Nuclear Information System (INIS)

    Tatsuzaki, Hideo

    2012-01-01

    Radiation exposure is classified into three categories: external exposure, surface contamination, and internal exposure (also called internal contamination). Internal exposure is an exposure by the ionizing radiation emitted from radioactive materials taken into a human body. Uptake of radioactive materials can go through inhalation, ingestion, or wound contamination. Not like external exposure, alpha ray or beta ray, which has a limited penetration, is also important in internal exposure. Diagnosis of internal exposure is based on measurement and dose assessment in addition to the history taking. Two methods, direct measurement and/or bioassay (indirect measurement), are used for the measurement. These measurements provide information of radioactive materials in the body at the time of the measurement. The exposure dose to the body needs to be calculated in a process of dose assessment, based on the results of these measurements and history of intake, either acute intake or chronic intake. Another method, measurement of environmental samples or food stuff, is also used for dose assessment. For internal exposure, radiation dose to the body is expressed as committed effective dose or committed equivalent dose, which are accumulation of dose over a defined period. Radioactive materials taken into body are transferred among many body components depending on the type of radionuclide or chemicals etc. Some radioactive materials concentrate in a specific organ. Symptoms and signs depend on the distribution of the radioactive materials in the body. Monitoring the concentration in air or foods is conducted in order to control human activities and foods and consequently reduce the amount of intake to human bodies as a preventive measure. Prevention of internal exposure is also conducted by protective gears such as full face masks. Iodine prophylaxis could be used against radioactive iodine intake. Stable iodine, mostly potassium iodide, could be taken into the thyroid and

  4. Severe deterministic effects of external exposure and intake of radioactive material: basis for emergency response criteria

    International Nuclear Information System (INIS)

    Kutkov, V; Buglova, E; McKenna, T

    2011-01-01

    Lessons learned from responses to past events have shown that more guidance is needed for the response to radiation emergencies (in this context, a 'radiation emergency' means the same as a 'nuclear or radiological emergency') which could lead to severe deterministic effects. The International Atomic Energy Agency (IAEA) requirements for preparedness and response for a radiation emergency, inter alia, require that arrangements shall be made to prevent, to a practicable extent, severe deterministic effects and to provide the appropriate specialised treatment for these effects. These requirements apply to all exposure pathways, both internal and external, and all reasonable scenarios, to include those resulting from malicious acts (e.g. dirty bombs). This paper briefly describes the approach used to develop the basis for emergency response criteria for protective actions to prevent severe deterministic effects in the case of external exposure and intake of radioactive material.

  5. Toll mediated infection response is altered by gravity and spaceflight in Drosophila.

    Directory of Open Access Journals (Sweden)

    Katherine Taylor

    Full Text Available Space travel presents unlimited opportunities for exploration and discovery, but requires better understanding of the biological consequences of long-term exposure to spaceflight. Immune function in particular is relevant for space travel. Human immune responses are weakened in space, with increased vulnerability to opportunistic infections and immune-related conditions. In addition, microorganisms can become more virulent in space, causing further challenges to health. To understand these issues better and to contribute to design of effective countermeasures, we used the Drosophila model of innate immunity to study immune responses in both hypergravity and spaceflight. Focusing on infections mediated through the conserved Toll and Imd signaling pathways, we found that hypergravity improves resistance to Toll-mediated fungal infections except in a known gravitaxis mutant of the yuri gagarin gene. These results led to the first spaceflight project on Drosophila immunity, in which flies that developed to adulthood in microgravity were assessed for immune responses by transcription profiling on return to Earth. Spaceflight alone altered transcription, producing activation of the heat shock stress system. Space flies subsequently infected by fungus failed to activate the Toll pathway. In contrast, bacterial infection produced normal activation of the Imd pathway. We speculate on possible linkage between functional Toll signaling and the heat shock chaperone system. Our major findings are that hypergravity and spaceflight have opposing effects, and that spaceflight produces stress-related transcriptional responses and results in a specific inability to mount a Toll-mediated infection response.

  6. Transport properties of carboxylated nitrile butadiene rubber (XNBR)-nanoclay composites; a promising material for protective gloves in occupational exposures.

    Science.gov (United States)

    Mirzaei Aliabadi, Mostafa; Naderi, Ghasem; Shahtaheri, Seyed Jamaleddin; Forushani, Abbas Rahimi; Mohammadfam, Iraj; Jahangiri, Mehdi

    2014-02-28

    This study was conducted in response to one of the research needs of National Institute for Occupational Safety and Health (NIOSH), i.e. the application of nanomaterials and nanotechnology in the field of occupational safety and health. In order to fill this important knowledge gap, the equilibrium solubility and diffusion of carbon tetrachloride and ethyl acetate through carboxylated nitrile butadiene rubber (XNBR)-clay nanocomposite, as a promising new material for chemical protective gloves (or barrier against the transport of organic solvent contaminant), were examined by swelling procedure. Near Fickian diffusion was observed for XNBR based nanocomposites containing different amounts of nanoclay. Decontamination potential is a key factor in development of a new material for reusable chemical protective gloves applications, specifically for routine or highly toxic exposures. A thermal decontamination regime for nanocomposite was developed for the first time. Then, successive cycles of exposure/decontamination for nanocomposite were performed to the maximum 10 cycles for the first time. This result confirms that the two selected solvents cannot deteriorate the rubber-nanoclay interaction and, therefore, such gloves can be reusable after decontamination.

  7. Effects of gravity on meiosis, fertilization and early embryogenesis in Caenorhabditis elegans

    Science.gov (United States)

    Sasagawa, Y.; Saito, Y.; Shimizu, M.; Ishioka, N.; Yamashita, M.; Takahashi, H.; Higashitani, A.

    The embryonic development of the nematode Caenorhabditis elegans was examined under different gravitational conditions. The first cleavage plane in the 1-cell embryo was slid to some extent by re-orientation of liquid culture vessel, but the pattern and timing of cleavages were not affected. Under 100G of hypergravity condition with swing-centrifuge, the number of eggs laid from an adult hermaphrodite decreased and their hatching rate was drastically reduced. On the other hand, the embryonic development after fertilization normally occurred and grew to adulthood at more than 100G of hypergravity. When the adult hermaphrodites cultured under 100G of hypergravity transferred to a ground condition (1G), the newly fertilized embryos normally developed and their hatching rate was fully recovered. These results indicated that the reproductive process except spermatogenesis, oogenesis and embryogenesis after fertilization is impaired under 100G of hypergravity condition, and the effect is transient. Namely, the fertilization process including meiotic divisions I and II is sensitive to hypergravity in the nematode C. elegans.

  8. Selection of materials for ETF

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1980-01-01

    Repeated operation of a long burning, ignited plasma in ETF implies high exposure to an intense source of energetic particles and high energy (14.1 MeV) neutrons and presents a unique environment for materials in ETF compared with earlier tokamaks. Designing ETF (and FED) will provide many insights into reactor relevant design issues related to materials performance, particularly in components outside the first wall. This paper focuses primarily on how exposure to the plasma and radiation damage to materials infuence the design lifetime of particular components, including the first wall, armor, and TF coils. Also discussed are radiaton exposure limits for repair welding of the torus and for electrical materials used in RF and diagnostics

  9. Materials And Processes Technical Information System (MAPTIS) LDEF materials data base

    Science.gov (United States)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated from LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux) and author(s) or principal investigator(s). Tne LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which has been computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. The LDEF Materials Data Base is described and step-by-step example searches using the data base are included. Information on how to become an authorized user of the system is included.

  10. Degradation of photovoltaic backsheet materials under multi-factor accelerated UV light exposures

    Science.gov (United States)

    Klinke, Addison G.; Gok, Abdulkerim; Ifeanyi, Silas I.; French, Roger H.; Bruckman, Laura S.

    2017-08-01

    Long term outdoor durability of photovoltaic (PV) module backsheets is critical to a module's power output over its lifetime. The use of uoropolymer-based backsheets or the addition of stabilizers to polyethylene-terephthalate (PET) and polyamide (PA) type backsheets can help extend their lifetime. This study presents the performance of 21 backsheets made of 8 different material combinations under ASTM G154 Cycle 4 accelerated light exposures. The backsheets were subjected to 4000 hours of high irradiance UVA light at a peak intensity of 1.55 W=m2 at 340 nm at 70°C with and without a condensing humidity cycle at 50°C. Backsheets were evaluated, with repeated measurements, using various evaluation techniques to identify and assess potential signs of degradation. These evaluations included the yellowness index (YI), CIE color space coordinates, and gloss at 20, 60, and 85°. The temporal evolution of the relative color change ΔE was statistically analyzed to develop a stress-response model which used the UVA light dose to predict color change. It was found that the PVF/PET/E backsheet performed the best while PET/PET/E and THV/PET/EVA backsheets performed the worst. Additionally, substantial variation in color change response, attributable to key manufacturing differences, was observed within a given material type.

  11. Chemical exposures in recently renovated low-income housing: Influence of building materials and occupant activities.

    Science.gov (United States)

    Dodson, Robin E; Udesky, Julia O; Colton, Meryl D; McCauley, Martha; Camann, David E; Yau, Alice Y; Adamkiewicz, Gary; Rudel, Ruthann A

    2017-12-01

    Health disparities in low-income communities may be linked to residential exposures to chemicals infiltrating from the outdoors and characteristics of and sources in the home. Indoor sources comprise those introduced by the occupant as well as releases from building materials. To examine the impact of renovation on indoor pollutants levels and to classify chemicals by predominant indoor sources, we collected indoor air and surface wipes from newly renovated "green" low-income housing units in Boston before and after occupancy. We targeted nearly 100 semivolatile organic compounds (SVOCs) and volatile organic compounds (VOCs), including phthalates, flame retardants, fragrance chemicals, pesticides, antimicrobials, petroleum chemicals, chlorinated solvents, and formaldehyde, as well as particulate matter. All homes had indoor air concentrations that exceeded available risk-based screening levels for at least one chemical. We categorized chemicals as primarily influenced by the occupant or as having building-related sources. While building-related chemicals observed in this study may be specific to the particular housing development, occupant-related findings might be generalizable to similar communities. Among 58 detected chemicals, we distinguished 25 as primarily occupant-related, including fragrance chemicals 6-acetyl-1,1,2,4,4,7-hexamethyltetralin (AHTN) and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[g]-2-benzopyran (HHCB). The pre- to post-occupancy patterns of the remaining chemicals suggested important contributions from building materials for some, including dibutyl phthalate and xylene, whereas others, such as diethyl phthalate and formaldehyde, appeared to have both building and occupant sources. Chemical classification by source informs multi-level exposure reduction strategies in low-income housing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Human biological monitoring for exposure assessment in response to an incident involving hazardous materials.

    Science.gov (United States)

    Scheepers, Paul T J; van Brederode, Nelly E; Bos, Peter M J; Nijhuis, Nicole J; van de Weerdt, Rik H J; van der Woude, Irene; Eggens, Martin L

    2014-12-15

    Biological monitoring in humans (HBM) is widely used in the field of occupational and environmental health. In the situation of an unexpected release of hazardous materials HBM may contribute to the medical support and treatment of exposed individuals from the general population or of emergency responders. Such exposure information may also be used to respond to individual concerns such as questions about a possible relationship between the chemicals released during the incident and health effects. In The Netherlands a guideline was prepared to support early decision-making about the possible use of HBM for exposure assessment during or as soon as possible following a chemical incident. The application of HBM in such an emergency setting is not much different from situations where HBM is normally used but there are some issues that need extra attention such as the choice of the biomarker, the biological media to be sampled, the time point at which biological samples should be collected, the ethics approval and technical implementation of the study protocol and the interpretation and communication of the study results. These issues addressed in the new guideline will support the use of HBM in the management of chemical disasters. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. The mere exposure effect in patients with schizophrenia.

    Science.gov (United States)

    Marie, A; Gabrieli, J D; Vaidya, C; Brown, B; Pratto, F; Zajonc, R B; Shaw, R J

    2001-01-01

    The mere exposure effect refers to the development of an emotional preference for previously unfamiliar material because of frequent exposure to that material. This study compared schizophrenia subjects (n = 20) to normal controls (n = 21) to determine whether implicit memory, as demonstrated by the mere exposure effect, was intact. Patients with schizophrenia demonstrated a normal preference for both verbal and visual materials seen earlier relative to novel materials, despite impaired performance on a recognition task for explicit memory using similar materials. Previous studies of schizophrenia subjects have shown a dissociation between implicit and explicit memory on verbal tasks. We found a similar dissociation demonstrated by normal functioning on an implicit memory task and impaired functioning on an explicit memory task. Potential implications of these findings are discussed with regard to treatment and rehabilitation.

  14. Harmonizing exposure metrics and methods for sustainability assessments of food contact materials

    DEFF Research Database (Denmark)

    Ernstoff, Alexi; Jolliet, Olivier; Niero, Monia

    2016-01-01

    ) and Cradle to Cradle to support packaging design. Each assessment has distinct context and goals, but can help manage exposure to toxic chemicals and other environmental impacts. Metrics a nd methods to quantify and characterize exposure to potentially toxic chemicals specifically in food packaging are......, however, notably lacking from such assessments. Furthermore, previous case studies demonstrated that sustainable packaging design focuses, such as decreasing greenhouse gas emissions or resource consumption, can increase exposure to toxic chemicals through packaging. Thereby, developing harmonized methods...... for quantifying exposure to chemicals in food packaging is critical to ensure ‘sustainable packages’ do not increase exposure to toxic chemicals. Therefore we developed modelling methods suitable for first-tier risk screening and environmental assessments. The modelling framework was based on the new product...

  15. Calibration of thermoluminiscent materials

    International Nuclear Information System (INIS)

    Bos, A.J.J.

    1989-07-01

    In this report the relation between exposure and absorbed radiation dose in various materials is represented, on the base of recent data. With the help of this a calibration procedure for thermoluminescent materials, adapted to the IRI radiation standard is still the exposure in rontgen. In switching to the air kerma standard the calibration procedure will have to be adapted. (author). 6 refs.; 4 tabs

  16. High intensity 5 eV cw laser substained O-atom exposure facility for material degradation studies

    International Nuclear Information System (INIS)

    Cross, J.B.; Spangler, L.H.; Hoffbauer, M.A.; Archuleta, F.A.

    1986-01-01

    An atomic oxygen exposure facility has been developed for studies of material degradation. The goal of these studies is to provide design criteria and information for the manufacture of long life (20 to 30 years) construction material for use in low earth orbit. The studies that are being undertaken using the facility will provide (1) absolute reaction cross sections for use in engineering design problems, (2) formulations of reaction mechanisms for use in selection of suitable existing materials and design of new more resistant ones, and (3) calibration of flight hardware (mass spectrometers, etc.) in order to directly relate experiments performed in low earth orbit to ground based investigations. The facility consists of (1) a cw laser sustained discharge source of O-atoms having a variable energy up to 5 eV and an intensity of between 10 15 -10 17 O-atoms s -1 cm -2 , (2) an atomic beam formation and diagnostics system consisting of various stages of differential pumping, mass spectrometer detector and time-of-flight analysis, (3) a spinning rotor viscometer for absolute O-atom flux measurements, and (4) provision for using the system for calibration of flight instruments. 15 refs., 10 figs

  17. External exposure doses due to gamma emitting natural radionuclides in some Egyptian building materials.

    Science.gov (United States)

    Moharram, B M; Suliman, M N; Zahran, N F; Shennawy, S E; El Sayed, A R

    2012-01-01

    Using of building materials containing naturally occurring radionuclides as (238)U, (232)Th and (40)K and their progeny results in an external exposures of the housing of such buildings. In the present study, indoor dose rates for typical Egyptian rooms are calculated using the analytical method and activity concentrations of natural radionuclides in some building materials. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling assumed. Different room models are assumed to discuss variation of indoor dose rates according to variation in room construction. Activity concentrations of (238)U, (232)Th and (40)K content in eight samples representative Clay soil and different building materials used in most recent Egyptian building were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The specific activity for (238)U, (232)Th and (40)K, from the selected samples, were in the range 14.15-60.64, 2.75-84.66 and 7.35-554.4Bqkg(-1), respectively. The average indoor absorbed dose rates in air ranged from 0.005μGyh(-1) to 0.071μGyh(-1) and the corresponding population-weighted annual effective dose due to external gamma radiation varies from 0.025 to 0.345mSv. An outdoor dose rate for typical building samples in addition to some radiological hazards has been introduced for comparison. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Ultra-Accelerated Natural Sunlight Exposure Testing Facilities

    Science.gov (United States)

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2004-11-23

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  19. Hypergravity synthesis of graphitic carbon nanomaterial in glide arc plasma

    NARCIS (Netherlands)

    Šperka, J.; Soucek, P.; van Loon, J.J.W.A.; Dowson, A.; Schwarz, C.; Krause, J.; Butenko, Y.; Kroesen, G.; Kudrle, V.

    2014-01-01

    A nanostructured carbon material was synthesized using a methane/helium glide arc plasma under standard and increased gravity. Material analysis performed on samples collected from an effluent gas filter showed that the deposited material was present in the form of carbon nanoparticles. They

  20. Malicious release of radioactive materials in urban area. Exposure of the public and emergency staff, protective measures

    International Nuclear Information System (INIS)

    Koch, Wolfgang; Lange, Florentin

    2016-01-01

    The preparedness for hypothetical radiological scenarios is part of the tasks for governmental authorities, safety and emergency organizations and the staff in case of the incident. The EURATOM guideline for radiation protection has to be implemented into national laws. According to the guidelines it is required that emergency planning has to be prepared for hypothetical radiological scenarios including terroristic or other maliciously motivated attacks using radioactive materials. The study includes assumptions on the released respirable radioactivity, restriction of the hazardous area, wind induced re-suspension of radioactive dusts and inhalation exposure, and mitigation measures.

  1. Worker exposures: How much in the UK

    International Nuclear Information System (INIS)

    Shaw, K.B.

    1985-01-01

    Basically, four categories of workers are involved with transport operations: handlers, drivers, health physics monitoring staff, and supervisory staff. In 1984, the National Radiological Protection Board (NRPB) published results of a study covering all four of these worker categories, all types of radioactive material, and all modes of transport used in the United Kingdom. The study covered occupationally related exposure during all normal transport operations of radioactive materials, but did not cover potential consequences of accidents. Although mainly concerned with exposure of workers, the study included the exposure of the public from the transport of irradiated Magnox fuel from the first generation of nuclear power stations. The current evaluation - based on measurements as distinct from earlier assessments which were theoretical estimates - shows that the public exposure is much lower than the calculated maximum based on pessimistic assumptions. For workers, the study concluded that the annual collective dose from the transport of all radioactive materials in the UK is approximately 1 man-sievert. This compares with an annual collective dose estimated at 500 man-sievert from all occupational exposure to ionizing radiation in the UK

  2. Use of ubiquitous materials for the estimation of accidental exposures

    International Nuclear Information System (INIS)

    Pradhan, A.S.; Kim, J.L.; Lee, J.I.

    2012-01-01

    Incidents involving unexpected radiation exposure do take place due to human error, equipment failure or other reasons in spite of regulatory systems being in place. Medical physicists who are also radiation safety officers (RSO) of their institutions in several countries, like India, have the responsibility of radiation protection of the staff, carers and comforters of the patients, visitors and public at large, apart from ensuring patient-specific treatment planning for accurate dose delivery, adoption of optimized practices, and minimization of chances of radiation accidents in radiation therapy, radio-diagnostic, and nuclear medicine practices. Theft and mishandling of 137 Cs teletherapy source in 1987 in Goiania (Brazil) in which 28 people suffered radiation burns and five people (three men, one woman, and one child) died and several other incidents demonstrated that mishandling of a source from a place like hospital cannot be ruled out. In the recent times, especially after terrorist attack on World Trade Center, New York, USA (on September 11, 2001), apprehensions of radiation terrorism and other malevolent uses (Dirty Bomb) of radioactive materials have considerably increased all over the world. To meet the situation of any radiation accident (due to external sources or the hospital-based sources), preparedness for dosimetry of the exposed persons in the quickest possible way becomes important for the implementation of the necessary follow-up procedures

  3. Rapidly processable radiographic material

    International Nuclear Information System (INIS)

    Brabandere, L.A. de; Borginon, H.A.; Pattyn, H.A.; Pollet, R.J.

    1981-01-01

    A new rapidly processable radiographic silver halide material is described for use in mammography and non-destructive testing of industrial materials. The radiographic material is used for direct exposure to penetrating radiation without the use of fluorescent-intensifying screens. It consists of a transparent support with a layer of hydrophilic colloid silver halide emulsion on one or both sides. Examples of the preparation of three different silver halide emulsions are given including the use of different chemical sensitizers. These new radiographic materials have good resistance to the formation of pressure marks in rapid processing apparatus and they have improved sensitivity for direct exposure to penetrating radiation compared to conventional radiographic emulsions. (U.K.)

  4. Method for detecting radiation dose utilizing thermoluminescent material

    International Nuclear Information System (INIS)

    Miller, S.D.; McDonald, J.C.; Eichner, F.N.; Durham, J.S.

    1992-01-01

    The amount of ionizing radiation to which a thermoluminescent material has been exposed is determined by first cooling the thermoluminescent material and then optically stimulating the thermoluminescent material by exposure to light. Visible light emitted by the thermoluminescent material as it is allowed to warm up to room temperature is detected and counted. The thermoluminescent material may be annealed by exposure to ultraviolet light. 5 figs

  5. Scenarios identified internationally for occupational and public exposure to naturally occurring radioactive materials

    International Nuclear Information System (INIS)

    Lopez Bejarano, Gladys

    2012-01-01

    A study was conducted to determine the exposure of workers; exposure limits, and the delegation of responsibilities and special measures of compensation, protection and security. Likewise, monitoring, personal exposure assessments, externally and internally, are analyzed [es

  6. Children's advertising exposure and materialistic orientations: A longitudinal study

    NARCIS (Netherlands)

    Opree, S.J.; Valkenburg, P.M.; Reijmersdal, E.A. van; Buijzen, M.A.

    2012-01-01

    As many as nine out of 10 parents worry that children's frequent exposure to advertising makes them materialistic. In this study we not only aim to investigate if children's advertising exposure indeed affects their materialism, but also how it affects their materialism (i.e., by studying the

  7. [Occupational accidents due to exposure to biological material in the multidisciplinary team of the emergency service].

    Science.gov (United States)

    Oliveira, Adriana Cristina; Lopes, Aline Cristine Souza; Paiva, Maria Henriqueta Rocha Siqueira

    2009-09-01

    This transversal, survey-based research was carried out with a multiprofessional emergency care team in Belo Horizonte, between June and December 2006. The study aimed at estimating the incidence of occupational accidents by exposure to biological material, post-accidents conducts and demographic determinant factors. The study applied a structured questionnaire and descriptive analyses, as well as incidence calculations and logistic regression. The incidence of accidents with biological material reached 20.6%, being 40.8% by sharp materials and 49.0% by body fluids; 35.3% of the accidents took place among physicians and 24.0% among nurses. Post-accidents procedures: no medical assessment, 63.3%; under-notification, 81.6%; no conduct, 55.0%; and no serological follow-up, 61.2%. Factors associated with accidents: working time in the institution (Odds Ratio--OR, 2.84; Credible Interval--CI 95%-1.22-6.62); working in advanced support units (OR = 4.18; CI 95%--1.64-10.64); and interaction between working time in the institution and working in Basic Support Unit (OR 0.27; CI 95%--0.07-1.00). In order to reduce accidents, the implementation of post-accident protocols and follow-up, as well as under-notification norms, are suggested.

  8. Bioaccessibility and Risk of Exposure to Metals and SVOCs in Artificial Turf Field Fill Materials and Fibers.

    Science.gov (United States)

    Pavilonis, Brian T; Weisel, Clifford P; Buckley, Brian; Lioy, Paul J

    2014-01-01

    To reduce maintenance costs, municipalities and schools are starting to replace natural grass fields with a new generation synthetic turf. Unlike Astro-Turf, which was first introduced in the 1960s, synthetic field turf provides more cushioning to athletes. Part of this cushioning comes from materials like crumb rubber infill, which is manufactured from recycled tires and may contain a variety of chemicals. The goal of this study was to evaluate potential exposures from playing on artificial turf fields and associated risks to trace metals, semi-volatile organic compounds (SVOCs), and polycyclic aromatic hydrocarbons (PAHs) by examining typical artificial turf fibers (n = 8), different types of infill (n = 8), and samples from actual fields (n = 7). Three artificial biofluids were prepared, which included: lung, sweat, and digestive fluids. Artificial biofluids were hypothesized to yield a more representative estimation of dose than the levels obtained from total extraction methods. PAHs were routinely below the limit of detection across all three biofluids, precluding completion of a meaningful risk assessment. No SVOCs were identified at quantifiable levels in any extracts based on a match of their mass spectrum to compounds that are regulated in soil. The metals were measurable but at concentrations for which human health risk was estimated to be low. The study demonstrated that for the products and fields we tested, exposure to infill and artificial turf was generally considered de minimus, with the possible exception of lead for some fields and materials. © 2013 Society for Risk Analysis.

  9. Environmental radioactivity and radiation exposure

    International Nuclear Information System (INIS)

    1980-01-01

    In 1977 population exposure in the Federal Republic of Germany has not changed as compared to the previous years. The main share of the total exposure, nearly two thirds, is attributed to natural radioactive substances and cosmic radiation. The largest part (around 85%) of the artificial radiation exposure is caused by X-ray diagnostics. In comparison to this, radiation exposure from application of ionizing radiation in medical therapy, use of radioactive material in research and technology, or from nuclear facilities is small. As in the years before, population exposure caused by nuclear power plants and other nuclear facilities is distinctly less than 1% of the natural radiation exposure. This is also true for the average radiation exposure within a radius of 3 km around nuclear facilities. On the whole, the report makes clear that the total amount of artificial population exposure will substantially decrease only if one succeeds in reducing the high contribution to the radiation exposure caused by medical measures. (orig.) [de

  10. OSHA Bloodborne Pathogens Standards Exposure Control Plan

    Science.gov (United States)

    Luhrs, Caro Elise; Teitelbaum, Rita

    1993-01-01

    The Hummer Associates Exposure Control Plan is designed to reduce significant occupational exposure to bloodborne pathogens and infectious materials for Hummer Associates health care personnel. Under universal precautions, all patients and all body fluids are considered potentially infectious for bloodborne pathogens. Medical personnel need not be at increased risk if universal precautions are correctly understood and followed. This program covers all employees who could reasonably anticipate contact with blood or other potentially infectious materials during the performance of their job responsibilities. Although HIV and hepatitis B are mentioned most often, this program applies to all bloodborne diseases. The two main components needed to implement this program are universal precautions and engineering/work practice controls. This program covers all employees who may have occupational exposure to blood or other potentially infectious materials. Other aspects of this program are discussed.

  11. [Measures against Radiation Exposure Due to Large-Scale Nuclear Accident in Distant Place--Radioactive Materials in Nagasaki from Fukushima Daiichi Nuclear Power Plant].

    Science.gov (United States)

    Yuan, Jun; Sera, Koichiro; Takatsuji, Toshihiro

    2015-01-01

    To investigate human health effects of radiation exposure due to possible future nuclear accidents in distant places and other various findings of analysis of the radioactive materials contaminating the atmosphere of Nagasaki due to the Fukushima Daiichi Nuclear Power Plant accident. The concentrations of radioactive materials in aerosols in the atmosphere of Nagasaki were measured using a germanium semiconductor detector from March 2011 to March 2013. Internal exposure dose was calculated in accordance with ICRP Publ. 72. Air trajectories were analyzed using NOAA and METEX web-based systems. (134)Cs and (137)Cs were repeatedly detected. The air trajectory analysis showed that (134)Cs and (137)Cs flew directly from the Fukushima Daiichi Nuclear Power Plant from March to April 2011. However, the direct air trajectories were rarely detected after this period even when (134)Cs and (137)Cs were detected after this period. The activity ratios ((134)Cs/(137)Cs) of almost all the samples converted to those in March 2011 were about unity. This strongly suggests that the (134)Cs and (137)Cs detected mainly originated from the Fukushima Daiichi Nuclear Power Plant accident in March 2011. Although the (134)Cs and (137)Cs concentrations per air volume were very low and the human health effects of internal exposure via inhalation is expected to be negligible, the specific activities (concentrations per aerosol mass) were relatively high. It was found that possible future nuclear accidents may cause severe radioactive contaminations, which may require radiation exposure control of farm goods to more than 1000 km from places of nuclear accidents.

  12. Bio-accessibility and Risk of Exposure to Metals and SVOCs in Artificial Turf Field Fill Materials and Fibers

    Science.gov (United States)

    Pavilonis, Brian T.; Weisel, Clifford P.; Buckley, Brian; Lioy, Paul J.

    2014-01-01

    To reduce maintenance costs, municipalities and schools are starting to replace natural grass fields with a new generation synthetic turf. Unlike Astro-Turf, which was first introduced in the 1960’s, synthetic field turf provides more cushioning to athletes. Part of this cushioning comes from materials like crumb rubber infill, which is manufactured from recycled tires and may contain a variety of chemicals. The goal of this study was to evaluate potential exposures from playing on artificial turf fields and associated risks to trace metals, semivolatile organic compounds (SVOCs), and polycyclic aromatic hydrocarbons (PAHs) by examining typical artificial turf fibers (n=8), different types of infill (n=8), and samples from actual fields (n=7). Three artificial biofluids were prepared which included: lung, sweat, and digestive fluids. Artificial biofluids were hypothesized to yield a more representative estimation of dose than the levels obtained from total extraction methods. PAHs were routinely below the limit of detection across all three biofluids precluding completion of a meaningful risk assessment. No SVOCs were identified at quantifiable levels in any extracts based on a match of their mass spectrum to compounds that are regulated in soil. The metals were measurable but at concentrations for which human health risk was estimated to be low. The study demonstrated that for the products and fields we tested, exposure to infill and artificial turf was generally considered de minimus, with the possible exception of lead for some fields and materials. PMID:23758133

  13. Progress in the Development of a High Power Helicon Plasma Source for the Materials Plasma Exposure Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Goulding, Richard Howell [ORNL; Caughman, John B. [ORNL; Rapp, Juergen [ORNL; Biewer, Theodore M. [ORNL; Bigelow, Tim S. [ORNL; Campbell, Ian H. [ORNL; Caneses Marin, Juan F. [ORNL; Donovan, David C. [ORNL; Kafle, Nischal [ORNL; Martin, Elijah H. [ORNL; Ray, Holly B. [ORNL; Shaw, Guinevere C. [ORNL; Showers, Melissa A. [ORNL

    2017-09-01

    Proto-MPEX is a linear plasma device being used to study a novel RF source concept for the planned Material Plasma Exposure eXperiment (MPEX), which will address plasma-materials interaction (PMI) for nuclear fusion reactors. Plasmas are produced using a large diameter helicon source operating at a frequency of 13.56 MHz at power levels up to 120 kW. In recent experiments the helicon source has produced deuterium plasmas with densities up to ~6 × 1019 m–3 measured at a location 2 m downstream from the antenna and 0.4 m from the target. Previous plasma production experiments on Proto-MPEX have generated lower density plasmas with hollow electron temperature profiles and target power deposition peaked far off axis. The latest experiments have produced flat Te profiles with a large portion of the power deposited on the target near the axis. This and other evidence points to the excitation of a helicon mode in this case.

  14. Safety measures in exposure room

    International Nuclear Information System (INIS)

    Muhammad Jamal Md Isa

    2004-01-01

    The contents of this chapter are follows - The exposure room: location and dimension, material and thickness, windows, doors and other openings; Position of the Irradiating Apparatus, Use of Space Adjoining the Room, Warning Signs/Light, Dark Room. Materials and Apparatus: Classification of Areas, Local Rules, Other General Safety Requirements

  15. Ontogeny of mouse vestibulo-ocular reflex following genetic or environmental alteration of gravity sensing.

    Directory of Open Access Journals (Sweden)

    Mathieu Beraneck

    Full Text Available The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied, gravity cannot be sensed and therefore maculo-ocular reflexes (MOR were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG and compared to non-centrifuged (control C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period.

  16. Asbestos Exposure Assessment Database

    Science.gov (United States)

    Arcot, Divya K.

    2010-01-01

    Exposure to particular hazardous materials in a work environment is dangerous to the employees who work directly with or around the materials as well as those who come in contact with them indirectly. In order to maintain a national standard for safe working environments and protect worker health, the Occupational Safety and Health Administration (OSHA) has set forth numerous precautionary regulations. NASA has been proactive in adhering to these regulations by implementing standards which are often stricter than regulation limits and administering frequent health risk assessments. The primary objective of this project is to create the infrastructure for an Asbestos Exposure Assessment Database specific to NASA Johnson Space Center (JSC) which will compile all of the exposure assessment data into a well-organized, navigable format. The data includes Sample Types, Samples Durations, Crafts of those from whom samples were collected, Job Performance Requirements (JPR) numbers, Phased Contrast Microscopy (PCM) and Transmission Electron Microscopy (TEM) results and qualifiers, Personal Protective Equipment (PPE), and names of industrial hygienists who performed the monitoring. This database will allow NASA to provide OSHA with specific information demonstrating that JSC s work procedures are protective enough to minimize the risk of future disease from the exposures. The data has been collected by the NASA contractors Computer Sciences Corporation (CSC) and Wyle Laboratories. The personal exposure samples were collected from devices worn by laborers working at JSC and by building occupants located in asbestos-containing buildings.

  17. [Occupational exposure to nanoparticles. Assessment of workplace exposure].

    Science.gov (United States)

    Bujak-Pietrek, Stella

    2010-01-01

    Nanotechnology is currently one of the most popular branch of science. It is a technology that enables designing, manufacturing and application of materials and structures of very small dimensions, and its products are applied in almost every field of life. Nanoparticles are the structures having one or more dimensions of the order of 100 nm or less. They are used in precise mechanics, electronics, optics, medicine, pharmacy, cosmetics and many other spheres. Due to their very small size, nanostructures have completely different and specific properties, unknown for the bulk of materials. Fast-growing nanotechnology provides a wide spectrum of applications, but it also brings about new and unknown danger to human health. Nanotechnology is the branch that has developed rather recently, and much information about health risk and its influence on the environment is beyond our knowledge. Nanoparticles, released in many technological processes, as well as manufactured nanoparticles can induce occupational hazards to workers. The lack of regulations and standards, compulsory in the manufacture and use ofnanoparticles is a fundamental problem faced in the evaluation of exposure. Another problem is the choice of proper measurement equipment for surveying of very small particles - their number, mass and surface area in the workpost air. In this article, the possibility and scope of exposure assessment is discussed and a brief specification of available instrumentation for counting and assessing the parameters essential for classifying the exposure to nanoparticles is presented.

  18. The modelling of external exposure and inhalation pathways in COSYMA

    International Nuclear Information System (INIS)

    Brown, J.; Simmonds, JR.; Ehrhardt, J.; Hasemann, I.

    1991-01-01

    Following an accidental release of radionuclides to atmosphere the major direct exposure pathways of concern are: external irradiation from material in the cloud; internal exposure following inhalation of material in the cloud; external irradiation from material deposited on the ground; and external irradiation due to contamination of skin and clothes. In addition material resuspended from the ground can be inhaled and lead to internal exposure. In this paper the way that these exposure pathways are modelled in COSYMA is described. At present in COSYMA external exposure from deposited material is modelled using a dataset of doses per unit deposit of various radionuclides. This dataset, is based on activity deposited on undisturbed soil. The basic data are for doses outdoors and shielding factors are used to estimate doses for people indoors. Various groups of people spending different amounts of time indoors and out can be considered and shielding factors appropriate to three building types can be adopted. A more complex model has also been developed to predict radiation exposure following deposition to different surfaces in the environment. This model called EXPURT is briefly described in this paper. Using EXPURT, doses as a function of time after a single deposit have been calculated for people living in three types of area. These results are described in the paper and compared with those that are currently used in COSYMA. The paper will also discuss what future work is required in this area and the adequacy of existing models

  19. An In-Vitro Study on the Release of Fluoride from Two Restorative Materials and Their Rechargeability after Exposure to Daily 1000 ppm Fluoride

    Directory of Open Access Journals (Sweden)

    A. Kowsari

    2005-09-01

    Full Text Available Statement of Problem: Since the fluoride releases from materials with the property of releasing fluoride are decreasing gradually, it seems that probably the material rechargeability is more important than their long-term fluoride release.Purpose: the objective of this study was to asses the fluoride release and rechargeability of 2 types of fluoride releasing restorative materials, a resin modified glass ionomer(Vitremer and a compomer (Compoglass F, after exposure to daily NaF solutionscontaining 1000 ppm F, for 1 minute.Materials and Methods: Twelve discs ( 8 mm ×2 mm of each of the materials were fabricated, and divided into 2 groups (test and control. All discs were stored in 4 mL artificial saliva at 37°C. In group 1 (N=6, the specimens were immersed in artificialsaliva which was changed daily for 25 days. In group 2 (N=6, in addition to receiving the same treatment as group 1, the specimens were immersed in NaF solution (1000ppm F, ph=6.9 for 1 minute before daily saliva change. A potentiometer was used to determine the amount of fluoride released on days 1, 2, 3, 5, 10, 15, 20 and 25, after the daily saliva change, in all study groups. Data were analyzed by the t-student test after confirmation of the equality of variances by Leven’s test.Results: Both materials continued releasing fluoride throughout the whole study period. For each material, the release was highest on day one. During the first 3 days,glass ionomer released significantly higher amounts of fluoride as compared to compomer (p0.05. After exposure to NaF solution, none of the materials showed statistically significant rechargeability (p>0.05 and the amount of fluoride-releasecontinued to drop during the study period in similar patterns for both the test and the control groups.Conclusion: It may be concluded that rechargeability of glass ionomer and compomer,using daily neutral fluoride mouth rinses and toothpastes does not occur in reliable amounts.

  20. Perception of Egocentric Distance during Gravitational Changes in Parabolic Flight.

    Directory of Open Access Journals (Sweden)

    Gilles Clément

    Full Text Available We explored the effect of gravity on the perceived representation of the absolute distance of objects to the observers within the range from 1.5-6 m. Experiments were performed on board the CNES Airbus Zero-G during parabolic flights eliciting repeated exposures to short periods of microgravity (0 g, hypergravity (1.8 g, and normal gravity (1 g. Two methods for obtaining estimates of perceived egocentric distance were used: verbal reports and visually directed motion toward a memorized visual target. For the latter method, because normal walking is not possible in 0 g, blindfolded subjects translated toward the visual target by pulling on a rope with their arms. The results showed that distance estimates using both verbal reports and blind pulling were significantly different between normal gravity, microgravity, and hypergravity. Compared to the 1 g measurements, the estimates of perceived distance using blind pulling were shorter for all distances in 1.8 g, whereas in 0 g they were longer for distances up to 4 m and shorter for distances beyond. These findings suggest that gravity plays a role in both the sensorimotor system and the perceptual/cognitive system for estimating egocentric distance.

  1. Allograft materials in phalloplasty: a comparative analysis.

    Science.gov (United States)

    Solomon, Mark P; Komlo, Caroline; Defrain, Molly

    2013-09-01

    Allograft use has increased recently with the rising use of allograft materials in breast surgery. There are few data that compare the performance of the various allograft materials in this application, despite marketing efforts by the manufacturers to present one allograft material as superior to another. Phalloplasty is a procedure that uses allografts for penis girth augmentation. Preparation of these grafts differs with each manufacturer. We report our experience with 3 different types of allografts for this procedure. This allows for the comparison of these materials in their performance with a single model. Forty-seven patients who underwent penis girth enhancement with allograft material were reviewed. All patients underwent circumferential grafting to the shaft of the penis at the level of Buck's fascia. Graft materials included AlloDerm (n = 9), Belladerm (n = 20), and Repriza (n = 21). Charts were reviewed for material type, presence and type of infection, wound exposure, and graft loss with attention to the type of allograft material that was used. Follow-up ranged from 1 to 120 months with an average of 11.25 months. Infection, defined as an open wound with graft exposure, occurred in 20 (42%) of 47 patients. Of these, graft exposure only occurred in 17 (36%) patients, whereas 3 (6%) patients sustained total graft loss. Graft exposure or loss occurred in 3 patients who had AlloDerm, 9 patients with Belladerm, and 8 patients with Repriza. No patients with AlloDerm sustained graft loss, whereas 2 patients with Belladerm and 1 patient with Repriza sustained graft loss. There were no statistical differences among these graft types with regard to infection or graft loss. Three different brands of allograft material were used in 1 surgical procedure and followed up for their performance with regard to exposure and infection. In this model, there is no difference in the rate of infection in these materials despite their different methods of preparation

  2. Identification of Sources of Endotoxin Exposure as Input for Effective Exposure Control Strategies.

    Science.gov (United States)

    van Duuren-Stuurman, Birgit; Gröllers-Mulderij, Mariska; van de Runstraat, Annemieke; Duisterwinkel, Anton; Terwoert, Jeroen; Spaan, Suzanne

    2018-02-13

    Aim of the present study is to investigate the levels of endotoxins on product samples from potatoes, onions, and seeds, representing a relevant part of the agro-food industry in the Netherlands, to gather valuable insights in possibilities for exposure control measures early in the process of industrial processing of these products. Endotoxin levels on 330 products samples from companies representing the potato, onion, and seed (processing) industry (four potato-packaging companies, five potato-processing companies, five onion-packaging companies, and four seed-processing companies) were assessed using the Limulus Amboecyte Lysate (LAL) assay. As variation in growth conditions (type of soil, growth type) and product characteristics (surface roughness, dustiness, size, species) are assumed to influence the level of endotoxin on products, different types, and growth conditions were considered when collecting the samples. Additionally, waste material, rotten products, felt material (used for drying), and process water were collected. A large variation in the endotoxin levels was found on samples of potatoes, onions, and seeds (overall geometric standard deviation 17), in the range between 0.7 EU g-1 to 16400000 EU g-1. The highest geometric mean endotoxin levels were found in plant material (319600 EU g-1), followed by soil material (49100 EU g-1) and the outer side of products (9300 EU g-1), indicating that removal of plant and soil material early in the process would be an effective exposure control strategy. The high levels of endotoxins found in the limited number of samples from rotten onions indicate that these rotten onions should also be removed early in the process. Mean endotoxin levels found in waste material (only available for seed processing) is similar to the level found in soil material, although the range is much larger. On uncleaned seeds, higher endotoxin levels were found than on cleaned seeds, indicating that cleaning processes are important

  3. The sources of radiation exposure

    International Nuclear Information System (INIS)

    Bennett, B.G.

