WorldWideScience

Sample records for massive nearby cool

  1. Observational tests for the evolution of massive stars in nearby galaxies

    International Nuclear Information System (INIS)

    Leitherer, C.

    1990-01-01

    Population synthesis calculations applicable to the massive stellar content in nearby galaxies are presented. Stellar evolution calculations are combined with mass loss, model atmospheres with line blanketing, and a spectral type calibration to compute observable parameters of massive stars as a function of the star formation rate and the initial mass function slope. The number of O stars of given spectral types, the number of W-R stars, supernova rates, and fluxes of ionizing photons are predicted. Important constraints for the theories of stellar atmospheres and stellar evolution can be derived from observations if stellar number counts and ionizing flux data are available. 94 refs

  2. A Massive, Cooling-Flow-Induced Starburst in the Core of a Highly Luminous Galaxy Cluster

    Science.gov (United States)

    McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; hide

    2012-01-01

    In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should cool radiatively in the cluster s lifetime, leading to continuous "cooling flows" of gas sinking towards the cluster center, yet no such cooling flow has been observed. The low observed star formation rates and cool gas masses for these "cool core" clusters suggest that much of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical, and infrared observations of the galaxy cluster SPT-CLJ2344-4243 at z = 0.596. These observations reveal an exceptionally luminous (L(sub 2-10 keV) = 8.2 10(exp 45) erg/s) galaxy cluster which hosts an extremely strong cooling flow (M(sub cool) = 3820 +/- 530 Stellar Mass/yr). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (740 +/- 160 Stellar Mass/ yr), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form via accretion of the intracluster medium, rather than the current picture of central galaxies assembling entirely via mergers.

  3. Massive stars in galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1987-01-01

    The relationship between the morphologic type of a galaxy and the evolution of its massive stars is explored, reviewing observational results for nearby galaxies. The data are presented in diagrams, and it is found that the massive-star populations of most Sc spiral galaxies and irregular galaxies are similar, while those of Sb spirals such as M 31 and M 81 may be affected by morphology (via differences in the initial mass function or star-formation rate). Consideration is also given to the stability-related upper luminosity limit in the H-R diagram of hypergiant stars (attributed to radiation pressure in hot stars and turbulence in cool stars) and the goals of future observation campaigns. 88 references

  4. Black-hole-regulated star formation in massive galaxies

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  5. Black-hole-regulated star formation in massive galaxies.

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  6. NGC 1277: A MASSIVE COMPACT RELIC GALAXY IN THE NEARBY UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo, Ignacio; Vazdekis, Alexandre [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205-La Laguna, Tenerife (Spain); Ferré-Mateu, Anna [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Balcells, Marc [Isaac Newton Group of Telescopes, E-38700 Santa Cruz de La Palma, Canary Islands (Spain); Sánchez-Blázquez, Patricia, E-mail: trujillo@iac.es [Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049, Cantoblanco, Madrid (Spain)

    2014-01-10

    As early as 10 Gyr ago, galaxies with more than 10{sup 11} M {sub ☉} of stars already existed. While most of these massive galaxies must have subsequently transformed through on-going star formation and mergers with other galaxies, a small fraction (≲0.1%) may have survived untouched until today. Searches for such relic galaxies, useful windows to explore the early universe, have been inconclusive to date: galaxies with masses and sizes like those observed at high redshift (M {sub *} ≳ 10{sup 11} M {sub ☉}; R{sub e} ≲ 1.5 kpc) have been found in the local universe, but their stars are far too young for the galaxy to be a relic galaxy. This paper explores the first case of a nearby galaxy, NGC 1277 (at a distance of 73 Mpc in the Perseus galaxy cluster), which fulfills many criteria to be considered a relic galaxy. Using deep optical spectroscopy, we derive the star formation history along the structure of the galaxy: the stellar populations are uniformly old (>10 Gyr) with no evidence for more recent star formation episodes. The metallicity of their stars is super-solar ([Fe/H] = 0.20 ± 0.04 with a smooth decline toward the outer regions) and α-enriched ([α/Fe] = 0.4 ± 0.1). This suggests a very short formation time scale for the bulk of the stars in this galaxy. This object also rotates very fast (V {sub rot} ∼ 300 km s{sup –1}) and has a large central velocity dispersion (σ > 300 km s{sup –1}). NGC 1277 allows the exploration in full detail of properties such as the structure, internal dynamics, metallicity, and initial mass function as they were at ∼10-12 Gyr ago when the first massive galaxies were built.

  7. Data Mining of the Thermal Performance of Cool-Pipes in Massive Concrete via In Situ Monitoring

    OpenAIRE

    Zuo, Zheng; Hu, Yu; Li, Qingbin; Zhang, Liyuan

    2014-01-01

    Embedded cool-pipes are very important for massive concrete because their cooling effect can effectively avoid thermal cracks. In this study, a data mining approach to analyzing the thermal performance of cool-pipes via in situ monitoring is proposed. Delicate monitoring program is applied in a high arch dam project that provides a good and mass data source. The factors and relations related to the thermal performance of cool-pipes are obtained in a built theory thermal model. The supporting ...

  8. The distances of nearby cool carbon stars

    International Nuclear Information System (INIS)

    Bergeat, J.; Sibille, F.; Lunel, M.

    1978-01-01

    Distance ratios are provided for 38 cool carbon stars on the basis of a previous study (Bergeat et al., 1976 a,b,c). The validation of this distance scale is obtained through an analysis of stellar velocities. A relationship is established between proper motions and the distance scale. Luminosities and radii are derived for cool carbon stars which permit a discussion of their evolutionary status. Finally, evaluations are given for the rate of mass ejection corresponding to large graphite grains. (WL) [de

  9. Digging for red nuggets: discovery of hot halos surrounding massive, compact, relic galaxies

    Science.gov (United States)

    Werner, N.; Lakhchaura, K.; Canning, R. E. A.; Gaspari, M.; Simionescu, A.

    2018-04-01

    We present the results of Chandra X-ray observations of the isolated, massive, compact, relic galaxies MRK 1216 and PGC 032873. Compact massive galaxies observed at z > 2, also called red nuggets, formed in quick dissipative events and later grew by dry mergers into the local giant ellipticals. Due to the stochastic nature of mergers, a few of the primordial massive galaxies avoided the mergers and remained untouched over cosmic time. We find that the hot atmosphere surrounding MRK 1216 extends far beyond the stellar population and has an 0.5-7 keV X-ray luminosity of LX = (7.0 ± 0.2) × 1041 erg s-1, which is similar to the nearby X-ray bright giant ellipticals. The hot gas has a short central cooling time of ˜50 Myr and the galaxy has a ˜13 Gyr old stellar population. The presence of an X-ray atmosphere with a short nominal cooling time and the lack of young stars indicate the presence of a sustained heating source, which prevented star formation since the dissipative origin of the galaxy 13 Gyrs ago. The central temperature peak and the presence of radio emission in the core of the galaxy indicate that the heating source is radio-mechanical AGN feedback. Given that both MRK 1216 and PGC 032873 appear to have evolved in isolation, the order of magnitude difference in their current X-ray luminosity could be traced back to a difference in the ferocity of the AGN outbursts in these systems. Finally, we discuss the potential connection between the presence of hot halos around such massive galaxies and the growth of super/over-massive black holes via chaotic cold accretion.

  10. Data Mining of the Thermal Performance of Cool-Pipes in Massive Concrete via In Situ Monitoring

    Directory of Open Access Journals (Sweden)

    Zheng Zuo

    2014-01-01

    Full Text Available Embedded cool-pipes are very important for massive concrete because their cooling effect can effectively avoid thermal cracks. In this study, a data mining approach to analyzing the thermal performance of cool-pipes via in situ monitoring is proposed. Delicate monitoring program is applied in a high arch dam project that provides a good and mass data source. The factors and relations related to the thermal performance of cool-pipes are obtained in a built theory thermal model. The supporting vector machine (SVM technology is applied to mine the data. The thermal performances of iron pipes and high-density polyethylene (HDPE pipes are compared. The data mining result shows that iron pipe has a better heat removal performance when flow rate is lower than 50 L/min. It has revealed that a turning flow rate exists for iron pipe which is 80 L/min. The prediction and classification results obtained from the data mining model agree well with the monitored data, which illustrates the validness of the approach.

  11. Theoretical analysis of the performance of different cooling strategies with the concept of cool exergy

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air for the v......The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air...... for the ventilation system being outdoor air vs. air from the crawl-space, and air-to-water heat pump vs. ground heat exchanger as cooling source) on system exergy performance were investigated. It is crucial to minimize the cooling demand because it is possible to use a wide range of heat sinks (ground, lake, sea......-water, etc.) and indoor terminal units, only with a minimized demand. The water-based floor cooling system performed better than the air-based cooling system; when an air-to-water heat pump was used as the cooling source, the required exergy input was 28% smaller for the floor cooling system. The auxiliary...

  12. Rhapsody-G simulations I: the cool cores, hot gas and stellar content of massive galaxy clusters

    International Nuclear Information System (INIS)

    Hahn, Oliver; Martizzi, Davide; Wu, Hao-Yi

    2017-01-01

    We present the rhapsody-g suite of cosmological hydrodynamic zoom simulations of 10 massive galaxy clusters at the M vir ~10 15 M ⊙ scale. These simulations include cooling and subresolution models for star formation and stellar and supermassive black hole feedback. The sample is selected to capture the whole gamut of assembly histories that produce clusters of similar final mass. We present an overview of the successes and shortcomings of such simulations in reproducing both the stellar properties of galaxies as well as properties of the hot plasma in clusters. In our simulations, a long-lived cool-core/non-cool-core dichotomy arises naturally, and the emergence of non-cool cores is related to low angular momentum major mergers. Nevertheless, the cool-core clusters exhibit a low central entropy compared to observations, which cannot be alleviated by thermal active galactic nuclei feedback. For cluster scaling relations, we find that the simulations match well the M 500 –Y 500 scaling of Planck Sunyaev–Zeldovich clusters but deviate somewhat from the observed X-ray luminosity and temperature scaling relations in the sense of being slightly too bright and too cool at fixed mass, respectively. Stars are produced at an efficiency consistent with abundance-matching constraints and central galaxies have star formation rates consistent with recent observations. In conclusion, while our simulations thus match various key properties remarkably well, we conclude that the shortcomings strongly suggest an important role for non-thermal processes (through feedback or otherwise) or thermal conduction in shaping the intracluster medium.

  13. Probing the LHS Catalog. I. New Nearby Stars and the Coolest Subdwarf

    OpenAIRE

    Gizis, John E.; Reid, I. Neill

    1997-01-01

    We present moderate resolution spectroscopy of 112 cool dwarf stars to supplement the observations we have already presented in the Palomar/MSU Nearby-Star Spectroscopic Survey. The sample consists of 72 suspected nearby stars added to the The Preliminary Third Catalog of Nearby Stars since 1991 as well as 40 faint red stars selected from the LHS catalog. LHS 1826 is more metal-poor and cooler than the coolest previously known extreme subdwarf, LHS 1742a. LHS 2195 is a very late M dwarf of ty...

  14. State-of-the-art multi-wavelength observations of nearby brightest group/cluster galaxies

    Science.gov (United States)

    Gendron-Marsolais, Marie-Lou; Hlavacek-Larrondo, Julie

    2018-01-01

    Nearby galaxy groups and clusters are crucial to our understanding of the impact of nuclear outbursts on the intracluster medium as their proximity allows us to study in detail the processes of feedback from active galactic nuclei in these systems. In this talk, I will present state-of-the-art multi-wavelength observations signatures of this mechanism.I will first show results on multi-configuration 230-470 MHz observations of the Perseus cluster from the Karl G. Jansky Very Large Array, probing the non-thermal emission from the old particle population of the AGN outflows. These observations reveal a multitude of new structures associated with the “mini-halo” and illustrate the high-quality images that can be obtained with the new JVLA at low radio-frequencies.Second, I will present new observations with the optical imaging Fourier transform spectrometer SITELLE (CFHT) of NGC 1275, the Perseus cluster's brightest galaxy. With its wide field of view, it is the only integral field unit spectroscopy instrument able to cover the large emission-line filamentary nebula in NGC 1275. I will present the first detailed velocity map of this nebula in its entirety and tackle the question of its origin (residual cooling flow or dragged gas).Finally, I will present deep Chandra observations of the nearby early-type massive elliptical galaxy NGC 4472, the most optically luminous galaxy in the local Universe, lying on the outskirts of the Virgo cluster. Enhanced X-ray rims around the radio lobes are detected and interpreted as gas uplifted from the core by the buoyant rise of the radio bubbles. We estimate the energy required to lift the gas to constitute a significant fraction of the total outburst energy.I will thus show how these high-fidelity observations of nearby brightest group/cluster galaxies are improving our understanding of the AGN feedback mechanism taking place in galaxy groups and clusters.

  15. Early Growth and Efficient Accretion of Massive Black Holes at High Redshift

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2003-01-01

    Black-hole masses of the highest redshift quasars (4 ~ 4 quasars are very massive (>~ 10^9 solar masses). It is argued that the mass estimates of the high-z quasars are not subject to larger uncertainties than those for nearby quasars. Specifically, the large masses are not overestimates and the ......Black-hole masses of the highest redshift quasars (4 ~ 4 quasars are very massive (>~ 10^9 solar masses). It is argued that the mass estimates of the high-z quasars are not subject to larger uncertainties than those for nearby quasars. Specifically, the large masses are not overestimates...... and the lack of similarly large black-hole masses in the nearby Universe does not rule out their existence at high-z. However, AGN host galaxies do not typically appear fully formed or evolved at these early epochs. This supports scenarios in which black holes build up mass very fast in a radiatively...... inefficient (or obscured) phase relative to the stars in their galaxies. Additionally, upper envelopes of black-hole mass of approximately 10^{10} solar masses and bolometric luminosity of ~ 10^{48} erg/s are observed at all redshifts....

  16. THE ACS NEARBY GALAXY SURVEY TREASURY

    International Nuclear Information System (INIS)

    Dalcanton, Julianne J.; Williams, Benjamin F.; Rosema, Keith; Gogarten, Stephanie M.; Christensen, Charlotte; Gilbert, Karoline; Hodge, Paul; Seth, Anil C.; Dolphin, Andrew; Holtzman, Jon; Skillman, Evan D.; Weisz, Daniel; Cole, Andrew; Girardi, Leo; Karachentsev, Igor D.; Olsen, Knut; Freeman, Ken; Gallart, Carme; Harris, Jason; De Jong, Roelof S.

    2009-01-01

    The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D 4 in luminosity and star formation rate. The survey data consist of images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST), supplemented with archival data and new Wide Field Planetary Camera 2 (WFPC2) imaging taken after the failure of ACS. Survey images include wide field tilings covering the full radial extent of each galaxy, and single deep pointings in uncrowded regions of the most massive galaxies in the volume. The new wide field imaging in ANGST reaches median 50% completenesses of m F475W = 28.0 mag, m F606W = 27.3 mag, and m F814W = 27.3 mag, several magnitudes below the tip of the red giant branch (TRGB). The deep fields reach magnitudes sufficient to fully resolve the structure in the red clump. The resulting photometric catalogs are publicly accessible and contain over 34 million photometric measurements of >14 million stars. In this paper we present the details of the sample selection, imaging, data reduction, and the resulting photometric catalogs, along with an analysis of the photometric uncertainties (systematic and random), for both ACS and WFPC2 imaging. We also present uniformly derived relative distances measured from the apparent magnitude of the TRGB.

  17. HERSCHEL REVEALS MASSIVE COLD CLUMPS IN NGC 7538

    Energy Technology Data Exchange (ETDEWEB)

    Fallscheer, C.; Di Francesco, J.; Sadavoy, S. [Department of Physics and Astronomy, University of Victoria, P.O. Box 355, STN CSC, Victoria, BC V8W 3P6 (Canada); Reid, M. A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Martin, P. G.; Nguyen-Luong, Q. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Hill, T.; Hennemann, M.; Motte, F.; Men' shchikov, A.; Andre, Ph.; Konyves, V.; Sauvage, M. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/Service d' Astrophysique, Saclay, F-91191 Gif-sur-Yvette (France); Ward-Thompson, D.; Kirk, J. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, Lancashire, PR1 2HE (United Kingdom); Griffin, M. [School of Physics and Astronomy, Cardiff University, Queen' s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Rygl, K. L. J.; Benedettini, M. [INAF, Istituto di Astrofisica e Planetologia Spaziali, Area di Ricerca di Tor Vergata, via Fosso del Cavaliere 100, I-00133 Roma (Italy); Schneider, N. [Universite de Bordeaux, LAB, UMR 5804, F-33270, Floirac (France); Anderson, L. D. [Laboratoire d' Astrophysique de Marseille, CNRS/INSU, Universite de Provence, F-13388 Marseille Cedex 13 (France); and others

    2013-08-20

    We present the first overview of the Herschel observations of the nearby high-mass star-forming region NGC 7538, taken as part of the Herschel imaging study of OB young stellar objects (HOBYS) Key Programme. These PACS and SPIRE maps cover an approximate area of one square degree at five submillimeter and far-infrared wavebands. We have identified 780 dense sources and classified 224 of those. With the intention of investigating the existence of cold massive starless or class 0-like clumps that would have the potential to form intermediate- to high-mass stars, we further isolate 13 clumps as the most likely candidates for follow-up studies. These 13 clumps have masses in excess of 40 M{sub Sun} and temperatures below 15 K. They range in size from 0.4 pc to 2.5 pc and have densities between 3 Multiplication-Sign 10{sup 3} cm{sup -3} and 4 Multiplication-Sign 10{sup 4} cm{sup -3}. Spectral energy distributions are then used to characterize their energetics and evolutionary state through a luminosity-mass diagram. NGC 7538 has a highly filamentary structure, previously unseen in the dust continuum of existing submillimeter surveys. We report the most complete imaging to date of a large, evacuated ring of material in NGC 7538 which is bordered by many cool sources.

  18. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10.

    Science.gov (United States)

    Reines, Amy E; Sivakoff, Gregory R; Johnson, Kelsey E; Brogan, Crystal L

    2011-02-03

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  19. Two phase formation of massive elliptical galaxies: study through cross-correlation including spatial effect

    Science.gov (United States)

    Modak, Soumita; Chattopadhyay, Tanuka; Chattopadhyay, Asis Kumar

    2017-11-01

    Area of study is the formation mechanism of the present-day population of elliptical galaxies, in the context of hierarchical cosmological models accompanied by accretion and minor mergers. The present work investigates the formation and evolution of several components of the nearby massive early-type galaxies (ETGs) through cross-correlation function (CCF), using the spatial parameters right ascension (RA) and declination (DEC), and the intrinsic parameters mass (M_{*}) and size. According to the astrophysical terminology, here these variables, namely mass, size, RA and DEC are termed as parameters, whereas the unknown constants involved in the kernel function are called hyperparameters. Throughout this paper, the parameter size is used to represent the effective radius (Re). Following Huang et al. (2013a), each nearby ETG is divided into three parts on the basis of its Re value. We study the CCF between each of these three components of nearby massive ETGs and the ETGs in the high redshift range, 0.5conflict raised in a previous work (De et al. 2014) suggesting other possibilities for the formation of the outermost part. A probable cause of this improvement is the inclusion of the spatial effects in addition to the other parameters in the study.

  20. The Eating Habits of Giants and Dwarfs: Chemo-dynamics of Halo Assembly in Nearby Galaxies

    Science.gov (United States)

    Romanowsky, Aaron J.; SAGES Team

    2012-01-01

    I will present novel results on the halo assembly of nearby galaxies, from dwarfs to the most massive ellipticals, using Subaru imaging and Keck spectroscopy. Field stars, globular clusters, and planetary nebulae are used as wide-field chemo-dynamical tracers, mapping out halo substructures that were previously known and unknown. Comparisons are made with simulations of galaxy formation. Supported by the National Science Foundation Grants AST-0808099, AST-0909237, and AST-1109878.

  1. Temperature of Heating and Cooling of Massive, Thin, and Wedge-Shaped Plates from Hard-to-Machine Steels During Their Grinding

    Science.gov (United States)

    Dement‧ev, V. B.; Ivanova, T. N.; Dolginov, A. M.

    2017-01-01

    Grinding of flat parts occurs by solid abrasive particles due to the physicomechanical process of deformation and to the action of a process liquid at high temperatures in a zone small in volume and difficult for observation. The rate of heating and cooling depends on the change in the intensity of the heat flux and in the velocity and time of action of the heat source. A study has been made of the regularities of the influence of each of these parameters on the depth and character of structural transformations during the grinding of flat parts from hard-to-machine steels. A procedure to calculate temperature in grinding massive, thin, and wedge-shaped parts has been developed with account taken of the geometric and thermophysical parameters of the tool and the treated part, and also of cutting regimes. The procedure can be used as a constituent part in developing a system for automatic design of the technological process of grinding of flat surfaces. A relationship between the temperature in the grinding zone and the regimes of treatment has been established which makes it possible to control the quality of the surface layer of massive, thin, and wedge-shaped plates from hard-to-machine steels. The rational boundaries of shift of cutting regimes have been determined.

  2. Thermal Casimir effect in Kerr spacetime with quintessence and massive gravitons

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, V.B. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Christiansen, H.R. [Ciencia e Tecnologia do Ceara (IFCE), Departamento de Fisica, Instituto Federal de Educacao, Sobral, CE (Brazil); Cunha, M.S. [Universidade Estadual do Ceara, Grupo de Fisica Teorica (GFT), Fortaleza, CE (Brazil); Muniz, C.R.; Tahim, M.O. [Universidade Estadual do Ceara, Faculdade de Educacao, Ciencias e Letras do Sertao Central, Quixada, CE (Brazil)

    2017-11-15

    Starting from an analytical expression for the Helmholtz free energy we calculate the thermal corrections to the Casimir energy density and entropy within nearby ideal parallel plates in the vacuum of a massless scalar field. Our framework is the Kerr spacetime in the presence of quintessence and massive gravitons. The high and low temperature regimes are especially analyzed in order to distinguish the main contributions. For instance, in the high temperature regime, we show that the force between the plates is repulsive and grows with both the quintessence and the massive gravitons. Regarding the Casimir entropy, our results are in agreement with the Nernst heat theorem and therefore confirm the third law of thermodynamics in the present scenario. (orig.)

  3. The Influence of Galactic Outflows on the Formation of Nearby Dwarf Galaxies.

    Science.gov (United States)

    Scannapieco; Ferrara; Broadhurst

    2000-06-10

    We show that the gas in growing density perturbations is vulnerable to the influence of winds outflowing from nearby collapsed galaxies that have already formed stars. This suggests that the formation of nearby galaxies with masses less, similar10(9) M( middle dot in circle) is likely to be suppressed, irrespective of the details of galaxy formation. An impinging wind may shock-heat the gas of a nearby perturbation to above the virial temperature, thereby mechanically evaporating the gas, or the baryons may be stripped from the perturbation entirely if they are accelerated to above the escape velocity. We show that baryonic stripping is the most effective of these two processes, because shock-heated clouds that are too large to be stripped are able to radiatively cool within a sound crossing time, limiting evaporation. The intergalactic medium temperatures and star formation rates required for outflows to have a significant influence on the formation of low-mass galaxies are consistent with current observations, but may soon be examined directly via associated distortions in the cosmic microwave background and with near-infrared observations from the Next Generation Space Telescope, which may detect the supernovae from early-forming stars.

  4. The Formation and Evolution of the First Massive Black Holes

    OpenAIRE

    Haiman, Zoltan; Quataert, Eliot

    2004-01-01

    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes...

  5. Dusty supernovae running the thermodynamics of the matter reinserted within young and massive super stellar clusters

    Energy Technology Data Exchange (ETDEWEB)

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Martínez-González, Sergio [Instituto Nacional de Astrofísica Óptica y Electrónica, AP 51, 72000 Puebla (Mexico); Muñoz-Tuñón, Casiana [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Palouš, Jan; Wünsch, Richard, E-mail: gtt@inaoep.mx, E-mail: cmt@ll.iac.es [Astronomical Institute, Academy of Sciences of the Czech Republic, Boční II 1401, 141 31 Prague (Czech Republic)

    2013-12-01

    Following the observational and theoretical evidence that points at core-collapse supernovae (SNe) as major producers of dust, here we calculate the hydrodynamics of the matter reinserted within young and massive super stellar clusters under the assumption of gas and dust radiative cooling. The large SN rate expected in massive clusters allows for a continuous replenishment of dust immersed in the high temperature thermalized reinserted matter and warrants a stationary presence of dust within the cluster volume during the type II SN era. We first show that such a balance determines the range of the dust-to-gas-mass ratio, and thus the dust cooling law. We then search for the critical line that separates stationary cluster winds from the bimodal cases in the cluster mechanical luminosity (or cluster mass) versus cluster size parameter space. In the latter, strong radiative cooling reduces considerably the cluster wind mechanical energy output and affects particularly the cluster central regions, leading to frequent thermal instabilities that diminish the pressure and inhibit the exit of the reinserted matter. Instead, matter accumulates there and is expected to eventually lead to gravitational instabilities and to further stellar formation with the matter reinserted by former massive stars. The main outcome of the calculations is that the critical line is almost two orders of magnitude or more, depending on the assumed value of V {sub A∞}, lower than when only gas radiative cooling is applied. And thus, many massive clusters are predicted to enter the bimodal regime.

  6. Vortex Structure Effects on Impingement, Effusion, and Cross Flow Cooling of a Double Wall Configuration

    Science.gov (United States)

    Ligrani, P. M.

    2018-03-01

    A variety of different types of vortices and vortex structures have important influences on thermal protection, heat transfer augmentation, and cooling performance of impingement cooling, effusion cooling, and cross flow cooling. Of particular interest are horseshoe vortices, which form around the upstream portions of effusion coolant concentrations just after they exit individual holes, hairpin vortices, which develop nearby and adjacent to effusion coolant trajectories, and Kelvin-Helmholtz vortices which form within the shear layers that form around each impingement cooling jet. The influences of these different vortex structures are described as they affect and alter the thermal performance of effusion cooling, impingement cooling, and cross flow cooling, as applied to a double wall configuration.

  7. Subsurface deposition of Cu-rich massive sulphide underneath a Palaeoproterozoic seafloor hydrothermal system—the Red Bore prospect, Western Australia

    Science.gov (United States)

    Agangi, Andrea; Reddy, S. M.; Plavsa, D.; Vieru, C.; Selvaraja, V.; LaFlamme, C.; Jeon, H.; Martin, L.; Nozaki, T.; Takaya, Y.; Suzuki, K.

    2018-02-01

    The Proterozoic Bryah and Yerrida basins of Western Australia contain important base and precious metal deposits. Here we present microtextural data, trace element and S isotope analyses of massive sulphide mineralisation hosted in Palaeoproterozoic subvolcanic rocks (dolerite) recently discovered at Red Bore. The small-scale high-grade mineralisation, which extends from the sub-surface to at least 95 m down-hole, is dominated by massive chalcopyrite and contains minor pyrite and Bi-Te-(Se) phases. Massive sulphide mineralisation is surrounded by discontinuous brecciated massive magnetite, and a narrow (data are permissive of a genetic association of Red Bore mineralisation with VHMS deposits nearby, thus suggesting a direct connection between magmatism and mineralising fluids responsible for VHMS deposition at surface. Therefore, the Red Bore mineralisation may represent the magmatic roots of a VHMS system.

  8. Multi-wavelength study of young and massive galaxy clusters

    International Nuclear Information System (INIS)

    Lemonon, Ludovic

    1999-01-01

    Clusters of galaxies are the most massive objects gravitationally bound observed. They are the consequence of the evolution of most important perturbations in the cosmological microwave background. Their formation depends strongly of the cosmology, so they represent key objects to understand the Universe. The aim of this thesis is to study the processes of formation in clusters of galaxies well far away than previous studies clone, by high-resolution observations obtained by using most powerful telescope in each studied wavelength: X-ray, visible, infrared and radio. After data reductions of 12 clusters located at 0.1; z; 0.3, I was able to classified them in three categories: dynamically perturbed clusters, with substructures in their X-ray/optical image or velocity distribution of galaxies; cooling flows clusters, more relaxed than previous, with huge amount of gas cooling in their center; AGN contaminated, where the central dominant galaxy is an AGN which contaminate considerably the X-ray emission. I have obtained a measurement of the baryonic fraction of the Universe mass, and an estimation of the Universe matter density parameter at the mega-parsec scale, claiming for a low density universe. The ISOCAM data showed the effect of the ICM interactions on the star formation in cluster galaxies, and demonstrated that optical and mid-IR deduced star-formation are not basically compatible. They also showed how IR-emitting galaxies distribute in clusters, most noticeably how 15 um galaxies are located preferably on the edge of clusters. X-ray and radio data showed that clusters at z 0.25 could be find in several dynamical state, similarly with nearby ones, from relaxed to severely perturbed. All clusters present signs of past or present merging, in agreement with hierarchical structure formation scenario. This clusters database is an excellent starting point to study process of merging in clusters since they showed different aspect of this evolution. (author) [fr

  9. SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS

    International Nuclear Information System (INIS)

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.

    2010-01-01

    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 10 M sun , are mostly S0 galaxies, have a median effective radius (R e ) = 1.61 ± 0.29 kpc, a median Sersic index (n) = 3.0 ± 0.6, and very old stellar populations with a median mass-weighted age of 12.1 ± 1.3 Gyr. We calculate a number density of 2.9 x 10 -2 Mpc -3 for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10 -5 Mpc -3 in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z ∼ 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M * > 4 x 10 11 M sun compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  10. Mycobacteria in Finnish cooling tower waters.

    Science.gov (United States)

    Torvinen, Eila; Suomalainen, Sini; Paulin, Lars; Kusnetsov, Jaana

    2014-04-01

    Evaporative cooling towers are water systems used in, e.g., industry and telecommunication to remove excess heat by evaporation of water. Temperatures of cooling waters are usually optimal for mesophilic microbial growth and cooling towers may liberate massive amounts of bacterial aerosols. Outbreaks of legionellosis associated with cooling towers have been known since the 1980's, but occurrences of other potentially pathogenic bacteria in cooling waters are mostly unknown. We examined the occurrence of mycobacteria, which are common bacteria in different water systems and may cause pulmonary and other soft tissue infections, in cooling waters containing different numbers of legionellae. Mycobacteria were isolated from all twelve cooling systems and from 92% of the 24 samples studied. Their numbers in the positive samples varied from 10 to 7.3 × 10(4) cfu/L. The isolated species included M. chelonae/abscessus, M. fortuitum, M. mucogenicum, M. peregrinum, M. intracellulare, M. lentiflavum, M. avium/nebraskense/scrofulaceum and many non-pathogenic species. The numbers of mycobacteria correlated negatively with the numbers of legionellae and the concentration of copper. The results show that cooling towers are suitable environments for potentially pathogenic mycobacteria. Further transmission of mycobacteria from the towers to the environment needs examination. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  11. The Solar Neighborhood. XLII. Parallax Results from the CTIOPI 0.9 m Program—Identifying New Nearby Subdwarfs Using Tangential Velocities and Locations on the H–R Diagram

    Science.gov (United States)

    Jao, Wei-Chun; Henry, Todd J.; Winters, Jennifer G.; Subasavage, John P.; Riedel, Adric R.; Silverstein, Michele L.; Ianna, Philip A.

    2017-11-01

    Parallaxes, proper motions, and optical photometry are presented for 51 systems consisting of 37 cool subdwarf and 14 additional high proper motion systems. Thirty-seven systems have parallaxes reported for the first time, 15 of which have proper motions of at least 1″ yr‑1. The sample includes 22 newly identified cool subdwarfs within 100 pc, of which three are within 25 pc, and an additional five subdwarfs from 100 to 160 pc. Two systems—LSR 1610-0040 AB and LHS 440 AB—are close binaries exhibiting clear astrometric perturbations that will ultimately provide important masses for cool subdwarfs. We use the accurate parallaxes and proper motions provided here, combined with additional data from our program and others, to determine that effectively all nearby stars with tangential velocities greater than 200 km s‑1 are subdwarfs. We compare a sample of 167 confirmed cool subdwarfs to nearby main sequence dwarfs and Pleiades members on an observational Hertzsprung–Russell diagram using M V versus (V ‑ K s ) to map trends of age and metallicity. We find that subdwarfs are clearly separated for spectral types K5–M5, indicating that the low metallicities of subdwarfs set them apart in the H–R diagram for (V ‑ K s ) = 3–6. We then apply the tangential velocity cutoff and the subdwarf region of the H–R diagram to stars with parallaxes from Gaia Data Release 1 and the MEarth Project to identify a total of 29 new nearby subdwarf candidates that fall clearly below the main sequence.

  12. Squeezing-enhanced feedback cooling of a microresonator

    DEFF Research Database (Denmark)

    Kerdoncuff, Hugo

    Since its inception, quantum mechanics have not ceased to fascinate the scientific world, and especially the fundamental question about the famous Schrödinger's cat being alive or dead, or both, is still far from being answered. Although superposition states have been achieved with small particles......, such as photons or atoms, they have not yet been observed on large and massive objects consisting of billions of atoms. With the advance of cavity optomechanics, the quantum behavior of massive mechanical oscillators is becoming accessible and a major key requirement in this direction is the ability to cool...

  13. Formation of the First Star Clusters and Massive Star Binaries by Fragmentation of Filamentary Primordial Gas Clouds

    Science.gov (United States)

    Hirano, Shingo; Yoshida, Naoki; Sakurai, Yuya; Fujii, Michiko S.

    2018-03-01

    We perform a set of cosmological simulations of early structure formation incorporating baryonic streaming motions. We present a case where a significantly elongated gas cloud with ∼104 solar mass (M ⊙) is formed in a pre-galactic (∼107 M ⊙) dark halo. The gas streaming into the halo compresses and heats the massive filamentary cloud to a temperature of ∼10,000 Kelvin. The gas cloud cools rapidly by atomic hydrogen cooling, and then by molecular hydrogen cooling down to ∼400 Kelvin. The rapid decrease of the temperature and hence of the Jeans mass triggers fragmentation of the filament to yield multiple gas clumps with a few hundred solar masses. We estimate the mass of the primordial star formed in each fragment by adopting an analytic model based on a large set of radiation hydrodynamics simulations of protostellar evolution. The resulting stellar masses are in the range of ∼50–120 M ⊙. The massive stars gravitationally attract each other and form a compact star cluster. We follow the dynamics of the star cluster using a hybrid N-body simulation. We show that massive star binaries are formed in a few million years through multi-body interactions at the cluster center. The eventual formation of the remnant black holes will leave a massive black hole binary, which can be a progenitor of strong gravitational wave sources similar to those recently detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).

  14. The Evolution of Low-Metallicity Massive Stars

    Science.gov (United States)

    Szécsi, Dorottya

    2016-07-01

    Massive star evolution taking place in astrophysical environments consisting almost entirely of hydrogen and helium - in other words, low-metallicity environments - is responsible for some of the most intriguing and energetic cosmic phenomena, including supernovae, gamma-ray bursts and gravitational waves. This thesis aims to investigate the life and death of metal-poor massive stars, using theoretical simulations of the stellar structure and evolution. Evolutionary models of rotating, massive stars (9-600 Msun) with an initial metal composition appropriate for the low-metallicity dwarf galaxy I Zwicky 18 are presented and analyzed. We find that the fast rotating models (300 km/s) become a particular type of objects predicted only at low-metallicity: the so-called Transparent Wind Ultraviolet INtense (TWUIN) stars. TWUIN stars are fast rotating massive stars that are extremely hot (90 kK), very bright and as compact as Wolf-Rayet stars. However, as opposed to Wolf-Rayet stars, their stellar winds are optically thin. As these hot objects emit intense UV radiation, we show that they can explain the unusually high number of ionizing photons of the dwarf galaxy I Zwicky 18, an observational quantity that cannot be understood solely based on the normal stellar population of this galaxy. On the other hand, we find that the most massive, slowly rotating models become another special type of object predicted only at low-metallicity: core-hydrogen-burning cool supergiant stars. Having a slow but strong stellar wind, these supergiants may be important contributors in the chemical evolution of young galactic globular clusters. In particular, we suggest that the low mass stars observed today could form in a dense, massive and cool shell around these, now dead, supergiants. This scenario is shown to explain the anomalous surface abundances observed in these low mass stars, since the shell itself, having been made of the mass ejected by the supergiant’s wind, contains nuclear

  15. Disturbance Ecology from nearby Supernovae

    OpenAIRE

    Hartmann, D. H.; Kretschmer, K.; Diehl, R.

    2002-01-01

    Monte Carlo simulations of Galactic Supernovae are carried out to study the rate of nearby events, which may have a direct effect on Earth's ecology though ionizing radiation and cosmic ray bombardment. A nearby supernova may have left a radioactive imprint (60Fe) in recent galactic history.

  16. Cooling of hypernuclear compact stars

    Science.gov (United States)

    Raduta, Adriana R.; Sedrakian, Armen; Weber, Fridolin

    2018-04-01

    We study the thermal evolution of hypernuclear compact stars constructed from covariant density functional theory of hypernuclear matter and parametrizations which produce sequences of stars containing two-solar-mass objects. For the input in the simulations, we solve the Bardeen-Cooper-Schrieffer gap equations in the hyperonic sector and obtain the gaps in the spectra of Λ, Ξ0, and Ξ- hyperons. For the models with masses M/M⊙ ≥ 1.5 the neutrino cooling is dominated by hyperonic direct Urca processes in general. In the low-mass stars the (Λp) plus leptons channel is the dominant direct Urca process, whereas for more massive stars the purely hyperonic channels (Σ-Λ) and (Ξ-Λ) are dominant. Hyperonic pairing strongly suppresses the processes on Ξ-s and to a lesser degree on Λs. We find that intermediate-mass 1.5 ≤ M/M⊙ ≤ 1.8 models have surface temperatures which lie within the range inferred from thermally emitting neutron stars, if the hyperonic pairing is taken into account. Most massive models with M/M⊙ ≃ 2 may cool very fast via the direct Urca process through the (Λp) channel because they develop inner cores where the S-wave pairing of Λs and proton is absent.

  17. The first high resolution image of coronal gas in a starbursting cool core cluster

    Science.gov (United States)

    Johnson, Sean

    2017-08-01

    Galaxy clusters represent a unique laboratory for directly observing gas cooling and feedback due to their high masses and correspondingly high gas densities and temperatures. Cooling of X-ray gas observed in 1/3 of clusters, known as cool-core clusters, should fuel star formation at prodigious rates, but such high levels of star formation are rarely observed. Feedback from active galactic nuclei (AGN) is a leading explanation for the lack of star formation in most cool clusters, and AGN power is sufficient to offset gas cooling on average. Nevertheless, some cool core clusters exhibit massive starbursts indicating that our understanding of cooling and feedback is incomplete. Observations of 10^5 K coronal gas in cool core clusters through OVI emission offers a sensitive means of testing our understanding of cooling and feedback because OVI emission is a dominant coolant and sensitive tracer of shocked gas. Recently, Hayes et al. 2016 demonstrated that synthetic narrow-band imaging of OVI emission is possible through subtraction of long-pass filters with the ACS+SBC for targets at z=0.23-0.29. Here, we propose to use this exciting new technique to directly image coronal OVI emitting gas at high resolution in Abell 1835, a prototypical starbursting cool-core cluster at z=0.252. Abell 1835 hosts a strong cooling core, massive starburst, radio AGN, and at z=0.252, it offers a unique opportunity to directly image OVI at hi-res in the UV with ACS+SBC. With just 15 orbits of ACS+SBC imaging, the proposed observations will complete the existing rich multi-wavelength dataset available for Abell 1835 to provide new insights into cooling and feedback in clusters.

  18. The AGN Population in Nearby Galaxies

    International Nuclear Information System (INIS)

    Filho, Mercedes; Barthel, Peter; Ho, Luis

    2006-01-01

    In order to determine the incidence of black hole accretion-driven nuclear activity in nearby galaxies, we have compiled radio data for the LINERs, composite LINER,/Hn and Seyfert galaxies from a complete magnitude-limited sample of bright nearby galaxies (Palomar sample). Our results show an overall radio detection rate of 54% (22% of all bright nearby galaxies) and we estimate that at least ∼50% (∼20% of all bright nearby galaxies) are true AGN. By comparing the radio luminosity function of the LINERs, composite LINER/Hll and Seyferts galaxies in the Palomar sample with those of selected moderate-redshift AGN, we fhd that our sources naturally extend the radio luminosity function of powerful AGN down to powers of about 10 times that of Sgr A*

  19. On the evolution of vortices in massive protoplanetary discs

    Science.gov (United States)

    Pierens, Arnaud; Lin, Min-Kai

    2018-05-01

    It is expected that a pressure bump can be formed at the inner edge of a dead-zone, and where vortices can develop through the Rossby Wave Instability (RWI). It has been suggested that self-gravity can significantly affect the evolution of such vortices. We present the results of 2D hydrodynamical simulations of the evolution of vortices forming at a pressure bump in self-gravitating discs with Toomre parameter in the range 4 - 30. We consider isothermal plus non-isothermal disc models that employ either the classical β prescription or a more realistic treatment for cooling. The main aim is to investigate whether the condensating effect of self-gravity can stabilize vortices in sufficiently massive discs. We confirm that in isothermal disc models with Q ≳ 15, vortex decay occurs due to the vortex self-gravitational torque. For discs with 3≲ Q ≲ 7, the vortex develops gravitational instabilities within its core and undergoes gravitational collapse, whereas more massive discs give rise to the formation of global eccentric modes. In non-isothermal discs with β cooling, the vortex maintains a turbulent core prior to undergoing gravitational collapse for β ≲ 0.1, whereas it decays if β ≥ 1. In models that incorpore both self-gravity and a better treatment for cooling, however, a stable vortex is formed with aspect ratio χ ˜ 3 - 4. Our results indicate that self-gravity significantly impacts the evolution of vortices forming in protoplanetary discs, although the thermodynamical structure of the vortex is equally important for determining its long-term dynamics.

  20. The bright optical afterglow of the nearby gamma-ray burst of 29 March 2003.

    Science.gov (United States)

    Price, P A; Fox, D W; Kulkarni, S R; Peterson, B A; Schmidt, B P; Soderberg, A M; Yost, S A; Berger, E; Djorgovski, S G; Frail, D A; Harrison, F A; Sari, R; Blain, A W; Chapman, S C

    2003-06-19

    Past studies of cosmological gamma-ray bursts (GRBs) have been hampered by their extreme distances, resulting in faint afterglows. A nearby GRB could potentially shed much light on the origin of these events, but GRBs with a redshift z burst of 29 March 2003 (GRB030329; ref. 2). The brightness of the afterglow and the prompt report of its position resulted in extensive follow-up observations at many wavelengths, along with the measurement of the redshift, z = 0.169 (ref. 4). The gamma-ray and afterglow properties of GRB030329 are similar to those of GRBs at cosmological redshifts. Observations have already identified the progenitor as a massive star that exploded as a supernova.

  1. Enormous Disc of Cool Gas Surrounding the Nearby Powerful Radio Galaxy NGC 612 (PKS 0131-36)

    Science.gov (United States)

    2008-05-22

    galaxies in clus- ters appear to be much more devoid of H I gas, as sug- gested by a recent H I survey of the VIRGO cluster by di Serego Alighieri et...120th Street, New York, N.Y. 10027, USA 2Netherlands Foundation for Research in Astronomy, Postbus 2, 7990 AA Dwingeloo, the Netherlands 3Kapteyn...NGC 612. This paper is part of an ongoing study to map the large-scale neutral hydrogen properties of nearby radio galaxies and it presents the first

  2. The nearby supernova factory

    International Nuclear Information System (INIS)

    Wood-Vasey, W.M.; Aldering, G.; Lee, B.C.; Loken, S.; Nugent, P.; Perlmutter, S.; Siegrist, J.; Wang, L.; Antilogus, P.; Astier, P.; Hardin, D.; Pain, R.; Copin, Y.; Smadja, G.; Gangler, E.; Castera, A.; Adam, G.; Bacon, R.; Lemonnier, J.-P.; Pecontal, A.; Pecontal, E.; Kessler, R.

    2004-01-01

    The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe Ia) at redshifts 0.03 < z < 0.08. This program will provide an exceptional data set of well-studied SNe in the nearby smooth Hubble flow that can be used as calibration for the current and future programs designed to use SNe to measure the cosmological parameters. The first key ingredient for this program is a reliable supply of Hubble-flow SNe systematically discovered in unprecedented numbers using the same techniques as those used in distant SNe searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction techniques and analysis have allowed us to increase our effective SN discovery rate to ∼12 SNe/month in 2003

  3. The incidence of stellar mergers and mass gainers among massive stars

    International Nuclear Information System (INIS)

    De Mink, S. E.; Sana, H.; Langer, N.; Izzard, R. G.; Schneider, F. R. N.

    2014-01-01

    Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8 −4 +9 % of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30 −15 +10 % of massive main-sequence stars are the products of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.

  4. DISCOVERY OF FIVE CANDIDATE ANALOGS FOR η CARINAE IN NEARBY GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Rubab [NASA Goddard Space Flight Center, MC 665, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Adams, Scott M.; Stanek, K. Z.; Kochanek, C. S. [Department of Astronomy, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); and others

    2015-12-20

    The late-stage evolution of very massive stars such as η Carinae may be dominated by episodic mass ejections that may later lead to Type II superluminous supernova (SLSN-II; e.g., SN 2006gy). However, as long as η Car is one of a kind, it is nearly impossible to quantitatively evaluate these possibilities. Here, we announce the discovery of five objects in the nearby (∼4–8 Mpc) massive star-forming galaxies M51, M83, M101, and NGC 6946 that have optical through mid-infrared (mid-IR) photometric properties consistent with the hitherto unique η Car. The Spitzer mid-IR spectral energy distributions of these L{sub bol} ≃ 3–8 × 10{sup 6} L{sub ⊙} objects rise steeply in the 3.6–8 μm bands and then turn over between 8 and 24 μm, indicating the presence of warm (∼400–600 K) circumstellar dust. Their optical counterparts in HST images are ∼1.5–2 dex fainter than their mid-IR peaks and require the presence of ∼5–10 M{sub ⊙} of obscuring material. Our finding implies that the rate of η Car–like events is a fraction f = 0.094 (0.040 < f < 0.21 at 90% confidence) of the core-collapse supernova (ccSN) rate. If there is only one eruption mechanism and Type II superluminous supernovae are due to ccSNe occurring inside these dense shells, then the ejection mechanism is likely associated with the onset of carbon burning (∼10{sup 3}–10{sup 4} years), which is also consistent with the apparent ages of massive Galactic shells.

  5. Thermal evolution of massive compact objects with dense quark cores

    International Nuclear Information System (INIS)

    Hess, Daniel; Sedrakian, Armen

    2011-01-01

    We examine the thermal evolution of a sequence of compact objects containing low-mass hadronic and high-mass quark-hadronic stars constructed from a microscopically motivated equation of state. The dependence of the cooling tracks in the temperature versus age plane is studied on the variations of the gaplessness parameter (the ratio of the pairing gap for red-green quarks to the electron chemical potential) and the magnitude of blue quark gap. The pairing in the red-green channel is modeled assuming an inhomogeneous superconducting phase to avoid tachionic instabilities and anomalies in the specific heat; the blue colored condensate is modeled as a Bardeen-Cooper-Schrieffer (BCS)-type color superconductor. We find that massive stars containing quark matter cool faster in the neutrino-cooling era if one of the colors (blue) is unpaired and/or the remaining colors (red-green) are paired in a inhomogeneous gapless superconducting state. The cooling curves show significant variations along the sequence, as the mass (or the central density) of the models is varied. This feature provides a handle for fine-tuning the models to fit the data on the surface temperatures of same-age neutron stars. In the late-time photon cooling era we observe inversion in the temperature arrangement of models, i.e., stars experiencing fast neutrino cooling are asymptotically hotter than their slowly cooling counterparts.

  6. Heaviest Stellar Black Hole Discovered in Nearby Galaxy

    Science.gov (United States)

    2007-10-01

    Astronomers have located an exceptionally massive black hole in orbit around a huge companion star. This result has intriguing implications for the evolution and ultimate fate of massive stars. The black hole is part of a binary system in M33, a nearby galaxy about 3 million light years from Earth. By combining data from NASA's Chandra X-ray Observatory and the Gemini telescope on Mauna Kea, Hawaii, the mass of the black hole, known as M33 X-7, was determined to be 15.7 times that of the Sun. This makes M33 X-7 the most massive stellar black hole known. A stellar black hole is formed from the collapse of the core of a massive star at the end of its life. Chandra X-ray Image of M33 X-7 Chandra X-ray Image of M33 X-7 "This discovery raises all sorts of questions about how such a big black hole could have been formed," said Jerome Orosz of San Diego State University, lead author of the paper appearing in the October 18th issue of the journal Nature. M33 X-7 orbits a companion star that eclipses the black hole every three and a half days. The companion star also has an unusually large mass, 70 times that of the Sun. This makes it the most massive companion star in a binary system containing a black hole. Hubble Optical Image of M33 X-7 Hubble Optical Image of M33 X-7 "This is a huge star that is partnered with a huge black hole," said coauthor Jeffrey McClintock of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "Eventually, the companion will also go supernova and then we'll have a pair of black holes." The properties of the M33 X-7 binary system - a massive black hole in a close orbit around a massive companion star - are difficult to explain using conventional models for the evolution of massive stars. The parent star for the black hole must have had a mass greater than the existing companion in order to have formed a black hole before the companion star. Gemini Optical Image of M33 X-7 Gemini Optical Image of M33 X-7 Such a massive star would

  7. Hydride Molecules towards Nearby Galaxies

    Science.gov (United States)

    Monje, Raquel R.; La, Ngoc; Goldsmith, Paul

    2018-06-01

    Observations carried out by the Herschel Space Observatory revealed strong spectroscopic signatures from light hydride molecules within the Milky Way and nearby active galaxies. To better understand the chemical and physical conditions of the interstellar medium, we conducted the first comprehensive survey of hydrogen fluoride (HF) and water molecular lines observed through the SPIRE Fourier Transform Spectrometer. By collecting and analyzing the sub-millimeter spectra of over two hundred sources, we found that the HF J = 1 - 0 rotational transition which occurs at approximately 1232 GHz was detected in a total of 39 nearby galaxies both in absorption and emission. The analysis will determine the main excitation mechanism of HF in nearby galaxies and provide steady templates of the chemistry and physical conditions of the ISM to be used in the early universe, where observations of hydrides are more scarce.

  8. THE MASSIVE STAR POPULATION IN M101. I. THE IDENTIFICATION AND SPATIAL DISTRIBUTION OF THE VISUALLY LUMINOUS STARS

    International Nuclear Information System (INIS)

    Grammer, Skyler; Humphreys, Roberta M.

    2013-01-01

    An increasing number of non-terminal giant eruptions are being observed by modern supernova and transient surveys. But very little is known about the origin of these giant eruptions and their progenitors, many of which are presumably very massive, evolved stars. Motivated by the small number of progenitors positively associated with these giant eruptions, we have begun a survey of the evolved massive star populations in nearby galaxies. The nearby, nearly face-on, giant spiral M101 is an excellent laboratory for studying a large population of very massive stars. In this paper, we present BVI photometry obtained from archival HST/ACS Wide Field Camera images of M101. We have produced a catalog of luminous stars with photometric errors <10% for V < 24.5 and 50% completeness down to V ∼ 26.5 even in regions of high stellar crowding. Using color and luminosity criteria, we have identified candidate luminous OB-type stars and blue supergiants, yellow supergiants, and red supergiants for future observation. We examine their spatial distributions across the face of M101 and find that the ratio of blue to red supergiants decreases by two orders of magnitude over the radial extent of M101 corresponding to 0.5 dex in metallicity. We discuss the resolved stellar content in the giant star-forming complexes NGC 5458, 5453, 5461, 5451, 5462, and 5449 and discuss their color-magnitude diagrams in conjunction with the spatial distribution of the stars to determine their spatio-temporal formation histories

  9. Hunting for Supermassive Black Holes in Nearby Galaxies With the Hobby-Eberly Telescope

    Science.gov (United States)

    van den Bosch, Remco C. E.; Gebhardt, Karl; Gültekin, Kayhan; Yıldırım, Akin; Walsh, Jonelle L.

    2015-05-01

    We have conducted an optical long-slit spectroscopic survey of 1022 galaxies using the 10 m Hobby-Eberly Telescope (HET) at McDonald Observatory. The main goal of the HET Massive Galaxy Survey (HETMGS) is to find nearby galaxies that are suitable for black hole mass measurements. In order to measure accurately the black hole mass, one should kinematically resolve the region where the black hole dominates the gravitational potential. For most galaxies, this region is much less than an arcsecond. Thus, black hole masses are best measured in nearby galaxies with telescopes that obtain high spatial resolution. The HETMGS focuses on those galaxies predicted to have the largest sphere-of-influence, based on published stellar velocity dispersions or the galaxy fundamental plane. To ensure coverage over galaxy types, the survey targets those galaxies across a face-on projection of the fundamental plane. We present the sample selection and resulting data products from the long-slit observations, including central stellar kinematics and emission line ratios. The full data set, including spectra and resolved kinematics, is available online. Additionally, we show that the current crop of black hole masses are highly biased toward dense galaxies and that especially large disks and low dispersion galaxies are under-represented. This survey provides the necessary groundwork for future systematic black hole mass measurement campaigns.

  10. HUNTING FOR SUPERMASSIVE BLACK HOLES IN NEARBY GALAXIES WITH THE HOBBY–EBERLY TELESCOPE

    International Nuclear Information System (INIS)

    Bosch, Remco C. E. van den; Yıldırım, Akin; Gebhardt, Karl; Walsh, Jonelle L.; Gültekin, Kayhan

    2015-01-01

    We have conducted an optical long-slit spectroscopic survey of 1022 galaxies using the 10 m Hobby–Eberly Telescope (HET) at McDonald Observatory. The main goal of the HET Massive Galaxy Survey (HETMGS) is to find nearby galaxies that are suitable for black hole mass measurements. In order to measure accurately the black hole mass, one should kinematically resolve the region where the black hole dominates the gravitational potential. For most galaxies, this region is much less than an arcsecond. Thus, black hole masses are best measured in nearby galaxies with telescopes that obtain high spatial resolution. The HETMGS focuses on those galaxies predicted to have the largest sphere-of-influence, based on published stellar velocity dispersions or the galaxy fundamental plane. To ensure coverage over galaxy types, the survey targets those galaxies across a face-on projection of the fundamental plane. We present the sample selection and resulting data products from the long-slit observations, including central stellar kinematics and emission line ratios. The full data set, including spectra and resolved kinematics, is available online. Additionally, we show that the current crop of black hole masses are highly biased toward dense galaxies and that especially large disks and low dispersion galaxies are under-represented. This survey provides the necessary groundwork for future systematic black hole mass measurement campaigns

  11. THE GROWTH OF COOL CORES AND EVOLUTION OF COOLING PROPERTIES IN A SAMPLE OF 83 GALAXY CLUSTERS AT 0.3 < z < 1.2 SELECTED FROM THE SPT-SZ SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Bautz, M. W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Vikhlinin, A.; Stalder, B.; Ashby, M. L. N.; Bayliss, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); De Haan, T. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Lin, H. W. [Caddo Parish Magnet High School, Shrevport, LA 71101 (United States); Aird, K. A. [University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bocquet, S.; Desai, S. [Department of Physics, Ludwig-Maximilians-Universitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Cho, H. M. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Clocchiatti, A., E-mail: mcdonald@space.mit.edu [Departamento de Astronomia y Astrosifica, Pontificia Universidad Catolica (Chile); and others

    2013-09-01

    We present first results on the cooling properties derived from Chandra X-ray observations of 83 high-redshift (0.3 < z < 1.2) massive galaxy clusters selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope data. We measure each cluster's central cooling time, central entropy, and mass deposition rate, and compare these properties to those for local cluster samples. We find no significant evolution from z {approx} 0 to z {approx} 1 in the distribution of these properties, suggesting that cooling in cluster cores is stable over long periods of time. We also find that the average cool core entropy profile in the inner {approx}100 kpc has not changed dramatically since z {approx} 1, implying that feedback must be providing nearly constant energy injection to maintain the observed ''entropy floor'' at {approx}10 keV cm{sup 2}. While the cooling properties appear roughly constant over long periods of time, we observe strong evolution in the gas density profile, with the normalized central density ({rho}{sub g,0}/{rho}{sub crit}) increasing by an order of magnitude from z {approx} 1 to z {approx} 0. When using metrics defined by the inner surface brightness profile of clusters, we find an apparent lack of classical, cuspy, cool-core clusters at z > 0.75, consistent with earlier reports for clusters at z > 0.5 using similar definitions. Our measurements indicate that cool cores have been steadily growing over the 8 Gyr spanned by our sample, consistent with a constant, {approx}150 M{sub Sun} yr{sup -1} cooling flow that is unable to cool below entropies of 10 keV cm{sup 2} and, instead, accumulates in the cluster center. We estimate that cool cores began to assemble in these massive systems at z{sub cool}=1.0{sup +1.0}{sub -0.2}, which represents the first constraints on the onset of cooling in galaxy cluster cores. At high redshift (z {approx}> 0.75), galaxy clusters may be classified as ''cooling flows

  12. Redshift differences of galaxies in nearby groups

    Science.gov (United States)

    Harrison, E. R.

    1975-01-01

    It is reported that galaxies in nearby groups exhibit anomalous nonvelocity redshifts. In this discussion, (1) four classes of nearby groups of galacies are analyzed, and no significant nonvelocity redshift effect is found; and (2) it is pointed out that transverse velocities (i.e., velocities transverse to the line of sight of the main galaxy, or center of mass) contribute components to the redshift measurements of companion galaxies. The redshifts of galaxies in nearby groups of appreciable angular size are considerably affected by these velocity projection effects. The transverse velocity contributions average out in rich, isotropic groups, and also in large samples of irregular groups of low membership, as in the four classes referred to in (1), but can introduce apparent discrepancies in small samples (as studied by Arp) of nearby groups of low membership.