    1992-01-01

    Radiation protection of workers and of members of the public requires an assessment of the various sources of exposure, their variations in time or under specific conditions or circumstances, and the possibilities for control or limitation. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has evaluated the various components of natural and man-made sources in some detail. Natural exposures form the largest component of radiation exposure of man. Variability in exposures depends on elevation, the concentrations of radionuclides in soil, food and water, the composition of building materials and the susceptibility of indoor spaces to radon build-up. Man-made sources have included exposures to fallout from atmospheric nuclear testing and discharged from nuclear fuel cycle installations in routine operations or in accidents. The other main source of radiation exposures of individuals is in medical diagnostic examinations and therapeutic treatments. (author)

  4. Semi-empirical modelling of radiation exposure of humans to naturally occurring radioactive materials in a goldmine in Ghana

    International Nuclear Information System (INIS)

    Darko, E. O.; Tetteh, G.K.; Akaho, E.H.K.

    2005-01-01

    A semi-empirical analytical model has been developed and used to assess the radiation doses to workers in a gold mine in Ghana. The gamma dose rates from naturally occurring radioactive materials (uranium-thorium series, potassium-40 and radon concentrations) were related to the annual effective doses for surface and underground mining operations. The calculated effective doses were verified by comparison with field measurements and correlation ratios of 0.94 and 0.93 were obtained, respectively, between calculated and measured data of surface and underground mining. The results agreed with the approved international levels for normal radiation exposure in the mining environment. (au)

  5. Computer modeling describes gravity-related adaptation in cell cultures.

    Science.gov (United States)

    Alexandrov, Ludmil B; Alexandrova, Stoyana; Usheva, Anny

    2009-12-16

    Questions about the changes of biological systems in response to hostile environmental factors are important but not easy to answer. Often, the traditional description with differential equations is difficult due to the overwhelming complexity of the living systems. Another way to describe complex systems is by simulating them with phenomenological models such as the well-known evolutionary agent-based model (EABM). Here we developed an EABM to simulate cell colonies as a multi-agent system that adapts to hyper-gravity in starvation conditions. In the model, the cell's heritable characteristics are generated and transferred randomly to offspring cells. After a qualitative validation of the model at normal gravity, we simulate cellular growth in hyper-gravity conditions. The obtained data are consistent with previously confirmed theoretical and experimental findings for bacterial behavior in environmental changes, including the experimental data from the microgravity Atlantis and the Hypergravity 3000 experiments. Our results demonstrate that it is possible to utilize an EABM with realistic qualitative description to examine the effects of hypergravity and starvation on complex cellular entities.

  6. Modelling of occupational exposure to inhalable nickel compounds.

    Science.gov (United States)

    Kendzia, Benjamin; Pesch, Beate; Koppisch, Dorothea; Van Gelder, Rainer; Pitzke, Katrin; Zschiesche, Wolfgang; Behrens, Thomas; Weiss, Tobias; Siemiatycki, Jack; Lavoué, Jerome; Jöckel, Karl-Heinz; Stamm, Roger; Brüning, Thomas

    2017-07-01

    The aim of this study was to estimate average occupational exposure to inhalable nickel (Ni) using the German exposure database MEGA. This database contains 8052 personal measurements of Ni collected between 1990 and 2009 in adjunct with information on the measurement and workplace conditions. The median of all Ni concentrations was 9 μg/m 3 and the 95th percentile was 460 μg/m 3 . We predicted geometric means (GMs) for welders and other occupations centered to 1999. Exposure to Ni in welders is strongly influenced by the welding process applied and the Ni content of the used welding materials. Welding with consumable electrodes of high Ni content (>30%) was associated with 10-fold higher concentrations compared with those with a low content (exposure levels (GMs ≥20 μg/m 3 ) were observed in gas metal and shielded metal arc welders using welding materials with high Ni content, in metal sprayers, grinders and forging-press operators, and in the manufacture of batteries and accumulators. The exposure profiles are useful for exposure assessment in epidemiologic studies as well as in industrial hygiene. Therefore, we recommend to collect additional exposure-specific information in addition to the job title in community-based studies when estimating the health risks of Ni exposure.

  7. The assessment of occupational protection conditions in workplaces with high levels of exposure to natural radiation. Report from a technical committee meeting. Working material

    International Nuclear Information System (INIS)

    2002-01-01

    Occupational exposure from natural radiation is, in the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000 Report, estimated to contribute to more than 80 percent of the world-wide annual collective dose from occupational exposure, uranium mining excluded. The Agency's Radiation Safety Standards Series, the Requirements, and the Safety Guides (jointly sponsored by the Agency and the International Labour Office), address the control of occupational exposures from natural sources of radiation. In addition, some Safety Reports on specific issues are in the process of being finalized. Following upon recommendations to the Agency from its Member States to provide further guidance on the control of occupational exposure to natural radiation, a Technical Committee Meeting on Assessment of Occupational Radiation Protection Conditions in Workplaces with High Levels of Exposure to Natural Radiation was held in Vienna from 7 to 11 May 2001. The objective of the meeting was to produce an inventory of problem areas, make an assessment of the problem and propose a draft work plan for the Agency, This IAEA Working Material includes the report from the meeting, including the presentations made. Based on the recommendations made by the Technical Committee, a work plan is being initiated, implying that more attention will be paid to occupational exposure from natural radiation sources in the Occupational Radiation Protection programme

  8. [Accidents with exposure to biological material contaminated with HIV in workers at a third level hospital in Madrid].

    Science.gov (United States)

    García de Codes Ilario, Aurelia; de Juanes Pardo, José Ramón; Arrazola Martínez, M del Pilar; Jaén Herreros, Felisa; Sanz Gallardo, M Inmaculada; Lago López, Emilia

    2004-01-01

    Human Immunodeficiency Virus (HIV) is an occupational hazard among healthcare professionals accidentally contaminated with HIV-positive blood. This study is aimed at describing the characteristics of the accidents involving blood of HIV-positive patients recorded over a sixteen-year period at a general hospital. Epidemiological study of the accidents reported in 2001 involving biological material from an HIV-positive source by the healthcare personnel of a general hospital throughout the 1986-2001 period entailing the presence of biological material from HIV-positive serology individuals. Individual, time and place-related variables, in addition to the initial serologies and those throughout the protocolized follow-up were studied for those individuals involved in these accidents. A total 550 accidents entailing an HIV-positive source were reported. The average number of accidents was 34.4/year. The accidental exposure rate for the period under study was 7.5/1000 workers/year. The professional group showing the highest accident rate was the nursing staff (54.4%). Percutaneous injuries were the most frequent (80.2%). The mean exposure rate was 2.6/100 beds/year. The anatomical areas involved to the greatest degree were the fingers (75.6%). A total 53.4% of those injured completed the serological follow-up without having shown any seroconversion. Throughout the sixteen-year period under study, the annual incidence of accidents involving an HIV-positive source increased from the 27 accidents reported in 1986 to the 60 accidents reported in 1990, there having been a downward trend as of that point in time, to the point of 12 accidents having been recorded in 2001.

  9. Radiation exposures due to fossil fuel combustion

    Science.gov (United States)

    Beck, Harold L.

    The current consensus regarding the potential radiation exposures resulting from the combustion of fossil fuels is examined. Sources, releases and potential doses to humans are discussed, both for power plants and waste materials. It is concluded that the radiation exposure to most individuals from any pathway is probably insignificant, i.e. only a tiny fraction of the dose received from natural sources in soil and building materials. Any small dose that may result from power-plant emissions will most likely be from inhalation of the small insoluble ash particles from the more poorly controlled plants burning higher than average activity fuel, rather than from direct or indirect ingestion of food grown on contaminated soil. One potentially significant pathway for exposure to humans that requires further evaluation is the effect on indoor external γ-radiation levels resulting from the use of flyash in building materials. The combustion of natural gas in private dwellings is also discussed, and the radiological consequences are concluded to be generally insignificant, except under certain extraordinary circumstances.

  10. The regulations concerning refining business of nuclear source material and nuclear fuel materials

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are provided for under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and provisions concerning refining business in the enforcement order for the law. The basic concepts and terms are defined, such as: exposure dose, accumulative dose; controlled area; inspected surrounding area and employee. Refining facilities listed in the application for designation shall be classified into clushing and leaching, thickning, refining facilities, storage facilities of nuclear source materials and nuclear fuel materials, disposal facilities of contaminated substances and building for refining, etc. Business program attached to the application shall include expected time of beginning of refining, estimated production amount of nuclear source materials or nuclear fuel materials for the first three years and funds necessary for construction, etc. Records shall be made and kept for particular periods on delivery and storage of nuclear source materials and nuclear fuel materials, control of radiation, maintenance and accidents of refining facilities. Safety securing, application of internationally regulated substances and measures in dangerous situations are stipulated respectively. Exposure dose of employees and other specified matters shall be reported by the refiner yearly to the Director General of Science and Technology Agency and the Minister of International Trade and Industry. (Okada, K.)

  11. Assessment of Human Exposure to ENMs.

    Science.gov (United States)

    Jiménez, Araceli Sánchez; van Tongeren, Martie

    2017-01-01

    Human exposure assessment of engineered nanomaterials (ENMs) is hampered, among other factors, by the difficulty to differentiate ENM from other nanomaterials (incidental to processes or naturally occurring) and the lack of a single metric that can be used for health risk assessment. It is important that the exposure assessment is carried out throughout the entire life-cycle as releases can occur at the different stages of the product life-cycle, from the synthesis, manufacture of the nano-enable product (occupational exposure) to the professional and consumer use of nano-enabled product (consumer exposure) and at the end of life.Occupational exposure surveys should follow a tiered approach, increasing in complexity in terms of instruments used and sampling strategy applied with higher tiers in order tailor the exposure assessment to the specific materials used and workplace exposure scenarios and to reduce uncertainty in assessment of exposure. Assessment of consumer exposure and of releases from end-of-life processes currently relies on release testing of nano-enabled products in laboratory settings.

  12. Weightless Environment Training Facility (WETF) materials coating evaluation, volume 1

    Science.gov (United States)

    1995-01-01

    The Weightless Environment Training Facility Material Coating Evaluation project has included preparing, coating, testing, and evaluating 800 test panels of three differing substrates. Ten selected coating systems were evaluated in six separate exposure environments and subject to three tests for physical properties. Substrate materials were identified, the manner of surface preparation described, and exposure environments defined. Exposure environments included immersion exposure, cyclic exposure, and field exposure. Cyclic exposures, specifically QUV-Weatherometer and the KTA Envirotest were found to be the most agressive of the environments included in the study when all three evaluation criteria are considered. This was found to result primarily from chalking of the coatings under ultraviolet (UV) light exposure. Volumes 2 and 3 hold the 5 appendices to this report.

  13. The development of vestibular system and related function in mammals: Impact of gravity

    Directory of Open Access Journals (Sweden)

    Marc eJamon

    2014-02-01

    Full Text Available This chapter reviews the knowledge about the adaptation to Earth gravity during the development of mammals. The impact of early exposure to altered gravity is evaluated at the level of the functions related to the vestibular system, including postural control, homeostatic regulation, and spatial memory. The hypothesis of critical periods in the adaptation to gravity is discussed. Demonstrating a critical period requires removing the gravity stimulus during delimited time windows, what is impossible to do on Earth surface. The Surgical destruction of the vestibular apparatus, and the use of mice strains with defective graviceptors have provided useful information on the consequences of missing gravity perception, and the possible compensatory mechanisms, but transitory suppression of the stimulus can only be operated during spatial flight. The rare studies on rat pups housed on board of space shuttle significantly contributed to this problem, but the use of hypergravity environment, produced by means of chronic centrifugation, is the only available tool when repeated experiments must be carried out on Earth. Even though hypergravity is sometimes considered as a mirror situation to microgravity, the two situations cannot be confused because a gravitational force is still present. The theoretical considerations that validate the paradigm of hypergravity to evaluate critical periods are discussed. The question of adaption of graviceptor is questioned from an evolutionary point of view. It is possible that graviception is hardwired, because life on Earth has evolved under the constant pressure of gravity. The rapid acquisition of motor programming by precocial mammals in minutes after birth is consistent with this hypothesis, but the slow development of motor skills in altricial species and the plasticity of vestibular perception in adults suggest that gravity experience is required for the tuning of graviceptors. The possible reasons for this

  14. Information by the German Federal Government. Environmental radioactivity and radiation exposure in 2010

    International Nuclear Information System (INIS)

    2010-01-01

    The information by the German Federal Government on the environmental radioactivity and radiation exposure in 2010 includes five chapters. (I) Natural radiation exposure: radiation sources, contributions from cosmic radiation, contaminated construction materials, food and drinking water, and radon, evaluation of the different components of natural radiation exposure. (II) Civilization caused radiation exposure: nuclear power plants, research centers, nuclear fuel processing plants, other nuclear facilities (interim storage facilities, repositories); summarizing evaluation for nuclear facilities; environmental radioactivity due to mining; radioactive materials in research, technology and households; industrial and mining residues; fall-out as a consequence of the Chernobyl reactor accident and nuclear weapon testing. (III) Occupational radiation exposure: civil radiation sources, natural radiation sources, special events. (IV) Medical radiation exposure; X-ray diagnostics; nuclear medicine; radiotherapy using ionizing radiation; radiotherapy using open radioactive materials; evaluation of radiotherapy. (V) Non-ionizing radiation: electromagnetic fields; optical radiation; certification of solaria.

  15. Overview of UNSCEAR re-evaluation of public exposure

    International Nuclear Information System (INIS)

    Rochedo, Elaine R.R.

    2009-01-01

    The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has re-evaluated the levels of public radiation exposure for four broad categories of sources: natural sources of radiation, enhanced exposure to naturally occurring radioactive material (NORM), man-made sources used for peaceful purposes and man-made sources used for military purposes. Regarding natural radiation sources, recent data confirmed former results from 2000 Report, but with a more wide range. Very few information is available for public exposure from NORM. Most works describes concentration levels but dose assessments are usually restricted to occupational exposures. The use of source and by-product materials may however lead to doses up to a few milisieverts to members of the public. The nuclear fuel cycle and electric energy generation have very small contributions to public exposure. Uranium mining contributes with the largest individual doses, mainly due to radon from tailings. Most relevant military use of nuclear energy were the atmospheric nuclear tests, interrupted in the 60's. Residual radioactivity deposited worldwide is now responsible for a very small contribution to worldwide exposures. However, they left a legacy of several contaminated sites. The use of depleted uranium in munitions in Kuwait, Kosovo, Serbia, Montenegro and Bosnia-Herzegovina, has led to great public concern, although not usually associated to any major consequence regarding public exposure. Some accidents resulted in environmental contamination and exposures of members of the public. Except for the Chernobyl accident, the areas affected were usually small and the exposure restricted to small number of persons, up to a few hundred, without any significant contribution to worldwide exposures. The exposure to natural sources of radiation is still the major component of worldwide exposure to ionizing radiation although for some highly developed countries, medical exposure has surpassed the

  16. Biomechanical aspects of gravitational training of the astronauts before the flight.

    Science.gov (United States)

    Laputin, A N

    1997-07-01

    Researchers tested a hypothesis that astronauts can become more proficient in training for tasks during space flight by training in a high gravity suit. Computer image analysis of movements, tensodynamography, and myotonometry were used to analyze movement in the hypergravity suit, muscle response, and other biomechanical factors. Results showed that training in the hypergravity suit improved the biomechanics of motor performance.

  17. Predictive Modeling of Terrestrial Radiation Exposure from Geologic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Malchow, Russell L. [National Security Technologies, LLC; Haber, Daniel University of Nevada, Las Vegas; Burnley, Pamela [University of Nevada, Las Vegas; Marsac, Kara [University of Nevada, Las Vegas; Hausrath, Elisabeth [University of Nevada, Las Vegas; Adcock, Christopher [University of Nevada, Las Vegas

    2015-01-01

    Aerial gamma ray surveys are important for those working in nuclear security and industry for determining locations of both anthropogenic radiological sources and natural occurrences of radionuclides. During an aerial gamma ray survey, a low flying aircraft, such as a helicopter, flies in a linear pattern across the survey area while measuring the gamma emissions with a sodium iodide (NaI) detector. Currently, if a gamma ray survey is being flown in an area, the only way to correct for geologic sources of gamma rays is to have flown the area previously. This is prohibitively expensive and would require complete national coverage. This project’s goal is to model the geologic contribution to radiological backgrounds using published geochemical data, GIS software, remote sensing, calculations, and modeling software. K, U and Th are the three major gamma emitters in geologic material. U and Th are assumed to be in secular equilibrium with their daughter isotopes. If K, U, and Th abundance values are known for a given geologic unit the expected gamma ray exposure rate can be calculated using the Grasty equation or by modeling software. Monte Carlo N-Particle Transport software (MCNP), developed by Los Alamos National Laboratory, is modeling software designed to simulate particles and their interactions with matter. Using this software, models have been created that represent various lithologies. These simulations randomly generate gamma ray photons at energy levels expected from natural radiologic sources. The photons take a random path through the simulated geologic media and deposit their energy at the end of their track. A series of nested spheres have been created and filled with simulated atmosphere to record energy deposition. Energies deposited are binned in the same manner as the NaI detectors used during an aerial survey. These models are used in place of the simplistic Grasty equation as they take into account absorption properties of the lithology which the

  18. Partitioning of fresh crude oil between floating, dispersed and sediment phases: Effect of exposure order to dispersant and granular materials.

    Science.gov (United States)

    Boglaienko, Daria; Tansel, Berrin

    2016-06-15

    When three or more high and low energy substrates are mixed, wetting order can significantly affect the behavior of the mixture. We analyzed the phase distribution of fresh floating Louisiana crude oil into dispersed, settled and floating phases depending on the exposure sequence to Corexit 9500A (dispersant) and granular materials. In the experiments artificial sea water at salinity 34‰ was used. Limestone (2.00-0.300 mm) and quartz sand (0.300-0.075 mm) were used as the natural granular materials. Dispersant Corexit 9500A increased the amount of dispersed oil up to 33.76 ± 7.04%. Addition of granular materials after the dispersant increased dispersion of oil to 47.96 ± 1.96%. When solid particles were applied on the floating oil before the dispersant, oil was captured as oil-particle aggregates and removed from the floating layer. However, dispersant addition led to partial release of the captured oil, removing it from the aggregated form to the dispersed and floating phases. There was no visible oil aggregation with the granular materials when quartz or limestone was at the bottom of the flask before the addition of oil and dispersant. The results show that granular materials can be effective when applied from the surface for aggregating or dispersing oil. However, the granular materials in the sediments are not effective neither for aggregating nor dispersing floating oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effects of hypergravic fields on serotonergic neuromodulation in the rat hippocampus.

    Science.gov (United States)

    Horrigan, D J; Fuller, C A; Horowitz, J M

    1997-10-01

    The effects of 7 day exposure to 2G fields on serotonergic modulation at two synapses on a hippocampal pathway were examined by recording dentate gyrus and CA1 pyramidal cell layer electrical activity. Serotonin decreased the amplitude of the population spike (synchronous action potentials in hundreds of neurons) in both the dentate gyrus and CA1 regions of rats exposed to 2G fields for 7 days. The inhibition, averaging 26 +/- 4% (mean +/- SEM) in the dentate gyrus and 80 +/- 5% in the CA1 region, was not significantly different from inhibitory responses observed in 1G controls. The 5-HT1A agonist 8-OH-DPAT mimicked this inhibition in the dentate and CA1 regions of 1G rats. 8-OH-DPAT responses were not affected by exposure to 2G fields. We conclude that the hippocampus contains surplus 5-HT receptors so that decreases in receptor density reported in receptor binding studies do not result in a decrease in modulatory capability. A model to account for the physiological pathway that relates gravitational field strength to 5-HT receptor density without changing the effectiveness of 5-HT neuromodulation is discussed.

  20. Relationship medical exposure in X-ray diagnosis and loading factor and film/screen system for reduction exposure dose in Aomori. An analysis based on the results of questionnaire

    International Nuclear Information System (INIS)

    Kon, Masanori; Fukushi, Shouji; Oota, Fumio; Kawamura, Kouji; Shinohe, Tetsuo; Suwa, Kouki; Fujii, Kiyosuke; Yamagami, Hirofumi

    2000-01-01

    A fact-finding questionnaire survey on medical exposure in Aomori Prefecture was conducted in September 1998. Of the 23 exposed sites in the body investigated, exposure at 17 sites in adults was investigated in terms of the type of high-voltage generator, imaging conditions (X-ray tube voltage, electric current, exposure time, etc.), photosensitive materials and relative photosensitivity, and entrance surface doses. At 6 of the 17 exposed sites, the relationships between these technical conditions and entrance surface doses were analyzed to consider further reduction of medical exposure. The most frequently used high-voltage generators were inverter generators (about 52%). In many institutions, additional filters were utilized for high-voltage imaging of the chest. Highly sensitive green-emission materials were the most frequently used photosensitive materials (73%). These findings indicate that many institutions are attempting to reduce exposure. Entrance surface doses varied greatly among institutions: and a 100-fold difference was observed in exposure to the chest, Martius, and the pelvis. Further efforts to lower entrance surface doses are therefore necessary to reduce medical exposure. Negative correlations were observed between electric voltage, electric current, and exposure time. Examination of the relationships between entrance surface doses, electric current, and exposure time yielded positive correlations. However, the entrance surface doses may not have been properly calculated in some institutions, and examination of the relationship between the relative sensitivity of the sensitive material and entrance surface doses showed great variability in entrance surface doses between institutions. Based on the above results, it is concluded that further reduction of medical exposure is possible, not only by improving the accuracy of X-ray units/devices, but by choosing a more appropriate of conditions to perform radiography. (K.H.)

  1. Assessment of exposure to sexually explicit materials and factors associated with exposure among preparatory school youths in Hawassa City, Southern Ethiopia: a cross-sectional institution based survey.

    Science.gov (United States)

    Habesha, Tony; Aderaw, Zewdie; Lakew, Serawit

    2015-09-14

    According to the 2007 Ethiopian census, youths aged 15-24 years were more than 15.2 million which contributes to 20.6% of the whole population. These very large and productive groups of the population are exposed to various sexual and reproductive health risks. The aim of this study was to assess exposure to Sexually Explicit Materials (SEM) and factors associated with exposure among preparatory school students in Hawassa city, Southern Ethiopia. A cross-sectional institution based study involving 770 randomly selected youth students of preparatory schools at Hawassa city. Multi stage sampling technique was used to select study subjects. Data was collected using pre-tested and self-administered questionnaire. Data was entered by EPI INFO version 3.5.1 and analyzed using SPSS version 20.0 statistical software packages. The result was displayed using descriptive, bivariate and multivariate analysis. Statistical association was done for independent predictors (at p students were participated in this study with a response rate of 97.4%. Among this, about 77.3% of students knew about the presence of SEM and most of the respondents 566(75.5%) were watched SEM films/movies and 554(73.9%) were exposed to SE texts. The overall exposure to SEM in school youths was 579(77.2%). Among the total respondents, about 522(70.4%) claimed as having no open discussion on sexual issues with in their family. Furthermore, About 450 (60.0%) respondents complained for having no sexual and reproductive health education at their school. Male students had faced almost two times higher exposure to SEM than female students (95 % CI: AOR 1.84(C.I = 1.22, 2.78). Students who attended private school were more than two times more likely exposed to SEM than public schools (95 % CI: AOR 2.07(C.I = 1.29, 3.30). Students who drink alcohol and labelled as 'sometimes' were two times more likely exposed to SEM than those who never drink alcohol (95 % CI = AOR 2.33(C.I = 1.26, 4.30). Khat

  2. Outreach Materials for the Collision Repair Campaign

    Science.gov (United States)

    The Collision Repair Campaign offers outreach materials to help collision repair shops reduce toxic air exposure. Materials include a DVD, poster, training video, and materials in Spanish (materiales del outreach en español).

  3. Oenorm S 5220-1: monitoring of persons with regard to incorporated radioactive materials. Part 1: General necessity and frequency, a regulation in Austria to protect workers from occupational internal exposure

    International Nuclear Information System (INIS)

    Steger, F.; Brandl, A.

    2002-01-01

    Intake of non-sealed radioactive material (incorporation) results in people's internal exposure to radioactivity. The basic requirements for incorporation monitoring provided by Part 1 of OENORM S 5220 are intended to contain internal exposures within the limits set forth in EC-Regulation 96/29/Euratom. In particular, it enables the user to determine the internal exposure contribution to the effective dose and to prove at any time that dose limits for equivalent and effective dose have not been exceeded and conditions at the work place have not changed unexpectedly. The OENORM discussed in this paper can be used by the competent authorities as a basis for their determination of the permissibility of the work with non-sealed radioactive material in a certain work place. Based on the OENORM, they can ensure standardized physical radiation protection after incorporation of radionuclides and the calculation of the resulting equivalent and effective doses according to consistent criteria. In the case where the work with non-sealed radioactive material has previously been permitted, the competent authorities can re-evaluate the necessity, the frequency, and the optimal method for incorporation monitoring. Two different kinds of laboratories are envisioned in this standards series to perform the necessary measurements

  4. Influence of materialism on life satisfaction

    Directory of Open Access Journals (Sweden)

    Eda Gurel Atay

    2010-11-01

    Full Text Available This paper builds on Sirgy’s theory of materialism by integrating exposure to materialistic advertising and social influence into a more comprehensive model. The data collected in Bosnia-Herzegovina showed that exposure to materialistic advertising and social influence contributes to materialism. Materialism, in turn, leads to the use of all types of standards of comparison (affective- and cognitive-based expectations to make judgments about the standard of living. As the use of these standards of comparison increases, people start to evaluate their standard of living more negatively and these negative evaluations of the standard of living lead to a dissatisfaction with life.

  5. Working safely with radioactive materials

    International Nuclear Information System (INIS)

    Davies, Wynne

    1993-01-01

    In common with exposure to many other laboratory chemicals, exposure to ionising radiations and to radioactive materials carries a small risk of causing harm. Because of this, there are legal limits to the amount of exposure to ionising radiations at work and special rules for working with radioactive materials. Although radiation protection is a complex subject it is possible to simplify to 10 basic things you should do -the Golden Rules. They are: 1) understand the nature of the hazard and get practical training; 2) plan ahead to minimise time spent handling radioactivity; 3) distance yourself appropriately from sources of radiation; 4) use appropriate shielding for the radiation; 5) contain radioactive materials in defined work areas; 6) wear appropriate protective clothing and dosimeters; 7) monitor the work area frequently for contamination control; 8) follow the local rules and safe ways of working; 9) minimise accumulation of waste and dispose of it by appropriate routes, and 10) after completion of work, monitor, wash, and monitor yourself again. These rules are expanded in this article. (author)

  6. Contribution of the Exposure Pathways After a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joeun; Hwang, Wontae; Han, Moonhee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jae, Moosung [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    A radiological dose assessment calculates the amount of radiation energy absorbed by a potentially exposed individual as a result of a specific exposure. Public can be exposure from several exposure pathways. External doses occur when the body is exposed to radioactive material outside the body. When making the emergency preparedness for severe accident from NPPs, therefore, we need to have comprehension about those exposure pathways. Thus, in this study, an evaluation of external and internal dose from radioactive materials during severe accident was performed to find out exposure pathway from which the dose has the highest value for several radionuclides. The basic study to make out the relation between exposure pathways and dose from them was performed. In the emergency phase, the most affecting nuclide type on public was noble gas, especially {sup 133}Xe, and the dominant exposure pathway was could shine. Also, in the long term-phase, the most affecting nuclide type on public was fission product, especially {sup 90}Sr, and the dominant exposure pathway was water ingestion. The information of the dose composition from exposure pathway obtained in this study might be basic data for making emergency preparedness plan for severe accident. In the future, assessment of the source term is expected to enhance the reliability of dose assessment during severe accident.

  7. Substrate nanotexture and hypergravity through centrifugation enhance initial osteoblastogenesis

    NARCIS (Netherlands)

    Prodanov, L.; van Loon, J.J.W.A.; te Riet, J.; Jansen, J.A.; Walboomers, X.F.

    2013-01-01

    Mimicking the structural nanomolecular extracellular matrix with synthetically designed nanosized materials is a relatively new approach, which can be applied in the field of bone tissue engineering. Likewise, bone tissue-engineered constructs can be aided in their development by the use of several

  8. Construction of computational program of aging in insulating materials for searching reversed sequential test conditions to give damage equivalent to simultaneous exposure of heat and radiation

    International Nuclear Information System (INIS)

    Fuse, Norikazu; Homma, Hiroya; Okamoto, Tatsuki

    2013-01-01

    Two consecutive numerical calculations on degradation of polymeric insulations under thermal and radiation environment are carried out to simulate so-called reversal sequential acceleration test. The aim of the calculation is to search testing conditions which provide material damage equivalent to the case of simultaneous exposure of heat and radiation. At least following four parameters are needed to be considered in the sequential method; dose rate and exposure time in radiation, as well as temperature and aging time in heating. The present paper discusses the handling of these parameters and shows some trial calculation results. (author)

  9. Behavior of Rubber Materials under Exposure to High Electric Fields

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Holbøll, Joachim; Henriksen, M,

    2013-01-01

    The effect of high electrical stress on rubber materials is investigated by performing breakdown tests and tracking resistance tests on selected samples. The study is focused on the relationship between the dielectric strength and the thickness of the samples, as well as the influence of the inte......The effect of high electrical stress on rubber materials is investigated by performing breakdown tests and tracking resistance tests on selected samples. The study is focused on the relationship between the dielectric strength and the thickness of the samples, as well as the influence...... of the interfaces between different layers of material. Tracking resistance tests are also performed on the rubber material. The purpose is to provide a complete study of the applicability of the rubber material in thunderstorm environments....

  10. Innovative technology summary report: System for Tracking Remediation, Exposure, Activities and Materials

    International Nuclear Information System (INIS)

    1998-09-01

    The System for Tracking Remediation, Exposure, Activities, and Materials (STREAM) technology is a multi-media database that consolidates project information into a single, easily-accessible place for day-to-day work performance and management tracking. Information inputs can range from procedures, reports, and references to waste generation logs and manifests to photographs and contaminant survey maps. Key features of the system are quick and easy information organization and retrieval, versatile information display options, and a variety of visual imaging methods. These elements enhance productivity and compliance and facilitate communications with project staff, clients, and regulators. Use of STREAM also gives visual access to contaminated areas, reducing the number of physical entries and promoting safety and as low as reasonably achievable (ALARA) principles. The STREAM system can be customized to focus on the information needs of a specific project, and provides a capability and work process improvement well beyond the usual collection of paperwork and independent databases. Especially when incorporated early in project planning and implemented to the fullest extent, it is a systematic and cost-effective tool for controlling and using project information. The STREAM system can support up to 50 different work stations. This report covers the period February through October 1997, when the STREAM software program, owned by Delphinus Engineering, was demonstrated at the Hanford Site's Reactor Interim Safe Storage (ISS) Project

  11. Modeling human perception of orientation in altered gravity

    Science.gov (United States)

    Clark, Torin K.; Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.

    2015-01-01

    Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception, and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal-otolith interaction model based upon the hypothesis that the central nervous system (CNS) treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: (a) static roll tilt in hyper-gravity, (b) static pitch tilt in hyper-gravity, (c) static roll tilt in hypo-gravity, and (d) static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments. PMID:25999822

  12. Modeling Human Perception of Orientation in Altered Gravity

    Directory of Open Access Journals (Sweden)

    Torin K. Clark

    2015-05-01

    Full Text Available Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal otolith interaction model based upon the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: a static roll tilt in hyper-gravity, b static pitch tilt in hyper-gravity, c static roll tilt in hypo-gravity, and d static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments.

  13. Endocrine disrupting chemicals and other substances of concern in food contact materials: an updated review of exposure, effect and risk assessment.

    Science.gov (United States)

    Muncke, Jane

    2011-10-01

    Food contact materials (FCM) are an underestimated source of chemical food contaminants and a potentially relevant route of human exposure to endocrine disrupting chemicals (EDCs). Quantifying the exposure of the general population to substances from FCM relies on estimates of food consumption and leaching into food. Recent studies using polycarbonate plastics show that food simulants do not always predict worst-case leaching of bisphenol A, a common FCM substance. Also, exposure of children to FCM substances is not always realistically predicted using the common conventions and thus possibly misjudged. Further, the exposure of the whole population to substances leaching into dry foods is underestimated. Consumers are exposed to low levels of substances from FCM across their entire lives. Effects of these compounds currently are assessed with a focus on mutagenicity and genotoxicity. This approach however neglects integrating recent new toxicological findings, like endocrine disruption, mixture toxicity, and developmental toxicity. According to these new toxicology paradigms women of childbearing age and during pregnancy are a new sensitive population group requiring more attention. Furthermore, in overweight and obese persons a change in the metabolism of xenobiotics is observed, possibly implying that this group of consumers is insufficiently protected by current risk assessment practice. Innovations in FCM risk assessment should therefore include routine testing for EDCs and an assessment of the whole migrate toxicity of a food packaging, taking into account all sensitive population groups. In this article I focus on recent issues of interest concerning either exposure to or effects of FCM-related substances. Further, I review the use of benzophenones and organotins, two groups of known or suspected EDCs, in FCM authorized in the US and EU. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Assessing asbestos exposure potential in nonindustrial settings.

    Science.gov (United States)

    Chang, S N; White, L E; Scott, W D

    1987-01-01

    The presence of asbestos containing materials (ACM) in office and commercial buildings is a significant environmental problem. Asbestosis, mesothelioma and lung cancer have been linked with industrial exposure to airborne asbestos. The extensive use of asbestos products in buildings has raised concerns about the widespread exposure of the general public to asbestos in nonoccupational settings. The presence of asbestos in a building does not necessarily mean that significant exposure of the occupants of the building has occurred, but it is important that the asbestos be monitored regularly to ensure that fibers do not become airborne. If ACM are contained within a matrix and not disturbed, exposure is unlikely. However, if the asbestos becomes friable (crumbling) or if building maintenance, repair, renovation or other activities disturb ACM, airborne asbestos fibers may be a source of exposure to the occupants of the building. Currently, asbestos exposure assessment is conducted by a phase contrast light microscope (PCM) technique. Due to its inherent limitation in resolution and the generic counting rules used, analysis by the PCM method underestimates the airborne asbestos fiber concentration as compared to analysis by transmission electron microscopy (TEM). It is important that the air monitoring results analyzed by PCM be interpreted carefully in conjunction with a survey by a professional to judge the physical condition of the ACM in buildings. Exposure levels to airborne asbestos fibers vary from day to day and depend on the physical condition of the material involved and the type of operating and maintenance program in place.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Indoor exposure to natural radiation in Denmark

    International Nuclear Information System (INIS)

    Ulbak, K.; Stenum, B.; Soerensen, A.; Majborn, B.; Boetter-Jensen, L.; Nielsen, S.P.

    1988-01-01

    Assessment of the exposures to the Danish population from different natural radiation sources including building materials, drinking water, fly ash etc. has been performed from 1975 and up till now. In 1987 a comprehensive nationwide investigation of the gamma exposures and radon levels in 500 randomly selected Danish dwellings will be concluded by the National Institute of Radiation Hygiene. At the same time the Danish authorities will publish a control strategy for limiting the exposure of the Danish population from natural sources, especially from radon daughter exposure in dwellings. The presentation will outline the main results of the nationwide survey in Danish dwellings together with the main principles behind and the consequences of the initiated control strategy for limiting the exposures from natural radioactive sources

  16. Uranium Mining and Norm in North America-Some Perspectives on Occupational Radiation Exposure.

    Science.gov (United States)

    Brown, Steven H; Chambers, Douglas B

    2017-07-01

    All soils and rocks contain naturally occurring radioactive materials (NORM). Many ores and raw materials contain relatively elevated levels of natural radionuclides, and processing such materials can further increase the concentrations of naturally occurring radionuclides. In the U.S., these materials are sometimes referred to as technologically-enhanced naturally occurring radioactive materials (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertilizer. The processing of these materials has the potential to result in above-background radiation exposure to workers. Following a brief review of the sources and potential for worker exposure from NORM in these varied industries, this paper will then present an overview of uranium mining and recovery in North America, including discussion on the mining methods currently being used for both conventional (underground, open pit) and in situ leach (ISL), also referred to as In Situ Recovery (ISR), and the production of NORM materials and wastes associated with these uranium recovery methods. The radiological composition of the NORM products and wastes produced and recent data on radiological exposures received by workers in the North American uranium recovery industry are then described. The paper also identifies the responsible government agencies in the U.S. and Canada assigned the authority to regulate and control occupational exposure from these NORM materials.

  17. Merging weather data with materials response data during outdoor exposure

    Science.gov (United States)

    R. Sam Williams; Anand Sanadi; Corey Halpin; Christopher White

    2002-01-01

    As part of an outdoor exposure protocol for a study of sealants, a full weather station was installed at the Forest Products Laboratory field test site near Madison, Wisconsin. Tem-perature, relative humidity, rainfall, ultraviolet (UV) radiation at 18 different wavelengths, and wind speed and direction are continuously measured. Using a specially designed apparatus,...

  18. Deformation and stress in PMMA during hard X-ray exposure for deep lithography

    International Nuclear Information System (INIS)

    Moldovan, N.

    1999-01-01

    The availability of high-energy, high-flux, collimated synchrotrons radiation has extended the application of deep X-ray lithography (DXRL) to thickness values of the PMMA resist of several millimeters. Some of the most severe limitations come from plastic deformation, stress, and cracks induced in PMMA during exposure and development. We have observed and characterized these phenomena quantitatively. Profilometry measurements revealed that the PMMA is subjected either to local shrinkage or to expansion, while compression and expansion evolve over time. Due to material loss and crosslinking, the material undergoes a shrinkage, while the radiation-induced decomposition generates gases expanding the polymer matrix. The overall dynamics of the material microrelief and stress during and after the exposure depend on the balance between compaction and outgassing. These depend in turn on the exposure conditions (spectrum; dose, dose rate, seaming, temperature), post-exposure storage conditions, PMMA material properties and thickness, and also on the size and geometry of the exposed patterns

  19. Development of risk-based nanomaterial groups for occupational exposure control

    International Nuclear Information System (INIS)

    Kuempel, E. D.; Castranova, V.; Geraci, C. L.; Schulte, P. A.

    2012-01-01

    Given the almost limitless variety of nanomaterials, it will be virtually impossible to assess the possible occupational health hazard of each nanomaterial individually. The development of science-based hazard and risk categories for nanomaterials is needed for decision-making about exposure control practices in the workplace. A possible strategy would be to select representative (benchmark) materials from various mode of action (MOA) classes, evaluate the hazard and develop risk estimates, and then apply a systematic comparison of new nanomaterials with the benchmark materials in the same MOA class. Poorly soluble particles are used here as an example to illustrate quantitative risk assessment methods for possible benchmark particles and occupational exposure control groups, given mode of action and relative toxicity. Linking such benchmark particles to specific exposure control bands would facilitate the translation of health hazard and quantitative risk information to the development of effective exposure control practices in the workplace. A key challenge is obtaining sufficient dose–response data, based on standard testing, to systematically evaluate the nanomaterials’ physical–chemical factors influencing their biological activity. Categorization processes involve both science-based analyses and default assumptions in the absence of substance-specific information. Utilizing data and information from related materials may facilitate initial determinations of exposure control systems for nanomaterials.

  20. Development of risk-based nanomaterial groups for occupational exposure control

    Science.gov (United States)

    Kuempel, E. D.; Castranova, V.; Geraci, C. L.; Schulte, P. A.

    2012-09-01

    Given the almost limitless variety of nanomaterials, it will be virtually impossible to assess the possible occupational health hazard of each nanomaterial individually. The development of science-based hazard and risk categories for nanomaterials is needed for decision-making about exposure control practices in the workplace. A possible strategy would be to select representative (benchmark) materials from various mode of action (MOA) classes, evaluate the hazard and develop risk estimates, and then apply a systematic comparison of new nanomaterials with the benchmark materials in the same MOA class. Poorly soluble particles are used here as an example to illustrate quantitative risk assessment methods for possible benchmark particles and occupational exposure control groups, given mode of action and relative toxicity. Linking such benchmark particles to specific exposure control bands would facilitate the translation of health hazard and quantitative risk information to the development of effective exposure control practices in the workplace. A key challenge is obtaining sufficient dose-response data, based on standard testing, to systematically evaluate the nanomaterials' physical-chemical factors influencing their biological activity. Categorization processes involve both science-based analyses and default assumptions in the absence of substance-specific information. Utilizing data and information from related materials may facilitate initial determinations of exposure control systems for nanomaterials.

  1. Use of and occupational exposure to indium in the United States.

    Science.gov (United States)

    Hines, Cynthia J; Roberts, Jennifer L; Andrews, Ronnee N; Jackson, Matthew V; Deddens, James A

    2013-01-01

    Indium use has increased greatly in the past decade in parallel with the growth of flat-panel displays, touchscreens, optoelectronic devices, and photovoltaic cells. Much of this growth has been in the use of indium tin oxide (ITO). This increased use has resulted in more frequent and intense exposure of workers to indium. Starting with case reports and followed by epidemiological studies, exposure to ITO has been linked to serious and sometimes fatal lung disease in workers. Much of this research was conducted in facilities that process sintered ITO, including manufacture, grinding, and indium reclamation from waste material. Little has been known about indium exposure to workers in downstream applications. In 2009-2011, the National Institute for Occupational Safety and Health (NIOSH) contacted 89 potential indium-using companies; 65 (73%) responded, and 43 of the 65 responders used an indium material. Our objective was to identify current workplace applications of indium materials, tasks with potential indium exposure, and exposure controls being used. Air sampling for indium was either conducted by NIOSH or companies provided their data for a total of 63 air samples (41 personal, 22 area) across 10 companies. Indium exposure exceeded the NIOSH recommended exposure limit (REL) of 0.1 mg/m(3) for certain methods of resurfacing ITO sputter targets, cleaning sputter chamber interiors, and in manufacturing some inorganic indium compounds. Indium air concentrations were low in sputter target bonding with indium solder, backside thinning and polishing of fabricated indium phosphide-based semiconductor devices, metal alloy production, and in making indium-based solder pastes. Exposure controls such as containment, local exhaust ventilation (LEV), and tool-mounted LEV can be effective at reducing exposure. In conclusion, occupational hygienists should be aware that the manufacture and use of indium materials can result in indium air concentrations that exceed the NIOSH

  2. Activity measurement and effective dose modelling of natural radionuclides in building material

    International Nuclear Information System (INIS)

    Maringer, F.J.; Baumgartner, A.; Rechberger, F.; Seidel, C.; Stietka, M.

    2013-01-01

    In this paper the assessment of natural radionuclides' activity concentration in building materials, calibration requirements and related indoor exposure dose models is presented. Particular attention is turned to specific improvements in low-level gamma-ray spectrometry to determine the activity concentration of necessary natural radionuclides in building materials with adequate measurement uncertainties. Different approaches for the modelling of the effective dose indoor due to external radiation resulted from natural radionuclides in building material and results of actual building material assessments are shown. - Highlights: • Dose models for indoor radiation exposure due to natural radionuclides in building materials. • Strategies and methods in radionuclide metrology, activity measurement and dose modelling. • Selection of appropriate parameters in radiation protection standards for building materials. • Scientific-based limitations of indoor exposure due to natural radionuclides in building materials

  3. Material control evaluation

    International Nuclear Information System (INIS)

    Waddoups, I.G.; Anspach, D.A.; Abbott, J.A.

    1993-01-01

    Changes in the Department of Energy's (DOE) scope of work have stimulated several laboratories and commercial companies to develop and apply technology to enhance nuclear material control. Accountability, inventory, radiation exposure, and insider protection concerns increase as many DOE facilities require increased storage. This paper summarizes a study of the existing material control technologies. The goal of the study is to identify, characterize, and quantify the trade-offs associated with using these technologies to provide real-time information on stored nuclear material that in turn supports decreasing the frequency of inventories conducted by site personnel

  4. Radiation doses from the transport of radioactive materials

    International Nuclear Information System (INIS)

    Shaw, K.B.; Holyoak, B.

    1983-01-01

    A summary is given of a study on radiation exposure resulting from the transport of radioactive materials within the United Kingdom. It was concluded that the transport of technetium generators for hospital use accounts for about 49% of the occupational exposure for the normal transport of radioactive materials. Other isotopes for medical and industrial use contribute about 38% of the occupational exposure and the remainder can be attributed to transportation as a result of the nuclear fuel cycle including the transport of irradiated nuclear fuel. The occupational collective dose for all modes of transport is estimated at 1 man Sv y -1 . (UK)

  5. Applied exposure modeling for residual radioactivity and release criteria

    International Nuclear Information System (INIS)

    Lee, D.W.

    1989-01-01

    The protection of public health and the environment from the release of materials with residual radioactivity for recycle or disposal as wastes without radioactive contents of concern presents a formidable challenge. Existing regulatory criteria are based on technical judgment concerning detectability and simple modeling. Recently, exposure modeling methodologies have been developed to provide a more consistent level of health protection. Release criteria derived from the application of exposure modeling methodologies share the same basic elements of analysis but are developed to serve a variety of purposes. Models for the support of regulations for all applications rely on conservative interpretations of generalized conditions while models developed to show compliance incorporate specific conditions not likely to be duplicated at other sites. Research models represent yet another type of modeling which strives to simulate the actual behavior of released material. In spite of these differing purposes, exposure modeling permits the application of sound and reasoned principles of radiation protection to the release of materials with residual levels of radioactivity. Examples of the similarities and differences of these models are presented and an application to the disposal of materials with residual levels of uranium contamination is discussed. 5 refs., 2 tabs

  6. Predictors of radiation exposure to providers during percutaneous nephrolithotomy

    OpenAIRE

    David L Wenzler; Joel E Abbott; Jeannie J Su; William Shi; Richard Slater; Daniel Miller; Michelle J Siemens; Roger L Sur

    2017-01-01

    Background: Limited studies have reported on radiation risks of increased ionizing radiation exposure to medical personnel in the urologic community. Fluoroscopy is readily used in many urologic surgical procedures. The aim of this study was to determine radiation exposure to all operating room personnel during percutaneous nephrolithotomy (PNL), commonly performed for large renal or complex stones. Materials and Methods: We prospectively collected personnel exposure data for all PNL cases at...

  7. Occupational radiation exposures at Canadian CANDU nuclear power stations

    International Nuclear Information System (INIS)

    LeSurf, J.E.; Taylor, G.F.

    1982-09-01

    In Canada, methods to reduce the radiation exposure to workers at nuclear power reactors have been studied and implemented since the early days of the CANDU reactor program. Close collaboration between the designers, the operators, and the manufacturers has reduced the total exposure at each station, the dose requirement to operate and maintain each successive station compared with earlier stations, and the average annual exposure per worker. Specific methods developed to achieve dose reduction include water chemistry; corrosion resistant materials; low cobalt materials; decontamination; hot filtration, improved equipment reliability, maintainability, and accessibility; improved shielding design and location; planning of work for low exposure; improved operating and maintenance procedures; removal of tritium from D 2 O systems and work environments; improved protective clothing; on-power refuelling; worker awareness and training; and many other small improvements. The 1981 occupational dose productivity factors for Pickering A and Bruce A nuclear generating stations were respectively 0.43 and 0.2 rem/MW(e).a

  8. Radiation-induced attenuation in integrated optical materials

    International Nuclear Information System (INIS)

    Evans, B.D.

    1989-01-01

    This paper reports that three materials commonly employed in opto-electronic integrated circuits evaluated for radiation-induced optical attenuation in the range 300 nm to 3000 nm. These include optically clear epoxy and crystalline lithium niobate after Co-60 exposure and crystalline tellurium dioxide after mixed gamma/fast-neutron exposure. In all these materials, however, induced loss was restricted to shorter wavelengths; attenuation induced at the telecommunications windows near 850, 1300 and 1550 nm was <0.1 dB/cm

  9. Safety lock for radiography exposure device

    International Nuclear Information System (INIS)

    Gaines, T.M.

    1982-01-01

    A safety lock for securing a radiation source in a radiography exposure device is disclosed. The safety lock prevents the inadvertent extension of the radiation source from the exposure device. The exposure devices are used extensively in industry for nondestructive testing of metal materials for defect. Unnecessary exposure of the radiographer or operator occurs not infrequently due to operator's error in believing that the radiation source is secured in the exposure device when, in fact, it is not. The present invention solves this problem of unnecessary exposure by releasingly trapping the radiation source in the shield of the radiography exposure device each time the source is retracted therein so that it is not inadvertently extended therefrom without the operator resetting the safety lock, thereby releasing the radiation source. Further, the safety lock includes an indicator which indicates when the source is trapped in the exposure device and also when it is untrapped. The safety lock is so designed that it does not prevent the return of the source to the trapped, shielded position in the exposure device. Further the safety lock includes a key means for locking the radiation source in the trapped position. The key means cannot be actuated until said radiation source is in said trapped position to further insure the safety lock cannot be inadvertently locked with the source untrapped and thus still extendable from the exposure device

  10. Method of manufacturing neutron protection materials

    Energy Technology Data Exchange (ETDEWEB)

    Kakibana, Hidetake; Okamoto, Masazane; Fujii, Yasuhiko; Koguchi, Noboru; Takesute, Morito; Miyamatsu, Tokuhisa

    1985-06-22

    To obtain protection materials easily moldable, flexible and capable of minimizing the workers' neutron exposure dose, a fine fiberous assembly is prepared by dispersing compounds of atoms having neutron absorbing performance such as Li or B, for example, finely powderous compounds of LiF or /sup 6/LiF into a solution of spinnable polymer, particularly, polyolefin polymer such as polyethylene in CH/sub 2/Cl and then flash spinning them. The fine fibers are fabricated into mat-like material, blankets, cloths and the likes for use in neutron exposure protection. In the case of neutron irradiation therapy, protection materials of reduced weight, flexible and giving preferred contact with human body can be obtained with ease for protecting the regions other than the lesion area.

  11. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  12. Institutional storage and disposal of radioactive materials

    International Nuclear Information System (INIS)

    St Germain, J.

    1986-01-01

    Storage and disposal of radioactive materials from nuclear medicine operations must be considered in the overall program design. The storage of materials from daily operation, materials in transit, and long-term storage represent sources of exposure. The design of storage facilities must include consideration of available space, choice of material, occupancy of surrounding areas, and amount of radioactivity anticipated. Neglect of any of these factors will lead to exposure problems. The ultimate product of any manipulation of radioactive material will be some form of radioactive waste. This waste may be discharged into the environment or placed within a storage area for packaging and transfer to a broker for ultimate disposal. Personnel must be keenly aware of packaging regulations of the burial site as well as applicable federal and local codes. Fire codes should be reviewed if there is to be storage of flammable materials in any area. Radiation protection personnel should be aware of community attitudes when considering the design of the waste program

  13. Cooperative effect of radiation and vapor environments on the deterioration of insulator materials

    International Nuclear Information System (INIS)

    Kusama, Yasuo; Okada, Sohei; Yagi, Toshiaki; Ito, Masayuki; Yoshida, Kenzo; Tamura, Naoyuki

    1985-01-01

    Experimental results and speculations are described on the cooperative effect of radiation and vapor environments for the deterioration of insulator cable cladding materials such as polyethylene chlorosulphonate, ethylene propylene rubber, cross-linked polyethylene, chloroprene and silicone rubber, by the separate, simultaneous or subsequent exposure of the above-mentioned two kinds of exposure factors. These experiment was carried out by considering main environmental factors in the LOCA (loss of coolant accident) conditions. Radiation experiment was made by employing 60 Co source of 9.7 kGy/h at a room-temperature air condition. Vapor environment exposure was conducted by the conditions of 120 to 160 deg C steam-saturated air conditions and others. With the experimental results described on the characteristics of the five kinds of the above-mentioned insulator materials in radiation and saturated vapor conditions, the following conclusions were obtained. Acceleration of deterioration by the cooperative action of radiation and saturated vapor was found for the examined materials except the cross-linked polyethylene. In the subsequent exposure of radiation and saturated vapor, deterioration behavior was dependent on insulator materials and component ratios of the insulator materials. For the cross-linked polyethylene, annealing effect by heat was found, and the effect was less significent in the simultaneous exposure. Restoration phenomenon was found in the cross-linked polyethylene even in the saturated vapor exposure stage of the subsequent exposure conditions of radiation exposure followed by saturated vapor. (Takagi, S.)

  14. Atmospheric dispersion and individual exposure of hazardous materials

    International Nuclear Information System (INIS)

    Efthimiou, G.C.; Bartzis, J.G.

    2011-01-01

    In this work a new approach for CFD RANS modelling of dispersion of airborne point source releases is presented. The key feature of this approach is the model capability to predict concentration time scales that are functions not only of the flow turbulence scales but also of the pollutant travel time. This approach has been implemented for the calculation of the concentration fluctuation dissipation time scale and the maximum individual exposure at short time intervals. For the estimation of travel time in the Eulerian grid the new 'radioactive tracer method' is introduced. The new approaches were incorporated in the CFD code ADREA. The capabilities of the new approaches are validated against the Mock Urban Setting Trial field experiment data under neutral conditions. The comparisons of model and observations gave quite satisfactory results.

  15. LDEF materials special investigation group's data bases

    Science.gov (United States)

    Strickland, John W.; Funk, Joan G.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) was composed of and contained a wide array of materials, representing the largest collection of materials flown for space exposure and returned for ground-based analyses to date. The results and implications of the data from these materials are the foundation on which future space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been tasked with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the space user community in an easily accessed, user-friendly form. The format and content of the data bases developed or being developed to accomplish this task are discussed. The hardware and software requirements for each of the three data bases are discussed along with current availability of the data bases.

  16. Preparation of thermoluminescent materials

    International Nuclear Information System (INIS)

    1976-01-01

    Thermoluminescent materials have been found to be suitable for measuring long term exposures to low level ionizing radiation. Oxyhalides of lanthanum, gadolinium and yttrium, including the oxychlorides and oxybromides are activated with terbium and have been found to be most efficient oxygendominated phosphors having thermoradiant efficiencies with excitation by low level ionizing radiation. Thermoluminescence response increases when the previous materials have hafnium and zirconium additives

  17. Measurement of naturally occurring radioactive materials in commonly used building materials in Hyderabad, India

    International Nuclear Information System (INIS)

    Balbudhe, A.Y.; Vishwa Prasad, K.; Vidya Sagar, D.; Jha, S.K.; Tripathi, R.M.

    2018-01-01

    Building materials can cause significant gamma dose indoors, due to their natural radioactivity content. The knowledge of the natural radioactivity level of building materials is important for determination of population exposure, as most people spend 80-90% of their time indoors furthermore, it is useful in setting the standards and national guidelines for the use and management of these materials. The concentrations of natural radionuclides in building materials vary depending on the local geological and geographical conditions as well as geochemical characteristics of those materials. The aim of the study is to determine levels of natural radionuclide in the commonly used building materials in Hyderabad, India

  18. Minors' exposure to online pornography: prevalence, motivations, contents and effects

    Directory of Open Access Journals (Sweden)

    Eva González-Ortega

    2013-05-01

    Full Text Available Since Internet has made pornographic materials more available, there is a need for more research on the characteristics and implications of children's and adolescents' exposure to such materials. This study examined the prevalence and extent of minors' exposure to online pornography, the reasons for exposure, the types of images seen and the strong effects of exposure, as reported by college students. We used an online survey to collect retrospective reports of a sample of 494 students of the University of Salamanca. Results show that 63% of boys and 30% of girls were exposed to online pornography during adolescence. Boys are more likely to have ever been exposed for more than 30 minutes. Boys are more likely to report deliberate consumption and sexual excitement seeking, whereas girls are more likely to report involuntary exposure. Both genders remember viewing a variety of images, including contents of bondage, child pornography and rape. One in six of exposed participants remember strong reactions. While more boys report sexual excitement and masturbation, more girls report avoidance, disgust or concern.

  19. Radiation Exposure to Concrete in Israel

    International Nuclear Information System (INIS)

    Haquin, G.; Kovler, K.; Yungrais, G. Z.; Lavi, N.

    2014-01-01

    Most building materials of terrestrial origin contain small amounts of radionuclides of natural origin, mainly from the Uranium (238U) and Thorium (232Th) decay chains and the radioactive isotope of potassium, 40K. The external radiation exposure is caused by gamma emitting radionuclides, which in the uranium series mainly belong to the decay chain segment starting with Radium (226Ra). The internal (by inhalation) radiation exposure is due to Radon (222Rn), and its short lived decay products, exhaled from building materials into the room air. Due to economical and environmental reasons there is an increased tendency to use industrial by-products containing relatively high concentrations of radionuclides of natural origin in the building material industry. Fly ash (FA), produced as by-product in the combustion of coal, is extensively used in Israel since mid eighties of the last century in concrete and as an additive to cement . The increase of 226Ra activity concentration, the mineralogical characteristics of the FA and of the concrete may influence on the radon exhalation rate and consequently on the radon exposure of the public. The recently published Israeli Standard 5098 (IS 5098) 'Content of natural radioactive elements in building products' limits the content of natural radionuclides as well as the radon emanation from concrete. This paper presents a compilation of three studies conducted at Soreq Nuclear Research Centre (SNRC), Technion, NRG and Environmental Lab BGU (ELBGU) to investigate and quantify the influence of FA addition in concrete

  20. Radiation protection programme for existing exposure situation

    International Nuclear Information System (INIS)

    Ramadhani, Hilali Hussein

    2016-04-01

    This study was conducted to develop the Radiation protection Programme (RPP) to ensure that measures are in place for protection of individuals from the existing source of exposure. The study established a number of protective and remedial actions to be considered by the responsible regulatory Authority, licensee for existing exposure in workplace and dwellings. Tanzania is endowed with a number NORMs processing industries with an experience of uncontrolled exploration and extraction of minerals and the use of unsafe mining methods leading to severe environmental damage and appalling living conditions in the mining communities. Some of NORMs industries have been abandoned due to lack of an effect management infrastructure. The residual radioactive materials have been found to be the most import source of existing exposure resulted from NORMs industries. The Radon gas and its progeny have also been found to be a source of existing exposure from natural source as well as the major source of risk and health effects associated with existing exposure situation. The following measures have been discovered to play a pivotal role in avoiding or reducing the source of exposure to individuals such as restriction of the use of the construction materials, restriction on the consumption of foodstuffs and restriction on the access to the land and buildings, the removal of the magnitude of the source in terms of activity concentration as well as improvement of ventilation in dwellings. Therefore, the regulatory body (Tanzania Atomic Energy Commission) should examine the major areas outlined in the established RRP for existing exposure situation resulted from the NORMs industries and natural sources so as to develop strategies that will ensure the adequate protection of members of the public and the environment as well as guiding operating organizations to develop radiation protection and safety measures for workers. (au)

  1. Assessment of {sup 222}Rn occupational exposure at IPEN nuclear materials storage site, SP, Brazil; Avaliacao da exposicao ocupacional ao {sup 222}Rn no galpao da Salvaguardas do IPEN, SP

    Energy Technology Data Exchange (ETDEWEB)

    Caccuri, Lilian Saueia

    2007-07-01

    In this study it was assessed the occupational exposure to {sup 222}Rn at IPEN, SP, Brazil, nuclear materials storage site through the committed effective dose received by workers exposed to this radionuclide. The radiation dose was calculated through the radon concentrations at nuclear materials storage site. Radon concentrations were determined by passive detection method with solid state nuclear detectors (SSNTD). The SSNTD used in this study was the polycarbonate Makrofol E; each detector is a small square plastic of 1 cm{sup 2}, placed into a diffusion chamber type KFK. It was monitored 14 points at nuclear materials storage site and one external point, over a period of 21 months, changing the detectors every three months, from December 2004 to September 2006. The {sup 222}Rn concentrations varied from 196 {+-} 9 and 2048 {+-} 81 Bq{center_dot}m{sup -3}. The committed effective dose due to radon inhalation at IPEN nuclear materials storage site was obtained from radon activity incorporated and dose conversion factor, according to International Commission on Radiological Protection procedures. The effective committed dose received by workers is below 20 mSv{center_dot}y{sup -1}. This value is suggested as an annual effective dose limit for occupational exposure by ICRP 60. (author)

  2. Occupational accidents involving biological material among public health workers.

    Science.gov (United States)

    Chiodi, Mônica Bonagamba; Marziale, Maria Helena Palucci; Robazzi, Maria Lúcia do Carmo Cruz

    2007-01-01

    This descriptive research aimed to recognize the occurrence of work accidents (WA) involving exposure to biological material among health workers at Public Health Units in Ribeirão Preto-SP, Brazil. A quantitative approach was adopted. In 2004, 155 accidents were notified by means of the Work Accident Communication (WAC). Sixty-two accidents (40%) involved exposure to biological material that could cause infections like Hepatitis and Aids. The highest number of victims (42 accidents) came from the category of nursing aids and technicians. Needles were responsible for 80.6% of accidents and blood was the biological material involved in a majority of occupational exposure cases. This subject needs greater attention, so that prevention measures can be implemented, which consider the peculiarities of the activities carried out by the different professional categories.

  3. Moving toward exposure and risk evaluation of nanomaterials: challenges and future directions.

    Science.gov (United States)

    Thomas, Treye; Bahadori, Tina; Savage, Nora; Thomas, Karluss

    2009-01-01

    Nanotechnology, the commercial development of engineered nanomaterials, promises breakthrough innovations by enhancing the performance of existing consumer products and enabling development of new devices, architectures, and applications. Although these materials and applications are being developed at an explosive pace, a fundamental understanding of any potential human health and environmental risks resulting from exposure throughout the lifecycle of these materials has not advanced as rapidly. Past experience has demonstrated that successful introduction of a new technology occurs more readily if it is precipitated by a robust appreciation for any inherent risks associated with the technology. Such understanding allows the timely development of occupational and consumer exposure standards that might be needed to protect human health and the environment. Although risk is recognized as the product of hazard and exposure, too often exposure patterns are poorly characterized, and risk is based primarily or exclusively on the hazard characterization. The extent of exposure to nanomaterials in currently available commercial products is relatively unknown. Given the number of commercial products that claim to contain engineered nanomaterials, it is possible that human and environmental exposure to these materials is widespread. This paper is intended to highlight the importance of exposure assessment for determining the potential risks of nanomaterials. In essence, this is a call to action to the community of exposure scientists, toxicologists, and risk assessors to develop, consider, and incorporate requisite exposure information in the risk assessment of nanomaterials. Without an integrated approach, it will be difficult to meaningfully assess the risks of nanomaterials, realize their potential benefits, and foster their sustainable development. (c) 2009 John Wiley & Sons, Inc.

  4. INTERTRAN-I and INTERTRAN-II, Radiation Exposure from Vehicle Transport of Radioactive Material

    International Nuclear Information System (INIS)

    Pal, Dagmar M.

    2002-01-01

    -free transport by road a factor which is the ratio of pedestrian density to population density in the area is inserted. In the accident dose calculations in the urban zone the population is divided into two parts representing people inside buildings and people on the streets. The pedestrian density factor is applied to the population density of those on the street. The health effects model analyzes early fatalities and morbidities, latent cancer fatalities, and genetic effects. In the case of dispersible materials the one-year lung and marrow doses are used to calculate the probability of an early fatality for an individual. The expected number of early mortalities is calculated by comparing the individual organ dose with a threshold value. If the dose exceeds the threshold value, the expected number of early fatalities and morbidities is the number of exposed persons. The probability of cancer developing later in life for an exposed person is assumed to be proportional to the dose. Thus, the expected number of latent cancer effects in the exposed population is calculated as the product of the population dose and the chronic effect risk factor. In the case of non-dispersible materials the whole body risk factor is used. In the case of dispersible materials the total risk is calculated as the sum of the risk to the individual organs most sensitive to radiation. Exposures of the gonads can induce gene mutations and chromosomal changes leading to hereditary defects. When assessing the total population detriment, a risk factor of 80x10 -6 per person-rem for genetic effects in all subsequent generations is used. 3 - Restrictions on the complexity of the problem: Maxima of: 3 population density zones; 200 different shipments per run; 10 different package types; 80 material types; 10 transport modes; 11 accident severity categories; 30 iso-dose areas; 30 rem levels; 8 organs for dose calculation; 5 early fatality organs; 11 material dispersivity categories; 10 material categories

  5. Doses of external exposure in Jordan house due to gamma-emitting natural radionuclides in building materials.

    Science.gov (United States)

    Al-Jundi, J; Ulanovsky, A; Pröhl, G

    2009-10-01

    The use of building materials containing naturally occurring radionuclides as (40)K, (232)Th, and (238)U and their progeny results in external exposures of the residents of such buildings. In the present study, indoor dose rates for a typical Jordan concrete room are calculated using Monte Carlo method. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling are assumed. Using activity concentrations of natural radionuclides typical for the Jordan houses and assuming them to be in secular equilibrium with their progeny, the maximum annual effective doses are estimated to be 0.16, 0.12 and 0.22 mSv a(-1) for (40)K, (232)Th- and (238)U-series, respectively. In a total, the maximum annual effective indoor dose due to external gamma-radiation is 0.50 mSv a(-1). Additionally, organ dose coefficients are calculated for all organs considered in ICRP Publication 74. Breast, skin and eye lenses have the maximum equivalent dose rate values due to indoor exposures caused by the natural radionuclides, while equivalent dose rates for uterus, colon (LLI) and small intestine are found to be the smallest. More specifically, organ dose rates (nSv a(-1)per Bq kg(-1)) vary from 0.044 to 0.060 for (40)K, from 0.44 to 0.60 for radionuclides from (238)U-series and from 0.60 to 0.81 for radionuclides from (232)Th-series. The obtained organ and effective dose conversion coefficients can be conveniently used in practical dose assessment tasks for the rooms of similar geometry and varying activity concentrations and local-specific occupancy factors.

  6. Teaching materials physics

    International Nuclear Information System (INIS)

    Quere, Y.

    1997-01-01

    The important role of materials and their behaviour under radiation exposure, for nuclear research and industry, is pointed out, and the development of nuclear applied metallurgy research at the Cea and in French Universities is reviewed. The teaching policy at the Cea in the field of materials science involved four action types: laboratory courses and theses, teaching outside and inside the Cea, summer schools, which allowed for a synergetic cooperation between the Cea, Universities and research centers, since the 50's

  7. Degradation of automotive materials in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2012-01-01

    As compared to petroleum diesel, biodiesel is more corrosive for automotive materials. Studies on the characterization of corrosion products of fuel exposed automotive materials are scarce. Automotive fuel system and engine components are made from different ferrous and non-ferrous materials. The present study aims to investigate the corrosion products of different types of automotive materials such as copper, brass, aluminum and cast iron upon exposure to diesel and palm biodiesel. Changes in fuel properties due to exposure of different materials were also examined. Degradation of metal surface was characterized by digital camera, SEM/EDS and X-ray diffraction (XRD). Fuel properties were examined by measuring TAN (total acid number), density and viscosity. Among the metal investigated, copper is found to be least resistant in biodiesel and formed comparatively more corrosion products than other metals. Upon exposure of metals in biodiesel, TAN number crosses the limit given by standard while density and viscosity remain within the acceptable range of limit. -- Highlights: ► Order of incompatible metals in palm biodiesel: copper > brass > aluminum > cast iron. ► The possible reactions for the degradation of copper and cast iron have been discussed. ► For metal exposed biodiesel, only TAN number crosses the limit while density and viscosity remain within the limit. ► Copper and copper based alloy (brass) increase TAN number comparatively more than other metals.

  8. Measurement of thoron exhalation rates from building materials.

    Science.gov (United States)

    de With, G; de Jong, P; Röttger, A

    2014-09-01

    Thoron (220Rn) exhalation from building materials has become increasingly recognized as a potential source for radiation exposure in dwellings. However, contrary to radon (220Rn), limited information on thoron exposure is available. The purpose of this study is to develop a test method for the determination of the thoron exhalation rate from building materials. The method is validated, and subsequently the thoron exhalation rates from 10 widely-applied concretes, gypsums, brick, limestone, and mortar are determined. The measured thoron exhalation rates of these materials range from 0.01 Bq m-2 s-1 to 0.43 Bq m-2 s-1, with relative standard uncertainties between 6% to 14%.

  9. Transport of radioactive materials

    International Nuclear Information System (INIS)

    1991-07-01

    The purpose of this Norm is to establish, relating to the TRANSPORT OF RADIOACTIVE MATERIALS, safety and radiological protection requirements to ensure an adequate control level of the eventual exposure of persons, properties and environment to the ionizing radiation comprising: specifications on radioactive materials for transport; package type selection; specification of the package design and acceptance test requirements; arrangements relating to the transport itself; administrative requirements and responsibilities. (author)

  10. Hand protection from ultraviolet exposure

    International Nuclear Information System (INIS)

    Khazova, M.; O'Hagan, J.B.

    2006-01-01

    Full text of publication follows: A number of industrial applications and public services involve exposure to ultraviolet radiation (U.V.R.) from a variety of lamps and lasers, for example, in forensic examination, biological trans-illuminators, dentistry, laser material processing, microelectronics, etc. The proposed European Union Directive on Optical Radiation would place specific requirements on employers to provide adequate safety measures to reduce exposure to U.V.R., including gloves for hand protection. The selection of gloves should be based on a risk assessment and on the performance characteristics of the gloves for the task. However, current International and national standards do not describe evaluation procedures of disposable gloves for hand protection against non-ionising radiation. A methodology for assessment of the UV protection level for disposable gloves and a simple measurement protocol are proposed, based on a common approach with UV protection by clothing and sunscreens. Glove Ultraviolet Protection Factor is defined as a time-scale increase in exposure permitted for the hand protected by a glove with respect to an unprotected hand. However, the wide variety of U.V.R. sources and the real-life conditions of glove use (stretching and wetting the surface by liquids) bring substantial challenges to the assessment method. Our study of ∼ 50 samples of widely used disposable gloves made of different materials (nitrile, vinyl, latex and chloroprene) showed that for all tested gloves a change in U.V.R. attenuation with stretching is characteristic for the type of glove material and can be included as a scaling factor in the definition of U.V.R. protection. Glove material has a bigger effect on U.V.R. protection level than variations in the glove thickness or its colour. The following approaches are suggested to overcome the problem of variable U.V.R. sources: - Worst case scenario minimal protection level, most restrictive case - Application

  11. Hand protection from ultraviolet exposure

    Energy Technology Data Exchange (ETDEWEB)

    Khazova, M.; O' Hagan, J.B. [Health Protection Agency, Radiation Protection Division, Chilton, Did cot (United Kingdom)

    2006-07-01

    Full text of publication follows: A number of industrial applications and public services involve exposure to ultraviolet radiation (U.V.R.) from a variety of lamps and lasers, for example, in forensic examination, biological trans-illuminators, dentistry, laser material processing, microelectronics, etc. The proposed European Union Directive on Optical Radiation would place specific requirements on employers to provide adequate safety measures to reduce exposure to U.V.R., including gloves for hand protection. The selection of gloves should be based on a risk assessment and on the performance characteristics of the gloves for the task. However, current International and national standards do not describe evaluation procedures of disposable gloves for hand protection against non-ionising radiation. A methodology for assessment of the UV protection level for disposable gloves and a simple measurement protocol are proposed, based on a common approach with UV protection by clothing and sunscreens. Glove Ultraviolet Protection Factor is defined as a time-scale increase in exposure permitted for the hand protected by a glove with respect to an unprotected hand. However, the wide variety of U.V.R. sources and the real-life conditions of glove use (stretching and wetting the surface by liquids) bring substantial challenges to the assessment method. Our study of {approx} 50 samples of widely used disposable gloves made of different materials (nitrile, vinyl, latex and chloroprene) showed that for all tested gloves a change in U.V.R. attenuation with stretching is characteristic for the type of glove material and can be included as a scaling factor in the definition of U.V.R. protection. Glove material has a bigger effect on U.V.R. protection level than variations in the glove thickness or its colour. The following approaches are suggested to overcome the problem of variable U.V.R. sources: - Worst case scenario minimal protection level, most restrictive case - Application

  12. Study of radon diffusion coefficient for technologically enhanced building construction materials

    International Nuclear Information System (INIS)

    Narula, A.K.; Goyal, S.K.; Chauhan, R.P.; Chakarvarti, S.K.

    2012-01-01

    Most building materials of natural origin contain small amounts of Naturally Occurring Radioactive Materials (NORMs), mainly radionuclides from the 226 Ra and 232 Th decay chains and 40 K. The origin of these materials is the earths crust, but they find their way into building materials, air, water, food and the human body itself. The worldwide average indoor effective dose due to gamma rays from building materials is estimated to be about 0.4 mSv per year. In many parts of the world, building materials containing radioactive materials have been used for generations. As individuals spend more than 80% of their time indoors, the internal and external radiation exposure from building materials creates prolonged exposure situations. The internal (inhalation) radiation exposure is due to 222 Rn and their short lived decay products exhaled from building materials into the room air. The average activity concentrations of 226 Ra, 232 Th and 40 K in the earths crust are 35, 30 and 400 Bq/kg respectively. However, elevated levels of natural radionuclides causing annual doses of several mSv were identified in some regions around the world. Recycled industrial by-products containing Technologically Phosphogypsum, a by-product in the production of phosphate fertilizers is used as building material, and red mud, a waste from primary aluminum production, is used in bricks, ceramics and tiles. The increased tendency of the building material industry to use industrial wastes as substitutes for natural products having relatively high activity concentration of NORMs and the increased exposure caused by them were the driving forces for undertaking the present investigation. (author)

  13. Influence of long-term in vivo exposure, debris accumulation and archwire material on friction force among different types of brackets and archwires couples.

    Science.gov (United States)

    Mezeg, Uroš; Primožic, Jasmina

    2017-11-30

    The aim was to assess the influence of long-term in vivo exposure, debris accumulation and archwire material on static and kinetic friction force among different types of brackets and archwires couples. Friction testing was performed among four lower incisors' brackets, conventional and self-ligating (SL), coupled with either nickel-titanium or stainless steel archwires, as-received and in vivo exposed in 18 subjects. The friction testing was performed for a sliding distance of 14 mm at a speed of 10 mm/min, with a starting force of 0.2 N. Wear and quantitative assessment of debris accumulation was performed on pictures of brackets obtained using a scanning electron microscope. Non parametric tests were used for statistical analysis. Only bracket type, but not exposure duration, amount of debris accumulation, archwire material or their manufacturer, was significantly correlated with both static (rho = 0.602, P bracket type no significant difference was observed between as-received and in vivo exposed brackets for any friction parameter except for the SL brackets in which significantly higher static and kinetic (P = 0.001, at least) friction forces were seen in in vivo exposed SL brackets (164.9 cN and 217.63 cN, respectively) in comparison with as-received SL brackets (19.69 cN and 55.72 cN, respectively). The frictional testing was performed in the dry condition which might have influenced the results. A significant correlation was seen between friction force and bracket type, while treatment duration, amount of debris accumulation, archwire material or their manufacturer was not significantly correlated to it. Nevertheless, higher friction forces were measured among in vivo aged SL brackets in comparison with as-received ones. © The Author 2017. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com

  14. Exposure to selected fragrance materials. A case study of fragrance-mix-positive eczema patients

    DEFF Research Database (Denmark)

    Johansen, J D; Rastogi, Suresh Chandra; Menné, T

    1996-01-01

    . In all cases, the use of these cosmetics completely or partly explained present or past episodes of eczema. Between 1 to 6 constituents of the fragrance mix were found in 22 out of 23 products. The cosmetics of all the patients sensitive to hydroxycitronellal, eugenol, cinnamic alcohol and alpha......The aim of the present study was to assess exposure to constituents of the fragrance mix from cosmetic products used by fragrance-mix-positive eczema patients. 23 products, which had either given a positive patch and/or use test in a total of 11 fragrance-mix-positive patients, were analyzed....... It is concluded that exposure to constituents of the fragrance mix is common in fragrance-allergic patients with cosmetic eczema, and that the fragrance mix is a good reflection of actual exposure....

  15. Degradation mechanism of CH3NH3PbI3 perovskite materials upon exposure to humid air

    International Nuclear Information System (INIS)

    Shirayama, Masaki; Kato, Masato; Fujiseki, Takemasa; Hara, Shota; Kadowaki, Hideyuki; Murata, Daisuke; Fujiwara, Hiroyuki; Miyadera, Tetsuhiko; Sugita, Takeshi; Chikamatsu, Masayuki

    2016-01-01

    Low stability of organic-inorganic perovskite (CH 3 NH 3 PbI 3 ) solar cells in humid air environments is a serious drawback which could limit practical application of this material severely. In this study, from real-time spectroscopic ellipsometry characterization, the degradation mechanism of ultra-smooth CH 3 NH 3 PbI 3 layers prepared by a laser evaporation technique is studied. We present evidence that the CH 3 NH 3 PbI 3 degradation in humid air proceeds by two competing reactions of (i) the PbI 2 formation by the desorption of CH 3 NH 3 I species and (ii) the generation of a CH 3 NH 3 PbI 3 hydrate phase by H 2 O incorporation. In particular, rapid phase change occurs in the near-surface region and the CH 3 NH 3 PbI 3 layer thickness reduces rapidly in the initial 1 h air exposure even at a low relative humidity of 40%. After the prolonged air exposure, the CH 3 NH 3 PbI 3 layer is converted completely to hexagonal platelet PbI 2 /hydrate crystals that have a distinct atomic-scale multilayer structure with a period of 0.65 ± 0.05 nm. We find that conventional x-ray diffraction and optical characterization in the visible region, used commonly in earlier works, are quite insensitive to the surface phase change. Based on results obtained in this work, we discuss the degradation mechanism of CH 3 NH 3 PbI 3 in humid air.

  16. Germany: Exposure of Transport Workers During the Transport of Most Frequently Transported NORM in Germany

    International Nuclear Information System (INIS)

    2013-01-01

    The German national report to this CRP was focused on the following services according to the research agreement: (1) Status review, analysis and evaluation of the radiation exposure imposed by shipment and expected exposure of the shipment staff of the most relevant NORM in Germany; (2) Development of evaluation criteria and safety requirements to provide adequate safety standards for the transportation of NORM; (3) Development and application of procedures to determine the limits for exempt materials/consignments for transportation according to German Transport Regulations for all NORM. For the analysis and evaluation of the radiation exposure imposed by shipment of NORM for the following materials, a couple of transport scenarios were defined and the dose to transport workers was calculated. - Tantalum raw materials; - Raw phosphate; - Pipe scales and sludge from oil and gas exploitation; - Coal ash; - Waste rock material from uranium mining; - Zircon raw materials; - Titanium dioxide raw materials; - Filter gravel from waterworks

  17. A novel method of microneedle array fabrication using inclined deep x-ray exposure

    International Nuclear Information System (INIS)

    Moon, Sang Jun; Jin, Chun Yan; Lee, Seung S

    2006-01-01

    We report a novel fabrication method for the microneedle array with a 3-dimensional feature and its replication method; 'Hot-pressing' process with bio-compatible material, PLLA (Poly L-LActide). Using inclined deep X-ray exposure technique, we fabricate a band type microneedle array with a single body on the same material basement. Since the single body feature does not make adhesion problem with the microneedle shank and basement during peel-off step of a mold, the PMMA (Poly-Methyl-MethAcrylate) microneedle array mold insert can be used for mold process which is used with the soft material mold, PDMS (Poly-Di- Methyl-Siloxane). The side inclined deep X-ray exposure also makes complex 3-dimensional features by the regions which are not exposed during twice successive exposure steps. In addition, the successive exposure does not need an additional mask alignment after the first side exposure. The fabricated band type microneedle array mold inserts are assembled for large area patch type out-of-plane microneedle array. The bio-compatible microneedle array can be fabricated to the laboratory scale mass production by the single body PMMA mold insert and 'Hot-pressing' process

  18. A novel method of microneedle array fabrication using inclined deep x-ray exposure

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sang Jun; Jin, Chun Yan; Lee, Seung S [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-dong, Daejeon (Korea, Republic of)

    2006-04-01

    We report a novel fabrication method for the microneedle array with a 3-dimensional feature and its replication method; 'Hot-pressing' process with bio-compatible material, PLLA (Poly L-LActide). Using inclined deep X-ray exposure technique, we fabricate a band type microneedle array with a single body on the same material basement. Since the single body feature does not make adhesion problem with the microneedle shank and basement during peel-off step of a mold, the PMMA (Poly-Methyl-MethAcrylate) microneedle array mold insert can be used for mold process which is used with the soft material mold, PDMS (Poly-Di- Methyl-Siloxane). The side inclined deep X-ray exposure also makes complex 3-dimensional features by the regions which are not exposed during twice successive exposure steps. In addition, the successive exposure does not need an additional mask alignment after the first side exposure. The fabricated band type microneedle array mold inserts are assembled for large area patch type out-of-plane microneedle array. The bio-compatible microneedle array can be fabricated to the laboratory scale mass production by the single body PMMA mold insert and 'Hot-pressing' process.