  13. New prospects for detecting high-energy neutrinos from nearby supernovae

    Science.gov (United States)

    Murase, Kohta

    2018-04-01

    Neutrinos from supernovae (SNe) are crucial probes of explosive phenomena at the deaths of massive stars and neutrino physics. High-energy neutrinos are produced through hadronic processes by cosmic rays, which are accelerated during interaction between the supernova (SN) ejecta and circumstellar material (CSM). Recent observations of extragalactic SNe have revealed that a dense CSM is commonly expelled by the progenitor star. We provide new quantitative predictions of time-dependent high-energy neutrino emission from diverse types of SNe. We show that IceCube and KM3Net can detect ˜103 events from a SN II-P (and ˜3 ×105 events from a SN IIn) at a distance of 10 kpc. The new model also enables us to critically optimize the time window for dedicated searches for nearby SNe. A successful detection will give us a multienergy neutrino view of SN physics and new opportunities to study neutrino properties, as well as clues to the cosmic-ray origin. GeV-TeV neutrinos may also be seen by KM3Net, Hyper-Kamiokande, and PINGU.

  14. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34.

    Science.gov (United States)

    Riechers, Dominik A; Bradford, C M; Clements, D L; Dowell, C D; Pérez-Fournon, I; Ivison, R J; Bridge, C; Conley, A; Fu, Hai; Vieira, J D; Wardlow, J; Calanog, J; Cooray, A; Hurley, P; Neri, R; Kamenetzky, J; Aguirre, J E; Altieri, B; Arumugam, V; Benford, D J; Béthermin, M; Bock, J; Burgarella, D; Cabrera-Lavers, A; Chapman, S C; Cox, P; Dunlop, J S; Earle, L; Farrah, D; Ferrero, P; Franceschini, A; Gavazzi, R; Glenn, J; Solares, E A Gonzalez; Gurwell, M A; Halpern, M; Hatziminaoglou, E; Hyde, A; Ibar, E; Kovács, A; Krips, M; Lupu, R E; Maloney, P R; Martinez-Navajas, P; Matsuhara, H; Murphy, E J; Naylor, B J; Nguyen, H T; Oliver, S J; Omont, A; Page, M J; Petitpas, G; Rangwala, N; Roseboom, I G; Scott, D; Smith, A J; Staguhn, J G; Streblyanska, A; Thomson, A P; Valtchanov, I; Viero, M; Wang, L; Zemcov, M; Zmuidzinas, J

    2013-04-18

    Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.

  15. Astrophysical Implications of a New Dynamical Mass for the Nearby White Dwarf 40 Eridani B

    Science.gov (United States)

    Bond, Howard E.; Bergeron, P.; Bédard, A.

    2017-10-01

    The bright, nearby DA-type white dwarf (WD) 40 Eridani B is orbited by the M dwarf 40 Eri C, allowing determination of the WD’s mass. Until recently, however, the mass depended on orbital elements determined four decades ago, and that mass was so low that it created several astrophysical puzzles. Using new astrometric measurements, the binary-star group at the U.S. Naval Observatory has revised the dynamical mass upward, to 0.573 ± 0.018 M ⊙. In this paper, we use model-atmosphere analysis to update other parameters of the WD, including effective temperature, surface gravity, radius, and luminosity. We then compare these results with WD interior models. Within the observational uncertainties, theoretical cooling tracks for CO-core WDs of its measured mass are consistent with the position of 40 Eri B in the H-R diagram; equivalently, the theoretical mass-radius relation (MRR) is consistent with the star’s location in the mass-radius plane. This consistency is, however, achieved only if we assume a “thin” outer hydrogen layer, with q H = M H/M WD ≃ 10-10. We discuss other evidence that a significant fraction of DA WDs have such thin H layers, in spite of the expectation from canonical stellar-evolution theory of “thick” H layers with q H ≃ 10-4. The cooling age of 40 Eri B is ˜122 Myr, and its total age is ˜1.8 Gyr. We present the MRRs for 40 Eri B and three other nearby WDs in visual binaries with precise mass determinations, and show that the agreement of current theory with observations is excellent in all cases.

  16. A survey of the molecular ISM properties of nearby galaxies using the Herschel FTS

    Energy Technology Data Exchange (ETDEWEB)

    Kamenetzky, J. [Also at Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA. (United States); Rangwala, N. [Visiting Scientist, Space Science and Astrobiology Division, NASA Ames Research Center. (United States); Glenn, J.; Maloney, P. R.; Conley, A., E-mail: jkamenetzky@as.arizona.edu [Center for Astrophysics and Space Astronomy, University of Colorado at Boulder, 389-UCB, Boulder, CO (United States)

    2014-11-10

    The {sup 12}CO J = 4 → 3 to J = 13 → 12 lines of the interstellar medium from nearby galaxies, newly observable with the Herschel SPIRE Fourier transform spectrometer, offer an opportunity to study warmer, more luminous molecular gas than that traced by {sup 12}CO J = 1 → 0. Here we present a survey of 17 nearby infrared-luminous galaxy systems (21 pointings). In addition to photometric modeling of dust, we modeled full {sup 12}CO spectral line energy distributions from J = 1 → 0 to J = 13 → 12 with two components of warm and cool CO gas, and included LTE analysis of [C I], [C II], [N II], and H{sub 2} lines. CO is emitted from a low-pressure/high-mass component traced by the low-J lines and a high-pressure/low-mass component that dominates the luminosity. We found that, on average, the ratios of the warm/cool pressure, mass, and {sup 12}CO luminosity are 60 ± 30, 0.11 ± 0.02, and 15.6 ± 2.7. The gas-to-dust-mass ratios are <120 throughout the sample. The {sup 12}CO luminosity is dominated by the high-J lines and is 4 × 10{sup –4} L {sub FIR} on average. We discuss systematic effects of single-component and multi-component CO modeling (e.g., single-component J ≤ 3 models overestimate gas pressure by ∼0.5 dex), as well as compare to Galactic star-forming regions. With this comparison, we show the molecular interstellar medium of starburst galaxies is not simply an ensemble of Galactic-type giant molecular clouds. The warm gas emission is likely dominated by regions resembling the warm extended cloud of Sgr B2.

  17. A SPECTROSCOPIC SURVEY OF MASSIVE STARS IN M31 AND M33

    Energy Technology Data Exchange (ETDEWEB)

    Massey, Philip; Neugent, Kathryn F.; Smart, Brianna M., E-mail: phil.massey@lowell.edu, E-mail: kneugent@lowell.edu, E-mail: bsmart@astro.wisc.edu [Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-09-01

    We describe our spectroscopic follow-up to the Local Group Galaxy Survey (LGGS) photometry of M31 and M33. We have obtained new spectroscopy of 1895 stars, allowing us to classify 1496 of them for the first time. Our study has identified many foreground stars, and established membership for hundreds of early- and mid-type supergiants. We have also found nine new candidate luminous blue variables and a previously unrecognized Wolf–Rayet star. We republish the LGGS M31 and M33 catalogs with improved coordinates, and including spectroscopy from the literature and our new results. The spectroscopy in this paper is responsible for the vast majority of the stellar classifications in these two nearby spiral neighbors. The most luminous (and hence massive) of the stars in our sample are early-type B supergiants, as expected; the more massive O stars are more rare and fainter visually, and thus mostly remain unobserved so far. The majority of the unevolved stars in our sample are in the 20–40 M {sub ⊙} range.

  18. Quantum superposition of massive objects and collapse models

    International Nuclear Information System (INIS)

    Romero-Isart, Oriol

    2011-01-01

    We analyze the requirements to test some of the most paradigmatic collapse models with a protocol that prepares quantum superpositions of massive objects. This consists of coherently expanding the wave function of a ground-state-cooled mechanical resonator, performing a squared position measurement that acts as a double slit, and observing interference after further evolution. The analysis is performed in a general framework and takes into account only unavoidable sources of decoherence: blackbody radiation and scattering of environmental particles. We also discuss the limitations imposed by the experimental implementation of this protocol using cavity quantum optomechanics with levitating dielectric nanospheres.

  19. Quantum superposition of massive objects and collapse models

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Isart, Oriol [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany)

    2011-11-15

    We analyze the requirements to test some of the most paradigmatic collapse models with a protocol that prepares quantum superpositions of massive objects. This consists of coherently expanding the wave function of a ground-state-cooled mechanical resonator, performing a squared position measurement that acts as a double slit, and observing interference after further evolution. The analysis is performed in a general framework and takes into account only unavoidable sources of decoherence: blackbody radiation and scattering of environmental particles. We also discuss the limitations imposed by the experimental implementation of this protocol using cavity quantum optomechanics with levitating dielectric nanospheres.

  20. STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827

    International Nuclear Information System (INIS)

    Carrasco, E. R.; Gomez, P. L.; Lee, H.; Diaz, R.; Bergmann, M.; Turner, J. E. H.; Miller, B. W.; West, M. J.; Verdugo, T.

    2010-01-01

    We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z ∼ 0.2. Located ∼20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z ∼ 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG), and other galaxies. We derive a total mass of (2.7 ± 0.4) x 10 13 M sun within 37 h -1 kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.

  1. Massive branes

    International Nuclear Information System (INIS)

    Bergshoeff, E.; Ortin, T.

    1998-01-01

    We investigate the effective world-volume theories of branes in a background given by (the bosonic sector of) 10-dimensional massive IIA supergravity (''''massive branes'''') and their M-theoretic origin. In the case of the solitonic 5-brane of type IIA superstring theory the construction of the Wess-Zumino term in the world-volume action requires a dualization of the massive Neveu-Schwarz/Neveu-Schwarz target space 2-form field. We find that, in general, the effective world-volume theory of massive branes contains new world-volume fields that are absent in the massless case, i.e. when the mass parameter m of massive IIA supergravity is set to zero. We show how these new world-volume fields can be introduced in a systematic way. (orig.)

  2. The CGM of Massive Galaxies: Where Cold Gas Goes to Die?

    Science.gov (United States)

    Howk, Jay

    2017-08-01

    We propose to survey the cold HI content and metallicity of the circumgalactic medium (CGM) around 50 (45 new, 5 archival) z 0.5 Luminous Red Galaxies (LRGs) to directly test a fundamental prediction of galaxy assembly models: that cold, metal-poor accretion does not survive to the inner halos of very massive galaxies. Accretion and feedback through the CGM play key roles in our models of the star formation dichotomy in galaxies. Low mass galaxies are thought to accrete gas in cold streams, while high mass galaxies host hot, dense halos that heat incoming gas and prevent its cooling, thereby quenching star formation. HST/COS has provided evidence for cold, metal-poor streams in the halos of star-forming galaxies (consistent with cold accretion). Observations have also demonstrated the presence of cool gas in the halos of passive galaxies, a potential challenge to the cold/hot accretion model. Our proposed observations will target the most massive galaxies and address the origin of the cool CGM gas by measuring the metallicity. This experiment is enabled by our novel approach to deriving metallicities, allowing the use of much fainter QSOs. It cannot be done with archival data, as these rare systems are not often probed along random sight lines. The H I column density (and metallicity) measurements require access to the UV. The large size of our survey is crucial to robustly assess whether the CGM in these galaxies is unique from that of star-forming systems, a comparison that provides the most stringent test of cold-mode accretion/quenching models to date. Conversely, widespread detections of metal-poor gas in these halos will seriously challenge the prevailing theory.

  3. Expanded calculation of weak-interaction-mediated neutrino cooling rates due to 56Ni in stellar matter

    International Nuclear Information System (INIS)

    Nabi, Jameel-Un

    2010-01-01

    An accurate estimate of the neutrino cooling rates is required in order to study the various stages of stellar evolution of massive stars. Neutrino losses from proto-neutron stars play a crucial role in deciding whether these stars would be crushed into black holes or explode as supernovae. Both pure leptonic and weak-interaction processes contribute to the neutrino energy losses in stellar matter. At low temperatures and densities, the characteristics of the early phase of presupernova evolution, cooling through neutrinos produced via the weak interaction, are important. Proton-neutron quasi-particle random phase approximation (pn-QRPA) theory has recently been used with success for the calculation of stellar weak-interaction rates of fp-shell nuclide. The lepton-to-baryon ratio (Y e ) during early phases of stellar evolution of massive stars changes substantially, mainly due to electron captures on 56 Ni. The stellar matter is transparent to the neutrinos produced during the presupernova evolution of massive stars. These neutrinos escape the site and assist the stellar core in maintaining a lower entropy. Here, an expanded calculation of weak-interaction-mediated neutrino and antineutrino cooling rates due to 56 Ni in stellar matter using the pn-QRPA theory is presented. This detailed scale is appropriate for interpolation purposes and is of greater utility for simulation codes. The calculated rates are compared with earlier calculations. During the relevant temperature and density regions of stellar matter the reported rates show few differences compared with the shell model rates and might contribute in fine-tuning of the lepton-to-baryon ratio during the presupernova phases of stellar evolution of massive stars.

  4. QUASARS PROBING QUASARS. VIII. THE PHYSICAL PROPERTIES OF THE COOL CIRCUMGALACTIC MEDIUM SURROUNDING z ∼ 2–3 MASSIVE GALAXIES HOSTING QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Marie Wingyee; Prochaska, J. Xavier [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Hennawi, Joseph F., E-mail: lwymarie@ucolick.org [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69115 Heidelberg (Germany)

    2016-10-01

    We characterize the physical properties of the cool T  ∼ 10{sup 4} K circumgalactic medium (CGM) surrounding z  ∼ 2–3 quasar host galaxies, which are predicted to evolve into present-day massive ellipticals. Using a statistical sample of 14 quasar pairs with projected separation <300 kpc and spectra of high dispersion and high signal-to-noise ratio, we find extreme kinematics with low metal ion lines typically spanning ≈500 km s{sup −1}, exceeding any previously studied galactic population. The CGM is significantly enriched, even beyond the virial radius, with a median metallicity [M/H] ≈ −0.6. The α /Fe abundance ratio is enhanced, suggesting that halo gas is primarily enriched by core-collapse supernovae. The projected cool gas mass within the virial radius is estimated to be 1.9 × 10{sup 11} M {sub ⊙} ( R {sub ⊥}/160 kpc){sup 2}, accounting for ≈1/3 of the baryonic budget of the galaxy halo. The ionization state of CGM gas increases with projected distance from the foreground quasars, contrary to expectation if the quasar dominates the ionizing radiation flux. However, we also found peculiarities not exhibited in the CGM of other galaxy populations. In one absorption system, we may be detecting unresolved fluorescent Ly α emission, and another system shows strong N v lines. Taken together, these anomalies suggest that transverse sightlines are—at least in some cases—possibly illuminated. We also discovered a peculiar case where detection of the C ii fine-structure line implies an electron density >100 cm{sup −3} and sub-parsec-scale gas clumps.

  5. THE FORMATION OF SECONDARY STELLAR GENERATIONS IN MASSIVE YOUNG STAR CLUSTERS FROM RAPIDLY COOLING SHOCKED STELLAR WINDS

    Energy Technology Data Exchange (ETDEWEB)

    Wünsch, R.; Palouš, J.; Ehlerová, S. [Astronomical Institute, Academy of Sciences of the Czech Republic, Boční II 1401, 141 31 Prague (Czech Republic); Tenorio-Tagle, G. [Instituto Nacional de Astrofísica Optica y Electrónica, AP 51, 72000 Puebla, México (Mexico)

    2017-01-20

    We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 10{sup 7} M {sub ⊙} and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structures that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, η {sub he}, and the mass loading, η {sub ml}. The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if η {sub he} ≲ 10%, which is suggested by the observations. Furthermore, for low η {sub he}, the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30 α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.

  6. A single population of red globular clusters around the massive compact galaxy NGC 1277

    Science.gov (United States)

    Beasley, Michael A.; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia

    2018-03-01

    Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277—a nearby, un-evolved example of a high-redshift ‘red nugget’ galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.

  7. Astrophysical Implications of a New Dynamical Mass for the Nearby White Dwarf 40 Eridani B

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Bergeron, P.; Bédard, A., E-mail: heb11@psu.edu [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7 (Canada)

    2017-10-10

    The bright, nearby DA-type white dwarf (WD) 40 Eridani B is orbited by the M dwarf 40 Eri C, allowing determination of the WD’s mass. Until recently, however, the mass depended on orbital elements determined four decades ago, and that mass was so low that it created several astrophysical puzzles. Using new astrometric measurements, the binary-star group at the U.S. Naval Observatory has revised the dynamical mass upward, to 0.573 ± 0.018 M {sub ☉}. In this paper, we use model-atmosphere analysis to update other parameters of the WD, including effective temperature, surface gravity, radius, and luminosity. We then compare these results with WD interior models. Within the observational uncertainties, theoretical cooling tracks for CO-core WDs of its measured mass are consistent with the position of 40 Eri B in the H-R diagram; equivalently, the theoretical mass–radius relation (MRR) is consistent with the star’s location in the mass–radius plane. This consistency is, however, achieved only if we assume a “thin” outer hydrogen layer, with q {sub H} = M {sub H}/ M {sub WD} ≃ 10{sup −10}. We discuss other evidence that a significant fraction of DA WDs have such thin H layers, in spite of the expectation from canonical stellar-evolution theory of “thick” H layers with q {sub H} ≃ 10{sup −4}. The cooling age of 40 Eri B is ∼122 Myr, and its total age is ∼1.8 Gyr. We present the MRRs for 40 Eri B and three other nearby WDs in visual binaries with precise mass determinations, and show that the agreement of current theory with observations is excellent in all cases.

  8. The Destructive Birth of Massive Stars and Massive Star Clusters

    Science.gov (United States)

    Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico

    2017-01-01

    Massive stars play an essential role in the Universe. They are rare, yet the energy and momentum they inject into the interstellar medium with their intense radiation fields dwarfs the contribution by their vastly more numerous low-mass cousins. Previous theoretical and observational studies have concluded that the feedback associated with massive stars' radiation fields is the dominant mechanism regulating massive star and massive star cluster (MSC) formation. Therefore detailed simulation of the formation of massive stars and MSCs, which host hundreds to thousands of massive stars, requires an accurate treatment of radiation. For this purpose, we have developed a new, highly accurate hybrid radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform a suite of three-dimensional radiation-hydrodynamic simulations of the formation of massive stars and MSCs. For individual massive stellar systems, we simulate the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the massive stellar system via gravitational and Rayleigh-Taylor (RT) instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of RT instability, but does not suppress it entirely provided the edges of the radiation-dominated bubbles are adequately resolved. RT instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. To model MSC formation, we simulate the collapse of a dense, turbulent, magnetized Mcl = 106 M⊙ molecular cloud. We find that the influence of the magnetic pressure and radiative feedback slows down star formation. Furthermore, we find that star formation is suppressed along dense filaments where the magnetic field is

  9. FINDING η CAR ANALOGS IN NEARBY GALAXIES USING SPITZER. I. CANDIDATE SELECTION

    International Nuclear Information System (INIS)

    Khan, Rubab; Stanek, K. Z.; Kochanek, C. S.

    2013-01-01

    The late-stage evolution of the most massive stars such as η Carinae is controlled by the effects of mass loss, which may be dominated by poorly understood eruptive mass ejections. Understanding this population is challenging because no true analogs of η Car have been clearly identified in the Milky Way or other galaxies. We utilize Spitzer IRAC images of seven nearby (∼ 10 5 L ☉ in the IRAC bands (3.6 to 8.0 μm) and are not known to be background sources. Based on our estimates for the expected number of background sources, we expect that follow-up observations will show that most of these candidates are not dust enshrouded massive stars, with an expectation of only 6 ± 6 surviving candidates. Since we would detect true analogs of η Car for roughly 200 years post-eruption, this implies that the rate of eruptions like η Car is less than the core-collapse supernova rate. It is possible, however, that every M > 40 M ☉ star undergoes such eruptions given our initial results. In Paper II we will characterize the candidates through further analysis and follow-up observations, and there is no barrier to increasing the galaxy sample by an order of magnitude. The primary limitation of the present search is that Spitzer's resolution limits us to the shorter wavelength IRAC bands. With the James Webb Space Telescope, such surveys can be carried out at the far more optimal wavelengths of 10-30 μm, allowing identification of η Car analogs for millennia rather than centuries post-eruption.

  10. Revealing the Physics of Galactic Winds Through Massively-Parallel Hydrodynamics Simulations

    Science.gov (United States)

    Schneider, Evan Elizabeth

    This thesis documents the hydrodynamics code Cholla and a numerical study of multiphase galactic winds. Cholla is a massively-parallel, GPU-based code designed for astrophysical simulations that is freely available to the astrophysics community. A static-mesh Eulerian code, Cholla is ideally suited to carrying out massive simulations (> 20483 cells) that require very high resolution. The code incorporates state-of-the-art hydrodynamics algorithms including third-order spatial reconstruction, exact and linearized Riemann solvers, and unsplit integration algorithms that account for transverse fluxes on multidimensional grids. Operator-split radiative cooling and a dual-energy formalism for high mach number flows are also included. An extensive test suite demonstrates Cholla's superior ability to model shocks and discontinuities, while the GPU-native design makes the code extremely computationally efficient - speeds of 5-10 million cell updates per GPU-second are typical on current hardware for 3D simulations with all of the aforementioned physics. The latter half of this work comprises a comprehensive study of the mixing between a hot, supernova-driven wind and cooler clouds representative of those observed in multiphase galactic winds. Both adiabatic and radiatively-cooling clouds are investigated. The analytic theory of cloud-crushing is applied to the problem, and adiabatic turbulent clouds are found to be mixed with the hot wind on similar timescales as the classic spherical case (4-5 t cc) with an appropriate rescaling of the cloud-crushing time. Radiatively cooling clouds survive considerably longer, and the differences in evolution between turbulent and spherical clouds cannot be reconciled with a simple rescaling. The rapid incorporation of low-density material into the hot wind implies efficient mass-loading of hot phases of galactic winds. At the same time, the extreme compression of high-density cloud material leads to long-lived but slow-moving clumps

  11. Massive Gravity

    OpenAIRE

    de Rham, Claudia

    2014-01-01

    We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...

  12. Symposium “Mapping the Galaxy and Nearby Galaxies”

    CERN Document Server

    Wada, Keiichi; ASTROPHYSICS AND SPACE SCIENCE PROCEEDINGS

    2008-01-01

    This is a proceedings book of the symposium "Mapping the Galaxy and Nearby Galaxies" held on Ishigaki Island, Okinawa, Japan, on June 25 – 30, 2006. The symposium focused on mapping the interstellar media and other components in galaxies. Latest results of the following main topics are presented in the volume: Our Galaxy -- mass distribution, local ISM, supermassive black holes and their environments Central part of nearby galaxies -- ISM around starbursts, fueling mechanisms Nearby Galaxies -- molecular gas and star formation, gas dynamics Galactic environment and evolution -- formation of our Galaxy, origin of supermassive black holes The nature of the Dark Matter component -- effects on the internal structures of galaxies

  13. COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Gary Vine

    2010-12-01

    This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes “Best Technology Available” for intake structures that withdraw cooling water that is used to transfer and reject heat from the plant’s steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R&D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

  14. COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS

    International Nuclear Information System (INIS)

    Vine, Gary

    2010-01-01

    This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes 'Best Technology Available' for intake structures that withdraw cooling water that is used to transfer and reject heat from the plant's steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R and D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

  15. Wide cool and ultracool companions to nearby stars from Pan-STARRS 1

    International Nuclear Information System (INIS)

    Deacon, Niall R.; Liu, Michael C.; Magnier, Eugene A.; Aller, Kimberly M.; Best, William M. J.; Bowler, Brendan P.; Burgett, William S.; Chambers, Kenneth C.; Flewelling, H.; Kaiser, Nick; Kudritzki, Rolf-Peter; Morgan, Jeff S.; Tonry, John L.; Dupuy, Trent; Mann, Andrew W.; Redstone, Joshua A.; Draper, Peter W.; Metcalfe, Nigel; Hodapp, Klaus W.; Price, Paul A.

    2014-01-01

    We present the discovery of 57 wide (>5'') separation, low-mass (stellar and substellar) companions to stars in the solar neighborhood identified from Pan-STARRS 1 (PS1) data and the spectral classification of 31 previously known companions. Our companions represent a selective subsample of promising candidates and span a range in spectral type of K7-L9 with the addition of one DA white dwarf. These were identified primarily from a dedicated common proper motion search around nearby stars, along with a few as serendipitous discoveries from our Pan-STARRS 1 brown dwarf search. Our discoveries include 23 new L dwarf companions and one known L dwarf not previously identified as a companion. The primary stars around which we searched for companions come from a list of bright stars with well-measured parallaxes and large proper motions from the Hipparcos catalog (8583 stars, mostly A-K dwarfs) and fainter stars from other proper motion catalogs (79170 stars, mostly M dwarfs). We examine the likelihood that our companions are chance alignments between unrelated stars and conclude that this is unlikely for the majority of the objects that we have followed-up spectroscopically. We also examine the entire population of ultracool (>M7) dwarf companions and conclude that while some are loosely bound, most are unlikely to be disrupted over the course of ∼10 Gyr. Our search increases the number of ultracool M dwarf companions wider than 300 AU by 88% and increases the number of L dwarf companions in the same separation range by 82%. Finally, we resolve our new L dwarf companion to HIP 6407 into a tight (0.''13, 7.4 AU) L1+T3 binary, making the system a hierarchical triple. Our search for these key benchmarks against which brown dwarf and exoplanet atmosphere models are tested has yielded the largest number of discoveries to date.

  16. The diverse lives of massive protoplanets in self-gravitating discs

    Science.gov (United States)

    Stamatellos, Dimitris; Inutsuka, Shu-ichiro

    2018-04-01

    Gas giant planets may form early-on during the evolution of protostellar discs, while these are relatively massive. We study how Jupiter-mass planet-seeds (termed protoplanets) evolve in massive, but gravitationally stable (Q≳1.5), discs using radiative hydrodynamic simulations. We find that the protoplanet initially migrates inwards rapidly, until it opens up a gap in the disc. Thereafter, it either continues to migrate inwards on a much longer timescale or starts migrating outwards. Outward migration occurs when the protoplanet resides within a gap with gravitationally unstable edges, as a high fraction of the accreted gas is high angular momentum gas from outside the protoplanet's orbit. The effect of radiative heating from the protoplanet is critical in determining the direction of the migration and the eccentricity of the protoplanet. Gap opening is facilitated by efficient cooling that may not be captured by the commonly used β-cooling approximation. The protoplanet initially accretes at a high rate (˜10-3MJ yr-1), and its accretion luminosity could be a few tenths of the host star's luminosity, making the protoplanet easily observable (albeit only for a short time). Due to the high gas accretion rate, the protoplanet generally grows above the deuterium-burning mass-limit. Protoplanet radiative feedback reduces its mass growth so that its final mass is near the brown dwarf-planet boundary. The fate of a young planet-seed is diverse and could vary from a gas giant planet on a circular orbit at a few AU from the central star to a brown dwarf on an eccentric, wide orbit.

  17. Passive cooling systems in buildings: Some useful experiences from ancient architecture for natural cooling in a hot and humid region

    International Nuclear Information System (INIS)

    Hatamipour, M.S.; Abedi, A.

    2008-01-01

    This article presents useful ancient energy technologies that have been used many years for natural cooling of buildings during summer in a hot and humid province in the South of Iran. By use of these technologies, people were able to live in comfort without any electrical air conditioning system. These technologies include use of color glazed windows, wooden windows frames, light colored walls and roofs, insulated walls, wooden roofs covered with leaves and mud. In addition, these technologies made use of terraces, use of louvers, constructing the lanes as narrow as possible and shading the buildings with the nearby buildings, all of which are now the modern experienced technologies

  18. AN UPDATED ULTRAVIOLET CATALOG OF GALEX NEARBY GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yu; Zou, Hu; Liu, JiFeng; Wang, Song, E-mail: ybai@nao.cas.cn, E-mail: zouhu@nao.cas.cn, E-mail: jfliu@nao.cas.cn, E-mail: songw@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang Distict, 100012 Beijing (China)

    2015-09-15

    The ultraviolet (UV) catalog of nearby galaxies compiled by Gil de Paz et al. presents the integrated photometry and surface brightness profiles for 1034 nearby galaxies observed by GALEX. We provide an updated catalog of 4138 nearby galaxies based on the latest Genral Release (GR6/GR7) of GALEX. These galaxies are selected from HyperLeda with apparent diameters larger than 1′. From the surface brightness profiles accurately measured using the deep NUV and FUV images, we have calculated the asymptotic magnitudes, aperture (D25) magnitudes, colors, structural parameters (effective radii and concentration indices), luminosities, and effective surface brightness for these galaxies. Archival optical and infrared photometry from HyperLeda, 2MASS, and IRAS are also integrated into the catalog. Our parameter measurements and some analyses are consistent with those of Paz et al. The (FUV − K) color provides a good criterion to distinguish between early- and late-type galaxies, which can be improved further using the concentration indices. The IRX–β relation is reformulated with our UV-selected nearby galaxies.

  19. Monitoring variable X-ray sources in nearby galaxies

    Science.gov (United States)

    Kong, A. K. H.

    2010-12-01

    In the last decade, it has been possible to monitor variable X-ray sources in nearby galaxies. In particular, since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec and the X-ray skies of M31 consist of many transients and variables. Furthermore, the X-ray Telescope of Swift has been monitoring several ultraluminous X-ray sources in nearby galaxies regularly. Not only can we detect long-term X-ray variability, we can also find spectral variation as well as possible orbital period. In this talk, I will review some of the important Chandra and Swift monitoring observations of nearby galaxies in the past 10 years. I will also present a "high-definition" movie of M31 and discuss the possibility of detecting luminous transients in M31 with MAXI.

  20. Astrophysical tests of gravity: a screening map of the nearby universe

    Energy Technology Data Exchange (ETDEWEB)

    Cabré, Anna; Vikram, Vinu; Jain, Bhuvnesh [Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104-6396 (United States); Zhao, Gong-Bo; Koyama, Kazuya, E-mail: annanusca@gmail.com, E-mail: vinu@sas.upenn.edu, E-mail: gong-bo.zhao@port.ac.uk, E-mail: bjain@physics.upenn.edu, E-mail: Kazuya.Koyama@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom)

    2012-07-01

    Astrophysical tests of modified gravity theories in the nearby universe have been emphasized recently by Hui 2009 and Jain 2011. A key element of such tests is the screening mechanism whereby general relativity is restored in massive halos or high density environments like the Milky Way. In chameleon theories of gravity, including all f(R) models, field dwarf galaxies may be unscreened and therefore feel an extra force, as opposed to screened galaxies. The first step to study differences between screened and unscreened galaxies is to create a 3D screening map. We use N-body simulations to test and calibrate simple approximations to determine the level of screening in galaxy catalogs. Sources of systematic errors in the screening map due to observational inaccuracies are modeled and their contamination is estimated. We then apply our methods to create a map out to 200 Mpc in the Sloan Digital Sky Survey footprint using data from the Sloan survey and other sources. In two companion papers this map will be used to carry out new tests of gravity using distance indicators and the disks of dwarf galaxies. We also make our screening map publicly available.

  1. The diversity of neutron stars: Nearby thermally emitting neutron stars and the compact central objects in supernova remnants

    Science.gov (United States)

    Kaplan, David L.

    Neutron stars are invaluable tools for exploring stellar death, the physics of ultra-dense matter, and the effects of extremely strong magnetic fields. The observed population of neutron stars is dominated by the > 1000 radio pulsars, but there are distinct sub-populations that, while fewer in number, can have significant impact on our understanding of the issues mentioned above. These populations are the nearby isolated neutron stars discovered by ROSAT, and the central compact objects in supernova remnants. The studies of both of these populations have been greatly accelerated in recent years through observations with the Chandra X-ray Observatory and the XMM-Newton telescope. First, we discuss radio, optical, and X-ray observations of the nearby neutron stars aimed at determining their relation to the Galactic neutron star population and at unraveling their complex physical processes by determining the basic astronomical parameters that define the population -- instances, ages, and magnetic fields -- the uncertainties in which limit any attempt to derive basic physical parameters for these objects. We conclude that these sources are 10^6 year-old cooling neutron stars with magnetic fields above 10^13 G. Second, we describe the hollow supernova remnant problem: why many of the supernova remnants in the Galaxy have no indication central neutron stars. We have undertaken an X-ray census of neutron stars in a volume-limited sample of Galactic supernova remnants, and from it conclude that either many supernovae do not produce neutron stars contrary to expectation, or that neutron stars can have a wide range in cooling behavior that makes many sources disappear from the X-ray sky.

  2. Observed increase in local cooling effect of deforestation at higher latitudes.

    Science.gov (United States)

    Lee, Xuhui; Goulden, Michael L; Hollinger, David Y; Barr, Alan; Black, T Andrew; Bohrer, Gil; Bracho, Rosvel; Drake, Bert; Goldstein, Allen; Gu, Lianhong; Katul, Gabriel; Kolb, Thomas; Law, Beverly E; Margolis, Hank; Meyers, Tilden; Monson, Russell; Munger, William; Oren, Ram; Paw U, Kyaw Tha; Richardson, Andrew D; Schmid, Hans Peter; Staebler, Ralf; Wofsy, Steven; Zhao, Lei

    2011-11-16

    Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo-sea ice feedback. This feedback is crucial in the model predictions; without it other biophysical processes may overwhelm the albedo effect to generate warming instead. Ongoing land-use activities, such as land management for climate mitigation, are occurring at local scales (hectares) presumably too small to generate the feedback, and it is not known whether the intrinsic biophysical mechanism on its own can change the surface temperature in a consistent manner. Nor has the effect of deforestation on climate been demonstrated over large areas from direct observations. Here we show that surface air temperature is lower in open land than in nearby forested land. The effect is 0.85 ± 0.44 K (mean ± one standard deviation) northwards of 45° N and 0.21 ± 0.53 K southwards. Below 35° N there is weak evidence that deforestation leads to warming. Results are based on comparisons of temperature at forested eddy covariance towers in the USA and Canada and, as a proxy for small areas of cleared land, nearby surface weather stations. Night-time temperature changes unrelated to changes in surface albedo are an important contributor to the overall cooling effect. The observed latitudinal dependence is consistent with theoretical expectation of changes in energy loss from convection and radiation across latitudes in both the daytime and night-time phase of the diurnal cycle, the latter of which remains uncertain in climate models. © 2011 Macmillan Publishers Limited. All rights reserved

  3. New nearby white dwarfs from Gaia DR1 TGAS and UCAC5/URAT

    Science.gov (United States)

    Scholz, R.-D.; Meusinger, H.; Jahreiß, H.

    2018-05-01

    Aims: Using an accurate Tycho-Gaia Astrometric Solution (TGAS) 25 pc sample that is nearly complete for GK stars and selecting common proper motion (CPM) candidates from the 5th United States Naval Observatory CCD Astrograph Catalog (UCAC5), we search for new white dwarf (WD) companions around nearby stars with relatively small proper motions. Methods: To investigate known CPM systems in TGAS and to select CPM candidates in TGAS+UCAC5, we took into account the expected effect of orbital motion on the proper motion and proper motion catalogue errors. Colour-magnitude diagrams (CMDs) MJ /J - Ks and MG /G - J were used to verify CPM candidates from UCAC5. Assuming their common distance with a given TGAS star, we searched for candidates that occupied similar regions in the CMDs as the few known nearby WDs (four in TGAS) and WD companions (three in TGAS+UCAC5). The CPM candidates with colours and absolute magnitudes corresponding neither to the main sequence nor to the WD sequence were considered as doubtful or subdwarf candidates. Results: With a minimum proper motion of 60 mas yr-1, we selected three WD companion candidates; two of which are also confirmed by their significant parallaxes measured in URAT data, whereas the third may also be a chance alignment of a distant halo star with a nearby TGAS star that has an angular separation of about 465 arcsec. One additional nearby WD candidate was found from its URAT parallax and GJKs photometry. With HD 166435 B orbiting a well-known G1 star at ≈24.6 pc with a projected physical separation of ≈700 AU, we discovered one of the hottest WDs, classified by us as DA2.0 ± 0.2, in the solar neighbourhood. We also found TYC 3980-1081-1 B, a strong cool WD companion candidate around a recently identified new solar neighbour with a TGAS parallax corresponding to a distance of ≈8.3 pc and our photometric classification as ≈M2 dwarf. This raises the question of whether previous assumptions on the completeness of the WD

  4. Numerical investigation of unsteady mixing mechanism in plate film cooling

    Directory of Open Access Journals (Sweden)

    Shuai Li

    2016-09-01

    Full Text Available A large-scale large eddy simulation in high performance personal computer clusters is carried out to present unsteady mixing mechanism of film cooling and the development of films. Simulation cases include a single-hole plate with the inclined angle of 30° and blowing ratio of 0.5, and a single-row plate with hole-spacing of 1.5D and 2D (diameters of the hole. According to the massive simulation results, some new unsteady phenomena of gas films are found. The vortex system is changed in different position with the development of film cooling with the time marching the process of a single-row plate film cooling. Due to the mutual interference effects including mutual exclusion, a certain periodic sloshing and mutual fusion, and the structures of a variety of vortices change between parallel gas films. Macroscopic flow structures and heat transfer behaviors are obtained based on 20 million grids and Reynolds number of 28600.

  5. The Remarkable Similarity of Massive Galaxy Clusters from z ~ 0 to z ~ 1.9

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Allen, S. W.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; Bulbul, E.; Carlstrom, J. E.; Forman, W. R.; Hlavacek-Larrondo, J.; Garmire, G. P.; Gaspari, M.; Gladders, M. D.; Mantz, A. B.; Murray, S. S.

    2017-06-28

    We present the results of a Chandra X-ray survey of the 8 most massive galaxy clusters at z>1.2 in the South Pole Telescope 2500 deg^2 survey. We combine this sample with previously-published Chandra observations of 49 massive X-ray-selected clusters at 00.2R500 scaling like E(z)^2. In the centers of clusters (r<0.1R500), we find significant deviations from self similarity (n_e ~ E(z)^{0.1+/-0.5}), consistent with no redshift dependence. When we isolate clusters with over-dense cores (i.e., cool cores), we find that the average over-density profile has not evolved with redshift -- that is, cool cores have not changed in size, density, or total mass over the past ~9-10 Gyr. We show that the evolving "cuspiness" of clusters in the X-ray, reported by several previous studies, can be understood in the context of a cool core with fixed properties embedded in a self similarly-evolving cluster. We find no measurable evolution in the X-ray morphology of massive clusters, seemingly in tension with the rapidly-rising (with redshift) rate of major mergers predicted by cosmological simulations. We show that these two results can be brought into agreement if we assume that the relaxation time after a merger is proportional to the crossing time, since the latter is proportional to H(z)^(-1).

  6. Temperate Earth-sized planets transiting a nearby ultracool dwarf star.

    Science.gov (United States)

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam J; Triaud, Amaury H M J; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2016-05-12

    Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as 'ultracool dwarfs'. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disks, there should be a large but hitherto undetected population of terrestrial planets orbiting them--ranging from metal-rich Mercury-sized planets to more hospitable volatile-rich Earth-sized planets. Here we report observations of three short-period Earth-sized planets transiting an ultracool dwarf star only 12 parsecs away. The inner two planets receive four times and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Our data suggest that 11 orbits remain possible for the third planet, the most likely resulting in irradiation significantly less than that received by Earth. The infrared brightness of the host star, combined with its Jupiter-like size, offers the possibility of thoroughly characterizing the components of this nearby planetary system.

  7. EVIDENCE FOR ACCRETION IN A NEARBY, YOUNG BROWN DWARF

    International Nuclear Information System (INIS)

    Reiners, Ansgar

    2009-01-01

    We report on the discovery of the young, nearby, brown dwarf 2MASS J0041353-562112. The object has a spectral type of M7.5; it shows Li absorption and signatures of accretion, which implies that it still has a disk and suggests an age below 10 Myr. The space motion vector and position on the sky indicate that the brown dwarf is probably a member of the ∼20 Myr old Tuc-Hor association, or that it may be an ejected member of the ∼12 Myr old β Pic association; both would imply that 2MASS J0041353-562112 may in fact be older than 10 Myr. No accreting star or brown dwarf was previously known in these associations. Assuming an age of 10 Myr, the brown dwarf has a mass of about 30 M Jup and is located at 35 pc distance. The newly discovered object is the closest accreting brown dwarf known. Its membership to an association older than 10 Myr implies that either disks in brown dwarfs can survive as long as in more massive stars, perhaps even longer, or that star formation in Tuc-Hor or β Pic occurred more recently than previously thought. The history and evolution of this object can provide new fundamental insight into the formation process of stars, brown dwarfs, and planets.

  8. Cooling water requirements and nuclear power plants

    International Nuclear Information System (INIS)

    Rao, T.S.

    2010-01-01

    Indian nuclear power programme is poised to scuttle the energy crisis of our time by proposing joint ventures for large power plants. Large fossil/nuclear power plants (NPPs) rely upon water for cooling and are therefore located near coastal areas. The amount of water a power station uses and consumes depends on the cooling technology used. Depending on the cooling technology utilized, per megawatt existing NPPs use and consume more water (by a factor of 1.25) than power stations using other fuel sources. In this context the distinction between 'use' and 'consume' of water is important. All power stations do consume some of the water they use; this is generally lost as evaporation. Cooling systems are basically of two types; Closed cycle and Once-through, of the two systems, the closed cycle uses about 2-3% of the water volumes used by the once-through system. Generally, water used for power plant cooling is chemically altered for purposes of extending the useful life of equipment and to ensure efficient operation. The used chemicals effluent will be added to the cooling water discharge. Thus water quality impacts on power plants vary significantly, from one electricity generating technology to another. In light of massive expansion of nuclear power programme there is a need to develop new ecofriendly cooling water technologies. Seawater cooling towers (SCT) could be a viable option for power plants. SCTs can be utilized with the proper selection of materials, coatings and can achieve long service life. Among the concerns raised about the development of a nuclear power industry, the amount of water consumed by nuclear power plants compared with other power stations is of relevance in light of the warming surface seawater temperatures. A 1000 MW power plant uses per day ∼800 ML/MW in once through cooling system; while SCT use 27 ML/MW. With the advent of new marine materials and concrete compositions SCT can be constructed for efficient operation. However, the

  9. THE STAR FORMATION HISTORY AND CHEMICAL EVOLUTION OF STAR-FORMING GALAXIES IN THE NEARBY UNIVERSE

    International Nuclear Information System (INIS)

    Torres-Papaqui, J. P.; Coziol, R.; Ortega-Minakata, R. A.; Neri-Larios, D. M.

    2012-01-01

    We have determined the metallicity (O/H) and nitrogen abundance (N/O) of a sample of 122,751 star-forming galaxies (SFGs) from the Data Release 7 of the Sloan Digital Sky Survey. For all these galaxies we have also determined their morphology and obtained a comprehensive picture of their star formation history (SFH) using the spectral synthesis code STARLIGHT. The comparison of the chemical abundance with the SFH allows us to describe the chemical evolution of the SFGs in the nearby universe (z ≤ 0.25) in a manner consistent with the formation of their stellar populations and morphologies. A high fraction (45%) of the SFGs in our sample show an excess abundance of nitrogen relative to their metallicity. We also find this excess to be accompanied by a deficiency of oxygen, which suggests that this could be the result of effective starburst winds. However, we find no difference in the mode of star formation of the nitrogen-rich and nitrogen-poor SFGs. Our analysis suggests that they all form their stars through a succession of bursts of star formation extended over a period of few Gyr. What produces the chemical differences between these galaxies seems therefore to be the intensity of the bursts: the galaxies with an excess of nitrogen are those that are presently experiencing more intense bursts or have experienced more intense bursts in their past. We also find evidence relating the chemical evolution process to the formation of the galaxies: the galaxies with an excess of nitrogen are more massive, and have more massive bulges and earlier morphologies than those showing no excess. Contrary to expectation, we find no evidence that the starburst wind efficiency decreases with the mass of the galaxies. As a possible explanation we propose that the loss of metals consistent with starburst winds took place during the formation of the galaxies, when their potential wells were still building up, and consequently were weaker than today, making starburst winds more

  10. The White-Dwarf Mass-Radius Relation from 40 Eridani B and Other Nearby Visual Binaries

    Science.gov (United States)

    Bond, Howard E.; Bergeron, P.; Bedard, A.

    2018-01-01

    The bright, nearby DA-type white dwarf (WD) 40 Eridani B is orbited by the M dwarf 40 Eri C, allowing determination of the WD's mass. Until recently, however, the mass depended on orbital elements determined four decades ago, and that mass was so low that it created several astrophysical puzzles. Using new astrometric measurements, the binary-star group at the U.S. Naval Observatory has revised the dynamical mass upward, to 0.573 ± 0.018 M⊙. We have used model-atmosphere analysis to update other parameters of the WD, including effective temperature, surface gravity, radius, and luminosity. We then comparethese results with WD interior models.Within the observational uncertainties, theoretical cooling tracks for CO-core WDs of its measured mass are consistent with the position of 40 Eri B in the H-R diagram; equivalently, the theoretical mass-radius relation (MRR) is consistent with the star's location in the mass-radius plane. This consistency is, however, achieved only if we assume a "thin'' outer hydrogen layer, with qH = MH/MWD ∼ 10–10.We discuss other evidence that a significant fraction of DA WDs have such thin H layers, in spite of expectation from canonical stellar-evolution theory of "thick'' H layers with qH ∼ 10–4 . The cooling age of 40 Eri B is ~122 Myr, and its total age is ~1.8 Gyr. We present the MRRs for 40 Eri B and three other nearby WDs in visual binaries with precise mass determinations, and show that the agreement of current theory with observation is excellent in all cases.However, astrophysical puzzles remain. The eccentricity of the BC orbit has remained high (0.43), even though the progenitor of B ought to have interacted tidally with C when it was an AGB star. This puzzle exists also for the Sirius and Procyon systems. If thin hydrogen layers are common among WDs, the mass scale will need to be shifted downwards by a few hundredths of a solar mass.

  11. Solar heating, cooling, and hot water systems installed at Richland, Washington

    Science.gov (United States)

    1979-01-01

    The project described is part of the U. S. Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid-liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program was provided from the beginning of the program, and resulted in numerous visitors and tour groups.

  12. Stellar Death in the Nearby Universe

    Science.gov (United States)

    Holoien, Thomas Warren-Son

    The night sky is replete with transient and variable events that help shape our universe. The violent, explosive deaths of stars represent some of the most energetic of these events, as a single star is able to outshine billions during its final moments. Aside from imparting significant energy into their host environments, stellar deaths are also responsible for seeding heavy elements into the universe, regulating star formation in their host galaxies, and affecting the evolution of supermassive black holes at the centers of their host galaxies. The large amount of energy output during these events allows them to be seen from billions of lightyears away, making them useful observational probes of physical processes important to many fields of astronomy. In this dissertation I present a series of observational studies of two classes of transients associated with the deaths of stars in the nearby universe: tidal disruption events (TDEs) and supernovae (SNe). Discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN), the objects I discuss were all bright and nearby, and were subject to extensive follow-up observational campaigns. In the first three studies, I present observational data and theoretical models of ASASSN-14ae, ASASSN-14li, and ASASSN-15oi, three TDEs discovered by ASAS-SN and three of the most well-studied TDEs ever discovered. Next I present the discovery of ASASSN-13co, an SN that does not conform to the traditional model of Type II SNe. Finally, I discuss the full sample of bright SNe discovered from 2014 May 1 through 2016 December 31, which is significantly less biased than previous nearby SN samples due to the ASAS-SN survey approach, and perform statistical analyses on this population that will be used for future studies of nearby SNe and their hosts.

  13. Feedback cooling of cantilever motion using a quantum point contact transducer

    International Nuclear Information System (INIS)

    Montinaro, M.; Mehlin, A.; Solanki, H. S.; Peddibhotla, P.; Poggio, M.; Mack, S.; Awschalom, D. D.

    2012-01-01

    We use a quantum point contact (QPC) as a displacement transducer to measure and control the low-temperature thermal motion of a nearby micromechanical cantilever. The QPC is included in an active feedback loop designed to cool the cantilever's fundamental mechanical mode, achieving a squashing of the QPC noise at high gain. The minimum achieved effective mode temperature of 0.2 K and the displacement resolution of 10 -11 m/√(Hz) are limited by the performance of the QPC as a one-dimensional conductor and by the cantilever-QPC capacitive coupling.

  14. A Catalog of Cool Dwarf Targets for the Transiting Exoplanet Survey Satellite

    Science.gov (United States)

    Muirhead, Philip S.; Dressing, Courtney D.; Mann, Andrew W.; Rojas-Ayala, Bárbara; Lépine, Sébastien; Paegert, Martin; De Lee, Nathan; Oelkers, Ryan

    2018-04-01

    We present a catalog of cool dwarf targets (V-J> 2.7, T eff ≲ 4000 K) and their stellar properties for the upcoming Transiting Exoplanet Survey Satellite (TESS), for the purpose of determining which cool dwarfs should be observed using two minute observations. TESS has the opportunity to search tens of thousands of nearby, cool, late K- and M-type dwarfs for transiting exoplanets, an order of magnitude more than current or previous transiting exoplanet surveys, such as Kepler, K2, and ground-based programs. This necessitates a new approach to choosing cool dwarf targets. Cool dwarfs are chosen by collating parallax and proper motion catalogs from the literature and subjecting them to a variety of selection criteria. We calculate stellar parameters and TESS magnitudes using the best possible relations from the literature while maintaining uniformity of methods for the sake of reproducibility. We estimate the expected planet yield from TESS observations using statistical results from the Kepler mission, and use these results to choose the best targets for two minute observations, optimizing for small planets for which masses can conceivably be measured using follow-up Doppler spectroscopy by current and future Doppler spectrometers. The catalog is available in machine readable format and is incorporated into the TESS Input Catalog and TESS Candidate Target List until a more complete and accurate cool dwarf catalog identified by ESA’s Gaia mission can be incorporated.

  15. How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke-Jung [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Whalen, Daniel J. [Institute of Cosmology and Gravitation, Portsmouth University, Portsmouth (United Kingdom); Wollenberg, Katharina M. J.; Glover, Simon C. O.; Klessen, Ralf S., E-mail: ken.chen@nao.ac.jp [Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg (Germany)

    2017-08-01

    Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.

  16. Sunspot Light Walls Suppressed by Nearby Brightenings

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong; Zhang, Jun; Hou, Yijun; Li, Xiaohong [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Erdélyi, Robertus [Solar Physics and Space Plasma Research Centre, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Yan, Limei, E-mail: shuhongyang@nao.cas.cn [Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China)

    2017-07-01

    Light walls, as ensembles of oscillating bright structures rooted in sunspot light bridges, have not been well studied, although they are important for understanding sunspot properties. Using the Interface Region Imaging Spectrograph and Solar Dynamics Observatory observations, here we study the evolution of two oscillating light walls each within its own active region (AR). The emission of each light wall decays greatly after the appearance of adjacent brightenings. For the first light wall, rooted within AR 12565, the average height, amplitude, and oscillation period significantly decrease from 3.5 Mm, 1.7 Mm, and 8.5 minutes to 1.6 Mm, 0.4 Mm, and 3.0 minutes, respectively. For the second light wall, rooted within AR 12597, the mean height, amplitude, and oscillation period of the light wall decrease from 2.1 Mm, 0.5 Mm, and 3.0 minutes to 1.5 Mm, 0.2 Mm, and 2.1 minutes, respectively. Particularly, a part of the second light wall even becomes invisible after the influence of a nearby brightening. These results reveal that the light walls are suppressed by nearby brightenings. Considering the complex magnetic topology in light bridges, we conjecture that the fading of light walls may be caused by a drop in the magnetic pressure, where the flux is canceled by magnetic reconnection at the site of the nearby brightening. Another hypothesis is that the wall fading is due to the suppression of driver source ( p -mode oscillation), resulting from the nearby avalanche of downward particles along reconnected brightening loops.

  17. COOL DUST IN THE OUTER RING OF NGC 1291

    International Nuclear Information System (INIS)

    Hinz, J. L.; Engelbracht, C. W.; Skibba, R.; Montiel, E.; Crocker, A.; Calzetti, D.; Donovan Meyer, J.; Sandstrom, K.; Walter, F.; Groves, B.; Meidt, S. E.; Johnson, B. D.; Hunt, L.; Aniano, G.; Draine, B.; Murphy, E. J.; Armus, L.; Dale, D. A.; Galametz, M.; Kennicutt, R. C.

    2012-01-01

    We examine Herschel Space Observatory images of one nearby prototypical outer ring galaxy, NGC 1291, and show that the ring becomes more prominent at wavelengths longer than 160 μm. The mass of cool dust in the ring dominates the total dust mass of the galaxy, accounting for at least 70% of it. The temperature of the emitting dust in the ring (T = 19.5 ± 0.3 K) is cooler than that of the inner galaxy (T = 25.7 ± 0.7 K). We discuss several explanations for the difference in dust temperature, including age and density differences in the stellar populations of the ring versus the bulge.

  18. Initial Hubble Diagram Results from the Nearby Supernova Factory

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, S. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Aldering, G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Antilogus, P. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Aragon, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Baltay, C. [Yale Univ., New Haven, CT (United States); Bongard, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buton, C [Inst. of Nuclear Physics of Lyon (France); Childress, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Copin, Y. [Inst. of Nuclear Physics of Lyon (France); Gangler, E. [Inst. of Nuclear Physics of Lyon (France); Loken, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nugent, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pain, R. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Pecontal, E. [Center of Research Astrophysics of Lyon (CRAL) (France); Pereira, R. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Perlmutter, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rabinowitz, D. [Yale Univ., New Haven, CT (United States); Rigaudier, G. [Center of Research Astrophysics of Lyon (CRAL) (France); Ripoche, P. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Runge, K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Scalzo, R. [Yale Univ., New Haven, CT (United States); Smadja, G. [Inst. of Nuclear Physics of Lyon (France); Tao, C. [Inst. of Nuclear Physics of Lyon (France); Thomas, R. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, C. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France)

    2017-07-06

    The use of Type Ia supernovae as distance indicators led to the discovery of the accelerating expansion of the universe a decade ago. Now that large second generation surveys have significantly increased the size and quality of the high-redshift sample, the cosmological constraints are limited by the currently available sample of ~50 cosmologically useful nearby supernovae. The Nearby Supernova Factory addresses this problem by discovering nearby supernovae and observing their spectrophotometric time development. Our data sample includes over 2400 spectra from spectral timeseries of 185 supernovae. This talk presents results from a portion of this sample including a Hubble diagram (relative distance vs. redshift) and a description of some analyses using this rich dataset.

  19. Massive Submucosal Ganglia in Colonic Inertia.

    Science.gov (United States)

    Naemi, Kaveh; Stamos, Michael J; Wu, Mark Li-Cheng

    2018-02-01

    - Colonic inertia is a debilitating form of primary chronic constipation with unknown etiology and diagnostic criteria, often requiring pancolectomy. We have occasionally observed massively enlarged submucosal ganglia containing at least 20 perikarya, in addition to previously described giant ganglia with greater than 8 perikarya, in cases of colonic inertia. These massively enlarged ganglia have yet to be formally recognized. - To determine whether such "massive submucosal ganglia," defined as ganglia harboring at least 20 perikarya, characterize colonic inertia. - We retrospectively reviewed specimens from colectomies of patients with colonic inertia and compared the prevalence of massive submucosal ganglia occurring in this setting to the prevalence of massive submucosal ganglia occurring in a set of control specimens from patients lacking chronic constipation. - Seven of 8 specimens affected by colonic inertia harbored 1 to 4 massive ganglia, for a total of 11 massive ganglia. One specimen lacked massive ganglia but had limited sampling and nearly massive ganglia. Massive ganglia occupied both superficial and deep submucosal plexus. The patient with 4 massive ganglia also had 1 mitotically active giant ganglion. Only 1 massive ganglion occupied the entire set of 10 specimens from patients lacking chronic constipation. - We performed the first, albeit distinctly small, study of massive submucosal ganglia and showed that massive ganglia may be linked to colonic inertia. Further, larger studies are necessary to determine whether massive ganglia are pathogenetic or secondary phenomena, and whether massive ganglia or mitotically active ganglia distinguish colonic inertia from other types of chronic constipation.

  20. The combined effect of AGN and supernovae feedback in launching massive molecular outflows in high-redshift galaxies

    Science.gov (United States)

    Biernacki, Pawel; Teyssier, Romain

    2018-04-01

    We have recently improved our model of active galactic nucleus (AGN) by attaching the supermassive black hole (SMBH) to a massive nuclear star cluster (NSC). Here, we study the effects of this new model in massive, gas-rich galaxies with several simulations of different feedback recipes with the hydrodynamics code RAMSES. These simulations are compared to a reference simulation without any feedback, in which the cooling halo gas is quickly consumed in a burst of star formation. In the presence of strong supernovae (SN) feedback, we observe the formation of a galactic fountain that regulates star formation over a longer period, but without halting it. If only AGN feedback is considered, as soon as the SMBH reaches a critical mass, strong outflows of hot gas are launched and prevent the cooling halo gas from reaching the disc, thus efficiently halting star formation, leading to the so-called `quenching'. If both feedback mechanisms act in tandem, we observe a non-linear coupling, in the sense that the dense gas in the supernovae-powered galactic fountain is propelled by the hot outflow powered by the AGN at much larger radii than without AGN. We argue that these particular outflows are able to unbind dense gas from the galactic halo, thanks to the combined effect of SN and AGN feedback. We speculate that this mechanism occurs at the end of the fast growing phase of SMBH, and is at the origin of the dense molecular outflows observed in many massive high-redshift galaxies.