  19. Glove material, reservoir formation, and dose affect glove permeation and subsequent skin penetration

    DEFF Research Database (Denmark)

    Nielsen, Jesper Bo; Sørensen, Jens Ahm

    2012-01-01

    Protective gloves are used to reduce dermal exposure when managing chemical exposures at the work place. Different glove materials may offer different degrees of protection. The present study combined the traditional ASTM (American Society for Testing and Materials) model with the Franz diffusion...

  20. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  1. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    2000-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  2. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  3. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  4. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  5. Human exposure, health hazards, and environmental regulations

    International Nuclear Information System (INIS)

    Steinemann, Anne

    2004-01-01

    United States environmental regulations, intended to protect human health, generally fail to address major sources of pollutants that endanger human health. These sources are surprisingly close to us and within our control, such as consumer products and building materials that we use within our homes, workplaces, schools, and other indoor environments. Even though these indoor sources account for nearly 90% of our pollutant exposure, they are virtually unregulated by existing laws. Even pollutant levels found in typical homes, if found outdoors, would often violate federal environmental standards. This article examines the importance of human exposure as a way to understand and reduce effects of pollutants on human health. Results from exposure studies challenge traditional thinking about pollutant hazards, and reveal deficiencies in our patchwork of laws. And results from epidemiological studies, showing increases in exposure-related diseases, underscore the need for new protections. Because we cannot rely solely on regulations to protect us, and because health effects from exposures can develop insidiously, greater efforts are needed to reduce and prevent significant exposures before they occur. Recommendations include the development and use of safer alternatives to common products, public education on ways to reduce exposure, systematic monitoring of human exposure to pollutants, and a precautionary approach in decision-making

  6. Natural radioactivity level of main building materials in Baotou, China

    International Nuclear Information System (INIS)

    Zhao Caifeng; Lu Xinwei; Li Nan; Yang Guang

    2012-01-01

    A survey was done on natural radioactivity level and annual effective dose rate of main building materials in Baotou, China. The natural radionuclides of 40 K, 232 Th and 226 Ra in main building materials collected from Baotou were measured using NaI γ-ray spectrometry and the measured data were analyzed according to the national standards and radiological protection principles of the European Commission. The specific activities of 40 K, 232 Th and 226 Ra in the building materials samples were 218.82-1145.92, 19.75-1.32.50 and 11.46-82.66 Bq/kg, respectively. The internal and external exposure indexes of building materials were 0.06-0.41 and 0.28-0.70, respectively. The annual effective dose equivalent was 0.41-0.97 mSv/y. This justifies the production and sale of the main building materials, as both the internal and external exposure indexes of building materials are less than 1. The effective dose rate of ash brick is 0.97 mSv/y, while the maximum acceptable value is 1 mSv/y. Therefore, it is necessary to control the amount of industrial waste residue in building materials to avoid unnecessary radioactive exposure to residents. (authors)

  7. Prevalência de exposições ocupacionais de cirurgiões-dentistas e auxiliares de consultório dentário a material biológico Prevalence of occupational exposures to potentially infectious materials among dentists and dental assistants

    Directory of Open Access Journals (Sweden)

    Leila Posenato Garcia

    2006-01-01

    Full Text Available Os cirurgiões-dentistas e auxiliares de consultório dentário trabalham em condições que favorecem a ocorrência de exposições ocupacionais a material biológico. Os objetivos do presente estudo são: determinar a prevalência de exposições ocupacionais ao longo da vida profissional e no ano anterior a este estudo, identificar as circunstâncias das exposições e verificar se existe relação entre sua ocorrência e o uso de equipamentos de proteção individual. Participaram do estudo 289 dentistas e 104 auxiliares do município de Florianópolis, Santa Catarina, Brasil. Os dados foram coletados por meio de questionário auto-aplicável. A prevalência de exposições ocupacionais na vida profissional foi maior entre os dentistas (94,5% do que entre os auxiliares (80,8%, ao passo que, no ano anterior, foi similar entre dentistas (39,1% e auxiliares (39,4%. Todavia, considerando as exposições ocorridas no ano anterior, as lesões percutâneas foram mais freqüentes nos auxiliares (95,2% do que nos dentistas (60,7%. O uso constante de óculos de proteção foi estatisticamente associado com menor ocorrência de respingos nos olhos de dentistas (p = 0,004. São recomendadas medidas educativas visando a reduzir a freqüência de exposições ocupacionais na população estudada.Dentists and dental assistants work in conditions that favor the occurrence of occupational exposures to potentially infectious materials. The aims of this study are: to determine the prevalence of occupational exposures throughout professional life and in the previous year, to identify the circumstances of exposures, and to verify if there exists a relationship between their occurrence and the use of personal protective equipment. 289 dentists and 104 dental assistants from the city of Florianópolis, Brazil, participated in this study. Data were collected through self-report questionnaires. The prevalence of occupational exposures throughout professional life

  8. Radiation exposures: risks and realities

    International Nuclear Information System (INIS)

    Ganesh, G.

    2010-01-01

    Discovery of radioactivity in 1869 by Henry Becquerel and artificial radioactivity by Irene Curie in 1934 led to the development of nuclear field and nuclear materials in 20th century. They are widely used for man-kind across the globe in electricity production, carbon dating, treatment and diagnosis of diseases etc. While deriving benefits and utilizing nuclear resources for the benefit of man-kind, it is inevitable that exposure to radiation can not be avoided. Radiation exists all around us either natural or man-made which can not be totally eliminated or avoided. Radiation exposures from natural background contribute 2.4 to 3.6 mSv in a year. Radiation exposures incurred by a member of public due to nuclear industries constitute less than one hundredth of annual dose due to natural background. Hence it is important to understand the risk posed by radiation and comparison of radiation risk with various risks arising due to other sources. Studies have indicated that risks due to environmental pollution, cigarette smoking, alcohol consumption, heart diseases are far higher in magnitude compared to radiation risks from man made sources. This paper brings about the details and awareness regarding radiation exposures, radiation risk, various risks associated with other industries and benefits of radiation exposures. (author)

  9. Report on emergency exposure to external radiation

    Energy Technology Data Exchange (ETDEWEB)

    Pochin, E E; Rock Carling, Ernest; Court Brown, W M [Medical Research Council, Committee on Protection against Ionizing Radiations, London (United Kingdom); and others

    1960-12-01

    The Medical Research Council has continued a study of the effects on the health of persons in the neighbourhood of atomic energy installations should there be a release of radioactive material as a result of fires or other incidents. The Council's Committee on Protection against Ionizing Radiations has already reported (Medical Research Council, 1959) on the maximum permissible dietary contamination for iodine 131, strontium 89, strontium 90 and caesium. 137, since it was considered that for the members of the public normally resident in the area affected ingestion of contaminated food would generally be the limiting source of hazard after any such accident and that intake by inhalation, or radiation from the exterior, would become of importance only in rather special circumstances The present report deals with the problem of exposure from the exterior, namely, from external sources of beta and gamma radiation. This exposure might be derived from two sources, one of relatively short duration from the passage of a cloud of radioactive material, the other of longer duration from deposited material.

  10. Report on emergency exposure to external radiation

    International Nuclear Information System (INIS)

    Pochin, E.E.; Rock Carling, Ernest; Court Brown, W.M.

    1960-01-01

    The Medical Research Council has continued a study of the effects on the health of persons in the neighbourhood of atomic energy installations should there be a release of radioactive material as a result of fires or other incidents. The Council's Committee on Protection against Ionizing Radiations has already reported (Medical Research Council, 1959) on the maximum permissible dietary contamination for iodine 131, strontium 89, strontium 90 and caesium. 137, since it was considered that for the members of the public normally resident in the area affected ingestion of contaminated food would generally be the limiting source of hazard after any such accident and that intake by inhalation, or radiation from the exterior, would become of importance only in rather special circumstances The present report deals with the problem of exposure from the exterior, namely, from external sources of beta and gamma radiation. This exposure might be derived from two sources, one of relatively short duration from the passage of a cloud of radioactive material, the other of longer duration from deposited material

  11. Exposure to tobacco-derived materials induces overproduction of secreted proteinases in mast cells

    International Nuclear Information System (INIS)

    Small-Howard, Andrea; Turner, Helen

    2005-01-01

    Mast cells reside at interfaces with the environment, including the mucosa of the respiratory and gastrointestinal tracts. This localization exposes mast cells to inhaled, or ingested, environmental challenges. In the airways of smokers, resident immune cells will be in contact with the condensed components of cigarette smoke. Mast cells are of particular interest due to their ability to promote airway remodeling and mucus hypersecretion. Clinical data show increased levels of mast cell-secreted tryptase and increased numbers of degranulated mast cells in the lavage and bronchial tissue of smokers. Since mast cell-secreted proteinases (MCPTs), including tryptases, contribute to pathological airway remodeling, we investigated the relationship between mast cell proteinases and smoke exposure. We exposed a mast cell line to cigarette smoke condensate (CSC). We show that CSC exposure increases MCPT levels in mast cells using an assay for tryptase-type MCPT activity. We hypothesized that this increase in MCPT activity reflects a CSC-induced increase in the cytosolic pool of proteinase molecules, via stimulation of MCPT transcription. Transcript array data suggested that mRNA changes in response to CSC were limited in number and peaked after 3 h of CSC exposure. However, we noted marked transcriptional regulation of several MCPT genes. CSC-induced changes in the mRNA levels for MCPTs were confirmed using quantitative RT-PCR. Taken together, our data suggest that chronic exposure to cigarette smoke up-regulates MCPT levels in mast cells at both the protein and the mRNA level. We suggest that the pathological airway remodeling that has been described in clinical studies of smoke inhalation may be attributable to MCPT overproduction in vivo

  12. The natural sources of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Maximilien, R.

    1982-01-01

    Natural sources of ionizing radiation include external sources (cosmic rays, natural radionuclides present in the crust of the earth and in building materials) and internal sources (naturally occuring radionuclides in the human body, especially the potassium 40 and radon short lived decay products). The principal ways of human exposure to theses different components in ''normal'' areas are reviewed; some examples of the variability of exposure with respect to different regions of the world or the habits of life are given. Actual estimations of the doses delivered to the organs are presented; for the main contributors to population exposure, the conversion into effective dose equivalent has been made for allowing a better evaluation of their respective importance [fr

  13. Review of Phthalates Exposure and Toxicity

    Directory of Open Access Journals (Sweden)

    Samaneh Taghilou

    2015-12-01

    Full Text Available The dialkyl- or alkyl/aryl esters of 1, 2-benzenedicarboxylic acid, which are known as Phthalates, are high-production volume synthetic chemicals and considered as environmental pollutants, due to high production and uses in community, plastics industry and common consuming products. Di-(2-ethylhexyl phthalate (DEHP is the most abundant phthalate in the environment. Human exposure with DEHP could be done via different chemical compounds including food packaging, household furnishings, nutritional supplements, cleaning materials and insecticides. Besides, exposure of human with phthalates occurs through different pathways such as direct contact and using Phthalate-containing products, and indirectly through leaching into other products, or general environmental contaminations. Historically, the diet has been considered the major source of phthalate exposure in the general population, but in all sources, pathways, and their relative contributions to human exposures are not well understood. Medical devices are other source of significant exposure in human. Furthermore, cosmetics, personal care products, pharmaceuticals, nutritional supplements, herbal remedies and insecticides, may result in significant but poorly quantified human exposure with this compounds. In the present review article, we tried to discuss about metabolism of phthalates in human, toxicity, monitoring of phthalates in foods, environment, and cosmetic products and then metabolites of phthalates. Finally, evaluation of human exposure through biological control is discussed.

  14. k0-NAA applied to certified reference materials and hair samples. Evaluation of exposure level in a galvanising industry

    International Nuclear Information System (INIS)

    Menezes, M.A. de B.C.; Pereira Maia, E.C.

    2000-01-01

    The k 0 parametric neutron activation analysis has been applied since 1995 in the Radiochemical Sector/CDTN, Belo Horizonte, Brazil. Several certified reference materials were studied with the aim of analysing biological samples. This work is related to an IAEA co-ordinated research project whose goal is to make a survey of the exposures to metals related to occupational diseases. It has been conducted by CDTN and government departments of health. The hair samples as bioindicators were donated by galvanising factory workers in Belo Horizonte. This city and surrounding area are important industrial centres and that industry is responsible for the majority of patients who look for medical assistance because of metal contamination. The Al, Co, Cu, Cr, La, Mn, Sb and V concentrations determined in the workers' samples suggest endogenous contamination. (author)

  15. High-Throughput Dietary Exposure Predictions for Chemical Migrants from Food Packaging Materials

    Science.gov (United States)

    United States Environmental Protection Agency researchers have developed a Stochastic Human Exposure and Dose Simulation High -Throughput (SHEDS-HT) model for use in prioritization of chemicals under the ExpoCast program. In this research, new methods were implemented in SHEDS-HT...

  16. Assessment of the radiological impact of selected building materials

    International Nuclear Information System (INIS)

    Gwiazdowski, B.

    1983-02-01

    Naturally occurring radionuclides in building materials are a source of external and internal radiation exposure to essentially the entire Polish population. The programme of our studies met two main aspects on radioactivity of building materials: Gamma dose rate and radon or alpha potential energy concentration measurements in dwellings of various kinds of structure and materials in both industrial and rural districts of Poland. Gamma dose rate measurements were made in about 2200 dwellings and radon or alpha potential energy concentration measurements - in 750 dwellings. On the basis of these studies the annual effective dose equivalent to the Polish population due to gamma and alpha radiation indoors was estimated to be 0.39 mSv/a and 0.99 mSv/a, respectively. The contribution of external (from gamma) and internal (from alpha) radiation exposure due to naturally occurring radionuclides in building materials to the total radiation exposure of Polish population was assessed to be 3.6 per cent and 34.2 per cent, respectively. Measurements of about 1500 samples of various kinds of building materials and raw materials were made to determine radionuclide concentrations in them. The highest values were obtained in samples of phosphogypsum, fly ash and slag: potassium concentration ranges up to 36 pCi g -1 (a slag sample), radium - up to 17 pCi g -1 (a phosphogypsum sample) and thorium - up to 4 pCi g -1 (a phosphogypsum). On the basis of the results of our studies we came to the conclusion that it was necessary to work out a control system which could protect habitants against enhancement of indoor exposure to ionizing radiation

  17. Transport of radioactive materials

    International Nuclear Information System (INIS)

    1988-07-01

    The norm which establishes the requirements of radiation protection and safety related to the transport of radioactive materials, aiming to keep a suitable control level of eventual exposure of personnels, materials and environment of ionizing radiation, including: specifications on radioactive materials for transport, selection of package type; specification of requirements of the design and assays of acceptance of packages; disposal related to the transport; and liability and administrative requirements, are presented. This norm is applied to: truckage, water carriage and air service; design, fabrication, assays and mantenaince of packages; preparation, despatching, handling, loading storage in transition and reception in the ultimate storage of packages; and transport of void packages which have been contained radioactive materials. (M.C.K.) [pt

  18. Oral exposure to culture material extract containing fumonisins predisposes swine to the development of pneumonitis caused by Pasteurella multocida

    International Nuclear Information System (INIS)

    Halloy, David J.; Gustin, Pascal G.; Bouhet, Sandrine; Oswald, Isabelle P.

    2005-01-01

    Fumonisin B 1 (FB 1 ) is a mycotoxin produced by Fusarium verticillioides and F. proliferatum that commonly occurs in maize. In swine, consumption of contaminated feed induces liver damage and pulmonary edema. Pasteurella multocida is a secondary pathogen, which can generate a respiratory disorder in predisposed pigs. In this study, we examined the effect of oral exposure to fumonisin-containing culture material on lung inflammation caused by P. multocida. Piglets received by gavage a crude extract of fumonisin, 0.5 mg FB 1 /kg body weight/day, for 7 days. One day later, the animals were instilled intratracheally with a non toxin producing type A strain of P. multocida and followed up for 13 additional days. Pig weight and cough frequency were measured throughout the experiment. Lung lesions, bronchoalveolar lavage fluid (BALF) cell composition and the expression of inflammatory cytokines were evaluated at the autopsy. Ingestion of fumonisin culture material or infection with P. multocida did not affect weight gain, induced no clinical sign or lung lesion, and only had minimal effect on BALF cell composition. Ingestion of mycotoxin extract increased the expression of IL-8, IL-18 and IFN-γ mRNA compared with P. multocida infection that increased the expression of TNF-α. The combined treatment with fumonisin culture material and P. multocida delayed growth, induced cough, and increased BALF total cells, macrophages and lymphocytes. Lung lesions were significantly enhanced in these animals and consisted of subacute interstitial pneumonia. TNF-α, IFN-γ and IL-18 mRNA expression was also increased. Taken together, our data showed that fumonisin culture material is a predisposing factor to lung inflammation. These results may have implications for humans and animals consuming FB 1 contaminated food or feed

  19. Oral exposure to culture material extract containing fumonisins predisposes swine to the development of pneumonitis caused by Pasteurella multocida

    Energy Technology Data Exchange (ETDEWEB)

    Halloy, David J [Department of Functional Sciences, Unit of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Veterinary Medicine, University of Liege, Liege (Belgium); Gustin, Pascal G [Department of Functional Sciences, Unit of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Veterinary Medicine, University of Liege, Liege (Belgium); Bouhet, Sandrine [INRA, UR66, Laboratory of Pharmacology and Toxicology, 180 Chemin de Tournefeuille, BP3, 31931 Toulouse (France); Oswald, Isabelle P [INRA, UR66, Laboratory of Pharmacology and Toxicology, 180 Chemin de Tournefeuille, BP3, 31931 Toulouse (France)

    2005-09-15

    Fumonisin B{sub 1} (FB{sub 1}) is a mycotoxin produced by Fusarium verticillioides and F. proliferatum that commonly occurs in maize. In swine, consumption of contaminated feed induces liver damage and pulmonary edema. Pasteurella multocida is a secondary pathogen, which can generate a respiratory disorder in predisposed pigs. In this study, we examined the effect of oral exposure to fumonisin-containing culture material on lung inflammation caused by P. multocida. Piglets received by gavage a crude extract of fumonisin, 0.5 mg FB{sub 1}/kg body weight/day, for 7 days. One day later, the animals were instilled intratracheally with a non toxin producing type A strain of P. multocida and followed up for 13 additional days. Pig weight and cough frequency were measured throughout the experiment. Lung lesions, bronchoalveolar lavage fluid (BALF) cell composition and the expression of inflammatory cytokines were evaluated at the autopsy. Ingestion of fumonisin culture material or infection with P. multocida did not affect weight gain, induced no clinical sign or lung lesion, and only had minimal effect on BALF cell composition. Ingestion of mycotoxin extract increased the expression of IL-8, IL-18 and IFN-{gamma} mRNA compared with P. multocida infection that increased the expression of TNF-{alpha}. The combined treatment with fumonisin culture material and P. multocida delayed growth, induced cough, and increased BALF total cells, macrophages and lymphocytes. Lung lesions were significantly enhanced in these animals and consisted of subacute interstitial pneumonia. TNF-{alpha}, IFN-{gamma} and IL-18 mRNA expression was also increased. Taken together, our data showed that fumonisin culture material is a predisposing factor to lung inflammation. These results may have implications for humans and animals consuming FB{sub 1} contaminated food or feed.

  20. Exposure to radiation from the natural radioactivity in Tunisian building materials.

    Science.gov (United States)

    Gharbi, F; Oueslati, M; Abdelli, W; Samaali, M; Ben Tekaya, M

    2012-12-01

    Building materials can expose public and workers to radiation because of their content of radium, thorium and potassium isotopes. This is why it is very important from the radiological point of view to survey the natural radioactivity content of commonly used building materials in any country. This work consists of the measurement of (226)Ra, (232)Th and (40)K activity concentrations in a variety of commonly used building materials in Tunisia and on the estimation of their radiological hazard. The maximum value of radium equivalent for the studied materials was equal to 169 Bq kg(-1) and corresponds to the clay brick, which is lower than the recommended value of 370 Bq kg(-1). In this work, several radiological indexes were calculated and were found to be under their highest permitted limit.

  1. The effect of priming materialism on women's responses to thin-ideal media.

    Science.gov (United States)

    Ashikali, Eleni-Marina; Dittmar, Helga

    2012-12-01

    Consumer culture is characterized by two prominent ideals: the 'body perfect' and the material 'good life'. Although the impact of these ideals has been investigated in separate research literatures, no previous research has examined whether materialism is linked to women's responses to thin-ideal media. Data from several studies confirm that the internalization of materialistic and body-ideal values is positively linked in women. After developing a prime for materialism (N = 50), we present an experimental examination (N = 155) of the effects of priming materialism on women's responses to thin-ideal media, using multiple outcome measures of state body dissatisfaction. Priming materialism affects women's body dissatisfaction after exposure to thin media models, but differently depending on the dimension of body image measured. The two main novel findings are that (1) priming materialism heightens the centrality of appearance to women's self-concept and (2) priming materialism influences the activation of body-related self-discrepancies (BRSDs), particularly for highly materialistic women. Exposure to materialistic media has a clear influence on women's body image, with trait materialism a further vulnerability factor for negative exposure effects in response to idealized, thin media models. ©2011 The British Psychological Society.

  2. Non-ionizing electromagnetic exposure assessment and dosimetry

    International Nuclear Information System (INIS)

    Paulsson, L.E.

    1992-11-01

    A comprehensive literature survey of advancements in the area 'human exposure assessment and dosimetry' for the years 1988-1992 has been performed by the author and published elsewhere. In the present report that material has been complemented with a historical background and a thorough description of the physical principles behind the methods and techniques. The report covers strategies, principles, methods, limitations and future developments for the area of human exposure assessment and dosimetry of electromagnetic fields form extremely low frequencies up to and including microwaves

  3. Ultra-low-energy wide electron exposure unit

    International Nuclear Information System (INIS)

    Yonago, Akinobu; Oono, Yukihiko; Tokunaga, Kazutoshi; Kishimoto, Junichi; Wakamoto, Ikuo

    2001-01-01

    Heat and ultraviolet ray processes are used in surface dryness of paint, surface treatment of construction materials and surface sterilization of food containers. A process using a low-energy wide-area electron beam (EB) has been developed that features high speed and low drive cost. EB processing is not widespread in general industry, however, due to high equipment cost and difficult maintenance. We developed an ultra-low-energy wide-area electron beam exposure unit, the Mitsubishi Wide Electron Exposure Unit (MIWEL) to solve these problems. (author)

  4. An industrial radiography exposure device based on measurement of transmitted gamma-ray intensity

    International Nuclear Information System (INIS)

    Polee, C; Chankow, N; Srisatit, S; Thong-Aram, D

    2015-01-01

    In film radiography, underexposure and overexposure may happen particularly when lacking information of specimen material and hollowness. This paper describes a method and a device for determining exposure in industrial gamma-ray radiography based on quick measurement of transmitted gamma-ray intensity with a small detector. Application software was developed for Android mobile phone to remotely control the device and to display counting data via Bluetooth communication. Prior to film exposure, the device is placed behind a specimen to measure transmitted intensity which is inversely proportional to the exposure. Unlike in using the conventional exposure curve, correction factors for source decay, source-to- film distance, specimen thickness and kind of material are not needed. The developed technique and device make radiographic process economic, convenient and more reliable. (paper)

  5. Effects of simulated space environmental parameters on six commercially available composite materials

    International Nuclear Information System (INIS)

    Funk, J.G.; Sykes, G.F. Jr.

    1989-04-01

    The effects of simulated space environmental parameters on microdamage induced by the environment in a series of commercially available graphite-fiber-reinforced composite materials were determined. Composites with both thermoset and thermoplastic resin systems were studied. Low-Earth-Orbit (LEO) exposures were simulated by thermal cycling; geosynchronous-orbit (GEO) exposures were simulated by electron irradiation plus thermal cycling. The thermal cycling temperature range was -250 F to either 200 F or 150 F. The upper limits of the thermal cycles were different to ensure that an individual composite material was not cycled above its glass transition temperature. Material response was characterized through assessment of the induced microcracking and its influence on mechanical property changes at both room temperature and -250 F. Microdamage was induced in both thermoset and thermoplastic advanced composite materials exposed to the simulated LEO environment. However, a 350 F cure single-phase toughened epoxy composite was not damaged during exposure to the LEO environment. The simuated GEO environment produced microdamage in all materials tested

  6. Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity.

    Science.gov (United States)

    Aceto, Jessica; Nourizadeh-Lillabadi, Rasoul; Marée, Raphael; Dardenne, Nadia; Jeanray, Nathalie; Wehenkel, Louis; Aleström, Peter; van Loon, Jack J W A; Muller, Marc

    2015-01-01

    Teleost fish such as zebrafish (Danio rerio) are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf) of, respectively parathyroid hormone (PTH) or vitamin D3 (VitD3). Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf) exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a) whose expression was consistently affected by the transition from hyper- to normal gravity.

  7. Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity.

    Directory of Open Access Journals (Sweden)

    Jessica Aceto

    Full Text Available Teleost fish such as zebrafish (Danio rerio are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf of, respectively parathyroid hormone (PTH or vitamin D3 (VitD3. Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a whose expression was consistently affected by the transition from hyper- to normal gravity.

  8. Comparative evaluation of liner materials for inactive uranium-mill-tailings piles

    International Nuclear Information System (INIS)

    Buelt, J.L.; Barnes, S.M.

    1981-01-01

    Under the funding of the Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Program, Pacific Northwest Laboratory (PNL) has completed the initial accelerated testing phase of eight candidate liner materials. The tests were designed to comparatively evaluate the long term effectiveness of liner materials as a radionuclide and hazardous chemical leachate barrier. The eight materials tested were selected from a technical review of published literature and industrial specialists. Conditions were then identified that would accelerate the aging processes expected in a uranium tailings environment for 1000 years. High calcium leachates were forced through thin layers of clay liners to accelerate the ion exchange rate of sodium and calcium. Asphalt and synthetic materials were accelerated by exposure to elevate temperatures, high concentrations of oxygen, and increased strengths of aqueous oxidizing agents. By comparing the changes of permeability with time of exposure, the most acceptable materials were then identified. These materials are a catalytically airblown asphalt membrane and natural soil amended with sodium bentonite. Both materials showed an increased resistance to leachate penetration throughout the exposure period with final permeabilities less than 10 -7 cm/s. In addition, the asphalt membrane and sodium bentonite are among the least expensive materials to install at a disposal site. Therefore based on their economic and technical merits, these two materials are being evaluated further in field tests at Grand Junction, Colorado

  9. Centrifuge-operated specimen staining method and apparatus

    Science.gov (United States)

    Clarke, Mark S. F. (Inventor); Feeback, Daniel L. (Inventor)

    1999-01-01

    A method of staining preselected, mounted specimens of either biological or nonbiological material enclosed within a staining chamber where the liquid staining reagents are applied and removed from the staining chamber using hypergravity as the propelling force. In the preferred embodiment, a spacecraft-operated centrifuge and method of diagnosing biological specimens while in orbit, characterized by hermetically sealing a shell assembly. The assembly contains slide stain apparatus with computer control therefor, the operative effect of which is to overcome microgravity, for example on board an International Space Station.

  10. Indoor Residential Chemical Exposures as Risk Factors for Asthmaand Allergy in Infants and Children: a Review

    Energy Technology Data Exchange (ETDEWEB)

    Mendell, M.J.

    2006-03-01

    Most research into effects of residential indoor air exposures on asthma and allergies has focused on exposures to biologic allergens, moisture and mold, endotoxin, or combustion byproducts. This paper briefly reviews reported findings on associations of asthma or allergy in infants or children with risk factors related to indoor chemical emissions from residential materials or surface coatings. Associations, some strong (e.g., odds ratios up to 13), were reported. The most frequently identified risk factors were formaldehyde, aromatic organic compounds such as toluene and benzene, plastic materials and plasticizers, and recent painting. Exposures and consequent effects from indoor sources may be exacerbated by decreased ventilation. Identified risk factors may be proxies for correlated exposures. Findings suggest the frequent occurrence of important but preventable effects on asthma and allergy in infants and children worldwide from modern residential building materials and coatings.

  11. Non-destructive examination and estimation of radioactivity levels for decorative building materials

    International Nuclear Information System (INIS)

    Mao Yahong; Liu Yigang; Lin Libin

    2003-01-01

    Measurement of gamma ray intensity from building materials can be substituted by measuring alpha rays following outline of a radionuclide decay. Exposure levels of alpha ray from the surface of decorative materials can be measured non-destructively by placing a detector on the surface of the materials. Authors have studied the relationship between gamma specific activities of natural radionuclides and alpha and beta ray level in building materials used in interior decoration, and the saturated thickness of beta ray from the surface of different materials. The results showed that the range of beta ray with the maximum energy in natural radioactive series is longer than thickness of a piece of decorative materials. So the exposure level of beta ray cannot be used to estimate the limit of external and internal indexes. The polynomial between exposure level of alpha ray from surface (α) and external index (I γ ) for granite is: I γ =0.38 + 49.84α + 288.24α 2 . The measured values were in accordance with the values from the polynomial within 95%. The polynomial between exposure level of alpha ray from surface (α) and external index (Iγ) for polishing tiles is: I γ =0.42 + 343.55α-32999.66α 2 . The measured values were in accordance with the values from the polynomial within 90%

  12. Occupational radiation exposure. Twelfth annual report, 1979

    International Nuclear Information System (INIS)

    Brooks, B.; McDonald, S.; Richardson, E.

    1982-08-01

    This report summarizes the occupational exposure data that is maintained in the US Nuclear Regulatory Commission's Radiation Exposure Information and Reports System (REIRS). This report is usually published on an annual basis and is available at all NRC public document rooms. The bulk of the information contained in the report was extracted from annual statistical reports submitted by all NRC licensees subject to the reporting requirements of 10 CFR 20.407. Four categories of licensees - operating nuclear power reactors, fuel fabricators and reprocessors, industrial radiographers, and manufacturers and distributors of specified quantities of byproduct materials - also submit personal identification and exposure information for terminating employees pursuant to 10 CFR 20.408, and some analysis of this data is also presented in this report

  13. Cryogenic Considerations for Superconducting Magnet Design for the Material Plasma Exposure eXperiment

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, Robert C [ORNL; Demko, Dr. Jonathan A [LeTourneau University, Texas; Lumsdaine, Arnold [ORNL; Caughman, John B [ORNL; Goulding, Richard Howell [ORNL; McGinnis, William Dean [ORNL; Bjorholm, Thomas P [ORNL; Rapp, Juergen [ORNL

    2015-01-01

    In order to determine long term performance of plasma facing components such as diverters and first walls for fusion devices, next generation plasma generators are needed. A Material Plasma Exposure eXperiment (MPEX) has been proposed to address this need through the generation of plasmas in front of the target with electron temperatures of 1-15 eV and electron densities of 1020 to 1021 m-3. Heat fluxes on target diverters could reach 20 MW/m2. In order generate this plasma, a unique radio frequency helicon source and heating of electrons and ions through Electron Bernstein Wave (EBW) and Ion Cyclotron Resonance Heating (ICRH) has been proposed. MPEX requires a series of magnets with non-uniform central fields up to 2 T over a 5m length in the heating and transport region and 1 T uniform central field over a 1-m length on a diameter of 1.3 m. Given the field requirements, superconducting magnets are under consideration for MPEX. In order to determine the best construction method for the magnets, the cryogenic refrigeration has been analyzed with respect to cooldown and operational performance criteria for open-cycle and closed-cycle systems, capital and operating costs of these system, and maturity of supporting technology such as cryocoolers. These systems will be compared within the context of commercially available magnet constructions to determine the most economical method for MPEX operation. The current state of the MPEX magnet design including details on possible superconducting magnet configurations will be presented.

  14. Combating illicit trafficking in nuclear and other radioactive material. Reference material

    International Nuclear Information System (INIS)

    2007-01-01

    exposure and the means of protection against such exposure. Also discussed are the authorized uses of nuclear and other radioactive material and the regime governing their transport. Sections 9-11 offer guidance on how to manage efforts aimed at preventing, detecting and responding to the threat of criminal or unauthorized acts. Appendix I provides statistics on specific cases of illicit trafficking and highlights aspects of these incidents. Appendix II suggests general search procedures for use by responders when the presence of nuclear or other radioactive material is suspected

  15. Environmental radiation and exposure to radiation

    International Nuclear Information System (INIS)

    1981-02-01

    Compared to 1977 the exposure to radiation of the population of the Federal Republic of Germany from both natural and artificial radiation sources has not greatly charged. The amin part of exposure to natural radiation is caused by environmental radiation and by the absorption of naturally radioactive substances into the body. Artificial exposure to radiation of the population is essentially caused by the use of ionizing rays and radioactive substances in medicine. When radioactive materials are released from nuclear facilities the exposure to radiation of the population is only very slightly increased. The real exposure to radiation of individual people can even in the worst affected places, have been at most fractions of a millirem. The exposure to radiation in the worst afected places in the area of a hard-coal power station is higher than that coming from a nuclear power station of the same capacity. The summation of all contributions to the exposure of radiation by nuclear facilities to the population led in 1978 in the Federal Republic of Germany to a genetically significant dose of clearly less than 1 millerem per year. The medium-ranged exposure to radiation by external radiation effects through professional work was in 1978 at 80 millirems. No difference to 1977. The contribution of radionuclide from the fallout coming from nuclear-weapon tests and which has been deposited in the soil, to the whole-body dose for 1978 applies the same as the genetically significant dose of the population with less than 1 millirem. (orig./HP) [de

  16. Determination of detailed standards for transportation of radioactive materials by ships

    International Nuclear Information System (INIS)

    1979-01-01

    The notification is defined under the regulations concerning marine transport and storage of dangerous things. Radioactive materials include hereunder uranium 233 and 235, plutonium 238, 239 and 241, their compounds and those materials which contain one or more than two of such materials. Materials whose quantities or quantities of components are less than 15 grams, and natural or depleted uranium are excluded. Permissible surface concentrations are 1/100,000 micro-curie per centi-meter 2 for radioactive materials emitting alpha rays, and 1/10,000 micro-curie per centi-meter 2 for radioactive materials not emitting alpha rays. Radioactive materials to be transported as L loads shall be not dispersing solid substances or those tightly enclosed in capsules, one of whose exterior sides at least is more than 0.5 centi-meter, having other several specified features. Other kinds of liquid and gas L loads are stipulated. Limits of radioactivity of L and A loads are provided for with tables attached. Transport conditions of A, BM and BU loads are fixed with bylaws. Leakages of BM and BU loads are also prescribed. Radioactive loads shall be marked by particular signals. Measures shall be taken to control exposures, which involve measurement of doses and exposure doses on board and appointment of exposure controllers. (Okada, K.)

  17. Characterization of Decommissioned PWR Vessel Internals Materials Samples: Material Certification, Fluence, and Temperature (Nonproprietary Version)

    International Nuclear Information System (INIS)

    Krug, M.; Shogan, R.; Fero, A.; Snyder, M.

    2004-01-01

    Pressurized water reactor (PWR) cores, operate under extreme environmental conditions due to coolant chemistry, operating temperature, and neutron exposure. Extending the life of PWRs require detailed knowledge of the changes in mechanical and corrosion properties of the structural austenitic stainless steel components adjacent to the fuel. This report contains basic material characterization information of the as-installed samples of reactor internals material which were harvested from a decommissioned PWR

  18. Human biological monitoring of occupational genotoxic exposures

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Sorsa, M

    1993-01-01

    Human biological monitoring is a valuable tool for exposure assessment in groups of persons occupationally exposed to genotoxic agents. If the monitoring activity covers genetic material the term genetic monitoring is used. The methods used for genetic monitoring are either substance specific, e......) occupational exposure limit value of styrene in ambient air. The consideration of ethical issues in human genetic monitoring is an important but often overlooked aspect. This includes the scientific and preventional relevance of performing a test on individuals, pre- and post study information of donors...

  19. Characterization of cement-based ancient building materials in support of repository seal materials studies

    International Nuclear Information System (INIS)

    Roy, D.M.; Langton, C.A.

    1983-12-01

    Ancient mortars and plasters collected from Greek and Cypriot structures dating to about 5500 BC have been investigated because of their remarkable durability. The characteristics and performance of these and other ancient cementitious materials have been considered in the light of providing information on longevity of concrete materials for sealing nuclear waste geological repositories. The matrices of these composite materials have been characterized and classified into four categories: (1) gypsum cements; (2) hydraulic hydrated lime and hydrated-lime cements; (3) hydraulic aluminous and ferruginous hydrated-lime cements (+- siliceous components); and (4) pozzolana/hydrated-lime cements. Most of the materials investigated, including linings of ore-washing basins and cisterns used to hold water, are in categories (2) and (3). The aggregates used included carbonates, sandstones, shales, schists, volcanic and pyroclastic rocks, and ore minerals, many of which represent host rock types of stratigraphic components of a salt repository. Numerous methods were used to characterize the materials chemically, mineralogically, and microstructurally and to elucidate aspects of both the technology that produced them and their response to the environmental exposure throughout their centuries of existence. Their remarkable properties are the result of a combination of chemical (mineralogical) and microstructural factors. Durability was found to be affected by matrix mineralogy, particle size and porosity, and aggregate type, grading, and proportioning, as well as method of placement and exposure conditions. Similar factors govern the potential for durability of modern portland cement-containing materials, which are candidates for repository sealing. 29 references, 29 figures, 6 tables

  20. Environmental radioactivity and radiation exposure in 2015; Umweltradioaktivitaet und Strahlenbelastung im Jahr 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-07-20

    The information of the German Federal Government on the environmental radioactivity and radiation exposure in 2015 covers the following issues: selected topics of radiation protection, natural radiation exposure; civilizing (artificial) radiation exposure: nuclear power plants and other nuclear facilities, uranium mine recultivation, radioactive materials in industry and households, fallout from nuclear weapon testing and reactor accidents; occupational radiation exposure: exposed personnel in nuclear facilities, aviation personnel, radiation accidents; medical radiation exposure: nuclear medical diagnostics and therapy; non-ionizing radiation: electromagnetic fields, UV radiation, optical radiation.

  1. Exposure of the Public from Large Deposits of Mineral Residues

    International Nuclear Information System (INIS)

    2011-06-01

    All minerals and raw materials contain radionuclides of natural origin. In most situations, the exposure of humans to such radionuclides is considered to be part of the normal natural radiation background and is not generally of concern. In some cases, however, the radionuclide concentrations are elevated above normal levels or become elevated as a result of mineral processing activities, and measures for protecting against exposure to the material involved may need to be considered. The mineral or raw material is then treated as radioactive material for the purposes of radiation protection and falls within the definition of naturally occurring radioactive material (NORM). The IAEA has developed criteria for determining which materials need to be considered for regulatory control. For materials containing only radionuclides of natural origin, the criteria are an activity concentration of 1 Bq/g for 238 U, 235 U, 232 Th and their decay progeny and an activity concentration of 10 Bq/g for 40 K. These values were determined on the basis of the activity concentrations of these radionuclides in normal rocks and soil, and represent the (rounded) upper bounds of the ranges of such concentrations as determined by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The values are intended to apply to all solid materials except foodstuffs, material in transport and radioactive residues in the environment (for which separate criteria apply) and 40 K in the body (which is excluded entirely from regulatory requirements). While the radiation dose was not a consideration in the determination of the above-mentioned regulatory criteria, the IAEA has noted that doses received by individuals as a consequence of the use of these criteria are unlikely to exceed about 1 mSv in a year, excluding the emanation of radon. However, in the case of bulk volumes of material contaminating water pathways, such as large deposits of NORM residues from mining and

  2. Sociodemographic Characteristics and Secondhand Smoke Exposure among Women

    Science.gov (United States)

    Baheiraei, Azam; Nedjat, Saharnaz; Rahimi Foroushani, Abbas

    2013-01-01

    Background Exposure to secondhand cigarette smoke is an important health hazard. This study was designed to assess the sociodemographic risk factors related to women's exposure to secondhand smoke. Materials and Methods A case-control analysis of data collected as part of a prospective cohort study was conducted. Participants were 340 female Tehran residents exposed to cigarette smoke. Women consented to participate in this study and completed a questionnaire containing socio-demographic characteristics, household characteristics and smoking status at home through a face-to-face interview. Factors related to women's exposure to secondhand smoke were assessed using the multivariate logistic regression model. Results The final multivariate logistic regression model showed that lower levels of education (p = 0.002) and social class (p = 0.03) increase the risk of exposure to secondhand smoke in women. Conclusion These results support the effect of women's educational level and social class on their exposure to secondhand smoke. PMID:25191461

  3. Interaction Effects between Exposure to Sexually Explicit Online Materials and Individual, Family, and Extrafamilial Factors on Hong Kong High School Students' Beliefs about Gender Role Equality and Body-Centered Sexuality

    Science.gov (United States)

    To, Siu-ming; Kan, Siu-mee Iu; Ngai, Steven Sek-yum

    2015-01-01

    This study examined the interaction effects between Hong Kong adolescents' exposure to sexually explicit online materials (SEOM) and individual, family, peer, and cultural factors on their beliefs about gender role equality and body-centered sexuality. Based on a survey design with a sample of 503 high school students in Hong Kong, the results…

  4. Space Environmental Effects on Candidate Solar Sail Materials

    Science.gov (United States)

    Edwards, David L.; Nehls, Mary; Semmel, Charles; Hovater, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted ot a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA's Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar, Teonex, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were characterized

  5. Reducing Blood-borne Exposure in Interventional Radiology: What the IR Should Know

    Energy Technology Data Exchange (ETDEWEB)

    Tso, David K. [University of British Columbia, Department of Radiology (Canada); Athreya, Sriharsha, E-mail: sathreya@stjoes.ca [St. Joseph' s Healthcare Hamilton, Department of Diagnostic Imaging (Canada)

    2013-08-01

    Interventional radiologists are at risk of exposure to blood-borne pathogens in their day-to-day practice. Percutaneous exposure from unsafe sharps handling, mucocutaneous exposure from body fluid splashes, and glove perforation from excessive wear can expose the radiologist to potentially infectious material. The increasing prevalence of blood-borne pathogens, including hepatitis B and C, and human immunodeficiency virus, puts nurses, residents, fellows, and interventional radiologists at risk for occupational exposure. This review outlines suggestions to establish a culture of safety in the interventional suite.