  1. ADAPTIVE OPTICS IMAGING OF A MASSIVE GALAXY ASSOCIATED WITH A METAL-RICH ABSORBER

    International Nuclear Information System (INIS)

    Chun, Mark R.; Kulkarni, Varsha P.; Gharanfoli, Soheila; Takamiya, Marianne

    2010-01-01

    The damped and sub-damped Lyα absorption (DLA and sub-DLA) line systems in quasar spectra are believed to be produced by intervening galaxies. However, the connection of quasar absorbers to galaxies is not well-understood, since attempts to image the absorbing galaxies have often failed. While most DLAs appear to be metal poor, a population of metal-rich absorbers, mostly sub-DLAs, has been discovered in recent studies. Here we report high-resolution K-band imaging with the Keck laser guide star adaptive optics (LGSAO) system of the field of quasar SDSSJ1323-0021 in search of the galaxy producing the z = 0.72 sub-DLA absorber. With a metallicity of 2-4 times the solar level, this absorber is one of the most metal-rich systems found to date. Our data show a large bright galaxy with an angular separation of only 1.''25 from the quasar, well-resolved from the quasar at the high resolution of our data. The galaxy has a magnitude of K = 17.6-17.9, which corresponds to a luminosity of ∼3-6 L*. Morphologically, the galaxy is fitted with a model with an effective radius, enclosing half of the total light, of R e = 4 kpc and a bulge-to-total ratio of 0.4-1.0, indicating a substantial bulge stellar population. Based on the mass-metallicity relation of nearby galaxies, the absorber galaxy appears to have a stellar mass of ∼>10 11 M sun . Given the small impact parameter (9.0 kpc at the absorber redshift), this massive galaxy appears to be responsible for the metal-rich sub-DLA. The absorber galaxy is consistent with the metallicity-luminosity relation observed for nearby galaxies, but is near the upper end of metallicity. Our study marks the first application of LGSAO for the study of the structure of galaxies producing distant quasar absorbers. Finally, this study offers the first example of a massive galaxy with a substantial bulge producing a metal-rich absorber.

  2. Probing the Gas Fueling and Outflows in Nearby AGN with ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Audibert, Anelise [Observatoire de Paris, LERMA, Centre National de la Recherche Scientifique, PSL University, Sorbonne University, UPMC, Paris (France); Combes, Françoise [Observatoire de Paris, LERMA, Centre National de la Recherche Scientifique, PSL University, Sorbonne University, UPMC, Paris (France); College de France, Paris (France); García-Burillo, Santiago [Observatorio Astronómico Nacional, Observatorio de Madrid, Madrid (Spain); Salomé, Philippe, E-mail: anelise.audibert@obspm.fr [Observatoire de Paris, LERMA, Centre National de la Recherche Scientifique, PSL University, Sorbonne University, UPMC, Paris (France)

    2017-12-12

    Feeding and feedback in AGN play a very important role to gain a proper understanding of galaxy formation and evolution. The interaction between activity mechanisms in the nucleus and its influence in the host galaxy are related to the physical processes involved in feedback and the gas fueling of the black hole. The discovery of many massive molecular outflows in the last few years have been promoting the idea that winds may be major actors in sweeping the gas out of galaxies. Also, the widely observed winds from the central regions of AGN are promising candidates to explain the scaling relations (e.g., the black hole-bulge mass relation, BH accretion rate tracking the star formation history) under the AGN feedback scenario. Out goal is to probe these phenomena through the kinematic and morphology of the gas inside the central kpc in nearby AGN. This has recently been possible due to the unprecedented ALMA spatial resolution and sensitivity. We present results on NGC7213 and NGC1808, the latter is part of a new ALMA follow-up of the NuGa project, a previous high-resolution (0.5–1″) CO survey of low luminosity AGN performed with the IRAM PdBI.

  3. Probing the gas fuelling and outflows in nearby AGN with ALMA

    Science.gov (United States)

    Audibert, Anelise; Combes, Françoise; García-Burillo, Santiago; Salomé, Philippe

    2017-12-01

    Feeding and feedback in AGN play a very important role to gain a proper understanding of galaxy formation and evolution. The interaction between activity mechanisms in the nucleus and its influence in the host galaxy are related to the physical processes involved in feedback and the gas fuelling of the black hole. The discovery of many massive molecular outflows in the last few years have been promoting the idea that winds may be major actors in sweeping the gas out of galaxies. Also, the widely observed winds from the central regions of AGN are promising candidates to explain the scaling relations (e.g. the black hole-bulge mass relation, BH accretion rate tracking the star formation history) under the AGN feedback scenario. Out goal is to probe these phenomena through the kinematic and morphology of the gas inside the central kpc in nearby AGN. This has recently been possible due to the unprecedented ALMA spatial resolution and sensitivity. We present results on NGC7213 and NGC1808, the latter is part of a new ALMA follow-up of the NuGa project, a previous high-resolution (0.5-1”) CO survey of low luminosity AGN performed with the IRAM PdBI.

  4. Probing the Gas Fueling and Outflows in Nearby AGN with ALMA

    Directory of Open Access Journals (Sweden)

    Anelise Audibert

    2017-12-01

    Full Text Available Feeding and feedback in AGN play a very important role to gain a proper understanding of galaxy formation and evolution. The interaction between activity mechanisms in the nucleus and its influence in the host galaxy are related to the physical processes involved in feedback and the gas fueling of the black hole. The discovery of many massive molecular outflows in the last few years have been promoting the idea that winds may be major actors in sweeping the gas out of galaxies. Also, the widely observed winds from the central regions of AGN are promising candidates to explain the scaling relations (e.g., the black hole-bulge mass relation, BH accretion rate tracking the star formation history under the AGN feedback scenario. Out goal is to probe these phenomena through the kinematic and morphology of the gas inside the central kpc in nearby AGN. This has recently been possible due to the unprecedented ALMA spatial resolution and sensitivity. We present results on NGC7213 and NGC1808, the latter is part of a new ALMA follow-up of the NuGa project, a previous high-resolution (0.5–1″ CO survey of low luminosity AGN performed with the IRAM PdBI.

  5. New massive gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hohm, Olaf; Townsend, Paul K.

    2012-01-01

    We present a brief review of New Massive Gravity, which is a unitary theory of massive gravitons in three dimensions obtained by considering a particular combination of the Einstein-Hilbert and curvature squared terms.

  6. STABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE

    Directory of Open Access Journals (Sweden)

    Yurij K. Vasil’chuk

    2016-01-01

    Full Text Available The paper summarises stable-isotope research on massive ice in the Russian and North American Arctic, and includes the latest understanding of massive-ice formation. A new classification of massive-ice complexes is proposed, encompassing the range and variabilityof massive ice. It distinguishes two new categories of massive-ice complexes: homogeneousmassive-ice complexes have a similar structure, properties and genesis throughout, whereasheterogeneous massive-ice complexes vary spatially (in their structure and properties andgenetically within a locality and consist of two or more homogeneous massive-ice bodies.Analysis of pollen and spores in massive ice from Subarctic regions and from ice and snow cover of Arctic ice caps assists with interpretation of the origin of massive ice. Radiocarbon ages of massive ice and host sediments are considered together with isotope values of heavy oxygen and deuterium from massive ice plotted at a uniform scale in order to assist interpretation and correlation of the ice.

  7. Detecting Massive, High-Redshift Galaxy Clusters Using the Thermal Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Adams, Carson; Steinhardt, Charles L.; Loeb, Abraham; Karim, Alexander; Staguhn, Johannes; Erler, Jens; Capak, Peter L.

    2017-01-01

    We develop the thermal Sunyaev-Zel'dovich (SZ) effect as a direct astrophysical measure of the mass distribution of dark matter halos. The SZ effect increases with cosmological distance, a unique astronomical property, and is highly sensitive to halo mass. We find that this presents a powerful methodology for distinguishing between competing models of the halo mass function distribution, particularly in the high-redshift domain just a few hundred million years after the Big Bang. Recent surveys designed to probe this epoch of initial galaxy formation such as CANDELS and SPLASH report an over-abundance of highly massive halos as inferred from stellar ultraviolet (UV) luminosities and the stellar mass to halo mass ratio estimated from nearby galaxies. If these UV luminosity to halo mass relations hold to high-redshift, observations estimate several orders of magnitude more highly massive halos than predicted by hierarchical merging and the standard cosmological paradigm. Strong constraints on the masses of these galaxy clusters are essential to resolving the current tension between observation and theory. We conclude that detections of thermal SZ sources are plausible at high-redshift only for the halo masses inferred from observation. Therefore, future SZ surveys will provide a robust determination between theoretical and observational predictions.

  8. The Black Hole Safari: Big Game Hunting in 30+ Massive Galaxies

    Science.gov (United States)

    McConnell, Nicholas J.; Ma, Chung-Pei; Janish, Ryan; Gebhardt, Karl; Lauer, Tod R.; Graham, James R.

    2015-01-01

    The current census of the most massive black holes in the local universe turns up an odd variety of galaxy hosts: central galaxies in rich clusters, second- or lower-ranked cluster members, and compact relics from the early universe. More extensive campaigns are required to explore the number density and environmental distribution of these monsters. Over the past three years we have collected a large set of stellar kinematic data with sufficient resolution to detect the gravitational signatures of supermassive black holes with MBH > 109 MSun. This Black Hole Safari targets enormous galaxies at the centers of nearby galaxy clusters, as well as their similarly luminous counterparts in weaker galaxy groups. To date we have observed more than 30 early-type galaxies with integral-field spectrographs on the Keck, Gemini North, and Gemini South telescopes. Here I present preliminary stellar kinematics from 10 objects.

  9. Massive graviton geons

    Science.gov (United States)

    Aoki, Katsuki; Maeda, Kei-ichi; Misonoh, Yosuke; Okawa, Hirotada

    2018-02-01

    We find vacuum solutions such that massive gravitons are confined in a local spacetime region by their gravitational energy in asymptotically flat spacetimes in the context of the bigravity theory. We call such self-gravitating objects massive graviton geons. The basic equations can be reduced to the Schrödinger-Poisson equations with the tensor "wave function" in the Newtonian limit. We obtain a nonspherically symmetric solution with j =2 , ℓ=0 as well as a spherically symmetric solution with j =0 , ℓ=2 in this system where j is the total angular momentum quantum number and ℓ is the orbital angular momentum quantum number, respectively. The energy eigenvalue of the Schrödinger equation in the nonspherical solution is smaller than that in the spherical solution. We then study the perturbative stability of the spherical solution and find that there is an unstable mode in the quadrupole mode perturbations which may be interpreted as the transition mode to the nonspherical solution. The results suggest that the nonspherically symmetric solution is the ground state of the massive graviton geon. The massive graviton geons may decay in time due to emissions of gravitational waves but this timescale can be quite long when the massive gravitons are nonrelativistic and then the geons can be long-lived. We also argue possible prospects of the massive graviton geons: applications to the ultralight dark matter scenario, nonlinear (in)stability of the Minkowski spacetime, and a quantum transition of the spacetime.

  10. SELF-CONVERGENCE OF RADIATIVELY COOLING CLUMPS IN THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Yirak, Kristopher; Frank, Adam; Cunningham, Andrew J.

    2010-01-01

    Isolated regions of higher density populate the interstellar medium (ISM) on all scales-from molecular clouds, to the star-forming regions known as cores, to heterogeneous ejecta found near planetary nebulae and supernova remnants. These clumps interact with winds and shocks from nearby energetic sources. Understanding the interactions of shocked clumps is vital to our understanding of the composition, morphology, and evolution of the ISM. The evolution of shocked clumps is well understood in the limiting 'adiabatic' case where physical processes such as self-gravity, heat conduction, radiative cooling, and magnetic fields are ignored. In this paper, we address the issue of evolution and convergence when one of these processes-radiative cooling-is included. Numeric convergence studies demonstrate that the evolution of an adiabatic clump is well captured by roughly 100 cells per clump radius. The presence of radiative cooling, however, imposes limits on the problem due to the removal of thermal energy. Numerical studies which include radiative cooling typically adopt the 100-200 cells per clump radius resolution. In this paper, we present the results of a convergence study for radiatively cooling clumps undertaken over a broad range of resolutions, from 12 to 1536 cells per clump radius, employing adaptive mesh refinement (AMR) in a two-dimensional axisymmetric geometry (2.5 dimensions). We also provide a fully three-dimensional simulation, at 192 cells per clump radius, which supports our 2.5 dimensional results. We find no appreciable self-convergence at ∼100 cells per clump radius as small-scale differences owing to increasingly resolving the cooling length have global effects. We therefore conclude that self-convergence is an insufficient criterion to apply on its own when addressing the question of sufficient resolution for radiatively cooled shocked clump simulations. We suggest the adoption of alternate criteria to support a statement of sufficient

  11. The ultra low mass cooling system of the Belle II DEPFET detector

    International Nuclear Information System (INIS)

    Ruiz-Valls, P.; Marinas, C.

    2013-01-01

    The new Japanese Super Flavor Factory Belle II is designed with high precision in mind, making a good vertex resolution a necessity. In order to achieve the required resolution in the vertex reconstruction, besides highly segmented pixel detectors, the material budget has to be kept at very low levels, since more material results in multiple scattering and degrades the resolution. As a consequence, there is a direct impact on the cooling system, that has to be carefully designed, not allowing active cooling pipes inside the acceptance region. In this asymmetric e + e − experiment the angular acceptance ranges from 17° to 150°, leaving room for support structures outside this range. The Belle II vertex detector includes DEPFET technology in its vertex detector the front end electronics (FEE) of which, placed outside the acceptance, can be cooled by 2-phase CO 2 through massive support structures while the sensitive area relies on forced convection with cold nitrogen gas

  12. Massive runaway stars in the Large Magellanic Cloud

    Science.gov (United States)

    Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    2010-09-01

    The origin of massive field stars in the Large Magellanic Cloud (LMC) has long been an enigma. The recent measurements of large offsets (˜ 100 km s-1) between the heliocentric radial velocities of some very massive (O2-type) field stars and the systemic LMC velocity provides a possible explanation of this enigma and suggests that the field stars are runaway stars ejected from their birthplaces at the very beginning of their parent cluster's dynamical evolution. A straightforward way to prove this explanation is to measure the proper motions of the field stars and to show that they are moving away from one of the nearby star clusters or OB associations. This approach is, however, complicated by the long distance to the LMC, which makes accurate proper motion measurements difficult. We used an alternative approach for solving the problem (first applied for Galactic field stars), based on the search for bow shocks produced by runaway stars. The geometry of detected bow shocks would allow us to infer the direction of stellar motion, thereby determining their possible parent clusters. In this paper we present the results of a search for bow shocks around six massive field stars that have been proposed as candidate runaway stars. Using archival Spitzer Space Telescope data, we found a bow shock associated with one of our programme stars, the O2 V((f*)) star BI 237, which is the first-ever detection of bow shocks in the LMC. Orientation of the bow shock suggests that BI 237 was ejected from the OB association LH 82 (located at ≃ 120 pc in projection from the star). A by-product of our search is the detection of bow shocks generated by four OB stars in the field of the LMC and an arc-like structure attached to the candidate luminous blue variable R81 (HD 269128). The geometry of two of these bow shocks is consistent with the possibility that their associated stars were ejected from the 30 Doradus star-forming complex. We discuss implications of our findings for the

  13. Temporal Variation of Tectonic Tremor Activity Associated with Nearby Earthquakes

    Science.gov (United States)

    Chao, K.; Van der Lee, S.; Hsu, Y. J.; Pu, H. C.

    2017-12-01

    Tectonic tremor and slow slip events, located downdip from the seismogenic zone, hold the key to recurring patterns of typical earthquakes. Several findings of slow aseismic slip during the prenucletion processes of nearby earthquakes have provided new insight into the study of stress transform of slow earthquakes in fault zones prior to megathrust earthquakes. However, how tectonic tremor is associated with the occurrence of nearby earthquakes remains unclear. To enhance our understanding of the stress interaction between tremor and earthquakes, we developed an algorithm for the automatic detection and location of tectonic tremor in the collisional tectonic environment in Taiwan. Our analysis of a three-year data set indicates a short-term increase in the tremor rate starting at 19 days before the 2010 ML6.4 Jiashian main shock (Chao et al., JGR, 2017). Around the time when the tremor rate began to rise, one GPS station recorded a flip in its direction of motion. We hypothesize that tremor is driven by a slow-slip event that preceded the occurrence of the shallower nearby main shock, even though the inferred slip is too small to be observed by all GPS stations. To better quantify what the necessary condition for tremor to response to nearby earthquakes is, we obtained a 13-year ambient tremor catalog from 2004 to 2016 in the same region. We examine the spatiotemporal relationship between tremor and 37 ML>=5.0 (seven events with ML>=6.0) nearby earthquakes located within 0.5 degrees to the active tremor sources. The findings from this study can enhance our understanding of the interaction among tremor, slow slip, and nearby earthquakes in the high seismic hazard regions.

  14. Topics in the theory of neutron star cooling

    International Nuclear Information System (INIS)

    Duncan, R.C. Jr.

    1986-01-01

    The author calculates the neutrino emissivity of interacting, degenerate quark matter, which may make up the dense cores of neutron stars. QCD interactions between quarks are included to first order. The author shows that when massive s-quarks are present in cold quark matter, electrons are not present in equilibrium at densities above a threshold electron extinction density n/sub ex/. This results in a much lower neutrino emissivity epsilon/sub nu/ at high densities than has been previously calculated. Dependences of epsilon/sub nu/ on the strange quark mass m/sub s/ and the QCD coupling constant a/sub c/ are determined for a quark liquid in β-equilibrium. Implications of these calculations for neutron-star cooling are briefly discussed. Eventually, it is shown that neutrino momentum effects may be ignored in neutron star cooling calculations without significant error, even when high-density quark-matter cores are present. Finally considered is the very early cooling epoch, lasting up to ∼1 minutes after formation, when a neutron star is optically thick to neutrinos. It is shown that the coupled equations of neutrino and photon transport in the atmosphere of a sufficiently hot, nascent neutron star do not admit hydrostatic solutions

  15. Young star clusters in nearby molecular clouds

    Science.gov (United States)

    Getman, K. V.; Kuhn, M. A.; Feigelson, E. D.; Broos, P. S.; Bate, M. R.; Garmire, G. P.

    2018-06-01

    The SFiNCs (Star Formation in Nearby Clouds) project is an X-ray/infrared study of the young stellar populations in 22 star-forming regions with distances ≲ 1 kpc designed to extend our earlier MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey of more distant clusters. Our central goal is to give empirical constraints on cluster formation mechanisms. Using parametric mixture models applied homogeneously to the catalogue of SFiNCs young stars, we identify 52 SFiNCs clusters and 19 unclustered stellar structures. The procedure gives cluster properties including location, population, morphology, association with molecular clouds, absorption, age (AgeJX), and infrared spectral energy distribution (SED) slope. Absorption, SED slope, and AgeJX are age indicators. SFiNCs clusters are examined individually, and collectively with MYStIX clusters, to give the following results. (1) SFiNCs is dominated by smaller, younger, and more heavily obscured clusters than MYStIX. (2) SFiNCs cloud-associated clusters have the high ellipticities aligned with their host molecular filaments indicating morphology inherited from their parental clouds. (3) The effect of cluster expansion is evident from the radius-age, radius-absorption, and radius-SED correlations. Core radii increase dramatically from ˜0.08 to ˜0.9 pc over the age range 1-3.5 Myr. Inferred gas removal time-scales are longer than 1 Myr. (4) Rich, spatially distributed stellar populations are present in SFiNCs clouds representing early generations of star formation. An appendix compares the performance of the mixture models and non-parametric minimum spanning tree to identify clusters. This work is a foundation for future SFiNCs/MYStIX studies including disc longevity, age gradients, and dynamical modelling.

  16. Chemical Soups Around Cool Stars

    Science.gov (United States)

    2009-01-01

    This artist's conception shows a young, hypothetical planet around a cool star. A soupy mix of potentially life-forming chemicals can be seen pooling around the base of the jagged rocks. Observations from NASA's Spitzer Space Telescope hint that planets around cool stars the so-called M-dwarfs and brown dwarfs that are widespread throughout our galaxy might possess a different mix of life-forming, or prebiotic, chemicals than our young Earth. Life on our planet is thought to have arisen out of a pond-scum-like mix of chemicals. Some of these chemicals are thought to have come from a planet-forming disk of gas and dust that swirled around our young sun. Meteorites carrying the chemicals might have crash-landed on Earth. Astronomers don't know if these same life-generating processes are taking place around stars that are cooler than our sun, but the Spitzer observations show their disk chemistry is different. Spitzer detected a prebiotic molecule, called hydrogen cyanide, in the disks around yellow stars like our sun, but found none around cooler, less massive, reddish stars. Hydrogen cyanide is a carbon-containing, or organic compound. Five hydrogen cyanide molecules can join up to make adenine a chemical element of the DNA molecule found in all living organisms on Earth.

  17. The solar neighborhood. XXXIV. A search for planets orbiting nearby M dwarfs using astrometry

    International Nuclear Information System (INIS)

    Lurie, John C.; Henry, Todd J.; Ianna, Philip A.; Jao, Wei-Chun; Quinn, Samuel N.; Winters, Jennifer G.; Koerner, David W.; Riedel, Adric R.; Subasavage, John P.

    2014-01-01

    Astrometric measurements are presented for seven nearby stars with previously detected planets: six M dwarfs (GJ 317, GJ 667C, GJ 581, GJ 849, GJ 876, and GJ 1214) and one K dwarf (BD-10 -3166). Measurements are also presented for six additional nearby M dwarfs without known planets, but which are more favorable to astrometric detections of low mass companions, as well as three binary systems for which we provide astrometric orbit solutions. Observations have baselines of 3 to 13 years, and were made as part of the RECONS long-term astrometry and photometry program at the CTIO/SMARTS 0.9 m telescope. We provide trigonometric parallaxes and proper motions for all 16 systems, and perform an extensive analysis of the astrometric residuals to determine the minimum detectable companion mass for the 12 M dwarfs not having close stellar secondaries. For the six M dwarfs with known planets, we are not sensitive to planets, but can rule out the presence of all but the least massive brown dwarfs at periods of 2–12 years. For the six more astrometrically favorable M dwarfs, we conclude that none have brown dwarf companions, and are sensitive to companions with masses as low as 1 M Jup for periods longer than two years. In particular, we conclude that Proxima Centauri has no Jovian companions at orbital periods of 2–12 years. These results complement previously published M dwarf planet occurrence rates by providing astrometrically determined upper mass limits on potential super-Jupiter companions at orbits of two years and longer. As part of a continuing survey, these results are consistent with the paucity of super-Jupiter and brown dwarf companions we find among the over 250 red dwarfs within 25 pc observed longer than five years in our astrometric program.

  18. The solar neighborhood. XXXIV. A search for planets orbiting nearby M dwarfs using astrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lurie, John C. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Henry, Todd J.; Ianna, Philip A. [RECONS Institute, Chambersburg, PA 17201 (United States); Jao, Wei-Chun; Quinn, Samuel N.; Winters, Jennifer G. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); Koerner, David W. [Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86011 (United States); Riedel, Adric R. [Department of Astrophysics, American Museum of Natural History, New York, NY 10034 (United States); Subasavage, John P., E-mail: lurie@uw.edu [United States Naval Observatory, Flagstaff, AZ 86001 (United States)

    2014-11-01

    Astrometric measurements are presented for seven nearby stars with previously detected planets: six M dwarfs (GJ 317, GJ 667C, GJ 581, GJ 849, GJ 876, and GJ 1214) and one K dwarf (BD-10 -3166). Measurements are also presented for six additional nearby M dwarfs without known planets, but which are more favorable to astrometric detections of low mass companions, as well as three binary systems for which we provide astrometric orbit solutions. Observations have baselines of 3 to 13 years, and were made as part of the RECONS long-term astrometry and photometry program at the CTIO/SMARTS 0.9 m telescope. We provide trigonometric parallaxes and proper motions for all 16 systems, and perform an extensive analysis of the astrometric residuals to determine the minimum detectable companion mass for the 12 M dwarfs not having close stellar secondaries. For the six M dwarfs with known planets, we are not sensitive to planets, but can rule out the presence of all but the least massive brown dwarfs at periods of 2–12 years. For the six more astrometrically favorable M dwarfs, we conclude that none have brown dwarf companions, and are sensitive to companions with masses as low as 1 M{sub Jup} for periods longer than two years. In particular, we conclude that Proxima Centauri has no Jovian companions at orbital periods of 2–12 years. These results complement previously published M dwarf planet occurrence rates by providing astrometrically determined upper mass limits on potential super-Jupiter companions at orbits of two years and longer. As part of a continuing survey, these results are consistent with the paucity of super-Jupiter and brown dwarf companions we find among the over 250 red dwarfs within 25 pc observed longer than five years in our astrometric program.

  19. THE ACS NEARBY GALAXY SURVEY TREASURY. VII. THE NGC 4214 STARBURST AND THE EFFECTS OF STAR FORMATION HISTORY ON DWARF MORPHOLOGY

    International Nuclear Information System (INIS)

    Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Weisz, Daniel R.; Seth, Anil C.; Skillman, Evan D.; Dolphin, Andrew E.

    2011-01-01

    We present deep Hubble Space Telescope WFPC2 optical observations obtained as part of the ACS Nearby Galaxy Survey Treasury as well as early release Wide Field Camera 3 ultraviolet and infrared observations of the nearby dwarf starbursting galaxy NGC 4214. Our data provide a detailed example of how covering such a broad range in wavelength provides a powerful tool for constraining the physical properties of stellar populations. The deepest data reach the ancient red clump at M F814W ∼ - 0.2. All of the optical data reach the main-sequence turnoff for stars younger than ∼300 Myr and the blue He-burning sequence for stars younger than 500 Myr. The full color-magnitude diagram (CMD) fitting analysis shows that all three fields in our data set are consistent with ∼75% of the stellar mass being older than 8 Gyr, in spite of showing a wide range in star formation rates at present. Thus, our results suggest that the scale length of NGC 4214 has remained relatively constant for many gigayears. As previously noted by others, we also find the galaxy has recently ramped up production consistent with its bright UV luminosity and its population of UV-bright massive stars. In the central field we find UV point sources with F336W magnitudes as bright as -9.9. These are as bright as stars with masses of at least 52-56 M sun and ages near 4 Myr in stellar evolution models. Assuming a standard initial mass function, our CMD is well fitted by an increase in star formation rate beginning 100 Myr ago. The stellar populations of this late-type dwarf are compared with those of NGC 404, an early-type dwarf that is also the most massive galaxy in its local environment. The late-type dwarf appears to have a similar high fraction of ancient stars, suggesting that these dominant galaxies may form at early epochs even if they have low total mass and very different present-day morphologies.

  20. MaNGA: Mapping Nearby Galaxies at Apache Point Observatory

    Science.gov (United States)

    Weijmans, A.-M.; MaNGA Team

    2016-10-01

    MaNGA (Mapping Nearby Galaxies at APO) is a galaxy integral-field spectroscopic survey within the fourth generation Sloan Digital Sky Survey (SDSS-IV). It will be mapping the composition and kinematics of gas and stars in 10,000 nearby galaxies, using 17 differently sized fiber bundles. MaNGA's goal is to provide new insights in galaxy formation and evolution, and to deliver a local benchmark for current and future high-redshift studies.

  1. Growing massive black holes in a Local Group environment: the central supermassive, slowly sinking and ejected populations

    Science.gov (United States)

    Micic, Miroslav; Holley-Bockelmann, Kelly; Sigurdsson, Steinn

    2011-06-01

    We explore the growth of ≤107 M⊙ black holes that reside at the centres of spiral and field dwarf galaxies in a Local Group type of environment. We use merger trees from a cosmological N-body simulation known as Via Lactea 2 (VL-2) as a framework to test two merger-driven semi-analytic recipes for black hole growth that include dynamical friction, tidal stripping and gravitational wave recoil in over 20 000 merger tree realizations. First, we apply a Fundamental Plane limited (FPL) model to the growth of Sgr A*, which drives the central black hole to a maximum mass limited by the black hole Fundamental Plane after every merger. Next, we present a new model that allows for low-level prolonged gas accretion (PGA) during the merger. We find that both models can generate an Sgr A* mass black hole. We predict a population of massive black holes in local field dwarf galaxies - if the VL-2 simulation is representative of the growth of the Local Group, we predict up to 35 massive black holes (≤106 M⊙) in Local Group field dwarfs. We also predict that hundreds of ≤105 M⊙ black holes fail to merge, and instead populate the Milky Way halo, with the most massive of them at roughly the virial radius. In addition, we find that there may be hundreds of massive black holes ejected from their hosts into the nearby intergalactic medium due to gravitational wave recoil. We discuss how the black hole population in the Local Group field dwarfs may help to constrain the growth mechanism for Sgr A*.

  2. Planetesimals around nearby millisecond pulsars

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.

    1992-05-01

    We predict that it is possible to observe line emissions of OH, CN and C 2 from the planetesimals around some of the nearby millisecond pulsars, such as PSR1257+12. Observation of these lines will provide an independent test of either an existing planetary system or one which is in the process of formation. (author). 11 refs, 1 tab

  3. Massive Conformal Gravity

    International Nuclear Information System (INIS)

    Faria, F. F.

    2014-01-01

    We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.

  4. Asymmetric ejecta of cool supergiants and hypergiants in the massive cluster Westerlund 1

    Science.gov (United States)

    Andrews, H.; Fenech, D.; Prinja, R. K.; Clark, J. S.; Hindson, L.

    2018-06-01

    We report new 5.5 GHz radio observations of the massive star cluster Westerlund 1, taken by the Australia Telescope Compact Array, detecting nine of the ten yellow hypergiants (YHGs) and red supergiants (RSGs) within the cluster. Eight of nine sources are spatially resolved. The nebulae associated with the YHGs Wd1-4a, -12a, and -265 demonstrate a cometary morphology - the first time this phenomenon has been observed for such stars. This structure is also echoed in the ejecta of the RSGs Wd1-20 and -26; in each case the cometary tails are directed away from the cluster core. The nebular emission around the RSG Wd1-237 is less collimated than these systems but once again appears more prominent in the hemisphere facing the cluster. Considered as a whole, the nebular morphologies provide compelling evidence for sculpting via a physical agent associated with Westerlund 1, such as a cluster wind.

  5. Emergency pancreatoduodenectomy (whipple procedure) for massive upper gastrointestinal bleeding caused by a diffuse B-cell lymphoma of the duodenum: report of a case.

    Science.gov (United States)

    Stratigos, Panagiotis; Kouskos, Efstratios; Kouroglou, Maria; Chrisafis, Ioannis; Fois, Lucia; Mavrogiorgis, Anastasios; Axiotis, Efthimios; Zamtrakis, Sotirios

    2007-01-01

    We herein report a rare case of a massive upper gastrointestinal (GI) bleeding, caused by high-grade diffuse B-cell lymphoma of the duodenum, secondary to immunoproliferative small intestinal disease (IPSID) and treated with an emergency partial pancreatoduodenectomy. A 42-year-old man was admitted to our hospital because of hematemesis. Upper GI endoscopy was unrevealing because of the copious bleeding. Initially, the patient underwent conservative treatment, thus resulting in the temporary cessation of the bleeding. Later, the hemorrhage massively relapsed. An urgent abdominal ultrasound raised the suspicion of a large, possibly bleeding, neoplasm of the duodenum, which was finally confirmed by abdominal computed tomography. The patient underwent an emergency laparotomy, during which a partial pancreatoduodenectomy was performed (Whipple procedure). Histologically, the tumor was a high-grade B-cell lymphoma of the duodenum. The nearby small intestinal mucosa was suggestive of IPSID. A massive upper GI hemorrhage from a high-grade B-cell non-Hodgkin lymphoma of the duodenum, which develops secondary to IPSID, is a very rare clinical demonstration of this disease. Our case is one of the few reports in the English literature, for which the Whipple procedure has been performed as a curative treatment.

  6. Massive gravity from bimetric gravity

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Martín-Moruno, Prado; Visser, Matt

    2013-01-01

    We discuss the subtle relationship between massive gravity and bimetric gravity, focusing particularly on the manner in which massive gravity may be viewed as a suitable limit of bimetric gravity. The limiting procedure is more delicate than currently appreciated. Specifically, this limiting procedure should not unnecessarily constrain the background metric, which must be externally specified by the theory of massive gravity itself. The fact that in bimetric theories one always has two sets of metric equations of motion continues to have an effect even in the massive gravity limit, leading to additional constraints besides the one set of equations of motion naively expected. Thus, since solutions of bimetric gravity in the limit of vanishing kinetic term are also solutions of massive gravity, but the contrary statement is not necessarily true, there is no complete continuity in the parameter space of the theory. In particular, we study the massive cosmological solutions which are continuous in the parameter space, showing that many interesting cosmologies belong to this class. (paper)

  7. Fragmentation inside atomic cooling haloes exposed to Lyman-Werner radiation

    Science.gov (United States)

    Regan, John A.; Downes, Turlough P.

    2018-04-01

    Supermassive stars born in pristine environments in the early Universe hold the promise of being the seeds for the supermassive black holes observed as high redshift quasars shortly after the epoch of reionisation. H2 suppression is thought to be crucial in order to negate normal Population III star formation and allow high accretion rates to drive the formation of supermassive stars. Only in the cases where vigorous fragmentation is avoided will a monolithic collapse be successful, giving rise to a single massive central object. We investigate the number of fragmentation sites formed in collapsing atomic cooling haloes subject to various levels of background Lyman-Werner flux. The background Lyman-Werner flux manipulates the chemical properties of the gas in the collapsing halo by destroying H2. We find that only when the collapsing gas cloud shifts from the molecular to the atomic cooling regime is the degree of fragmentation suppressed. In our particular case, we find that this occurs above a critical Lyman-Werner background of J ˜ 10 J21. The important criterion being the transition to the atomic cooling regime rather than the actual value of J, which will vary locally. Once the temperature of the gas exceeds T ≳ 104 K and the gas transitions to atomic line cooling, then vigorous fragmentation is strongly suppressed.

  8. Dynamical Masses of Cool White Dwarfs in Double-Degenerate Visual Binaries

    Science.gov (United States)

    Bond, Howard E.; Nelan, E. P.; Schaefer, G.

    2014-01-01

    The cool white dwarfs (WDs) WD 1639+153 and WD 1818+126 were originally resolved into close visual binaries containing two WDs each during a survey with the Hubble Space Telescope (HST) and its Fine Guidance Sensors (FGS). Follow up FGS observations of these two double-degenerate (DD) systems, along with the previously known DD G 107-70, have yielded the orbital elements of all three visual binaries. We find orbital periods of 3.88 yr, 12.19 yr, and 18.84 yr for WD 1639+153, WD 1818+126, and G 107-70, respectively. Moreover, for each of the systems we have been observing nearby field stars with FGS1r in POS mode to determine the local inertial reference frame, from which we obtain the parallax and proper motion of the DD, along with the motion of each WD about its system barycenter. This leads directly to a dynamical mass for each WD. We have also used HST STIS observations to obtain individual spectra of each of the six WDs, which provide the effective temperature and subclass of each WD. This provides insight into the cooling age of each star. From the cooling ages and dynamical masses, we obtain constraints on the initial-mass/final-mass relation for WD stars.

  9. New Observational Evidence of Flash Mixing on the White Dwarf Cooling Curve

    Science.gov (United States)

    Brown, T. M.; Lanz, T.; Sweigart, A. V.; Cracraft, Misty; Hubeny, Ivan; Landsman, W. B.

    2011-01-01

    Blue hook stars are a class of subluminous extreme horizontal branch stars that were discovered in UV images of the massive globular clusters w Cen and NGC 2808. These stars occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. Using new theoretical evolutionary and atmospheric models, we have shown that the blue hook stars are very likely the progeny of stars that undergo extensive internal mixing during a late helium-core flash on the white dwarf cooling curve. This "flash mixing" produces hotter-than-normal EHB stars with atmospheres significantly enhanced in helium and carbon. The larger bolometric correction, combined with the decrease in hydrogen opacity, makes these stars appear sub luminous in the optical and UV. Flash mixing is more likely to occur in stars born with a high helium abundance, due to their lower mass at the main sequence turnoff. For this reason, the phenomenon is more common in those massive globular clusters that show evidence for secondary populations enhanced in helium. However, a high helium abundance does not, by itself, explain the presence of blue hook stars in massive globular clusters. Here, we present new observational evidence for flash mixing, using recent HST observations. These include UV color-magnitude diagrams of six massive globular clusters and far-UV spectroscopy of hot subdwarfs in one of these clusters (NGC 2808).

  10. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  11. The cool DA white dwarf G128-7: Atmospheric parameters and evolutionary consequences

    International Nuclear Information System (INIS)

    Wehrse, R.; Liebert, J.

    1980-01-01

    Atmospheric parameters are derived for the very cool DA white dwarf G128-7 (Gr283). The best fit to the models yields Tsub(eff) = 5800 0 K, [M/H] approx. 8.0 is found because of the implied formation of molecular hydrogen and its effects on the temperature stratification; at higher Tsub(eff), the molecule formation is unimportant and the H-lines show little gravity dependence. The dominance of non-DA spectral types for a sample of nearby, well observed white dwarfs with 13.0 0 K) leads us to conclude that the 3:1 ratio in favor of hydrogen atmospheres for hot white dwarfs is not preserved as the stars cool; this is evidence that convective mixing of the outer hydrogen layer has occured for some but not all stars. Results of recent theoretical investigations suggest that the surviving cool DA stars have larger initial hydrogen layer masses (>approx.10 -10 M) or higher than normal stallar masses. The latter possibility would be consistent with our inference for a higher than normal surface gravity in G128-7. (orig.) 891 WL/orig. 892 HIS

  12. ATLAS' major cooling project

    CERN Multimedia

    2005-01-01

    In 2005, a considerable effort has been put into commissioning the various units of ATLAS' complex cryogenic system. This is in preparation for the imminent cooling of some of the largest components of the detector in their final underground configuration. The liquid helium and nitrogen ATLAS refrigerators in USA 15. Cryogenics plays a vital role in operating massive detectors such as ATLAS. In many ways the liquefied argon, nitrogen and helium are the life-blood of the detector. ATLAS could not function without cryogens that will be constantly pumped via proximity systems to the superconducting magnets and subdetectors. In recent weeks compressors at the surface and underground refrigerators, dewars, pumps, linkages and all manner of other components related to the cryogenic system have been tested and commissioned. Fifty metres underground The helium and nitrogen refrigerators, installed inside the service cavern, are an important part of the ATLAS cryogenic system. Two independent helium refrigerators ...

  13. Vaidya spacetime in massive gravity's rainbow

    Directory of Open Access Journals (Sweden)

    Yaghoub Heydarzade

    2017-11-01

    Full Text Available In this paper, we will analyze the energy dependent deformation of massive gravity using the formalism of massive gravity's rainbow. So, we will use the Vainshtein mechanism and the dRGT mechanism for the energy dependent massive gravity, and thus analyze a ghost free theory of massive gravity's rainbow. We study the energy dependence of a time-dependent geometry, by analyzing the radiating Vaidya solution in this theory of massive gravity's rainbow. The energy dependent deformation of this Vaidya metric will be performed using suitable rainbow functions.

  14. Examining the Center: Positions, Dominance, and Star Formation Rates of Most Massive Group Galaxies at Intermediate Redshift

    Science.gov (United States)

    Connelly, Jennifer L.; Parker, Laura C.; McGee, Sean; Mulchaey, John S.; Finoguenov, Alexis; Balogh, Michael; Wilman, David; Group Environment Evolution Collaboration

    2015-01-01

    The group environment is believed to be the stage for many galaxy transformations, helping evolve blue star-forming galaxies to red passive ones. In local studies of galaxy clusters, the central member is usually a single dominant giant galaxy at the center of the potential with little star formation thought to be the result of galaxy mergers. In nearby groups, a range of morphologies and star formation rates are observed and the formation history is less clear. Further, the position and dominance of the central galaxy cannot be assumed in groups, which are less massive and evolved than clusters. To understand the connections between global group properties and properties of the central group galaxy at intermediate redshift, we examine galaxy groups from the Group Environment and Evolution Collaboration (GEEC) catalog, including both optically- and X-ray-selected groups at redshift z~0.4. The sample is diverse, containing a range in overall mass and evolutionary state. The number of groups is significant, membership is notably complete, and measurements span the IR to the UV allowing the properties of the members to be connected to those of the host groups. Having investigated trends in the global group properties previously, including mass and velocity substructure, we turn our attention now to the galaxy populations, focusing on the central regions of these systems. The most massive and second most massive group galaxies are identified by their stellar mass. The positions of the most massive galaxies (MMGs) are determined with respect to both the luminosity-weighted and X-ray center. Star formation rates are used to explore the fraction of passive/quiescent versus star-forming MMGs and the dominance of the MMGs in our group sample is also tested. Determinations of these characteristics and trends constitute the important first steps toward a detailed understanding of the relationships between the properties of host groups and their most massive galaxies and the

  15. Galaxy evolution. Quasar quartet embedded in giant nebula reveals rare massive structure in distant universe.

    Science.gov (United States)

    Hennawi, Joseph F; Prochaska, J Xavier; Cantalupo, Sebastiano; Arrigoni-Battaia, Fabrizio

    2015-05-15

    All galaxies once passed through a hyperluminous quasar phase powered by accretion onto a supermassive black hole. But because these episodes are brief, quasars are rare objects typically separated by cosmological distances. In a survey for Lyman-α emission at redshift z ≈ 2, we discovered a physical association of four quasars embedded in a giant nebula. Located within a substantial overdensity of galaxies, this system is probably the progenitor of a massive galaxy cluster. The chance probability of finding a quadruple quasar is estimated to be ∼10(-7), implying a physical connection between Lyman-α nebulae and the locations of rare protoclusters. Our findings imply that the most massive structures in the distant universe have a tremendous supply (≃10(11) solar masses) of cool dense (volume density ≃ 1 cm(-3)) gas, which is in conflict with current cosmological simulations. Copyright © 2015, American Association for the Advancement of Science.

  16. Association between catastrophic paleovegetation changes during Devonian-Carboniferous boundary and the formation of giant massive sulfide deposits

    Science.gov (United States)

    Menor-Salván, Cesar; Tornos, Fernando; Fernández-Remolar, David; Amils, Ricardo

    2010-11-01

    The Iberian Pyrite Belt (SW Iberia) is one of the largest sulfur anomalies in the Earth's crust. In the southern Iberian Pyrite Belt, more than 820 Mt of exhalative massive sulfides were deposited in less than one million years at the Devonian-Carboniferous boundary. The shale of the ore-bearing horizon contains biomarkers indicating major biogenic activity in a methanogenic setting, including a five-fold increase in typical vascular plant biomarkers and a significant anomaly in those probably indicating the presence of thermophilic Archaea. This contrasts with signatures in the average sedimentary rocks of the basin that indicate the sediments settled in oxic to sub-oxic environments, and that they have only minor biomarkers derived from continental paleoflora. These data show that the formation of the mineralization was not only related to major hydrothermal activity synchronous with volcanism but may also have been controlled by the input of large amounts of organic matter, mostly derived from the degradation of woodland detritus sourced in the nearby continent. This massive influx of organic matter could have accelerated extremophilic microbial activity that used short-chain hydrocarbons as electron donors for seawater sulfate reduction, resulting in concomitant massive sulfide precipitation. We propose that the giant massive sulfide deposits resulted from overlapping of geological and biological processes that occurred at the Devonian to Carboniferous transition, including: (1) continent collision during the onset of the Variscan orogeny leading to major paleogeographic changes and volcanism; (2) dramatic stress of continental ecosystems due to the combination of climatic change, volcanism, variations in the sea level and erosion on a regional scale; (3) major biomass destruction and increase of organic supply to marine environments; and, (4) generation of anoxic conditions and the thriving of sulfate reducing microorganisms. Under these conditions, massive

  17. Modified Cooling System for Low Temperature Experiments in a 3000 Ton Multi-Anvil Press

    Science.gov (United States)

    Secco, R.; Yong, W.

    2017-12-01

    A new modified cooling system for a 3000-ton multi-anvil press has been developed to reach temperatures below room temperature at high pressures. The new system is much simpler in design, easier to make and use, and has the same cooling capability as the previous design (Secco and Yong, RSI, 2016). The key component of the new system is a steel ring surrounding the module wedges that contains liquid nitrogen (LN2) which flows freely through an entrance port to flood the interior of the pressure module. Upper and lower O-rings on the ring seal in the liquid while permitting modest compression and an thermally insulating layer of foam is attached to the outside of the ring. The same temperature of 220 K reached with two different cooling systems suggests that thermal equilibrium is reached between the removal of heat by LN2 and the influx of heat through the massive steel components of this press.

  18. HIGH-RESOLUTION XMM-NEWTON SPECTROSCOPY OF THE COOLING FLOW CLUSTER A3112

    Energy Technology Data Exchange (ETDEWEB)

    Bulbul, G. Esra; Smith, Randall K.; Foster, Adam [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cottam, Jean; Loewenstein, Michael; Mushotzky, Richard; Shafer, Richard, E-mail: ebulbul@cfa.harvard.edu [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2012-03-01

    We examine high signal-to-noise XMM-Newton European Photon Imaging Camera (EPIC) and Reflection Grating Spectrometer (RGS) observations to determine the physical characteristics of the gas in the cool core and outskirts of the nearby rich cluster A3112. The XMM-Newton Extended Source Analysis Software data reduction and background modeling methods were used to analyze the XMM-Newton EPIC data. From the EPIC data, we find that the iron and silicon abundance gradients show significant increase toward the center of the cluster while the oxygen abundance profile is centrally peaked but has a shallower distribution than that of iron. The X-ray mass modeling is based on the temperature and deprojected density distributions of the intracluster medium determined from EPIC observations. The total mass of A3112 obeys the M-T scaling relations found using XMM-Newton and Chandra observations of massive clusters at r{sub 500}. The gas mass fraction f{sub gas} = 0.149{sup +0.036}{sub -0.032} at r{sub 500} is consistent with the seven-year Wilkinson Microwave Anisotropy Probe results. The comparisons of line fluxes and flux limits on the Fe XVII and Fe XVIII lines obtained from high-resolution RGS spectra indicate that there is no spectral evidence for cooler gas associated with the cluster with temperature below 1.0 keV in the central <38'' ({approx}52 kpc) region of A3112. High-resolution RGS spectra also yield an upper limit to the turbulent motions in the compact core of A3112 (206 km s{sup -1}). We find that the contribution of turbulence to total energy is less than 6%. This upper limit is consistent with the energy contribution measured in recent high-resolution simulations of relaxed galaxy clusters.

  19. MassiveNuS: cosmological massive neutrino simulations

    Science.gov (United States)

    Liu, Jia; Bird, Simeon; Zorrilla Matilla, José Manuel; Hill, J. Colin; Haiman, Zoltán; Madhavacheril, Mathew S.; Petri, Andrea; Spergel, David N.

    2018-03-01

    The non-zero mass of neutrinos suppresses the growth of cosmic structure on small scales. Since the level of suppression depends on the sum of the masses of the three active neutrino species, the evolution of large-scale structure is a promising tool to constrain the total mass of neutrinos and possibly shed light on the mass hierarchy. In this work, we investigate these effects via a large suite of N-body simulations that include massive neutrinos using an analytic linear-response approximation: the Cosmological Massive Neutrino Simulations (MassiveNuS). The simulations include the effects of radiation on the background expansion, as well as the clustering of neutrinos in response to the nonlinear dark matter evolution. We allow three cosmological parameters to vary: the neutrino mass sum Mν in the range of 0–0.6 eV, the total matter density Ωm, and the primordial power spectrum amplitude As. The rms density fluctuation in spheres of 8 comoving Mpc/h (σ8) is a derived parameter as a result. Our data products include N-body snapshots, halo catalogues, merger trees, ray-traced galaxy lensing convergence maps for four source redshift planes between zs=1–2.5, and ray-traced cosmic microwave background lensing convergence maps. We describe the simulation procedures and code validation in this paper. The data are publicly available at http://columbialensing.org.

  20. Holographically viable extensions of topologically massive and minimal massive gravity?

    Science.gov (United States)

    Altas, Emel; Tekin, Bayram

    2016-01-01

    Recently [E. Bergshoeff et al., Classical Quantum Gravity 31, 145008 (2014)], an extension of the topologically massive gravity (TMG) in 2 +1 dimensions, dubbed as minimal massive gravity (MMG), which is free of the bulk-boundary unitarity clash that inflicts the former theory and all the other known three-dimensional theories, was found. Field equations of MMG differ from those of TMG at quadratic terms in the curvature that do not come from the variation of an action depending on the metric alone. Here we show that MMG is a unique theory and there does not exist a deformation of TMG or MMG at the cubic and quartic order (and beyond) in the curvature that is consistent at the level of the field equations. The only extension of TMG with the desired bulk and boundary properties having a single massive degree of freedom is MMG.

  1. TRAPPIST-UCDTS: A prototype search for habitable planets transiting ultra-cool stars

    Directory of Open Access Journals (Sweden)

    Magain P.

    2013-04-01

    Full Text Available The ∼1000 nearest ultra-cool stars (spectral type M6 and latter represent a unique opportunity for the search for life outside solar system. Due to their small luminosity, their habitable zone is 30–100 times closer than for the Sun, the corresponding orbital periods ranging from one to a few days. Thanks to this proximity, the transits of a habitable planet are much more probable and frequent than for an Earth-Sun analog, while their tiny size (∼1 Jupiter radius leads to transits deep enough for a ground-based detection, even for sub-Earth size planets. Furthermore, a habitable planet transiting one of these nearby ultra-cool star would be amenable for a thorough atmospheric characterization, including the detection of possible biosignatures, notably with the near-to-come JWST. Motivated by these reasons, we have set up the concept of a ground-based survey optimized for detecting planets of Earth-size and below transiting the nearest Southern ultra-cool stars. To assess thoroughly the actual potential of this future survey, we are currently conducting a prototype mini-survey using the TRAPPIST robotic 60cm telescope located at La Silla ESO Observatory (Chile. We summarize here the preliminary results of this mini-survey that fully validate our concept.

  2. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes

    International Nuclear Information System (INIS)

    Yang Jian; Hu Yu; Zuo Zheng; Jin Feng; Li Qingbin

    2012-01-01

    Removal of hydration heat from mass concrete during construction is important for the quality and safety of concrete structures. In this study, a three-dimensional finite element program for thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes was developed based on the equivalent equation of heat conduction including the effect of cooling water pipes and hydration heat of concrete. The cooling function of the double-layer staggered heterogeneous cooling pipes in a concrete slab was derived from the principle of equivalent cooling. To improve the applicability and precision of the equivalent heat conduction equation under small flow, the cooling function was revised according to its monotonicity and empirical formulas of single-phase forced-convection heat transfer in tube flow. Considering heat hydration of concrete at later age, a double exponential function was proposed to fit the adiabatic temperature rise curve of concrete. Subsequently, the temperature variation of concrete was obtained, and the outlet temperature of cooling water was estimated through the energy conservation principle. Comparing calculated results with actual measured data from a monolith of an arch dam in China, the numerical model was proven to be effective in sufficiently simulating accurate temperature variations of mass concrete. - Highlights: ► Three-dimensional program is developed to model temperature history of mass concrete. ► Massive concrete is embedded with double-layer heterogeneous cooling pipes. ► Double exponential function is proposed to fit the adiabatic temperature rise curve. ► Outlet temperature of cooling water is estimated. ► A comparison is made between the calculated and measured data.

  3. The Mozambique Ridge: a document of massive multistage magmatism

    Science.gov (United States)

    Fischer, Maximilian D.; Uenzelmann-Neben, Gabriele; Jacques, Guillaume; Werner, Reinhard

    2017-01-01

    The Mozambique Ridge, a prominent basement high in the southwestern Indian Ocean, consists of four major geomorphological segments associated with numerous phases of volcanic activity in the Lower Cretaceous. The nature and origin of the Mozambique Ridge have been intensely debated with one hypothesis suggesting a Large Igneous Province origin. High-resolution seismic reflection data reveal a large number of extrusion centres with a random distribution throughout the southern Mozambique Ridge and the nearby Transkei Rise. Intrabasement reflections emerge from the extrusion centres and are interpreted to represent massive lava flow sequences. Such lava flow sequences are characteristic of eruptions leading to the formation of continental and oceanic flood basalt provinces, hence supporting a Large Igneous Province origin of the Mozambique Ridge. We observe evidence for widespread post-sedimentary magmatic activity that we correlate with a southward propagation of the East African Rift System. Based on our volumetric analysis of the southern Mozambique Ridge we infer a rapid sequential emplacement between ˜131 and ˜125 Ma, which is similar to the short formation periods of other Large Igneous Provinces like the Agulhas Plateau.

  4. Gas infall into atomic cooling haloes: on the formation of protogalactic disks and supermassive black holes at z > 10

    CERN Document Server

    Prieto, Joaquin; Haiman, Zoltan

    2013-01-01

    We have performed cosmo-hydro simulations using the RAMSES code to study atomic cooling (ACHs) haloes at z=10 with masses 5E7Msun10 to date. We examine the morphology, angular momentum (AM), thermodynamic, and turbulence of these haloes, in order to assess the prevalence of disks and supermassive black holes (SMBHs). We find no correlation between either the magnitude or the direction of the AM of the gas and its parent DM halo. Only 3 haloes form rotationally supported cores. Two of the most massive haloes form massive, compact overdense blobs. These blobs have an accretion rate ~0.5 Msun/yr (at a distance of 100 pc), and are possible sites of SMBH formation. Our results suggest that the degree of rotational support and the fate of the gas in a halo is determined by its large-scale environment and merger history. In particular, the two haloes forming blobs are located at knots of the cosmic web, cooled early on, and experienced many mergers. The gas in these haloes is lumpy and highly turbulent, with Mach N....

  5. SPITZER INFRARED LOW-RESOLUTION SPECTROSCOPIC STUDY OF BURIED ACTIVE GALACTIC NUCLEI IN A COMPLETE SAMPLE OF NEARBY ULTRALUMINOUS INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Imanishi, Masatoshi; Maiolino, Roberto; Nakagawa, Takao

    2010-01-01

    We present the results of Spitzer Infrared Spectrograph low-resolution infrared 5-35 μm spectroscopy of 17 nearby ultraluminous infrared galaxies (ULIRGs) at z 12 L sun , are found in eight sources. We combine these results with those of our previous research to investigate the energy function of buried AGNs in a complete sample of optically non-Seyfert ULIRGs in the local universe at z < 0.3 (85 sources). We confirm a trend that we previously discovered: that buried AGNs are more common in galaxies with higher infrared luminosities. Because optical Seyferts also show a similar trend, we argue more generally that the energetic importance of AGNs is intrinsically higher in more luminous galaxies, suggesting that the AGN-starburst connections are luminosity dependent. This may be related to the stronger AGN feedback scenario in currently more massive galaxy systems, as a possible origin of the galaxy downsizing phenomenon.

  6. Massive Supergravity and Deconstruction

    CERN Document Server

    Gregoire, T; Shadmi, Y; Gregoire, Thomas; Schwartz, Matthew D; Shadmi, Yael

    2004-01-01

    We present a simple superfield Lagrangian for massive supergravity. It comprises the minimal supergravity Lagrangian with interactions as well as mass terms for the metric superfield and the chiral compensator. This is the natural generalization of the Fierz-Pauli Lagrangian for massive gravity which comprises mass terms for the metric and its trace. We show that the on-shell bosonic and fermionic fields are degenerate and have the appropriate spins: 2, 3/2, 3/2 and 1. We then study this interacting Lagrangian using goldstone superfields. We find that a chiral multiplet of goldstones gets a kinetic term through mixing, just as the scalar goldstone does in the non-supersymmetric case. This produces Planck scale (Mpl) interactions with matter and all the discontinuities and unitarity bounds associated with massive gravity. In particular, the scale of strong coupling is (Mpl m^4)^1/5, where m is the multiplet's mass. Next, we consider applications of massive supergravity to deconstruction. We estimate various qu...

  7. COLA with massive neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Bill S.; Winther, Hans A.; Koyama, Kazuya, E-mail: bill.wright@port.ac.uk, E-mail: hans.winther@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, Hampshire, PO1 3FX (United Kingdom)

    2017-10-01

    The effect of massive neutrinos on the growth of cold dark matter perturbations acts as a scale-dependent Newton's constant and leads to scale-dependent growth factors just as we often find in models of gravity beyond General Relativity. We show how to compute growth factors for ΛCDM and general modified gravity cosmologies combined with massive neutrinos in Lagrangian perturbation theory for use in COLA and extensions thereof. We implement this together with the grid-based massive neutrino method of Brandbyge and Hannestad in MG-PICOLA and compare COLA simulations to full N -body simulations of ΛCDM and f ( R ) gravity with massive neutrinos. Our implementation is computationally cheap if the underlying cosmology already has scale-dependent growth factors and it is shown to be able to produce results that match N -body to percent level accuracy for both the total and CDM matter power-spectra up to k ∼< 1 h /Mpc.

  8. Minimal massive 3D gravity

    International Nuclear Information System (INIS)

    Bergshoeff, Eric; Merbis, Wout; Hohm, Olaf; Routh, Alasdair J; Townsend, Paul K

    2014-01-01

    We present an alternative to topologically massive gravity (TMG) with the same ‘minimal’ bulk properties; i.e. a single local degree of freedom that is realized as a massive graviton in linearization about an anti-de Sitter (AdS) vacuum. However, in contrast to TMG, the new ‘minimal massive gravity’ has both a positive energy graviton and positive central charges for the asymptotic AdS-boundary conformal algebra. (paper)

  9. IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae

    Science.gov (United States)

    Stamatikos, M.; Abbasi, R.; Berghaus, P.; Chirkin, D.; Desiati, P.; Diaz-Velez, J.; Dumm, J. P.; Eisch, J.; Feintzeig, J.; Hanson, K.; hide

    2012-01-01

    This paper describes the response of the IceCube neutrino telescope located at the geographic South Pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of approx. 1 cu km in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.

  10. REVISED MASS-TO-LIGHT RATIOS FOR NEARBY GALAXY GROUPS AND CLUSTERS

    International Nuclear Information System (INIS)

    Shan, Yutong; Courteau, Stéphane; McDonald, Michael

    2015-01-01

    We present a detailed investigation of the cluster stellar mass-to-light (M*/L) ratio and cumulative stellar masses, derived on a galaxy-by-galaxy basis, for 12 massive (M 500 ∼ 10 14 -10 15 M ☉ ), nearby clusters with available optical imaging data from the Sloan Digital Sky Survey Data Release 10 and X-ray data from the Chandra X-ray Observatory. Our method involves a statistical cluster membership using both photometric and spectroscopic redshifts when available to maximize completeness while minimizing contamination effects. We show that different methods of estimating the stellar mass-to-light ratio from observed photometry result in systematic discrepancies in the total stellar masses and average mass-to-light ratios of cluster galaxies. Nonetheless, all conversion methodologies point to a lack of correlation between M*/L i and total cluster mass, even though low-mass groups contain relatively more blue galaxies. We also find no statistically significant correlation between M*/L i and the fraction of blue galaxies (g – i < 0.85). For the mass range covered by our sample, the assumption of a Chabrier initial mass function (IMF) yields an integrated M*/L i ≅ 1.7 ± 0.2 M ☉ /L i, ☉ , a lower value than used in most similar studies, though consistent with the study of low-mass galaxy groups by Leauthaud et al. A light (diet) Salpeter IMF would imply a ∼60% increase in M*/L i

  11. Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology

    Science.gov (United States)

    Schmitt, Axel K.; Perfit, Michael R.; Rubin, Kenneth H.; Stockli, Daniel F.; Smith, Matthew C.; Cotsonika, Laurie A.; Zellmer, Georg F.; Ridley, W. Ian

    2011-01-01

    Oceanic spreading ridges are Earth's most productive crust generating environment, but mechanisms and rates of crustal accretion and heat loss are debated. Existing observations on cooling rates are ambiguous regarding the prevalence of conductive vs. convective cooling of lower oceanic crust. Here, we report the discovery and dating of zircon in mid-ocean ridge dacite lavas that constrain magmatic differentiation and cooling rates at an active spreading center. Dacitic lavas erupted on the southern Cleft segment of the Juan de Fuca ridge, an intermediate-rate spreading center, near the intersection with the Blanco transform fault. Their U–Th zircon crystallization ages (29.3-4.6+4.8 ka; 1δ standard error s.e.) overlap with the (U–Th)/He zircon eruption age (32.7 ± 1.6 ka) within uncertainty. Based on similar 238U-230Th disequilibria between southern Cleft dacite glass separates and young mid-ocean ridge basalt (MORB) erupted nearby, differentiation must have occurred rapidly, within ~ 10–20 ka at most. Ti-in-zircon thermometry indicates crystallization at 850–900 °C and pressures > 70–150 MPa are calculated from H2O solubility models. These time-temperature constraints translate into a magma cooling rate of ~ 2 × 10-2 °C/a. This rate is at least one order-of-magnitude faster than those calculated for zircon-bearing plutonic rocks from slow spreading ridges. Such short intervals for differentiation and cooling can only be resolved through uranium-series (238U–230Th) decay in young lavas, and are best explained by dissipating heat convectively at high crustal permeability.

  12. Legionella in industrial cooling towers: monitoring and control strategies.

    Science.gov (United States)

    Carducci, A; Verani, M; Battistini, R

    2010-01-01

    Legionella contamination of industrial cooling towers has been identified as the cause of sporadic cases and outbreaks of legionellosis among people living nearby. To evaluate and control Legionella contamination in industrial cooling tower water, microbiological monitoring was carried out to determine the effectiveness of the following different disinfection treatments: (i) continuous chlorine concentration of 0.01 ppm and monthly chlorine shock dosing (5 ppm) on a single cooling tower; (ii) continuous chlorine concentration of 0.4 ppm and monthly shock of biocide P3 FERROCID 8580 (BKG Water Solution) on seven towers. Legionella spp. and total bacterial count (TBC) were determined 3 days before and after each shock dose. Both strategies demonstrated that when chlorine was maintained at low levels, the Legionella count grew to levels above 10(4) CFU l(-1) while TBC still remained above 10(8 )CFU l(-1). Chlorine shock dosing was able to eliminate bacterial contamination, but only for 10-15 days. Biocide shock dosing was also insufficient to control the problem when the disinfectant concentration was administered at only one point in the plant and at the concentration of 30 ppm. On the other hand, when at a biocide concentration of 30 or 50 ppm was distributed throughout a number of points, depending on the plant hydrodynamics, Legionella counts decreased significantly and often remained below the warning limit. Moreover, the contamination of water entering the plant and the presence of sediment were also important factors for Legionella growth. For effective decontamination of outdoor industrial cooling towers, disinfectants should be distributed in a targeted way, taking into account the possible sources of contamination. The data of the research permitted to modify the procedure of disinfection for better reduce the water and aerosol contamination and consequently the exposure risk.

  13. Galaxy growth in a massive halo in the first billion years of cosmic history

    Science.gov (United States)

    Marrone, D. P.; Spilker, J. S.; Hayward, C. C.; Vieira, J. D.; Aravena, M.; Ashby, M. L. N.; Bayliss, M. B.; Béthermin, M.; Brodwin, M.; Bothwell, M. S.; Carlstrom, J. E.; Chapman, S. C.; Chen, Chian-Chou; Crawford, T. M.; Cunningham, D. J. M.; De Breuck, C.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y. D.; Lacaille, K.; Litke, K. C.; Lower, S.; Ma, J.; Malkan, M.; Miller, T. B.; Morningstar, W. R.; Murphy, E. J.; Narayanan, D.; Phadke, K. A.; Rotermund, K. M.; Sreevani, J.; Stalder, B.; Stark, A. A.; Strandet, M. L.; Tang, M.; Weiß, A.

    2018-01-01

    According to the current understanding of cosmic structure formation, the precursors of the most massive structures in the Universe began to form shortly after the Big Bang, in regions corresponding to the largest fluctuations in the cosmic density field. Observing these structures during their period of active growth and assembly—the first few hundred million years of the Universe—is challenging because it requires surveys that are sensitive enough to detect the distant galaxies that act as signposts for these structures and wide enough to capture the rarest objects. As a result, very few such objects have been detected so far. Here we report observations of a far-infrared-luminous object at redshift 6.900 (less than 800 million years after the Big Bang) that was discovered in a wide-field survey. High-resolution imaging shows it to be a pair of extremely massive star-forming galaxies. The larger is forming stars at a rate of 2,900 solar masses per year, contains 270 billion solar masses of gas and 2.5 billion solar masses of dust, and is more massive than any other known object at a redshift of more than 6. Its rapid star formation is probably triggered by its companion galaxy at a projected separation of 8 kiloparsecs. This merging companion hosts 35 billion solar masses of stars and has a star-formation rate of 540 solar masses per year, but has an order of magnitude less gas and dust than its neighbour and physical conditions akin to those observed in lower-metallicity galaxies in the nearby Universe. These objects suggest the presence of a dark-matter halo with a mass of more than 100 billion solar masses, making it among the rarest dark-matter haloes that should exist in the Universe at this epoch.

  14. Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity

    International Nuclear Information System (INIS)

    Genes, Claudiu; Vitali, David; Tombesi, Paolo

    2008-01-01

    Laser cooling of a mechanical mode of a resonator by the radiation pressure of a detuned optical cavity mode has been recently demonstrated by various groups in different experimental configurations. Here, we consider the effect of a second mechanical mode with a close but different resonance frequency. We show that the nearby mechanical resonance is simultaneously cooled by the cavity field, provided that the difference between the two mechanical frequencies is not too small. When this frequency difference becomes smaller than the effective mechanical damping of the secondary mode, the two cooling processes interfere destructively similarly to what happens in electromagnetically induced transparency, and cavity cooling is suppressed in the limit of identical mechanical frequencies. We show that also the entanglement properties of the steady state of the tripartite system crucially depend upon the difference between the two mechanical frequencies. If the latter is larger than the effective damping of the second mechanical mode, the state shows fully tripartite entanglement and each mechanical mode is entangled with the cavity mode. If instead, the frequency difference is smaller, the steady state is a two-mode biseparable state, inseparable only when one splits the cavity mode from the two mechanical modes. In this latter case, the entanglement of each mechanical mode with the cavity mode is extremely fragile with respect to temperature.

  15. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    Science.gov (United States)

    Meyer, D. M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V. V.; Mignone, A.; Izzard, R. G.; Kaper, L.

    2014-11-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [O III]. The Hα emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.

  16. Proceedings: Cooling tower and advanced cooling systems conference

    International Nuclear Information System (INIS)

    1995-02-01

    This Cooling Tower and Advanced Cooling Systems Conference was held August 30 through September 1, 1994, in St. Petersburg, Florida. The conference was sponsored by the Electric Power Research Institute (EPRI) and hosted by Florida Power Corporation to bring together utility representatives, manufacturers, researchers, and consultants. Nineteen technical papers were presented in four sessions. These sessions were devoted to the following topics: cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid systems. On the final day, panel discussions addressed current issues in cooling tower operation and maintenance as well as research and technology needs for power plant cooling. More than 100 people attended the conference. This report contains the technical papers presented at the conference. Of the 19 papers, five concern cooling tower upgrades and retrofits, five to cooling tower performance, four discuss cooling tower fouling, and five describe dry and hybrid cooling systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  17. The ISM in nearby galaxies: NGC1365

    NARCIS (Netherlands)

    Baan, Willem; Loenen, Edo; Spaans, Marco

    We propose a sensitive spectral survey of the nuclear region of the nearby Luminous Infrared Galaxy NGC1365. These observations are to confirm a similar program carried out in 2007, which suffers from severe bandpass issues. The previous observations have resulted in 76+ tentative detections,

  18. A rare encounter with very massive stars in NGC 3125-A1

    Energy Technology Data Exchange (ETDEWEB)

    Wofford, Aida [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France); Leitherer, Claus [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Chandar, Rupali [University of Toledo, Department of Physics and Astronomy, Toledo, OH 43606 (United States); Bouret, Jean-Claude, E-mail: wofford@iap.edu [Aix Marseille Universite, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France)

    2014-02-01

    Super star cluster A1 in the nearby starburst galaxy NGC 3125 is characterized by broad He II λ1640 emission (FWHM ∼ 1200 km s{sup –1}) of unprecedented strength (equivalent width, EW = 7.1 ± 0.4 Å). Previous attempts to characterize the massive star content in NGC 3125-A1 were hampered by the low resolution of the UV spectrum and the lack of co-spatial panchromatic data. We obtained far-UV to near-IR spectroscopy of the two principal emitting regions in the galaxy with the Space Telescope Imaging Spectrograph and the Cosmic Origins Spectrograph on board the Hubble Space Telescope. We use these data to study three clusters in the galaxy, A1, B1, and B2. We derive cluster ages of 3-4 Myr, intrinsic reddenings of E(B – V) = 0.13, 0.15, and 0.13, and cluster masses of 1.7 × 10{sup 5}, 1.4 × 10{sup 5}, and 1.1 × 10{sup 5} M {sub ☉}, respectively. A1 and B2 show O V λ1371 absorption from massive stars, which is rarely seen in star-forming galaxies, and have Wolf-Rayet (WR) to O star ratios of N(WN5-6)/N(O) = 0.23 and 0.10, respectively. The high N(WN5-6)/N(O) ratio of A1 cannot be reproduced by models that use a normal initial mass function (IMF) and generic WR star line luminosities. We rule out that the extraordinary He II λ1640 emission and O V λ1371 absorption of A1 are due to an extremely flat upper IMF exponent, and suggest that they originate in the winds of very massive (>120 M {sub ☉}) stars. In order to reproduce the properties of peculiar clusters such as A1, the present grid of stellar evolution tracks implemented in Starburst99 needs to be extended to masses >120 M {sub ☉}.

  19. Identifying New Members of Nearby Moving Groups

    Science.gov (United States)

    Holmbeck, Erika; Vican, Laura

    2014-06-01

    Our group has assembled a sample of 14,000 stars of spectral types B9-M9 with measured UVW Galactic space velocities and lying within 125 pc of Earth. We have identified candidate members of three nearby young (less than 100 Myr) moving groups. For stars of spectral types G5 and later, we have used the Kast spectrometer on the Shane 3m telescope at Lick Observatory to measure lithium abundance in order to determine stellar ages. With the data we have obtained from this run, we will be able to establish whether our candidates are bona fide members of the moving groups in question. I will be presenting the preliminary results from this survey, including spectra of the ~50 stars observed thus far. These nearby young stars will make excellent targets for direct imaging followup surveys, since any giant planets around young stars will still be warm, and will therefore be bright enough to detect with instruments like GPI.

  20. Nonsingular universe in massive gravity's rainbow

    Science.gov (United States)

    Hendi, S. H.; Momennia, M.; Eslam Panah, B.; Panahiyan, S.

    2017-06-01

    One of the fundamental open questions in cosmology is whether we can regard the universe evolution without singularity like a Big Bang or a Big Rip. This challenging subject stimulates one to regard a nonsingular universe in the far past with an arbitrarily large vacuum energy. Considering the high energy regime in the cosmic history, it is believed that Einstein gravity should be corrected to an effective energy dependent theory which could be acquired by gravity's rainbow. On the other hand, employing massive gravity provided us with solutions to some of the long standing fundamental problems of cosmology such as cosmological constant problem and self acceleration of the universe. Considering these aspects of gravity's rainbow and massive gravity, in this paper, we initiate studying FRW cosmology in the massive gravity's rainbow formalism. At first, we show that although massive gravity modifies the FRW cosmology, but it does not itself remove the big bang singularity. Then, we generalize the massive gravity to the case of energy dependent spacetime and find that massive gravity's rainbow can remove the early universe singularity. We bring together all the essential conditions for having a nonsingular universe and the effects of both gravity's rainbow and massive gravity generalizations on such criteria are determined.

  1. Massive propagators in instanton fields

    International Nuclear Information System (INIS)

    Brown, L.S.; Lee, C.

    1978-01-01

    Green's functions for massive spinor and vector particles propagating in a self-dual but otherwise arbitrary non-Abelian gauge field are shown to be completely determined by the corresponding Green's functions of massive scalar particles

  2. Topologically massive supergravity

    Directory of Open Access Journals (Sweden)

    S. Deser

    1983-01-01

    Full Text Available The locally supersymmetric extension of three-dimensional topologically massive gravity is constructed. Its fermionic part is the sum of the (dynamically trivial Rarita-Schwinger action and a gauge-invariant topological term, of second derivative order, analogous to the gravitational one. It is ghost free and represents a single massive spin 3/2 excitation. The fermion-gravity coupling is minimal and the invariance is under the usual supergravity transformations. The system's energy, as well as that of the original topological gravity, is therefore positive.

  3. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    Science.gov (United States)

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  4. Tracing the Baryon Cycle within Nearby Galaxies with a next-generation VLA

    Science.gov (United States)

    Kepley, Amanda A.; Leroy, Adam; Murphy, Eric J.; ngVLA Baryon Cycle Science Working Group

    2017-01-01

    The evolution of galaxies over cosmic time is shaped by the cycling of baryons through these systems, namely the inflow of atomic gas, the formation of molecular structures, the birth of stars, and the expulsion of gas due to associated feedback processes. The best way to study this cycle in detail are observations of nearby galaxies. These systems provide a complete picture of baryon cycling over a wide range of astrophysical conditions. In the next decade, higher resolution/sensitivity observations of such galaxies will fundamentally improve our knowledge of galaxy formation and evolution, allowing us to better interpret higher redshift observations of sources that were rapidly evolving at epochs soon after the Big Bang. In particular, the centimeter-to-millimeter part of the spectrum provides critical diagnostics for each of the key baryon cycling processes and access to almost all phases of gas in galaxies: cool and cold gas (via emission and absorption lines), ionized gas (via free-free continuum and recombination lines), cosmic rays and hot gas (via synchrotron emission and the Sunyaev-Zeldovich effect). This poster highlights a number of key science problems in this area whose solutions require a next-generation radio-mm interferometer such as the next-generation VLA.

  5. Gas expulsion vs gas retention in young stellar clusters II: effects of cooling and mass segregation

    Science.gov (United States)

    Silich, Sergiy; Tenorio-Tagle, Guillermo

    2018-05-01

    Gas expulsion or gas retention is a central issue in most of the models for multiple stellar populations and light element anti-correlations in globular clusters. The success of the residual matter expulsion or its retention within young stellar clusters has also a fundamental importance in order to understand how star formation proceeds in present-day and ancient star-forming galaxies and if proto-globular clusters with multiple stellar populations are formed in the present epoch. It is usually suggested that either the residual gas is rapidly ejected from star-forming clouds by stellar winds and supernova explosions, or that the enrichment of the residual gas and the formation of the second stellar generation occur so rapidly, that the negative stellar feedback is not significant. Here we continue our study of the early development of star clusters in the extreme environments and discuss the restrictions that strong radiative cooling and stellar mass segregation provide on the gas expulsion from dense star-forming clouds. A large range of physical initial conditions in star-forming clouds which include the star-forming cloud mass, compactness, gas metallicity, star formation efficiency and effects of massive stars segregation are discussed. It is shown that in sufficiently massive and compact clusters hot shocked winds around individual massive stars may cool before merging with their neighbors. This dramatically reduces the negative stellar feedback, prevents the development of the global star cluster wind and expulsion of the residual and the processed matter into the ambient interstellar medium. The critical lines which separate the gas expulsion and the gas retention regimes are obtained.

  6. Suites of dwarfs around Nearby giant galaxies

    International Nuclear Information System (INIS)

    Karachentsev, Igor D.; Kaisina, Elena I.; Makarov, Dmitry I.

    2014-01-01

    The Updated Nearby Galaxy Catalog (UNGC) contains the most comprehensive summary of distances, radial velocities, and luminosities for 800 galaxies located within 11 Mpc from us. The high density of observables in the UNGC makes this sample indispensable for checking results of N-body simulations of cosmic structures on a ∼1 Mpc scale. The environment of each galaxy in the UNGC was characterized by a tidal index Θ 1 , depending on the separation and mass of the galaxy's main disturber (MD). We grouped UNGC galaxies with a common MD in suites, and ranked suite members according to their Θ 1 . All suite members with positive Θ 1 are assumed to be physical companions of the MD. About 58% of the sample are members of physical groups. The distribution of suites by the number of members, n, follows a relation N(n) ∼ n –2 . The 20 most populated suites contain 468 galaxies, i.e., 59% of the UNGC sample. The fraction of MDs among the brightest galaxies is almost 100% and drops to 50% at M B = –18 m . We discuss various properties of MDs, as well as galaxies belonging to their suites. The suite abundance practically does not depend on the morphological type, linear diameter, or hydrogen mass of the MD, the tightest correlation being with the MD dynamical mass. Dwarf galaxies around MDs exhibit well-known segregation effects: the population of the outskirts has later morphological types, richer H I contents, and higher rates of star formation activity. Nevertheless, there are some intriguing cases where dwarf spheroidal galaxies occur at the far periphery of the suites, as well as some late-type dwarfs residing close to MDs. Comparing simulation results with galaxy groups, most studies assume the Local Group is fairly typical. However, we recognize that the nearby groups significantly differ from each other and there is considerable variation in their properties. The suites of companions around the Milky Way and M31, consisting of the Local Group, do not

  7. Nearby Type Ia Supernova Follow-up at the Thacher Observatory

    Science.gov (United States)

    Swift, Jonathan; O'Neill, Katie; Kilpatrick, Charles; Foley, Ryan

    2018-06-01

    Type Ia supernovae (SN Ia) provide an effective way to study the expansion of the universe through analyses of their photometry and spectroscopy. The interpretation of high-redshift SN Ia is dependent on accurate characterization of nearby, low-redshift targets. To help build up samples of nearby SN Ia, the Thacher Observatory has begun a photometric follow-up program in 4 photometric bands. Here we present the observations and analysis of multi-band photometry for several recent supernovae as well as FLOYDS spectra from the Las Cumbres Observatory.

  8. Spacetime structure of massive Majorana particles and massive gravitino

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, D.V.; Kirchbach, M. [Theoretical Physics Group, Facultad de Fisica, Universidad Autonoma de Zacatecas, A.P. 600, 98062 Zacatecas (Mexico)

    2003-07-01

    The profound difference between Dirac and Majorana particles is traced back to the possibility of having physically different constructs in the (1/2, 0) 0 (0,1/2) representation space. Contrary to Dirac particles, Majorana-particle propagators are shown to differ from the simple linear {gamma} {mu} p{sub {mu}}, structure. Furthermore, neither Majorana particles, nor their antiparticles can be associated with a well defined arrow of time. The inevitable consequence of this peculiarity is the particle-antiparticle metamorphosis giving rise to neutrinoless double beta decay, on the one side, and enabling spin-1/2 fields to act as gauge fields, gauginos, on the other side. The second part of the lecture notes is devoted to massive gravitino. We argue that a spin measurement in the rest frame for an unpolarized ensemble of massive gravitino, associated with the spinor-vector [(1/2, 0) 0 (0,1/2)] 0 (1/2,1/2) representation space, would yield the results 3/2 with probability one half, and 1/2 with probability one half. The latter is distributed uniformly, i.e. as 1/4, among the two spin-1/2+ and spin-1/2- states of opposite parities. From that we draw the conclusion that the massive gravitino should be interpreted as a particle of multiple spin. (Author)

  9. Cooling techniques

    International Nuclear Information System (INIS)

    Moeller, S.P.

    1994-01-01

    After an introduction to the general concepts of cooling of charged particle beams, some specific cooling methods are discussed, namely stochastic, electron and laser cooling. The treatment concentrates on the physical ideas of the cooling methods and only very crude derivations of cooling times are given. At the end three other proposed cooling schemes are briefly discussed. (orig.)

  10. Search of massive star formation with COMICS

    Science.gov (United States)

    Okamoto, Yoshiko K.

    2004-04-01

    Mid-infrared observations is useful for studies of massive star formation. Especially COMICS offers powerful tools: imaging survey of the circumstellar structures of forming massive stars such as massive disks and cavity structures, mass estimate from spectroscopy of fine structure lines, and high dispersion spectroscopy to census gas motion around formed stars. COMICS will open the next generation infrared studies of massive star formation.

  11. Spectrophotometry of nearby field galaxies : The data

    NARCIS (Netherlands)

    Jansen, RA; Fabricant, D; Franx, M; Caldwell, N

    We have obtained integrated and nuclear spectra as well as U, B, R surface photometry for a representative sample of 196 nearby galaxies. These galaxies span the entire Hubble sequence in morphological type, as well as a wide range of luminosities (M(B) = -14 to -22). Here we present the

  12. Massive stars dying alone: Extremely remote environments of SN2009ip and SN2010jp

    Science.gov (United States)

    Smith, Nathan

    2014-10-01

    We propose an imaging study of the astonishingly remote environments of two recent supernovae (SNe): SN2009ip and SN2010jp. Both were unusual Type IIn explosions that crashed into dense circumstellar material (CSM) ejected by the star shortly before explosion. The favored progenitors of these SNe are very massive luminous blue variable (LBV) stars. In fact, SN2009ip presents an extraordinay case where the LBV-like progenitor was actually detected directly in archival HST data, and where we obtained spectra and photometry for numerous pre-SN eruptions. No other SN has this treasure trove of detailed information about the progenitor (not even SN1987A). SN2010jp represents a possible collapsar-powered event, since it showed evidence of a fast bipolar jet in spectra and a low 56Ni mass; this would be an analog of the black-hole forming explosions that cause gamma ray bursts, but where the relativistic jet is damped by a residual H envelope on the star. In both cases, the only viable models for these SNe involve extremely massive (initial masses of 40-100 Msun) progenitor stars. This seems at odds with their extremely remote environments in the far outskirts of their host galaxies, with no detected evidence for an underlying massive star population in ground-based data (nor in the single shallow WFPC2/F606W image of SN2009ip). Here we propose deep UV HST images to search for any mid/late O-type stars nearby, deep red images to detect any red supergiants, and an H-alpha image to search for any evidence of ongoing star formation in the vicinity. These observations will place important and demanding constraints on the initial masses and ages of these progenitors.

  13. Nearby stars of the Galactic disc and halo - IV

    Science.gov (United States)

    Fuhrmann, Klaus

    2008-02-01

    The Milky Way Galaxy has an age of about 13 billion years. Solar-type stars evolve all the long way to the realm of degenerate objects on essentially this time-scale. This, as well as the particular advantage that the Sun offers through reliable differential spectroscopic analyses, render these stars the ideal tracers for the fossil record of our parent spiral. Astrophysics is a science that is known to be notoriously plagued by selection effects. The present work - with a major focus in this fourth contribution on model atmosphere analyses of spectroscopic binaries and multiple star systems - aims at a volume-complete sample of about 300 nearby F-, G-, and K-type stars that particularly avoids any kinematical or chemical pre-selection from the outset. It thereby provides an unbiased record of the local stellar populations - the ancient thick disc and the much younger thin disc. On this base, the detailed individual scrutiny of the long-lived stars of both populations unveils the thick disc as a single-burst component with a local normalization of no less than 20 per cent. This enormous fraction, combined with its much larger scaleheight, implies a mass for the thick disc that is comparable to that of the thin disc. On account of its completely different mass-to-light ratio the thick disc thereby becomes the dark side of the Milky Way, an ideal major source for baryonic dark matter. This massive, ancient population consequently challenges any gradual build-up scenario for our parent spiral. Even more, on the supposition that the Galaxy is not unusual, the thick disc - as it emerges from this unbiased spectroscopic work - particularly challenges the hierarchical cold-dark-matter-dominated formation picture for spiral galaxies in general.

  14. The Long Term Features of Tropical Cyclones Nearby Taiwan

    Science.gov (United States)

    Wu, Yueh-Shyuan; Lee, Cheng-Shang

    2017-04-01

    Tropical cyclone (TC) activity is affected by several factors. The variability of TC activity over the western North Pacific (WNP) has been examined in the past decade. Previous studies showed that TC activity (such as TC number, intensity and tracks) has multiscale variation or affected by natural oscillation of different scales. However, most of these studies focused mainly on the entire WNP. Very few studies examined the variability of annual TC track or the variability of TC number in the area nearby Taiwan, which caused severe economic loss and life damage to Taiwan in the typhoon season. The main purpose of this study is to analyze the variation of TC activity nearby Taiwan to address its long term features, and also the possible relationship with the associated flow patterns. Preliminary results of wavelet analysis showed that the TC number nearby Taiwan during 1970-2014 had multiscale variations. The following analysis focused on the scale about 4- and 11-year signals, in the targeted area of 118o-125oE, 20o-27oN. The positive phases of both scale 4 and scale 11 showed a tendency of TC tracks toward Taiwan area, while the negative phases showed a lower tendency toward Taiwan. An empirical orthogonal function (EOF) analysis was applied on the 4-yr and the 11-yr filtered 500-hPa wind fields and geopotential heights. Results showed that the 4-yr signal was mostly dominated by the 500-hPa U- and V-wind fields, suggesting that the TC track patterns were affected mainly by the midlevel steering flow. On the other hand, the 11-yr signal was mostly dominated by the 500-hPa U-wind field and geopotential anomalies, indicating that the main cause of the difference in TC occurrence nearby Taiwan was the location of TC formation.

  15. On maximal massive 3D supergravity

    OpenAIRE

    Bergshoeff , Eric A; Hohm , Olaf; Rosseel , Jan; Townsend , Paul K

    2010-01-01

    ABSTRACT We construct, at the linearized level, the three-dimensional (3D) N = 4 supersymmetric " general massive supergravity " and the maximally supersymmetric N = 8 " new massive supergravity ". We also construct the maximally supersymmetric linearized N = 7 topologically massive supergravity, although we expect N = 6 to be maximal at the non-linear level. (Bergshoeff, Eric A) (Hohm, Olaf) (Rosseel, Jan) P.K.Townsend@da...

  16. The little-studied cluster Berkeley 90. I. LS III +46 11: a very massive O3.5 If* + O3.5 If* binary

    Science.gov (United States)

    Maíz Apellániz, J.; Negueruela, I.; Barbá, R. H.; Walborn, N. R.; Pellerin, A.; Simón-Díaz, S.; Sota, A.; Marco, A.; Alonso-Santiago, J.; Sanchez Bermudez, J.; Gamen, R. C.; Lorenzo, J.

    2015-07-01

    Context. It appears that most (if not all) massive stars are born in multiple systems. At the same time, the most massive binaries are hard to find owing to their low numbers throughout the Galaxy and the implied large distances and extinctions. Aims: We want to study LS III +46 11, identified in this paper as a very massive binary; another nearby massive system, LS III +46 12; and the surrounding stellar cluster, Berkeley 90. Methods: Most of the data used in this paper are multi-epoch high S/N optical spectra, although we also use Lucky Imaging and archival photometry. The spectra are reduced with dedicated pipelines and processed with our own software, such as a spectroscopic-orbit code, CHORIZOS, and MGB. Results: LS III +46 11 is identified as a new very early O-type spectroscopic binary [O3.5 If* + O3.5 If*] and LS III +46 12 as another early O-type system [O4.5 V((f))]. We measure a 97.2-day period for LS III +46 11 and derive minimum masses of 38.80 ± 0.83 M⊙ and 35.60 ± 0.77 M⊙ for its two stars. We measure the extinction to both stars, estimate the distance, search for optical companions, and study the surrounding cluster. In doing so, a variable extinction is found as well as discrepant results for the distance. We discuss possible explanations and suggest that LS III +46 12 may be a hidden binary system where the companion is currently undetected.

  17. Massive neutrinos in astrophysics

    International Nuclear Information System (INIS)

    Qadir, A.

    1982-08-01

    Massive neutrinos are among the big hopes of cosmologists. If they happen to have the right mass they can close the Universe, explain the motion of galaxies in clusters, provide galactic halos and even, possibly, explain galaxy formation. Tremaine and Gunn have argued that massive neutrinos cannot do all these things. I will explain, here, what some of us believe is wrong with their arguments. (author)

  18. Robo-AO Kepler Survey. IV. The Effect of Nearby Stars on 3857 Planetary Candidate Systems

    Science.gov (United States)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Riddle, Reed; Duev, Dmitry A.; Howard, Ward; Jensen-Clem, Rebecca; Kulkarni, S. R.; Morton, Tim; Salama, Maïssa

    2018-04-01

    We present the overall statistical results from the Robo-AO Kepler planetary candidate survey, comprising of 3857 high-angular resolution observations of planetary candidate systems with Robo-AO, an automated laser adaptive optics system. These observations reveal previously unknown nearby stars blended with the planetary candidate host stars that alter the derived planetary radii or may be the source of an astrophysical false positive transit signal. In the first three papers in the survey, we detected 440 nearby stars around 3313 planetary candidate host stars. In this paper, we present observations of 532 planetary candidate host stars, detecting 94 companions around 88 stars; 84 of these companions have not previously been observed in high resolution. We also report 50 more-widely separated companions near 715 targets previously observed by Robo-AO. We derive corrected planetary radius estimates for the 814 planetary candidates in systems with a detected nearby star. If planetary candidates are equally likely to orbit the primary or secondary star, the radius estimates for planetary candidates in systems with likely bound nearby stars increase by a factor of 1.54, on average. We find that 35 previously believed rocky planet candidates are likely not rocky due to the presence of nearby stars. From the combined data sets from the complete Robo-AO KOI survey, we find that 14.5 ± 0.5% of planetary candidate hosts have a nearby star with 4″, while 1.2% have two nearby stars, and 0.08% have three. We find that 16% of Earth-sized, 13% of Neptune-sized, 14% of Saturn-sized, and 19% of Jupiter-sized planet candidates have detected nearby stars.

  19. Discovery of path nearby clusters in spatial networks

    KAUST Repository

    Shang, Shuo; Zheng, Kai; Jensen, Christian S.; Yang, Bin; Kalnis, Panos; Li, Guohe; Wen, Ji Rong

    2015-01-01

    The discovery of regions of interest in large cities is an important challenge. We propose and investigate a novel query called the path nearby cluster (PNC) query that finds regions of potential interest (e.g., sightseeing places and commercial

  20. Nearby Red Dwarfs are Sexy for Planets and Life

    Science.gov (United States)

    Henry, T. J.; Jao, W.-C.; Subasavage, J. P.; RECONS Team

    2005-12-01

    The RECONS group continues to discover many nearby red dwarfs in the southern sky through a combination of proper motion surveys, literature review, and ultimately, our parallax program CTIOPI. Already, we have measured the first accurate parallaxes for 11 of the nearest 100 stellar systems, including four within 5 parsecs of the Sun. These nearby red dwarfs are prime candidates for NASA's Space Interferometry Mission (SIM) because the astrometric perturbations are largest for planets orbiting stars of low mass that are nearby. In addition, new multiple red dwarf systems can be targeted for mass determinations, thereby providing points on a comprehensive mass-luminosity relation for the most populous members of the Galaxy. Recent atmospheric modeling of planets orbiting red dwarfs indicates that even if the planets are tidally locked, heat distribution is highly effective in keeping the worlds balmy over the entire surface. Red dwarfs are therefore "back on the table" as viable hosts of life-bearing planets. Given their ubiquity, red dwarfs are being seriously considered as prime SETI targets, and will allow us to answer not only the question "Are We Alone?" but "Just How Alone Are We?" This work has been supported by the National Science Foundation, NASA's Space Interferometry Mission, and Georgia State University.

  1. Radiation loads on the ITER first wall during massive gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Landman, I., E-mail: igor.landman@kit.edu [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Bazylev, B. [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Pitts, R.A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Saibene, G. [Fusion for Energy Joint Undertaking, Josep Pla no. 2 – Torres Diagonal Litoral Edificio B3 7/03, Barselona 08019 (Spain); Pestchanyi, S. [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Putvinski, S.; Sugihara, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: • The massive gas injection (neon) is simulated with the two-dimensional tokamak code TOKES assuming the toroidal symmetry. • The neon injection, assimilation and transport of impurities through the entire plasma volume are modelled. • The output of TOKES is used by the melt motion code MEMOS to assess beryllium wall temperature and the regime with melting. • Complete plasma cooling occurs in minimum time of 5.7 ms with avoiding Be melting at any point on the first wall. -- Abstract: Unmitigated disruptions in ITER can produce strong localized surface damage on the first wall (FW). Massive gas injection (MGI) systems are being designed to dissipate a large fraction of the plasma stored energy at the disruption thermal quench (TQ) and hence reduce the consequences for FW components. The stored energies can be high enough, however, for there to be potential for the photon flash at the MGI TQ to drive local melting of beryllium FW components. To estimate the poloidal distribution of FW surface temperatures, the MGI process is being simulated using the 2D code TOKES, assuming toroidal symmetry. High pressure neon injection, assimilation and transport of injected impurities through the entire plasma volume are modelled. The output of these simulations is used by the melt motion code MEMOS to assess the resulting maximum surface temperature and the regimes with melting on the FW surface.

  2. The Blue Hook Populations of Massive Globular Clusters

    Science.gov (United States)

    Brown, Thomas

    2006-07-01

    Blue hook stars are a class of hot { 35,000 K} subluminous horizontal branch stars that have been recently discovered using HST ultraviolet images of the globular clusters omega Cen and NGC 2808. These stars occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. Using new theoretical evolutionary and atmospheric models, we have shown that the blue hook stars are very likely the progeny of stars that undergo extensive internal mixing during a late helium core flash on the white dwarf cooling curve. This "flash mixing" produces an enormous enhancement of the surface helium and carbon abundances, which suppresses the flux in the far ultraviolet. Although flash mixing is more likely to occur in stars that are born with high helium abundances, a high helium abundance, by itself, does not explain the presence of a blue hook population - flash mixing of the envelope is required. We propose ACS ultraviolet {SBC/F150LP and HRC/F250W} observations of the five additional globular clusters for which the presence of blue hook stars is suspected from longer wavelength observations. Like omega Cen and NGC 2808, these five targets are also among the most massive globular clusters, because less massive clusters show no evidence for blue hook stars. Because our targets span 1.5 dex in metallicity, we will be able to test our prediction that flash-mixing should be less drastic in metal-rich blue hook stars. In addition, our observations will test the hypothesis that blue hook stars only form in globular clusters massive enough to retain the helium-enriched ejecta from the first stellar generation. If this hypothesis is correct, then our observations will yield important constraints on the chemical evolution and early formation history in globular clusters, as well as the role of helium self-enrichment in producing blue horizontal branch morphologies and multiple main sequence turnoffs. Finally, our observations will provide new insight into the

  3. THE STAR CLUSTER SYSTEM IN THE NEARBY STARBURST GALAXY M82

    International Nuclear Information System (INIS)

    Lim, Sungsoon; Lee, Myung Gyoon; Hwang, Narae

    2013-01-01

    We present a photometric study of star clusters in the nearby starburst galaxy M82 based on the UBVI-, YJ- and H-band Hubble Space Telescope images. We find 1105 star clusters with V 0 ≈ 0.45, and a weaker red population. The luminosity function of the disk clusters shows a power-law distribution with a power-law index α = –2.04 ± 0.03, and the scale height of their distribution is h z = 9.''64 ± 0.''40 (164 ± 7 pc), similar to that of the stellar thin disk of M82. We have derived the ages of ∼630 star clusters using the spectral energy distribution fit method by comparing UBVI(YJ)H-band photometric data with the simple stellar population models. The age distribution of the disk clusters shows that the most dominant cluster population has ages ranging from 100 Myr to 1 Gyr, with a peak at about 500 Myr. This suggests that M82 has undergone a disk-wide star formation about 500 Myr ago, probably through the interaction with M81. The brightest star clusters in the nuclear region are much brighter than those in other regions, indicating that more massive star clusters are formed in the denser environments. On the other hand, the colors of the halo clusters are similar to those of globular clusters in the Milky Way, and their ages are estimated to be older than 1 Gyr. These are probably genuine old globular clusters in M82.

  4. MASSIVE INFANT STARS ROCK THEIR CRADLE

    Science.gov (United States)

    2002-01-01

    Extremely intense radiation from newly born, ultra-bright stars has blown a glowing spherical bubble in the nebula N83B, also known as NGC 1748. A new NASA Hubble Space Telescope image has helped to decipher the complex interplay of gas and radiation of a star-forming region in a nearby galaxy. The image graphically illustrates just how these massive stars sculpt their environment by generating powerful winds that alter the shape of the parent gaseous nebula. These processes are also seen in our Milky Way in regions like the Orion Nebula. The Hubble telescope is famous for its contribution to our knowledge about star formation in very distant galaxies. Although most of the stars in the Universe were born several billions of years ago, when the Universe was young, star formation still continues today. This new Hubble image shows a very compact star-forming region in a small part of one of our neighboring galaxies - the Large Magellanic Cloud. This galaxy lies only 165,000 light-years from our Milky Way and can easily be seen with the naked eye from the Southern Hemisphere. Young, massive, ultra-bright stars are seen here just as they are born and emerge from the shelter of their pre-natal molecular cloud. Catching these hefty stars at their birthplace is not as easy as it may seem. Their high mass means that the young stars evolve very rapidly and are hard to find at this critical stage. Furthermore, they spend a good fraction of their youth hidden from view, shrouded by large quantities of dust in a molecular cloud. The only chance is to observe them just as they start to emerge from their cocoon - and then only with very high-resolution telescopes. Astronomers from France, the U.S., and Germany have used Hubble to study the fascinating interplay between gas, dust, and radiation from the newly born stars in this nebula. Its peculiar and turbulent structure has been revealed for the first time. This high-resolution study has also uncovered several individual stars

  5. {sup 13}CO/C{sup 18}O Gradients across the Disks of Nearby Spiral Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Donaire, María J.; Cormier, Diane; Bigiel, Frank [Institut für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Leroy, Adam K.; Gallagher, Molly [Department of Astronomy, The Ohio State University, 140 W 18th St, Columbus, OH 43210 (United States); Krumholz, Mark R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Usero, Antonio [Observatorio Astronómico Nacional, Alfonso XII 3, E-28014, Madrid (Spain); Hughes, Annie [CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Kramer, Carsten [Instituto de Astrofísica de Andalucía IAA-CSIC, Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Meier, David [Department of Physics, New Mexico Institute of Mining and Technology, 801 Leroy Pl, Soccoro, NM 87801 (United States); Murphy, Eric [National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903 (United States); Pety, Jérôme; Schuster, Karl [Institut de Radioastronomie Millimétrique (IRAM), 300 Rue de la Piscine, F-38406 Saint Martin d’Hères (France); Schinnerer, Eva; Sliwa, Kazimierz; Tomicic, Neven [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Schruba, Andreas, E-mail: m.jimenez@zah.uni-heidelberg.de [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany)

    2017-02-20

    We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure {sup 13}CO(1-0)/C{sup 18}O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of {sup 12}CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved {sup 13}CO/C{sup 18}O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean {sup 13}CO/C{sup 18}O ratio of 6.0 ± 0.9 for the central regions of our galaxies. This agrees well with results in the Milky Way, but differs from results for starburst galaxies (3.4 ± 0.9) and ultraluminous infrared galaxies (1.1 ± 0.4). In our sample, the {sup 13}CO/C{sup 18}O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends could be explained if the isotopic abundances are altered by fractionation; the sense of the trends also agrees with those expected for carbon and oxygen isotopic abundance variations due to selective enrichment by massive stars.

  6. "1"3CO/C"1"8O Gradients across the Disks of Nearby Spiral Galaxies

    International Nuclear Information System (INIS)

    Jiménez-Donaire, María J.; Cormier, Diane; Bigiel, Frank; Leroy, Adam K.; Gallagher, Molly; Krumholz, Mark R.; Usero, Antonio; Hughes, Annie; Kramer, Carsten; Meier, David; Murphy, Eric; Pety, Jérôme; Schuster, Karl; Schinnerer, Eva; Sliwa, Kazimierz; Tomicic, Neven; Schruba, Andreas

    2017-01-01

    We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure "1"3CO(1-0)/C"1"8O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of "1"2CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved "1"3CO/C"1"8O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean "1"3CO/C"1"8O ratio of 6.0 ± 0.9 for the central regions of our galaxies. This agrees well with results in the Milky Way, but differs from results for starburst galaxies (3.4 ± 0.9) and ultraluminous infrared galaxies (1.1 ± 0.4). In our sample, the "1"3CO/C"1"8O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends could be explained if the isotopic abundances are altered by fractionation; the sense of the trends also agrees with those expected for carbon and oxygen isotopic abundance variations due to selective enrichment by massive stars.

  7. The efficiency of seismic attributes to differentiate between massive and non-massive carbonate successions for hydrocarbon exploration activity

    Science.gov (United States)

    Sarhan, Mohammad Abdelfattah

    2017-12-01

    The present work investigates the efficiency of applying volume seismic attributes to differentiate between massive and non-massive carbonate sedimentary successions on using seismic data. The main objective of this work is to provide a pre-drilling technique to recognize the porous carbonate section (probable hydrocarbon reservoirs) based on seismic data. A case study from the Upper Cretaceous - Eocene carbonate successions of Abu Gharadig Basin, northern Western Desert of Egypt has been tested in this work. The qualitative interpretations of the well-log data of four available wells distributed in the study area, namely; AG-2, AG-5, AG-6 and AG-15 wells, has confirmed that the Upper Cretaceous Khoman A Member represents the massive carbonate section whereas the Eocene Apollonia Formation represents the non-massive carbonate unit. The present work have proved that the most promising seismic attributes capable of differentiating between massive and non-massive carbonate sequences are; Root Mean Square (RMS) Amplitude, Envelope (Reflection Strength), Instantaneous Frequency, Chaos, Local Flatness and Relative Acoustic Impedance.

  8. TrES-5: A MASSIVE JUPITER-SIZED PLANET TRANSITING A COOL G DWARF

    International Nuclear Information System (INIS)

    Mandushev, Georgi; Dunham, Edward W.; Quinn, Samuel N.; Latham, David W.; Charbonneau, David; Buchhave, Lars A.; Rabus, Markus; Oetiker, Brian; Brown, Timothy M.; Belmonte, Juan A.; O'Donovan, Francis T.

    2011-01-01

    We report the discovery of TrES-5, a massive hot Jupiter that transits the star GSC 03949-00967 every 1.48 days. From spectroscopy of the star we estimate a stellar effective temperature of T eff = 5171 ± 36 K, and from high-precision B, R, and I photometry of the transit we constrain the ratio of the semimajor axis a and the stellar radius R * to be a/R * = 6.07 ± 0.14. We compare these values to model stellar isochrones to obtain a stellar mass of M * = 0.893 ± 0.024 M ☉ . Based on this estimate and the photometric time series, we constrain the stellar radius to be R * = 0.866 ± 0.013 R ☉ and the planet radius to be R p = 1.209 ± 0.021 R J . We model our radial-velocity data assuming a circular orbit and find a planetary mass of 1.778 ± 0.063 M J . Our radial-velocity observations rule out line-bisector variations that would indicate a specious detection resulting from a blend of an eclipsing binary system. TrES-5 orbits one of the faintest stars with transiting planets found to date from the ground and demonstrates that precise photometry and followup spectroscopy are possible, albeit challenging, even for such faint stars.

  9. Comparing Social Stories™ to Cool versus Not Cool

    Science.gov (United States)

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  10. A FUNDAMENTAL LINE FOR ELLIPTICAL GALAXIES

    International Nuclear Information System (INIS)

    Nair, Preethi; Van den Bergh, Sidney; Abraham, Roberto G.

    2011-01-01

    Recent studies have shown that massive galaxies in the distant universe are surprisingly compact, with typical sizes about a factor of three smaller than equally massive galaxies in the nearby universe. It has been suggested that these massive galaxies grow into systems resembling nearby galaxies through a series of minor mergers. In this model the size growth of galaxies is an inherently stochastic process, and the resulting size-luminosity relationship is expected to have considerable environmentally dependent scatter. To test whether minor mergers can explain the size growth in massive galaxies, we have closely examined the scatter in the size-luminosity relation of nearby elliptical galaxies using a large new database of accurate visual galaxy classifications. We demonstrate that this scatter is much smaller than has been previously assumed, and may even be so small as to challenge the plausibility of the merger-driven hierarchical models for the formation of massive ellipticals.

  11. SPITZER SAGE INFRARED PHOTOMETRY OF MASSIVE STARS IN THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Bonanos, A. Z.; Massa, D. L.; Sewilo, M.

    2009-01-01

    We present a catalog of 1750 massive stars in the Large Magellanic Cloud (LMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 1268 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE survey database, for which we present uniform photometry from 0.3 to 24 μm in the UBVIJHK s +IRAC+MIPS24 bands. The resulting infrared color-magnitude diagrams illustrate that the supergiant B[e], red supergiant, and luminous blue variable (LBV) stars are among the brightest infrared point sources in the LMC, due to their intrinsic brightness, and at longer wavelengths, due to dust. We detect infrared excesses due to free-free emission among ∼900 OB stars, which correlate with luminosity class. We confirm the presence of dust around 10 supergiant B[e] stars, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs. The similar luminosities of B[e] supergiants (log L/L sun ≥ 4) and the rare, dusty progenitors of the new class of optical transients (e.g., SN 2008S and NGC 300 OT), plus the fact that dust is present in both types of objects, suggests a common origin for them. We find the infrared colors for Wolf-Rayet stars to be independent of spectral type and their SEDs to be flatter than what models predict. The results of this study provide the first comprehensive roadmap for interpreting luminous, massive, resolved stellar populations in nearby galaxies at infrared wavelengths.

  12. Film cooling for a closed loop cooled airfoil

    Science.gov (United States)

    Burdgick, Steven Sebastian; Yu, Yufeng Phillip; Itzel, Gary Michael

    2003-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

  13. Massive Born--Infeld and Other Dual Pairs

    CERN Document Server

    Ferrara, S

    2015-01-01

    We consider massive dual pairs of p-forms and (D-p-1)-forms described by non-linear Lagrangians, where non-linear curvature terms in one theory translate into non-linear mass-like terms in the dual theory. In particular, for D=2p and p even the two non-linear structures coincide when the non-linear massless theory is self-dual. This state of affairs finds a natural realization in the four-dimensional massive N=1 supersymmetric Born-Infeld action, which describes either a massive vector multiplet or a massive linear (tensor) multiplet with a Born-Infeld mass-like term. These systems should play a role for the massive gravitino multiplet obtained from a partial super-Higgs in N=2 Supergravity.

  14. MASSIVE+: The Growth Histories of MASSIVE Survey Galaxies from their Globular Cluster Colors

    Science.gov (United States)

    Blakeslee, John

    2017-08-01

    The MASSIVE survey is targeting the 100 most massive galaxies within 108 Mpc that are visible in the northern sky. These most massive galaxies in the present-day universe reside in a surprisingly wide variety of environments, from rich clusters to fossil groups to near isolation. We propose to use WFC3/UVIS and ACS to carry out a deep imaging study of the globular cluster populations around a selected subset of the MASSIVE targets. Though much is known about GC systems of bright galaxies in rich clusters, we know surprisingly little about the effects of environment on these systems. The MASSIVE sample provides a golden opportunity to learn about the systematics of GC systems and what they can tell us about environmental drivers on the evolution of the highest mass galaxies. The most pressing questions to be addressed include: (1) Do isolated giants have the same constant mass fraction of GCs to total halo mass as BCGs of similar luminosity? (2) Do their GC systems show the same color (metallicity) distribution, which is an outcome of the mass spectrum of gas-rich halos during hierarchical growth? (3) Do the GCs in isolated high-mass galaxies follow the same radial distribution versus metallicity as in rich environments (a test of the relative importance of growth by accretion)? (4) Do the GCs of galaxies in sparse environments follow the same mass function? Our proposed second-band imaging will enable us to secure answers to these questions and add enormously to the legacy value of existing HST imaging of the highest mass galaxies in the universe.

  15. Proper motion survey for solar nearby stars

    International Nuclear Information System (INIS)

    Goldman, Bertrand

    2001-01-01

    For its microlensing observations EROS 2 built one of the largest CCD mosaic opera ting since 1996. This instrument allowed us to survey a large area of the sky, to look for faint, cool compact objects in the Solar neighborhood that may contribute to the Dark Matter revealed by flat rotation curves of spiral galaxies and the Milky Way. We imaged over 400 square degrees, at least three times over four years, with a single, stable instrument. The aim of this work is the reduction, the analysis and the detection of high proper motion objects that would look like those expected in a dark halo. We selected and analyzed thousands of images taken in two bands, visible and near-infrared, and obtained a catalogue of several thousand stars with proper motion typically higher than 80 milli-arc-seconds per year. None of these candidates displays the expected properties of the halo objects: very high proper motion and faintness. The second part of our work was to put constraints on the contributions of white dwarfs and brown dwarfs ta the halo. To do that, we simulated our data set and estimated our sensitivity to halo objects. We compared our results about moderately high proper motion stars with existing Galactic models, and confirmed the robustness of these models. We deduced a upper limit ta the contribution of M_v = 17.5 white dwarfs to the standard halo of 10% (at the 95% confidence level), or 5% of a 14 Gyr old halo, and to the contribution of brown dwarfs of 7% (95% C.L.). Finally, among our candidates, several interesting objects, that do not belong to the halo but are among the coolest and faintest known, have been discovered. Systematic search for faint, nearby objects thus lead us to study disk L dwarfs, as well as old white dwarfs of the disk. (author) [fr

  16. Divertor cooling device

    International Nuclear Information System (INIS)

    Nakayama, Tadakazu; Hayashi, Katsumi; Handa, Hiroyuki

    1993-01-01

    Cooling water for a divertor cooling system cools the divertor, thereafter, passes through pipelines connecting the exit pipelines of the divertor cooling system and the inlet pipelines of a blanket cooling system and is introduced to the blanket cooling system in a vacuum vessel. It undergoes emission of neutrons, and cooling water in the divertor cooling system containing a great amount of N-16 which is generated by radioactivation of O-16 is introduced to the blanket cooling system in the vacuum vessel by way of pipelines, and after cooling, passes through exit pipelines of the blanket cooling system and is introduced to the outside of the vacuum vessel. Radiation of N-16 in the cooling water is decayed sufficiently with passage of time during cooling of the blanket, thereby enabling to decrease the amount of shielding materials such as facilities and pipelines, and ensure spaces. (N.H.)

  17. Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics

    International Nuclear Information System (INIS)

    Lei, Jiawei; Kumarasamy, Karthikeyan; Zingre, Kishor T.; Yang, Jinglei; Wan, Man Pun; Yang, En-Hua

    2017-01-01

    Highlights: • Cool colored coating and PCM are two complementary passive cooling strategies. • A PCM cool colored coating system is developed. • The coating reduces cooling energy by 8.5% and is effective yearly in tropical Singapore. - Abstract: Cool colored coating and phase change materials (PCM) are two passive cooling strategies often used separately in many studies and applications. This paper investigated the integration of cool colored coating and PCM for building cooling through experimental and numerical studies. Results showed that cool colored coating and PCM are two complementary passive cooling strategies that could be used concurrently in tropical climate where cool colored coating in the form of paint serves as the “first protection” to reflect solar radiation and a thin layer of PCM forms the “second protection” to absorb the conductive heat that cannot be handled by cool paint. Unlike other climate zones where PCM is only seasonally effective and cool paint is only beneficial during summer, the application of the proposed PCM cool colored coating in building envelope could be effective throughout the entire year with a monthly cooling energy saving ranging from 5 to 12% due to the uniform climatic condition all year round in tropical Singapore.

  18. Thermoelectric self-cooling for power electronics: Increasing the cooling power

    International Nuclear Information System (INIS)

    Martinez, Alvaro; Astrain, David; Aranguren, Patricia

    2016-01-01

    Thermoelectric self-cooling was firstly conceived to increase, without electricity consumption, the cooling power of passive cooling systems. This paper studies the combination of heat pipe exchangers and thermoelectric self-cooling, and demonstrates its applicability to the cooling of power electronics. Experimental tests indicate that source-to-ambient thermal resistance reduces by around 30% when thermoelectric self-cooling system is installed, compared to that of the heat pipe exchanger under natural convection. Neither additional electric power nor cooling fluids are required. This thermal resistance reaches 0.346 K/W for a heat flux of 24.1 kW/m"2, being one order of magnitude lower than that obtained in previous designs. In addition, the system adapts to the cooling demand, reducing this thermal resistance for increasing heat. Simulation tests have indicated that simple system modifications allow relevant improvements in the cooling power. Replacement of a thermoelectric module with a thermal bridge leads to 33.54 kW/m"2 of top cooling power. Likewise, thermoelectric modules with shorter legs and higher number of pairs lead to a top cooling power of 44.17 kW/m"2. These results demonstrate the applicability of thermoelectric self-cooling to power electronics. - Highlights: • Cooling power of passive systems increased. • No electric power consumption. • Applicable for the cooling of power electronics. • Up to 44.17 kW/m"2 of cooling power, one order of magnitude higher. • Source-to-ambient thermal resistance reduces by 30%.

  19. NASA Space Observatories Glimpse Faint Afterglow of Nearby Stellar Explosion

    Science.gov (United States)

    2005-10-01

    Intricate wisps of glowing gas float amid a myriad of stars in this image created by combining data from NASA's Hubble Space Telescope and Chandra X-ray Observatory. The gas is a supernova remnant, cataloged as N132D, ejected from the explosion of a massive star that occurred some 3,000 years ago. This titanic explosion took place in the Large Magellanic Cloud, a nearby neighbor galaxy of our own Milky Way. The complex structure of N132D is due to the expanding supersonic shock wave from the explosion impacting the interstellar gas of the LMC. Deep within the remnant, the Hubble visible light image reveals a crescent-shaped cloud of pink emission from hydrogen gas, and soft purple wisps that correspond to regions of glowing oxygen emission. A dense background of colorful stars in the LMC is also shown in the Hubble image. The large horseshoe-shaped gas cloud on the left-hand side of the remnant is glowing in X-rays, as imaged by Chandra. In order to emit X-rays, the gas must have been heated to a temperature of about 18 million degrees Fahrenheit (10 million degrees Celsius). A supernova-generated shock wave traveling at a velocity of more than four million miles per hour (2,000 kilometers per second) is continuing to propagate through the low-density medium today. The shock front where the material from the supernova collides with ambient interstellar material in the LMC is responsible for these high temperatures. Chandra image of N132D Chandra image of N132D, 2002 It is estimated that the star that exploded as a supernova to produce the N132D remnant was 10 to 15 times more massive than our own Sun. As fast-moving ejecta from the explosion slam into the cool, dense interstellar clouds in the LMC, complex shock fronts are created. A supernova remnant like N132D provides a rare opportunity for direct observation of stellar material, because it is made of gas that was recently hidden deep inside a star. Thus it provides information on stellar evolution and the

  20. Quark nugget dark matter: Comparison with radio observations of nearby galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, K., E-mail: klawson@phas.ubc.ca; Zhitnitsky, A.R.

    2016-06-10

    It has been recently claimed that radio observations of nearby spiral galaxies essentially rule out a dark matter source for the galactic haze [1]. Here we consider the low energy thermal emission from a quark nugget dark matter model in the context of microwave emission from the galactic centre and radio observations of nearby Milky Way like galaxies. We demonstrate that observed emission levels do not strongly constrain this specific dark matter candidate across a broad range of the allowed parameter space in drastic contrast with conventional dark matter models based on the WIMP paradigm.