  6. [The use of saliva for exposure assessments on designer drugs among adolescents].

    Science.gov (United States)

    Napierała, Marta; Tezyk, Artur; Piznal, Małgorzata; Bogusiewicz, Joanna; Florek, Ewa

    2015-01-01

    Drug use is one of the fundamental problems of the contemporary world. Due to the debilitating effects on physical and mental health and the possibility of impaired social functions, it is extremely important to assess exposure to psychoactive substances among high-risk groups. Taking into account characteristics of adolescence, one of them includes young people. To assess the exposure of young people to drugs, survey research is the most commonly use. To establish reliability of the information indicated by the students, toxicological studies could be a good manner. High-performance liquid chromatography coupled with mass spectrometry (LC-MS) is currently one of the most common techniques use for the detection and determination of psychoactive substances in biological material. In practice, an important issue in toxicological studies is the selection of a suitable biological material. Taking into account economic considerations and the method of sampling, the saliva is an increasingly used alternative material. The aim of this study was to assess the exposure of junior high school students on psychoactive substances--designer drugs, through the analysis of surveys and qualitative analysis of saliva taken from teenagers. It has been shown that surveys are a relatively quick and easy form of assessing the exposure of young people to psychoactive substances, but require verification through toxicological analysis of biological material for the presence of psychoactive substances for their reliability. Poznan secondary school students experimented with designer drugs at a similar level as respondents of nationwide survey from 2013.

  7. Environmental monitoring of low-level radioactive materials

    International Nuclear Information System (INIS)

    Jester, W.A.; Yu, C.

    1985-01-01

    The authors discuss some of the current rationale behind the environmental monitoring of low-level radioactive materials are as follows: Committee 4 of the International commission on Radiological Protection (ICRP) defined three broad objectives for environmental monitoring: 1) assessment of the actual or potential exposure of humans to radioactive materials or radiation present in their environment or the estimation of the probable upper limits of such exposure; 2) scientific investigation, sometimes related to the assessment of exposures, sometimes to other objectives; 3) improved public relations. Various regulations have been written requiring environmental monitoring to ensure that the public is not being exposed to excessive amounts of radiation from natural sources or from human activities. An example of the monitoring of natural sources of radiation is a requirement of the Environmental Protection Agency's (EPA) National Interim Primary Drinking Water Regulations whereby U.S. water supply companies must have drinking water monitored at least once every four years for radionuclides, primarily the naturally occurring radium-226

  8. Natural radioactivity and human exposure by raw materials and end product from cement industry used as building materials

    International Nuclear Information System (INIS)

    Stojanovska, Z.; Nedelkovski, D.; Ristova, M.

    2010-01-01

    During the manufacturing process in the cement industry, raw materials of different levels of natural radioactivity are utilized. In this study we present the radiological impact of cements as a building material and the different raw materials used in their manufacture. A total of 218 samples of raw materials and their end product cements were collected from the cement industry of Macedonia (The Former Yugoslav Republic) during the period 2005-2007. The specific activities, evaluated by gamma spectrometry analysis, showed the highest mean specific activity in fly ash ( 226 Ra, 107 ± 45 Bq kg -1 ; 232 Th, 109 ± 30 Bq kg -1 ; 40 K, 685 ± 171 Bq kg -1 ), which is used as a raw material. However, the final cement product usually has relatively lower activity compared with the activity of the raw material and the mean specific activity of the final cement products were lower ( 226 Ra, 42 ± 10 Bq kg -1 ; 232 Th, 28 ± 6 Bq kg -1 ; 40 K, 264 ± 50 Bq kg -1 ). The radium equivalent activity and the hazard index were calculated for each sample to assess the radiation hazard. The mean annual effective dose originating from the cements was found to be 111 ± 22 μSv y -1 , which is below the recommended EC limit of 300 μSv y -1 .

  9. Assessment of gamma radiation exposure inside a newly constructed building and a proposed regulatory guideline for exposure control from natural radioactivity in future buildings

    International Nuclear Information System (INIS)

    Shukla, V.K.; Sadasivan, S.; Sundaram, V.K.; Nambi, K.S.V.

    1995-01-01

    Naturally occurring radionuclides in building materials are one of the sources of radiation exposure of the population. The various materials used for constructing a new building were assessed for 40 K, 232 Th and 238 U radioactivity and the external gamma dose rate inside the building was predicted by using the computer code QAD-CGGP. The external dose rate was also measured by a scintillation gamma monitor after the construction of the building. In the building studied, the floor and the ceilings are seen to contribute about 35% each of the total radiation dose inside the building from the natural radioactivity present in the construction materials and the underlying soil; the walls contributed about 15%. A sensitivity analysis assuming extreme conditions of radioactivity concentrations as are normally observed in the Indian context, indicates the possibility of indoor gamma radiation fields varying by two orders of magnitude. The possible control methodologies and recommendations are also discussed for keeping the population exposure as low as reasonable achievable. It is evaluated that radioactivity limits of 370 Bq.kg -1 of radium equivalent and 85 Bq.kg -1 of 226 Ra when applied concurrently, might limit the indoor exposure to reasonably accepted low levels of health risks. (author)

  10. The influence of resource strategies on childhood phthalate exposure--the role of REACH in a zero waste society.

    Science.gov (United States)

    Lee, Jihyun; Pedersen, Anders Branth; Thomsen, Marianne

    2014-12-01

    The present study aims to investigate how resource strategies, which intend to reduce waste and increase recycling, influence on human exposure to hazardous chemicals from material recycling. In order to examine the flows of hazardous chemicals in recycled material, a mass flow analysis of plastics and paper at European level, including the flow of phthalates, i.e. di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), and benzyl-butyl phthalate (BBP), has been performed. The result for the year 2012 shows that 26% of plastic wastes and 60% of paper consumed in Europe were recycled. This corresponds to the finding that approximately 4% of DEHP and BBP and 18% of DBP annual demands in Europe as raw material re-enter the product cycle with recycled plastics and paper. To examine the potential contribution of the phthalate exposure through recycled plastics and paper, a case study assessing the childhood exposures to phthalates from foods packed in recycled paper and plastics has been performed for 2-year-old children in Denmark. The result verifies that an increase in recycled paperboard and PET bottles in food packaging material causes a significant increase in childhood exposure to DBP corresponding to an additional exposure of 0.116-0.355 μg/kg bw/day; up to 18% of the total DBP exposure in Danish 2-year-olds. While most of the DEHP exposure can be explained, more than 50% of DBP and 70% of BBP exposure sources still remain to be identified. Finally, a conceptual framework for a circular economy based on sustainable and clean resource flows is proposed in order to increase material recycling without increasing adverse health effects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. 1976 Hanford americium exposure incident: psychological aspects

    International Nuclear Information System (INIS)

    Brown, W.R.

    1982-01-01

    Accidents involving exposure to radiation or radioactive materials may involve an unusual degree of emotional trauma. Methods that may be employed in dealing with such trauma are discussed in relation to a specific accident in which a radiation worker was injured and seriously contaminated with americium-241

  12. Radiation protection in occupational exposure to microwave electrotherapy units

    International Nuclear Information System (INIS)

    Guardia, V.; Ferrer, S.; Alonso, O.; Almonacid, M.

    2012-01-01

    During the last years, electromagnetic emitters are more and more commonly used for therapeutic treatments in electrotherapy centers. This extended use has caused worries workers, who believe that microwave radiation radiation might have effects similar to those induced by radioactivity, even if the only effects recognised by international regulatory bodies concerning microwave exposure of humans are those of thermal origin. The present study aims to answer the existing concerns about electromagnetic exposure in electrotherapy facilities. After monitoring environmental values in an electrotherapy facility, we conclude that actions must be undertaken in order to reduce the exposure levels, as proposed by the current European guidelines, which should become legally binding for all EU state members within the current year. With the purpose of reducing potential risks of occupational overexposure, we are developing innovative fabrics for microwave shielding. These new materials are able to attenuate 85% of the microwave radiation. As these are light materials, they can be used in all kind of facilities, as wall covers, movable screens or even as personal protection, like lab clothes or gloves. (Author) 6 refs.

  13. Assessing Worker Exposures during Composite Material and Fiberglass Repair: A Special

    Science.gov (United States)

    2015-01-01

    OEEL, without regard to the use of respirators, shall have shower facilities or other suitable decontamination available [32]. 6.4.2 Dust Removal...use mechanically fastened aluminum or stainless steel patches to repair composite material damage, or repair the composite material damage using...world CBRN environment. If the vacuum mechanism of ventilated tools becomes contaminated with radioactive particulates or chemical/biological agents

  14. [Amyotrophic lateral sclerosis and exposure to metals and other occupational/environmental hazardous materials: state of the art].

    Science.gov (United States)

    Garzillo, Elpidio Maria; Miraglia, Nadia; Pedata, Paola; Feola, Daniela; Sannolo, Nicola; Lamberti, Monica

    2015-01-01

    In recent years, scientific literature has been giving more and more importance to the study of the occupational/environmental exposure to risk agents related to the onset of Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease characterized by progressive muscular paralysis reflecting degeneration of motor neurons in the primary motor cortex. Aim of this work is to verify the state of art about the eventual role of occupational/environmental exposure to risk agents. Selected articles, on the basis of keywords, year of publication and topics, are related to occupational and environmental exposure to xenobiotics, and, in particular, to the exposure to heavy metals that could lead to neuronal damage mechanisms involved in ALS onset. The review shows that although the scientific production has increased the interest in the evaluation of extra-genetic causes of ALS onset, there are still few studies concerning the careful study of the work activities of the individual patient, and the inferences that can be drawn to date about the possible connection between occupational exposure to risk factors and the onset of ALS are still lacking.

  15. Macrocyclic fragrance materials

    DEFF Research Database (Denmark)

    Salvito, Daniel; Lapczynski, Aurelia; Sachse-Vasquez, Christen

    2011-01-01

    A screening-level aquatic environmental risk assessment for macrocyclic fragrance materials using a “group approach” is presented using data for 30 macrocyclic fragrance ingredients. In this group approach, conservative estimates of environmental exposure and ecotoxicological effects thresholds....../L and for macrocyclic lactones/lactides is 2.7 μg/L. The results of this screening-level aquatic ecological risk assessment indicate that at their current tonnage, often referred to as volumes of use, macrocyclic fragrance materials in Europe and North America, pose a negligible risk to aquatic biota; with no PEC...... for compounds within two subgroups (15 macrocyclic ketones and 15 macrocyclic lactones/lactides) were used to estimate the aquatic ecological risk potential for these subgroups. It is reasonable to separate these fragrance materials into the two subgroups based on the likely metabolic pathway required...

  16. Pesticide Flow Analysis to Assess Human Exposure in Greenhouse Flower Production in Colombia

    Directory of Open Access Journals (Sweden)

    Claudia R. Binder

    2013-03-01

    Full Text Available Human exposure assessment tools represent a means for understanding human exposure to pesticides in agricultural activities and managing possible health risks. This paper presents a pesticide flow analysis modeling approach developed to assess human exposure to pesticide use in greenhouse flower crops in Colombia, focusing on dermal and inhalation exposure. This approach is based on the material flow analysis methodology. The transfer coefficients were obtained using the whole body dosimetry method for dermal exposure and the button personal inhalable aerosol sampler for inhalation exposure, using the tracer uranine as a pesticide surrogate. The case study was a greenhouse rose farm in the Bogota Plateau in Colombia. The approach was applied to estimate the exposure to pesticides such as mancozeb, carbendazim, propamocarb hydrochloride, fosetyl, carboxin, thiram, dimethomorph and mandipropamide. We found dermal absorption estimations close to the AOEL reference values for the pesticides carbendazim, mancozeb, thiram and mandipropamide during the study period. In addition, high values of dermal exposure were found on the forearms, hands, chest and legs of study participants, indicating weaknesses in the overlapping areas of the personal protective equipment parts. These results show how the material flow analysis methodology can be applied in the field of human exposure for early recognition of the dispersion of pesticides and support the development of measures to improve operational safety during pesticide management. Furthermore, the model makes it possible to identify the status quo of the health risk faced by workers in the study area.

  17. Hazardous Material Packaging and Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Hypes, Philip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-04

    This is a student training course. Some course objectives are to: recognize and use standard international and US customary units to describe activities and exposure rates associated with radioactive material; determine whether a quantity of a single radionuclide meets the definition of a class 7 (radioactive) material; determine, for a given single radionuclide, the shipping quantity activity limits per 49 Code of Federal Regulations (CFR) 173.435; determine the appropriate radioactive material hazard class proper shipping name for a given material; determine when a single radionuclide meets the DOT definition of a hazardous substance; determine the appropriate packaging required for a given radioactive material; identify the markings to be placed on a package of radioactive material; determine the label(s) to apply to a given radioactive material package; identify the entry requirements for radioactive material labels; determine the proper placement for radioactive material label(s); identify the shipping paper entry requirements for radioactive material; select the appropriate placards for a given radioactive material shipment or vehicle load; and identify allowable transport limits and unacceptable transport conditions for radioactive material.

  18. Residential exposure to plasticizers and its possible role in the pathogenesis of asthma

    DEFF Research Database (Denmark)

    Oie, L; Hersoug, Lars-Georg; Madsen, J O

    1997-01-01

    The plasticizer di(2-ethylhexyl) phthalate (DEHP) is widely used in building materials. DEHP is identified as the major plasticizer exposure in dwellings. We provide evidence that inhalation exposure to DEHP as aerosols adsorbed to particulate matter is as important, or more important, than vapor...

  19. Prediction of Composition and Emission Characteristics of Articles in Support of Exposure Assessment

    Science.gov (United States)

    The risk to humans from chemicals in consumer products is dependent on both hazard and exposure. The prediction and quantification of near-field (i.e., indoor) chemical exposure from household articles such as furniture and building materials is an ongoing effort. As opposed to (...

  20. Effects of temperature on mechanical properties of SU-8 photoresist material

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Soon Wan; Park, Seung Bae [State University of New York, New York (United States)

    2013-09-15

    A representative fabrication processing of SU-8 photoresist, Ultraviolet (UV) lithography is usually composed of spin coat, soft bake, UV exposure, post exposure bake (PEB), development and optional hard bake, etc. The exposed region of SU-8 is crosslinked during the PEB process and its physical properties highly depend on UV exposure and PEB condition. This work was initiated to investigate if thermal baking after fabrication can affect the mechanical properties of SU-8 photoresist material because SU-8 is trying to be used as a structural material for MEMS operated at high temperature. Since a temperature of 95 .deg. C is normally recommended for PEB process, elevated temperatures up to 200 .deg. C were considered for the optional hard bake process. The viscoelastic material properties were measured by dynamic mechanical analyses (DMA). Also, pulling tests were performed to obtain Young's modulus and Poisson's ratio as a function of strain rate in a wide temperature range. From this study, the effects of temperature on the elastic and viscoelastic material properties of SU-8 were obtained.

  1. Effects of temperature on mechanical properties of SU-8 photoresist material

    International Nuclear Information System (INIS)

    Chung, Soon Wan; Park, Seung Bae

    2013-01-01

    A representative fabrication processing of SU-8 photoresist, Ultraviolet (UV) lithography is usually composed of spin coat, soft bake, UV exposure, post exposure bake (PEB), development and optional hard bake, etc. The exposed region of SU-8 is crosslinked during the PEB process and its physical properties highly depend on UV exposure and PEB condition. This work was initiated to investigate if thermal baking after fabrication can affect the mechanical properties of SU-8 photoresist material because SU-8 is trying to be used as a structural material for MEMS operated at high temperature. Since a temperature of 95 .deg. C is normally recommended for PEB process, elevated temperatures up to 200 .deg. C were considered for the optional hard bake process. The viscoelastic material properties were measured by dynamic mechanical analyses (DMA). Also, pulling tests were performed to obtain Young's modulus and Poisson's ratio as a function of strain rate in a wide temperature range. From this study, the effects of temperature on the elastic and viscoelastic material properties of SU-8 were obtained.

  2. Cell wall assembly and intracellular trafficking in plant cells are directly affected by changes in the magnitude of gravitational acceleration.

    Directory of Open Access Journals (Sweden)

    Youssef Chebli

    Full Text Available Plants are able to sense the magnitude and direction of gravity. This capacity is thought to reside in selected cell types within the plant body that are equipped with specialized organelles called statoliths. However, most plant cells do not possess statoliths, yet they respond to changes in gravitational acceleration. To understand the effect of gravity on the metabolism and cellular functioning of non-specialized plant cells, we investigated a rapidly growing plant cell devoid of known statoliths and without gravitropic behavior, the pollen tube. The effects of hyper-gravity and omnidirectional exposure to gravity on intracellular trafficking and on cell wall assembly were assessed in Camellia pollen tubes, a model system with highly reproducible growth behavior in vitro. Using an epi-fluorescence microscope mounted on the Large Diameter Centrifuge at the European Space Agency, we were able to demonstrate that vesicular trafficking is reduced under hyper-gravity conditions. Immuno-cytochemistry confirmed that both in hyper and omnidirectional gravity conditions, the characteristic spatial profiles of cellulose and callose distribution in the pollen tube wall were altered, in accordance with a dose-dependent effect on pollen tube diameter. Our findings suggest that in response to gravity induced stress, the pollen tube responds by modifying cell wall assembly to compensate for the altered mechanical load. The effect was reversible within few minutes demonstrating that the pollen tube is able to quickly adapt to changing stress conditions.

  3. The effect of using low-polluting building materials on ventilation requirements and energy use in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P.; Frontczak, M. (International Centre for Indoor Environment and Energy, Dept. of Mechanical Engineering, DTU, Kgs. Lyngby (DK)); Knudsen, Henrik N. (Danish Building Research Institute, Aalborg Univ., Hoersholm (DK))

    2007-07-01

    The main objective of the ongoing research project described in this paper was to study the potential for reducing energy used for ventilating buildings by using low-polluting building materials, without compromising the indoor air quality. To quantify this potential, the exposure-response relationships, i.e. the relationships between ventilation rate and perceived indoor air quality, were established for rooms furnished with different categories of polluting materials and the simulations of energy used for ventilation were carried out. The exposure-response relationships were based on a summary of data reported in the literature on exposure-response relationships for materials tested in laboratory settings in small-scale glass chambers, and in full-scale in climate chambers, test rooms or normal offices. New experiments were also considered in which the effect of using low-polluting materials on perceived air quality was examined in test rooms ventilated with different outdoor air supply rates, low-polluting materials being selected in small glass chambers. The results suggest that the exposure-response relationships vary between different building materials and that the perceived air quality can be improved considerably when polluting building materials are substituted with materials that pollute less. The preliminary energy simulations indicate that selecting low-polluting materials will result in considerable energy savings as a result of reducing the ventilation rates required to achieve acceptable indoor air quality. (au)

  4. Radiation exposure of man in the indoor environment

    International Nuclear Information System (INIS)

    Steinhaeusler, F.; Pohl, E.

    1982-01-01

    Indoor exposure of man represents the major component of the dose from the natural radiation environment (NRE). The different sources of the NRE and their complex superposition are discussed. Due to the use of radiologically disadvantageous material in or near the building, radon-rich tap water, specific architectural styles and decreased ventilation rates NRE-levels indoors have been found to even exceed the upper limit for professional exposure. The inadequacy of the existing international regulatory framework and specific local problems resulted in the establishment of national exposure limits. In general, no remedial action is recommended at levels below 50 μR/h for external gamma radiation, 10 mWL for internal radon daughter exposure. Several technical countermeasures reducing indoor gamma dose rates and radon levels have been developed for existing buildings. However, the use of some of the techniques is limited due to low cost-effectiveness or lack of long-term stability. Different techniques in order to achieve low indoor exposures for new buildings and financial aspects associated the application of radiation protection concepts are discussed

  5. Radiological dose assessment of naturally occurring radioactive materials in concrete building materials

    International Nuclear Information System (INIS)

    Amran AB Majid; Aznan Fazli Ismail; Muhamad Samudi Yasir; Redzuwan Yahaya; Ismail Bahari

    2013-01-01

    Previous studies have shown that the natural radioactivity contained in building materials have significantly influenced the dose rates in dwelling. Exposure to natural radiation in building has been of concerned since almost 80 % of our daily live are spend indoor. Thus, the aim of the study is to assess the radiological risk associated by natural radioactivity in soil based building materials to dwellers. A total of 13 Portland cement, 46 sand and 43 gravel samples obtained from manufacturers or bought directly from local hardware stores in Peninsular of Malaysia were analysed for their radioactivity concentrations. The activity concentrations of 226 Ra, 232 Th and 40 K in the studied building materials samples were found to be in the range of 3.7-359.3, 2.0-370.8 and 10.3-1,949.5 Bq kg -1 respectively. The annual radiation dose rates (μSv year -1 ) received by dwellers were evaluated for 1 to 50 years of exposure using Resrad-Build Computer Code based on the activity concentration of 226 Ra, 232 Th and 40 K found in the studied building material samples. The rooms modelling were based on the changing parameters of concrete wall thickness and the room dimensions. The annual radiation dose rates to dwellers were found to increase annually over a period of 50 years. The concrete thicknesses were found to have significantly influenced the dose rates in building. The self-absorption occurred when the concrete thickness was thicker than 0.4 m. Results of this study shows that the dose rates received by the dwellers of the building are proportional to the size of the room. In general the study concludes that concrete building materials; Portland cements, sands, and gravels in Peninsular of Malaysia does not pose radiological hazard to the building dwellers. (author)

  6. Naturally occurring radioactive materials (NORM IV). Proceedings of an international conference

    International Nuclear Information System (INIS)

    2005-10-01

    Radionuclides of natural origin are ubiquitous in both working and public environments, although their activity concentrations vary considerably. Exposures to natural sources are in most cases not a matter for regulatory concern. However, there are situations where exposures to natural sources may warrant consideration as to whether controls should be applied. One such situation is where the conditions are conducive to the buildup of elevated concentrations of radon in air. Another situation is the mining and/or processing of material where the activity concentrations of radionuclides of natural origin in the material itself, or in any material arising from the process, are significantly elevated - such material has come to be referred to as Naturally Occurring Radioactive Material (NORM). In the past, regulatory attention has been focused mostly on exposures arising from the mining and processing of uranium ores because such activities are part of the nuclear fuel cycle. More recently, attention has been broadened to include exposures from other industrial activities involving NORM, in recognition of the potential for such activities to also give rise to significant exposures of workers and members of the public if not adequately controlled. More and more countries are now including provisions in their national legislation and regulations for the control of exposures to natural sources, and the body of radiological data on such exposures is growing rapidly. This international conference, NORM IV, follows three previous conferences dealing with radon and NORM. The first was held in Amsterdam in 1997, the second in Krefeld, Germany in 1998 (NORM II), and the third in Brussels in 2001 (NORM III). In addition, an International Symposium on Technologically Enhanced Natural Radiation was held in Rio de Janeiro in 1999 - the IAEA was involved in the organization of that symposium, and published the proceedings as IAEA-TECDOC-1271. The main topic addressed at NORM IV was

  7. Experimental setup for radon exposure and first diffusion studies using gamma spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas, E-mail: a.maier@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Beek, Patrick van [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Technical University Darmstadt, Hochschulstraße 6, 64289 Darmstadt (Germany); Hellmund, Johannes [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Durante, Marco [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Technical University Darmstadt, Hochschulstraße 6, 64289 Darmstadt (Germany); Schardt, Dieter; Kraft, Gerhard; Fournier, Claudia [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany)

    2015-11-01

    In order to measure the uptake and diffusion of {sup 222}Rn in biological material, an exposure chamber was constructed where cell cultures, biological tissues and mice can be exposed to {sup 222}Rn-activities similar to therapy conditions. After exposure, the material is transferred to a gamma spectrometer and the decay of {sup 214}Pb and {sup 214}Bi is analyzed. From the time kinetics of these decays the total amount of the initial {sup 222}Rn concentration can be calculated. In this paper the design and construction as well as first test measurements are reported.

  8. Years of life lost due to external radiation exposure

    International Nuclear Information System (INIS)

    Raicevic, J.J.; Merkle, J.M.; Ehrhardt, J.; Ninkovic, M.M.

    2002-01-01

    A new approach for calculation of the years of life lost per excess death (YLL) due to stochastic health effects is applied to external exposure pathways. The short-term external exposures are due to the passage of radioactive cloud (CL) and due to the skin and clothes contamination (SK). The long-term external exposure is the one from the radioactive material deposited on ground (GR). Three nuclides, 131 I , 137 Cs and 239 Pu with extremely wide range of the half-life are considered to examine its possible influence on the calculated YLL values. For each of these nuclides, the YLL is found as a decreasing function of the age at exposure and presented graphically in this paper. Another negative correlation is established between the fully averaged YLL and the duration of the nuclide's half-life has been found for protracted exposure (GR). On the other hand, the YLL for the short-term external exposures (CL and SK) practically does not depend on the nuclide's half-life. In addition, a weak YLL dependence of the dose was commented. (author)

  9. Isometric force exaggeration in simulated weightlessness by water immersion: role of visual feedback.

    Science.gov (United States)

    Dalecki, Marc; Bock, Otmar

    2014-06-01

    Previous studies reported that humans produce exaggerated isometric forces (20-50%) in microgravity, hypergravity, and under water. Subjects were not provided with visual feedback and exaggerations were attributed to proprioceptive deficits. The few studies that provided visual feedback in micro- and hypergravity found no deficits. The present work was undertaken to find out whether visual feedback can reduce or eliminate isometric force exaggerations during shallow water immersion, a working environment for astronauts and divers. There were 48 subjects who had to produce isometric forces of 15 N with a joystick; targets were presented via screen. Procedures were similar to earlier studies, but provided visual feedback. Subjects were tested 16.4 ft (5 m) under water (WET) and on dry land (DRY). Response accuracy was calculated with landmarks such as initial and peak force magnitude, and response timing. Initial force and response timing were equal in WET compared to DRY. A small but significant force exaggeration (+5%) remained for peak force in WET that was limited to directions toward the trunk. Force exaggeration under water is largely compensated, but not completely eliminated by visual feedback. As in earlier studies without visual feedback, force exaggeration manifested during later but not early response parts, speaking for impaired proprioceptive feedback rather than for erroneous central motor planning. Since in contrast to micro/hypergravity, visual feedback did not sufficiently abolish force deficits under water, proprioceptive information seems to be weighted differently in micro/hypergravity and shallow water immersion, probably because only the latter environment produces increased ambient pressure, which is known to induce neuronal changes.

  10. The regulations concerning the uses of nuclear fuel materials

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and provisions concerning the uses of nuclear fuel materials in the order for execution of the law. Basic concepts and terms are explained, such as: exposure dose; accumulative dose; controlled area; inspected surrounding area and employee. The application for permission shall state the expected period and amount of the uses for each kind of nuclear fuel materials. Persons to whom spent fuels shall be sold, lent or returned and the method of disposal of such fuels shall be also indicated. Records shall be made and kept for particular periods for each works and enterprise on inspection of facilities, control of dose, maintenance and accident of facilities in use. The application for permission of the safeguard regulations shall report rules for each works and enterprise on the faculty and organization of controllers of facilities in use, safeguard education of employees, operation of apparatus which needs special control for prevention of disaster, establishment of controlled and inspected surrounding areas, entrance limitation, inspection of exposure dose, etc. Technical standards of the uses of nuclear fuel materials, disposal and transportation in the works and the enterprise and storage are stipulated in detail. Reports on exposure dose of employees and other specified matters shall be submitted every year to the Director General of Science and Technology Agency according to the forms attached. (Okada, K.)

  11. Asbestos exposure of building maintenance personnel.

    Science.gov (United States)

    Mlynarek, S; Corn, M; Blake, C

    1996-06-01

    The exposures of building maintenance personnel and occupants to airborne asbestos fibers, and the effects of operations and maintenance programs on those exposures, continue to be an important public health issue. The subject of this investigation was a large metropolitan county with numerous public buildings which routinely conducted air sampling for asbestos. A total of 302 personal air samples in nine task categories collected during maintenance worker activities in proximity to asbestos-containing materials were analyzed; 102 environmental air samples in four task categories were also analyzed. The arithmetic means of the 8-hr time weighted average exposures for personal sampling for each task category were all below the Occupational Safety and Health Administration permissible exposure level of 0.1 fibers (f)/cc > 5 microm. The highest mean 8-hr time weighted average exposure was 0.030 f/cc > 5 microm for ceiling tile replacement. The maximum asbestos concentration during sample collection for environmental samples was 0.027 f/cc > 5 microm. All asbestos-related maintenance work was done within the framework of an Operations and Maintenance Program (OMP) which utilized both personal protective equipment and controls against fiber release/dispersion. Results are presented in association with specific OMP procedures or controls. These results support the effectiveness of using Operations and Maintenance Programs to manage asbestos in buildings without incurring unacceptable risk to maintenance workers performing maintenance tasks.

  12. Evaluation of Radiation Exposure during Construction and Operation of Concrete Bridge Reinforced with Very Low Level Radioactive Steel

    International Nuclear Information System (INIS)

    Panik, M.; Necas, V.

    2012-01-01

    A lot of nuclear power plants are approaching the end of their lifetime and they will be phased out. Decommissioning of these nuclear power plants involve complete dismantling of technologies and demolition of buildings. During this process it is produced plenty of waste material of different categories. Significant portion of decommissioning materials comprise radionuclides what is caused by contamination and activation processes mostly from the operational period of nuclear power plant. Attention in this paper is paid to waste steel from the decommissioning of nuclear power plants with the specific activity just slightly exceeding legislation limits for the unconditional release into the environment. From the traditional point of view this material should be treated, conditioned and disposed on the radioactive waste repository. Second possibility is to release this material conditionally and reuse it in chosen industrial application. Very low level radioactive steel scrap should be melted and melting products should be processed into products that can be applied in industry. First option requires considerable financial investment, human resources and repository capacity. Second option saves some financial funds and it enables to reuse and save potentially valuable material for the future. Paper comprises evaluation of external and internal exposure during construction and operation of concrete bridges that utilize very low level radioactive steel as part of their reinforcement. Two models of representative concrete bridges were created. External gamma exposure and exposure from inhalation and ingestion of radionuclides were calculated using suitable computational tools. VISIPLAN 3D ALARA planning tool was chosen for the calculation of external gamma exposure. Software GOLDSIM enables to calculate transport of radionuclides initially contained in conditionally released reinforcement steel through subsoil and sequential exposure of people caused by inhalation of

  13. Internal and external radiation exposures of Fukushima residents

    International Nuclear Information System (INIS)

    Hayano, Ryugo

    2014-01-01

    The soil at Fukushima prefecture and its outskirts was heavily contaminated with radioactive materials from the troubled Fukushima Daiichi nuclear power plant, and the residents suffered risk from internal and external radiation exposure. At first, the average dose of internal radiation exposure was estimated to be several mSv based upon the results of Chernobyl nuclear disaster. But the result of massive measurements using whole body counters shows that the average quantity of internal radioactive cesium is less than that at the Cold Water period. In the meantime, someone shows exposure dose much higher than the average. The distribution of these abnormal doses is called 'Long Tail'. One must pay attention to the long tail at the assessment of the internal radiation exposure by Fukushima nuclear disaster. The main origin of the long tail is related to frequency eating of special food. It is thus important to find persons situated in the long tail and give them guidance on the meals. (J.P.N.)

  14. Low Earth Orbit Environmental Effects on Space Tether Materials

    Science.gov (United States)

    Finckernor, Miria M.; Gitlemeier, Keith A.; Hawk, Clark W.; Watts, Ed

    2005-01-01

    Atomic oxygen (AO) and ultraviolet (UV) radiation erode and embrittle most polymeric materials. This research was designed to test several different materials and coatings under consideration for their application to space tethers, for resistance to these effects. The samples were vacuum dehydrated, weighed and then exposed to various levels of AO or UV radiation at the NASA Marshall Space Flight Center. They were then re-weighed to determine mass loss due to atomic oxygen erosion, inspected for damage and tensile tested to determine strength loss. The experiments determined that the Photosil coating process, while affording some protection, damaged the tether materials worse than the AO exposure. TOR-LM also failed to fully protect the materials, especially from UV radiation. The POSS and nickel coatings did provide some protection to the tethers, which survived the entire test regime. M5 was tested, uncoated, and survived AO exposure, though its brittleness prevented any tensile testing.

  15. Evaluation of nickel-based materials for VHTR heat exchanger

    International Nuclear Information System (INIS)

    Burlet, H.; Gentzbittel, J.M.; Cabet, C.; Lamagnere, P.; Blat, M.; Renaud, D.; Dubiez-Le Goff, S.; Pierron, D.

    2008-01-01

    Two available conventional nickel-based alloys (617 and 230) have been selected as structural materials for the advanced gas-cooled reactors, especially for the heat exchanger. An extensive research programme has been launched in France within the framework of the ANTARES programme to evaluate the performances of these materials in VHTR service environment. The experimental work is focused on mechanical properties, thermal stability and corrosion resistance in the temperature range (700-1 000 deg C) over long time. Thus the experimental work includes creep and fatigue tests on as-received materials, short- and medium-term thermal exposure tests followed by tensile and impact toughness tests, short- and medium-term corrosion exposure tests under impure He environment. The status of the results obtained up to now is given in this paper. Additional tests such as long-term thermal ageing and long-term corrosion tests are required to conclude on the selection of the material. (author)

  16. Modeling approaches for characterizing and evaluating environmental exposure to engineered nanomaterials in support of risk-based decision making.

    Science.gov (United States)

    Hendren, Christine Ogilvie; Lowry, Michael; Grieger, Khara D; Money, Eric S; Johnston, John M; Wiesner, Mark R; Beaulieu, Stephen M

    2013-02-05

    As the use of engineered nanomaterials becomes more prevalent, the likelihood of unintended exposure to these materials also increases. Given the current scarcity of experimental data regarding fate, transport, and bioavailability, determining potential environmental exposure to these materials requires an in depth analysis of modeling techniques that can be used in both the near- and long-term. Here, we provide a critical review of traditional and emerging exposure modeling approaches to highlight the challenges that scientists and decision-makers face when developing environmental exposure and risk assessments for nanomaterials. We find that accounting for nanospecific properties, overcoming data gaps, realizing model limitations, and handling uncertainty are key to developing informative and reliable environmental exposure and risk assessments for engineered nanomaterials. We find methods suited to recognizing and addressing significant uncertainty to be most appropriate for near-term environmental exposure modeling, given the current state of information and the current insufficiency of established deterministic models to address environmental exposure to engineered nanomaterials.

  17. Residential exposure to plasticizers and its possible role in the pathogenesis of asthma

    DEFF Research Database (Denmark)

    Oie, L; Hersoug, Lars-Georg; Madsen, J O

    1997-01-01

    The plasticizer di(2-ethylhexyl) phthalate (DEHP) is widely used in building materials. DEHP is identified as the major plasticizer exposure in dwellings. We provide evidence that inhalation exposure to DEHP as aerosols adsorbed to particulate matter is as important, or more important, than vapor...... is a characteristic of asthma....

  18. Residential Exposure to Plasticizers and Its Possible Role in the Pathogenesis of Asthma

    DEFF Research Database (Denmark)

    Øie, Leif; Hersoug, Lars-Georg; Madsen, Jørgen Øgaard

    1997-01-01

    The plasticizer di(2-ethylhexyl)phtlalate (DEHP) is widely used in building materials. DEHP is identified as the major plasticizer exposure in dwellings. We provide evidence that inhalation exposure to DEHP as aerosols adsorbed to particulate matter is as important, or more important, than vapor...... is a characteristic of asthma....

  19. LDEF materials data bases

    Science.gov (United States)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) and the accompanying experiments were composed of and contained a wide variety of materials representing the largest collection of materials flown in low Earth orbit (LEO) and retrieved for ground based analysis to date. The results and implications of the mechanical, thermal, optical, and electrical data from these materials are the foundation on which future LEO space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been charged with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the spacecraft user community in an easily accessed, user-friendly form. This paper discusses the format and content of the three data bases developed or being developed to accomplish this task. The hardware and software requirements for each of these three data bases are discussed along with current availability of the data bases. This paper also serves as a user's guide to the MAPTIS LDEF Materials Data Base.

  20. Radioactivity of building materials in our country and the world

    International Nuclear Information System (INIS)

    Batkova, L.

    2007-01-01

    The problem of radiation load of the population in recent years in the world, but also in Slovakia, is a topic of increasing interest. The reason is significant radiation exposure which is caused by natural or artificial sources of ionizing radiation. The most serious of natural resources is radon. Studies point to the fact that, together with its transformation products it poses a plumbless risk for developing of lung cancer. As part of measures to reduce the radiation load of the population the content of radionuclides in materials and raw materials used in construction is being monitored. The aim is to regulate the size of the exposure in the accommodation space and thus eliminate the health risks that result in exposure of radon. The author tried to make an overview of measured concentrations of natural radionuclides in building materials used in Slovakia and other countries. The author also provides a picture of radiation load on the population of the Czech Republic and Slovakia and gives an overview of legal and legislative standards based on international standards and requirements. (author)

  1. Regulations concerning the fabricating business of nuclear fuel materials

    International Nuclear Information System (INIS)

    1978-01-01

    The Regulation is revised on the basis of ''The law for the regulations of nuclear source materials, nuclear fuel materials and reactors'' and the ''Provisions concerning the enterprises processing nuclear fuel materials'' in the Enforcement Ordinance for the Law, to enforce such provisions. This is the complete revision of the regulation of the same name in 1957. Terms are explained, such as exposure radiation dose, cumulative dose, control area, surrounding inspection area, persons engaged in works, radioactive wastes, area for incoming and outgoing of materials, fluctuation of stocks, batch, real stocks, effective value and main measuring points. For the applications for the permission of the enterprises processing nuclear fuel materials, the location of an enterprise, the construction of buildings and the construction of and the equipments for facilities of chemical processing, forming, coating, assembling, storage of nuclear fuel materials, disposal of radioactive wastes and radiation control must be written. Records shall be made and maintained for the periods specified on the inspection of processing facilities, nuclear fuel materials, radiation control, operation, maintainance, accidents of processing facilities and weather. Limit to entrance into the control area, measures for exposure radiation dose, patrol and inspection, operation of processing facilities, transport of materials, disposal of radioactive wastes, safety regulations are provided for. Reports to be filed by the persons engaging in the enterprises processing nuclear fuel materials are prescribed. (Okada, K.)

  2. The regulations concerning the uses of nuclear source materials

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the law concerning the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors and the ordinance for the execution of this law, and to enforce them. Basic terms are defined, such as exposure radiation dose, cumulative dose, control area, surrounding monitoring area, worker and radioactive waste. Nuclear raw materials shall be used at the facilities for using them, and control areas and surrounding monitoring areas shall be set up. Cumulative dose and exposure radiation dose of workers shall not exceed the permissible quantities defined by the General Director of the Science and Technology Agency. Records shall be made in each works or enterprise on the accept, delivery and stock of each kind of nuclear raw materials, radiation control and the accidents in the facilities of using nuclear raw materials, and kept for specified periods, respectively. The users of nuclear raw materials shall present reports in each works or enterprise on the stock of these materials on July 30 and December 31, every year. They shall submit reports immediately to the Director General on the particular accidents concerning nuclear raw materials and their facilities and on the circumstances and the measures taken against such accidents within ten days. These reports shall be presented on internationally regulated raw materials too. (Okada, K.)