  1. Thermodynamics inducing massive particles' tunneling and cosmic censorship

    International Nuclear Information System (INIS)

    Zhang, Baocheng; Cai, Qing-yu; Zhan, Ming-sheng

    2010-01-01

    By calculating the change of entropy, we prove that the first law of black hole thermodynamics leads to the tunneling probability of massive particles through the horizon, including the tunneling probability of massive charged particles from the Reissner-Nordstroem black hole and the Kerr-Newman black hole. Novelly, we find the trajectories of massive particles are close to that of massless particles near the horizon, although the trajectories of massive charged particles may be affected by electromagnetic forces. We show that Hawking radiation as massive particles tunneling does not lead to violation of the weak cosmic-censorship conjecture. (orig.)

  2. Topological massive sigma models

    International Nuclear Information System (INIS)

    Lambert, N.D.

    1995-01-01

    In this paper we construct topological sigma models which include a potential and are related to twisted massive supersymmetric sigma models. Contrary to a previous construction these models have no central charge and do not require the manifold to admit a Killing vector. We use the topological massive sigma model constructed here to simplify the calculation of the observables. Lastly it is noted that this model can be viewed as interpolating between topological massless sigma models and topological Landau-Ginzburg models. ((orig.))

  3. METAMORPHOSIS OF SN 2014C: DELAYED INTERACTION BETWEEN A HYDROGEN POOR CORE-COLLAPSE SUPERNOVA AND A NEARBY CIRCUMSTELLAR SHELL

    International Nuclear Information System (INIS)

    Milisavljevic, D.; Margutti, R.; Kamble, A.; Patnaude, D. J.; Raymond, J. C.; Challis, P.; Drout, M. R.; Grindlay, J. E.; Kirshner, R. P.; Lunnan, R.; Miller, G. F.; Parrent, J. T.; Sanders, N. E.; Eldridge, J. J.; Fong, W.; Bietenholz, M.; Chornock, R.; Fransson, C.; Fesen, R. A.; Mackey, J.

    2015-01-01

    We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova having exploded in a cavity before encountering a massive shell of the progenitor star’s stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf–Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Hα absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 that hosted the progenitor system. By comparing the emission properties of the source with stellar population models that incorporate interacting binary stars we estimate the age of the host cluster to be 30–300 Myr, and favor ages closer to 30 Myr in light of relatively strong Hα emission. SN 2014C is the best observed member of a class of core-collapse supernovae that fill the gap between events that interact strongly with dense, nearby environments immediately after explosion and those that never show signs of interaction. Better understanding of the frequency and nature of this intermediate population can contribute valuable information about the poorly understood final stages of stellar evolution

  4. METAMORPHOSIS OF SN 2014C: DELAYED INTERACTION BETWEEN A HYDROGEN POOR CORE-COLLAPSE SUPERNOVA AND A NEARBY CIRCUMSTELLAR SHELL

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, D.; Margutti, R.; Kamble, A.; Patnaude, D. J.; Raymond, J. C.; Challis, P.; Drout, M. R.; Grindlay, J. E.; Kirshner, R. P.; Lunnan, R.; Miller, G. F.; Parrent, J. T.; Sanders, N. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA, 02138 (United States); Eldridge, J. J. [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand); Fong, W. [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Bietenholz, M. [Hartebeesthoek Radio Observatory, P.O. Box 443, Krugersdorp 1740 (South Africa); Chornock, R. [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701 (United States); Fransson, C. [Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE106 91 Stockholm (Sweden); Fesen, R. A. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Lab, Hanover, NH 03755 (United States); Mackey, J., E-mail: dmilisav@cfa.harvard.edu [Argelander-Institut für Astronomie, Auf dem Hgel 71, D-53121 Bonn (Germany); and others

    2015-12-20

    We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova having exploded in a cavity before encountering a massive shell of the progenitor star’s stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf–Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Hα absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 that hosted the progenitor system. By comparing the emission properties of the source with stellar population models that incorporate interacting binary stars we estimate the age of the host cluster to be 30–300 Myr, and favor ages closer to 30 Myr in light of relatively strong Hα emission. SN 2014C is the best observed member of a class of core-collapse supernovae that fill the gap between events that interact strongly with dense, nearby environments immediately after explosion and those that never show signs of interaction. Better understanding of the frequency and nature of this intermediate population can contribute valuable information about the poorly understood final stages of stellar evolution.

  5. Preliminary Sensitivity Study on Gas-Cooled Reactor for NHDD System Using MARS-GCR

    International Nuclear Information System (INIS)

    Lee, Seung Wook; Jeong, Jae Jun; Lee, Won Jae

    2005-01-01

    A Gas-Cooled Reactor (GCR) is considered as one of the most outstanding tools for a massive hydrogen production without CO 2 emission. Till now, two types of GCR are regarded as a viable nuclear reactor for a hydrogen production: Prismatic Modular Reactor (PMR), Pebble Bed Reactor (PBR). In this paper, a preliminary sensitivity study on two types of GCR is carried out by using MARS-GCR to find out the effect on the peak fuel and reactor pressure vessel (RPV) temperature, with varying the condition of a reactor inlet, outlet temperature, and system pressure for both PMR and PBR

  6. The Properties of the Massive Star-forming Galaxies with an Outside-in Assembly Mode

    Science.gov (United States)

    Wang, Enci; Kong, Xu; Wang, Huiyuan; Wang, Lixin; Lin, Lin; Gao, Yulong; Liu, Qing

    2017-08-01

    Previous findings show that massive ({M}* > {10}10 {M}⊙ ) star-forming (SF) galaxies usually have an “inside-out” stellar mass assembly mode. In this paper, we have for the first time selected a sample of 77 massive SF galaxies with an “outside-in” assembly mode (called the “targeted sample”) from the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. For comparison, two control samples are constructed from the MaNGA sample matched in stellar mass: a sample of 154 normal SF galaxies and a sample of 62 quiescent galaxies. In contrast to normal SF galaxies, the targeted galaxies appear to be smoother and more bulge-dominated and have a smaller size and higher concentration, star formation rate, and gas-phase metallicity as a whole. However, they have a larger size and lower concentration than quiescent galaxies. Unlike the normal SF sample, the targeted sample exhibits a slightly positive gradient of the 4000 Å break and a pronounced negative gradient of Hα equivalent width. Furthermore, the median surface mass density profile is between those of the normal SF and quiescent samples, indicating that the gas accretion of quiescent galaxies is not likely to be the main approach for the outside-in assembly mode. Our results suggest that the targeted galaxies are likely in the transitional phase from normal SF galaxies to quiescent galaxies, with rapid ongoing central stellar mass assembly (or bulge growth). We discuss several possible formation mechanisms for the outside-in mass assembly mode.

  7. The formation of massive molecular filaments and massive stars triggered by a magnetohydrodynamic shock wave

    Science.gov (United States)

    Inoue, Tsuyoshi; Hennebelle, Patrick; Fukui, Yasuo; Matsumoto, Tomoaki; Iwasaki, Kazunari; Inutsuka, Shu-ichiro

    2018-05-01

    Recent observations suggest an that intensive molecular cloud collision can trigger massive star/cluster formation. The most important physical process caused by the collision is a shock compression. In this paper, the influence of a shock wave on the evolution of a molecular cloud is studied numerically by using isothermal magnetohydrodynamics simulations with the effect of self-gravity. Adaptive mesh refinement and sink particle techniques are used to follow the long-time evolution of the shocked cloud. We find that the shock compression of a turbulent inhomogeneous molecular cloud creates massive filaments, which lie perpendicularly to the background magnetic field, as we have pointed out in a previous paper. The massive filament shows global collapse along the filament, which feeds a sink particle located at the collapse center. We observe a high accretion rate \\dot{M}_acc> 10^{-4} M_{⊙}yr-1 that is high enough to allow the formation of even O-type stars. The most massive sink particle achieves M > 50 M_{⊙} in a few times 105 yr after the onset of the filament collapse.

  8. Nobeyama CO Atlas of Nearby Spiral Galaxies

    Science.gov (United States)

    Kuno, N.; Nakai, N.; Sorai, K.; Sato, N..; Yamauchi, A.; Tosaki, T.; Shioya, Y.; Vila-Vilaró, B.; Nishiyama, K.; Ishihara, Y.; Cepa, J.

    BEARS is a 25-beam focal plane array receiver mounted on the Nobeyama 45-m telescope. The combination of the large dish size of the telescope with the excellent performance of this receiver makes it an ideal tool for mapping observations of extended regions of the sky. We present here one of its current applications in a CO mapping survey of nearby spiral galaxies.

  9. Evidence of nearby supernovae affecting life on Earth

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2012-01-01

    . A statistical analysis indicates that the Solar system has experienced many large short-term increases in the flux of Galactic cosmic rays (GCR) from nearby SNe. The hypothesis that a high GCR flux should coincide with cold conditions on the Earth is borne out by comparing the general geological record...

  10. Very massive runaway stars from three-body encounters

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia

    2011-01-01

    Very massive stars preferentially reside in the cores of their parent clusters and form binary or multiple systems. We study the role of tight very massive binaries in the origin of the field population of very massive stars. We performed numerical simulations of dynamical encounters between single (massive) stars and a very massive binary with parameters similar to those of the most massive known Galactic binaries, WR 20a and NGC 3603-A1. We found that these three-body encounters could be responsible for the origin of high peculiar velocities (≥70 km s-1) observed for some very massive (≥60-70 M⊙) runaway stars in the Milky Way and the Large Magellanic Cloud (e.g. λ Cep, BD+43°3654, Sk -67°22, BI 237, 30 Dor 016), which can hardly be explained within the framework of the binary-supernova scenario. The production of high-velocity massive stars via three-body encounters is accompanied by the recoil of the binary in the opposite direction to the ejected star. We show that the relative position of the very massive binary R145 and the runaway early B-type star Sk-69°206 on the sky is consistent with the possibility that both objects were ejected from the central cluster, R136, of the star-forming region 30 Doradus via the same dynamical event - a three-body encounter.

  11. Epidemiology of massive transfusion

    DEFF Research Database (Denmark)

    Halmin, M A; Chiesa, F; Vasan, S K

    2015-01-01

    and to describe characteristics and mortality of massively transfused patients. Methods: We performed a retrospective cohort study based on the Scandinavian Donations and Transfusions (SCANDAT2) database, linking data on blood donation, blood components and transfused patients with inpatient- and population.......4% among women transfused for obstetrical bleeding. Mortality increased gradually with age and among all patients massively transfused at age 80 years, only 26% were alive [TABLE PRESENTED] after 5 years. The relative mortality, early after transfusion, was high and decreased with time since transfusion...

  12. Reappraising the concept of massive transfusion in trauma

    DEFF Research Database (Denmark)

    Stanworth, Simon J; Morris, Timothy P; Gaarder, Christine

    2010-01-01

    ABSTRACT : INTRODUCTION : The massive-transfusion concept was introduced to recognize the dilutional complications resulting from large volumes of packed red blood cells (PRBCs). Definitions of massive transfusion vary and lack supporting clinical evidence. Damage-control resuscitation regimens...... of modern trauma care are targeted to the early correction of acute traumatic coagulopathy. The aim of this study was to identify a clinically relevant definition of trauma massive transfusion based on clinical outcomes. We also examined whether the concept was useful in that early prediction of massive...... transfusion as a concept in trauma has limited utility, and emphasis should be placed on identifying patients with massive hemorrhage and acute traumatic coagulopathy....

  13. WAS THE SUN BORN IN A MASSIVE CLUSTER?

    International Nuclear Information System (INIS)

    Dukes, Donald; Krumholz, Mark R.

    2012-01-01

    A number of authors have argued that the Sun must have been born in a cluster of no more than several thousand stars, on the basis that, in a larger cluster, close encounters between the Sun and other stars would have truncated the outer solar system or excited the outer planets into eccentric orbits. However, this dynamical limit is in tension with meteoritic evidence that the solar system was exposed to a nearby supernova during or shortly after its formation; a several-thousand-star cluster is much too small to produce a massive star whose lifetime is short enough to have provided the enrichment. In this paper, we revisit the dynamical limit in the light of improved observations of the properties of young clusters. We use a series of scattering simulations to measure the velocity-dependent cross-section for disruption of the outer solar system by stellar encounters, and use this cross-section to compute the probability of a disruptive encounter as a function of birth cluster properties. We find that, contrary to prior work, the probability of disruption is small regardless of the cluster mass, and that it actually decreases rather than increases with cluster mass. Our results differ from prior work for three main reasons: (1) unlike in most previous work, we compute a velocity-dependent cross-section and properly integrate over the cluster mass-dependent velocity distribution of incoming stars; (2) we recognize that ∼90% of clusters have lifetimes of a few crossing times, rather than the 10-100 Myr adopted in many earlier models; and (3) following recent observations, we adopt a mass-independent surface density for embedded clusters, rather than a mass-independent radius as assumed many earlier papers. Our results remove the tension between the dynamical limit and the meteoritic evidence, and suggest that the Sun was born in a massive cluster. A corollary to this result is that close encounters in the Sun's birth cluster are highly unlikely to truncate the

  14. An Unbiased Survey of 500 Nearby Stars for Debris Disks: A JCMT Legacy Program

    NARCIS (Netherlands)

    Matthews, B.C.; Greaves, J.S.; Holland, W.S.; Wyatt, M.C.; Barlow, M.J.; Bastien, P.; Beichman, C.A.; Biggs, A.; Butner, H.M.; Dent, W.R.F.; Francesco, J. Di; Dominik, C.; Fissel, L.; Friberg, P.; Gibb, A.G.; Halpern, M.; Ivison, R.J.; Jayawardhana, R.; Jenness, T.; Johnstone, D.; Kavelaars, J.J.; Marshall, J.L.; Phillips, N.; Schieven, G.; Snellen, I.A.G.; Walker, H.J.; Ward-Thompson, D.; Weferling, B.; White, G.J.; Yates, J.; Zhu, M.; Craigon, A.

    2007-01-01

    We present the scientific motivation and observing plan for an upcoming detection survey for debris disks using the James Clerk Maxwell Telescope. The SCUBA-2 Unbiased Nearby Stars (SUNS) survey will observe 500 nearby main-sequence and subgiant stars (100 of each of the A, F, G, K, and M spectral

  15. MASSIVE STARS IN THE Cl 1813-178 CLUSTER: AN EPISODE OF MASSIVE STAR FORMATION IN THE W33 COMPLEX

    International Nuclear Information System (INIS)

    Messineo, Maria; Davies, Ben; Figer, Donald F.; Trombley, Christine; Kudritzki, R. P.; Valenti, Elena; Najarro, F.; Michael Rich, R.

    2011-01-01

    Young massive (M > 10 4 M sun ) stellar clusters are a good laboratory to study the evolution of massive stars. Only a dozen of such clusters are known in the Galaxy. Here, we report about a new young massive stellar cluster in the Milky Way. Near-infrared medium-resolution spectroscopy with UIST on the UKIRT telescope and NIRSPEC on the Keck telescope, and X-ray observations with the Chandra and XMM satellites, of the Cl 1813-178 cluster confirm a large number of massive stars. We detected 1 red supergiant, 2 Wolf-Rayet stars, 1 candidate luminous blue variable, 2 OIf, and 19 OB stars. Among the latter, twelve are likely supergiants, four giants, and the faintest three dwarf stars. We detected post-main-sequence stars with masses between 25 and 100 M sun . A population with age of 4-4.5 Myr and a mass of ∼10, 000 M sun can reproduce such a mixture of massive evolved stars. This massive stellar cluster is the first detection of a cluster in the W33 complex. Six supernova remnants and several other candidate clusters are found in the direction of the same complex.

  16. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  17. How I treat patients with massive hemorrhage

    DEFF Research Database (Denmark)

    Johansson, Pär I; Stensballe, Jakob; Oliveri, Roberto

    2014-01-01

    Massive hemorrhage is associated with coagulopathy and high mortality. The transfusion guidelines up to 2006 recommended that resuscitation of massive hemorrhage should occur in successive steps using crystalloids, colloids and red blood cells (RBC) in the early phase, and plasma and platelets...... in the late phase. With the introduction of the cell-based model of hemostasis in the mid 1990ties, our understanding of the hemostatic process and of coagulopathy has improved. This has contributed to a change in resuscitation strategy and transfusion therapy of massive hemorrhage along with an acceptance...... outcome, although final evidence on outcome from randomized controlled trials are lacking. We here present how we in Copenhagen and Houston, today, manage patients with massive hemorrhage....

  18. Geological isotope anomalies as signatures of nearby supernovae

    CERN Document Server

    Ellis, Jonathan Richard; Schramm, David N; Ellis, John; Fields, Brian D; Schramm, David N

    1996-01-01

    Nearby supernova explosions may cause geological isotope anomalies via the direct deposition of debris or by cosmic-ray spallation in the earth's atmosphere. We estimate the mass of material deposited terrestrially by these two mechanisms, showing the dependence on the supernova distance. A number of radioactive isotopes are identified as possible diagnostic tools, such as Be-10, Al-26, Cl-36, Mn-53, Fe-60, and Ni-59, as well as the longer-lived I-129, Sm-146, and Pu-244. We discuss whether the 35 and 60 kyr-old Be-10 anomalies observed in the Vostok antarctic ice cores could be due to supernova explosions. Combining our estimates for matter deposition with results of recent nucleosynthesis yields, we calculate the expected signal from nearby supernovae using ice cores back to \\sim 300 kyr ago, and we discuss using deep ocean sediments back to several hundred Myr. In particular, we examine the prospects for identifying isotope anomalies due to the Geminga supernova explosion, and signatures of the possibility...

  19. Observational evidence for gravitationally trapped massive axion(-like) particles

    CERN Document Server

    Di Lella, L

    2003-01-01

    Several unexpected astrophysical observations can be explained by gravitationally captured massive axions or axion-like particles, which are produced inside the Sun or other stars and are accumulated over cosmic times. Their radiative decay in solar outer space would give rise to a `self-irradiation' of the whole star, providing the time-independent component of the corona heating source (we do not address here the flaring Sun). In analogy with the Sun-irradiated Earth atmosphere, the temperature and density gradient in the corona$-$chromosphere transition region is suggestive for an omnipresent irradiation of the Sun, which is the strongest evidence for the generic axion-like scenario. The same mechanism is compatible with phenomena like the solar wind, the X-rays from the dark-side of the Moon, the X-Ray Background Radiation, the diffuse X-ray excesses (below $\\sim 1$ keV), the non-cooling of oldest Stars, etc. A temperature of $\\sim 10^6$ K is observed in various places, while the radiative decay of a popu...

  20. Assessment of the effects of microbially influenced degradation on a massive concrete structure. Final report, Report 5

    International Nuclear Information System (INIS)

    Rogers, R.D.

    1995-01-01

    There is a need to estimate the effect of environmental conditions on construction materials to be used in the repository at Yucca Mountain. Previous reports from this project have demonstrated that it is important to develop an understanding of microbially influenced degradation (MID) development and its influence on massive concrete structures. Further, it has been shown that the most effective way to obtain quantitative data on the effects of MID on the structural integrity of repository concrete is to study manmade, analog structures known to be susceptible to MID. The cooling tower shell located at the Ohaaki Power Station near Wairakei, New Zealand is such a structure

  1. Synergic effects of thermal mass and natural ventilation on the thermal behaviour of traditional massive buildings

    Science.gov (United States)

    Gagliano, A.; Nocera, F.; Patania, F.; Moschella, A.; Detommaso, M.; Evola, G.

    2016-05-01

    The energy policies about energy efficiency in buildings currently focus on new buildings and on existing buildings in case of energy retrofit. However, historic and heritage buildings, that are the trademark of numerous European cities, should also deserve attention; nevertheless, their energy efficiency is nowadays not deeply investigated. In this context, this study evaluates the thermal performance of a traditional massive building situated in a Mediterranean city. Dynamic numerical simulations were carried out on a yearly basis through the software DesignBuilder, both in free-running conditions and in the presence of an air-conditioning (AC) system. The results highlight that the massive envelope of traditional residential buildings helps in maintaining small fluctuations of the indoor temperature, thus limiting the need for AC in the mid-season and in summer. This feature is highly emphasised by exploiting natural ventilation at night, which allows reducing the building energy demand for cooling by about 30%.The research also indicates that, for Mediterranean climate, the increase in thermal insulation does not always induce positive effects on the thermal performance in summer, and that it might even produce an increase in the heat loads due to the transmission through the envelope.

  2. WINGS: WFIRST Infrared Nearby Galaxy Survey

    Science.gov (United States)

    Williams, Benjamin

    WFIRST's combination of wide field and high resolution will revolutionize the study of nearby galaxies. We propose to produce and analyze simulated WFIRST data of nearby galaxies and their halos to maximize the scientific yield in the limited observing time available, ensuring the legacy value of WFIRST's eventual archive. We will model both halo structure and resolved stellar populations to optimize WFIRST's constraints on both dark matter and galaxy formation models in the local universe. WFIRST can map galaxy structure down to ~35 mag/square arcsecond using individual stars. The resulting maps of stellar halos and accreting dwarf companions will provide stringent tests of galaxy formation and dark matter models on galactic (and even sub-galactic) scales, which is where the most theoretical tension exists with the Lambda-CDM model. With a careful, coordinated plan, WFIRST can be expected to improve current sample sizes by 2 orders of magnitude, down to surface brightness limits comparable to those currently reached only in the Local Group, and that are >4 magnitudes fainter than achievable from the ground due to limitations in star-galaxy separation. WFIRST's maps of galaxy halos will simultaneously produce photometry for billions of stars in the main bodies of galaxies within 10 Mpc. These data will transform studies of star formation histories that track stellar mass growth as a function of time and position within a galaxy. They also will constrain critical stellar evolution models of the near-infrared bright, rapidly evolving stars that can contribute significantly to the integrated light of galaxies in the near-infrared. Thus, with WFIRST we can derive the detailed evolution of individual galaxies, reconstruct the complete history of star formation in the nearby universe, and put crucial constraints on the theoretical models used to interpret near-infrared extragalactic observations. We propose a three-component work plan that will ensure these gains by

  3. On the singularities of massive superstring amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1987-06-04

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism.

  4. Massive supermultiplets in four-dimensional superstring theory

    International Nuclear Information System (INIS)

    Feng Wanzhe; Lüst, Dieter; Schlotterer, Oliver

    2012-01-01

    We extend the discussion of Feng et al. (2011) on massive Regge excitations on the first mass level of four-dimensional superstring theory. For the lightest massive modes of the open string sector, universal supermultiplets common to all four-dimensional compactifications with N=1,2 and N=4 spacetime supersymmetry are constructed respectively - both their vertex operators and their supersymmetry variations. Massive spinor helicity methods shed light on the interplay between individual polarization states.

  5. Multimessenger astronomy with pulsar timing and X-ray observations of massive black hole binaries

    Science.gov (United States)

    Sesana, A.; Roedig, C.; Reynolds, M. T.; Dotti, M.

    2012-02-01

    In the decade of the dawn of gravitational wave astronomy, the concept of multimessenger astronomy, combining gravitational wave signals to conventional electromagnetic observation, has attracted the attention of the astrophysical community. So far, most of the effort has been focused on ground- and space-based laser interferometer sources, with little attention devoted to the ongoing and upcoming pulsar timing arrays (PTAs). We argue in this paper that PTA sources, being very massive (>108 M⊙) cosmologically nearby (z 10-13 erg s-1 cm-2 will be in the reach of upcoming X-ray observatories; in the most optimistic case, a few of them may be already being observed by the MAXI detector placed on the International Space Station. Double relativistic Kα lines may be observable in a handful of low-redshift (z figures depend on the details of the adopted MBHB population and on the properties of the circumbinary discs, but the existence of a sizeable population of sources suitable to multimessenger astronomy is a robust prediction of our investigation.

  6. Experimental investigation of the hydraulic characteristics of a counter flow wet cooling tower

    International Nuclear Information System (INIS)

    Lemouari, M.; Boumaza, M.; Kaabi, A.

    2011-01-01

    Thermal and nuclear electric power plants as well as several industrial processes invariably discharge considerable energy to their surrounding by heat transfer. Although water drawn from a nearby river or lake can be employed to carry away this energy, cooling towers offer an excellent alternative particularly in locations where sufficient cooling water cannot be easily obtained from natural sources or where concern for the environment imposes some limits on the temperature at which cooling water can be returned to the surrounding. This paper concerns an experimental investigation of the hydraulic characteristics of a counter flow wet cooling tower. The tower contains a 'VGA.' (Vertical Grid Apparatus) type packing which is 0.42 m high and consists of four (04) galvanised sheets having a zigzag form, between which are disposed three (03) metallic vertical grids in parallel with a cross sectional test area of 0.15 m x 0.148 m. The present investigation is focused mainly on the effect of the air and water flow rates on the hydraulic characteristics of the cooling tower, for different inlet water temperatures. The two hydrodynamic operating regimes which were observed during the air/water contact operation within the tower, namely the Pellicular Regime (PR) and the Bubble and Dispersion Regime (BDR) have enabled to distinguish two different states of pressure drop characteristics. The first regime is characterized by low pressure drop values, while in the second regime, the pressure drop values are relatively much higher than those observed in the first one. The dependence between the pressure drop characteristics and the combined heat and mass transport (air-water) through the packing inside the cooling tower is also highlighted. The obtained results indicate that this type of tower possesses relatively good hydraulic characteristics. This leads to the saving of energy. -- Highlights: → Cooling towers are widely used to reject waste heat from thermal and nuclear

  7. Star Formation Histories of Nearby Dwarf Galaxies

    OpenAIRE

    Grebel, Eva K.

    2000-01-01

    Properties of nearby dwarf galaxies are briefly discussed. Dwarf galaxies vary widely in their star formation histories, the ages of their subpopulations, and in their enrichment history. Furthermore, many dwarf galaxies show evidence for spatial variations in their star formation history; often in the form of very extended old populations and radial gradients in age and metallicity. Determining factors in dwarf galaxy evolution appear to be both galaxy mass and environment. We may be observi...

  8. Update on massive transfusion.

    Science.gov (United States)

    Pham, H P; Shaz, B H

    2013-12-01

    Massive haemorrhage requires massive transfusion (MT) to maintain adequate circulation and haemostasis. For optimal management of massively bleeding patients, regardless of aetiology (trauma, obstetrical, surgical), effective preparation and communication between transfusion and other laboratory services and clinical teams are essential. A well-defined MT protocol is a valuable tool to delineate how blood products are ordered, prepared, and delivered; determine laboratory algorithms to use as transfusion guidelines; and outline duties and facilitate communication between involved personnel. In MT patients, it is crucial to practice damage control resuscitation and to administer blood products early in the resuscitation. Trauma patients are often admitted with early trauma-induced coagulopathy (ETIC), which is associated with mortality; the aetiology of ETIC is likely multifactorial. Current data support that trauma patients treated with higher ratios of plasma and platelet to red blood cell transfusions have improved outcomes, but further clinical investigation is needed. Additionally, tranexamic acid has been shown to decrease the mortality in trauma patients requiring MT. Greater use of cryoprecipitate or fibrinogen concentrate might be beneficial in MT patients from obstetrical causes. The risks and benefits for other therapies (prothrombin complex concentrate, recombinant activated factor VII, or whole blood) are not clearly defined in MT patients. Throughout the resuscitation, the patient should be closely monitored and both metabolic and coagulation abnormalities corrected. Further studies are needed to clarify the optimal ratios of blood products, treatment based on underlying clinical disorder, use of alternative therapies, and integration of laboratory testing results in the management of massively bleeding patients.

  9. Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology

    Science.gov (United States)

    2018-01-16

    Thermoelectric Cooling - A Synergistic Cooling Technology Sb. GRANT NUMBER N00173-14-1-G016 Sc. PROGRAM ELEMENT NUMBER 82-2020-17 6. AUTHOR(S) 5d...Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology NRL Grant N00173-14-l-G016 CODE 8200: Spacecraft Engineering Department...82-11-0 1: Space and Space Systems Technology General Engineering & Research, L.L.C. Technical & Administrative point of contact: Dr. Robin

  10. Doses of Nearby Nature Simultaneously Associated with Multiple Health Benefits

    Directory of Open Access Journals (Sweden)

    Daniel T. C. Cox

    2017-02-01

    Full Text Available Exposure to nature provides a wide range of health benefits. A significant proportion of these are delivered close to home, because this offers an immediate and easily accessible opportunity for people to experience nature. However, there is limited information to guide recommendations on its management and appropriate use. We apply a nature dose-response framework to quantify the simultaneous association between exposure to nearby nature and multiple health benefits. We surveyed ca. 1000 respondents in Southern England, UK, to determine relationships between (a nature dose type, that is the frequency and duration (time spent in private green space and intensity (quantity of neighbourhood vegetation cover of nature exposure and (b health outcomes, including mental, physical and social health, physical behaviour and nature orientation. We then modelled dose-response relationships between dose type and self-reported depression. We demonstrate positive relationships between nature dose and mental and social health, increased physical activity and nature orientation. Dose-response analysis showed that lower levels of depression were associated with minimum thresholds of weekly nature dose. Nearby nature is associated with quantifiable health benefits, with potential for lowering the human and financial costs of ill health. Dose-response analysis has the potential to guide minimum and optimum recommendations on the management and use of nearby nature for preventative healthcare.

  11. WORKSHOP: Beam cooling

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Cooling - the control of unruly particles to provide well-behaved beams - has become a major new tool in accelerator physics. The main approaches of electron cooling pioneered by Gersh Budker at Novosibirsk and stochastic cooling by Simon van der Meer at CERN, are now complemented by additional ideas, such as laser cooling of ions and ionization cooling of muons

  12. Massive lepton pair production in massive quantum electrodynamics

    International Nuclear Information System (INIS)

    Raychaudhuri, P.

    1976-01-01

    The pp → l + +l - +x inclusive interaction has been studied at high energies in terms of the massive quantum electrodynamics. The differential cross-section (dsigma/dQ 2 ) is derived and proves to be proportional to Q -4 , where Q-mass of the lepton pair. Basic features of the cross-section are demonstrated to be consistent with the Drell-Yan model

  13. Epidemiology of Massive Transfusion

    DEFF Research Database (Denmark)

    Halmin, Märit; Chiesa, Flaminia; Vasan, Senthil K

    2016-01-01

    in Sweden from 1987 and in Denmark from 1996. A total of 92,057 patients were included. Patients were followed until the end of 2012. MEASUREMENTS AND MAIN RESULTS: Descriptive statistics were used to characterize the patients and indications. Post transfusion mortality was expressed as crude 30-day...... mortality and as long-term mortality using the Kaplan-Meier method and using standardized mortality ratios. The incidence of massive transfusion was higher in Denmark (4.5 per 10,000) than in Sweden (2.5 per 10,000). The most common indication for massive transfusion was major surgery (61.2%) followed...

  14. Toward the comprehension of the infrared to submillimeter view of the interstellar medium of nearby galaxies

    International Nuclear Information System (INIS)

    Galametz, Maud

    2010-01-01

    This thesis aims to study the interstellar medium (ISM) of nearby galaxies to characterize the physical properties of the gas and dust. We especially focused our study on low-metallicity galaxies of the Local Universe, ideal candidates to study the influence of metal enrichment on the ISM properties of galaxies. Previous studies have shown that the Spectral Energy Distributions (SEDs) of low metallicity galaxies differ significantly from those of massive galaxies and that the dust-to-gas mass ratio (D/G) of the galaxy could be dependent of the metallicity. Observations of low-metallicity galaxies also often led to the detection of an excess at submillimeter (sub-mm) wavelengths not always accounted for in usual SED models. Further studies and observations had to be performed to better cover the far-IR to sub-mm range and probe the coldest phase of dust. We adopt a multi-wavelength approach to model and analyse the SEDs of 4 low-metallicity galaxies observed with LABOCA at 870 μm. We estimated the fraction of cool dust to be significant compared to the total dust mass of the galaxies. Some D/Gs are incoherent compared to what is expected from the current chemical evolution model, revealing possible reservoirs of gas not detected by current HI or CO observations. I enlarged the first sample to a wider range of metallicities and showed that sub-mm measurements significantly affect the dust mass estimates of galaxies. For dustier galaxies for which the SED usually peaks at longer wavelengths, sub-mm fluxes are crucial to position the peak and the Rayleigh-Jeans slope of their SED. For low-metallicity galaxies, the sub-mm wavelength domain harbours an excess that may imply a large amount of very cold dust. Our results confirm that low-metallicity galaxies can exhibit a sub-mm excess when observed at longer wavelengths. Obtaining a more precise inventory of the cold dust and resolve the main actors of dust evolution in massive star forming regions and molecular clouds

  15. On the singularities of massive superstring amplitudes

    International Nuclear Information System (INIS)

    Foda, O.

    1987-01-01

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism. (orig.)

  16. Thermodynamics inducing massive particles' tunneling and cosmic censorship

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Baocheng [Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Cai, Qing-yu [Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan (China); Zhan, Ming-sheng [Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan (China); Chinese Academy of Sciences, Center for Cold Atom Physics, Wuhan (China)

    2010-08-15

    By calculating the change of entropy, we prove that the first law of black hole thermodynamics leads to the tunneling probability of massive particles through the horizon, including the tunneling probability of massive charged particles from the Reissner-Nordstroem black hole and the Kerr-Newman black hole. Novelly, we find the trajectories of massive particles are close to that of massless particles near the horizon, although the trajectories of massive charged particles may be affected by electromagnetic forces. We show that Hawking radiation as massive particles tunneling does not lead to violation of the weak cosmic-censorship conjecture. (orig.)

  17. Experimental evaluation of cooling efficiency of the high performance cooling device

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan

    2016-06-01

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  18. Experimental evaluation of cooling efficiency of the high performance cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Nemec, Patrik, E-mail: patrik.nemec@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitna 1, 010 26 Žilina (Slovakia)

    2016-06-30

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  19. How Very Massive Metal Free Stars Start Cosmological Reionization

    International Nuclear Information System (INIS)

    Wise, John H.; Abel, Tom

    2007-01-01

    The initial conditions and relevant physics for the formation of the earliest galaxies are well specified in the concordance cosmology. Using ab initio cosmological Eulerian adaptive mesh refinement radiation hydrodynamical calculations, we discuss how very massive stars start the process of cosmological reionization. The models include non-equilibrium primordial gas chemistry and cooling processes and accurate radiation transport in the Case B approximation using adaptively ray traced photon packages, retaining the time derivative in the transport equation. Supernova feedback is modeled by thermal explosions triggered at parsec scales. All calculations resolve the local Jeans length by at least 16 grid cells at all times and as such cover a spatial dynamic range of ∼10 6 . These first sources of reionization are highly intermittent and anisotropic and first photoionize the small scales voids surrounding the halos they form in, rather than the dense filaments they are embedded in. As the merging objects form larger, dwarf sized galaxies, the escape fraction of UV radiation decreases and the H II regions only break out on some sides of the galaxies making them even more anisotropic. In three cases, SN blast waves induce star formation in overdense regions that were formed earlier from ionization front instabilities. These stars form tens of parsecs away from the center of their parent DM halo. Approximately 5 ionizing photons are needed per sustained ionization when star formation in 10 6 M · halos are dominant in the calculation. As the halos become larger than ∼10 7 M # circle d ot#, the ionizing photon escape fraction decreases, which in turn increases the number of photons per ionization to 15--50, in calculations with stellar feedback only. Supernova feedback in these more massive halos creates a more diffuse medium, allowing the stellar radiation to escape more easily and maintaining the ratio of 5 ionizing photons per sustained ionization

  20. Cooling towers

    International Nuclear Information System (INIS)

    Boernke, F.

    1975-01-01

    The need for the use of cooling systems in power plant engineering is dealt with from the point of view of a non-polluting form of energy production. The various cooling system concepts up to the modern natural-draught cooling towers are illustrated by examples. (TK/AK) [de

  1. Exact Solutions in 3D New Massive Gravity

    Science.gov (United States)

    Ahmedov, Haji; Aliev, Alikram N.

    2011-01-01

    We show that the field equations of new massive gravity (NMG) consist of a massive (tensorial) Klein-Gordon-type equation with a curvature-squared source term and a constraint equation. We also show that, for algebraic type D and N spacetimes, the field equations of topologically massive gravity (TMG) can be thought of as the “square root” of the massive Klein-Gordon-type equation. Using this fact, we establish a simple framework for mapping all types D and N solutions of TMG into NMG. Finally, we present new examples of types D and N solutions to NMG.

  2. THE SPITZER INFRARED NEARBY GALAXIES SURVEY: A HIGH-RESOLUTION SPECTROSCOPY ANTHOLOGY

    International Nuclear Information System (INIS)

    Dale, D. A.; Schlawin, E. A.; Cohen, S. A.; Johnson, L. C.; Staudaher, S.; Smith, J. D. T.; Armus, L.; Helou, G.; Jarrett, T. H.; Murphy, E. J.; Sheth, K.; Buckalew, B. A.; Moustakas, J.; Roussel, H.; Bot, C.; Calzetti, D.; Engelbracht, C. W.; Gordon, K. D.; Hollenbach, D. J.; Kennicutt, R. C.

    2009-01-01

    High-resolution mid-infrared spectra are presented for 155 nuclear and extranuclear regions from the Spitzer Infrared Nearby Galaxies Survey (SINGS). The fluxes for nine atomic forbidden and three molecular hydrogen mid-infrared emission lines are also provided, along with upper limits in key lines for infrared-faint targets. The SINGS sample shows a wide range in the ratio of [S III] 18.71 μm/[S III] 33.48 μm, but the average ratio of the ensemble indicates a typical interstellar electron density of 300-400 cm -3 on ∼23'' x 15'' scales and 500-600 cm -3 using ∼11'' x 9'' apertures, independent of whether the region probed is a star-forming nuclear, a star-forming extranuclear, or an active galactic nuclei (AGN) environment. Evidence is provided that variations in gas-phase metallicity play an important role in driving variations in radiation field hardness, as indicated by [Ne III] 15.56 μm/[Ne II] 12.81 μm, for regions powered by star formation. Conversely, the radiation hardness for galaxy nuclei powered by accretion around a massive black hole is independent of metal abundance. Furthermore, for metal-rich environments AGN are distinguishable from star-forming regions by significantly larger [Ne III] 15.56 μm/[Ne II] 12.81 μm ratios. Finally, [Fe II] 25.99 μm/[Ne II] 12.81 μm versus [Si II] 34.82 μm/[S III] 33.48 μm also provides an empirical method for discerning AGN from normal star-forming sources. However, similar to [Ne III] 15.56 μm/[Ne II] 12.81 μm, these mid-infrared line ratios lose their AGN/star-formation diagnostic powers for very low metallicity star-forming systems with hard radiation fields.

  3. Updated 34-band Photometry for the SINGS/KINGFISH Samples of Nearby Galaxies

    International Nuclear Information System (INIS)

    Dale, D. A.; Turner, J. A.; Cook, D. O.; Roussel, H.; Armus, L.; Helou, G.; Bolatto, A. D.; Boquien, M.; Brown, M. J. I.; Calzetti, D.; Looze, I. De; Galametz, M.; Gordon, K. D.; Groves, B. A.; Jarrett, T. H.; Herrera-Camus, R.; Hinz, J. L.; Hunt, L. K.; Kennicutt, R. C.; Murphy, E. J.

    2017-01-01

    We present an update to the ultraviolet-to-radio database of global broadband photometry for the 79 nearby galaxies that comprise the union of the KINGFISH (Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel ) and SINGS ( Spitzer Infrared Nearby Galaxies Survey) samples. The 34-band data set presented here includes contributions from observational work carried out with a variety of facilities including GALEX , SDSS, Pan-STARRS1, NOAO , 2MASS, Wide-Field Infrared Survey Explorer , Spitzer , Herschel , Planck , JCMT , and the VLA. Improvements of note include recalibrations of previously published SINGS BVR C I C and KINGFISH far-infrared/submillimeter photometry. Similar to previous results in the literature, an excess of submillimeter emission above model predictions is seen primarily for low-metallicity dwarf or irregular galaxies. This 33-band photometric data set for the combined KINGFISH+SINGS sample serves as an important multiwavelength reference for the variety of galaxies observed at low redshift. A thorough analysis of the observed spectral energy distributions is carried out in a companion paper.

  4. Updated 34-band Photometry for the SINGS/KINGFISH Samples of Nearby Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Dale, D. A.; Turner, J. A. [Department of Physics and Astronomy, University of Wyoming, Laramie WY (United States); Cook, D. O. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena CA (United States); Roussel, H. [Institut d’Astrophysique de Paris, Sorbonne Universités, Paris (France); Armus, L.; Helou, G. [Spitzer Science Center, California Institute of Technology, Pasadena, CA (United States); Bolatto, A. D. [Department of Astronomy, University of Maryland, College Park, MD (United States); Boquien, M. [Unidad de Astronomía, Universidad de Antofagasta, Antofagasta (Chile); Brown, M. J. I. [School of Physics and Astronomy, Monash University, Victoria 3800 (Australia); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst MA (United States); Looze, I. De [Sterrenkundig Observatorium, Universiteit Gent, Gent (Belgium); Galametz, M. [European Southern Observatory, Garching (Germany); Gordon, K. D. [Space Telescope Science Institute, Baltimore MD (United States); Groves, B. A. [Research School of Astronomy and Astrophysics, Australian National University, Canberra (Australia); Jarrett, T. H. [Astronomy Department, University of Capetown, Rondebosch (South Africa); Herrera-Camus, R. [Max-Planck-Institut für Extraterrestrische Physik, Garching (Germany); Hinz, J. L. [Steward Observatory, University of Arizona, Tucson AZ (United States); Hunt, L. K. [INAF—Osservatorio Astrofisico di Arcetri, Firenze (Italy); Kennicutt, R. C. [Institute of Astronomy, University of Cambridge, Cambridge (United Kingdom); Murphy, E. J., E-mail: ddale@uwyo.edu [National Radio Astronomy Observatory, Charlottesville, VA (United States); and others

    2017-03-01

    We present an update to the ultraviolet-to-radio database of global broadband photometry for the 79 nearby galaxies that comprise the union of the KINGFISH (Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel ) and SINGS ( Spitzer Infrared Nearby Galaxies Survey) samples. The 34-band data set presented here includes contributions from observational work carried out with a variety of facilities including GALEX , SDSS, Pan-STARRS1, NOAO , 2MASS, Wide-Field Infrared Survey Explorer , Spitzer , Herschel , Planck , JCMT , and the VLA. Improvements of note include recalibrations of previously published SINGS BVR {sub C} I {sub C} and KINGFISH far-infrared/submillimeter photometry. Similar to previous results in the literature, an excess of submillimeter emission above model predictions is seen primarily for low-metallicity dwarf or irregular galaxies. This 33-band photometric data set for the combined KINGFISH+SINGS sample serves as an important multiwavelength reference for the variety of galaxies observed at low redshift. A thorough analysis of the observed spectral energy distributions is carried out in a companion paper.

  5. VLA-ANGST: A HIGH-RESOLUTION H I SURVEY OF NEARBY DWARF GALAXIES

    International Nuclear Information System (INIS)

    Ott, Jürgen; Stilp, Adrienne M.; Dalcanton, Julianne J.; Warren, Steven R.; Skillman, Evan D.; Walter, Fabian; De Blok, W. J. G.; Koribalski, Bärbel; West, Andrew A.

    2012-01-01

    We present the 'Very Large Array survey of Advanced Camera for Surveys Nearby Galaxy Survey Treasury galaxies (VLA-ANGST)'. VLA-ANGST is a National Radio Astronomy Observatory Large Program consisting of high spectral (0.6-2.6 km s –1 ) and spatial (∼6'') resolution observations of neutral, atomic hydrogen (H I) emission toward 35 nearby dwarf galaxies from the ANGST survey. ANGST is a systematic Hubble Space Telescope survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D ∼ –1 for the majority of the galaxies). The VLA-ANGST data products are made publicly available through a dedicated Web site (https://science.nrao.edu/science/surveys/vla-angst). With available star formation histories from resolved stellar populations and lower resolution ancillary observations from the far-infrared to the ultraviolet, VLA-ANGST will enable detailed studies of the relationship between the ISM and star formation in dwarf galaxies on a ∼100 pc scale.

  6. Prospects for SODART observations of nearby clusters of galaxies

    DEFF Research Database (Denmark)

    Pedersen, Kenneth; Westergaard, Niels Jørgen Stenfeldt

    1998-01-01

    Using the current best understanding of the SODART mirror system, the Bragg panel and of the LEPC/HEPC responses [1] we have studied the feasibility and prospects for SODART studies of nearby clusters of galaxies. From simulated HEPC data of the cluster Abell 2256, we demonstrate that SODART...

  7. Effects of stellar evolution and ionizing radiation on the environments of massive stars

    Science.gov (United States)

    Mackey, J.; Langer, N.; Mohamed, S.; Gvaramadze, V. V.; Neilson, H. R.; Meyer, D. M.-A.

    2014-09-01

    We discuss two important effects for the astrospheres of runaway stars: the propagation of ionizing photons far beyond the astropause, and the rapid evolution of massive stars (and their winds) near the end of their lives. Hot stars emit ionizing photons with associated photoheating that has a significant dynamical effect on their surroundings. 3-D simulations show that H ii regions around runaway O stars drive expanding conical shells and leave underdense wakes in the medium they pass through. For late O stars this feedback to the interstellar medium is more important than that from stellar winds. Late in life, O stars evolve to cool red supergiants more rapidly than their environment can react, producing transient circumstellar structures such as double bow shocks. This provides an explanation for the bow shock and linear bar-shaped structure observed around Betelgeuse.

  8. Spacetime structure of massive Majorana particles and massive gravitino

    CERN Document Server

    Ahluwalia, D V

    2003-01-01

    The profound difference between Dirac and Majorana particles is traced back to the possibility of having physically different constructs in the (1/2, 0) 0 (0,1/2) representation space. Contrary to Dirac particles, Majorana-particle propagators are shown to differ from the simple linear gamma mu p submu, structure. Furthermore, neither Majorana particles, nor their antiparticles can be associated with a well defined arrow of time. The inevitable consequence of this peculiarity is the particle-antiparticle metamorphosis giving rise to neutrinoless double beta decay, on the one side, and enabling spin-1/2 fields to act as gauge fields, gauginos, on the other side. The second part of the lecture notes is devoted to massive gravitino. We argue that a spin measurement in the rest frame for an unpolarized ensemble of massive gravitino, associated with the spinor-vector [(1/2, 0) 0 (0,1/2)] 0 (1/2,1/2) representation space, would yield the results 3/2 with probability one half, and 1/2 with probability one half. The ...

  9. Massive vector fields and black holes

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1977-04-01

    A massive vector field inside the event horizon created by the static sources located outside the black hole is investigated. It is shown that the back reaction of such a field on the metric near r = 0 cannot be neglected. The possibility of the space-time structure changing near r = 0 due to the external massive field is discussed

  10. Restaurant food cooling practices.

    Science.gov (United States)

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  11. Restaurant Food Cooling Practices†

    Science.gov (United States)

    BROWN, LAURA GREEN; RIPLEY, DANNY; BLADE, HENRY; REIMANN, DAVE; EVERSTINE, KAREN; NICHOLAS, DAVE; EGAN, JESSICA; KOKTAVY, NICOLE; QUILLIAM, DANIELA N.

    2017-01-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention’s Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study. PMID:23212014

  12. The luminosities of cool supergiants in the Magellanic Clouds, and the Humphreys-Davidson limit revisited

    Science.gov (United States)

    Davies, Ben; Crowther, Paul A.; Beasor, Emma R.

    2018-05-01

    The empirical upper luminosity boundary Lmax of cool supergiants, often referred to as the Humphreys-Davidson limit, is thought to encode information on the general mass-loss behaviour of massive stars. Further, it delineates the boundary at which single stars will end their lives stripped of their hydrogen-rich envelope, which in turn is a key factor in the relative rates of Type-II to Type-Ibc supernovae from single star channels. In this paper we have revisited the issue of Lmax by studying the luminosity distributions of cool supergiants (SGs) in the Large and Small Magellanic Clouds (LMC/SMC). We assemble samples of cool SGs in each galaxy which are highly-complete above log L/L⊙=5.0, and determine their spectral energy distributions from the optical to the mid-infrared using modern multi-wavelength survey data. We show that in both cases Lmax appears to be lower than previously quoted, and is in the region of log L/L⊙=5.5. There is no evidence for Lmax being higher in the SMC than in the LMC, as would be expected if metallicity-dependent winds were the dominant factor in the stripping of stellar envelopes. We also show that Lmax aligns with the lowest luminosity of single nitrogen-rich Wolf-Rayet stars, indicating of a change in evolutionary sequence for stars above a critical mass. From population synthesis analysis we show that the Geneva evolutionary models greatly over-predict the numbers of cool SGs in the SMC. We also argue that the trend of earlier average spectral types of cool SGs in lower metallicity environments represents a genuine shift to hotter temperatures. Finally, we use our new bolometric luminosity measurements to provide updated bolometric corrections for cool supergiants.

  13. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  14. Measurement of radioactivity in the atmosphere and pollution nearby an atomic centre

    International Nuclear Information System (INIS)

    Labeyrie, J.; Weill, J.

    1955-01-01

    The French Atomic Energy Commission (CEA) is particularly interested in studies on atmospheric radioactivity by reason of the necessity to control the atmosphere nearby nuclear plants as uranium mines, nuclear reactors and hot laboratories or radioactive materials treatment plants. Thus, the CEA developed different apparatus to control and monitor the atmosphere nearby its sites. These air monitors are essentially of two types: the first one, called 'Babar', monitors smokes, fogs and dusts, the second type is an ionization chamber and measures the concentration of radioactive gas in the air. The functioning and sensitivity of these two systems are discussed. (M.P.)

  15. Investigation of the status quo of massive blood transfusion in China and a synopsis of the proposed guidelines for massive blood transfusion.

    Science.gov (United States)

    Yang, Jiang-Cun; Wang, Qiu-Shi; Dang, Qian-Li; Sun, Yang; Xu, Cui-Xiang; Jin, Zhan-Kui; Ma, Ting; Liu, Jing

    2017-08-01

    The aim of this study was to provide an overview of massive transfusion in Chinese hospitals, identify the important indications for massive transfusion and corrective therapies based on clinical evidence and supporting experimental studies, and propose guidelines for the management of massive transfusion. This multiregion, multicenter retrospective study involved a Massive Blood Transfusion Coordination Group composed of 50 clinical experts specializing in blood transfusion, cardiac surgery, anesthesiology, obstetrics, general surgery, and medical statistics from 20 tertiary general hospitals across 5 regions in China. Data were collected for all patients who received ≥10 U red blood cell transfusion within 24 hours in the participating hospitals from January 1 2009 to December 31 2010, including patient demographics, pre-, peri-, and post-operative clinical characteristics, laboratory test results before, during, and after transfusion, and patient mortality at post-transfusion and discharge. We also designed an in vitro hemodilution model to investigate the changes of blood coagulation indices during massive transfusion and the correction of coagulopathy through supplement blood components under different hemodilutions. The experimental data in combination with the clinical evidence were used to determine the optimal proportion and timing for blood component supplementation during massive transfusion. Based on the findings from the present study, together with an extensive review of domestic and international transfusion-related literature and consensus feedback from the 50 experts, we drafted the guidelines on massive blood transfusion that will help Chinese hospitals to develop standardized protocols for massive blood transfusion.

  16. Search for white dwarf companions of cool stars with peculiar element abundances

    Energy Technology Data Exchange (ETDEWEB)

    Boehm-Vitense, E.

    1984-01-01

    A search for a white dwarf companions of cool stars with peculiar element abundances was undertaken. One additional star the xi Cet, was found with a white dwarf companion. It was found that HR 1016, 56Uma, 16 Ser, have high excitation emission lines which indicate a high temperature object in the system. It is suggested that since these indications for high temperature companions were seen for all nearby Ba stars, it is highly probable that all Ba stars have white dwarf companions, and that the peculiar element abundances seen in the Ba stars are due to mass transfer. Observations, arguments and conclusions are presented. White dwarf companions were not found. Together with the Li and Be abundances and the chromospheric emission line spectra in these stars were studied. No white dwarf companions were seen for subgiant CH stars.

  17. Search for white dwarf companions of cool stars with peculiar element abundances

    International Nuclear Information System (INIS)

    Boehm-Vitense, E.

    1984-01-01

    A search for a white dwarf companions of cool stars with peculiar element abundances was undertaken. One additional star the xi Cet, was found with a white dwarf companion. It was found that HR 1016, 56Uma, 16 Ser, have high excitation emission lines which indicate a high temperature object in the system. It is suggested that since these indications for high temperature companions were seen for all nearby Ba stars, it is highly probable that all Ba stars have white dwarf companions, and that the peculiar element abundances seen in the Ba stars are due to mass transfer. Observations, arguments and conclusions are presented. White dwarf companions were not found. Together with the Li and Be abundances and the chromospheric emission line spectra in these stars were studied. No white dwarf companions were seen for subgiant CH stars

  18. Cooling Tower Overhaul of Secondary Cooling System in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Chul; Lee, Young Sub; Jung, Hoan Sung; Lim, In Chul [KAERI, Daejeon (Korea, Republic of)

    2007-07-01

    HANARO, an open-tank-in-pool type research reactor of 30 MWth power in Korea, has been operating normally since its initial criticality in February, 1995. For the last about ten years, A cooling tower of a secondary cooling system has been operated normally in HANARO. Last year, the cooling tower has been overhauled for preservative maintenance including fills, eliminators, wood support, water distribution system, motors, driving shafts, gear reducers, basements, blades and etc. This paper describes the results of the overhaul. As results, it is confirmed that the cooling tower maintains a good operability through a filed test. And a cooling capability will be tested when a wet bulb temperature is maintained about 28 .deg. C in summer and the reactor is operated with the full power.

  19. Cooling Performance of ALIP according to the Air or Sodium Cooling Type

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Huee-Youl; Yoon, Jung; Lee, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    ALIP pumps the liquid sodium by Lorentz force produced by the interaction of induced current in the liquid metal and their associated magnetic field. Even though the efficiency of the ALIP is very low compared to conventional mechanical pumps, it is very useful due to the absence of moving parts, low noise and vibration level, simplicity of flow rate regulation and maintenance, and high temperature operation capability. Problems in utilization of ALIP concern a countermeasure for elevation of internal temperature of the coil due to joule heating and how to increase magnetic flux density of Na channel gap. The conventional ALIP usually used cooling methods by circulating the air or water. On the other hand, GE-Toshiba developed a double stator pump adopting the sodium-immersed self-cooled type, and it recovered the heat loss in sodium. Therefore, the station load factor of the plant could be reduced. In this study, the cooling performance with cooling types of ALIP is analyzed. We developed thermal analysis models to evaluate the cooling performance of air or sodium cooling type of ALIP. The cooling performance is analyzed for operating parameters and evaluated with cooling type. 1-D and 3-D thermal analysis model for IHTS ALIP was developed, and the cooling performance was analyzed for air or sodium cooling type. The cooling performance for air cooling type was better than sodium cooling type at higher air velocity than 0.2 m/s. Also, the air temperature of below 270 .deg. demonstrated the better cooling performance as compared to sodium.

  20. Management of massive haemoptysis | Adegboye | Nigerian Journal ...

    African Journals Online (AJOL)

    Background: This study compares two management techniques in the treatment of massive haemotysis. Method: All patients with massive haemoptysis treated between January 1969 and December 1980 (group 1) were retrospectively reviewed and those prospectively treated between January 1981 and August 1999 ...

  1. Film cooling air pocket in a closed loop cooled airfoil

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  2. Development of Innovative Heating and Cooling Systems Using Renewable Energy Sources for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    Cinzia Buratti

    2013-10-01

    Full Text Available Industrial and commercial areas are synonymous with high energy consumption, both for heating/cooling and electric power requirements, which are in general associated to a massive use of fossil fuels producing consequent greenhouse gas emissions. Two pilot systems, co-funded by the Italian Ministry for the Environment, have been created to upgrade the heating/cooling systems of two existing buildings on the largest industrial estate in Umbria, Italy. The upgrade was specifically designed to improve the system efficiency and to cover the overall energy which needs with renewable energy resources. In both cases a solar photovoltaic plant provides the required electric power. The first system features a geothermal heat pump with an innovative layout: a heat-storage water tank, buried just below ground level, allows a significant reduction of the geothermal unit size, hence requiring fewer and/or shorter boreholes (up to 60%–70%. In the other system a biomass boiler is coupled with an absorption chiller machine, controlling the indoor air temperature in both summer and winter. In this case, lower electricity consumption, if compared to an electric compression chiller, is obtained. The first results of the monitoring of summer cooling are presented and an evaluation of the performance of the two pilot systems is given.

  3. Topologically massive gravity and Ricci-Cotton flow

    Energy Technology Data Exchange (ETDEWEB)

    Lashkari, Nima; Maloney, Alexander, E-mail: lashkari@physics.mcgill.ca, E-mail: maloney@physics.mcgill.ca [McGill Physics Department, 3600 rue University, Montreal, QC H3A 2T8 (Canada)

    2011-05-21

    We consider topologically massive gravity (TMG), which is three-dimensional general relativity with a cosmological constant and a gravitational Chern-Simons term. When the cosmological constant is negative the theory has two potential vacuum solutions: anti-de Sitter space and warped anti-de Sitter space. The theory also contains a massive graviton state which renders these solutions unstable for certain values of the parameters and boundary conditions. We study the decay of these solutions due to the condensation of the massive graviton mode using Ricci-Cotton flow, which is the appropriate generalization of Ricci flow to TMG. When the Chern-Simons coupling is small the AdS solution flows to warped AdS by the condensation of the massive graviton mode. When the coupling is large the situation is reversed, and warped AdS flows to AdS. Minisuperspace models are constructed where these flows are studied explicitly.

  4. Topologically massive gravity and Ricci-Cotton flow

    International Nuclear Information System (INIS)

    Lashkari, Nima; Maloney, Alexander

    2011-01-01

    We consider topologically massive gravity (TMG), which is three-dimensional general relativity with a cosmological constant and a gravitational Chern-Simons term. When the cosmological constant is negative the theory has two potential vacuum solutions: anti-de Sitter space and warped anti-de Sitter space. The theory also contains a massive graviton state which renders these solutions unstable for certain values of the parameters and boundary conditions. We study the decay of these solutions due to the condensation of the massive graviton mode using Ricci-Cotton flow, which is the appropriate generalization of Ricci flow to TMG. When the Chern-Simons coupling is small the AdS solution flows to warped AdS by the condensation of the massive graviton mode. When the coupling is large the situation is reversed, and warped AdS flows to AdS. Minisuperspace models are constructed where these flows are studied explicitly.

  5. Neutron stars structure in the context of massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H.; Bordbar, G.H.; Panah, B. Eslam; Panahiyan, S., E-mail: hendi@shirazu.ac.ir, E-mail: ghbordbar@shirazu.ac.ir, E-mail: behzad.eslampanah@gmail.com, E-mail: sh.panahiyan@gmail.com [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2017-07-01

    Motivated by the recent interests in spin−2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  6. Neutron stars structure in the context of massive gravity

    Science.gov (United States)

    Hendi, S. H.; Bordbar, G. H.; Eslam Panah, B.; Panahiyan, S.

    2017-07-01

    Motivated by the recent interests in spin-2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  7. Neutron stars structure in the context of massive gravity

    International Nuclear Information System (INIS)

    Hendi, S.H.; Bordbar, G.H.; Panah, B. Eslam; Panahiyan, S.

    2017-01-01

    Motivated by the recent interests in spin−2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  8. Permutations of massive vacua

    Energy Technology Data Exchange (ETDEWEB)

    Bourget, Antoine [Department of Physics, Universidad de Oviedo, Avenida Calvo Sotelo 18, 33007 Oviedo (Spain); Troost, Jan [Laboratoire de Physique Théorique de l’É cole Normale Supérieure, CNRS,PSL Research University, Sorbonne Universités, 75005 Paris (France)

    2017-05-09

    We discuss the permutation group G of massive vacua of four-dimensional gauge theories with N=1 supersymmetry that arises upon tracing loops in the space of couplings. We concentrate on superconformal N=4 and N=2 theories with N=1 supersymmetry preserving mass deformations. The permutation group G of massive vacua is the Galois group of characteristic polynomials for the vacuum expectation values of chiral observables. We provide various techniques to effectively compute characteristic polynomials in given theories, and we deduce the existence of varying symmetry breaking patterns of the duality group depending on the gauge algebra and matter content of the theory. Our examples give rise to interesting field extensions of spaces of modular forms.

  9. Prospects of the "WSO-UV" Project for Star Formation Study in Nearby Dwarf Galaxies

    Science.gov (United States)

    Makarova, L. N.; Makarov, D. I.

    2017-12-01

    In the present work we consider the questions of star formation and evolution of nearby dwarf galaxies. We describe the method of star formation history determination based on multicolor photometry of resolved stars and models of color-magnitude diagrams of the galaxies. We present the results of star formation rate determination and its dependence on age and metallicity for dwarf irregular and dwarf spheroidal galaxies in the two nearby galaxy groups M81 and Cen A. Similar age of the last episode of star formation in the central part of the M81 group and also unusually high level of metal enrichment in the several galaxies of the Cen A group are mentioned. We pay special attention to the consideration of perspectives of star formation study in nearby dwarf galaxies with he new WSO-UV observatory.

  10. Nitrogen chronology of massive main sequence stars

    NARCIS (Netherlands)

    Köhler, K.; Borzyszkowski, M.; Brott, I.; Langer, N.; de Koter, A.

    2012-01-01

    Context. Rotational mixing in massive main sequence stars is predicted to monotonically increase their surface nitrogen abundance with time. Aims. We use this effect to design a method for constraining the age and the inclination angle of massive main sequence stars, given their observed luminosity,

  11. Using massive digital libraries a LITA guide

    CERN Document Server

    Weiss, Andrew

    2014-01-01

    Some have viewed the ascendance of the digital library as some kind of existential apocalypse, nothing less than the beginning of the end for the traditional library. But Weiss, recognizing the concept of the library as a ""big idea"" that has been implemented in many ways over thousands of years, is not so gloomy. In this thought-provoking and unabashedly optimistic book, he explores how massive digital libraries are already adapting to society's needs, and looks ahead to the massive digital libraries of tomorrow, coveringThe author's criteria for defining massive digital librariesA history o

  12. Two-dimensional thermofield bosonization II: Massive fermions

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.

    2008-01-01

    We consider the perturbative computation of the N-point function of chiral densities of massive free fermions at finite temperature within the thermofield dynamics approach. The infinite series in the mass parameter for the N-point functions are computed in the fermionic formulation and compared with the corresponding perturbative series in the interaction parameter in the bosonized thermofield formulation. Thereby we establish in thermofield dynamics the formal equivalence of the massive free fermion theory with the sine-Gordon thermofield model for a particular value of the sine-Gordon parameter. We extend the thermofield bosonization to include the massive Thirring model

  13. Spectral differential imaging detection of planets about nearby stars

    International Nuclear Information System (INIS)

    Smith, W.H.

    1987-01-01

    Direct ground-based optical imaging of planets in orbit about nearby stars may be accomplished by spectral differential imaging using multiple passband acoustooptic filters with a CCD. This technique provides two essential results. First, it provides a means to modulate the stellar flux reflected from a planet while leaving the flux from the star and other sources in the same field of view unmodulated. Second, spectral differential imaging enables the CCD detector to achieve a sufficiently high dynamic range to locate planets near a star in spite of an integrated brightness differential of 5 x 10 8 . Spectral differential imaging at nearby diffraction limited imaging conditions with telescope apodization can reduce the time to conduct a sensitive planetary search to a few hours in some cases. The feasibility of this idea is discussed here and shown to provide, in principle, the discrimination and sensitivity to detect a Jovian-class planet about stars at distances of about 10 parsecs. The detection of brown dwarfs is shown to be feasible as well. 31 references

  14. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Thomas; /ZAH, Heidelberg; Klessen, Ralf S.; /ZAH, Heidelberg /KIPAC, Menlo Park; Mac Low, Mordecai-Mark; /Amer. Museum Natural Hist.; Banerjee, Robi; /ZAH, Heidelberg

    2010-08-25

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  15. Hunting for a massive neutrino

    CERN Document Server

    AUTHOR|(CDS)2108802

    1997-01-01

    A great effort is devoted by many groups of physicists all over the world to give an answer to the following question: Is the neutrino massive ? This question has profound implications with particle physics, astrophysics and cosmology, in relation to the so-called Dark Matter puzzle. The neutrino oscillation process, in particular, can only occur if the neutrino is massive. An overview of the neutrino mass measurements, of the oscillation formalism and experiments will be given, also in connection with the present experimental programme at CERN with the two experiments CHORUS and NOMAD.

  16. On the singularities of massive superstring amplitudes

    NARCIS (Netherlands)

    Foda, O.

    1987-01-01

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are

  17. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  18. Man-portable personal cooling garment based on vacuum desiccant cooling

    International Nuclear Information System (INIS)

    Yang Yifan; Stapleton, Jill; Diagne, Barbara Thiané; Kenny, Glen P.; Lan, Christopher Q.

    2012-01-01

    A man-portable personal cooling garment based on the concept of vacuum desiccant cooling (VDC) was developed. It was demonstrated with cooling pads that a cooling capacity of 373.1 W/m 2 could be achieved in an ambient environment of 37 °C. Tests with human subjects wearing prototype cooling garments consisting of 12 VDC pads with an overall weight of 3.4 kg covering 0.4 m 2 body surface indicate that the garment could maintain a core temperature substantially lower than the control when the workload was walking on a treadmill of 2% inclination at 3 mph. The exercise was carried out in an environment of 40 °C and 50% relative humidity (RH) for 60 min. Tests also showed that the VDC garment could effectively reduce the metabolic heat accumulation in body with subject wearing heavily insulated nuclear, biological and chemical (NBC) suit working in the heat and allow the participant to work safely for 60 min, almost doubling the safe working time of the same participant when he wore NBC suit only. - Highlights: ► Heat stress mitigation is important for workers health, safety, and performance. ► Vacuum desiccant cooling (VDC) a novel concept for personal cooling. ► VDC garment man-portable and more efficient than commercial ice/pad vest. ► VDC garment suitable for personal cooling with NBC suit.

  19. Treating cooling pond water for Wabamun Lake level mitigation project in Alberta

    International Nuclear Information System (INIS)

    Anon

    2004-01-01

    Dealing with the challenge of recharging Wabamun Lake by treating nearby cooling pond water, fed by the North Saskatchewan River, and returning it to the lake, is discussed. To deal with the problem, TransAlta Utilities constructed a treatment plant in 1997 next to the 2,029 MW Sundance power plant to mitigate the effect the power plant's ongoing and historical effect on the lake's water level. The objective of the treatment plant is to treat cooling pond water and return it to the lake to raise water levels there, which have been significantly reduced over the last 25 years mostly by power plant intake, but also by lack of rainfall, surface runoff, and natural evaporation. At the Treatment Facility the water to be treated is first chlorinated to kill zooplankton, algae and bacteria, followed by adjusting the pH using sulfuric acid. Alum coagulant is used to destabilize colour, particles and colloids. The next step is feeding the water to the Actiflo clarifiers which use microsand to provide increased surface area for floc attachment, and to act as ballast. Clarified water from the Actiflo system is then fed to to the Dusenflo filters to remove the largest particles of suspended solids, and through a finer sand media to remove the remaining turbidity, colour and bacteria. Thiosulfate is used in the ozonation system to inactivate any remaining bacteria and zooplankton in the filtered water, before discharging it to the lake. The cooling towers, which are part of the system, ensure that the treated water returned to the lake is kept at a constant temperature, varying no more than three degrees C from the lake water temperature. 3 figs

  20. Laser cooling of solids

    CERN Document Server

    Petrushkin, S V

    2009-01-01

    Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors. Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews p...

  1. To cool, but not too cool: that is the question--immersion cooling for hyperthermia.

    Science.gov (United States)

    Taylor, Nigel A S; Caldwell, Joanne N; Van den Heuvel, Anne M J; Patterson, Mark J

    2008-11-01

    Patient cooling time can impact upon the prognosis of heat illness. Although ice-cold-water immersion will rapidly extract heat, access to ice or cold water may be limited in hot climates. Indeed, some have concerns regarding the sudden cold-water immersion of hyperthermic individuals, whereas others believe that cutaneous vasoconstriction may reduce convective heat transfer from the core. It was hypothesized that warmer immersion temperatures, which induce less powerful vasoconstriction, may still facilitate rapid cooling in hyperthermic individuals. Eight males participated in three trials and were heated to an esophageal temperature of 39.5 degrees C by exercising in the heat (36 degrees C, 50% relative humidity) while wearing a water-perfusion garment (40 degrees C). Subjects were cooled using each of the following methods: air (20-22 degrees C), cold-water immersion (14 degrees C), and temperate-water immersion (26 degrees C). The time to reach an esophageal temperature of 37.5 degrees C averaged 22.81 min (air), 2.16 min (cold), and 2.91 min (temperate). Whereas each of the between-trial comparisons was statistically significant (P < 0.05), cooling in temperate water took only marginally longer than that in cold water, and one cannot imagine that the 45-s cooling time difference would have any meaningful physiological or clinical implications. It is assumed that this rapid heat loss was due to a less powerful peripheral vasoconstrictor response, with central heat being more rapidly transported to the skin surface for dissipation. Although the core-to-water thermal gradient was much smaller with temperate-water cooling, greater skin and deeper tissue blood flows would support a superior convective heat delivery. Thus, a sustained physiological mechanism (blood flow) appears to have countered a less powerful thermal gradient, resulting in clinically insignificant differences in heat extraction between the cold and temperate cooling trials.

  2. TRACING COLD H I GAS IN NEARBY, LOW-MASS GALAXIES

    International Nuclear Information System (INIS)

    Warren, Steven R.; Skillman, Evan D.; Stilp, Adrienne M.; Dalcanton, Julianne J.; Ott, Jürgen; Walter, Fabian; Petersen, Eric A.; Koribalski, Bärbel; West, Andrew A.

    2012-01-01

    We analyze line-of-sight atomic hydrogen (H I) line profiles of 31 nearby, low-mass galaxies selected from the Very Large Array—ACS Nearby Galaxy Survey Treasury (VLA-ANGST) and The H I Nearby Galaxy Survey (THINGS) to trace regions containing cold (T ∼ –1 . Our galaxy sample spans four orders of magnitude in total H I mass and nine magnitudes in M B . We fit single and multiple component functions to each spectrum to isolate the cold, neutral medium given by a low-dispersion ( –1 ) component of the spectrum. Most H I spectra are adequately fit by a single Gaussian with a dispersion of 8-12 km s –1 . Cold H I is found in 23 of 27 (∼85%) galaxies after a reduction of the sample size due to quality-control cuts. The cold H I contributes ∼20% of the total line-of-sight flux when found with warm H I. Spectra best fit by a single Gaussian, but dominated by cold H I emission (i.e., have velocity dispersions of –1 ), are found primarily beyond the optical radius of the host galaxy. The cold H I is typically found in localized regions and is generally not coincident with the very highest surface density peaks of the global H I distribution (which are usually areas of recent star formation). We find a lower limit for the mass fraction of cold-to-total H I gas of only a few percent in each galaxy.

  3. Performance characteristic of hybrid cooling system based on cooling pad and evaporator

    Science.gov (United States)

    Yoon, J. I.; Son, C. H.; Choi, K. H.; Kim, Y. B.; Sung, Y. H.; Roh, S. J.; Kim, Y. M.; Seol, S. H.

    2018-01-01

    In South Korea, most of domestic animals such as pigs and chickens might die due to thermal diseases if they are exposed to the high temperature consistently. In order to save them from the heat wave, numerous efforts have been carried out: installing a shade net, adjusting time of feeding, spraying mist and setting up a circulation fan. However, these methods have not shown significant improvements. Thus, this study proposes a hybrid cooling system combining evaporative cooler and air-conditioner in order to resolve the conventional problems caused by the high temperature in the livestock industry. The problem of cooling systems using evaporative cooling pads is that they are not effective for eliminating huge heat load due to their limited capacity. And, temperature of the supplied air cannot be low enough compared to conventional air-conditioning systems. On the other hand, conventional air-conditioning systems require relatively expensive installation cost, and high operating cost compared to evaporative cooling system. The hybrid cooling system makes up for the lack of cooling capacity of the evaporative cooler by employing the conventional air-conditioner. Additionally, temperature of supplied air can be lowered enough. In the hybrid cooling system, induced air by a fan is cooled by the evaporation of water in the cooling pad, and it is cooled again by an evaporator in the air-conditioner. Therefore, the more economical operation is possible due to additionally obtained cooling capacity from the cooling pads. Major results of experimental analysis of hybrid cooling system are as follows. The compressor power consumption of the hybrid cooling system is about 23% lower, and its COP is 17% higher than that of the conventional air-conditioners. Regarding the condition of changing ambient temperature, the total power consumption decreased by about 5% as the ambient temperature changed from 28.7°C to 31.7°C. Cooling capacity and COP also presented about 3% and 1

  4. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  5. Black holes in massive gravity as heat engines

    Science.gov (United States)

    Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.; Liu, H.; Meng, X.-H.

    2018-06-01

    The paper at hand studies the heat engine provided by black holes in the presence of massive gravity. The main motivation is to investigate the effects of massive gravity on different properties of the heat engine. It will be shown that massive gravity parameters modify the efficiency of engine on a significant level. Furthermore, it will be pointed out that it is possible to have a heat engine for non-spherical black holes in massive gravity, and therefore, we will study the effects of horizon topology on the properties of heat engine. Surprisingly, it will be shown that the highest efficiency for the heat engine belongs to black holes with the hyperbolic horizon, while the lowest one belongs to the spherical black holes.

  6. HUBBLE'S ULTRAVIOLET VIEWS OF NEARBY GALAXIES YIELD CLUES TO EARLY UNIVERSE

    Science.gov (United States)

    2002-01-01

    , NGC 3310, shows young and old stars evenly distributed. If this were the case with most galaxies, astronomers would be able to recognize faraway galaxies fairly easily. In most galaxies, however, the stars are segregated by age, making classifying the distant ones more difficult. NGC 3310 is 46 million light-years from Earth in the constellation Ursa Major. The image was taken Sept. 12-13, 2000. The middle image is an example of a tiny, youthful spiral galaxy. ESO 418-008 is representative of the myriad of dwarf galaxies astronomers have seen in deep surveys. These galaxies are much smaller than typical ones like our Milky Way. In this galaxy, the population of stars is more strongly segregated by age. The older stars [red] reside in the center; the younger [blue], in the developing spiral arms. These small, young galaxies may be the building blocks of galaxy formation. ESO 418-008 is 56 million light-years from Earth in the southern constellation Fornax. The image was taken Oct. 10, 2000. The picture at right shows a cosmic collision between two galaxies, UGC 06471 and UGC 06472. These collisions occurred frequently in the early universe, producing galaxies of unusual shapes. The Hubble telescope has spied many such galaxies in the deep field surveys. The ultraviolet images of this galaxy merger suggest the presence of large amounts of dust, which were produced by massive stars that formed before or during this dramatic collision. This dust reddens the starlight in many places, just like a dusty atmosphere reddens the sunset. Studying the effects of this nearby collision could help astronomers explain the peculiar shapes seen in some of the distant galaxies. UGC 06471 and UGC 06472 are 145 million light-years from Earth in the constellation Ursa Major. The image was taken July 11, 2000. Photo credits: NASA, Rogier Windhorst (Arizona State University, Tempe, AZ), and the Hubble mid-UV team

  7. Nearby Hot Stars May Change Our View of Distant Sources

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    As if it werent enough that quasars distant and bright nuclei of galaxies twinkle of their own accord due to internal processes, nature also provides another complication: these distant radio sources can also appear to twinkle because of intervening material between them and us. A new study has identified a possible source for the material getting in the way.Unexplained VariabilityA Spitzer infrared view of the Helix nebula, which contains ionized streamers of gas extending radially outward from the central star. [NASA/JPL-Caltech/Univ. of Ariz.]Distant quasars occasionally display extreme scintillation, twinkling with variability timescales shorter than a day. This intra-day variability is much greater than we can account for with standard models of the interstellar medium lying between the quasar and us. So what could cause this extreme scattering instead?The first clue to this mystery came from the discovery of strong variability in the radio source PKS 1322110. In setting up follow-up observations of this object, Mark Walker (Manly Astrophysics, Australia) and collaborators noticed that, in the plane of the sky, PKS 1322110 lies very near the bright star Spica. Could this be coincidence, or might this bright foreground star have something to do with the extreme scattering observed?Diagram explaining the source of the intra-day radio source variability as intervening filaments surrounding a hot star. [M. Walker/CSIRO/Manly Astrophysics]Swarms of ClumpsWalker and collaborators put forward a hypothesis: perhaps the ultraviolet photons of nearby hot stars ionize plasma around them, which in turn causes the extreme scattering of the distant background sources.As a model, the authors consider the Helix Nebula, in which a hot, evolved star is surrounded by cool globules of molecular hydrogen gas. The radiation from the star hits these molecular clumps, dragging them into long radial streamers and ionizing their outer skins.Though the molecular clumps in the Helix

  8. The VLT-FLAMES survey of massive stars

    NARCIS (Netherlands)

    Evans, C.; Langer, N.; Brott, I.; Hunter, I.; Smartt, S.J.; Lennon, D.J.

    2008-01-01

    The VLT-FLAMES Survey of Massive Stars was an ESO Large Programme to understand rotational mixing and stellar mass loss in different metallicity environments, in order to better constrain massive star evolution. We gathered high-quality spectra of over 800 stars in the Galaxy and in the Magellanic

  9. Demographics of Starbursts in Nearby Seyfert Galaxies

    Science.gov (United States)

    Schinnerer, E.; Colbert, E.; Armus, L.; Scoville, N. Z.; Heckman, T.

    2002-12-01

    We investigate the frequency of circumnuclear starbursts in Seyfert galaxies using medium-resolution H and K band spectroscopy. An unbiased sample of ~20 nearby Seyfert galaxies was observed at the KeckII telescope with an average seeing of ~0.7''. Preliminary analysis shows strong stellar absorption lines for most galaxies in our sample. Comparison of stellar equivalent widths in the H and K band will allow us to determine the average age of the dominating stellar population. Evidence for an age trend with Seyfert type would provide a strong hint toward a starburst/AGN connection.

  10. Massive cerebellar infarction: a neurosurgical approach

    Directory of Open Access Journals (Sweden)

    Salazar Luis Rafael Moscote

    2015-12-01

    Full Text Available Cerebellar infarction is a challenge for the neurosurgeon. The rapid recognition will crucial to avoid devastating consequences. The massive cerebellar infarction has pseudotumoral behavior, should affect at least one third of the volume of the cerebellum. The irrigation of the cerebellum presents anatomical diversity, favoring the appearance of atypical infarcts. The neurosurgical management is critical for massive cerebellar infarction. We present a review of the literature.

  11. STAR FORMATION EFFICIENCY IN THE COOL CORES OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    McDonald, Michael; Veilleux, Sylvain; Mushotzky, Richard; Reynolds, Christopher; Rupke, David S. N.

    2011-01-01

    We have assembled a sample of high spatial resolution far-UV (Hubble Space Telescope Advanced Camera for Surveys/Solar Blind Channel) and Hα (Maryland-Magellan Tunable Filter) imaging for 15 cool core galaxy clusters. These data provide a detailed view of the thin, extended filaments in the cores of these clusters. Based on the ratio of the far-UV to Hα luminosity, the UV spectral energy distribution, and the far-UV and Hα morphology, we conclude that the warm, ionized gas in the cluster cores is photoionized by massive, young stars in all but a few (A1991, A2052, A2580) systems. We show that the extended filaments, when considered separately, appear to be star forming in the majority of cases, while the nuclei tend to have slightly lower far-UV luminosity for a given Hα luminosity, suggesting a harder ionization source or higher extinction. We observe a slight offset in the UV/Hα ratio from the expected value for continuous star formation which can be modeled by assuming intrinsic extinction by modest amounts of dust (E(B - V) ∼ 0.2) or a top-heavy initial mass function in the extended filaments. The measured star formation rates vary from ∼0.05 M sun yr -1 in the nuclei of non-cooling systems, consistent with passive, red ellipticals, to ∼5 M sun yr -1 in systems with complex, extended, optical filaments. Comparing the estimates of the star formation rate based on UV, Hα, and infrared luminosities to the spectroscopically determined X-ray cooling rate suggests a star formation efficiency of 14 +18 -8 %. This value represents the time-averaged fraction, by mass, of gas cooling out of the intracluster medium, which turns into stars and agrees well with the global fraction of baryons in stars required by simulations to reproduce the stellar mass function for galaxies. This result provides a new constraint on the efficiency of star formation in accreting systems.

  12. On massive gravitons in 2+1 dimensions

    NARCIS (Netherlands)

    Bergshoeff, Eric; Hohm, Olaf; Townsend, Paul; Lazkoz, R; Vera, R

    2010-01-01

    The Fierz-Pauli (FP) free field theory for massive spin-2 particles can be extended, in a spacetime of (1+2) dimensions (3D), to a generally covariant parity-preserving interacting field theory, in at least two ways. One is "new massive gravity" (NMG), with an action that involves curvature-squared

  13. Emergency reactor cooling device

    International Nuclear Information System (INIS)

    Arakawa, Ken.

    1993-01-01

    An emergency nuclear reactor cooling device comprises a water reservoir, emergency core cooling water pipelines having one end connected to a water feeding sparger, fire extinguishing facility pipelines, cooling water pressurizing pumps, a diesel driving machine for driving the pumps and a battery. In a water reservoir, cooling water is stored by an amount required for cooling the reactor upon emergency and for fire extinguishing, and fire extinguishing facility pipelines connecting the water reservoir and the fire extinguishing facility are in communication with the emergency core cooling water pipelines connected to the water feeding sparger by system connection pipelines. Pumps are operated by a diesel power generator to introduce cooling water from the reservoir to the emergency core cooling water pipelines. Then, even in a case where AC electric power source is entirely lost and the emergency core cooling system can not be used, the diesel driving machine is operated using an exclusive battery, thereby enabling to inject cooling water from the water reservoir to a reactor pressure vessel and a reactor container by the diesel drive pump. (N.H.)

  14. Holographic heat engine within the framework of massive gravity

    Science.gov (United States)

    Mo, Jie-Xiong; Li, Gu-Qiang

    2018-05-01

    Heat engine models are constructed within the framework of massive gravity in this paper. For the four-dimensional charged black holes in massive gravity, it is shown that the existence of graviton mass improves the heat engine efficiency significantly. The situation is more complicated for the five-dimensional neutral black holes since the constant which corresponds to the third massive potential also contributes to the efficiency. It is also shown that the existence of graviton mass can improve the heat engine efficiency. Moreover, we probe how the massive gravity influences the behavior of the heat engine efficiency approaching the Carnot efficiency.

  15. Black holes at the centers of nearby dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Edward C.; Shahinyan, Karlen; Sugarman, Hannah R.; Vélez, Darik O. [Astronomy Department, Wesleyan University, Middletown, CT 06459 (United States); Eracleous, Michael [Department of Astronomy and Astrophysics, and Institute for Gravitation and the Cosmos, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)

    2014-12-01

    Using a distance-limited portion of the Sloan Digital Sky Survey (SDSS) Data Release 7, we have identified 28 active galactic nuclei (AGNs) in nearby (d⩽80 Mpc) low-mass, low-luminosity dwarf galaxies. The accreting objects at the galaxy centers are expected to be intermediate-mass black holes (IMBHs) with M{sub BH}⩽10{sup 6} M{sub ⊙}. The AGNs were selected using several optical emission-line diagnostics after careful modeling of the continuum present in the spectra. We have limited our survey to objects with spectral characteristics similar to those of Seyfert nuclei, excluding emission-line galaxies with ambiguous spectra that could be powered by stellar processes. Thus, as a set, the host galaxies in our sample are the least massive objects in the very local universe certain to contain central black holes. Our sample is dominated by narrow-line (type 2) AGNs, and it appears to have a much lower fraction of broad-line objects than that observed for luminous, optically selected Seyfert galaxies. Given our focus on the nearest objects included in the SDSS, our survey is more sensitive to low-luminosity emission than previous optical searches for AGNs in low-mass galaxies. The [O iii] λ5007 luminosities of the Seyfert nuclei in our sample have a median value of L{sub 5007}=2×10{sup 5} L{sub ⊙} and extend down to ∼10{sup 4} L{sub ⊙}. Using published data for broad-line IMBH candidates, we have derived an [O iii] bolometric correction of log(L{sub bol}/L{sub 5007})=3.0±0.3, which is significantly lower than values obtained for high-luminosity AGNs. Applying this correction to our sample, we obtain minimum black hole mass estimates that fall mainly in the 10{sup 3} M{sub ⊙}–10{sup 4} M{sub ⊙} range, which is roughly where the predicted mass functions for different black hole seed formation scenarios overlap the most. In the stellar mass range that includes the bulk of the AGN host galaxies in our sample, we derive a lower limit on the AGN fraction

  16. THE IMPORTANCE OF NEBULAR CONTINUUM AND LINE EMISSION IN OBSERVATIONS OF YOUNG MASSIVE STAR CLUSTERS

    International Nuclear Information System (INIS)

    Reines, Amy E.; Nidever, David L.; Whelan, David G.; Johnson, Kelsey E.

    2010-01-01

    In this spectroscopic study of infant massive star clusters, we find that continuum emission from ionized gas rivals the stellar luminosity at optical wavelengths. In addition, we find that nebular line emission is significant in many commonly used broadband Hubble Space Telescope (HST) filters including the F814W I-band, the F555W V-band, and the F435W B-band. Two young massive clusters (YMCs) in the nearby starburst galaxy NGC 4449 were targeted for follow-up spectroscopic observations after Reines et al. discovered an F814W I-band excess in their photometric study of radio-detected clusters in the galaxy. The spectra were obtained with the Dual Imaging Spectrograph (DIS) on the 3.5 m Apache Point Observatory (APO) telescope and have a spectral range of ∼3800-9800 A. We supplement these data with HST and Sloan Digital Sky Survey photometry of the clusters. By comparing our data to the Starburst99 and GALEV evolutionary synthesis models, we find that nebular continuum emission competes with the stellar light in our observations and that the relative contribution from the nebular continuum is largest in the U- and I-bands, where the Balmer (3646 A) and Paschen jumps (8207 A) are located. The spectra also exhibit strong line emission including the [S III] λλ9069, 9532 lines in the HST F814W I-band. We find that the combination of nebular continuum and line emission can account for the F814W I-band excess previously found by Reines et al. In an effort to provide a benchmark for estimating the impact of ionized gas emission on photometric observations of young massive stellar populations, we compute the relative contributions of the stellar continuum, nebular continuum, and emission lines to the total observed flux of a 3 Myr old cluster through various HST filter/instrument combinations, including filters in the Wide Field Camera 3. We urge caution when comparing observations of YMCs to evolutionary synthesis models since nebular continuum and line emission can

  17. Formation of Massive Molecular Cloud Cores by Cloud-cloud Collision

    OpenAIRE

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-01-01

    Recent observations of molecular clouds around rich massive star clusters including NGC3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by the cloud-cloud collision. We find that the massive mol...

  18. Cooled-Spool Piston Compressor

    Science.gov (United States)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  19. Cooling towers

    International Nuclear Information System (INIS)

    Korik, L.; Burger, R.

    1992-01-01

    What is the effect of 0.6C (1F) temperature rise across turbines, compressors, or evaporators? Enthalpy charts indicate for every 0.6C (1F) hotter water off the cooling tower will require an additional 2 1/2% more energy cost. Therefore, running 2.2C (4F) warmer due to substandard cooling towers could result in a 10% penalty for overcoming high heads and temperatures. If it costs $1,250,000.00 a year to operate the system, $125,000.00 is the energy penalty for hotter water. This paper investigates extra fuel costs involved in maintaining design electric production with cooling water 0.6C (1F) to 3C (5.5F) hotter than design. If design KWH cannot be maintained, paper will calculate dollar loss of saleable electricity. The presentation will conclude with examining the main causes of deficient cold water production. State-of-the-art upgrading and methodology available to retrofit existing cooling towers to optimize lower cooling water temperatures will be discussed

  20. Water cooling coil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Ito, Y; Kazawa, Y

    1975-02-05

    Object: To provide a water cooling coil in a toroidal nuclear fusion device, in which coil is formed into a small-size in section so as not to increase dimensions, weight or the like of machineries including the coil. Structure: A conductor arranged as an outermost layer of a multiple-wind water cooling coil comprises a hollow conductor, which is directly cooled by fluid, and as a consequence, a solid conductor disposed interiorly thereof is cooled indirectly.

  1. Effect of closed loop cooling water transit time on containment cooling

    International Nuclear Information System (INIS)

    Smith, R.P.; Vossahlik, J.E.; Goodwin, E.F.

    1996-01-01

    Long term containment cooling analyses in nuclear plant systems are usually conducted assuming a quasi steady-state process, that is, a steady state evaluation of the cooling system is completed for each calculational step. In reality, fluid transport in the system, and heat addition to system components may affect the heat removal rate of the system. Transient effects occurring during system startup may affect the maximum temperatures experienced in the system. It is important to ensure that such transient effects do not affect operation of the system (e.g., cause a high temperature trip). To evaluate the effect of fluid transit delays, a closed loop cooling water system model has been developed that incorporates the fluid transport times when determining the closed loop cooling system performance. This paper describes the closed loop cooling system model as implemented in the CONTEMPT-LT/028 code. The evaluation of the transient temperature response of the closed loop cooling system using the model is described. The paper also describes the effect of fluid transit time on the overall containment cooling performance

  2. Direct Urca Processes Involving Proton 1 S 0 Superfluidity in Neutron Star Cooling

    Science.gov (United States)

    Xu, Yan; Yu, Zi; Zhang, Xiao-Jun; Fan, Cun-Bo; Liu, Guang-Zhou; Zhao, En-Guang; Huang, Xiu-Lin; Liu, Cheng-Zhi

    2018-04-01

    A detailed description of the baryon direct Urca processes A: n\\to p+e+{\\bar{ν }}e, B: Λ \\to p+e+{\\bar{ν }}e and C: {\\Xi }-\\to Λ +e+{\\bar{ν }}e related to the neutron star cooling is given in the relativistic mean field approximation. The contributions of the reactions B and C on the neutrino luminosity are calculated by means of the relativistic expressions of the neutrino energy losses. Our results show that the total neutrino luminosities of the reactions A, B and C within the mass range (1.603–2.067) M⊙ ((1.515–1.840) M⊙ for TM1 model) for GM1 model are larger than the corresponding values for neutron star without hyperons. Furthermore, although the neutrino emissivity of the reaction A is suppressed with the appearance of the proton 1 S 0 superfluid, the contribution of the reactions B and C can still quicken a massive neutron star cooling. In particular, the reaction C in PSR J1614-2230 and J0348+0432 is not suppressed by the proton 1 S 0 superfluid due to the higher threshold density of the reaction C, which will further speed up the two pulsars cooling. Supported by the National Natural Science Foundation of China under Grant Nos. 11447165, 11373047, 11404336 and U1731240, Youth Innovation Promotion Association, CAS under Grant No. 2016056, and the Development Project of Science and Technology of Jilin Province under Grant No. 20180520077JH

  3. Massively Parallel Algorithms for Solution of Schrodinger Equation

    Science.gov (United States)

    Fijany, Amir; Barhen, Jacob; Toomerian, Nikzad

    1994-01-01

    In this paper massively parallel algorithms for solution of Schrodinger equation are developed. Our results clearly indicate that the Crank-Nicolson method, in addition to its excellent numerical properties, is also highly suitable for massively parallel computation.

  4. The cooling of particle beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling

  5. Critical N = (1, 1) general massive supergravity

    Science.gov (United States)

    Deger, Nihat Sadik; Moutsopoulos, George; Rosseel, Jan

    2018-04-01

    In this paper we study the supermultiplet structure of N = (1, 1) General Massive Supergravity at non-critical and critical points of its parameter space. To do this, we first linearize the theory around its maximally supersymmetric AdS3 vacuum and obtain the full linearized Lagrangian including fermionic terms. At generic values, linearized modes can be organized as two massless and 2 massive multiplets where supersymmetry relates them in the standard way. At critical points logarithmic modes appear and we find that in three of such points some of the supersymmetry transformations are non-invertible in logarithmic multiplets. However, in the fourth critical point, there is a massive logarithmic multiplet with invertible supersymmetry transformations.

  6. HOW TO FIND YOUNG MASSIVE CLUSTER PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Bressert, E.; Longmore, S.; Testi, L. [European Southern Observatory, Karl Schwarzschild Str. 2, D-85748 Garching bei Muenchen (Germany); Ginsburg, A.; Bally, J.; Battersby, C. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States)

    2012-10-20

    We propose that bound, young massive stellar clusters form from dense clouds that have escape speeds greater than the sound speed in photo-ionized gas. In these clumps, radiative feedback in the form of gas ionization is bottled up, enabling star formation to proceed to sufficiently high efficiency so that the resulting star cluster remains bound even after gas removal. We estimate the observable properties of the massive proto-clusters (MPCs) for existing Galactic plane surveys and suggest how they may be sought in recent and upcoming extragalactic observations. These surveys will potentially provide a significant sample of MPC candidates that will allow us to better understand extreme star-formation and massive cluster formation in the Local Universe.

  7. Massive type IIA supergravity and E10

    International Nuclear Information System (INIS)

    Henneaux, M.; Kleinschmidt, A.; Persson, D.; Jamsin, E.

    2009-01-01

    In this talk we investigate the symmetry under E 10 of Romans' massive type IIA supergravity. We show that the dynamics of a spinning particle in a non-linear sigma model on the coset space E 10 /K(E 10 ) reproduces the bosonic and fermionic dynamics of massive IIA supergravity, in the standard truncation. In particular, we identify Romans' mass with a generator of E 10 that is beyond the realm of the generators of E 10 considered in the eleven-dimensional analysis, but using the same, underformed sigma model. As a consequence, this work provides a dynamical unification of the massless and massive versions of type IIA supergravity inside E 10 . (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  8. Hyper-massive cloud, shock and stellar formation efficiency

    International Nuclear Information System (INIS)

    Louvet, Fabien

    2014-01-01

    O and B types stars are of paramount importance in the energy budget of galaxies and play a crucial role enriching the interstellar medium. However, their formation, unlike that of solar-type stars, is still subject to debate, if not an enigma. The earliest stages of massive star formation and the formation of their parent cloud are still crucial astrophysical questions that drew a lot of attention in the community, both from the theoretical and observational perspective, during the last decade. It has been proposed that massive stars are born in massive dense cores that form through very dynamic processes, such as converging flows of gas. During my PhD, I conducted a thorough study of the formation of dense cores and massive stars in the W43-MM1 supermassive structure, located at 6 kpc from the sun. At first, I showed a direct correlation between the star formation efficiency and the volume gas density of molecular clouds, in contrast with scenarios suggested by previous studies. Indeed, the spatial distribution and mass function of the massive dense cores currently forming in W43-MM1 suggests that this supermassive filament is undergoing a star formation burst, increasing as one approaches its center. I compared these observational results with the most recent numerical and analytical models of star formation. This comparison not only provides new constraints on the formation of supermassive filaments, but also suggests that understanding star formation in high density, extreme ridges requires a detailed portrait of the structure of these exceptional objects. Second, having shown that the formation of massive stars depends strongly on the properties of the ridges where they form, I studied the formation processes of these filaments, thanks of the characterization of their global dynamics. Specifically, I used a tracer of shocks (SiO molecule) to disentangle the feedback of local star formation processes (bipolar jets and outflows) from shocks tracing the pristine

  9. A Massive Star Census of the Starburst Cluster R136

    Science.gov (United States)

    Crowther, Paul

    2012-10-01

    We propose to carry out a comprehensive census of the most massive stars in the central parsec {4"} of the starburst cluster, R136, which powers the Tarantula Nebula in the LMC. R136 is both sufficiently massive that the upper mass function is richly populated and young enough that its most massive stars have yet to explode as supernovae. The identification of very massive stars in R136, up to 300 solar masses, raises general questions of star formation, binarity and feedback in young massive clusters. The proposed STIS spectral survey of 36 stars more massive than 50 solar masses within R136 is ground-breaking, of legacy value, and is specifically tailored to a} yield physical properties; b} detect the majority of binaries by splitting observations between Cycles 19 and 20; c} measure rotational velocities, relevant for predictions of rotational mixing; d} quantify mass-loss properties for very massive stars; e} determine surface compositions; f} measure radial velocities, relevant for runaway stars and cluster dynamics; g} quantify radiative and mechanical feedback. This census will enable the mass function of very massive stars to be measured for the first time, as a result of incomplete and inadequate spectroscopy to date. It will also perfectly complement our Tarantula Survey, a ground-based VLT Large Programme, by including the most massive stars that are inaccessible to ground-based visual spectroscopy due to severe crowding. These surveys, together with existing integrated UV and optical studies will enable 30 Doradus to serve as a bona-fide template for unresolved extragalactic starburst regions.

  10. Reappraising the concept of massive transfusion in trauma

    DEFF Research Database (Denmark)

    Stanworth, Simon J; Morris, Timothy P; Gaarder, Christine

    2010-01-01

    ABSTRACT : INTRODUCTION : The massive-transfusion concept was introduced to recognize the dilutional complications resulting from large volumes of packed red blood cells (PRBCs). Definitions of massive transfusion vary and lack supporting clinical evidence. Damage-control resuscitation regimens o...

  11. Massive stars and X-ray pulsars

    International Nuclear Information System (INIS)

    Henrichs, H.

    1982-01-01

    This thesis is a collection of 7 separate articles entitled: long term changes in ultraviolet lines in γ CAS, UV observations of γ CAS: intermittent mass-loss enhancement, episodic mass loss in γ CAS and in other early-type stars, spin-up and spin-down of accreting neutron stars, an excentric close binary model for the X Persei system, has a 97 minute periodicity in 4U 1700-37/HD 153919 really been discovered, and, mass loss and stellar wind in massive X-ray binaries. (Articles 1, 2, 5, 6 and 7 have been previously published). The first three articles are concerned with the irregular mass loss in massive stars. The fourth critically reviews thoughts since 1972 on the origin of the changes in periodicity shown by X-ray pulsars. The last articles indicate the relation between massive stars and X-ray pulsars. (C.F.)

  12. EVIDENCE THAT GAMMA-RAY BURST 130702A EXPLODED IN A DWARF SATELLITE OF A MASSIVE GALAXY

    International Nuclear Information System (INIS)

    Kelly, Patrick L.; Filippenko, Alexei V.; Fox, Ori D.; Zheng Weikang; Clubb, Kelsey I.

    2013-01-01

    GRB 130702A is a nearby long-duration gamma-ray burst (LGRB) discovered by the Fermi satellite whose associated afterglow was detected by the Palomar Transient Factory. Subsequent photometric and spectroscopic monitoring has identified a coincident broad-lined Type Ic supernova (SN), and nebular emission detected near the explosion site is consistent with a redshift of z = 0.145. The SN-GRB exploded at an offset of ∼7.''6 from the center of an inclined r = 18.1 mag red disk-dominated galaxy, and ∼0.''6 from the center of a much fainter r = 23 mag object. We obtained Keck-II DEIMOS spectra of the two objects and find a 2σ upper limit on their line-of-sight velocity offset of ∼ –1 . If we calculate the inclination angle of the massive red galaxy from its axis ratio and assume that its light is dominated by a very thin disk, the explosion would have a ∼60 kpc central offset, or ∼9 times the galaxy's half-light radius. A significant bulge or a thicker disk would imply a higher inclination angle and greater central offset. The substantial offset suggests that the faint source is a separate dwarf galaxy. The star-formation rate of the dwarf galaxy is ∼0.05 M ☉ yr –1 , and we place an upper limit on its oxygen abundance of 12 + log(O/H) < 8.16 dex. The identification of an LGRB in a dwarf satellite of a massive, metal-rich primary galaxy suggests that recent detections of LGRBs spatially coincident with metal-rich galaxies may be, in some cases, superpositions

  13. An effective theory of massive gauge bosons

    International Nuclear Information System (INIS)

    Doria, R.M.; Helayel Neto, J.A.

    1986-01-01

    The coupling of a group-valued massive scalar field to a gauge field through a symmetric rank-2 field strenght is studied. By considering energies very small compared with the mass of the scalar and invoking the decoupling theorem, one is left with a low-energy effective theory describing a dynamics of massive vector fields. (Author) [pt

  14. Emergency cooling system for a liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Murata, Ryoichi; Fujiwara, Toshikatsu.

    1980-01-01

    Purpose: To suitably cool liquid metal as coolant in emergency in a liquid metal cooled reactor by providing a detector for the pressure loss of the liquid metal passing through a cooling device in a loop in which the liquid metal is flowed and communicating the detector with a coolant flow regulator. Constitution: A nuclear reactor is stopped in nuclear reaction by control element or the like in emergency. If decay heat is continuously generated for a while and secondary coolant is insufficiently cooled with water or steam flowed through a steam and water loop, a cooler is started. That is, low temperature air is supplied by a blower through an inlet damper to the cooler to cool the secondary coolant flowed into the cooler through a bypass pipe so as to finally safely stop an entire plant. Since the liquid metal is altered in its physical properties by the temperature at this time, it is detected to regulate the opening of the valve of the damper according to the detected value. (Sekiya, K.)

  15. AN ESTIMATE OF THE NEARBY INTERSTELLAR MAGNETIC FIELD USING NEUTRAL ATOMS

    International Nuclear Information System (INIS)

    Heerikhuisen, J.; Pogorelov, N. V.

    2011-01-01

    The strength and orientation of the magnetic field in the nearby interstellar medium have remained elusive, despite continual improvements in observations and models. Data from NASA's Voyager mission and the Solar Wind ANisotropies (SWAN) experiment on board Solar and Heliospheric Observatory (SOHO) have placed observational constraints on the magnetic field, and the more recent Interstellar Boundary Explorer (IBEX) data appear to also bear an imprint of the interstellar magnetic field (ISMF). In this paper, we combine computational models of the heliosphere with data from Voyager, SOHO/SWAN, and IBEX to estimate both the strength and direction of the nearby ISMF. On the basis of our simulations, we find that a field strength of 2-3 μG pointing from ecliptic coordinates (220-224, 39-44), combined with an interstellar hydrogen density of ∼0.15 cm -3 , produces results most consistent with observations.

  16. Nearby CFTs in the operator formalism: the role of a connection

    International Nuclear Information System (INIS)

    Ranganathan, K.

    1993-01-01

    There are two methods to study families of conformal theories in the operator formalism. In the first method we begin with a theory and a family of deformed theories defined in the state space of the original theory. In the other there is a distinct state space for each theory in the family, with the collection of spaces forming a vector bundle. This paper establishes the equivalence of a deformed theory with that in a nearby state space in the bundle via a connection that defines maps between nearby state spaces. We find that an appropriate connection for establishing equivalence is one that arose in a recent paper by Kugo and Zwiebach. We discuss the affine geometry induced on the space of backgrounds by this connection. This geometry is the same as the one obtained from the Zamolodchikov metric. (orig.)

  17. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  18. Massive gravity with mass term in three dimensions

    International Nuclear Information System (INIS)

    Nakasone, Masashi; Oda, Ichiro

    2009-01-01

    We analyze the effect of the Pauli-Fierz mass term on a recently established, new massive gravity theory in three space-time dimensions. We show that the Pauli-Fierz mass term makes the new massive gravity theory nonunitary. Moreover, although we add the gravitational Chern-Simons term to this model, the situation remains unchanged and the theory stays nonunitary despite that the structure of the graviton propagator is greatly changed. Thus, the Pauli-Fierz mass term is not allowed to coexist with mass-generating higher-derivative terms in the new massive gravity.

  19. Meltdown reactor core cooling facility

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi.

    1992-01-01

    The meltdown reactor core cooling facility comprises a meltdown reactor core cooling tank, a cooling water storage tank situates at a position higher than the meltdown reactor core cooling tank, an upper pipeline connecting the upper portions of the both of the tanks and a lower pipeline connecting the lower portions of them. Upon occurrence of reactor core meltdown, a high temperature meltdown reactor core is dropped on the cooling tank to partially melt the tank and form a hole, from which cooling water is flown out. Since the water source of the cooling water is the cooling water storage tank, a great amount of cooling water is further dropped and supplied and the reactor core is submerged and cooled by natural convection for a long period of time. Further, when the lump of the meltdown reactor core is small and the perforated hole of the meltdown reactor cooling tank is small, cooling water is boiled by the high temperature lump intruding into the meltdown reactor core cooling tank and blown out from the upper pipeline to the cooling water storage tank to supply cooling water from the lower pipeline to the meltdown reactor core cooling tank. Since it is constituted only with simple static facilities, the facility can be simplified to attain improvement of reliability. (N.H.)

  20. Reappraising the concept of massive transfusion in trauma

    NARCIS (Netherlands)

    Stanworth, Simon J.; Morris, Timothy P.; Gaarder, Christine; Goslings, J. Carel; Maegele, Marc; Cohen, Mitchell J.; König, Thomas C.; Davenport, Ross A.; Pittet, Jean-Francois; Johansson, Pär I.; Allard, Shubha; Johnson, Tony; Brohi, Karim

    2010-01-01

    The massive-transfusion concept was introduced to recognize the dilutional complications resulting from large volumes of packed red blood cells (PRBCs). Definitions of massive transfusion vary and lack supporting clinical evidence. Damage-control resuscitation regimens of modern trauma care are

  1. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  2. The study on the evaporation cooling efficiency and effectiveness of cooling tower of film type

    International Nuclear Information System (INIS)

    Li Yingjian; You Xinkui; Qiu Qi; Li Jiezhi

    2011-01-01

    Based on heat and mass transport mechanism of film type cooling, which was combined with an on-site test on counter flow film type cooling tower, a mathematical model on the evaporation and cooling efficiency and effectiveness has been developed. Under typical climatic conditions, air conditioning load and the operating condition, the mass and heat balances have been calculated for the air and the cooling water including the volume of evaporative cooling water. Changing rule has been measured and calculated between coefficient of performance (COP) and chiller load. The influences of air and cooling water parameters on the evaporative cooling efficiency were analyzed in cooling tower restrained by latent heat evaporative cooling, and detailed derivation and computation revealed that both the evaporative cooling efficiency and effectiveness of cooling tower are the same characteristics parameters of the thermal performance of a cooling tower under identical assumptions.

  3. Massive-Star Magnetospheres: Now in 3-D!

    Science.gov (United States)

    Townsend, Richard

    Magnetic fields are unexpected in massive stars, due to the absence of a dynamo convection zone beneath their surface layers. Nevertheless, kilogauss-strength, ordered fields were detected in a small subset of these stars over three decades ago, and the intervening years have witnessed the steady expansion of this subset. A distinctive feature of magnetic massive stars is that they harbor magnetospheres --- circumstellar environments where the magnetic field interacts strongly with the star's radiation-driven wind, confining it and channelling it into energetic shocks. A wide range of observational signatures are associated with these magnetospheres, in diagnostics ranging from X-rays all the way through to radio emission. Moreover, these magnetospheres can play an important role in massive-star evolution, by amplifying angular momentum loss in the wind. Recent progress in understanding massive-star magnetospheres has largely been driven by magnetohydrodynamical (MHD) simulations. However, these have been restricted to two- dimensional axisymmetric configurations, with three-dimensional configurations possible only in certain special cases. These restrictions are limiting further progress; we therefore propose to develop completely general three-dimensional models for the magnetospheres of massive stars, on the one hand to understand their observational properties and exploit them as plasma-physics laboratories, and on the other to gain a comprehensive understanding of how they influence the evolution of their host star. For weak- and intermediate-field stars, the models will be based on 3-D MHD simulations using a modified version of the ZEUS-MP code. For strong-field stars, we will extend our existing Rigid Field Hydrodynamics (RFHD) code to handle completely arbitrary field topologies. To explore a putative 'photoionization-moderated mass loss' mechanism for massive-star magnetospheres, we will also further develop a photoionization code we have recently

  4. Key Technologies in Massive MIMO

    Directory of Open Access Journals (Sweden)

    Hu Qiang

    2018-01-01

    Full Text Available The explosive growth of wireless data traffic in the future fifth generation mobile communication system (5G has led researchers to develop new disruptive technologies. As an extension of traditional MIMO technology, massive MIMO can greatly improve the throughput rate and energy efficiency, and can effectively improve the link reliability and data transmission rate, which is an important research direction of 5G wireless communication. Massive MIMO technology is nearly three years to get a new technology of rapid development and it through a lot of increasing the number of antenna communication, using very duplex communication mode, make the system spectrum efficiency to an unprecedented height.

  5. The phase-space structure of nearby dark matter as constrained by the SDSS

    International Nuclear Information System (INIS)

    Leclercq, Florent; Percival, Will; Jasche, Jens; Lavaux, Guilhem; Wandelt, Benjamin

    2017-01-01

    Previous studies using numerical simulations have demonstrated that the shape of the cosmic web can be described by studying the Lagrangian displacement field. We extend these analyses, showing that it is now possible to perform a Lagrangian description of cosmic structure in the nearby Universe based on large-scale structure observations. Building upon recent Bayesian large-scale inference of initial conditions, we present a cosmographic analysis of the dark matter distribution and its evolution, referred to as the dark matter phase-space sheet, in the nearby universe as probed by the Sloan Digital Sky Survey main galaxy sample. We consider its stretchings and foldings using a tetrahedral tessellation of the Lagrangian lattice. The method provides extremely accurate estimates of nearby density and velocity fields, even in regions of low galaxy density. It also measures the number of matter streams, and the deformation and parity reversals of fluid elements, which were previously thought inaccessible using observations. We illustrate the approach by showing the phase-space structure of known objects of the nearby Universe such as the Sloan Great Wall, the Coma cluster and the Boötes void. We dissect cosmic structures into four distinct components (voids, sheets, filaments, and clusters), using the Lagrangian classifiers DIVA, ORIGAMI, and a new scheme which we introduce and call LICH. Because these classifiers use information other than the sheer local density, identified structures explicitly carry physical information about their formation history. Accessing the phase-space structure of dark matter in galaxy surveys opens the way for new confrontations of observational data and theoretical models. We have made our data products publicly available.

  6. The phase-space structure of nearby dark matter as constrained by the SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Leclercq, Florent; Percival, Will [Institute of Cosmology and Gravitation (ICG), University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Jasche, Jens [Excellence Cluster Universe, Technische Universität München, Boltzmannstrasse 2, D-85748 Garching (Germany); Lavaux, Guilhem; Wandelt, Benjamin, E-mail: florent.leclercq@polytechnique.org, E-mail: lavaux@iap.fr, E-mail: jasche@iap.fr, E-mail: wandelt@iap.fr, E-mail: will.percival@port.ac.uk [Institut d' Astrophysique de Paris (IAP), UMR 7095, CNRS – UPMC Université Paris 6, Sorbonne Universités, 98bis boulevard Arago, F-75014 Paris (France)

    2017-06-01

    Previous studies using numerical simulations have demonstrated that the shape of the cosmic web can be described by studying the Lagrangian displacement field. We extend these analyses, showing that it is now possible to perform a Lagrangian description of cosmic structure in the nearby Universe based on large-scale structure observations. Building upon recent Bayesian large-scale inference of initial conditions, we present a cosmographic analysis of the dark matter distribution and its evolution, referred to as the dark matter phase-space sheet, in the nearby universe as probed by the Sloan Digital Sky Survey main galaxy sample. We consider its stretchings and foldings using a tetrahedral tessellation of the Lagrangian lattice. The method provides extremely accurate estimates of nearby density and velocity fields, even in regions of low galaxy density. It also measures the number of matter streams, and the deformation and parity reversals of fluid elements, which were previously thought inaccessible using observations. We illustrate the approach by showing the phase-space structure of known objects of the nearby Universe such as the Sloan Great Wall, the Coma cluster and the Boötes void. We dissect cosmic structures into four distinct components (voids, sheets, filaments, and clusters), using the Lagrangian classifiers DIVA, ORIGAMI, and a new scheme which we introduce and call LICH. Because these classifiers use information other than the sheer local density, identified structures explicitly carry physical information about their formation history. Accessing the phase-space structure of dark matter in galaxy surveys opens the way for new confrontations of observational data and theoretical models. We have made our data products publicly available.

  7. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  8. Nearby Galaxies: Templates for Galaxies Across Cosmic Time

    OpenAIRE

    Lockman, F. J.; Ott, J.

    2009-01-01

    Studies of nearby galaxies including the Milky Way have provided fundamental information on the evolution of structure in the Universe, the existence and nature of dark matter, the origin and evolution of galaxies, and the global features of star formation. Yet despite decades of work, many of the most basic aspects of galaxies and their environments remain a mystery. In this paper we describe some outstanding problems in this area and the ways in which large radio facilities will contribute ...

  9. Complicated Massive Choledochal Cyst: A Case Report | Okoromah ...

    African Journals Online (AJOL)

    Choledochal cysts are rare congenital anomalies resulting from congenital dilatations of the common bile duct (CBD) and usually they present during infancy with cholestatic jaundice. This report is on a massive-sized choledochal cyst associated with massive abdominal distention, respiratory embarrassment, postprandial ...

  10. Tarp-Assisted Cooling as a Method of Whole-Body Cooling in Hyperthermic Individuals.

    Science.gov (United States)

    Hosokawa, Yuri; Adams, William M; Belval, Luke N; Vandermark, Lesley W; Casa, Douglas J

    2017-03-01

    We investigated the efficacy of tarp-assisted cooling as a body cooling modality. Participants exercised on a motorized treadmill in hot conditions (ambient temperature 39.5°C [103.1°F], SD 3.1°C [5.58°F]; relative humidity 38.1% [SD 6.7%]) until they reached exercise-induced hyperthermia. After exercise, participants were cooled with either partial immersion using a tarp-assisted cooling method (water temperature 9.20°C [48.56°F], SD 2.81°C [5.06°F]) or passive cooling in a climatic chamber. There were no differences in exercise duration (mean difference=0.10 minutes; 95% CI -5.98 to 6.17 minutes or end exercise rectal temperature (mean difference=0.10°C [0.18°F]; 95% CI -0.05°C to 0.25°C [-0.09°F to 0.45°F] between tarp-assisted cooling (48.47 minutes [SD 8.27 minutes]; rectal temperature 39.73°C [103.51°F], SD 0.27°C [0.49°F]) and passive cooling (48.37 minutes [SD 7.10 minutes]; 39.63°C [103.33°F], SD 0.40°C [0.72°F]). Cooling time to rectal temperature 38.25°C (100.85°F) was significantly faster in tarp-assisted cooling (10.30 minutes [SD 1.33 minutes]) than passive cooling (42.78 [SD 5.87 minutes]). Cooling rates for tarp-assisted cooling and passive cooling were 0.17°C/min (0.31°F/min), SD 0.07°C/min (0.13°F/min) and 0.04°C/min (0.07°F/min), SD 0.01°C/min (0.02°F/min), respectively (mean difference=0.13°C [0.23°F]; 95% CI 0.09°C to 0.17°C [0.16°F to 0.31°F]. No sex differences were observed in tarp-assisted cooling rates (men 0.17°C/min [0.31°F/min], SD 0.07°C/min [0.13°F/min]; women 0.16°C/min [0.29°F/min], SD 0.07°C/min [0.13°F/min]; mean difference=0.02°C/min [0.04°F/min]; 95% CI -0.06°C/min to 0.10°C/min [-0.11°F/min to 0.18°F/min]). Women (0.04°C/min [0.07°F/min], SD 0.01°C/min [0.02°F/min]) had greater cooling rates than men (0.03°C/min [0.05°F/min], SD 0.01°C/min [0.02°F/min]) in passive cooling, with negligible clinical effect (mean difference=0.01°C/min [0.02°F/min]; 95% CI 0.001

  11. Observations of Bright Massive Stars Using Small Size Telescopes

    Science.gov (United States)

    Beradze, Sopia; Kochiashvili, Nino

    2017-11-01

    The size of a telescope determines goals and objects of observations. During the latest decades it becomes more and more difficult to get photometric data of bright stars because most of telescopes of small sizes do not operate already. But there are rather interesting questions connected to the properties and evolution ties between different types of massive stars. Multi-wavelength photometric data are needed for solution of some of them. We are presenting our observational plans of bright Massive X-ray binaries, WR and LBV stars using a small size telescope. All these stars, which are presented in the poster are observational targets of Sopia Beradze's future PhD thesis. We already have got very interesting results on the reddening and possible future eruption of the massive hypergiant star P Cygni. Therefore, we decided to choose some additional interesting massive stars of different type for future observations. All Massive stars play an important role in the chemical evolution of galaxies because of they have very high mass loss - up to 10-4M⊙/a year. Our targets are on different evolutionary stages and three of them are the members of massive binaries. We plan to do UBVRI photometric observations of these stars using the 48 cm Cassegrain telescope of the Abastumani Astrophisical Observatory.