  3. Dietary Exposure to Benzyl Butyl Phthalate in China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; JIANG Ding Guo; SUI Hai Xia; WU Ping Gu; LIU Ai Dong; YANG Da Jin; LIU Zhao Ping; SONG Yan; LI Ning

    2016-01-01

    ObjectiveBenzyl butyl phthalate (BBP) is a plasticizer used in food contact materials. Dietary exposure to BBP might lead to reproduction and developmental damages to human. The present paper was aimed to assess the health risk of BBP dietary exposure in Chinese population. MethodsThe BBP contents were detected in 7409 food samples from 25 foodcategories by gas chromatography-mass spectrometry operated in selected ion monitoring (SIM) mode. The dietary exposures of BBP in different age and sex groups were estimated by combining the content data with food consumption data derived from 2002 China National Nutrient and Health Survey, and evaluated according to the tolerable daily intake (TDI) of BBP established by European Food safety Agency. ResultsIt was found that BBP was undetectable in most samples and the highest level was 1.69 mg/kg detected in a vegetable oil sample. The average dietary exposure of BBP in people aged≥2 years was 1.03 μg/kgbw perday and the highest average exposure was found in 2-6 years old children (1.98 μg/kg bw perday). The BBP exposure in 7-12 months old children excessed 10% of tolerable daily intake (TDI) in worst scenario. ConclusionThe health risk of BBP dietary exposure in Chinese population is low and, considering BBP alone, there is no safety concern.

  4. Development of mild steel exposure chart for neutron radiography application

    International Nuclear Information System (INIS)

    Hafizal Yazid; Rafhayudi Jamro; Hishamuddin Husain; Muhammad Rawi Mohd Zin; Razali Kassim; Abd Aziz Mohamed; Azali Muhammad

    2004-01-01

    A neutron radiography exposure chart for mild steel was developed to facilitate the determination of exposure time when producing neutron radiographs for any given mild steel thickness. A mild steel sample in the form of step wedge (1-10 mm thick) was exposed to thermal neutron using Direct technique. This technique involves exposing x-ray film-Gadolinium converter housed in one film cassette simultaneously to thermal neutron beam. Gadolinium converters with thickness of 0.025 mm and 0.5 mm were used to observe the effect of converter thickness on radiographic density and exposure time. Collected radiographic density data is then calculated based on manufacturer's film characteristic chart and finally exposure chart for mild steel was plotted. This chart could later be used as a guide for estimating exposure time for any given sample thickness providing other conditions are similar (material, film processing, neutron flux, film density and converter thickness). (Author)

  5. Material properties of oxide dispersion strengthened (ODS) ferritic steels for core materials of FBR. Tensile properties of sodium exposed and nickel diffused materials

    International Nuclear Information System (INIS)

    Kato, Shoichi; Yoshida, Eiichi

    2002-12-01

    An oxide dispersion strengthened (ODS) ferritic steel is candidate for a long-life core materials of future FBR, because of good swelling resistance and high creep strength. In this study, tensile tests were carried out the long-term extrapolation of sodium environmental effects on the mechanical properties of ODS steels. The tested heats of materials are M93, M11 and F95. The specimens were pre-exposed to sodium for 1,000 and 3,000 hours under non-stress conditions. The pre-exposure to sodium was conducted using a sodium test loop constituted by austenitic steels. For the conditions of sodium exposure test, the sodium temperature was 650 and 700degC, the oxygen concentration in sodium was about 1 ppm and sodium flow rate on the surface of specimen was less than 1x10 -4 m/seconds (nearly static). Further the specimen with the nickel diffused was prepared, which is simulate to nickel diffusing through sodium from the surface of structural stainless steels. The main results obtained were as follows; (1) The tensile strength and the fracture elongation after sodium exposure (maximum 3,000 hours) were same as that of as-received materials. If was considered that the sodium environmental effect is negligible under the condition of this study. (2) Tensile properties of nickel diffused specimens were slightly lower than that of the as-received specimens, but it remains equal to that of thermal aging specimens. (3) The change in microstructure such as a degraded layer was observed on the surface of nickel diffused specimen. In the region of the degraded layer, phase transformations from the α-phase to the γ-phase were recognized. But, the microscopic oxide particles were observed same as that of α-phase base metal. (author)

  6. Hexavalent chromium exposures and exposure-control technologies in American enterprise: results of a NIOSH field research study.

    Science.gov (United States)

    Blade, L M; Yencken, M Story; Wallace, M E; Catalano, J D; Khan, A; Topmiller, J L; Shulman, S A; Martinez, A; Crouch, K G; Bennett, J S

    2007-08-01

    The National Institute for Occupational Safety and Health (NIOSH) conducted 21 field surveys in selected industries to characterize workers' exposures to hexavalent chromium-containing airborne particulate and to evaluate existing technologies for controlling these exposures. Hexavalent chromium Cr(VI) is a respiratory irritant and chronic inhalation may cause lung cancer. Primary evaluation methods included collection of full work shift, personal breathing-zone (PBZ) air samples for Cr(VI), measurement of ventilation system parameters, and documentation of processes and work practices. This study emphasized evaluation of engineering exposure control measures, so PBZ exposures were measured on the outside of personal protective equipment, for example, respirators. Field surveys were conducted in two chromium electroplating facilities, including one where full-shift PBZ exposures to Cr(VI) ranged from 3.0 to 16 times the 1 micro g/m(3)NIOSH recommended exposure limit (REL) despite several engineering controls on the plating tanks. At a painting and coating facility that used Cr(VI)-containing products, full-shift exposures of painters and helpers (2.4 to 55 micro g/m(3)) exceeded the REL, but LEV effectiveness was limited. Other operations evaluated included welding in construction; metal cutting operations on chromium-containing materials in ship breaking; chromate-paint removal with abrasive blasting; atomized alloy-spray coating; foundry operations; printing; and the manufacture of refractory brick, colored glass, prefabricated concrete products, and treated wood products. NIOSH researchers concluded that, in many of the evaluated processes, Cr(VI) exposures at or below the current NIOSH REL are achievable. However, for some processes, it is unclear whether controlling exposures to this range is consistently achievable without respirator use. Some operations involving the application of coatings and finishes may be among those most difficult to control to this

  7. Radiological impact of radioactive materials transport in France

    International Nuclear Information System (INIS)

    Hamard, J.

    1987-01-01

    Radiation doses of personnel and populations are estimated between 1983 and 1985 during road transport of radiopharmaceuticals, spent fuels, wastes and other radioactive materials. Dose equivalent received by air transport and others are difficult to know. Results are summed up in 8 tables. Radioactive materials transport represents less than 1% of exposures related to the fuel cycle [fr

  8. Misled about lead: an assessment of online public health education material from Australia's lead mining and smelting towns.

    Science.gov (United States)

    Sullivan, Marianne; Green, Donna

    2016-01-06

    This study assesses the accuracy and comprehensiveness of online public health education materials from the three Australian cities with active lead mines and or smelters: Broken Hill, Mount Isa and Port Pirie. Qualitative content analysis of online Australian material with comparison to international best practice where possible. All materials provided incomplete information about the health effects of lead and pathways of exposure compared to best practice materials. Inconsistent strategies to reduce exposure to lead were identified among the Australian cities, and some evidence-based best practices were not included. The materials normalised environmental lead and neglected to identify that there is no safe level of lead, or that primary prevention is the best strategy for protecting children's health. Health education materials need to clearly state health risks from lead across developmental stages and for sensitive populations, integrate a primary prevention perspective, and provide comprehensive evidence-based recommendations for reducing lead exposure in and around the home. Families who rely on information provided by these online public education materials are likely to be inadequately informed about the importance of protecting their children from exposure to lead and strategies for doing so.

  9. Environmental exposure assessment framework for nanoparticles in solid waste

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Hansen, Steffen Foss; Baun, Anders

    2014-01-01

    Information related to the potential environmental exposure of engineered nanomaterials (ENMs) in the solid waste management phase is extremely scarce. In this paper, we define nanowaste as separately collected or collectable waste materials which are or contain ENMs, and we present a five...... transformation during waste treatment processes, (2) mechanisms for the release of ENMs, (3) the quantification of nanowaste amounts at the regional scale, (4) a definition of acceptable limit values for exposure to ENMs from nanowaste and (5) the reporting of nanowaste generation data....

  10. Health and safety implications of occupational exposure to engineered nanomaterials.

    Science.gov (United States)

    Stebounova, Larissa V; Morgan, Hallie; Grassian, Vicki H; Brenner, Sara

    2012-01-01

    The rapid growth and commercialization of nanotechnology are currently outpacing health and safety recommendations for engineered nanomaterials. As the production and use of nanomaterials increase, so does the possibility that there will be exposure of workers and the public to these materials. This review provides a summary of current research and regulatory efforts related to occupational exposure and medical surveillance for the nanotechnology workforce, focusing on the most prevalent industrial nanomaterials currently moving through the research, development, and manufacturing pipelines. Their applications and usage precedes a discussion of occupational health and safety efforts, including exposure assessment, occupational health surveillance, and regulatory considerations for these nanomaterials. Copyright © 2011 Wiley Periodicals, Inc.

  11. Gas-phase organics in environmental tobacco smoke: 2. Exposure-relevant emission factors and indirect exposures from habitual smoking

    Science.gov (United States)

    Singer, Brett C.; Hodgson, Alfred T.; Nazaroff, William W.

    Sorption of emitted gas-phase organic compounds onto material surfaces affects environmental tobacco smoke (ETS) composition and exposures indoors. We have introduced a new metric, the exposure relevant emission factor (EREF) that accounts for sorptive uptake and reemission to give the mass of individual ETS constituents available for exposure over a day in which smoking occurs. This paper describes month-long experiments to investigate sorption effects on EREFs and potential ETS exposures under habitual smoking conditions. Cigarettes were smoked in a 50-m 3 furnished room over a 3-h period 6-7 days per week, with continuous ventilation at 0.3, 0.6, or 2.1 h -1. Organic gas concentrations were measured every few days over 4-h "smoking", 10-h "post-smoking" and 10-h "background" periods. Concentration patterns of volatile ETS components including 1,3-butadiene, benzene and acrolein were similar to those calculated for a theoretical non-sorbing tracer, indicating limited sorption. Concentrations of ETS tracers, e.g. 3-ethenylpyridine (3-EP) and nicotine, and lower volatility toxic air contaminants including phenol, cresols, and naphthalene increased as experiments progressed, indicating mass accumulation on surfaces and higher desorption rates. Daily patterns stabilized after week 2, yielding a steady daily cycle of ETS concentrations associated with habitual smoking. EREFs for sorbing compounds were higher under steady cycle versus single-day smoking conditions by ˜50% for 3-EP, and by 2-3 times for nicotine, phenol, cresols, naphthalene, and methylnaphthalenes. Our results provide relevant information about potential indirect exposures from residual ETS (non-smoker enters room shortly after smoker finishes) and from reemission, and their importance relative to direct exposures (non-smoker present during smoking). Under the conditions examined, indirect exposures accounted for a larger fraction of total potential exposures for sorbing versus non-sorbing compounds

  12. Implementing a corporate-wide policy for dealing with naturally occurring radioactive material

    International Nuclear Information System (INIS)

    Woods, S.E.; Abernathy, S.E.

    1993-01-01

    With the increased environmental awareness about naturally occurring radioactive materials (NORM), many companies are adopting policies to address the exposure and contamination issues associated with this material. In developing and implementing a NORM policy, every aspect of a business must be thoroughly evaluated to determine at what point the material is encountered and what processes tend to concentrate the material. Once all areas having elevated levels of NORM are identified, the interrelationships between these areas must be evaluated. Corporate policy regarding NORM is discussed, including employee exposure, environmental contamination, facility and equipment contamination, logistics of moving between facilities covered by different regulations, existing and proposed regulations, trends of proposed regulations, disposal of NORM, training and survey equipment. 14 refs., 7 figs

  13. Occupational chemical exposures in artificial organic fiber industries

    Energy Technology Data Exchange (ETDEWEB)

    Guirguis, S S; Cohen, M B

    1984-05-01

    This review discusses artificial organic fibers that are produced from materials of natural origin such as rayons, cellulose triacetates and proteins; or made from polymerised chemicals such as polyamides, polyesters, polyvinyls, modacrylics, carbon fibers, polyolefins, polyurethane and polytetrafluoroethylene. Chemicals involved include monomers, solvents, flame retardants, pigments and other additives. Occupational exposure to chemicals in the production stages are discussed and also the potential health hazards involved are reviewed. Current exposure levels, engineering controls and work practices for some of the chemicals used in the Ontario artificial fiber industry are discussed. Recommendations are made for areas that need further study and/or investigation.

  14. A suggested guideline for exposure control from natural radioactivity in future buildings

    International Nuclear Information System (INIS)

    Nambi, K.S.V.; Shukla, V.K.

    1991-01-01

    Naturally occurring radionuclides in building materials are one of the sources of radiation exposure to the population. Their concentrations vary by about 2 to 3 orders of magnitude at different geographical locations. This paper proposes three control methodologies for keeping the population exposure as low as reasonably achievable. Tentative recommendations are also included. (author). 11 refs., 3 tabs., 2 appendixes

  15. Development of silicone rubber-type neutron shielding material

    International Nuclear Information System (INIS)

    Do, Jae Bum; Cho, Soo Hang; Kim, Ik Soo; Oh, Seung Chul; Hong, Soon Seok; Noh, Sung Ki; Jeong, Duk Yeon.

    1997-06-01

    Because the exposure to radiation in the nuclear facilities can be fatal to human, it is important to reduce the radiation dose level to a tolerable level. The purpose of this study is to develop highly effective neutron shielding materials for the shipping and storage cask of radioactive materials or in the nuclear/radiation facilities. On this study, we developed silicone rubber based neutron shielding materials and their various material properties, including neutron shielding ability, fire resistance, combustion characteristics, radiation resistance, thermal and mechanical properties were evaluated experimentally. (author). 16 tabs., 17 figs., 25 refs

  16. Radiographic apparatus and method for monitoring film exposure time

    International Nuclear Information System (INIS)

    Vatne, R.S.; Woodmansee, W.E.

    1981-01-01

    In connection with radiographic inspection of structural and industrial materials, method and apparatus are disclosed for automatically determining and displaying the time required to expose a radiographic film positioned to receive radiation passed by a test specimen, so that the finished film is exposed to an optimum blackening (density) for maximum film contrast. A plot is made of the variations in a total exposure parameter (representing the product of detected radiation rate and time needed to cause optimum film blackening) as a function of the voltage level applied to an X-ray tube. An electronic function generator storing the shape of this plot is incorporated into an exposure monitoring apparatus, such that for a selected tube voltage setting, the function generator produces an electrical analog signal of the corresponding exposure parameter. During the exposure, another signal is produced representing the rate of radiation as monitored by a diode detector positioned so as to receive the same radiation that is incident on the film. The signal representing the detected radiation rate is divided, by an electrical divider circuit into the signal representing total exposure, and the resulting quotient is an electrical signal representing the required exposure time. (author)

  17. Evaluation of public and worker exposure due to naturally occurring asbestos in gravel discovered during a road construction project.

    Science.gov (United States)

    Perkins, Robert A; Hargesheimer, John; Vaara, Leah

    2008-09-01

    During a repair and reconstruction project of an unpaved highway in a remote region of Alaska, workers discovered, after construction had commenced, that the materials used from a local material site contained asbestos (variously described as tremolite or actinolite). The regional geology indicated the presence of ultramafic rock, which often contains asbestos. Evaluation of asbestos exposure to workers, their equipment, and living quarters was required, as was the possible future exposure of workers and the general public to asbestos already used in the roadway construction. In addition, a decision was needed on whether to use materials from the contaminated site in the future. Of the almost 700 breathing zone air monitoring samples taken of the workers, 3% of the samples indicated exposures at or near 0.1 f/cc by the National Institute for Occupational Safety and Health (NIOSH) 7400 phase contrast microscopy (PCM) procedure. Thirty-six of the PCM samples underwent transmission electron microscopy (TEM) analysis by the NIOSH 7402 procedure, which indicated that about 40% of the fibers were asbestos. After classifying samples by tasks performed by workers, analysis indicated that workers, such as road grader operators who ground or spread materials, had the highest exposures. Also, monitoring results indicated motorist exposure to be much less than 0.1 f/cc. The design phase of any proposed construction project in regions that contain ultramafic rock must consider the possibility of amphibole contamination of roadway materials, and budget for exploration and asbestos analysis of likely materials sites.

  18. Chemical and physical change of packaging materials for food by γ-ray irradiation

    International Nuclear Information System (INIS)

    Kawamura, Yoko; Takeda, Yuiko; Yamada, Takashi

    1998-01-01

    Packaging materials for food made of polyethylene, polypropylene and polystyrene were irradiated with 60 Co γ-ray. Exposure was 10, 30 and 50 kGy at 5 kGy/h exposure rate. With irradiating, all packaging materials of polyethylene and polypropylene produced volatile substances, for example, aldehydes, ketones and alcohols, especially, large amount of acetic acid and acetone. These volatile compounds were not observed in the sample unirradiated and increased with increasing exposure. Accordingly, it is concluded that they were decomposition products depend on irradiation. Polypropylene products were much more easily decomposed than polyethylene one because much more kinds and amount of volatile products were formed. However, on polystyrene products, content of styrene and ethylbenzene, monomer of raw materials, were reduced by irradiation and small amount of volatile substances were formed. These results proved its resistance to irradiation. (S.Y.)

  19. Solar Sail Material Performance Property Response to Space Environmental Effects

    Science.gov (United States)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA s Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar[TM], Teonex[TM], and CPl (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  20. Plasma processing of soft materials for development of flexible devices

    International Nuclear Information System (INIS)

    Setsuhara, Yuichi; Cho, Ken; Takenaka, Kosuke; Shiratani, Masaharu; Sekine, Makoto; Hori, Masaru

    2011-01-01

    Plasma-polymer interactions have been studied as a basis for development of next-generation processing of flexible devices with soft materials by means of low-damage plasma technologies (soft materials processing technologies). In the present article, interactions between argon plasmas and polyethylene terephthalate (PET) films have been examined for investigations of physical damages induced by plasma exposures to the organic material via chemical bonding-structure analyses using hard X-ray photoelectron spectroscopy (HXPES) together with conventional X-ray photoelectron spectroscopy (XPS). The PET film has been selected as a test material for investigations in the present study not merely because of its specific applications, such as a substrate material, but because PET is one of the well defined organic materials containing major components in a variety of functional soft materials; C-C main chain, CH bond, oxygen functionalities (O=C-O bond and C-O bond) and phenyl group. Especially, variations of the phenyl group due to argon plasma exposures have been investigated in the present article in order to examine plasma interactions with π-conjugated system, which is in charge of electronic functions in many of the π-conjugated electronic organic materials to be utilized as functional layer for advanced flexible device formations. The PET films have been exposed to argon plasmas sustained via inductive coupling of RF power with low-inductance antenna modules. The HXPES analyses exhibited that the degradations of the oxygen functionalities and the phenyl group in the deeper regions up to 50 nm from the surface of the samples were insignificant indicating that the bond scission and/or the degradations of the chemical bonding structures due to photoirradiation from the plasma and/or surface heating via plasma exposure were relatively insignificant as compared with damages in the vicinity of the surface layers.

  1. Annual mean effective dose of Slovak population due to natural radioactivity of building materials

    International Nuclear Information System (INIS)

    Cabanekova, H.

    2006-01-01

    Natural radiation is the main source of exposure to humans. The basic raw materials, generally used in the construction industry, contain natural radionuclides which reflects their natural origin and the geological conditions at the site of production. In the last time, most building materials are manufactured from secondary raw materials with higher concentration of natural radionuclides. The estimation of the 226 Ra content as well as the 232 Th and 40 K concentration in building materials and products is essential for the evaluation of the external x-ray contribution to the exposure. The building materials with high value of 226 Ra coupled with pronounced porosity of the final products make them potential indoor Rn sources. It means that external exposure and part of inhalation dose from radon and its progeny inside of building is caused to the radiation from the primordial radionuclides pres ent in building materials and products and can increase the indoor natural radiation exposure. For keeping the population exposure as low as reasonably achievable is in the Slovak legislation the radioactive content of primordial radionuclides in building materials and products regulated and the maximum of specific activity is 370 Bq.kg-1 of radium equivalent activity and 120 Bq.kg-1 of 226 Ra. The Health ministry and Slovak metrological institute nominated the department of Radiation Hygiene of Slovak medical university to investigate regularly the content of natural radionuclides and also the radon emanation in samples of raw and secondary building materials and products used in Slovak building industry. In the framework of the screening of building materials and products there were analyzed over 3 000 samples. The natural radionuclides are assessed through their progeny photo peaks. The specific activity of nuclides is determined as weighted average of their photo peaks. The obtained results are corrected to the background distribution and to the self absorption in the

  2. Design And Measurement Of Radiation Exposure Rates At An X-Ray Diagnostic Radiological Unit

    International Nuclear Information System (INIS)

    Tito-Sutjipto

    2003-01-01

    Every radiation employees suffers radiation exposure risk while doing his job. It is important therefore to investigate the occupational health and safety of radiation employees on its relationship with the design and measurement of radiation exposure rates at an X-ray diagnostic radiological unit in this work, a case study was held on the radiological unit at BP-4 Yogyakarta for patient diagnostics, This research armed to investigate the relationship between the design of radiological unit for X-ray diagnostics and the location of the X-ray machine, based on the distance variable and radiation exposure rate during patient diagnostics. This was performed using radiological unit design data for X-ray diagnostics and the measurement of radiation exposure rates throughout patient diagnostics. The design data can then be used for determining the requirement of primary and secondary shielding materials for radiological unit as well as a calculation basis of radiation exposure rates during patient diagnostics. From the result of the research, it can be concluded that from the occupational health and safety point of view, radiation exposure around the X-ray machines are fairly good, both for the shielding materials in each X-ray room and the radiation exposures received by the workers, because they are far beyond the maximum permittable average limit (16.67 m R/days). (author)

  3. Assessment of exposure to chemical agents and ergonomic stressors in tanneries in Kanpur, India.

    Science.gov (United States)

    Ory, F G; Rahman, F U; Katagade, V; Shukla, A; Burdorf, A

    1997-10-01

    In developing countries qualitative assessment of exposure at the workplace may be an essential tool in evaluating hazardous working conditions. This survey reports on qualitative assessment of exposure to chemicals, dust, and ergonomic stressors among 298 workers in 15 tanneries in Kanpur, India. In general, chemical exposure and dermal exposure were highest among beamhouse workers, less for workers involved in dry finishing activities, and lowest for those performing the wet finishing of hides. Dermal exposure was rated as high to very high during beamhouse activities, reflecting direct contact with wet hides and manual handling of hides in soak tanks. Relevant dust exposure was observed only during dry finishing activities. Most workers experienced severe postural load due to working in trunk flexion and rotation for more than 50% of their daily work time. In addition, manual materials handling with loads over 20 kg frequently occurred. The size of the tannery, in general a reflection of state of technology, showed no systematic influence on exposure profiles. The survey suggested that mechanization of material transfer and application of trolleys reduced the work time with trunk flexion and rotation and implied less manual lifting. The presence of local exhaust ventilation in large tanneries seemed to reduce the chemical exposure. This survey has demonstrated the importance of rapid appraisal techniques for evaluating hazardous conditions at the workplace. In developing countries this approach may facilitate occupational hygiene research and practice.

  4. Nanoparticles: a review of particle toxicology following inhalation exposure.

    Science.gov (United States)

    Bakand, Shahnaz; Hayes, Amanda; Dechsakulthorn, Finance

    2012-01-01

    It is expected that the rapid expansion of nanotechnology will bring many potential benefits. However, initial investigations have demonstrated that nanomaterials may adversely affect human health and the environment. By increasing the application of nanoparticles, protection of the human respiratory system from exposure to airborne nanoparticles and ultrafine particulates has become an emerging health concern. Available research has demonstrated an association between exposure to ambient airborne particulates and ultrafine particles and various adverse heath effects including increased morbidity and mortality. Nanomaterial structures are more likely to be toxic than the same materials of conventional sized samples and can be inhaled more deeply into the lungs. While the respiratory tract is considered as the primary target organ for inhaled nanoparticles, recent research has demonstrated that extrapulmonary organs are also affected. The very small size distribution and large surface area of nanoparticles available to undergo reactions may play a significant role in nanotoxicity, yet very little is known about their interactions with biological systems. This review explores the possible underlying toxicity mechanisms of nanoparticles following inhalational exposure. Nanoparticles differ from the same conventional material at a larger scale in physical, chemical and biological characteristics; therefore it is critical to recognize the potential risk of nanoparticle exposure using appropriate toxicity test methods. Current advances and limitations of toxicity assessment methods of nanoparticles are discussed highlighting the recent improvements of in vitro screening tools for the safety evaluation of the rapidly expanding area of nanotechnology.

  5. LDEF Materials Workshop 1991, part 1

    International Nuclear Information System (INIS)

    Stein, B.A.; Young, P.R.

    1992-09-01

    The workshop comprised a series of technical sessions on materials themes, followed by theme panel meetings. Themes included materials, environmental parameters, and data bases; contamination; thermal control and protective coatings and surface treatments; polymers and films; polymer matrix composites; metals, ceramics, and optical materials; lubricants adhesives, seals, fasteners, solar cells, and batteries. This report contains most of the papers presented at the technical sessions. It also contains theme panel reports and visual aids. This document continues the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) pursuit of its charter to investigate the effects of LEO exposure on materials which where not originally planned to be test specimens and to integrate this information with data generated by principal investigators into an LDEF materials data base. Separate abstract have been prepared for papers in this report

  6. A method for evaluation of UV and biologically effective exposures to plants

    International Nuclear Information System (INIS)

    Paris, A.V.; Southern Queensland Univ., Toowoomba, QLD; Wong, J.C.F.; Galea, V.

    1996-01-01

    This paper presents a method for evaluating the UV and biologically effective exposures to a plant canopy during the irradiation of soybean with supplemental levels of UV radiation in a greenhouse study. The method employs four materials as dosimeters that allow evaluation of the UV spectra. The exposures evaluated at three growth stages were less by factors of 0.44, 0.49 and 0.56 compared to the ambient exposures. At the end of the irradiation period, the ambient biologically effective exposure for generalized plant response was higher by 180% compared to that calculated over the canopy. This is the magnitude of the error in UV studies that provide the ambient exposure as a measure of the UV incident on the plant. Additionally, the difference between the ambient and canopy exposures varied during the growth stages. These results indicate that the dosimetric technique applied to evaluating the UV exposures over a plant canopy is a more accurate representation of the UV exposure incidence on a plant than any obtained by measuring the ambient exposures only. (Author)

  7. Population exposure resulting from the presence of radioactivity in consumer products

    International Nuclear Information System (INIS)

    Moghissi, A.A.; Paras, P.

    1978-01-01

    Population exposure to radiation resulting from the manufacture and use of consumer products has been the subject of a recent symposium and an NCRP report along with numerous papers and reports. This paper contains updated data on this subject and is based on the papers presented at a symposium entitled 'Public Health Aspects of Radioactivity in Consumer Products' in Atlanta, Georgia, February 2-4,1977. The paper concludes that the population exposure from consumer products is small but significant. A more important conclusion relates to large fluctuations in the exposure resulting from changes in the market, raw materials and regulations. Since this type of population exposure is unnecessary and proper data is not available to determine the population exposure, it is suggested by the authors that a monitoring program could be instituted to provide the necessary information. (author)

  8. Material testing in a linear theta pinch

    International Nuclear Information System (INIS)

    Alani, R.; Azodi, H.; Naraghi, M.; Safaii, B.; Torabi-Fard, A.

    1983-01-01

    The interaction of stainless steel 316 and Inconel 625 alloys has been investigated with a thermonuclear-like plasma, n = 10 16 cm -3 and Tsub(i) = 1 keV, generated in the Alvand I linear theta pinch. The average power flux is 10 7 W/cm 2 and the interaction time nearly one μs. A theoretical analysis based on the formation of an observed impurity layer near the material, has been used to determine the properties of the impurity layer and the extent of the damage on the material. Although arcing has been observed, the dominant damage mechanism has been assessed to be due to evaporation. Exposure to single shots has produced very heavily defective areas and even surface cracks on the SS 316 sample, but no cracks were observed on Inconel 625 after exposure to even 18 shots. On the basis of temperature rise and evaporation a comparison is made among materials exposed to plasmas of a theta pinch, shock tube, present generation tokamak and an anticipated tokamak reactor. (orig.)

  9. Electronic device for automatic control of exposure in radiography

    International Nuclear Information System (INIS)

    Pendharkar, A.S.; Jayakumar, T.K.

    1977-01-01

    An electronic instrument for calculating and controlling exposure in radiography practice using radioisotopes is described. When using this equipment, only factor to be known is the dose required by the film for a given density and the thickness of material inspected. It eliminates all the problems arising out of various parameters such as source decay etc in the conventional procedure for calculating exposure time. Principle of operation, the electronic circuitry adopted and the functional aspects of the system are described in detail. Exposure doses for different industrial films have been related to the instrumental readouts. The system reproducibility and reliability have been evaluated. The advantages and limitations of the present system and the future development to overcome the problems are indicated. (author)

  10. The effects of chronic exposure to common bedding materials on the metabolic rate and overall health of male CD-1 mice.

    Science.gov (United States)

    Becker, Corey E; Mathur, Carolyn F; Rehnberg, Bradley G

    2010-01-01

    Anecdotes and personal Web pages claim that cedar and pine beddings cause respiratory distress in rodents, although no previous research could be found to support these claims. There have, however, been published studies of respiratory distress in cedar and pine mill workers. That research links exposure to wood dust to asthma and to bronchial and alveolar damage in humans. This study looks at the effects of 3 types of bedding (CareFRESH Original, cedar, and pine) on the growth, food intake, oxygen consumption, IgE antibody concentrations, and general appearance and behavior in male CD-1 mice. Mice who were housed on these beddings for approximately 4 months did not show significant differences in any of these variables. This suggests that these 3 materials provide equally healthy substrates for long-term rearing of mice and possibly other rodents.

  11. Engineered nanomaterials: exposures, hazards, and risk prevention

    Directory of Open Access Journals (Sweden)

    MacPhail Robert C

    2011-03-01

    Full Text Available Abstract Nanotechnology presents the possibility of revolutionizing many aspects of our lives. People in many settings (academic, small and large industrial, and the general public in industrialized nations are either developing or using engineered nanomaterials (ENMs or ENM-containing products. However, our understanding of the occupational, health and safety aspects of ENMs is still in its formative stage. A survey of the literature indicates the available information is incomplete, many of the early findings have not been independently verified, and some may have been over-interpreted. This review describes ENMs briefly, their application, the ENM workforce, the major routes of human exposure, some examples of uptake and adverse effects, what little has been reported on occupational exposure assessment, and approaches to minimize exposure and health hazards. These latter approaches include engineering controls such as fume hoods and personal protective equipment. Results showing the effectiveness - or lack thereof - of some of these controls are also included. This review is presented in the context of the Risk Assessment/Risk Management framework, as a paradigm to systematically work through issues regarding human health hazards of ENMs. Examples are discussed of current knowledge of nanoscale materials for each component of the Risk Assessment/Risk Management framework. Given the notable lack of information, current recommendations to minimize exposure and hazards are largely based on common sense, knowledge by analogy to ultrafine material toxicity, and general health and safety recommendations. This review may serve as an overview for health and safety personnel, management, and ENM workers to establish and maintain a safe work environment. Small start-up companies and research institutions with limited personnel or expertise in nanotechnology health and safety issues may find this review particularly useful.

  12. Glove material, reservoir formation, and dose affect glove permeation and subsequent skin penetration.

    Science.gov (United States)

    Nielsen, Jesper Bo; Sørensen, Jens Ahm

    2012-02-15

    Protective gloves are used to reduce dermal exposure when managing chemical exposures at the work place. Different glove materials may offer different degrees of protection. The present study combined the traditional ASTM (American Society for Testing and Materials) model with the Franz diffusion cell to evaluate overall penetration through glove and skin as well as the deposition in the different reservoirs. Benzoic acid was applied on latex or nitrile gloves placed on top of human skin. The amounts of chemical were quantified in the glove material, between glove and skin, within the skin, and in the receptor chamber. Both glove materials reduce total penetration of benzoic acid, but nitrile gloves offer a significantly better protection than latex gloves. This difference was less pronounced at the higher of the two concentrations of benzoic acid applied. Thus, glove types that offer relevant protection at low concentrations does not necessarily give appropriate protection at high concentrations. Significant amounts of benzoic acid could be extracted from the glove materials after exposure. If a chemical is accumulated in the glove material, reuse of single-use gloves should be cautioned. The reuse of gloves is generally not to be recommended without effective decontamination. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Assessment of exposures and potential risks to the US adult population from wear (attrition and abrasion) of gold and ceramic dental restorations.

    Science.gov (United States)

    Richardson, G Mark; Clemow, Scott R; Peters, Rachel E; James, Kyle J; Siciliano, Steven D

    2016-01-01

    Little has been published on the chemical exposures and risks of dental restorative materials other than from dental amalgam and composite resins. Here we provide the first exposure and risk assessment for gold (Au) alloy and ceramic restorative materials. Based on the 2001-2004 US National Health and Nutrition Examination Survey (NHANES), we assessed the exposure of US adults to the components of Au alloy and ceramic dental restorations owing to dental material wear. Silver (Ag) is the most problematic component of Au alloy restorations, owing to a combination of toxicity and proportional composition. It was estimated that adults could possess an average of four tooth surfaces restored with Au alloy before exceeding, on average, the reference exposure level (REL) for Ag. Lithium (Li) is the most problematic component of dental ceramics. It was estimated that adults could possess an average of 15 tooth surfaces restored with ceramics before exceeding the REL for Li. Relative risks of chemical exposures from dental materials decrease in the following order: Amalgam>Au alloys>ceramics>composite resins.

  14. Spectroscopic analysis and dosimetry of diagnostic x-ray beams filtered by rare earth materials

    International Nuclear Information System (INIS)

    Tyndall, D.A.

    1986-01-01

    A laboratory investigation was carried out to assess the effect of various types of rare earth filter materials on the energy spectrum and concomitant reduced exposure values of diagnostic x-ray beams at 70, 80, and 90 kVp. An x-ray spectroscope was constructed and used to generate the energy spectra of beams passing through the various rare earth filter materials. Photographs were made of each spectrum, and live-time gross photon counts were recorded. Following spectral determinations, ionization chamber readings were generated for each filter material. Substantial effects on x-ray spectra and reduction of exposure values were noted. The degree of these effects were dependent on the atomic number, k-edge, and thickness of each filter. Metallic forms of rare earth materials proved to be more effective than the salt forms with erbium offering the greatest potential for reduction in exposures over the range of experimental kilovolt (peak) values

  15. interactive effect of cowpea variety, dose and exposure time

    African Journals Online (AJOL)

    ACSS

    variety (V), exposure time (T) and dose (D) on the tolerance of C. maculatus to both plant materials. The effect ... laboratories and institutions of higher education in several West .... Each value is the mean±S.E of 20 cowpea seeds. Means ...

  16. UV dose-effect relationships and current protection exposure standards

    International Nuclear Information System (INIS)

    Singh, M.S.; Campbell, G.W.

    1982-04-01

    In this paper we have attempted to quantify the health effects in man of uv-radiation exposure of wavelengths from 240 nm to 320 nm. Exposure to uv in this region could result in the formation of skin cancer or premature aging in man. The induction of cancer by uv radiation results from changes in genetic material. We have used the DNA action spectrum coupled with the uv skin cancer data available in the literature to derive the dose-effect relationships. The results are compared against the current uv protection standards

  17. [Sulfur dioxide limit standard and residues in Chinese medicinal materials].

    Science.gov (United States)

    Kang, Chuan-Zhi; Yang, Wan-Zhen; Mo, Ge; Zhou, Li; Jiang, Jing-Yi; Lv, Chao-Geng; Wang, Sheng; Zhou, Tao; Yang, Ye; Guo, Lan-Ping

    2018-01-01

    The traditional sulfur fumigation processing method has been widely used in the initial processing and storage of traditional Chinese medicinal materials due to its economy, efficiency, convenience, high operability and effect on mold and insect prevention. However, excessive sulfur fumigation of traditional Chinese medicinal materials would lead to the changes in chemical compositions, and even endanger human health. This study showed that traditional Chinese medicinal materials were sulfur fumigated directly after being harvested for quick drying, or fumigated after being weted in the storage process for preventing mold and insects. We found that the sulfur dioxide limits for traditional Chinese medicinal materials were stricter than those for foods. Based on the existing limit standards, we obtained the data of sulfur dioxide residues for 35 types of traditional Chinese medicinal materials in a total of 862 batches. According to the limit standard in the Chinese Pharmacopoeia (150, 400 mg·kg⁻¹), the average over-standard rate of sulfur dioxide was as high as 52.43%, but it was reduced to 29.47% if calculated based on the limit for vegetable additive standard (500 mg·kg⁻¹). Sulfur fumigation issue shall be considered correctly: sulfur dioxide is a type of low toxic substance and less dangerous than aflatoxin and other highly toxic substances, and a small amount of residue would not increase the toxicity of traditional Chinese medicinal materials. However, sulfur fumigation might change the content of chemical substances and affect the quality of traditional Chinese medicinal materials. Furthermore, the exposure hazards of toxic substances are comprehensively correlated with exposure cycle, exposure frequency, and application method. In conclusion, it is suggested to strengthen the studies on the limit standard of traditional Chinese medicinal materials, formulate practical and feasible limit standard for sulfur dioxide residues in traditional Chinese

  18. Investigation of the thermal and optical performance of a spatial light modulator with high average power picosecond laser exposure for materials processing applications

    Science.gov (United States)

    Zhu, G.; Whitehead, D.; Perrie, W.; Allegre, O. J.; Olle, V.; Li, Q.; Tang, Y.; Dawson, K.; Jin, Y.; Edwardson, S. P.; Li, L.; Dearden, G.

    2018-03-01

    Spatial light modulators (SLMs) addressed with computer generated holograms (CGHs) can create structured light fields on demand when an incident laser beam is diffracted by a phase CGH. The power handling limitations of these devices based on a liquid crystal layer has always been of some concern. With careful engineering of chip thermal management, we report the detailed optical phase and temperature response of a liquid cooled SLM exposed to picosecond laser powers up to 〈P〉  =  220 W at 1064 nm. This information is critical for determining device performance at high laser powers. SLM chip temperature rose linearly with incident laser exposure, increasing by only 5 °C at 〈P〉  =  220 W incident power, measured with a thermal imaging camera. Thermal response time with continuous exposure was 1-2 s. The optical phase response with incident power approaches 2π radians with average power up to 〈P〉  =  130 W, hence the operational limit, while above this power, liquid crystal thickness variations limit phase response to just over π radians. Modelling of the thermal and phase response with exposure is also presented, supporting experimental observations well. These remarkable performance characteristics show that liquid crystal based SLM technology is highly robust when efficiently cooled. High speed, multi-beam plasmonic surface micro-structuring at a rate R  =  8 cm2 s-1 is achieved on polished metal surfaces at 〈P〉  =  25 W exposure while diffractive, multi-beam surface ablation with average power 〈P〉  =100 W on stainless steel is demonstrated with ablation rate of ~4 mm3 min-1. However, above 130 W, first order diffraction efficiency drops significantly in accord with the observed operational limit. Continuous exposure for a period of 45 min at a laser power of 〈P〉  =  160 W did not result in any detectable drop in diffraction efficiency, confirmed afterwards by the efficient

  19. Female exposure to phthalates and time to pregnancy

    DEFF Research Database (Denmark)

    Thomsen, Anne Marie L.; Riis, Anders H.; Olsen, Jørn

    2017-01-01

    STUDY QUESTION: Is female exposure to phthalate metabolites associated with reduced fecundity, as estimated by prolonged time to pregnancy (TTP)? SUMMARY ANSWER: Female exposure to monoethyl phthalate (MEP) but not monobutyl phthalate (MBP), monobenzyl phthalate (MBzP) and monoethylhexyl phthalate...... with prospective data based on 229 women from a Danish cohort of 430 first pregnancy planning couples enrolled in 1992-1994. In 2009, urinary analyses of phthalate metabolites were performed on stored urine samples from this cohort. PARTICIPANTS/MATERIALS, SETTING AND METHODS: We analyzed MEP, MBP, MBzP and MEHP...... to estimate fecundability ratios (FRs) and 95% CI in relation to the average urine metabolite concentration exposure level, controlled for age and BMI, and the time-varying variables smoking and alcohol. MAIN RESULT AND ROLE OF CHANCE: Urinary concentration of MEP was associated with a decreased fecundity...

  20. Evaluation of Quantitative Exposure Assessment Method for Nanomaterials in Mixed Dust Environments: Application in Tire Manufacturing Facilities.