  12. Extensive tumor reconstruction with massive allograft

    International Nuclear Information System (INIS)

    Zulmi Wan

    1999-01-01

    Massive deep-frozen bone allografts were implanted in four patients after wide tumor resection. Two cases were solitary proximal femur metastases, secondary to Thyroid cancer and breast cancer respectively; while the other two cases were primary in nature i.e. Chondrosarcoma proximal humerus and Osteosarcoma proximal femur. All were treated with a cemented alloprosthesis except in the upper limb where shoulder fusion was performed. Augmentation of these techniques were done with a segment 1 free vascularised fibular composite graft to the proximal femur of breast secondaries and proximal humerus Chondrosarcoma. Coverage of the wound of the latter was also contributed by lattisimus dorsi flap. The present investigations demonstrated the massive bone allografts were intimately anchored by host bone and there had been no evidence of aseptic loosening at the graft-cement interface. This study showed that with good effective tumor control, reconstructive surgery with massive allografts represented a good alternative to prosthetic implants in tumors of the limbs. No infection was seen in all four cases

  13. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  14. Resolving the Milky Way and Nearby Galaxies with WFIRST

    Science.gov (United States)

    Kalirai, Jasonjot

    High-resolution studies of nearby stellar populations have served as a foundation for our quest to understand the nature of galaxies. Today, studies of resolved stellar populations constrain fundamental relations -- such as the initial mass function of stars, the time scales of stellar evolution, the timing of mass loss and amount of energetic feedback, the color-magnitude relation and its dependency on age and metallicity, the stellar-dark matter connection in galaxy halos, and the build up of stellar populations over cosmic time -- that represent key ingredients in our prescription to interpret light from the Universe and to measure the physical state of galaxies. More than in any other area of astrophysics, WFIRST will yield a transformative impact in measuring and characterizing resolved stellar populations in the Milky Way and nearby galaxies. The proximity and level of detail that such populations need to be studied at directly map to all three pillars of WFIRST capabilities - sensitivity from a 2.4 meter space based telescope, resolution from 0.1" pixels, and large 0.3 degree field of view from multiple detectors. Our WFIRST GO Science Investigation Team (F) will develop three WFIRST (notional) GO programs related to resolved stellar populations to fully stress WFIRST's Wide Field Instrument. The programs will include a Survey of the Milky Way, a Survey of Nearby Galaxy Halos, and a Survey of Star-Forming Galaxies. Specific science goals for each program will be validated through a wide range of observational data sets, simulations, and new algorithms. As an output of this study, our team will deliver optimized strategies and tools to maximize stellar population science with WFIRST. This will include: new grids of IR-optimized stellar evolution and synthetic spectroscopic models; pipelines and algorithms for optimal data reduction at the WFIRST sensitivity and pixel scale; wide field simulations of MW environments and galaxy halos; cosmological simulations

  15. Massive Splenomegaly in Children: Laparoscopic Versus Open Splenectomy

    OpenAIRE

    Hassan, Mohamed E.; Al Ali, Khalid

    2014-01-01

    Background and Objectives: Laparoscopic splenectomy for massive splenomegaly is still a controversial procedure as compared with open splenectomy. We aimed to compare the feasibility of laparoscopic splenectomy versus open splenectomy for massive splenomegaly from different surgical aspects in children. Methods: The data of children aged

  16. HALOGAS: H I OBSERVATIONS AND MODELING OF THE NEARBY EDGE-ON SPIRAL GALAXY NGC 4565

    Energy Technology Data Exchange (ETDEWEB)

    Zschaechner, Laura K.; Rand, Richard J. [Department of Physics and Astronomy, University of New Mexico, 1919 Lomas Boulevard NE, Albuquerque, NM 87131-1156 (United States); Heald, George H.; Jozsa, Gyula [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, NL-7990 AA Dwingeloo (Netherlands); Gentile, Gianfranco, E-mail: zschaech@unm.edu, E-mail: rjr@phys.unm.edu, E-mail: heald@astron.nl, E-mail: jozsa@astron.nl, E-mail: gianfranco.gentile@ugent.be [Sterrenkundig Observatorium, Ghent University, Krijgslaan 281 S9, B-9000 Ghent (Belgium)

    2012-11-20

    We present 21 cm observations and models of the neutral hydrogen in NGC 4565, a nearby, edge-on spiral galaxy, as part of the Westerbork Hydrogen Accretion in LOcal GAlaxieS survey. These models provide insight concerning both the morphology and kinematics of H I above, as well as within, the disk. NGC 4565 exhibits a distinctly warped and asymmetric disk with a flaring layer. Our modeling provides no evidence for a massive, extended H I halo. We see evidence for a bar and associated radial motions. Additionally, there are indications of radial motions within the disk, possibly associated with a ring of higher density. We see a substantial decrease in rotational velocity with height above the plane of the disk (a lag) of -40{sup +5} {sub -20} km s{sup -1} kpc{sup -1} and -30{sup +5} {sub -30} km s{sup -1} kpc{sup -1} in the approaching and receding halves, respectively. This lag is only seen within the inner {approx}4.'75 (14.9 kpc) on the approaching half and {approx}4.'25 (13.4 kpc) on the receding half, making this a radially shallowing lag, which is now seen in the H I layers of several galaxies. When comparing results for NGC 4565 and those for other galaxies, there are tentative indications of high star formation rate per unit area being associated with the presence of a halo. Finally, H I is found in two companion galaxies, one of which is clearly interacting with NGC 4565.

  17. Thick massive gas hydrate deposits were revealed by LWD in Off-Joetsu area, eastern margin of Japan Sea.

    Science.gov (United States)

    Tanahashi, M.; Morita, S.; Matsumoto, R.

    2016-12-01

    GR14 and HR15 survey cruises, which were dedicated to the LWD (Logging While Drilling), were carried out in summers of 2014 and 2015, respectively, by Meiji University and Geological Survey of Japan, AIST to explore the "gas chimney" structures in eastern margin of Japan Sea. Shallow (33 to 172m-bsf, average 136m-bsf) 33 LWD drilling were performed in Oki Trough, Off-Joetsu, and Mogami Trough areas along eastern margin of Japan Sea during two cruises. Schlumberger LWD tools, GeoVISION (resistivity), TeleScope, ProVISION (NMR) and SonicVISION were used during GR14. NeoScope (neutron) was added and SonicScope was replaced for SonicVISION during HR14. The data quality was generally good. "Gas chimney" structures with acoustic blanking columns on the high frequency seismic sections with mound and pockmark morphologic features on the sea bottom, are well developed within survey areas. Every LWD records taken from gas chimney structures during the cruises show high resistivity and acoustic velocity anomalies which suggest the development of gas hydrate. Characteristic development of massive gas hydrate was interpreted at the Umitaka CW mound structure, Off-Joetsu. The mound lies at 890-910m in water depth and has very rough bottom surface, regional high resistivity, regional high heat flow, several natural seep sites, 200m x 300m area, and 10-20m height. 8 LWD holes, J18L to J21L and J23L to J26L, were drilled on and around the mound. There are highly anomalous intervals which suggest the development of massive gas hydrate at J24L, with high resistivity, high Vp and Vs, high neutron porosity, low natural gamma ray intensity, low neutron gamma density, low NMR porosity, low NMR permeability, low formation sigma, from 10 to 110m-bsf with intercalating some thin less hydrate layers. It is interpreted that there is several tens of meter thick massive gas hydrate in the gas chimney mound. It is partly confirmed by the later nearby coring result which showed the repetition of

  18. Emergency cooling system for a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Cook, R.K.; Burylo, P.S.

    1975-01-01

    The site of the gas-cooled reactor with direct-circuit gas turbine is preferably the sea coast. An emergency cooling system with safety valve and emergency feed-water addition is designed which affects at least a part of the reactor core coolant after leaving the core. The emergency cooling system includes a water emergency cooling circuit with heat exchanger for the core coolant. The safety valve releases water or steam from the emergency coolant circuit when a certain temperature is exceeded; this is, however, replaced by the emergency feed-water. If the gas turbine exhibits a high and low pressure turbine stage, which are flowed through by coolant one behind another, a part of the coolant can be removed in front of each part turbine by two valves and be added to the haet exchanger. (RW/LH) [de

  19. A Massively Parallel Face Recognition System

    Directory of Open Access Journals (Sweden)

    Lahdenoja Olli

    2007-01-01

    Full Text Available We present methods for processing the LBPs (local binary patterns with a massively parallel hardware, especially with CNN-UM (cellular nonlinear network-universal machine. In particular, we present a framework for implementing a massively parallel face recognition system, including a dedicated highly accurate algorithm suitable for various types of platforms (e.g., CNN-UM and digital FPGA. We study in detail a dedicated mixed-mode implementation of the algorithm and estimate its implementation cost in the view of its performance and accuracy restrictions.

  20. A Massively Parallel Face Recognition System

    Directory of Open Access Journals (Sweden)

    Ari Paasio

    2006-12-01

    Full Text Available We present methods for processing the LBPs (local binary patterns with a massively parallel hardware, especially with CNN-UM (cellular nonlinear network-universal machine. In particular, we present a framework for implementing a massively parallel face recognition system, including a dedicated highly accurate algorithm suitable for various types of platforms (e.g., CNN-UM and digital FPGA. We study in detail a dedicated mixed-mode implementation of the algorithm and estimate its implementation cost in the view of its performance and accuracy restrictions.

  1. The Mitchell Spectrograph: Studying Nearby Galaxies with the VIRUS Prototype

    Directory of Open Access Journals (Sweden)

    Guillermo A. Blanc

    2013-01-01

    Full Text Available The Mitchell Spectrograph (a.k.a. VIRUS-P on the 2.7 m Harlan J. Smith telescope at McDonald Observatory is currently the largest field of view (FOV integral field unit (IFU spectrograph in the world (1.7′×1.7′. It was designed as a prototype for the highly replicable VIRUS spectrograph which consists of a mosaic of IFUs spread over a 16′ diameter FOV feeding 150 spectrographs similar to the Mitchell. VIRUS will be deployed on the 9.2 meter Hobby-Eberly Telescope (HET and will be used to conduct the HET Dark Energy Experiment (HETDEX. Since seeing first light in 2007 the Mitchell Spectrograph has been widely used, among other things, to study nearby galaxies in the local universe where their internal structure and the spatial distribution of different physical parameters can be studied in great detail. These observations have provided important insight into many aspects of the physics behind the formation and evolution of galaxies and have boosted the scientific impact of the 2.7 meter telescope enormously. Here I review the contributions of the Mitchell Spectrograph to the study of nearby galaxies, from the investigation the spatial distribution of dark matter and the properties of supermassive black holes, to the studies of the process of star formation and the chemical composition of stars and gas in the ISM, which provide important information regarding the formation and evolution of these systems. I highlight the fact that wide field integral field spectrographs on small and medium size telescopes can be powerful cost effective tools to study the astrophysics of galaxies. Finally I briefly discuss the potential of HETDEX for conducting studies on nearby galaxies. The survey parameters make it complimentary and competitive to ongoing and future surveys like SAMI and MANGA.

  2. Non-equilibrium effects of core-cooling and time-dependent internal heating on mantle flush events

    Directory of Open Access Journals (Sweden)

    D. A. Yuen

    1995-01-01

    Full Text Available We have examined the non-equilibrium effects of core-cooling and time-dependent internal-heating on the thermal evolution of the Earth's mantle and on mantle flush events caused by the two major phase transitions. Both two- and three-dimensional models have been employed. The mantle viscosity responds to the secular cooling through changes in the averaged temperature field. A viscosity which decreases algebraically with the average temperature has been considered. The time-dependent internal-heating is prescribed to decrease exponentially with a single decay time. We have studied the thermal histories with initial Rayleigh numbers between 2 x 107 and 108 . Flush events, driven by the non-equilibrium forcings, are much more dramatic than those produced by the equilibrium boundary conditions and constant internal heating. Multiple flush events are found under non-equilibrium conditions in which there is very little internal heating or very fast decay rates of internal-heating. Otherwise, the flush events take place in a relatively continuous fashion. Prior to massive flush events small-scale percolative structures appear in the 3D temperature fields. Time-dependent signatures, such as the surface heat flux, also exhibits high frequency oscillatory patterns prior to massive flush events. These two observations suggest that the flush event may be a self-organized critical phenomenon. The Nusselt number as a function of the time-varying Ra does not follow the Nusselt vs. Rayleigh number power-law relationship based on equilibrium (constant temperature boundary conditions. Instead Nu(t may vary non-monotonically with time because of the mantle flush events. Convective processes in the mantle operate quite differently under non-equilibrium conditions from its behaviour under the usual equilibrium situations.

  3. Storage of HLW in engineered structures: air-cooled and water-cooled concepts

    International Nuclear Information System (INIS)

    Ahner, S.; Dekais, J.J.; Puttke, B.; Staner, P.

    1981-01-01

    A comparative study on an air-cooled and a water-cooled intermediate storage of vitrified, highly radioactive waste (HLW) in overground installations has been performed by Nukem and Belgonucleaire respectively. In the air-cooled storage concept the decay heat from the storage area will be removed using natural convection. In the water-cooled storage concept the decay heat is carried off by a primary and secondary forced-cooling system with redundant and diverse devices. The safety study carried out by Nukem used a fault tree method. It shows that the reliability of the designed water-cooled system is very high and comparable to the inherent, safe, air-cooled system. The impact for both concepts on the environment is determined by the release route, but even during accident conditions the release is far below permissible limits. The economic analysis carried out by Belgonucleaire shows that the construction costs for both systems do not differ very much, but the operation and maintenance costs for the water-cooled facility are higher than for the air cooled facility. The result of the safety and economic analysis and the discussions with the members of the working group have shown some possible significant modifications for both systems, which are included in this report. The whole study has been carried out using certain national criteria which, in certain Member States at least, would lead to a higher standard of safety than can be justified on any social, political or economic grounds

  4. Safety aspects of nuclear power plants nearby urban areas

    International Nuclear Information System (INIS)

    Kroeger, W.

    1986-01-01

    According to the Environmental Experts Council smaller reactors would correspond best to the heat demand of the Federal Republic of Germany. The study discusses and investigates into the present safety concepts and site selection criteria, trends towards power plant sites nearby urban areas, site-dependent parameters and their influence on the extent of damage, protective aims, compatibility of the protective aims proposed, and the protective measures required. (DG) [de

  5. CCD photometry of Cepheid sequences in four nearby galaxies

    International Nuclear Information System (INIS)

    Metcalfe, N.; Shanks, T.

    1991-01-01

    We present Isaac Newton Telescope B and V CCD observations of deep photometric sequences in the vicinity of Cepheid variable stars in three nearby galaxies - M31, M33 and NGC 2403. We have also checked the photometry of the brightest stars in M81 and its dwarf companion, Holmberg IX. We use our data, combined with other recent results, to re-analyse the Cepheid distances to these galaxies. (author)

  6. Primordial inhomogeneities from massive defects during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Firouzjahi, Hassan; Karami, Asieh; Rostami, Tahereh, E-mail: firouz@ipm.ir, E-mail: karami@ipm.ir, E-mail: t.rostami@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-10-01

    We consider the imprints of local massive defects, such as a black hole or a massive monopole, during inflation. The massive defect breaks the background homogeneity. We consider the limit that the physical Schwarzschild radius of the defect is much smaller than the inflationary Hubble radius so a perturbative analysis is allowed. The inhomogeneities induced in scalar and gravitational wave power spectrum are calculated. We obtain the amplitudes of dipole, quadrupole and octupole anisotropies in curvature perturbation power spectrum and identify the relative configuration of the defect to CMB sphere in which large observable dipole asymmetry can be generated. We observe a curious reflection symmetry in which the configuration where the defect is inside the CMB comoving sphere has the same inhomogeneous variance as its mirror configuration where the defect is outside the CMB sphere.

  7. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  8. Thermal performance evaluation of a massive brick wall under real weather conditions via the Conduction Transfer function method

    Directory of Open Access Journals (Sweden)

    Emilio Sassine

    2017-12-01

    Full Text Available The reliable estimation of buildings energy needs for cooling and heating is essential for any eventual thermal improvement of the envelope or the HVAC equipment. This paper presents an interesting method to evaluate the thermal performance of a massive wall by using the frequency-domain regression (FDR method to calculate CTF coefficients by means of the Fourier transform. The method is based on the EN ISO 13786 (2007 procedure by using the Taylor expansion for the elements of the heat matrix. Numerical results were validated through an experimental heating box with stochastic boundary conditions on one side of the wall representing real weather conditions and constant temperature profile on the other side representing the inside ambiance in real cases. Finally, a frequency analysis was performed in order to assess the validity and accuracy of the method used. The results show that development to the second order is sufficient to predict the thermal behavior of the studied massive wall in the range of frequencies encountered in the building applications (one hour time step. This method is useful for thermal transfer analysis in real weather conditions where the outside temperature is stochastic; it also allows the evaluation of the thermal performance of a wall through a frequency analysis.

  9. A Real-Time Temperature Data Transmission Approach for Intelligent Cooling Control of Mass Concrete

    Directory of Open Access Journals (Sweden)

    Peng Lin

    2014-01-01

    Full Text Available The primary aim of the study presented in this paper is to propose a real-time temperature data transmission approach for intelligent cooling control of mass concrete. A mathematical description of a digital temperature control model is introduced in detail. Based on pipe mounted and electrically linked temperature sensors, together with postdata handling hardware and software, a stable, real-time, highly effective temperature data transmission solution technique is developed and utilized within the intelligent mass concrete cooling control system. Once the user has issued the relevant command, the proposed programmable logic controllers (PLC code performs all necessary steps without further interaction. The code can control the hardware, obtain, read, and perform calculations, and display the data accurately. Hardening concrete is an aggregate of complex physicochemical processes including the liberation of heat. The proposed control system prevented unwanted structural change within the massive concrete blocks caused by these exothermic processes based on an application case study analysis. In conclusion, the proposed temperature data transmission approach has proved very useful for the temperature monitoring of a high arch dam and is able to control thermal stresses in mass concrete for similar projects involving mass concrete.

  10. Reducing water consumption of an industrial plant cooling unit using hybrid cooling tower

    International Nuclear Information System (INIS)

    Rezaei, Ebrahim; Shafiei, Sirous; Abdollahnezhad, Aydin

    2010-01-01

    Water consumption is an important problem in dry zones and poor water supply areas. For these areas use of a combination of wet and dry cooling towers (hybrid cooling) has been suggested in order to reduce water consumption. In this work, wet and dry sections of a hybrid cooling tower for the estimation of water loss was modeled. A computer code was also written to simulate such hybrid cooling tower. To test the result of this simulation, a pilot hybrid tower containing a wet tower and 12 compact air cooled heat exchangers was designed and constructed. Pilot data were compared with simulation data and a correction factor was added to the simulation. Ensuring that the simulation represents the actual data, it was applied to a real industrial case and the effect of using a dry tower on water loss reduction of this plant cooling unit was investigated. Finally feasibility study was carried out to choose the best operating conditions for the hybrid cooling tower configuration proposed for this cooling unit.

  11. Three Temperate Neptunes Orbiting Nearby Stars

    Science.gov (United States)

    Fulton, Benjamin J.; Howard, Andrew W.; Weiss, Lauren M.; Sinukoff, Evan; Petigura, Erik A.; Isaacson, Howard; Hirsch, Lea; Marcy, Geoffrey W.; Henry, Gregory W.; Grunblatt, Samuel K.; Huber, Daniel; von Braun, Kaspar; Boyajian, Tabetha S.; Kane, Stephen R.; Wittrock, Justin; Horch, Elliott P.; Ciardi, David R.; Howell, Steve B.; Wright, Jason T.; Ford, Eric B.

    2016-10-01

    We present the discovery of three modestly irradiated, roughly Neptune-mass planets orbiting three nearby Solar-type stars. HD 42618 b has a minimum mass of 15.4 ± 2.4 {M}\\oplus , a semimajor axis of 0.55 au, an equilibrium temperature of 337 K, and is the first planet discovered to orbit the solar analogue host star, HD 42618. We also discover new planets orbiting the known exoplanet host stars HD 164922 and HD 143761 (ρ CrB). The new planet orbiting HD 164922 has a minimum mass of 12.9 ± 1.6 {M}\\oplus and orbits interior to the previously known Jovian mass planet orbiting at 2.1 au. HD 164922 c has a semimajor axis of 0.34 au and an equilibrium temperature of 418 K. HD 143761 c orbits with a semimajor axis of 0.44 au, has a minimum mass of 25 ± 2 {M}\\oplus , and is the warmest of the three new planets with an equilibrium temperature of 445 K. It orbits exterior to the previously known warm Jupiter in the system. A transit search using space-based CoRoT data and ground-based photometry from the Automated Photometric Telescopes (APTs) at Fairborn Observatory failed to detect any transits, but the precise, high-cadence APT photometry helped to disentangle planetary-reflex motion from stellar activity. These planets were discovered as part of an ongoing radial velocity survey of bright, nearby, chromospherically inactive stars using the Automated Planet Finder (APF) telescope at Lick Observatory. The high-cadence APF data combined with nearly two decades of radial velocity data from Keck Observatory and gives unprecedented sensitivity to both short-period low-mass, and long-period intermediate-mass planets. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of Hawai‘I, the University of California, and NASA.

  12. Emerging Massive Star Clusters Revealed: High-Resolution Imaging of NGC 4449 from the Radio to the Ultraviolet

    Science.gov (United States)

    Reines, Amy E.; Johnson, Kelsey E.; Goss, W. M.

    2008-06-01

    We present a multi-wavelength study of embedded massive clusters in the nearby (3.9 Mpc) starburst galaxy NGC 4449 in an effort to uncover the earliest phases of massive cluster evolution. By combining high-resolution imaging from the radio to the ultraviolet, we reveal these clusters to be in the process of emerging from their gaseous and dusty birth cocoons. We use Very Large Array (VLA) observations at centimeter wavelengths to identify young clusters surrounded by ultra-dense H II regions, detectable via their production of thermal free-free radio continuum. Ultraviolet, optical and infrared observations are obtained from the Hubble and Spitzer Space Telescope archives for comparison. We detect 39 compact radio sources toward NGC 4449 at 3.6 cm using the highest resolution (1farcs3) and sensitivity (~12 μJy) VLA image of the galaxy to date. We reliably identify 13 thermal radio sources and derive their physical properties using both nebular emission from the H II regions and spectral energy distribution fitting to the stellar continuum. These radio-detected clusters have ages lsim5 Myr and stellar masses of order 104 M sun. The measured extinctions are quite low: 12 of the 13 thermal radio sources have A V lsim 1.5, while the most obscured source has A V ≈ 4.3. By combining results from the nebular and stellar emission, we find an I-band excess that is anti-correlated with cluster age and an apparent mass-age correlation. Additionally, we find evidence that local processes such as supernovae and stellar winds likely play an important role in triggering the current bursts of star formation within NGC 4449.

  13. A dearth of short-period massive binaries in the young massive star forming region M 17. Evidence for a large orbital separation at birth?

    Science.gov (United States)

    Sana, H.; Ramírez-Tannus, M. C.; de Koter, A.; Kaper, L.; Tramper, F.; Bik, A.

    2017-03-01

    Aims: The formation of massive stars remains poorly understood and little is known about their birth multiplicity properties. Here, we aim to quantitatively investigate the strikingly low radial-velocity dispersion measured for a sample of 11 massive pre- and near-main-sequence stars (σ1D= 5.6 ± 0.2 km s-1) in the very young massive star forming region M 17, in order to obtain first constraints on the multiplicity properties of young massive stellar objects. Methods: We compute the radial-velocity dispersion of synthetic populations of massive stars for various multiplicity properties and we compare the obtained σ1D distributions to the observed value. We specifically investigate two scenarios: a low binary fraction and a dearth of short-period binary systems. Results: Simulated populations with low binary fractions () or with truncated period distributions (Pcutoff > 9 months) are able to reproduce the low σ1D observed within their 68%-confidence intervals. Furthermore, parent populations with fbin > 0.42 or Pcutoff < 47 d can be rejected at the 5%-significance level. Both constraints are in stark contrast with the high binary fraction and plethora of short-period systems in few Myr-old, well characterized OB-type populations. To explain the difference in the context of the first scenario would require a variation of the outcome of the massive star formation process. In the context of the second scenario, compact binaries must form later on, and the cut-off period may be related to physical length-scales representative of the bloated pre-main-sequence stellar radii or of their accretion disks. Conclusions: If the obtained constraints for the M 17's massive-star population are representative of the multiplicity properties of massive young stellar objects, our results may provide support to a massive star formation process in which binaries are initially formed at larger separations, then harden or migrate to produce the typical (untruncated) power-law period

  14. Peering to the Heart of Massive Star Birth

    Science.gov (United States)

    Tan, Jonathan

    2015-10-01

    We propose a small survey of massive/intermediate-mass protostars with WFC3/IR to probe J and H band continuum emission, the Pa-beta and the [FeII] emission. The protostar sample is already the subject of approved SOFIA-FORCAST observations from 10-40 microns. Combined with sophisticated radiative transfer models, these observations are providing the most detailed constraints on the nature of massive protostars, their luminosities, outflow cavity structures and orientations, and distribution of surrounding dense core gas and dust. Recently, we were also awarded ALMA Cycle 3 time to study these sources at up to 0.14 resolution. The proposed HST observations, with very similar resolution, have three main goals: 1) Detect and characterize J and H band continuum emission from the massive/intermediate-mass protostars, which is expected to arise from jet and outflow knot features and from scattered light emerging from the outflow cavities; 2) Detect and characterize Pa-beta and [FeII] line emission tracing ionized and FUV-illuminated regions around the massive protostars, important diagnostics of the protostellar source and its outflow structure; 3) Search for lower-mass protostars that may be clustered around the forming massive protostar. All of these objectives will help test massive star formation theories. The high sensitivity and angular resolution of WFC3/IR enables these observations to be carried out efficiently in a timely fashion. Mid-Cycle observations are critical for near contemporaneous observation with ALMA, since jet/outflow knots may have large proper motions, and to maximize the potential time baseline for a future HST study of jet/outflow proper motions.

  15. Radiative Feedback from Massive Stars as Traced by Multiband Imaging and Spectroscopic Mosaics

    Science.gov (United States)

    Tielens, Alexander; "PDRs4ever" team

    2018-06-01

    Massive stars disrupt their natal molecular cloud material by dissociating molecules, ionizing atoms and molecules, and heating the gas and dust. These processes drive the evolution of interstellar matter in our Galaxy and throughout the Universe from the era of vigorous star formation at redshifts of 1-3, to the present day. Much of this interaction occurs in Photo-Dissociation Regions (PDRs) where far-ultraviolet photons of these stars create a largely neutral, but warm region of gas and dust. PDR emission dominates the IR spectra of star-forming galaxies and also provides a unique tool to study in detail the physical and chemical processes that are relevant for inter- and circumstellar media including diffuse clouds, molecular cloud and protoplanetary disk surfaces, globules, planetary nebulae, and starburst galaxies.We propose to provide template datasets designed to identify key PDR characteristics in the full 1-28 μm JWST spectra in order to guide the preparation of Cycle 2 proposals on star-forming regions in our Galaxy and beyond. We plan to obtain the first spatially resolved, high spectral resolution IR observations of a PDR using NIRCam, NIRSpec and MIRI. We will observe a nearby PDR with well-defined UV illumination in a typical massive star-forming region. JWST observations will, for the first time, spatially resolve and perform a tomography of the PDR, revealing the individual IR spectral signatures from the key zones and sub-regions within the ionized gas, the PDR and the molecular cloud. These data will test widely used theoretical models and extend them into the JWST era. We will assist the community interested in JWST observations of PDRs through several science-enabling products (maps of spectral features, template spectra, calibration of narrow/broad band filters in gas lines and PAH bands, data-interpretation tools e.g. to infer gas physical conditions or PAH and dust characteristics). This project is supported by a large international team of

  16. Cooling device for reactor container

    International Nuclear Information System (INIS)

    Arai, Kenji.

    1996-01-01

    Upon assembling a static container cooling system to an emergency reactor core cooling system using dynamic pumps in a power plant, the present invention provides a cooling device of lowered center of gravity and having a good cooling effect by lowering the position of a cooling water pool of the static container cooling system. Namely, the emergency reactor core cooling system injects water to the inside of a pressure vessel using emergency cooling water stored in a suppression pool as at least one water source upon loss of reactor coolant accident. In addition, a cooling water pool incorporating a heat exchanger is disposed at the circumference of the suppression pool at the outside of the container. A dry well and the heat exchanger are connected by way of steam supply pipes, and the heat exchanger is connected with the suppression pool by way of a gas exhaustion pipe and a condensate returning pipeline. With such a constitution, the position of the heat exchanger is made higher than an ordinary water level of the suppression pool. As a result, the emergency cooling water of the suppression pool water is injected to the pressure vessel by the operation of the reactor cooling pumps upon loss of coolant accident to cool the reactor core. (I.S.)

  17. Massive stars in the Sagittarius Dwarf Irregular Galaxy

    Science.gov (United States)

    Garcia, Miriam

    2018-02-01

    Low metallicity massive stars hold the key to interpret numerous processes in the past Universe including re-ionization, starburst galaxies, high-redshift supernovae, and γ-ray bursts. The Sagittarius Dwarf Irregular Galaxy [SagDIG, 12+log(O/H) = 7.37] represents an important landmark in the quest for analogues accessible with 10-m class telescopes. This Letter presents low-resolution spectroscopy executed with the Gran Telescopio Canarias that confirms that SagDIG hosts massive stars. The observations unveiled three OBA-type stars and one red supergiant candidate. Pending confirmation from high-resolution follow-up studies, these could be the most metal-poor massive stars of the Local Group.

  18. Massive IIA string theory and Matrix theory compactification

    International Nuclear Information System (INIS)

    Lowe, David A.; Nastase, Horatiu; Ramgoolam, Sanjaye

    2003-01-01

    We propose a Matrix theory approach to Romans' massive Type IIA supergravity. It is obtained by applying the procedure of Matrix theory compactifications to Hull's proposal of the massive Type IIA string theory as M-theory on a twisted torus. The resulting Matrix theory is a super-Yang-Mills theory on large N three-branes with a space-dependent noncommutativity parameter, which is also independently derived by a T-duality approach. We give evidence showing that the energies of a class of physical excitations of the super-Yang-Mills theory show the correct symmetry expected from massive Type IIA string theory in a lightcone quantization

  19. The final cool down

    CERN Multimedia

    Thursday 29th May, the cool-down of the final sector (sector 4-5) of LHC has begun, one week after the start of the cool-down of sector 1-2. It will take five weeks for the sectors to be cooled from room temperature to 5 K and a further two weeks to complete the cool down to 1.9 K and the commissioning of cryogenic instrumentation, as well as to fine tune the cryogenic plants and the cooling loops of cryostats.Nearly a year and half has passed since sector 7-8 was cooled for the first time in January 2007. For Laurent Tavian, AT/CRG Group Leader, reaching the final phase of the cool down is an important milestone, confirming the basic design of the cryogenic system and the ability to operate complete sectors. “All the sectors have to operate at the same time otherwise we cannot inject the beam into the machine. The stability and reliability of the cryogenic system and its utilities are now very important. That will be the new challenge for the coming months,” he explains. The status of the cool down of ...

  20. Alternative geometry for cylindrical natural draft cooling tower with higher cooling efficiency under crosswind condition

    International Nuclear Information System (INIS)

    Goodarzi, M.; Ramezanpour, R.

    2014-01-01

    Highlights: • Alternative cross sections for natural draft cooling tower were proposed. • Numerical solution was applied to study thermal and hydraulic performances. • Thermal and hydraulic performances were assessed by comparative parameters. • Cooling tower with elliptical cross section had better thermal performance under crosswind. • It could successfully used at the regions with invariant wind direction. - Abstract: Cooling efficiency of a natural draft dry cooling tower may significantly decrease under crosswind condition. Therefore, many researchers attempted to improve the cooling efficiency under this condition by using structural or mechanical facilities. In this article, alternative shell geometry with elliptical cross section is proposed for this type of cooling tower instead of usual shell geometry with circular cross section. Thermal performance and cooling efficiency of the two types of cooling towers are numerically investigated. Numerical simulations show that cooling tower with elliptical cross section improves the cooling efficiency compared to the usual type with circular cross section under high-speed wind moving normal to the longitudinal diameter of the elliptical cooling tower

  1. Semioptimal practicable algorithmic cooling

    International Nuclear Information System (INIS)

    Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2011-01-01

    Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon's entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.

  2. ARSENIC ADSORPTION AND REDUCTION IN IRON-RICH SOILS NEARBY LANDFILLS IN NORTHWEST FLORIDA

    Directory of Open Access Journals (Sweden)

    Hongqin Xue

    2016-01-01

    Full Text Available In Florida, soils are mainly composed of Myakka, an acid soil characterized by a subsurface accumulation of humus and Al(III and Fe(III oxides. Downgradient of the landfills in Northwest Florida, elevated levels of iron and arsenic observations had been made in the groundwater from monitoring wells, which was attributed to the geomicrobial iron and arsenic reduction. There is thus an immediate research need for a better understanding of the reduction reactions that are responsible for the mobilization of iron and arsenic in the subsurface soil nearby landfills. Owing to the high Fe(III oxide content, As(V adsorption reactions with Fe(III oxide surfaces are particularly important, which may control As(V reduction. This research focused on the investigation of the biogeochemical processes of the subsurface soil nearby landfills of Northwest Florida. Arsenic and iron reduction was studied in batch reactors and quantified based on Monod-type microbial kinetic growth simulations. As(V adsorption in iron-rich Northwest Floridian soils was further investigated to explain the reduction observations. It was demonstrated in this research that solubilization of arsenic in the subsurface soil nearby landfills in Northwest Florida would likely occur under conditions favoring Fe(III dissimilatory reduction.

  3. Massively Parallel QCD

    International Nuclear Information System (INIS)

    Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G

    2007-01-01

    The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results

  4. Interactions between massive dark halos and warped disks

    NARCIS (Netherlands)

    Kuijken, K; Persic, M; Salucci, P

    1997-01-01

    The normal mode theory for warping of galaxy disks, in which disks are assumed to be tilted with respect to the equator of a massive, flattened dark halo, assumes a rigid, fixed halo. However, consideration of the back-reaction by a misaligned disk on a massive particle halo shows there to be strong

  5. Reconstructing the massive black hole cosmic history through gravitational waves

    International Nuclear Information System (INIS)

    Sesana, Alberto; Gair, Jonathan; Berti, Emanuele; Volonteri, Marta

    2011-01-01

    The massive black holes we observe in galaxies today are the natural end-product of a complex evolutionary path, in which black holes seeded in proto-galaxies at high redshift grow through cosmic history via a sequence of mergers and accretion episodes. Electromagnetic observations probe a small subset of the population of massive black holes (namely, those that are active or those that are very close to us), but planned space-based gravitational wave observatories such as the Laser Interferometer Space Antenna (LISA) can measure the parameters of 'electromagnetically invisible' massive black holes out to high redshift. In this paper we introduce a Bayesian framework to analyze the information that can be gathered from a set of such measurements. Our goal is to connect a set of massive black hole binary merger observations to the underlying model of massive black hole formation. In other words, given a set of observed massive black hole coalescences, we assess what information can be extracted about the underlying massive black hole population model. For concreteness we consider ten specific models of massive black hole formation, chosen to probe four important (and largely unconstrained) aspects of the input physics used in structure formation simulations: seed formation, metallicity ''feedback'', accretion efficiency and accretion geometry. For the first time we allow for the possibility of 'model mixing', by drawing the observed population from some combination of the 'pure' models that have been simulated. A Bayesian analysis allows us to recover a posterior probability distribution for the ''mixing parameters'' that characterize the fractions of each model represented in the observed distribution. Our work shows that LISA has enormous potential to probe the underlying physics of structure formation.

  6. Simulated Measurements of Cooling in Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [Fermilab

    2016-06-01

    Cooled muon beams set the basis for the exploration of physics of flavour at a Neutrino Factory and for multi-TeV collisions at a Muon Collider. The international Muon Ionization Cooling Experiment (MICE) measures beam emittance before and after an ionization cooling cell and aims to demonstrate emittance reduction in muon beams. In the current MICE Step IV configuration, the MICE muon beam passes through low-Z absorber material for reducing its transverse emittance through ionization energy loss. Two scintillating fiber tracking detectors, housed in spectrometer solenoid modules upstream and downstream of the absorber are used for reconstructing position and momentum of individual muons for calculating transverse emittance reduction. However, due to existence of non-linear effects in beam optics, transverse emittance growth can be observed. Therefore, it is crucial to develop algorithms that are insensitive to this apparent emittance growth. We describe a different figure of merit for measuring muon cooling which is the direct measurement of the phase space density.

  7. Massive vulval oedema in multiple pregnancies at Bugando Medical ...

    African Journals Online (AJOL)

    In this report we describe two cases of massive vulval oedema seen in two ... passage of yellow-whitish discharge per vagina (Figure 1). Examination revealed massive oedema, and digital vaginal examination was difficult due to tenderness.

  8. Remarks on search methods for stable, massive, elementary particles

    International Nuclear Information System (INIS)

    Perl, Martin L.

    2001-01-01

    This paper was presented at the 69th birthday celebration of Professor Eugene Commins, honoring his research achievements. These remarks are about the experimental techniques used in the search for new stable, massive particles, particles at least as massive as the electron. A variety of experimental methods such as accelerator experiments, cosmic ray studies, searches for halo particles in the galaxy and searches for exotic particles in bulk matter are described. A summary is presented of the measured limits on the existence of new stable, massive particle

  9. Dual descriptions of massive spin-2 particles in D=3+1

    International Nuclear Information System (INIS)

    Dalmazi, Denis

    2013-01-01

    Full text: Since the sixties (last century) one speculates on the effects of a possible (tiny) mass for the graviton. One expects a decrease in the gravitational interaction at large distances which comes handy regarding the experimental data of the last 15 years on the accelerated expansion of the universe. There has been a growing interest in massive quantum gravity in the last years. Almost all recent works are built up on the top of a free (quadratic) action for a massive spin-2 particle known as massive Fierz-Pauli (FP) theory which has first appeared in 1939. In this theory the basic field is a symmetric rank-2 tensor. It is a common belief in the massive gravity community that the massive FP theory is the unique self-consistent (ghost free, Poincare covariant, correct number of degrees of freedom) description of massive spin-2 particles in terms of a rank-2 tensor. We have shown recently that there are other possibilities if we start with a general (non-symmetric) rank-2 tensor. Here we show how our previous work is related with the well known massive FP theory via the introduction of spectators fields of rank-0 (scalar) and rank-1 (vector). We comment on the introduction of interacting vertices and how they affect the free duality with the massive FP theory (author)

  10. Near-infrared spectroscopic observations of massive young stellar object candidates in the central molecular zone

    Science.gov (United States)

    Nandakumar, G.; Schultheis, M.; Feldmeier-Krause, A.; Schödel, R.; Neumayer, N.; Matteucci, F.; Ryde, N.; Rojas-Arriagada, A.; Tej, A.

    2018-01-01

    Context. The central molecular zone (CMZ) is a 200 pc region around the Galactic centre. The study of star formation in the central part of the Milky Way is of great interest as it provides a template for the closest galactic nuclei. Aims: We present a spectroscopic follow-up of photometrically selected young stellar object (YSO) candidates in the CMZ of the Galactic centre. Our goal is to quantify the contamination of this YSO sample by reddened giant stars with circumstellar envelopes and to determine the star formation rate (SFR) in the CMZ. Methods: We obtained KMOS low-resolution near-infrared spectra (R 4000) between 2.0 and 2.5 μm of sources, many of which have been previously identified by mid-infrared photometric criteria as massive YSOs in the Galactic centre. Our final sample consists of 91 stars with good signal-to-noise ratio. We separated YSOs from cool late-type stars based on spectral features of CO and Brγ at 2.3 μm and 2.16 μm, respectively. We made use of spectral energy distribution (SED) model fits to the observed photometric data points from 1.25 to 24 μm to estimate approximate masses for the YSOs. Results: Using the spectroscopically identified YSOs in our sample, we confirm that existing colour-colour diagrams and colour-magnitude diagrams are unable to efficiently separate YSOs and cool late-type stars. In addition, we define a new colour-colour criterion that separates YSOs from cool late-type stars in the H-KS vs. H -[8.0] diagram. We use this new criterion to identify YSO candidates in the |l| rate than predicted by various star forming models. Based on observations collected at the European Southern Observatory, Chile, programme number 097.C-0208(A).

  11. Quark–hadron phase transition in massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir

    2016-11-15

    We study the quark–hadron phase transition in the framework of massive gravity. We show that the modification of the FRW cosmological equations leads to the quark–hadron phase transition in the early massive Universe. Using numerical analysis, we consider that a phase transition based on the chiral symmetry breaking after the electroweak transition, occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons.

  12. A rare case of massive hepatosplenomegaly due to acute ...

    African Journals Online (AJOL)

    massive hepatosplenomegaly include chronic lymphoproliferative malignancies, infections (malaria, leishmaniasis) and glycogen storage diseases (Gaucher's disease).[4] In our case the probable causes of the massive hepatosplenomegaly were a combination of late presentation after symptom onset, leukaemic infiltration.

  13. Astronomers See First Stages of Planet-Building Around Nearby Star

    Science.gov (United States)

    2005-06-01

    about the same size are present," Claussen said. Not only does TW Hydrae show evidence of ongoing planet formation, it also shows signs that at least one giant planet may have formed already. Wilner's colleague, Nuria Calvet (CfA), has created a computer simulation of the disk around TW Hydrae using previously published infrared observations. She showed that a gap extends from the star out to a distance of about 400 million miles - similar to the distance to the asteroid belt in our solar system. The gap likely formed when a giant planet sucked up all the nearby material, leaving a hole in the middle of the disk. Located about 180 light-years away in the constellation Hydra the Water Snake, TW Hydrae consists of a 10 million-year-old star about four-fifths as massive as the Sun. The protoplanetary disk surrounding TW Hydrae contains about one-tenth as much material as the Sun -- more than enough to form one or more Jupiter-sized worlds. "TW Hydrae is unique," said Wilner. "It's nearby, and it's just the right age to be forming planets. We'll be studying it for decades to come." This research was published in the June 20, 2005, issue of the Astrophysical Journal Letters. Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  14. Cooling of gas turbines IX : cooling effects from use of ceramic coatings on water-cooled turbine blades

    Science.gov (United States)

    Brown, W Byron; Livingood, John N B

    1948-01-01

    The hottest part of a turbine blade is likely to be the trailing portion. When the blades are cooled and when water is used as the coolant, the cooling passages are placed as close as possible to the trailing edge in order to cool this portion. In some cases, however, the trailing portion of the blade is so narrow, for aerodynamic reasons, that water passages cannot be located very near the trailing edge. Because ceramic coatings offer the possibility of protection for the trailing part of such narrow blades, a theoretical study has been made of the cooling effect of a ceramic coating on: (1) the blade-metal temperature when the gas temperature is unchanged, and (2) the gas temperature when the metal temperature is unchanged. Comparison is also made between the changes in the blade or gas temperatures produced by ceramic coatings and the changes produced by moving the cooling passages nearer the trailing edge. This comparison was made to provide a standard for evaluating the gains obtainable with ceramic coatings as compared to those obtainable by constructing the turbine blade in such a manner that water passages could be located very near the trailing edge.

  15. THE STELLAR HALOS OF MASSIVE ELLIPTICAL GALAXIES. II. DETAILED ABUNDANCE RATIOS AT LARGE RADIUS

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Jenny E.; Murphy, Jeremy D.; Graves, Genevieve J.; Gunn, James E.; Raskutti, Sudhir [Department of Astrophysics, Princeton University, Princeton, NJ 08540 (United States); Comerford, Julia M.; Gebhardt, Karl [Department of Astronomy, UT Austin, 1 University Station C1400, Austin, TX 71712 (United States)

    2013-10-20

    We study the radial dependence in stellar populations of 33 nearby early-type galaxies with central stellar velocity dispersions σ{sub *} ∼> 150 km s{sup –1}. We measure stellar population properties in composite spectra, and use ratios of these composites to highlight the largest spectral changes as a function of radius. Based on stellar population modeling, the typical star at 2R{sub e} is old (∼10 Gyr), relatively metal-poor ([Fe/H] ≈ –0.5), and α-enhanced ([Mg/Fe] ≈ 0.3). The stars were made rapidly at z ≈ 1.5-2 in shallow potential wells. Declining radial gradients in [C/Fe], which follow [Fe/H], also arise from rapid star formation timescales due to declining carbon yields from low-metallicity massive stars. In contrast, [N/Fe] remains high at large radius. Stars at large radius have different abundance ratio patterns from stars in the center of any present-day galaxy, but are similar to average Milky Way thick disk stars. Our observations are thus consistent with a picture in which the stellar outskirts are built up through minor mergers with disky galaxies whose star formation is truncated early (z ≈ 1.5-2)

  16. EVIDENCE THAT GAMMA-RAY BURST 130702A EXPLODED IN A DWARF SATELLITE OF A MASSIVE GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Patrick L.; Filippenko, Alexei V.; Fox, Ori D.; Zheng Weikang; Clubb, Kelsey I., E-mail: pkelly@astro.berkeley.edu [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2013-09-20

    GRB 130702A is a nearby long-duration gamma-ray burst (LGRB) discovered by the Fermi satellite whose associated afterglow was detected by the Palomar Transient Factory. Subsequent photometric and spectroscopic monitoring has identified a coincident broad-lined Type Ic supernova (SN), and nebular emission detected near the explosion site is consistent with a redshift of z = 0.145. The SN-GRB exploded at an offset of {approx}7.''6 from the center of an inclined r = 18.1 mag red disk-dominated galaxy, and {approx}0.''6 from the center of a much fainter r = 23 mag object. We obtained Keck-II DEIMOS spectra of the two objects and find a 2{sigma} upper limit on their line-of-sight velocity offset of {approx}<60 km s{sup -1}. If we calculate the inclination angle of the massive red galaxy from its axis ratio and assume that its light is dominated by a very thin disk, the explosion would have a {approx}60 kpc central offset, or {approx}9 times the galaxy's half-light radius. A significant bulge or a thicker disk would imply a higher inclination angle and greater central offset. The substantial offset suggests that the faint source is a separate dwarf galaxy. The star-formation rate of the dwarf galaxy is {approx}0.05 M{sub Sun} yr{sup -1}, and we place an upper limit on its oxygen abundance of 12 + log(O/H) < 8.16 dex. The identification of an LGRB in a dwarf satellite of a massive, metal-rich primary galaxy suggests that recent detections of LGRBs spatially coincident with metal-rich galaxies may be, in some cases, superpositions.

  17. Magnetic fields and massive star formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Girart, Josep M.; Juárez, Carmen [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Frau, Pau [Observatorio Astronómico Nacional, Alfonso XII, 3 E-28014 Madrid (Spain); Li, Hua-Bai [Department of Physics, The Chinese University of Hong Kong, Hong Kong (China); Padovani, Marco [Laboratoire de Radioastronomie Millimétrique, UMR 8112 du CNRS, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Bontemps, Sylvain [OASU/LAB-UMR5804, CNRS, Université Bordeaux 1, F-33270 Floirac (France); Csengeri, Timea, E-mail: qzhang@cfa.harvard.edu [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  18. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  19. The Keck/OSIRIS Nearby AGN Survey (KONA). I. The Nuclear K-band Properties of Nearby AGN

    Science.gov (United States)

    Müller-Sánchez, F.; Hicks, E. K. S.; Malkan, M.; Davies, R.; Yu, P. C.; Shaver, S.; Davis, B.

    2018-05-01

    We introduce the Keck OSIRIS Nearby AGN survey (KONA), a new adaptive optics-assisted integral-field spectroscopic survey of Seyfert galaxies. KONA permits at ∼0.″1 resolution a detailed study of the nuclear kinematic structure of gas and stars in a representative sample of 40 local bona fide active galactic nucleus (AGN). KONA seeks to characterize the physical processes responsible for the coevolution of supermassive black holes and galaxies, principally inflows and outflows. With these IFU data of the nuclear regions of 40 Seyfert galaxies, the KONA survey will be able to study, for the first time, a number of key topics with meaningful statistics. In this paper we study the nuclear K-band properties of nearby AGN. We find that the K-band (2.1 μm) luminosities of the compact Seyfert 1 nuclei are correlated with the hard X-ray luminosities, implying a non-stellar origin for the majority of the continuum emission. The best-fit correlation is log L K = 0.9log L 2–10 keV + 4 over three orders of magnitude in both K-band and X-ray luminosities. We find no strong correlation between 2.1 μm luminosity and hard X-ray luminosity for the Seyfert 2 galaxies. The spatial extent and spectral slope of the Seyfert 2 galaxies indicate the presence of nuclear star formation and attenuating material (gas and dust), which in some cases is compact and in some galaxies extended. We detect coronal-line emission in 36 galaxies and for the first time in 5 galaxies. Finally, we find 4/20 galaxies that are usually classified as Seyfert 2 based on their optical spectra exhibit a broad component of Brγ emission, and one galaxy (NGC 7465) shows evidence of a double nucleus. Based on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W. M

  20. Second sector cool down

    CERN Multimedia

    2007-01-01

    At the beginning of July, cool-down is starting in the second LHC sector, sector 4-5. The cool down of sector 4-5 may occasionally generate mist at Point 4, like that produced last January (photo) during the cool-down of sector 7-8.Things are getting colder in the LHC. Sector 7-8 has been kept at 1.9 K for three weeks with excellent stability (see Bulletin No. 16-17 of 16 April 2007). The electrical tests in this sector have got opt to a successful start. At the beginning of July the cryogenic teams started to cool a second sector, sector 4-5. At Point 4 in Echenevex, where one of the LHC’s cryogenic plants is located, preparations for the first phase of the cool-down are underway. During this phase, the sector will first be cooled to 80 K (-193°C), the temperature of liquid nitrogen. As for the first sector, 1200 tonnes of liquid nitrogen will be used for the cool-down. In fact, the nitrogen circulates only at the surface in the ...

  1. Dry well cooling device

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki.

    1997-01-01

    A plurality of blowing ports with introduction units are disposed to a plurality of ducts in a dry well, and a cooling unit comprising a cooler, a blower and an isolating valve is disposed outside of the dry well. Cooling air and the atmosphere in the dry well are mixed to form a cooling gas and blown into the dry well to control the temperature. Since the cooling unit is disposed outside of the dry well, the maintenance of the cooling unit can be performed even during the plant operation. In addition, since dampers opened/closed depending on the temperature of the atmosphere are disposed to the introduction units for controlling the temperature of the cooling gas, the temperature of the atmosphere in the dry well can be set to a predetermined level rapidly. Since an axial flow blower is used as the blower of the cooling unit, it can be contained in a ventilation cylinder. Then, the atmosphere in the dry well flowing in the ventilation cylinder can be prevented from leaking to the outside. (N.H.)

  2. Massive antenatal fetomaternal hemorrhage

    DEFF Research Database (Denmark)

    Dziegiel, Morten Hanefeld; Koldkjaer, Ole; Berkowicz, Adela

    2005-01-01

    Massive fetomaternal hemorrhage (FMH) can lead to life-threatening anemia. Quantification based on flow cytometry with anti-hemoglobin F (HbF) is applicable in all cases but underestimation of large fetal bleeds has been reported. A large FMH from an ABO-compatible fetus allows an estimation...

  3. WHAT SETS THE INITIAL ROTATION RATES OF MASSIVE STARS?

    International Nuclear Information System (INIS)

    Rosen, Anna L.; Krumholz, Mark R.; Ramirez-Ruiz, Enrico

    2012-01-01

    The physical mechanisms that set the initial rotation rates in massive stars are a crucial unknown in current star formation theory. Observations of young, massive stars provide evidence that they form in a similar fashion to their low-mass counterparts. The magnetic coupling between a star and its accretion disk may be sufficient to spin down low-mass pre-main-sequence (PMS) stars to well below breakup at the end stage of their formation when the accretion rate is low. However, we show that these magnetic torques are insufficient to spin down massive PMS stars due to their short formation times and high accretion rates. We develop a model for the angular momentum evolution of stars over a wide range in mass, considering both magnetic and gravitational torques. We find that magnetic torques are unable to spin down either low-mass or high-mass stars during the main accretion phase, and that massive stars cannot be spun down significantly by magnetic torques during the end stage of their formation either. Spin-down occurs only if massive stars' disk lifetimes are substantially longer or their magnetic fields are much stronger than current observations suggest.

  4. Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung

    Science.gov (United States)

    Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.

  5. Cooling Tower Losses in Industry

    OpenAIRE

    Barhm Mohamad

    2017-01-01

    Cooling towers are a very important part of many chemical plants. The primary task of a cooling tower is to reject heat into the atmosphere. They represent a relatively inexpensive and dependable means of removing low-grade heat from cooling water. The make-up water source is used to replenish water lost to evaporation. Hot water from heat exchangers is sent to the cooling tower. The water exits the cooling tower and is sent back to the exchangers or to other units for further cooling.

  6. Phases of massive gravity

    CERN Document Server

    Dubovsky, S L

    2004-01-01

    We systematically study the most general Lorentz-violating graviton mass invariant under three-dimensional Eucledian group using the explicitly covariant language. We find that at general values of mass parameters the massive graviton has six propagating degrees of freedom, and some of them are ghosts or lead to rapid classical instabilities. However, there is a number of different regions in the mass parameter space where massive gravity can be described by a consistent low-energy effective theory with cutoff $\\sim\\sqrt{mM_{Pl}}$ free of rapid instabilities and vDVZ discontinuity. Each of these regions is characterized by certain fine-tuning relations between mass parameters, generalizing the Fierz--Pauli condition. In some cases the required fine-tunings are consequences of the existence of the subgroups of the diffeomorphism group that are left unbroken by the graviton mass. We found two new cases, when the resulting theories have a property of UV insensitivity, i.e. remain well behaved after inclusion of ...

  7. Underestimating nearby nature: affective forecasting errors obscure the happy path to sustainability.

    Science.gov (United States)

    Nisbet, Elizabeth K; Zelenski, John M

    2011-09-01

    Modern lifestyles disconnect people from nature, and this may have adverse consequences for the well-being of both humans and the environment. In two experiments, we found that although outdoor walks in nearby nature made participants much happier than indoor walks did, participants made affective forecasting errors, such that they systematically underestimated nature's hedonic benefit. The pleasant moods experienced on outdoor nature walks facilitated a subjective sense of connection with nature, a construct strongly linked with concern for the environment and environmentally sustainable behavior. To the extent that affective forecasts determine choices, our findings suggest that people fail to maximize their time in nearby nature and thus miss opportunities to increase their happiness and relatedness to nature. Our findings suggest a happy path to sustainability, whereby contact with nature fosters individual happiness and environmentally responsible behavior.

  8. SALT Spectroscopy of Evolved Massive Stars

    Science.gov (United States)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2017-06-01

    Long-slit spectroscopy with the Southern African Large Telescope (SALT) of central stars of mid-infrared nebulae detected with the Spitzer Space Telescope and Wide-Field Infrared Survey Explorer (WISE) led to the discovery of numerous candidate luminous blue variables (cLBVs) and other rare evolved massive stars. With the recent advent of the SALT fiber-fed high-resolution echelle spectrograph (HRS), a new perspective for the study of these interesting objects is appeared. Using the HRS we obtained spectra of a dozen newly identified massive stars. Some results on the recently identified cLBV Hen 3-729 are presented.

  9. Massive Multiplayer Online Gaming: A Research Framework for Military Training and Education

    Science.gov (United States)

    2005-03-01

    Effects of violent video games on aggressive behavior, aggressive cognition, physiological arousal, and prosocial behavior: A meta...Massive Multiplayer Online Games 2.1 Massive Multiplayer Online Games Defined Massive multiplayer online games (MMOGs) allow users to interact ...2002) suggested various principles for group design and interactions in “massively multiplayer games ” (p. 1). In particular, he agued that it

  10. Onderzoeksrapportage duurzaam koelen : EOS Renewable Cooling

    NARCIS (Netherlands)

    Broeze, J.; Sluis, van der S.; Wissink, E.

    2010-01-01

    For reducing energy use for cooling, alternative methods (that do not rely on electricity) are needed. Renewable cooling is based on naturally available resources such as evaporative cooling, free cooling, phase change materials, ground subcooling, solar cooling, wind cooling, night radiation &

  11. Cooling concepts for HTS components

    International Nuclear Information System (INIS)

    Binneberg, A.; Buschmann, H.; Neubert, J.