    Science.gov (United States)

    Kreider, Marisa L; Cyrs, William D; Tosiano, Melissa A; Panko, Julie M

    2015-11-01

    Current recommendations for nanomaterial-specific exposure assessment require adaptation in order to be applied to complicated manufacturing settings, where a variety of particle types may contribute to the potential exposure. The purpose of this work was to evaluate a method that would allow for exposure assessment of nanostructured materials by chemical composition and size in a mixed dust setting, using carbon black (CB) and amorphous silica (AS) from tire manufacturing as an example. This method combined air sampling with a low pressure cascade impactor with analysis of elemental composition by size to quantitatively assess potential exposures in the workplace. This method was first pilot-tested in one tire manufacturing facility; air samples were collected with a Dekati Low Pressure Impactor (DLPI) during mixing where either CB or AS were used as the primary filler. Air samples were analyzed via scanning transmission electron microscopy (STEM) coupled with energy dispersive spectroscopy (EDS) to identify what fraction of particles were CB, AS, or 'other'. From this pilot study, it was determined that ~95% of all nanoscale particles were identified as CB or AS. Subsequent samples were collected with the Dekati Electrical Low Pressure Impactor (ELPI) at two tire manufacturing facilities and analyzed using the same methodology to quantify exposure to these materials. This analysis confirmed that CB and AS were the predominant nanoscale particle types in the mixing area at both facilities. Air concentrations of CB and AS ranged from ~8900 to 77600 and 400 to 22200 particles cm(-3), respectively. This method offers the potential to provide quantitative estimates of worker exposure to nanoparticles of specific materials in a mixed dust environment. With pending development of occupational exposure limits for nanomaterials, this methodology will allow occupational health and safety practitioners to estimate worker exposures to specific materials, even in scenarios

  1. Thermal Response of UHMWPE Materials in a Flash Flame Test Environment

    Science.gov (United States)

    2014-11-13

    protection. The UHMWPE fabric immediately began disintegrating during the flash flame exposure. During the test, one end of the UHMWPE fabric...UHMWPE material after the test. There were places where the fabric material appeared to have melted and re-solidified, creating areas of solid plastic ...and Observations The midscale test results showed that any direct flame on the UHMWPE materials will cause rapid disintegration of the material

  2. Radium equivalent activity of building materials and gamma ray dose rates in ordinary houses of Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Campos, M.P.; Pecequilo, B.R.S.

    1994-01-01

    The external radiation exposure from natural radioactivity represents, approximately, 50% of the average annual dose caused to the human body by all natural and artificial radiation sources. Natural radioactivity in building materials is the most important source of external radiation exposure in dwellings because of the gamma rays emitted from potassium 40 and member of the uranium 238 and thorium 232 decay chains. Concrete is one of the most potential sources of elevated radiation exposure, however, little is known about the natural radioactivity of Brazilian construction materials. A study to predict the exposure rates of several ordinary houses built almost of concrete, consisting of 38 samples of 6 different materials was conducted by using high resolution gamma-ray spectrometry. The radium equivalent activity was calculated for all 38 samples in order to compare the specific activities of the construction materials containing different amounts of radium, thorium, and potassium. The effective dose rate due to the indoor gamma radiation from the building materials was performed following the 1988 UNSCEAR procedures

  3. Examination of program exposure across intervention delivery modes: face-to-face versus internet

    Directory of Open Access Journals (Sweden)

    Mummery W Kerry

    2007-03-01

    Full Text Available Abstract Background There has been increasing interest in the ability of the internet to produce behaviour change. The focus of this study was to describe program exposure across three intervention groups from a randomised trial (RT comparing traditional face-to-face, internet-mediated (combined internet plus face-to-face, and internet-only program delivery. Methods Baseline and immediately post-intervention survey data, and exposure rates from participants that commenced the RT were included (n = 192. Exposure was defined as either face-to-face attendance, website usage, or a combination of both for the internet-mediated group. Characteristics of participants who were exposed to at least 75% of the program material were explored. Descriptive analysis and logistical regression were used to examine differences between groups for program exposure. Results All groups showed decrease in program exposure over time. Differences were also observed (χ2 = 10.37, p Conclusion These results suggest that the internet groups were as effective as the face-to-face delivery mode in engaging participants in the program material. However, different delivery methods may be more useful to different sub-populations. It is important to explore which target groups that internet-based programs are best suited, in order to increase their impact.

  4. In-Situ Strain Analysis of Potential Habitat Composites Exposed to a Simulated Long-Term Lunar Radiation Exposure

    Science.gov (United States)

    Rojdev, Kristina; O'Rourke, Mary Jane; Hill, Charles; Nutt, Steven; Atwell, William

    2010-01-01

    NASA is studying the effects of long-term space radiation on potential multifunctional composite materials for habitats to better determine their characteristics in the harsh space environment. Two composite materials were selected for the study and were placed in a test stand that simulated the stresses of a pressure vessel wall on the material. The samples in the test stand were exposed to radiation at either a fast dose rate or a slow dose rate, and their strain and temperature was recorded during the exposure. It was found that during a fast dose rate exposure the materials saw a decreased strain with time, or a shrinking of the materials. Given previous radiation studies of polymers, this is believed to be a result of crosslinking occurring in the matrix material. However, with a slow dose rate, the materials saw an increase in strain with time, or a stretching of the materials. This result is consistent with scission or degradation of the matrix occurring, possibly due to oxidative degradation.

  5. Cardiovascular responses of semi-arboreal snakes to chronic, intermittent hypergravity

    Science.gov (United States)

    Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.

    1996-01-01

    Cardiovascular functions were studied in semi-arboreal rat snakes (Elaphe obsoleta) following long-term, intermittent exposure to +1.5 Gz (head-to-tail acceleration) on a centrifuge. Snakes were held in a nearly straight position within horizontal plastic tubes during periods of centrifugation. Centrifugal acceleration, therefore, subjected snakes to a linear force gradient with the maximal force being experienced at the tail. Compared to non-centrifuged controls, Gz-acclimated snakes showed greater increases of heart rate during head-up tilt or acceleration, greater sensitivity of arterial pressure to circulating catecholamines, higher blood levels of corticosterone, and higher blood ratios of prostaglandin F 2 alpha/prostaglandin E2. Cardiovascular tolerance to increased gravity during graded Gz acceleration was measured as the maximum (caudal) acceleration force at which carotid arterial blood flow became null. When such tolerances were adjusted for effects of body size and other continuous variables incorporated into an analysis of covariance, the difference between the adjusted mean values of control and acclimated snakes (2.37 and 2.84 Gz, respectively) corresponded closely to the 0.5 G difference between the acclimation G (1.5) and Earth gravity (1.0). As in other vertebrates, cardiovascular tolerance to Gz stress tended to be increased by acclimation, short body length, high arterial pressure, and comparatively large blood volume. Voluntary body movements were important for promoting carotid blood flow at the higher levels of Gz stress.

  6. Exposure to organophosphate flame retardants in spray polyurethane foam applicators: Role of dermal exposure.

    Science.gov (United States)

    Bello, Anila; Carignan, Courtney C; Xue, Yalong; Stapleton, Heather M; Bello, Dhimiter

    2018-04-01

    Spray polyurethane foam (SPF) is a highly effective thermal insulation material that has seen considerable market growth in the past decade. Organophosphate flame retardants (PFRs) are added to SPF formulations to meet fire code requirements. A common flame retardant used in SPF formulations is tris 1-chloro 2-propyl phosphate (TCIPP), a suspected endocrine disruptor. Exposure monitoring efforts during SPF applications have focused primarily on the isocyanate component, a potent respiratory and dermal sensitizer. However, to our knowledge, there is no monitoring data for TCIPP. To characterize occupational exposures to TCIPP and other flame retardants during SPF insulation. Workers at four SPF insulation sites and one foam removal site (total n = 14) were recruited as part of this pilot study. Personal inhalation exposure to TCIPP was monitored with a CIP-10MI inhalable sampler and potential dermal exposure was assessed through the use of a glove dosimeter. Biomarkers of TCIPP and three other PFRs were measured in urine collected from workers pre-and post-shift. Linear mixed effect models were used to analyze associations of urinary biomarkers with inhalation and dermal exposures and paired t-tests were used to examine the difference on the means of urinary biomarkers pre-and post-shift. Chemical analysis of all species was performed with liquid chromatography-electrospray ionization tandem mass spectrometry. Geometric mean (GM) concentrations of TCIPP in personal air monitors and glove dosimeters collected from SPF applicators, 294.7 μg/m 3 and 18.8 mg/pair respectively. Overall, GM concentrations of the two TCIPP urinary biomarkers BCIPP and BCIPHIPP and (6.2 and 88.8 μg/mL) were 26-35 times higher than reported in the general population. Post-shift levels of TCIPP biomarkers were higher than pre-shift even though workers at insulation sites wore supplied air respirators, gloves and coveralls. The urinary biomarkers for the other PFRs were not

  7. Photoactive energetic materials

    Science.gov (United States)

    Chavez, David E.; Hanson, Susan Kloek; Scharff, Robert Jason; Veauthier, Jacqueline Marie; Myers, Thomas Winfield

    2018-02-27

    Energetic materials that are photoactive or believed to be photoactive may include a conventional explosive (e.g. PETN, nitroglycerine) derivatized with an energetic UV-absorbing and/or VIS-absorbing chromophore such as 1,2,4,5-tetrazine or 1,3,5-triazine. Absorption of laser light having a suitably chosen wavelength may result in photodissociation, decomposition, and explosive release of energy. These materials may be used as ligands to form complexes. Coordination compounds include such complexes with counterions. Some having the formula M(L).sub.n.sup.2+ were synthesized, wherein M is a transition metal and L is a ligand and n is 2 or 3. These may be photoactive upon exposure to a laser light beam having an appropriate wavelength of UV light, near-IR and/or visible light. Photoactive materials also include coordination compounds bearing non-energetic ligands; in this case, the counterion may be an oxidant such as perchlorate.

  8. Exposure assessment of acrylates/methacrylates in radiation-cured applications

    International Nuclear Information System (INIS)

    1987-01-01

    Occupational exposures to radiation-cured acrylates/methacrylates during their processing and use in coatings, inks, and adhesives were evaluated in 12 walk-through surveys at formulator and applicator sites. Inhalation and dermal-exposure routes were studied. According to the authors, the basic process used to formulate coatings, inks, and adhesives consists of blending raw materials in closed mixing vessels using local exhaust ventilation in the form of elephant trunks at vessel charging and packaging locations. Application methods surveyed included reverse-roll coaters, direct roll coaters, curtain/rain coaters, laminators, pneumatic injection, spray guns, and manual application. At the sites surveyed, the number of workers potentially exposed at each site ranged from two to 142. Process operators at applicator sites had the greatest potential for dermal exposure. Generally, the potential for inhalation exposure was low due to low volatility of the multifunctional acrylates/methacrylates used in the formulations. No reliable air-monitoring data were available at any site. Respirator use was limited and sporadic

  9. LDEF materials results for spacecraft applications: Executive summary

    Science.gov (United States)

    Whitaker, A. F.; Dooling, D.

    1995-03-01

    To address the challenges of space environmental effects, NASA designed the Long Duration Exposure Facility (LDEF) for an 18-month mission to expose thousands of samples of candidate materials that might be used on a space station or other orbital spacecraft. LDEF was launched in April 1984 and was to have been returned to Earth in 1985. Changes in mission schedules postponed retrieval until January 1990, after 69 months in orbit. Analyses of the samples recovered from LDEF have provided spacecraft designers and managers with the most extensive data base on space materials phenomena. Many LDEF samples were greatly changed by extended space exposure. Among even the most radially altered samples, NASA and its science teams are finding a wealth of surprising conclusions and tantalizing clues about the effects of space on materials. Many were discussed at the first two LDEF results conferences and subsequent professional papers. The LDEF Materials Results for Spacecraft Applications Conference was convened in Huntsville to discuss implications for spacecraft design. Already, paint and thermal blanket selections for space station and other spacecraft have been affected by LDEF data. This volume synopsizes those results.

  10. Naturally Occurring Radioactive Materials (NORM)

    International Nuclear Information System (INIS)

    Gray, P.

    1997-01-01

    This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards they present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training)

  11. Naturally Occurring Radioactive Materials (NORM)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P. [ed.

    1997-02-01

    This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards they present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training).

  12. Secondhand Exposure to Vapors From Electronic Cigarettes

    Science.gov (United States)

    Czogala, Jan; Fidelus, Bartlomiej; Zielinska-Danch, Wioleta; Travers, Mark J.; Sobczak, Andrzej

    2014-01-01

    Introduction: Electronic cigarettes (e-cigarettes) are designed to generate inhalable nicotine aerosol (vapor). When an e-cigarette user takes a puff, the nicotine solution is heated and the vapor is taken into lungs. Although no sidestream vapor is generated between puffs, some of the mainstream vapor is exhaled by e-cigarette user. The aim of this study was to evaluate the secondhand exposure to nicotine and other tobacco-related toxicants from e-cigarettes. Materials and Methods: We measured selected airborne markers of secondhand exposure: nicotine, aerosol particles (PM2.5), carbon monoxide, and volatile organic compounds (VOCs) in an exposure chamber. We generated e-cigarette vapor from 3 various brands of e-cigarette using a smoking machine and controlled exposure conditions. We also compared secondhand exposure with e-cigarette vapor and tobacco smoke generated by 5 dual users. Results: The study showed that e-cigarettes are a source of secondhand exposure to nicotine but not to combustion toxicants. The air concentrations of nicotine emitted by various brands of e-cigarettes ranged from 0.82 to 6.23 µg/m3. The average concentration of nicotine resulting from smoking tobacco cigarettes was 10 times higher than from e-cigarettes (31.60±6.91 vs. 3.32±2.49 µg/m3, respectively; p = .0081). Conclusions: Using an e-cigarette in indoor environments may involuntarily expose nonusers to nicotine but not to toxic tobacco-specific combustion products. More research is needed to evaluate health consequences of secondhand exposure to nicotine, especially among vulnerable populations, including children, pregnant women, and people with cardiovascular conditions. PMID:24336346

  13. Exposure to grain dust in Great Britain.

    Science.gov (United States)

    Spankie, Sally; Cherrie, John W

    2012-01-01

    Airborne grain dust is a complex mixture of fragments of organic material from grain, plus mineral matter from soil, and possible insect, fungal, or bacterial contamination or their toxic products, such as endotoxin. In the 1990s, grain workers in Britain were frequently exposed to inhalable dust >10 mg.m(-3) (8 h), with particularly high exposures being found at terminals where grain was imported or exported and in drying operations (personal exposure typically approximately 20 mg.m(-3)). Since then, the industry has made substantial progress in improving the control of airborne dust through better-designed processes, increased automation, and an improved focus on product quality. We have used information from the published scientific literature and a small survey of industry representatives to estimate current exposure levels. These data suggest that current long-term exposure to inhalable dust for most workers is on average less than approximately 3 mg.m(-3), with perhaps 15-20% of individual personal exposures being >10 mg.m(-3). There are no published data from Britain on short-term exposure during cleaning and other tasks. We have estimated average levels for a range of tasks and judge that the highest levels, for example during some cleaning activities and certain process tasks such as loading and packing, are probably approximately10 mg.m(-3). Endotoxin levels were judged likely to be dust levels are <10 mg.m(-3). There are no published exposure data on mycotoxin, respirable crystalline silica, and mite contamination but these are not considered to present widespread problems in the British industry. Further research should be carried out to confirm these findings.

  14. Initiatives to reduce the occupational radiation exposure of ABWR plants

    International Nuclear Information System (INIS)

    Hirasawa, Hajime; Urata, Hidehiro; Ueda, Taku; Yamamoto, Seiji; Yaita, Yumi

    2014-01-01

    Toshiba has carried out radiation exposure reduction by radiation level reduction, as reduction of reactor water activated corrosion products concentration, reduction of activated corrosion products deposition and radiation shielding, and exposure time reduction, as remote control and improvement of maintenance work procedures. Water chemistry has been mainly carried out reduction of reactor water activated corrosion products concentration and reduction of activated corrosion products deposition in radiation level reduction. The reduction measures of reactor water activated corrosion products concentration are mainly reduction of iron crud concentration and reduction of cobalt ion concentration. The activated corrosion products deposition are reduced by the means of water quality control and the surface treatment. Water quality control for reduction of activated corrosion products deposition moves to ultra low iron high nickel control from Ni/Fe ratio control. The surface treatments are adopted to the stainless steel piping and carbon steel piping. As a measure further to radiation exposure reduction for ABWR (Advanced Boiling Water Reactors), we report on the effect of generation amount reduction by the adoption of alternate material and the effect of deposition reduction by material change of piping and the adoption of advanced water quality control, etc. (author)

  15. Epidemiological profile of work-related accidents with biological exposure among medical students in a surgical emergency room.

    Science.gov (United States)

    Reis, Phillipe Geraldo Teixeira de Abreu; Driessen, Anna Luiza; da Costa, Ana Claudia Brenner Affonso; Nasr, Adonis; Collaço, Iwan Augusto; Tomasich, Flávio Daniel Saavedra

    2013-01-01

    To evaluate the accidents with biological material among medical students interning in a trauma emergency room and identify key related situations, attributed causes and prevention. we conducted a study with a quantitative approach. Data were collected through a questionnaire applied via internet, with closed, multiple-choice questions regarding accidents with biological material. The sample comprised 100 students. thirty-two had accidents with biological material. Higher-risk activities were local anesthesia (39.47%), suture (18.42%) and needle recapping (15.79%). The main routes of exposure to biological material were the eyes or mucosa, with 34%, and syringe needle puncture, with 45%. After contamination, only 52% reported the accident to the responsible department. The main causes of accidents and routes of exposure found may be attributed to several factors, such as lack of training and failure to use personal protective equipment. Educational and preventive actions are extremely important to reduce the incidence of accidents with biological materials and improve the conduct of post-exposure. It is important to understand the main causes attributed and situations related, so as general and effective measures can be applied.

  16. Color stability of esthetic restorative materials: a spectrophotometric analysis.

    Science.gov (United States)

    Poggio, Claudio; Ceci, Matteo; Beltrami, Riccardo; Mirando, Maria; Wassim, Jaffal; Colombo, Marco

    2016-12-01

    Objective: The aim of this in vitro study was to evaluate the color stability of different restorative materials (one microfilled composite, one nanofilled composite, one nanohybrid composite and one Ormocer-based composite) after exposure to different staining solutions (coffee, coca-cola and red wine). Material and methods: All materials were polymerized into silicon rings (2 mm ×6 mm ×8 mm) to obtain specimens identical in size. Thirty cylindrical specimens of each material were prepared. They were immersed in staining solutions over a 28-day test period. A colorimetric evaluation according to the CIE L*a*b* system was performed by a blind trained operator at 7, 14, 21, 28 days of the staining process. The Shapiro-Wilk test and Kruskal-Wallis ANOVA were applied to assess significant differences among restorative materials. The paired t -test was applied to test which CIE L*a*b* parameters significantly changed after immersion in staining solutions. Results: All restorative materials showed clinically perceptible color differences after immersion in coffee. L* and b* values showed the highest variability. Coca cola and red wine did not influence the color stability for all restorative materials except for Filtek Supreme XTE. Conclusions: Coffee caused a significant color change in all types of tested composite resins. Filtek Supreme XTE demonstrated alone a staining susceptibility to red wine; no other significant differences among the materials were demonstrated. Long-term exposure to some food dyes (coffee in particular) can significantly affect the color stability of modern esthetic restorative materials regardless of materials' different composition.

  17. Fundamentals of Composite Materials for Undergraduate Engineering--A Filmed Presentation. Final Report.

    Science.gov (United States)

    Busching, Herbert W.

    Curricula in undergraduate engineering have not adequately reflected present usage and knowledge of composite materials (types of rock and organic matter in which structurally dissimilar materials are combined). Wide usage of composites is expected to increase the importance of this class of materials and the need for more substantive exposure to…

  18. Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Herranz Raul

    2012-02-01

    Full Text Available Abstract Background Many biological systems respond to the presence or absence of gravity. Since experiments performed in space are expensive and can only be undertaken infrequently, Earth-based simulation techniques are used to investigate the biological response to weightlessness. A high gradient magnetic field can be used to levitate a biological organism so that its net weight is zero. Results We have used a superconducting magnet to assess the effect of diamagnetic levitation on the fruit fly D. melanogaster in levitation experiments that proceeded for up to 22 consecutive days. We have compared the results with those of similar experiments performed in another paradigm for microgravity simulation, the Random Positioning Machine (RPM. We observed a delay in the development of the fruit flies from embryo to adult. Microarray analysis indicated changes in overall gene expression of imagoes that developed from larvae under diamagnetic levitation, and also under simulated hypergravity conditions. Significant changes were observed in the expression of immune-, stress-, and temperature-response genes. For example, several heat shock proteins were affected. We also found that a strong magnetic field, of 16.5 Tesla, had a significant effect on the expression of these genes, independent of the effects associated with magnetically-induced levitation and hypergravity. Conclusions Diamagnetic levitation can be used to simulate an altered effective gravity environment in which gene expression is tuned differentially in diverse Drosophila melanogaster populations including those of different age and gender. Exposure to the magnetic field per se induced similar, but weaker, changes in gene expression.

  19. Early Effects of Altered Gravity Environments on Plant Cell Growth and Cell Proliferation: Characterization of Morphofunctional Nucleolar Types in an Arabidopsis Cell Culture System

    Energy Technology Data Exchange (ETDEWEB)

    Manzano, Ana I.; Herranz, Raúl; Manzano, Aránzazu [Centro de Investigaciones Biológicas (CSIC), Madrid (Spain); Loon, Jack J. W. A. van [Department of Oral and Maxillofacial Surgery/Oral Pathology, Dutch Experiment Support Center, VU University Medical Center, Amsterdam (Netherlands); Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam (Netherlands); ESA-ESTEC, TEC-MMG, Noordwijk (Netherlands); Medina, F. Javier, E-mail: fjmedina@cib.csic.es [Centro de Investigaciones Biológicas (CSIC), Madrid (Spain)

    2016-02-05

    Changes in the cell growth rate of an in vitro cellular system in Arabidopsis thaliana induced by short exposure to an altered gravity environment have been estimated by a novel approach. The method consisted of defining three structural nucleolar types which are easy and reliable indicators of the ribosome biogenesis activity and, consequently, of protein biosynthesis, a parameter strictly correlated to cell growth in this cellular system. The relative abundance of each nucleolar type was statistically assessed in different conditions of gravity. Samples exposed to simulated microgravity for 200 min showed a significant decrease in nucleolar activity compared to 1g controls, whereas samples exposed to hypergravity (2g) for the same period showed nucleolar activity slightly increased. These effects could be considered as an early cellular response to the environmental alteration, given the short duration of the treatment. The functional significance of the structural data was validated by a combination of several different well-known parameters, using microscopical, flow cytometry, qPCR, and proteomic approaches, which showed that the decreased cell growth rate was decoupled from an increased cell proliferation rate under simulated microgravity, and the opposite trend was observed under hypergravity. Actually, not all parameters tested showed the same quantitative changes, indicating that the response to the environmental alteration is time-dependent. These results are in agreement with previous observations in root meristematic cells and they show the ability of plant cells to produce a response to gravity changes, independently of their integration into plant organs.

  20. Peripheral Signals of Food Intake in Response to Low Leptin Levels Induced by Centrifugation

    Science.gov (United States)

    Moran, M. M.; Wade, Charles E.; Stein, T. P.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    The focus of the study was to examine leptin and other peripheral signals of energy balance, following hypergravity. The study was conducted in two experiments. In experiment 1 rats were centrifuged at either 1.5, 2, or remained at 1 G. During days 8 to 14 of experiment 1, mean body mass of the 1.5 and 2 G groups was significantly (p<0.05) lower than controls. No differences were found in food intake (g/day/100 g body mass). Epididymal fat in the 2 G group was 21% lower than controls and 14% lower than the 1.5 G group. Plasma leptin was reduced from controls in the 1.5 and 2 G groups by 45 and 63%, respectively. A significant correlation was found between G load and urinary catecholamines. In experiment 2, rats were centrifuged at either 1.25, 1.5, or remained at 1 G. During days 8 to 14, body mass and food intake were similar between the 1, 1.25, and 1.5 G groups. Epididymal fat was reduced from controls in the 1.25 (14%) and 1.5 (19%) G groups. Leptin was reduced from controls in the 1.25 (45%) and 1.5 (46%) G groups. No differences were found in urinary epinephrine. Urinary norepinephrine levels were significantly higher than controls in each centrifuge group. During hypergravity exposure, food intake is the result of a complex relationship between multiple pathways, which abates the importance of leptin as a primary signal.

  1. Corrosion evaluation of service water system materials

    International Nuclear Information System (INIS)

    Stein, A.A.; Felder, C.M.; Martin, R.L.

    1994-01-01

    The availability and reliability of the service water system is critical for safe operation of a nuclear power plant. Degradation of the system piping and components has forced utilities to re-evaluate the corrosion behavior of current and alternative system materials, to support assessments of the remaining service life of the service water system, selection of replacement materials, implementation of corrosion protection methods and corrosion monitoring programs, and identification of maintenance and operational constraints consistent with the materials used. TU Electric and Stone and Webster developed a service water materials evaluation program for the Comanche Peak Steam Electric Station. Because of the length of exposure and the generic interest in this program by the nuclear power industry, EPRI joined TU to co-sponsor the test program. The program was designed to evaluate the corrosion behavior of current system materials and candidate replacement materials and to determine the operational and design changes which could improve the corrosion performance of the system. Although the test program was designed to be representative of service water system materials and environments targeted to conditions at Comanche Peak, these conditions are typical of and relevant to other fresh water cooled nuclear service water systems. Testing was performed in raw water and water treated with biocide under typical service water operating conditions including continuous flow, intermittent flow, and stagnant conditions. The test program evaluated the 300 Series and 6% molybdenum stainless steels, copper-nickel, titanium, carbon steel, and a formed-in-place nonmetallic pipe lining to determine susceptibility to general, crevice, and microbiologically influenced corrosion and pitting attack. This report presents the results of the test program after 4 years of exposure

  2. Constructing an exposure chart: step by step (based on standard procedures)

    International Nuclear Information System (INIS)

    David, Jocelyn L; Cansino, Percedita T.; Taguibao, Angileo P.

    2000-01-01

    An exposure chart is very important in conducting radiographic inspection of materials. By using an accurate exposure chart, an inspector is able to avoid a trial and error way of determining correct time to expose a specimen, thereby producing a radiograph that has an acceptable density based on a standard. The chart gives the following information: x-ray machine model and brand, distance of the x-ray tube from the film, type and thickness of intensifying screens, film type, radiograph density, and film processing conditions. The methods of preparing an exposure chart are available in existing radiographic testing manuals. These described methods are presented in step by step procedures, covering the actual laboratory set-up, data gathering, computations, and transformation of derived data into Characteristic Curve and Exposure Chart

  3. Deposition and retention of 0.1 micron 67Ga2O3 aggregate aerosols in rats following whole body exposures

    International Nuclear Information System (INIS)

    Wolff, R.K.; Griffis, L.C.; Hobbs, C.H.; McClellan, R.O.

    1982-01-01

    Determinations were made of respiratory tract deposition and gastrointestinal tract burdens following whole body inhalation exposures, typical of those used in many chronic exposures; these were compared to values obtained in nose-only exposures. Fischer-344 rats were exposed in large volume chambers, in a whole body mode, to 0.1 micron volume median diameter (VMD) 67 Ga 2 O 3 particles 5 hrs/day. Deposition per unit of exposure time and retention were essentially identical following either 1 or 3 day exposures. The lung deposition of particles was 2.8 units/hr for males and 2.2 units/hr for females if the exposure concentration was expressed as 1 unit/L. These values represent a deposition of approximately 15% of the inhaled particles, similar to values obtained for nose-only exposures. Aerosol deposition per kgm body weight was 24% higher in females than males. Passage of material into the gastrointestinal tract was 1.6-fold greater for these whole body exposures as compared to nose-only exposures to the same aerosol mainly resulting from extra material ingested by grooming of the pelt. Approximately 60% of the pelt burden was calculated to be ingested following whole body exposures

  4. Natural radioactivity in construction materials; Natuerliche Radioaktivitaet in Bauprodukten

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Bernd [Bundesamt fuer Strahlenschutz, Berlin (Germany)

    2017-04-01

    Rocks and soils contain traces of uranium and thorium and their daughter products, also the primordial nuclide K-40. Most construction materials are produced from mineral raw materials and residuals from industrial processes, thus natural radionuclides can be detected. The radionuclide concentrations are relevant with respect to radiation protection. Radionuclides in construction materials can cause indoor radiation exposure due to their gamma radiation and due to inhalation of radon a gaseous nuclide that can diffuse out of the materials. Based on new legal developments in the European Union the Bundesamt fuer Strahlenschutz is now again concerned with radiation protection issues of building materials.

  5. Method of treatment in a system passing radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, K; Kinoshita, M; Asakura, Y

    1976-05-14

    A method to ensure the safety of the reactor and reduce radiation exposure dose by preventing oxygen hydrogen reaction of the reactor off-gas and accumulation of the radioactive material is described. Substances which are accumulated in an off-gas duct and are likely to capture radioactive material (for instance Pd catalyst falling from a recombiner) is changed into a stable material (for instance, PdI/sub 2/) which is hot likely to capture radioactive material through reaction with a stabilizer (for instance, I/sub 2/, Cl/sub 2/, HCl, etc.). This stabilized material is washed off the atomic power plant system.

  6. 10th International School of Materials Science and Technology : Intercalation in Layered Materials "Ettore Majorana"

    CERN Document Server

    1986-01-01

    This volume is prepared from lecture notes for the course "Intercalation in Layered Materials" which was held at the Ettore Majorana Centre for Scientific Culture at Erice, Sicily in July, 1986, as part of the International School of Materials Science and Tech­ nology. The course itself consisted of formal tutorial lectures, workshops, and informal discussions. Lecture notes were prepared for the formal lectures, and short summaries of many of the workshop presentations were prepared. This volume is based on these lecture notes and research summaries. The material is addressed to advanced graduate students and postdoctoral researchers and assumes a background in basic solid state physics. The goals of this volume on Intercalation in Layered Materials include an introduc­ tion to the field for potential new participants, an in-depth and broad exposure for stu­ dents and young investigators already working in the field, a basis for cross-fertilization between workers on various layered host materials...

  7. Comparison and dosimetry of exposure dose to the patient in dental full mouth examination

    International Nuclear Information System (INIS)

    Kohirazawa, Hideo; Shinozima, Masayasu; Tokui, Mituru

    1979-01-01

    Comparisons of exposure dose to the patient of three types of oral x-ray apparatus (Dental, Panoramix, Orthopantomograph) were made. The exposure doses to the regions of incior, molar, eye (lens), thyroid gland, cervical spine and gonad were measured using Radocon II type dosimeter, T.L.D. and head phantom. Differences of exposure dose were found in three types of oral x-ray apparatus. After then improvement of aparture and investigation of sensitive materials and filter were made. Selection of the oral x-ray apparatus should not be done by exposure dose but by need of diagnosis. (author)

  8. Characterization of selected LDEF polymer matrix resin composite materials

    Science.gov (United States)

    Young, Philip R.; Slemp, Wayne S.; Witte, William G., Jr.; Shen, James Y.

    1991-01-01

    The characterization of selected graphite fiber reinforced epoxy (934 and 5208) and polysulfone (P1700) matrix resin composite materials which received 5 years and 10 months of exposure to the LEO environment on the Long Duration Exposure Facility is reported. Resin loss and a decrease in mechanical performance as well as dramatic visual effects were observed. However, chemical characterization including infrared, thermal, and selected solution property measurements showed that the molecular structure of the polymeric matrix had not changed significantly in response to this exposure. The potential effect of a silicon-containing molecular contamination of these specimens is addressed.

  9. Sequential and simultaneous thermal and particle exposure of tungsten

    International Nuclear Information System (INIS)

    Steudel, I; Huber, A; Kreter, A; Linke, J; Sergienko, G; Unterberg, B; Wirtz, M

    2016-01-01

    The broad array of expected loading conditions in a fusion reactor such as ITER necessitates high requirements on the plasma facing materials (PFMs). Tungsten, the PFM for the divertor region, the most affected part of the in-vessel components, must thus sustain severe, distinct exposure conditions. Accordingly, comprehensive experiments investigating sequential and simultaneous thermal and particle loads were performed on double forged pure tungsten, not only to investigate whether the thermal and particle loads cause damage but also if the sequence of exposure maintains an influence. The exposed specimens showed various kinds of damage such as roughening, blistering, and cracking at a base temperature where tungsten could be ductile enough to compensate the induced stresses exclusively by plastic deformation (Pintsuk et al 2011 J. Nucl. Mater. 417 481–6). It was found out that hydrogen has an adverse effect on the material performance and the loading sequence on the surface modification. (paper)

  10. Current exposure of 200 pregnant Danish women to phthalates, parabens and phenols

    DEFF Research Database (Denmark)

    Tefre de Renzy-Martin, Katrine; Frederiksen, Hanne; Christensen, Jeppe Hagstrup

    2014-01-01

    Many phthalates, parabens and phenols are suspected to have endocrine disrupting properties in humans. They are found in consumer products, including food wrapping, cosmetics and building materials. The foetus is vulnerable and exposure to these chemicals is of particular concern for pregnant women...... still raise concern. As current toxicological risk assessments in humans do not take into account simultaneous exposure, the true cumulative risk for the foetus may be underestimated....

  11. Predictors of radiation exposure to providers during percutaneous nephrolithotomy

    Science.gov (United States)

    Wenzler, David L.; Abbott, Joel E.; Su, Jeannie J.; Shi, William; Slater, Richard; Miller, Daniel; Siemens, Michelle J.; Sur, Roger L.

    2017-01-01

    Background: Limited studies have reported on radiation risks of increased ionizing radiation exposure to medical personnel in the urologic community. Fluoroscopy is readily used in many urologic surgical procedures. The aim of this study was to determine radiation exposure to all operating room personnel during percutaneous nephrolithotomy (PNL), commonly performed for large renal or complex stones. Materials and Methods: We prospectively collected personnel exposure data for all PNL cases at two academic institutions. This was collected using the Instadose™ dosimeter and reported both continuously and categorically as high and low dose using a 10 mrem dose threshold, the approximate amount of radiation received from one single chest X-ray. Predictors of increased radiation exposure were determined using multivariate analysis. Results: A total of 91 PNL cases in 66 patients were reviewed. Median surgery duration and fluoroscopy time were 142 (38–368) min and 263 (19–1809) sec, respectively. Median attending urologist, urology resident, anesthesia, and nurse radiation exposure per case was 4 (0–111), 4 (0–21), 0 (0–5), and 0 (0–5) mrem, respectively. On univariate analysis, stone area, partial or staghorn calculi, surgery duration, and fluoroscopy time were associated with high attending urologist and resident radiation exposure. Preexisting access that was utilized was negatively associated with resident radiation exposure. However, on multivariate analysis, only fluoroscopy duration remained significant for attending urologist radiation exposure. Conclusion: Increased stone burden, partial or staghorn calculi, surgery and fluoroscopy duration, and absence of preexisting access were associated with high provider radiation exposure. Radiation safety awareness is essential to minimize exposure and to protect the patient and all providers from potential radiation injury. PMID:28216931

  12. ELRA: The exposure limiting robotic apparatus

    International Nuclear Information System (INIS)

    Knighton, G.C.; Rosenberg, K.E.; Henslee, S.P.; Michelbacher, J.A.; Wilkes, C.W.

    1992-09-01

    A problem situation involving the handling of radioactive material at Argonne National Laboratory -- West (ANL-W) was solved through the use of remote handling techniques, providing significant exposure reduction to personnel. Robotic devices can be useful, but the cost of a robot is often prohibitive for many jobs. A low cost, disposable robot was built which successfully removed a highly radioactive and potentially explosive system from a hot cell at ANL-W

  13. 10 CFR Appendix C to Part 835 - Derived Air Concentration (DAC) for Workers From External Exposure During Immersion in a Cloud of...

    Science.gov (United States)

    2010-01-01

    ... Exposure During Immersion in a Cloud of Airborne Radioactive Material C Appendix C to Part 835 Energy... Concentration (DAC) for Workers From External Exposure During Immersion in a Cloud of Airborne Radioactive...-infinite cloud of airborne radioactive material. The DACs listed in this appendix may be modified to allow...

  14. Synchrotron macro ATR-FTIR microspectroscopic analysis of silica nanoparticle-embedded polyester coated steel surfaces subjected to prolonged UV and humidity exposure.

    Science.gov (United States)

    Vongsvivut, Jitraporn; Truong, Vi Khanh; Al Kobaisi, Mohammad; Maclaughlin, Shane; Tobin, Mark J; Crawford, Russell J; Ivanova, Elena P

    2017-01-01

    Surface modification of polymers and paints is a popular and effective way to enhance the properties of these materials. This can be achieved by introducing a thin coating that preserves the bulk properties of the material, while protecting it from environmental exposure. Suitable materials for such coating technologies are inorganic oxides, such as alumina, titania and silica; however, the fate of these materials during long-term environmental exposure is an open question. In this study, polymer coatings that had been enhanced with the addition of silica nanoparticles (SiO2NPs) and subsequently subjected to environmental exposure, were characterized both before and after the exposure to determine any structural changes resulting from the exposure. High-resolution synchrotron macro ATR-FTIR microspectroscopy and surface topographic techniques, including optical profilometry and atomic force microscopy (AFM), were used to determine the long-term effect of the environment on these dual protection layers after 3 years of exposure to tropical and sub-tropical climates in Singapore and Queensland (Australia). Principal component analysis (PCA) based on the synchrotron macro ATR-FTIR spectral data revealed that, for the 9% (w/w) SiO2NP/polymer coating, a clear discrimination was observed between the control group (no environmental exposure) and those samples subjected to three years of environmental exposure in both Singapore and Queensland. The PCA loading plots indicated that, over the three year exposure period, a major change occurred in the triazine ring vibration in the melamine resins. This can be attributed to the triazine ring being very sensitive to hydrolysis under the high humidity conditions in tropical/sub-tropical environments. This work provides the first direct molecular evidence, acquired using a high-resolution mapping technique, of the climate-induced chemical evolution of a polyester coating. The observed changes in the surface topography of the

  15. Fixed, Fluid, and Transient: Negotiating Layers of Art Classroom Material Culture

    Science.gov (United States)

    Woywod, Christine

    2015-01-01

    Objects of material culture have meaning. American flags, worktables, bulletin boards, interactive whiteboards, and large white-faced clocks signify "classroom" while color wheels, cupboards, cabinets, sinks, drawing supplies, and that particular scent that lingers after years of exposure to painting materials even more specifically…

  16. EXPURT - a model for evaluating exposure from radioactive material deposited in the urban environment

    International Nuclear Information System (INIS)

    Crick, M.J.; Brown, J.

    1990-06-01

    This model, EXPURT (EXPosure from Urban Radionuclide Transfer), is described in detail. The model simulates the movement of activity deposited on various surfaces in the urban environment and, by taking into account the shielding properties of buildings and the habits of the population, evaluates the external doses to members of the population living in such urban environments, as a function of time after deposition. One of the other advantages of EXPURT over simpler models is that it can be used to assess the possible dose reductions that might be achieved by various decontamination techniques; for example, it can estimate the effectiveness of decontaminating roof surfaces alone in reducing exposure to individuals living in an urban environment. Sensitivity/uncertainty studies have been performed whereby those parameters contributing most to remaining uncertainty in the model's predictions of dose and dose rates were identified. Predictions of the EXPURT model were compared with those from a simpler external dose model in use at NRPB. (author)

  17. Potential exposures and risks from beryllium-containing products.

    Science.gov (United States)

    Willis, Henry H; Florig, H Keith

    2002-10-01

    Beryllium is the strongest of the lightweight metals. Used primarily in military applications prior to the end of the Cold War, beryllium is finding new applications in many commercial products, including computers, telecommunication equipment, and consumer and automotive electronics. The use of beryllium in nondefense consumer applications is of concern because beryllium is toxic. Inhalation of beryllium dust or vapor causes a chronic lung disease in some individuals at concentrations as low as 0.01 microg/m3 in air. As beryllium enters wider commerce, it is prudent to ask what risks this might present to the general public and to workers downstream of the beryllium materials industry. We address this question by evaluating the potential for beryllium exposure from the manufacturing, use, recycle, and disposal of beryllium-containing products. Combining a market study with a qualitative exposure analysis, we determine which beryllium applications and life cycle phases have the largest exposure potential. Our analysis suggests that use and maintenance of the most common types of beryllium-containing products do not result in any obvious exposures of concern, and that maintenance activities result in greater exposures than product use. Product disposal has potential to present significant individual risks, but uncertainties concerning current and future routes of product disposal make it difficult to be definitive. Overall, additional exposure and dose-response data are needed to evaluate both the health significance of many exposure scenarios, and the adequacy of existing regulations to protect workers and the public. Although public exposures to beryllium and public awareness and concern regarding beryllium risks are currently low, beryllium risks have psychometric qualities that may lead to rapidly heightened public concern.

  18. Development of epoxy resin-type neutron shielding materials (I)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Soo Haeng; Kim, Ik Soo; Shin, Young Joon; Do, Jae Bum; Ro, Seung Gy

    1997-12-01

    Because the exposure to radiation in the nuclear facilities can be fatal to human, it is important to reduce the radiation dose level to a tolerable level. The purpose of this study is to develop highly effective neutron shielding materials for the shipping and storage cask of radioactive materials or in the nuclear /radiation facilities. On this study, we developed epoxy resin based neutron shielding materials and their various materials properties, including neutron shielding ability, fire resistance, combustion characteristics, radiation resistance, thermal and mechanical properties were evaluated experimentally. (author). 31 refs., 22 tabs., 17 figs.

  19. Children's exposure to harmful elements in toys and low-cost jewelry: Characterizing risks and developing a comprehensive approach

    International Nuclear Information System (INIS)

    Guney, Mert; Zagury, Gerald J.

    2014-01-01

    Highlights: • Risk for children up to 3 years-old was characterized considering oral exposure. • Saliva mobilization, ingestion of parts and of scraped-off material were considered. • Ingestion of parts caused hazard index (HI) values >>for Cd, Ni, and Pb exposure. • HI were lower (but > for saliva mobilization and 1, up to 75, 5.8, and 43, respectively). HI for ingestion of scraped-off material scenario was always 1 in three samples (two for Cd, one for Ni). Risk characterization identified different potentially hazardous items compared to United States, Canadian, and European Union approaches. A comprehensive approach was also developed to deal with complexity and drawbacks caused by various toy/jewelry definitions, test methods, exposure scenarios, and elements considered in different regulatory approaches. It includes bioaccessible limits for eight priority elements (As, Cd, Cr, Cu, Hg, Ni, Pb, and Sb). Research is recommended on metals bioaccessibility determination in toys/jewelry, in vitro bioaccessibility test development, estimation of material ingestion rates and frequency, presence of hexavalent Cr and organic Sn, and assessment of prolonged exposure to MJ

  20. Estimation of Cosmic Induced Contamination in Ultra-low Background Detector Materials

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.; Berguson, Timothy J.; Greene, Austen T.

    2012-08-01

    Executive Summary This document presents the result of investigating a way to reliably determine cosmic induced backgrounds for ultra-low background materials. In particular, it focuses on those radioisotopes produced by the interactions with cosmic ray particles in the detector materials that act as a background for experiments looking for neutrinoless double beta decay. This investigation is motivated by the desire to determine background contributions from cosmic ray activation of the electroformed copper that is being used in the construction of the MAJORANA DEMONSTRATOR. The most important radioisotope produced in copper that contributes to the background budget is 60Co, which has the potential to deposit energy in the region of interest of this experiment. Cobalt-60 is produced via cosmic ray neutron collisions in the copper. This investigation aims to provide a method for determining whether or not the copper has been exposed to cosmic radiation beyond the threshold which the Majorana Project has established as the maximum exposure. This threshold is set by the Project as the expected contribution of this source of background to the overall background budget. One way to estimate cosmic ray neutron exposure of materials on the surface of the Earth is to relate it to the cosmic ray muon exposure. Muons are minimum-ionizing particles and the available technologies to detect muons are easier to implement than those to detect neutrons. We present the results of using a portable, ruggedized muon detector, the µ-Witness made by our research group, for determination of muon exposure of materials for the MAJORANA DEMONSTRATOR. From the muon flux measurement, this report presents a method to estimate equivalent sea-level exposure, and then infer the neutron exposure of the tracked material and thus the cosmogenic activation of the copper. This report combines measurements of the muon flux taken by the µ-Witness detector with Geant4 simulations in order to assure our

  1. AlN ceramics as a detector for UV exposure

    International Nuclear Information System (INIS)

    Trinkler, L.; Berzina, B.; Boetter-Jensen, L.; Christensen, P.; Palcevskis, E.

    1999-01-01

    AlN-Y 2 O 3 ceramics is proposed for application in the field of UV detection and dosimetry. Both thermoluminescence (TL) and optically stimulated luminescence (OSL) signals from the material have been studied after exposure to UV light. AlN-Y 2 O 3 ceramics demonstrates very high sensitivity to UV light over a broad spectral region. The TL is characterized by a linear dose dependence over a large range. The fading rate of the UV-induced TL and OSL signals on storage at room temperature is lower than in the case of exposure to ionizing irradiation. (au)

  2. Moisture buffering capacity of highly absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Cerolini, S.; D' Orazio, M.; Stazi, A. [Department of Architecture, Construction and Structures (DACS), Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy); Di Perna, C. [Department of Energetics, Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy)

    2009-02-15

    This research investigates the possibility to use highly absorbing materials to dampen indoor RH% variations. The practical MBV of sodium polyacrylate, cellulose-based material, perlite and gypsum is evaluated for a daily cyclic exposure that alternates high (75%) and low (33%) RH% levels for 8 h and 16 h, respectively. The adjustment velocity to RH% variations and the presence of hysteretic phenomena are also presented. The cellulose-based material proves to be the most suitable for moisture buffering applications. Starting from this material's properties, the effect of thickness, vapour resistance factor ({mu}) and mass surface exchange coefficient (Z{sub v}) on sorption capacity is evaluated by the use of a numerical model. (author)

  3. Analysis of occupational accidents with biological material among professionals in pre-hospital services.

    Science.gov (United States)

    de Oliveira, Adriana Cristina; Paiva, Maria Henriqueta Rocha Siqueira

    2013-02-01

    To estimate the prevalence of accidents due to biological material exposure, the characteristics and post-accident conduct among professionals of pre-hospital services of the four municipalities of Minas Gerais, Brazil. A cross-sectional study, using a structured questionnaire that was developed to enable the calculation of prevalence, descriptive analysis and analytical analysis using logistic regression. The study included 228 professionals; the prevalence of accidents due to biological material exposure was 29.4%, with 49.2% percutaneous, 10.4% mucousal, 6.0% non-intact skin, and 34.4% intact skin. Among the professionals injured, those that stood out were nursing technicians (41.9%) and drivers (28.3%). Notification of the occurrence of the accident occurred in 29.8% of the cases. Percutaneous exposure was associated with time of work in the organization (OR=2.51, 95% CI: 1.18 to 5.35, paccidents with biological material should be encouraged, along with professional evaluation/monitoring.

  4. Materials concepts in PWR power plants. An overview

    International Nuclear Information System (INIS)

    Costa e Silva, A.L.V.

    1987-01-01

    Some measures to reduce the risk of exposure in case of nuclear accidents are presented. Some material questions concerning the integrity of reactor pressure vessel, the containment vessel and external systems are discussed. (E.G.) [pt

  5. Years of life lost due to external radiation exposure

    Directory of Open Access Journals (Sweden)

    Raičević Jagoš J.

    2004-01-01

    Full Text Available In this paper a new approach for calculation of the years of life lost per excess death due to stochastic health effects is applied to external exposure pathways. The short-term external exposures are due to the passage of radioactive cloud and due to the skin and clothes contamination. The long-term external exposure is the one from the radioactive material deposited on the ground (groundshine. Three nuclides, 131I, 137Cs, and 239Pu, and with the extremely wide range of half-life are considered in order to examine their possible influence on the calculated values of years of life lost. For each of these nuclides, the number of years of life lost has been found as a decreasing function of the age at the expo sure and presented graphically in this paper. For protracted exposures, the fully averaged number of years of life lost is negative correlated with the nuclide’s half-life. On the other hand, the short-term external exposures do not depend on the nuclide’s half-life. In addition, a weak years of life lost dependence of the dose has been commented.

  6. Special purpose materials for fusion application

    International Nuclear Information System (INIS)

    Scott, J.L.; Clinard, F.W. Jr.; Wiffen, F.W.

    1984-01-01

    Originally in 1978 the Special Purpose Materials Task Group was concerned with tritium breeding materials, coolants, tritium barriers, graphite and silicon carbide, ceramics, heat-sink materials, and magnet components. Since then several other task groups have been created, so now the category includes only materials for superconducting magnets and ceramics. For the former application copper-stabilized Nb 3 Sn (Ti) insulated with polyimides will meet the general requirements, so that testing of prototype components is the priority task. Ceramics are required for several critical components of fusion reactors either as dielectrics or as a structural material. Components near the first wall will receive exposures of 5 to 20 MW.year/m"2. Other ceramic applications are well behind the first wall, with lower damage levels. Most insulators operate near room temperature, but ceramic blanket structures may operate up to 1000 0 C. Because of a meager data base, one cannot identify optimum ceramics for structural application; but MgAl 2 O 4 is an attractive dielectric material

  7. Risk assessment of released cellulose nanocrystals – mimicking inhalatory exposure

    International Nuclear Information System (INIS)

    Endes, C; Vanhecke, D; Petri-Fink, A; Rothen-Rutishauser, B; Clift, M J D; Müller, S; Foster, E J; Weder, C; Schmid, O

    2013-01-01

    Cellulose nanocrystals (CNCs) exhibit advantageous chemical and mechanical properties that render them attractive for a wide range of applications. During the life-cycle of CNC containing materials the nanocrystals could be released and become airborne, posing a potential inhalatory exposure risk towards humans. Absent reliable and dose-controlled models that mimic this exposure in situ is a central issue in gaining an insight into the CNC-lung interaction. Here, an Air Liquid Interface Cell Exposure system (ALICE), previously designed for studies of spherical nanoparticles, was used for the first time to establish a realistic physiological exposure test method for inhaled fiber shaped nano-objects; in this case, CNCs isolated from cotton. Applying a microscopy based approach the spatially homogenous deposition of CNCs was demonstrated as a prerequisite of the functioning of the ALICE. Furthermore, reliability and controllability of the system to nebulise high aspect ratio nanomaterials (HARN, e.g. CNCs) was shown. This opens the potential to thoroughly investigate the inhalatory risk of CNCs in vitro using a realistic exposure system.

  8. Lead exposure from aluminum cookware in Cameroon

    International Nuclear Information System (INIS)

    Weidenhamer, Jeffrey D.; Kobunski, Peter A.; Kuepouo, Gilbert; Corbin, Rebecca W.; Gottesfeld, Perry

    2014-01-01

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  9. Lead exposure from aluminum cookware in Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Weidenhamer, Jeffrey D.; Kobunski, Peter A. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Kuepouo, Gilbert [Research and Education Centre for Development (CREPD), Yaounde (Cameroon); Corbin, Rebecca W. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Gottesfeld, Perry, E-mail: pgottesfeld@okinternational.org [Occupational Knowledge International, San Francisco, CA (United States)

    2014-10-15

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  10. Polychlorinated biphenyl sources, environmental levels, and exposures in school buildings

    Science.gov (United States)

    Background: Building materials and components containing polychlorinated biphenyls (PCBs) were used in some U.S. school buildings until the late 1970s and may be present today. There is limited information on source factors and occupant exposures. Methods: Analysis of PCBs in mat...

  11. Space Environmental Effects on Materials and Processes

    Science.gov (United States)

    Sabbann, Leslie M.

    2009-01-01

    The Materials and Processes (M&P) Branch of the Structural Engineering Division at Johnson Space Center (JSC) seeks to uphold the production of dependable space hardware through materials research, which fits into NASA's purpose of advancing human exploration, use, and development of space. The Space Environmental Effects projects fully support these Agency goals. Two tasks were assigned to support M&P. Both assignments were to further the research of material behavior outside of Earth's atmosphere in order to determine which materials are most durable and safe to use in space for mitigating risks. One project, the Materials on International Space Station Experiments (MISSE) task, was to compile data from International Space Station (ISS) experiments to pinpoint beneficial space hardware. The other project was researching the effects on composite materials of exposure to high doses of radiation for a Lunar habitat project.

  12. Framework for assessing the effects of radioactive materials transportation

    International Nuclear Information System (INIS)

    Zoller, J.N.

    1996-01-01

    Radioactive materials transport may result in environmental effects during both incident-free and accident conditions. These effects may be caused by radiation exposure, pollutants, or physical trauma. Recent environmental impact analyses involving the transportation of radioactive materials are cited to provide examples of the types of activities which may be involved as well as the environmental effects which can be estimated

  13. Materials, processes, and environmental engineering network

    Science.gov (United States)

    White, Margo M.

    1993-01-01

    The Materials, Processes, and Environmental Engineering Network (MPEEN) was developed as a central holding facility for materials testing information generated by the Materials and Processes Laboratory. It contains information from other NASA centers and outside agencies, and also includes the NASA Environmental Information System (NEIS) and Failure Analysis Information System (FAIS) data. Environmental replacement materials information is a newly developed focus of MPEEN. This database is the NASA Environmental Information System, NEIS, which is accessible through MPEEN. Environmental concerns are addressed regarding materials identified by the NASA Operational Environment Team, NOET, to be hazardous to the environment. An environmental replacement technology database is contained within NEIS. Environmental concerns about materials are identified by NOET, and control or replacement strategies are formed. This database also contains the usage and performance characteristics of these hazardous materials. In addition to addressing environmental concerns, MPEEN contains one of the largest materials databases in the world. Over 600 users access this network on a daily basis. There is information available on failure analysis, metals and nonmetals testing, materials properties, standard and commercial parts, foreign alloy cross-reference, Long Duration Exposure Facility (LDEF) data, and Materials and Processes Selection List data.

  14. Equipment for the handling of thorium materials

    International Nuclear Information System (INIS)

    Heisler, S.W. Jr.; Mihalovich, G.S.

    1988-01-01

    The Feed Materials Production Center (FMPC) is the United States Department of Energy's storage facility for thorium. FMPC thorium handling and overpacking projects ensure the continued safe handling and storage of the thorium inventory until final disposition of the materials is determined and implemented. The handling and overpacking of the thorium materials requires the design of a system that utilizes remote handling and overpacking equipment not currently utilized at the FMPC in the handling of uranium materials. The use of remote equipment significantly reduces radiation exposure to personnel during the handling and overpacking efforts. The design system combines existing technologies from the nuclear industry, the materials processing and handling industry and the mining industry. The designed system consists of a modified fork lift truck for the transport of thorium containers, automated equipment for material identification and inventory control, and remote handling and overpacking equipment for material identification and inventory control, and remote handling and overpacking equipment for repackaging of the thorium materials

  15. Facilitating Effects of Nanoparticles/Materials on Sensitive Immune-Related Lung Disorders

    International Nuclear Information System (INIS)

    Inoue, K.I.; Takano, H.

    2011-01-01

    Although the adverse health effects of nanoparticles/materials have been proposed and are being clarified, their facilitating effects on preexisting pathological conditions have not been fully examined. In this paper, we provide insights into the immunotoxicity of nanoparticles/materials as an aggravating factor in hyper susceptible subjects, especially those with immune-related respiratory disorders using our in vivo experimental model. We first exhibit the effects of nanoparticles/materials on lung inflammation induced by bacterial endotoxin (lipopolysaccharide: LPS) in vivo as a disease model in innate immunity, and demonstrated that nanoparticles instilled through both an intratracheal tube and an inhalation system can exacerbate the lung inflammation. Secondly, we introduce the effects of nanoparticles/materials on allergic asthma in vivo as a disease model in adaptive immunity, and showed that repetitive pulmonary exposure to nanoparticles has aggravating effects on allergic airway inflammation, including adjuvant effects on Th2-milieu. Taken together, nanoparticle exposure may synergistically facilitate pathological inflammatory conditions in the lung via both innate and adaptive immunological abnormalities.

  16. Unintended exposure in radiotherapy: Identification of prominent causes

    International Nuclear Information System (INIS)

    Boadu, Mary; Rehani, Madan Mohan

    2009-01-01

    Background and purpose: Unintended exposures in radiotherapy are likely to occur when certain conditions that favour such exposures exist. Based on the frequency of occurrence of various causes of 100 events of unintended exposures in radiotherapy as derived from the analysis of published reports, a checklist for assessing the vulnerability of radiotherapy facilities for potential accidents has been prepared. The list presents items to be considered for safety critical assessments of a radiotherapy department for the improvement of patient safety and the entire radiotherapy processes. Materials and methods: The resources used for this paper consist of 100 unintended radiotherapy exposures and were derived from existing published reports. The analysis was performed by forming two templates: one consisting of 10 initiating events and another of 35 contributing factors. Results: Four most prominent initiating events were identified and together accounted for about 70% of all the unintended exposure events. Ten most prominent contributing factors were also identified and together accounted for about 70% of all the radiotherapy unintended exposure events covered under this study. Conclusion: With this knowledge of high frequency of occurrences, the identified four prominent initiating events and the 10 most prominent contributing factors must be checked and dealt with as a matter of priority when assessing the safety of a radiotherapy facility. A simple checklist for checking the quality assurance programmes of a radiotherapy department for every aspect of the design and delivery of radiation have been provided.

  17. Dynamics of the G-excess illusion

    Science.gov (United States)

    Baylor, K. A.; Reschke, M.; Guedry, F. E.; Mcgrath, B. J.; Rupert, A. H.

    1992-01-01

    The G-excess illusion is increasingly recognized as a cause of aviation mishaps especially when pilots perform high-speed, steeply banked turns at low altitudes. Centrifuge studies of this illusion have examined the perception of subject orientation and/or target displacement during maintained hypergravity with the subject's head held stationary. The transient illusory perceptions produced by moving the head in hypergravity are difficult to study onboard centrifuges because the high angular velocity ensures the presence of strong Coriolis cross-coupled semicircular canal effects that mask immediate transient otolith-organ effects. The present study reports perceptions following head movements in hypergravity produced by high-speed aircraft maintaining a banked attitude with low angular velocity to minimize cross-coupled effects. Methods: Fourteen subjects flew on the NASA KC-135 and were exposed to resultant gravity forces of 1.3, 1.5, and 1.8 G for 3 minute periods. On command, seated subjects made controlled head movements in roll, pitch, and yaw at 30 second intervals both in the dark and with faint targets at a distance of 5 feet. Results: head movement produced transient perception of target displacement and velocity at levels as low as 1.3 G. Reports of target velocity without appropriate corresponding displacement were common. At 1.8 G when yaw head movements were made from a face down position, 4 subjects reported oscillatory rotational target displacement with fast and slow alternating components suggestive of torsional nystagmus. Head movements evoked symptoms of nausea in most subjects, with 2 subjects and 1 observer vomiting. Conclusions: The transient percepts present conflicting signals, which introduced confusion in target and subject orientation. Repeated head movements in hypergravity generate nausea by mechanisms distinct from cross-coupled Coriolis effects.

  18. Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope.

    Science.gov (United States)

    Toyota, Masatsugu; Ikeda, Norifumi; Sawai-Toyota, Satoe; Kato, Takehide; Gilroy, Simon; Tasaka, Masao; Morita, Miyo Terao

    2013-11-01

    The starch-statolith hypothesis proposes that starch-filled amyloplasts act as statoliths in plant gravisensing, moving in response to the gravity vector and signaling its direction. However, recent studies suggest that amyloplasts show continuous, complex movements in Arabidopsis shoots, contradicting the idea of a so-called 'static' or 'settled' statolith. Here, we show that amyloplast movement underlies shoot gravisensing by using a custom-designed centrifuge microscope in combination with analysis of gravitropic mutants. The centrifuge microscope revealed that sedimentary movements of amyloplasts under hypergravity conditions are linearly correlated with gravitropic curvature in wild-type stems. We next analyzed the hypergravity response in the shoot gravitropism 2 (sgr2) mutant, which exhibits neither a shoot gravitropic response nor amyloplast sedimentation at 1 g. sgr2 mutants were able to sense and respond to gravity under 30 g conditions, during which the amyloplasts sedimented. These findings are consistent with amyloplast redistribution resulting from gravity-driven movements triggering shoot gravisensing. To further support this idea, we examined two additional gravitropic mutants, phosphoglucomutase (pgm) and sgr9, which show abnormal amyloplast distribution and reduced gravitropism at 1 g. We found that the correlation between hypergravity-induced amyloplast sedimentation and gravitropic curvature of these mutants was identical to that of wild-type plants. These observations suggest that Arabidopsis shoots have a gravisensing mechanism that linearly converts the number of amyloplasts that settle to the 'bottom' of the cell into gravitropic signals. Further, the restoration of the gravitropic response by hypergravity in the gravitropic mutants that we tested indicates that these lines probably have a functional gravisensing mechanism that is not triggered at 1 g. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  19. Safe and Sustainable: Optimizing Material Flows in a Circular Economy

    DEFF Research Database (Denmark)

    Fantke, Peter

    (unsustainable). When maximizing resource use efficiency and reducing carbon and other emissions through recycling (sustainable), direct consumer exposure is often increased through cross-contamination of recycled materials (unsafe). Hence, circular economy currently fails to unite the required expertise...... to imultaneously increase sustainability and reduce exposure to chemicals in materials reused across life cycles of different products. For a way out of this dilemma, a paradigm shift is needed towards a comprehensive and quantitative assessment framework.......Increasing the sustainability of a globally connected economy is gaining wide attention in a world with limited natural resources and growing chemical pollution. The circular economy has emerged as away to reduce carbon and other emissions, while increasing resource efficiency over several product...

  20. Secondhand smoke exposure among non smoking adults in two ...

    African Journals Online (AJOL)

    Background: Tobacco control policy can only succeed if the burdens of smoking are known. The objective of this study was to determine the prevalence and correlates of secondhand smoke (SHS) exposure among nonsmoking adults in two Nigerian cities. Materials and Methods: We carried out a cross-sectional study from ...

  1. A new methodology for the assessment of hand protection from ultraviolet exposure.

    Science.gov (United States)

    Khazova, M; O'Hagan, J B; Grainger, K J-L

    2006-01-01

    A number of industrial applications and public services involve occupational exposure to ultraviolet radiation (UVR) from a variety of lamps and lasers. The aim of this study was to develop a methodology for the assessment of the UV protection level for disposable gloves. Glove UV protection factor is defined as a time-scale increase in exposure permitted for the hand protected by a glove with respect to an unprotected hand. Our study showed that for all tested gloves a change in UVR attenuation with stretching is characteristic for the type of glove material and can be included as a scaling factor in the definition of UVR protection. Glove material has a bigger effect on UVR protection level than variations in the glove thickness or its colour. Examples of assessment of the 'worst case scenario' are compared with the protection level against a number of sources, together with the guidance on a simplified evaluation protocol. An application-specific assessment, illustrated for 'SmartWater' forensic examinations and biological trans-illuminators, demonstrates that some gloves provide inadequate protection against occupational UV exposure.

  2. Mine haul road fugitive dust emission and exposure characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, R.J.; Visser, A.T. [University of Pretoria, Pretoria (South Africa). Dept. of Mining Engineering

    2001-03-01

    Excessive dust generation from mine haul roads is a problem common to most surface coal mining operations. Optimal wearing course material selection parameters reduce, but do not toally eliminate the potential to produce dust. For existing operations, which may not have optimally designed and maintained roads, the problem of identifying the haul road dust defect, quantifying its impact on both safety and health and assigning priorities within the constraints of limited capital and manpower is problematic. This is reflected in the fact that most surface mine operators agree dust-free roads are desirable, but find it difficult to translate this into cost-effective betterment activities. The aim of this paper is to describe fugitive dust emission and exposure characteristics associated with ultra-heavy mine haul trucks running on unpaved mine haul roads. Models are described which enable mines to assess the likely dustiness of their chosen haul road material as a function of surface loading of fines, traffic types and volume, together with various material parameters. By combining these models with the results of quantitative exposure profiling, a mine can, in conjunction with the assessment, determine the most cost- and safety-effective haul road dust management strategy. 18 refs., 10 figs., 2 tabs.

  3. ESA Parabolic Flight, Drop Tower and Centrifuge Opportunities for University Students

    Science.gov (United States)

    Callens, Natacha; Ventura-Traveset, Javier; Zornoza Garcia-Andrade, Eduardo; Gomez-Calero, Carlos; van Loon, Jack J. W. A.; Pletser, Vladimir; Kufner, Ewald; Krause, Jutta; Lindner, Robert; Gai, Frederic; Eigenbrod, Christian

    The European Space Agency (ESA) Education Office was established in 1998 with the purpose of motivating young people to study science, engineering and technology subjects and to ensure a qualified workforce for ESA and the European space sector in the future. To this end the ESA Education Office is supporting several hands-on activities including small student satellites and student experiments on sounding rockets, high altitude balloons as well as microgravity and hypergravity platforms. This paper is intended to introduce three new ESA Education Office hands-on activities called "Fly Your Thesis!", "Drop Your Thesis!" and "Spin Your Thesis!". These activities give re-spectively access to aircraft parabolic flight, drop tower and centrifuge campaigns to European students. These educational programmes offer university students the unique opportunity to design, build, and eventually perform, in microgravity or hypergravity, a scientific or techno-logical experiment which is linked to their syllabus. During the "Fly Your Thesis!" campaigns, the students accompany their experiments onboard the A300 Zero-G aircraft, operated by the company Novespace, based in Bordeaux, France, for a series of three flights of 30 parabolas each, with each parabola providing about 20s of microgravity [1]. "Drop Your Thesis!" campaigns are held in the ZARM Drop Tower, in Bremen, Germany. The installation delivers 4.74s of microgravity in dropping mode and 9.3s in the catapulting mode [2]. Research topics such as fluid physics, fundamental physics, combustion, biology, material sciences, heat transfer, astrophysics, chemistry or biochemistry can greatly benefit from using microgravity platforms. "Spin Your Thesis!" campaigns take place in the Large Diameter Centrifuge (LDC) facility, at ESTEC, Noordwijk, in the Netherlands. This facility offers an acceleration from 1 to 20 times Earth's gravity [3]. The use of hypergravity allows completing the scientific picture of how gravity has an

  4. Ultraviolet Testing of Space Suit Materials for Mars

    Science.gov (United States)

    Larson, Kristine; Fries, Marc

    2017-01-01

    Human missions to Mars may require radical changes in the approach to extra-vehicular (EVA) suit design. A major challenge is the balance of building a suit robust enough to complete multiple EVAs under intense ultraviolet (UV) light exposure without losing mechanical strength or compromising the suit's mobility. To study how the materials degrade on Mars in-situ, the Jet Propulsion Laboratory (JPL) invited the Advanced Space Suit team at NASA's Johnson Space Center (JSC) to place space suit materials on the Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) instrument's calibration target of the Mars 2020 rover. In order to select materials for the rover and understand the effects from Mars equivalent UV exposure, JSC conducted ground testing on both current and new space suit materials when exposed to 2500 hours of Mars mission equivalent UV. To complete this testing, JSC partnered with NASA's Marshall Space Flight Center to utilize their UV vacuum chambers. Materials tested were Orthofabric, polycarbonate, Teflon, Dacron, Vectran, spectra, bladder, nGimat coated Teflon, and nGimat coated Orthofabric. All samples were measured for mass, tensile strength, and chemical composition before and after radiation. Mass loss was insignificant (less than 0.5%) among the materials. Most materials loss tensile strength after radiation and became more brittle with a loss of elongation. Changes in chemical composition were seen in all radiated materials through Spectral Analysis. Results from this testing helped select the materials that will fly on the Mars 2020 rover. In addition, JSC can use this data to create a correlation to the chemical changes after radiation-which is what the rover will send back while on Mars-to the mechanical changes, such as tensile strength.

  5. Presenting of a material exposure health risk assessment model in Oil and Gas Industries (case study: Pars Economic and Energy Region

    Directory of Open Access Journals (Sweden)

    M. Heydari

    2014-02-01

    Result and Conclusion: The results revealed that the quantitative amount of consequence, probability and exposure was 83.2, 8.45, and 2.2, respectively. Generally, the chemical exposure risk number was 1546 which shows that reforming plans are in highly priorities from an economical point of view. William-fine method has the benefit of an accurate chemical exposure by combination of effect severity, exposure probability and detriment rate, and also minimization of personal judgments during the assessment.

  6. Exposure to natural sources of radiation in Spain

    International Nuclear Information System (INIS)

    Quindos, L.S.; Fernandez, P.L.; Soto, J.

    1992-01-01

    Studies carried by us during last three years have produced a map of natural radiation for Spain. The map contains, by administrative region, the respective contributions of terrestrial gamma rays, both outdoors and indoors, cosmic rays and indoor radon. Terrestrial gamma rays have been measured outdoors 'in situ' in more than 1,000 locations. Data for indoor gamma rays were derived from the radioactivity content of more typical spanish building materials as also by 'in situ'measurements in approximately 100 houses. The cosmic ray component is calculated from latitude and altitude. Values for indoor radon exposure have been derived from a national survey and covering more than 2,000 individual measurements employing active and passive detectors. When account is taken of exposures elsewhere, the mean annual effective dose equivalent from these sources is evaluated. Doses from thoron decay products and internal exposure due to natural activity retained in the body from diet are not dealt with in this evaluation. (author)

  7. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    International Nuclear Information System (INIS)

    Bero, M A; Abukassem, I

    2009-01-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  8. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    Science.gov (United States)

    Bero, M. A.; Abukassem, I.

    2009-05-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  9. Nonlinear phased analysis of reinforced concrete tunnels under fire exposure

    NARCIS (Netherlands)

    Lilliu, G.; Meda, A.

    2013-01-01

    Fire analysis of precast segmental tunnels involves several problems, mainly related to the soil-structure interaction during fire exposure, coupled with material degradation. Temperature increase in the tunnel is the cause of thermal expansion of the lining, which is resisted by the soil pressure.

  10. Dissolution of uranium oxide materials in simulated lung fluid

    International Nuclear Information System (INIS)

    Scripsick, R.C.; Soderholm, S.C.

    1985-01-01

    Depleted uranium (DU) oxide aerosols prepared in the laboratory and collected in the field were tested to characterize their dissolution in simulated lung fluid and to determine how dissolution is affected by aerosol preparation. DU, a by-product of the uranium fuel cycle, has been selected by the US military for use in several types of munitions. During development, manufacture, testing, and use of these munitions, opportunities exist for inhalation exposure to various (usually oxide) aerosol forms of DU. The hazard potential associated with such exposures is closely related to the chemical form, the size of the DU aerosol material, and its dissolution properties. Five DU sample materials produced by exposing uranium alloy penetrators to certain controlled oxidation atmospheres were studied (oxidation temperatures ranged from 500 to 900 0 C). In addition, two DU sample materials collected in the field were provided by the US Air Force. All sample materials were generated as aerosols and the respirable fraction was separated and collected. Data suggest that under some conditions a rapidly dissolving U 3 O 8 fraction may be formed concurrent with the production of UO 2

  11. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  12. Medium wave exposure characterisation using exposure quotients.

    Science.gov (United States)

    Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Pinar, Iván

    2010-06-01

    One of the aspects considered in the International Commission on Non-Ionizing Radiation Protection guidelines is that, in situations of simultaneous exposure to fields of different frequencies, exposure quotients for thermal and electrical stimulation effects should be examined. The aim of the present work was to analyse the electromagnetic radiation levels and exposure quotients for exposure to multiple-frequency sources in the vicinity of medium wave radio broadcasting antennas. The measurements were made with a spectrum analyser and a monopole antenna. Kriging interpolation was used to prepare contour maps and to estimate the levels in the towns and villages of the zone. The results showed that the exposure quotient criterion based on electrical stimulation effects to be more stringent than those based on thermal effects or power density levels. Improvement of dosimetry evaluations requires the spectral components of the radiation to be quantified, followed by application of the criteria for exposure to multiple-frequency sources.

  13. Construction materials and Radon

    International Nuclear Information System (INIS)

    Paschuk, Sergei A.; Correa, Janine Nicolosi; Loriane, Fior; Schelin, Hugo R.; Pottker, Fabiana; Paula Melo, Vicente de

    2008-01-01

    Full text: Current studies have been performed with the aim to find the correlation of radon concentration in the air and used construction materials. At the first stage of the measurements different samples of materials used in civil construction were studied as a source of radon in the air and at the second step it was studied the radon infiltration insulation using different samples of finishing materials. For 222 Rn concentration measurements related to different construction materials as well as for the studies of radon emanation and its reduction, the sealed cell chambers, of approximately 60 x 60cm 2 , have been built using the ceramic and concrete blocks. This construction has been performed within protected and isolated laboratory environment to maintain the air humidity and temperature stable. These long term measurements have been performed using polycarbonate alpha track passive detectors. The exposure time was set about 15 days considering previous calibration performed at the Institute of Radiation Protection and Dosimetry (IRD/CNEN), where the efficiency of 70% was obtained for the density of alpha particle tracks about 13.8 cm -2 per exposure day and per kBq/m 3 of radon activity concentration. The chemical development of alpha tracks has been achieved by electrochemical etching. The track identification and counting have been done using a code based on the MATLAB Image Processing Toolbox. The cell chambers have been built following four principle steps: 1) Assembling the walls using the blocks and mortar; 2) Plaster installation; 3) Wall surface finishing using the lime; 4) Wall surface insulation by paint. Making the comparison between three layers installed at the masonry walls from concrete and ceramic blocks, it could be concluded that only wall painting with acrylic varnish attended the expectation and reduced the radon emanation flow by the factor of 2.5 approximately. Studied construction materials have been submitted the instant

  14. Quantification of the lung cancer risk from radon daughter exposure in dwellings - an epidemiological approach

    International Nuclear Information System (INIS)

    Edling, C.; Wingren, G.; Axelson, O.

    1986-01-01

    Some epidemiological studies have suggested a relationship between the concentration of decay products from radon, i.e., radon daughter exposure, in dwellings and lung cancer. Further experiences made from radon measurements have indicated that both building material and particularly the radioactivity in the ground is of importance for the leakage of radon into the houses. In Sweden, a survey is now ongoing in 15 municipalities with alum shale deposits, and in one area a case-referent evaluation has been made, considering building materials, ground conditions and smoking habits. The size of the study is small, but the results suggest that a risk is at hand and that there is a multiplicative effect from smoking and radon daughter exposure. About 30% of the lung cancers in the studied population might be attributable to elevated and potentially avoidable exposure to radon and radon daughters. (author)

  15. The regulations concerning refining business of nuclear source material and nuclear fuel materials

    International Nuclear Information System (INIS)

    1987-01-01

    Regulations specified here cover application for designation of undertakings of refining (spallation and eaching filtration facilities, thickening facilities, refining facilities, nuclear material substances or nuclear fuel substances storage facilities, waste disposal facilities, etc.), application for permission for alteration (business management plan, procurement plan, fund raising plan, etc.), application for approval of merger (procedure, conditions, reason and date of merger, etc.), submission of report on alteration (location, structure, arrangements processes and construction plan for refining facilities, etc.), revocation of designation, rules for records, rules for safety (personnel, organization, safety training for employees, handling of important apparatus and tools, monitoring and removal of comtaminants, management of radioactivity measuring devices, inspection and testing, acceptance, transport and storage of nuclear material and fuel, etc.), measures for emergency, submission of report on abolition of an undertaking, submission of report on disorganization, measures required in the wake of revocation of designation, submission of information report (exposure to radioactive rays, stolen or missing nuclear material or nuclear fuel, unusual leak of nuclear fuel or material contaminated with nuclear fuel), etc. (Nogami, K.)

  16. Final Report - Assessment of Potential Phosphate Ion-Cementitious Materials Interactions

    International Nuclear Information System (INIS)

    Naus, Dan J.; Mattus, Catherine H.; Dole, Leslie Robert

    2007-01-01

    The objectives of this limited study were to: (1) review the potential for degradation of cementitious materials due to exposure to high concentrations of phosphate ions; (2) provide an improved understanding of any significant factors that may lead to a requirement to establish exposure limits for concrete structures exposed to soils or ground waters containing high levels of phosphate ions; (3) recommend, as appropriate, whether a limitation on phosphate ion concentration in soils or ground water is required to avoid degradation of concrete structures; and (4) provide a 'primer' on factors that can affect the durability of concrete materials and structures in nuclear power plants. An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a 'bench-scale' laboratory investigation. Results of these activities indicate that: no harmful interactions occur between phosphates and cementitious materials unless phosphates are present in the form of phosphoric acid; phosphates have been incorporated into concrete as set retarders, and phosphate cements have been used for infrastructure repair; no standards or guidelines exist pertaining to applications of reinforced concrete structures in high-phosphate environments; interactions of phosphate ions and cementitious materials has not been a concern of the research community; and laboratory results indicate similar performance of specimens cured in phosphate solutions and those cured in a calcium hydroxide solution after exposure periods of up to eighteen months. Relative to the 'primer,' a separate NUREG report has been prepared that provides a review of pertinent factors that can affect the durability of nuclear power plant reinforced concrete structures

  17. Final Report - Assessment of Potential Phosphate Ion-Cementitious Materials Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL; Mattus, Catherine H [ORNL; Dole, Leslie Robert [ORNL

    2007-06-01

    The objectives of this limited study were to: (1) review the potential for degradation of cementitious materials due to exposure to high concentrations of phosphate ions; (2) provide an improved understanding of any significant factors that may lead to a requirement to establish exposure limits for concrete structures exposed to soils or ground waters containing high levels of phosphate ions; (3) recommend, as appropriate, whether a limitation on phosphate ion concentration in soils or ground water is required to avoid degradation of concrete structures; and (4) provide a "primer" on factors that can affect the durability of concrete materials and structures in nuclear power plants. An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a "bench-scale" laboratory investigation. Results of these activities indicate that: no harmful interactions occur between phosphates and cementitious materials unless phosphates are present in the form of phosphoric acid; phosphates have been incorporated into concrete as set retarders, and phosphate cements have been used for infrastructure repair; no standards or guidelines exist pertaining to applications of reinforced concrete structures in high-phosphate environments; interactions of phosphate ions and cementitious materials has not been a concern of the research community; and laboratory results indicate similar performance of specimens cured in phosphate solutions and those cured in a calcium hydroxide solution after exposure periods of up to eighteen months. Relative to the "primer," a separate NUREG report has been prepared that provides a review of pertinent factors that can affect the durability of nuclear power plant reinforced concrete structures.

  18. National Surveillance of Occupational Exposure to the Human Immunodeficiency Virus

    Directory of Open Access Journals (Sweden)

    Maura Ricketts

    1992-01-01

    Full Text Available In September 1985, a prospective study was initiated to monitor the occurrence of occupational exposures to human immunodeficiency virus (HIV-infected blood and body fluids in Canada. This program was coordinated by the Federal Centre for acquired immune deficiency syndrome (AIDS (now the Division of HIV/AIDS Epidemiology at the Laboratory Centre for Disease Control. The objective was to determine the risk to workers of acquiring HIV infection as a result of exposure to HIV-infected blood and other body fluids. To be eligible, a worker must have sustained a documented parenteral, mucous membrane or skin contact exposure to blood or body fluids from an HIV-infected person. A baseline specimen was collected within a week of the exposure and then at six weeks, 12 weeks, six months and 12 months. Information concerning the type of exposure, precautions used and post exposure treatment was submitted to the Federal Centre for AIDS on standard data collection forms. All information was anonymous, identified only by a code number. Guidelines for counselling an exposed employee were provided with enrollment material. As of July 29, 1991, 414 employees have been included in the study. Two hundred and thirty-seven of the 414 exposures (57% were needlestick injuries of which 167 (70% were sustained by nurses. Other exposures consisted of open wound contamination, eye splashes, scalpel wounds and skin contact with blood and body fluids. To date, there have been no seroconversions among workers enrolled in the surveillance program.

  19. Analysis of accidents with organic material in health workers.

    Science.gov (United States)

    Vieira, Mariana; Padilha, Maria Itayra; Pinheiro, Regina Dal Castel

    2011-01-01

    This retrospective and descriptive study with a quantitative design aimed to evaluate occupational accidents with exposure to biological material, as well as the profile of workers, based on reporting forms sent to the Regional Reference Center of Occupational Health in Florianópolis/SC. Data collection was carried out through a survey of 118 reporting forms in 2007. Data were analyzed electronically. The occurrence of accidents was predominantly among nursing technicians, women and the mean age was 34.5 years. 73% of accidents involved percutaneous exposure, 78% had blood and fluid with blood, 44.91% resulted from invasive procedures. It was concluded that strategies to prevent the occurrence of accidents with biological material should include joint activities between workers and service management and should be directed at improving work conditions and organization.

  20. Overall Genomic Effects of the exposure to real and simulated gravity during Drosophila melanogaster metamorphosis

    Science.gov (United States)

    Marco, Roberto; Herranz, Raul; Lavan, David; Villa, Aida; Medina, Francisco Javier; van Loon, Jack W. A.

    where the adult flies are formed, starting from the larvae, provides an appropriated system where to answer the question, how general is the transcriptional response of a high organism such as Drosophila when exposed at unusual conditions such as those prevalent in Space and reproduced on the ground with more or less fidelity. Space experiments are always associated to strict experimental constraints caused by the specific requirements linked to this highly unusual environment. These constraints were partially introduced to make possible the fixation of our pupae in Space. The required levels of containment had the consequence of providing a limited amount of oxygen to the pupae inside the hermetic Type I container. Furthermore, it was necessary to cool down the early pupae to make possible that the majority of the pupal development occurred in Space. The compatibility of these constraints with the pupal development was tested. Furthermore, the ground control simulations could be run with or without the constraints. The results that will be reviewed in the presentation: metricconverterProductID1. A1. A large proportion of the genes responded to the Space conditions, very likely mostly to microgravity. 2. The constraints actually reinforced the gene response produced by the exposure to microgravity, making easier to detect the positive effect. 3. The Space results could be almost exactly reproduced on the ground simulation conditions. 5. Hypergravity although triggering a much less conspicuous response than microgravity, interestingly, changed the gene expression in an opposite directions to the one triggered by microgravity. The significance of these effects in long-term multigenerational experiments could provide the genetic basis for the adaptation to the new environmental parameters and indicate the way evolution could proceed. Manned space missions and the development of life support systems should take these findings into account. 1) Koonin, E. V. Chance and