    1993-01-01

    HTS components require that low-cost, reliable cooling systems be used. There are no general solutions to such systems. Any cooling concept has to be tailored to the specific requirements of a system. The following has to he taken into consideration when designing cooling concepts: - cooling temperature - constancy and controllability of the cooling temperature - cooling load and refrigerating capacity - continuous or discontinuous mode - degree of automation - full serviceability or availability before evacuation -malfunctions caused by microphonic, thermal or electromagnetic effects -stationary or mobile application - investment and operating costs (orig.)

  12. Impact of Granite Quarrying on the Health of Workers and Nearby ...

    African Journals Online (AJOL)

    Impact of Granite Quarrying on the Health of Workers and Nearby Residents in Abeokuta Ogun State, Nigeria. ... Suspended Particulate Matter (SPM) meter was employed to monitor the level of particulate matter (PM10) within and around five quarry sites selected for this study. The data collected from hospital records of ...

  13. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter

    2004-10-11

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  14. Emergency cooling method and system for gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1982-01-01

    For emergency cooling of gas-cooled fast breeder reactors (GSB), which have a core consisting of a fission zone and a breeding zone, water is sprayed out of nozzles on to the core from above in the case of an incident. The water which is not treated with boron is taken out of a reservoir in the form of a storage tank in such a maximum quantity that the cooling water gathering in the space below the core rises at most up to the lower edge of the fission zone. (orig./GL) [de

  15. Toward Cooling Uniformity: Investigation of Spiral, Sweeping Holes, and Unconventional Cooling Paradigms

    Science.gov (United States)

    Shyam, Vikram; Thurman, Douglas R.; Poinsatte, Philip E.; Ameri, Ali A.; Culley, Dennis E.

    2018-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. Ways to quantify the efficacy of novel cooling holes that are asymmetric, not uniformly spaced or that show variation from hole to hole are presented. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and square holes. A patent-pending spiral hole design showed the highest potential of the nondiffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing ratios of 1.0, 1.5, 2.0, and 2.5 at a density ratio of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS. A section on ideas for future work is included that addresses issues of quantifying cooling uniformity and provides some ideas for changing the way we think about cooling such as changing the direction of cooling or coupling acoustic devices to cooling holes to regulate frequency.

  16. Cosmological stability bound in massive gravity and bigravity

    International Nuclear Information System (INIS)

    Fasiello, Matteo; Tolley, Andrew J.

    2013-01-01

    We give a simple derivation of a cosmological bound on the graviton mass for spatially flat FRW solutions in massive gravity with an FRW reference metric and for bigravity theories. This bound comes from the requirement that the kinetic term of the helicity zero mode of the graviton is positive definite. The bound is dependent only on the parameters in the massive gravity potential and the Hubble expansion rate for the two metrics. We derive the decoupling limit of bigravity and FRW massive gravity, and use this to give an independent derivation of the cosmological bound. We recover our previous results that the tension between satisfying the Friedmann equation and the cosmological bound is sufficient to rule out all observationally relevant FRW solutions for massive gravity with an FRW reference metric. In contrast, in bigravity this tension is resolved due to different nature of the Vainshtein mechanism. We find that in bigravity theories there exists an FRW solution with late-time self-acceleration for which the kinetic terms for the helicity-2, helicity-1 and helicity-0 are generically nonzero and positive making this a compelling candidate for a model of cosmic acceleration. We confirm that the generalized bound is saturated for the candidate partially massless (bi)gravity theories but the existence of helicity-1/helicity-0 interactions implies the absence of the conjectured partially massless symmetry for both massive gravity and bigravity

  17. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    Science.gov (United States)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  18. Metasurface Cloak Performance Near-by Multiple Line Sources and PEC Cylindrical Objects

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Yatman, William H.; Pehrson, Signe

    2014-01-01

    The performance/robustness of metasurface cloaks to a complex field environment which may represent a realistic scenario of radiating sources is presently reported. Attention is devoted to the cloak operation near-by multiple line sources and multiple perfectly electrically conducting cylinders. ...

  19. Device for recirculation cooling of cooling water by natural or forced chaft

    Energy Technology Data Exchange (ETDEWEB)

    Ruehl, H; Honekamp, H; Katzmann, A

    1975-10-23

    The invention is concerned with a device for recirculation cooling of cooling water by natural or forced draft. Through a cascading system mounted on supporting columns at a vertical distance to ground level, cooling air is flowing in cross- or counterflow to the cooling water freely falling from the cascading system. The cooling water collecting zone below the cascading system has an absorption floor arranged nearly horizontal and/or inclined, with a cam-type profile on its upperside, which is bounded on its circumference by at least one cooling water release channel provided below its level and/or which is divided in the sense of a surface subdivision. By these means, a reduction of the amount of material required for the supporting columns and an increase of the stability of the columns is to be achieved. Furthermore, the deposition of mud is to be avoided as for as possible, and noise generation during operation is to be reduced considerably. For this purpose, the absorption floor may be made of material sound insulating and/or may be coated with such a material.

  20. Water in massive star-forming regions with Herschel Space Observatory

    Science.gov (United States)

    Chavarria, L.; Herpin, F.; Bontemps, S.; Jacq, T.; Baudry, A.; Braine, J.; van der Tak, F.; Wyrowski, F.; van Dishoeck, E. F.

    2011-05-01

    High-mass stars formation process is much less understood than the low-mass case: short timescales, high opacities and long distance to the sources challenge the study of young massive stars. The instruments on board the Heschel Space Observatory permit us to investigate molecular species at high spectral resolution in the sub-milimeter wavelengths. Water, one of the most abundant molecules in the Universe, might elucidate key episodes in the process of stellar birth and it may play a major role in the formation of high-mass stars. This contribution presents the first results of the Heschel Space Observatory key-program WISH (Water In Star forming regions with Herschel) concerning high-mass protostars. The program main purpose is to follow the process of star formation during the various stages using the water molecule as a physical diagnostic throughout the evolution. In general, we aim to adress the following questions: How does protostars interact with their environment ? How and where water is formed ? How is it transported from cloud to disk ? When and where water becomes a dominant cooling or heating agent ? We use the HIFI and PACS instruments to obtain maps and spectra of ~20 water lines in ~20 massive protostars spanning a large range in physical parameters, from pre-stellar cores to UCHII regions. I will review the status of the program and focus specifically on the spectroscopic results. I will show how powerful are the HIFI high-resolution spectral observations to resolve different physical source components such as the dense core, the outflows and the extended cold cloud around the high-mass object. We derive water abundances between 10-7 and 10-9 in the outer envelope. The abundance variations derived from our models suggest that different chemical mechanisms are at work on these scales (e.g. evaporation of water-rich icy grain mantles). The detection and derived abundance ratios for rare isotopologues will be discussed. Finally, a comparison in tems

  1. Onderzoeksrapportage duurzaam koelen : EOS Renewable Cooling

    OpenAIRE

    Broeze, J.; Sluis, van der, S.; Wissink, E.

    2010-01-01

    For reducing energy use for cooling, alternative methods (that do not rely on electricity) are needed. Renewable cooling is based on naturally available resources such as evaporative cooling, free cooling, phase change materials, ground subcooling, solar cooling, wind cooling, night radiation & storage. The project was aimed to create innovative combinations of these renewable cooling technologies and sophisticated control systems, to design renewable climate systems for various applicati...

  2. Second crystal cooling on cryogenically cooled undulator and wiggler double crystal monochromators

    International Nuclear Information System (INIS)

    Knapp, G. S.

    1998-01-01

    Simple methods for the cooling of the second crystals of cryogenically cooled undulator and wiggler double crystal monochromators are described. Copper braids between the first and second crystals are used to cool the second crystals of the double crystal monochromators. The method has proved successful for an undulator monochromator and we describe a design for a wiggler monochromator

  3. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  4. Hybrid cooling tower Neckarwestheim 2 cooling function, emission, plume dispersion

    International Nuclear Information System (INIS)

    Braeuning, G.; Ernst, G.; Maeule, R.; Necker, P.

    1990-01-01

    The fan-assisted hybrid cooling tower of the 1300 MW power plant Gemeinschafts-Kernkraftwerk Neckarwestheim 2 was designed and constructed based on results from theoretical and experimental studies and experiences from a smaller prototype. The wet part acts in counterflow. The dry part is arranged above the wet part. Each part contains 44 fans. Special attention was payed to the ducts which mix the dry into the wet plume. The cooling function and state, mass flow and contents of the emission were measured. The dispersion of the plume in the atmosphere was observed. The central results are presented in this paper. The cooling function corresponds to the predictions. The content of drifted cooling water in the plume is extremely low. The high velocity of the plume in the exit causes an undisturbed flow into the atmosphere. The hybrid operation reduces visible plumes strongly, especially in warmer and drier ambient air

  5. Laser cooling of neutral atoms

    International Nuclear Information System (INIS)

    1993-01-01

    A qualitative description of laser cooling of neutral atoms is given. Two of the most important mechanisms utilized in laser cooling, the so-called Doppler Cooling and Sisyphus Cooling, are reviewed. The minimum temperature reached by the atoms is derived using simple arguments. (Author) 7 refs

  6. Core catcher cooling for a gas-cooled fast breeder

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Schretzmann, K.

    1976-01-01

    Water, molten salts, and liquid metals are under discussion as coolants for the core catcher of a gas-cooled fast breeder. The authors state that there is still no technically mature method of cooling a core melt. However, the investigations carried out so far suggest that there is a solution to this problem. (RW/AK) [de

  7. Contrastive analysis of cooling performance between a high-level water collecting cooling tower and a typical cooling tower

    Science.gov (United States)

    Wang, Miao; Wang, Jin; Wang, Jiajin; Shi, Cheng

    2018-02-01

    A three-dimensional (3D) numerical model is established and validated for cooling performance optimization between a high-level water collecting natural draft wet cooling tower (HNDWCT) and a usual natural draft wet cooling tower (UNDWCT) under the actual operation condition at Wanzhou power plant, Chongqing, China. User defined functions (UDFs) of source terms are composed and loaded into the spray, fill and rain zones. Considering the conditions of impact on three kinds of corrugated fills (Double-oblique wave, Two-way wave and S wave) and four kinds of fill height (1.25 m, 1.5 m, 1.75 m and 2 m), numerical simulation of cooling performance are analysed. The results demonstrate that the S wave has the highest cooling efficiency in three fills for both towers, indicating that fill characteristics are crucial to cooling performance. Moreover, the cooling performance of the HNDWCT is far superior to that of the UNDWCT with fill height increases of 1.75 m and above, because the air mass flow rate in the fill zone of the HNDWCT improves more than that in the UNDWCT, as a result of the rain zone resistance declining sharply for the HNDWCT. In addition, the mass and heat transfer capacity of the HNDWCT is better in the tower centre zone than in the outer zone near the tower wall under a uniform fill layout. This behaviour is inverted for the UNDWCT, perhaps because the high-level collection devices play the role of flow guiding in the inner zone. Therefore, when non-uniform fill layout optimization is applied to the HNDWCT, the inner zone increases in height from 1.75 m to 2 m, the outer zone reduces in height from 1.75 m to 1.5 m, and the outlet water temperature declines approximately 0.4 K compared to that of the uniform layout.

  8. Massive gravity and Fierz-Pauli theory

    Energy Technology Data Exchange (ETDEWEB)

    Blasi, Alberto [Universita di Genova, Dipartimento di Fisica, Genova (Italy); Maggiore, Nicola [I.N.F.N.-Sezione di Genova, Genoa (Italy)

    2017-09-15

    Linearized gravity is considered as an ordinary gauge field theory. This implies the need for gauge fixing in order to have well-defined propagators. Only after having achieved this, the most general mass term is added. The aim of this paper is to study of the degrees of freedom of the gauge fixed theory of linearized gravity with mass term. The main result is that, even outside the usual Fierz-Pauli constraint on the mass term, it is possible to choose a gauge fixing belonging to the Landau class, which leads to a massive theory of gravity with the five degrees of freedom of a spin-2 massive particle. (orig.)

  9. Massive gravity and Fierz-Pauli theory

    International Nuclear Information System (INIS)

    Blasi, Alberto; Maggiore, Nicola

    2017-01-01

    Linearized gravity is considered as an ordinary gauge field theory. This implies the need for gauge fixing in order to have well-defined propagators. Only after having achieved this, the most general mass term is added. The aim of this paper is to study of the degrees of freedom of the gauge fixed theory of linearized gravity with mass term. The main result is that, even outside the usual Fierz-Pauli constraint on the mass term, it is possible to choose a gauge fixing belonging to the Landau class, which leads to a massive theory of gravity with the five degrees of freedom of a spin-2 massive particle. (orig.)

  10. REVERSAL OF FORTUNE: INCREASED STAR FORMATION EFFICIENCIES IN THE EARLY HISTORIES OF DWARF GALAXIES?

    International Nuclear Information System (INIS)

    Madau, Piero; Weisz, Daniel R.; Conroy, Charlie

    2014-01-01

    On dwarf galaxy scales, the different shapes of the galaxy stellar mass function and the dark halo mass function require a star-formation efficiency (SFE) in these systems that is currently more than 1 dex lower than that of Milky Way-size halos. Here, we argue that this trend may actually be reversed at high redshift. Specifically, by combining the resolved star-formation histories of nearby isolated dwarfs with the simulated mass-growth rates of dark matter halos, we show that the assembly of these systems occurs in two phases: (1) an early, fast halo accretion phase with a rapidly deepening potential well, characterized by a high SFE; and (2) a late, slow halo accretion phase where, perhaps as a consequence of reionization, the SFE is low. Nearby dwarfs have more old stars than predicted by assuming a constant or decreasing SFE with redshift, a behavior that appears to deviate qualitatively from the trends seen among more massive systems. Taken at face value, the data suggest that at sufficiently early epochs, dwarf galaxy halos above the atomic cooling mass limit can be among the most efficient sites of star formation in the universe

  11. Reversal of Fortune: Increased Star Formation Efficiencies in the Early Histories of Dwarf Galaxies?

    Science.gov (United States)

    Madau, Piero; Weisz, Daniel R.; Conroy, Charlie

    2014-08-01

    On dwarf galaxy scales, the different shapes of the galaxy stellar mass function and the dark halo mass function require a star-formation efficiency (SFE) in these systems that is currently more than 1 dex lower than that of Milky Way-size halos. Here, we argue that this trend may actually be reversed at high redshift. Specifically, by combining the resolved star-formation histories of nearby isolated dwarfs with the simulated mass-growth rates of dark matter halos, we show that the assembly of these systems occurs in two phases: (1) an early, fast halo accretion phase with a rapidly deepening potential well, characterized by a high SFE; and (2) a late, slow halo accretion phase where, perhaps as a consequence of reionization, the SFE is low. Nearby dwarfs have more old stars than predicted by assuming a constant or decreasing SFE with redshift, a behavior that appears to deviate qualitatively from the trends seen among more massive systems. Taken at face value, the data suggest that at sufficiently early epochs, dwarf galaxy halos above the atomic cooling mass limit can be among the most efficient sites of star formation in the universe.

  12. Deuterium- and 18O-content in the cooling water of power station cooling towers

    International Nuclear Information System (INIS)

    Heimbach, H.; Dongmann, G.

    1976-09-01

    The 0-18/0-16 and D/H isotope ratios of water from two different cooling towers were determined by mass spectrometry. The observed isotope fractionation corresponds to that known from natural evaporation or transpiration processes: cooling tower I: delta(D) = 46.8 per thousand, delta( 18 O) = 7.6 per thousand cooling tower II: delta(D) = 33.9 per thousand delta( 18 O) = 5.7 per thousand Evaluation of simple compartment models of a cooling tower and a distillation device suggests that there exists some isotope discrimination within the open trickling unit of a cooling tower analogous to that in a rectification column. In a real cooling tower, however, this effect is compensated largely by the recycling of the cooling water, resulting only in a small enrichment of the heavy isotopes. This can be understood as the result of three partial effects: 1) a fractionation in the vapor pressure equilibrium, 2) a kinetic effect due to diffusion of the water vapor into a turbulent atmosphere, and 3) an exchange effect which is proportional to relative humidity. This low enrichment of the heavy isotope excludes the technical use of cooling towers as isotope separation devices. (orig.) [de

  13. Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower

    International Nuclear Information System (INIS)

    Ma, Peizheng; Wang, Lin-Shu; Guo, Nianhua

    2014-01-01

    Highlights: • Investigated cooling of thermally homeostatic buildings in 7 U.S. cities by modeling. • Natural energy is harnessed by cooling tower to extract heat for building cooling. • Systematically studied possibility and conditions of using cooling tower in buildings. • Diurnal ambient temperature amplitude is taken into account in cooling tower cooling. • Homeostatic building cooling is possible in locations with large ambient T amplitude. - Abstract: A case is made that while it is important to mitigate dissipative losses associated with heat dissipation and mechanical/electrical resistance for engineering efficiency gain, the “architect” of energy efficiency is the conception of best heat extraction frameworks—which determine the realm of possible efficiency. This precept is applied to building energy efficiency here. Following a proposed process assumption-based design method, which was used for determining the required thermal qualities of building thermal autonomy, this paper continues this line of investigation and applies heat extraction approach investigating the extent of building partial homeostasis and the possibility of full homeostasis by using cooling tower in one summer in seven selected U.S. cities. Cooling tower heat extraction is applied parametrically to hydronically activated radiant-surfaces model-buildings. Instead of sizing equipment as a function of design peak hourly temperature as it is done in heat balance design-approach of selecting HVAC equipment, it is shown that the conditions of using cooling tower depend on both “design-peak” daily-mean temperature and the distribution of diurnal range in hourly temperature (i.e., diurnal temperature amplitude). Our study indicates that homeostatic building with natural cooling (by cooling tower alone) is possible only in locations of special meso-scale climatic condition such as Sacramento, CA. In other locations the use of cooling tower alone can only achieve homeostasis

  14. Cooling out of the blue

    International Nuclear Information System (INIS)

    Schmid, W.

    2006-01-01

    This article takes a look at solar cooling and air-conditioning, the use of which is becoming more and more popular. The article discusses how further research and development is necessary. The main challenge for professional experts is the optimal adaptation of building, building technology and solar-driven cooling systems to meet these new requirements. Various solar cooling technologies are looked at, including the use of surplus heat for the generation of cold for cooling systems. Small-scale solar cooling systems now being tested in trials are described. Various developments in Europe are discussed, as are the future chances for solar cooling in the market

  15. Performance improvement of air-cooled refrigeration system by using evaporatively cooled air condenser

    Energy Technology Data Exchange (ETDEWEB)

    Hajidavalloo, E.; Eghtedari, H. [Mechanical Engineering Department, Shahid Chamran University, Golestan St., Ahvaz (Iran)

    2010-08-15

    Increasing the coefficient of performance of air conditioner with air-cooled condenser is a challenging problem especially in area with very hot weather conditions. Application of evaporatively cooled air condenser instead of air-cooled condenser is proposed in this paper as an efficient way to solve the problem. An evaporative cooler was built and coupled to the existing air-cooled condenser of a split-air-conditioner in order to measure its effect on the cycle performance under various ambient air temperatures up to 49 C. Experimental results show that application of evaporatively cooled air condenser has significant effect on the performance improvement of the cycle and the rate of improvement is increased as ambient air temperature increases. It is also found that by using evaporatively cooled air condenser in hot weather conditions, the power consumption can be reduced up to 20% and the coefficient of performance can be improved around 50%. More improvements can be expected if a more efficient evaporative cooler is used. (author)

  16. Direct imaging of haloes and truncations in face-on nearby galaxies

    NARCIS (Netherlands)

    Knapen, J. H.; Peters, S. P. C.; van der Kruit, P. C.; Trujillo, I.; Fliri, J.; Cisternas, M.; Kelvin, L. S.; Bragaglia, A.; Arnaboldi, M.; Rejkuba, M.; Romano, D.

    2016-01-01

    We use ultra-deep imaging from the IAC Stripe 82 Legacy Project to study the surface photometry of 22 nearby, face-on to moderately inclined spiral galaxies. The reprocessed and co-added SDSS/Stripe 82 imaging allows us to probe down to 29-30 r'-mag/arcsec2 and thus reach into the very faint

  17. Modelization of cooling system components

    Energy Technology Data Exchange (ETDEWEB)

    Copete, Monica; Ortega, Silvia; Vaquero, Jose Carlos; Cervantes, Eva [Westinghouse Electric (Spain)

    2010-07-01

    In the site evaluation study for licensing a new nuclear power facility, the criteria involved could be grouped in health and safety, environment, socio-economics, engineering and cost-related. These encompass different aspects such as geology, seismology, cooling system requirements, weather conditions, flooding, population, and so on. The selection of the cooling system is function of different parameters as the gross electrical output, energy consumption, available area for cooling system components, environmental conditions, water consumption, and others. Moreover, in recent years, extreme environmental conditions have been experienced and stringent water availability limits have affected water use permits. Therefore, modifications or alternatives of current cooling system designs and operation are required as well as analyses of the different possibilities of cooling systems to optimize energy production taking into account water consumption among other important variables. There are two basic cooling system configurations: - Once-through or Open-cycle; - Recirculating or Closed-cycle. In a once-through cooling system (or open-cycle), water from an external water sources passes through the steam cycle condenser and is then returned to the source at a higher temperature with some level of contaminants. To minimize the thermal impact to the water source, a cooling tower may be added in a once-through system to allow air cooling of the water (with associated losses on site due to evaporation) prior to returning the water to its source. This system has a high thermal efficiency, and its operating and capital costs are very low. So, from an economical point of view, the open-cycle is preferred to closed-cycle system, especially if there are no water limitations or environmental restrictions. In a recirculating system (or closed-cycle), cooling water exits the condenser, goes through a fixed heat sink, and is then returned to the condenser. This configuration

  18. On the spontaneous breakdown of massive gravities in 2 + 1 dimension

    International Nuclear Information System (INIS)

    Aragone, C.; Aria, P.J.; Andes Merida, Univ.; Khoudeir, A.

    1997-01-01

    This paper shows that locally Lorentz-invariant, third-order, topological massive gravity cannot be broken down either to the local diffeomorphism subgroup or to the rigid Poincare' group. On the other hand, the recently formulated, locally diffeomorphism-invariant, second order massive tradic (translational) Chern-Simons gravity breaks down on rigid Minkowski space to a double massive spin-two system. This flat double massive action is the uniform spin-two generalization of the Maxwell-Chern-Simons-Proca system which one is left with after U(1) Abelian gauge invariance breaks down in the presence of a sextic Higgs potential

  19. Formation of massive seed black holes via collisions and accretion

    Science.gov (United States)

    Boekholt, T. C. N.; Schleicher, D. R. G.; Fellhauer, M.; Klessen, R. S.; Reinoso, B.; Stutz, A. M.; Haemmerlé, L.

    2018-05-01

    Models aiming to explain the formation of massive black hole seeds, and in particular the direct collapse scenario, face substantial difficulties. These are rooted in rather ad hoc and fine-tuned initial conditions, such as the simultaneous requirements of extremely low metallicities and strong radiation backgrounds. Here, we explore a modification of such scenarios where a massive primordial star cluster is initially produced. Subsequent stellar collisions give rise to the formation of massive (104-105 M⊙) objects. Our calculations demonstrate that the interplay among stellar dynamics, gas accretion, and protostellar evolution is particularly relevant. Gas accretion on to the protostars enhances their radii, resulting in an enhanced collisional cross-section. We show that the fraction of collisions can increase from 0.1 to 1 per cent of the initial population to about 10 per cent when compared to gas-free models or models of protostellar clusters in the local Universe. We conclude that very massive objects can form in spite of initial fragmentation, making the first massive protostellar clusters viable candidate birth places for observed supermassive black holes.

  20. The Cool Colors Project

    Science.gov (United States)

    Gov. Arnold Schwarzenegger, second from left, a sample from the Cool Colors Project, a roof product ) (Jeff Chiu - AP) more Cool Colors make the front page of The Sacramento Bee (3rd highest circulation newspaper in California) on 14 August 2006! Read the article online or as a PDF. The Cool Colors Project

  1. Reproduction of nearby sound sources using higher-order ambisonics with practical loudspeaker arrays

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel; Buchholz, Jörg

    2012-01-01

    the impact of two existing and a new proposed regularization function on the reproduced sound fields and on the main auditory cue for nearby sound sources outside the median plane, i.e, low-frequencies interaural level differences (ILDs). The proposed regularization function led to a better reproduction......In order to reproduce nearby sound sources with distant loudspeakers to a single listener, the near field compensated (NFC) method for higher-order Ambisonics (HOA) has been previously proposed. In practical realization, this method requires the use of regularization functions. This study analyzes...... of point source sound fields compared to existing regularization functions for NFC-HOA. Measurements in realistic playback environments showed that, for very close sources, significant ILDs for frequencies above about 250 Hz can be reproduced with NFC-HOA and the proposed regularization function whereas...

  2. Investigations of combined used of cooling ponds with cooling towers or spraying systems

    International Nuclear Information System (INIS)

    Farforovsky, V.B.

    1990-01-01

    Based on a brief analysis of the methods of investigating cooling ponds, spraying systems and cooling towers, a conclusion is made that the direct modelling of the combined use of cooling systems listed cannot be realized. An approach to scale modelling of cooling ponds is proposed enabling all problems posed by the combined use of coolers to be solved. Emphasized is the importance of a proper choice of a scheme of including a cooler in a general water circulation system of thermal and nuclear power plants. A sequence of selecting a cooling tower of the type and spraying system of the size ensuring the specified temperature regime in a water circulation system is exemplified by the water system of the Ghorasal thermal power plant in Bangladesh

  3. UVES abundances of stars in nearby galaxies : How good are theoretical isochrones?

    NARCIS (Netherlands)

    Tolstoy, E; Piotto, G; Meylan, G; Djougovski, SG; Riello, M

    2003-01-01

    Here we report some results from an ESO-VLT programme to observe individual stars in nearby dwarf galaxies at high resolution with the UVES spectrograph (Tolstoy, Venn, Shetrone, Primas, Hill, Kaufer & Szeifert 2002, submitted to AJ). We mainly concentrate on illustrating the issues and

  4. MASSIVE CLUSTERS IN THE INNER REGIONS OF NGC 1365: CLUSTER FORMATION AND GAS DYNAMICS IN GALACTIC BARS

    International Nuclear Information System (INIS)

    Elmegreen, Bruce G.; Galliano, Emmanuel; Alloin, Danielle

    2009-01-01

    Cluster formation and gas dynamics in the central regions of barred galaxies are not well understood. This paper reviews the environment of three 10 7 M sun clusters near the inner Lindblad resonance (ILR) of the barred spiral NGC 1365. The morphology, mass, and flow of H I and CO gas in the spiral and barred regions are examined for evidence of the location and mechanism of cluster formation. The accretion rate is compared with the star formation rate to infer the lifetime of the starburst. The gas appears to move from inside corotation in the spiral region to looping filaments in the interbar region at a rate of ∼6 M sun yr -1 before impacting the bar dustlane somewhere along its length. The gas in this dustlane moves inward, growing in flux as a result of the accretion to ∼40 M sun yr -1 near the ILR. This inner rate exceeds the current nuclear star formation rate by a factor of 4, suggesting continued buildup of nuclear mass for another ∼0.5 Gyr. The bar may be only 1-2 Gyr old. Extrapolating the bar flow back in time, we infer that the clusters formed in the bar dustlane outside the central dust ring at a position where an interbar filament currently impacts the lane. The ram pressure from this impact is comparable to the pressure in the bar dustlane, and both are comparable to the pressure in the massive clusters. Impact triggering is suggested. The isothermal assumption in numerical simulations seems inappropriate for the rarefaction parts of spiral and bar gas flows. The clusters have enough lower-mass counterparts to suggest they are part of a normal power-law mass distribution. Gas trapping in the most massive clusters could explain their [Ne II] emission, which is not evident from the lower-mass clusters nearby.

  5. The dynamics of massive starless cores with ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Kong, Shuo; Butler, Michael J. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Caselli, Paola [School of Physics and Astronomy, The University of Leeds, Leeds LS2 9JT (United Kingdom); Fontani, Francesco [INAF-Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy)

    2013-12-20

    How do stars that are more massive than the Sun form, and thus how is the stellar initial mass function (IMF) established? Such intermediate- and high-mass stars may be born from relatively massive pre-stellar gas cores, which are more massive than the thermal Jeans mass. The turbulent core accretion model invokes such cores as being in approximate virial equilibrium and in approximate pressure equilibrium with their surrounding clump medium. Their internal pressure is provided by a combination of turbulence and magnetic fields. Alternatively, the competitive accretion model requires strongly sub-virial initial conditions that then lead to extensive fragmentation to the thermal Jeans scale, with intermediate- and high-mass stars later forming by competitive Bondi-Hoyle accretion. To test these models, we have identified four prime examples of massive (∼100 M {sub ☉}) clumps from mid-infrared extinction mapping of infrared dark clouds. Fontani et al. found high deuteration fractions of N{sub 2}H{sup +} in these objects, which are consistent with them being starless. Here we present ALMA observations of these four clumps that probe the N{sub 2}D{sup +} (3-2) line at 2.''3 resolution. We find six N{sub 2}D{sup +} cores and determine their dynamical state. Their observed velocity dispersions and sizes are broadly consistent with the predictions of the turbulent core model of self-gravitating, magnetized (with Alfvén Mach number m{sub A} ∼ 1) and virialized cores that are bounded by the high pressures of their surrounding clumps. However, in the most massive cores, with masses up to ∼60 M {sub ☉}, our results suggest that moderately enhanced magnetic fields (so that m{sub A} ≅ 0.3) may be needed for the structures to be in virial and pressure equilibrium. Magnetically regulated core formation may thus be important in controlling the formation of massive cores, inhibiting their fragmentation, and thus helping to establish the stellar IMF.

  6. MASSIVE STAR FORMATION IN THE LMC. I. N159 AND N160 COMPLEXES

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Michael S.; Jones, Terry J.; Gehrz, Robert D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy 116 Church St SE, University of Minnesota, Minneapolis, MN 55455 (United States); Helton, L. Andrew [USRA–SOFIA Science Center, NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2017-01-10

    We present images and spectral energy distributions (SEDs) of massive young stellar objects (YSOs) in three star-forming H ii regions of the Large Magellanic Cloud: N159A, N159 Papillon, and N160. We use photometry from SOFIA/FORCAST at 25.3–37.1 μ m to constrain model fits to the SEDs and determine luminosities, ages, and dust content of the embedded YSOs and their local environments. By placing these sources on mid-infrared color–magnitude and color–color diagrams, we analyze their dust properties and consider their evolutionary status. Since each object in the FORCAST images has an obvious bright near-infrared counterpart in Spitzer Space Telescope images, we do not find any evidence for new, very cool, previously undiscovered Class 0 YSOs. Additionally, based on its mid-infrared colors and model parameters, N159A is younger than N160 and the Papillon. The nature of the first extragalactic protostars in N159, P1, and P2, is also discussed.

  7. Film cooling adiabatic effectiveness measurements of pressure side trailing edge cooling configurations

    Directory of Open Access Journals (Sweden)

    R. Becchi

    2015-12-01

    Full Text Available Nowadays total inlet temperature of gas turbine is far above the permissible metal temperature; as a consequence, advanced cooling techniques must be applied to protect from thermal stresses, oxidation and corrosion the components located in the high pressure stages, such as the blade trailing edge. A suitable design of the cooling system for the trailing edge has to cope with geometric constraints and aerodynamic demands; state-of-the-art of cooling concepts often use film cooling on blade pressure side: the air taken from last compressor stages is ejected through discrete holes or slots to provide a cold layer between hot mainstream and the blade surface. With the goal of ensuring a satisfactory lifetime of blades, the design of efficient trailing edge film cooling schemes and, moreover, the possibility to check carefully their behavior, are hence necessary to guarantee an appropriate metal temperature distribution. For this purpose an experimental survey was carried out to investigate the film covering performance of different pressure side trailing edge cooling systems for turbine blades. The experimental test section consists of a scaled-up trailing edge model installed in an open loop suction type test rig. Measurements of adiabatic effectiveness distributions were carried out on three trailing edge cooling system configurations. The baseline geometry is composed by inclined slots separated by elongated pedestals; the second geometry shares the same cutback configuration, with an additional row of circular film cooling holes located upstream; the third model is equipped with three rows of in-line film cooling holes. Experiments have been performed at nearly ambient conditions imposing several blowing ratio values and using carbon dioxide as coolant in order to reproduce a density ratio close to the engine conditions (DR=1.52. To extend the validity of the survey a comparison between adiabatic effectiveness measurements and a prediction by

  8. Stochastic cooling at Fermilab

    International Nuclear Information System (INIS)

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system

  9. Origin and prevention of infection with Legionella pneumophila through cooling towers and evaporative cooling towers

    International Nuclear Information System (INIS)

    Schulze-Roebbecke, R.

    1994-01-01

    Evaporative cooling towers and industrial ventilator cooling towers have repeatedly been described as the origin of Legionnaires' disease. This article describes the design and function of cooling towers and evaporative cooling towers, sums up knowledge on the colonization of such systems with Legionella pneumophila, and describes conditions permitting the transmission of Legionella. Furthermore, design, maintenance, cleaning and disinfection measures are indicated which are believed to reduce the risk of infection through industrial and evaporative cooling towers. (orig.) [de

  10. Massive and mass-less Yang-Mills and gravitational fields

    NARCIS (Netherlands)

    Veltman, M.J.G.; Dam, H. van

    1970-01-01

    Massive and mass-less Yang-Mills and gravitational fields are considered. It is found that there is a discrete difference between the zero-mass theories and the very small, but non-zero mass theories. In the case of gravitation, comparison of massive and mass-less theories with experiment, in

  11. Massive weight loss-induced mechanical plasticity in obese gait

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Herring, Cortney; Pories, Walter J.; Rider, Patrick; DeVita, Paul

    2011-01-01

    Hortobagyi T, Herring C, Pories WJ, Rider P, DeVita P. Massive weight loss-induced mechanical plasticity in obese gait. J Appl Physiol 111: 1391-1399, 2011. First published August 18, 2011; doi:10.1152/japplphysiol.00291.2011.-We examined the hypothesis that metabolic surgery-induced massive weight

  12. A search for thermal extreme ultraviolet radiation from nearby pulsars

    International Nuclear Information System (INIS)

    Greenstein, G.; Margon, B.

    1977-01-01

    We present the first extreme ultraviolet (100-1000 A) observations of radio pulsars. Using an EUV telescope carried aboard the Apollo-Soyuz mission, data were acquired on the nearby pulsars PSR 1133 + 16, 1451 - 68 and 1929 + 10. The data are interpreted to set limits on the effective temperatures of the neutron stars, yielding T 5 K in the best cases, and the limits compared with theoretical predictions. (orig./BJ) [de

  13. Gas cooled leads

    International Nuclear Information System (INIS)

    Shutt, R.P.; Rehak, M.L.; Hornik, K.E.

    1993-01-01

    The intent of this paper is to cover as completely as possible and in sufficient detail the topics relevant to lead design. The first part identifies the problems associated with lead design, states the mathematical formulation, and shows the results of numerical and analytical solutions. The second part presents the results of a parametric study whose object is to determine the best choice for cooling method, material, and geometry. These findings axe applied in a third part to the design of high-current leads whose end temperatures are determined from the surrounding equipment. It is found that cooling method or improved heat transfer are not critical once good heat exchange is established. The range 5 5 but extends over a large of values. Mass flow needed to prevent thermal runaway varies linearly with current above a given threshold. Below that value, the mass flow is constant with current. Transient analysis shows no evidence of hysteresis. If cooling is interrupted, the mass flow needed to restore the lead to its initially cooled state grows exponentially with the time that the lead was left without cooling

  14. Einstein-Podolsky-Rosen-entangled motion of two massive objects

    Science.gov (United States)

    Schnabel, Roman

    2015-07-01

    In 1935, Einstein, Podolsky, and Rosen (EPR) considered two particles in an entangled state of motion to illustrate why they questioned the completeness of quantum theory. In past decades, microscopic systems with entanglement in various degrees of freedom have successfully been generated, representing compelling evidence to support the completeness of quantum theory. Today, the generation of an EPR-entangled state of motion of two massive objects of up to the kilogram scale seems feasible with state-of-the-art technology. Recently, the generation and verification of EPR-entangled mirror motion in interferometric gravitational wave detectors was proposed, with the aim of testing quantum theory in the regime of macroscopic objects, and to make available nonclassical probe systems for future tests of modified quantum theories that include (nonrelativistic) gravity. The work presented here builds on these earlier results and proposes a specific Michelson interferometer that includes two high-quality laser mirrors of about 0.1 kg mass each. The mirrors are individually suspended as pendula and located close to each other, and cooled to about 4 K. The physical concepts for the generation of the EPR-entangled center-of-mass motion of these two mirrors are described. Apart from a test of quantum mechanics in the macroscopic world, the setup is envisioned to test predictions of yet-to-be-elaborated modified quantum theories that include gravitational effects.

  15. On the Weak-Wind Problem in Massive Stars: X-Ray Spectra Reveal a Massive Hot Wind in mu Columbae

    Science.gov (United States)

    Huenemoerder, David P.; Oskinova, Lidia M.; Ignace, Richard; Waldron, Wayne L.; Todt, Helge; Hamaguchi, Kenji; Kitamoto, Shunji

    2012-01-01

    Mu Columbae is a prototypical weak-wind O star for which we have obtained a high-resolution X-ray spectrum with the Chandra LETG/ACIS instrument and a low-resolution spectrum with Suzaku. This allows us, for the first time, to investigate the role of X-rays on the wind structure in a bona fide weak-wind system and to determine whether there actually is a massive hot wind. The X-ray emission measure indicates that the outflow is an order of magnitude greater than that derived from UV lines and is commensurate with the nominal wind-luminosity relationship for O stars. Therefore, the "weak-wind problem"--identified from cool wind UV/optical spectra--is largely resolved by accounting for the hot wind seen in X-rays. From X-ray line profiles, Doppler shifts, and relative strengths, we find that this weak-wind star is typical of other late O dwarfs. The X-ray spectra do not suggest a magnetically confined plasma-the spectrum is soft and lines are broadened; Suzaku spectra confirm the lack of emission above 2 keV. Nor do the relative line shifts and widths suggest any wind decoupling by ions. The He-like triplets indicate that the bulk of the X-ray emission is formed rather close to the star, within five stellar radii. Our results challenge the idea that some OB stars are "weak-wind" stars that deviate from the standard wind-luminosity relationship. The wind is not weak, but it is hot and its bulk is only detectable in X-rays.

  16. A Massive Galaxy in Its Core Formation Phase Three Billion Years After the Big Bang

    Science.gov (United States)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha M. Forster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; hide

    2014-01-01

    Most massive galaxies are thought to have formed their dense stellar cores at early cosmic epochs. However, cores in their formation phase have not yet been observed. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we present a candidate core in formation 11 billion years ago, at z = 2.3. GOODS-N-774 has a stellar mass of 1.0 × 10 (exp 11) solar mass, a half-light radius of 1.0 kpc, and a star formation rate of 90 (sup +45 / sub -20) solar mass/yr. The star forming gas has a velocity dispersion 317 plus or minus 30 km/s, amongst the highest ever measured. It is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, compact quiescent galaxies at z is approximately equal to 2 (exp 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 appear to be rare; however, from the star formation rate and size of the galaxy we infer that many star forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  17. Simulating nonlinear cosmological structure formation with massive neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Arka; Dalal, Neal, E-mail: abanerj6@illinois.edu, E-mail: dalaln@illinois.edu [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801-3080 (United States)

    2016-11-01

    We present a new method for simulating cosmologies that contain massive particles with thermal free streaming motion, such as massive neutrinos or warm/hot dark matter. This method combines particle and fluid descriptions of the thermal species to eliminate the shot noise known to plague conventional N-body simulations. We describe this method in detail, along with results for a number of test cases to validate our method, and check its range of applicability. Using this method, we demonstrate that massive neutrinos can produce a significant scale-dependence in the large-scale biasing of deep voids in the matter field. We show that this scale-dependence may be quantitatively understood using an extremely simple spherical expansion model which reproduces the behavior of the void bias for different neutrino parameters.

  18. Simulating nonlinear cosmological structure formation with massive neutrinos

    International Nuclear Information System (INIS)

    Banerjee, Arka; Dalal, Neal

    2016-01-01

    We present a new method for simulating cosmologies that contain massive particles with thermal free streaming motion, such as massive neutrinos or warm/hot dark matter. This method combines particle and fluid descriptions of the thermal species to eliminate the shot noise known to plague conventional N-body simulations. We describe this method in detail, along with results for a number of test cases to validate our method, and check its range of applicability. Using this method, we demonstrate that massive neutrinos can produce a significant scale-dependence in the large-scale biasing of deep voids in the matter field. We show that this scale-dependence may be quantitatively understood using an extremely simple spherical expansion model which reproduces the behavior of the void bias for different neutrino parameters.

  19. Cooling of molecular ion beams

    International Nuclear Information System (INIS)

    Wolf, A.; Krohn, S.; Kreckel, H.; Lammich, L.; Lange, M.; Strasser, D.; Grieser, M.; Schwalm, D.; Zajfman, D.

    2004-01-01

    An overview of the use of stored ion beams and phase space cooling (electron cooling) is given for the field of molecular physics. Emphasis is given to interactions between molecular ions and electrons studied in the electron cooler: dissociative recombination and, for internally excited molecular ions, electron-induced ro-vibrational cooling. Diagnostic methods for the transverse ion beam properties and for the internal excitation of the molecular ions are discussed, and results for phase space cooling and internal (vibrational) cooling are presented for hydrogen molecular ions

  20. Investigations on accidents with massive water ingress exemplified by the pebble bed reactor PNP-500

    International Nuclear Information System (INIS)

    Moormann, R.

    1986-01-01

    A computer code is used for analyses of massive water ingress accidents in the High-Temperature Gas Cooled Reactor concept PNP-500 with pebble bed core. The analyses are mainly focussed on graphite corrosion processes. For the investigated accidents a correct reactor shut down in assumed. The mass of water ingressing into the primary circuit is varied between 1000 and 7500 kg (i.e., up to hypothetical values). The dependence of accident consequences on parameters such as intensity and starting time of the afterheat removal system or kinetic values of the chemical processes is examined. The results show that even under pessimistic assumptions the extent of the graphite corrosion is relatively low; significant damaging of fuel elements or graphite components does not occur. A primary circuit depressurization, combined with local burning of water gas, would probably not affect the fission product retention potential of the (gastight) containment. Summing up, the risk caused by these accidents remains small. (orig.) [de

  1. Stochastic spin-one massive field

    International Nuclear Information System (INIS)

    Lim, S.C.

    1984-01-01

    Stochastic quantization schemes of Nelson and Parisi and Wu are applied to a spin-one massive field. Unlike the scalar case Nelson's stochastic spin-one massive field cannot be identified with the corresponding euclidean field even if the fourth component of the euclidean coordinate is taken as equal to the real physical time. In the Parisi-Wu quantization scheme the stochastic Proca vector field has a similar property as the scalar field; which has an asymptotically stationary part and a transient part. The large equal-time limit of the expectation values of the stochastic Proca field are equal to the expectation values of the corresponding euclidean field. In the Stueckelberg formalism the Parisi-Wu scheme gives rise to a stochastic vector field which differs from the massless gauge field in that the gauge cannot be fixed by the choice of boundary condition. (orig.)

  2. Minimal theory of massive gravity

    International Nuclear Information System (INIS)

    De Felice, Antonio; Mukohyama, Shinji

    2016-01-01

    We propose a new theory of massive gravity with only two propagating degrees of freedom. While the homogeneous and isotropic background cosmology and the tensor linear perturbations around it are described by exactly the same equations as those in the de Rham–Gabadadze–Tolley (dRGT) massive gravity, the scalar and vector gravitational degrees of freedom are absent in the new theory at the fully nonlinear level. Hence the new theory provides a stable nonlinear completion of the self-accelerating cosmological solution that was originally found in the dRGT theory. The cosmological solution in the other branch, often called the normal branch, is also rendered stable in the new theory and, for the first time, makes it possible to realize an effective equation-of-state parameter different from (either larger or smaller than) −1 without introducing any extra degrees of freedom.

  3. Technology of power plant cooling

    International Nuclear Information System (INIS)

    Maulbetsch, J.S.; Zeren, R.W.

    1976-01-01

    The following topics are discussed: the thermodynamics of power generation and the need for cooling water; the technical, economic, and legislative constraints within which the cooling problem must be solved; alternate cooling methods currently available or under development; the water treatment requirements of cooling systems; and some alternatives for modifying the physical impact on aquatic systems

  4. Theory of semiconductor laser cooling

    Science.gov (United States)

    Rupper, Greg

    Recently laser cooling of semiconductors has received renewed attention, with the hope that a semiconductor cooler might be able to achieve cryogenic temperatures. In order to study semiconductor laser cooling at cryogenic temperatures, it is crucial that the theory include both the effects of excitons and the electron-hole plasma. In this dissertation, I present a theoretical analysis of laser cooling of bulk GaAs based on a microscopic many-particle theory of absorption and luminescence of a partially ionized electron-hole plasma. This theory has been analyzed from a temperature 10K to 500K. It is shown that at high temperatures (above 300K), cooling can be modeled using older models with a few parameter changes. Below 200K, band filling effects dominate over Auger recombination. Below 30K excitonic effects are essential for laser cooling. In all cases, excitonic effects make cooling easier then predicted by a free carrier model. The initial cooling model is based on the assumption of a homogeneous undoped semiconductor. This model has been systematically modified to include effects that are present in real laser cooling experiments. The following modifications have been performed. (1) Propagation and polariton effects have been included. (2) The effect of p-doping has been included. (n-doping can be modeled in a similar fashion.) (3) In experiments, a passivation layer is required to minimize non-radiative recombination. The passivation results in a npn heterostructure. The effect of the npn heterostructure on cooling has been analyzed. (4) The effect of a Gaussian pump beam was analyzed and (5) Some of the parameters in the cooling model have a large uncertainty. The effect of modifying these parameters has been analyzed. Most of the extensions to the original theory have only had a modest effect on the overall results. However we find that the current passivation technique may not be sufficient to allow cooling. The passivation technique currently used appears

  5. Generalized massive gravity in arbitrary dimensions and its Hamiltonian formulation

    International Nuclear Information System (INIS)

    Huang, Qing-Guo; Zhang, Ke-Chao; Zhou, Shuang-Yong

    2013-01-01

    We extend the four-dimensional de Rham-Gabadadze-Tolley (dRGT) massive gravity model to a general scalar massive-tensor theory in arbitrary dimensions, coupling a dRGT massive graviton to multiple scalars and allowing for generic kinetic and mass matrix mixing between the massive graviton and the scalars, and derive its Hamiltonian formulation and associated constraint system. When passing to the Hamiltonian formulation, two different sectors arise: a general sector and a special sector. Although obtained via different ways, there are two second class constraints in either of the two sectors, eliminating the BD ghost. However, for the special sector, there are still ghost instabilities except for the case of two dimensions. In particular, for the special sector with one scalar, there is a ''second BD ghost''

  6. Experimental investigation of temperature rise in bone drilling with cooling: A comparison between modes of without cooling, internal gas cooling, and external liquid cooling.

    Science.gov (United States)

    Shakouri, Ehsan; Haghighi Hassanalideh, Hossein; Gholampour, Seifollah

    2018-01-01

    Bone fracture occurs due to accident, aging, and disease. For the treatment of bone fractures, it is essential that the bones are kept fixed in the right place. In complex fractures, internal fixation or external methods are used to fix the fracture position. In order to immobilize the fracture position and connect the holder equipment to it, bone drilling is required. During the drilling of the bone, the required forces to chip formation could cause an increase in the temperature. If the resulting temperature increases to 47 °C, it causes thermal necrosis of the bone. Thermal necrosis decreases bone strength in the hole and, subsequently, due to incomplete immobilization of bone, fracture repair is not performed correctly. In this study, attempts have been made to compare local temperature increases in different processes of bone drilling. This comparison has been done between drilling without cooling, drilling with gas cooling, and liquid cooling on bovine femur. Drilling tests with gas coolant using direct injection of CO 2 and N 2 gases were carried out by internal coolant drill bit. The results showed that with the use of gas coolant, the elevation of temperature has limited to 6 °C and the thermal necrosis is prevented. Maximum temperature rise reached in drilling without cooling was 56 °C, using gas and liquid coolant, a maximum temperature elevation of 43 °C and 42 °C have been obtained, respectively. This resulted in decreased possibility of thermal necrosis of bone in drilling with gas and liquid cooling. However, the results showed that the values obtained with the drilling method with direct gas cooling are independent of the rotational speed of drill.

  7. Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures

    Directory of Open Access Journals (Sweden)

    M. Dotti

    2012-01-01

    Full Text Available The study of the dynamical evolution of massive black hole pairs in mergers is crucial in the context of a hierarchical galaxy formation scenario. The timescales for the formation and the coalescence of black hole binaries are still poorly constrained, resulting in large uncertainties in the expected rate of massive black hole binaries detectable in the electromagnetic and gravitational wave spectra. Here, we review the current theoretical understanding of the black hole pairing in galaxy mergers, with a particular attention to recent developments and open issues. We conclude with a review of the expected observational signatures of massive binaries and of the candidates discussed in literature to date.

  8. QUALITY OF LIFE IN PATIENTS AFTER MASSIVE PULMONARY EMBOLISM

    Directory of Open Access Journals (Sweden)

    Dragan Kovačić

    2004-04-01

    Full Text Available Background. Pulmonary embolism is a disease, which has a 30% mortality if untreated, while an early diagnosis and treatment lowers it to 2–8%. Health related quality of life (HRQL of patients who survived massive pulmonary embolism is unknown in published literature. In our research we tried to apply experience of foreign experts in estimation of quality of life in some other diseases to the field of massive pulmonary embolism.Patients and methods. Eighteen patients with shock or hypotension due to massive pulmonary embolism, treated with thrombolysis, between July 1993 and November 2000, were prospectively included in the study. Control group included 18 gender and age matched persons. There were no significant differences regarding demographic data between the groups. The HRQL and aerobic capacity of patients and control group were tested with short questions and questionnaires (Veterans brief, self administered questionnaire (VSAQ, EuroQuality questionnaire (EQ, Living with heart failure questionnaire (LlhHF. With LlhHF physical (F-LlhHF and emotional (E-LlhHF HRQL was assessed at hospitalization and 12 months later.Results. One year after massive pulmonary embolism aerobic capacity (–9.5%, p < 0.017 and HRQL (EQ (–34.5%, F-LlhHF (–85.4%, E-LlhHF (–48.7% decreased in massive pulmonary embolism group compared to aerobic capacity 6 months before massive pulmonary embolism and HRQL. Heart rate before thrombolysis correlated with aerobic capacity (r = 0.627, p < 0.01, EQ (r = 0.479, p < 0.01 and F-LlhHF (r = 0.479, p = 0.04 1 year after massive pulmonary embolism. Total pulmonary resistance at 12 hours after start of treatment correlated with aerobic capacity at 1 year (r = 0.354, p < 0.01.With short question (»Did you need any help in everyday activities in last 2 weeks?« we successfully separated patients with decreased HRQL in EQ (74.3 ± 20.8 vs. 24.5 ± 20.7, p < 0.001 and F-LlhHF (21.7 ± 6.7 vs. 32.8 ± 4.3, p < 0.01, but we

  9. Evaluation of advanced cooling therapy's esophageal cooling device for core temperature control.

    Science.gov (United States)

    Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Kulstad, Erik

    2016-05-01

    Managing core temperature is critical to patient outcomes in a wide range of clinical scenarios. Previous devices designed to perform temperature management required a trade-off between invasiveness and temperature modulation efficiency. The Esophageal Cooling Device, made by Advanced Cooling Therapy (Chicago, IL), was developed to optimize warming and cooling efficiency through an easy and low risk procedure that leverages heat transfer through convection and conduction. Clinical data from cardiac arrest, fever, and critical burn patients indicate that the Esophageal Cooling Device performs very well both in terms of temperature modulation (cooling rates of approximately 1.3°C/hour, warming of up to 0.5°C/hour) and maintaining temperature stability (variation around goal temperature ± 0.3°C). Physicians have reported that device performance is comparable to the performance of intravascular temperature management techniques and superior to the performance of surface devices, while avoiding the downsides associated with both.

  10. Cooling rates and intensity limitations for laser-cooled ions at relativistic energies

    Science.gov (United States)

    Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal

    2018-04-01

    The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.

  11. Collaborative Calibrated Peer Assessment in Massive Open Online Courses

    Science.gov (United States)

    Boudria, Asma; Lafifi, Yacine; Bordjiba, Yamina

    2018-01-01

    The free nature and open access courses in the Massive Open Online Courses (MOOC) allow the facilities of disseminating information for a large number of participants. However, the "massive" propriety can generate many pedagogical problems, such as the assessment of learners, which is considered as the major difficulty facing in the…

  12. Cryogenic system with the sub-cooled liquid nitrogen for cooling HTS power cable

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Y.F. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Graduate School of Chinese Academy of Sciences, Beijing (China); Gong, L.H.; Xu, X.D.; Li, L.F.; Zhang, L. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Xiao, L.Y. [Chinese Academy of Sciences, Beijing (China). Institute of Electrical Engineering

    2005-04-01

    A 10 m long, three-phase AC high-temperature superconducting (HTS) power cable had been fabricated and tested in China August 2003. The sub-cooled liquid nitrogen (LN{sub 2}) was used to cool the HTS cable. The sub-cooled LN{sub 2} circulation was built by means of a centrifugal pump through a heat exchanger in the sub-cooler, the three-phase HTS cable cryostats and a LN{sub 2} gas-liquid separator. The LN{sub 2} was cooled down to 65 K by means of decompressing, and the maximum cooling capacity was about 3.3 kW and the amount of consumed LN{sub 2} was about 72 L/h at 1500 A. Cryogenic system design, test and some experimental results would be presented in this paper. (author)

  13. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS's heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis

  14. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS`s heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis.

  15. Fundamental research on the cooling characteristic of passive containment cooling system

    International Nuclear Information System (INIS)

    Kawakubo, M.; Kikura, H.; Aritomi, M.; Inaba, N.; Yamauchi, T.

    2004-01-01

    The objective of this experimental study is to clarify the heat transfer characteristics of the Passive Containment Cooling System (PCCS) with vertical heat transfer tubes for investigating the influence of non-condensable gas on condensation. Furthermore, hence we obtained new experimental correlation formula to calculate the transients in system temperature and pressure using the simulation program of the PCCS. The research was carried out using a forced circulation experimental loop, which simulates atmosphere inside PCCS with vertical heat transfer tubes if a loss of coolant accident (LOCA) occurs. The experimental facility consists of cooling water supply systems, an orifice flowmeter, and a tank equipped with the heat transfer pipe inside. Cooling water at a constant temperature is injected to the test part of heat transfer pipe vertically installed in the tank by forced circulation. At that time, the temperature of the cooling water between inlet and outlet of the pipe was measured to calculate the overall heat transfer coefficient between the cooling water and atmosphere in the tank. Thus, the heat transfer coefficient between heat transfer surface and the atmosphere in the tank considering the influence of the non-condensable gas was clarified. An important finding of this study is that the amount of condensation in the steamy atmosphere including non-condensable gas depends on the cooling water Reynolds number, especially the concentration of non-condensable gas that has great influence on the amount of condensation. (authors)

  16. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger.

  17. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Lee, Hee Joon; Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin

    2014-01-01

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger

  18. Low dark matter content of the nearby early-type galaxy NGC 821

    Directory of Open Access Journals (Sweden)

    Samurović S.

    2014-01-01

    Full Text Available In this paper we analyze the kinematics and dynamics of the nearby early-type galaxy NGC 821 based on its globular clusters (GCs and planetary nebulae (PNe. We use PNe and GCs to extract the kinematics of NGC 821 which is then used for the dynamical modelling based on the Jeans equation. We apply the Jeans equation using the Newtonian mass-follows-light approach assuming constant mass-to-light ratio and find that using such an approach we can successfully fit the kinematic data. The inferred constant mass-to-light ratio, 4:2 < M=LB < 12:4 present throughout the whole galaxy, implies the lack of significant amount of dark matter. We also used three different MOND approaches and found that we can fit the kinematic data without the need for additional, dark, component. [Projekat Ministarstva nauke Republike Srbije, br. 176021: Visible and invisible matter in nearby galaxies: theory and observations

  19. IDENTIFYING NEARBY, YOUNG, LATE-TYPE STARS BY MEANS OF THEIR CIRCUMSTELLAR DISKS

    International Nuclear Information System (INIS)

    Schneider, Adam; Song, Inseok; Melis, Carl; Zuckerman, B.; Bessell, Mike

    2012-01-01

    It has recently been shown that a significant fraction of late-type members of nearby, very young associations (age ∼<10 Myr) display excess emission at mid-IR wavelengths indicative of dusty circumstellar disks. We demonstrate that the detection of mid-IR excess emission can be utilized to identify new nearby, young, late-type stars including two definite new members ('TWA 33' and 'TWA 34') of the TW Hydrae Association (TWA). Both new TWA members display mid-IR excess emission in the Wide-field Infrared Survey Explorer catalog and they show proper motion and youthful spectroscopic characteristics—namely, Hα emission, strong lithium absorption, and low surface gravity features consistent with known TWA members. We also detect mid-IR excess—the first unambiguous evidence of a dusty circumstellar disk—around a previously identified UV-bright, young, accreting star (2M1337) that is a likely member of the Lower-Centaurus Crux region of the Scorpius-Centaurus Complex.

  20. Radiology in massive hemoptysis

    International Nuclear Information System (INIS)

    Marini, M.; Castro, J.M.; Gayol, A.; Aguilera, C.; Blanco, M.; Beraza, A.; Torres, J.

    1995-01-01

    We have reviewed our experience in diseases involving massive hemoptysis, systematizing the most common causes which include tuberculosis, bronchiectasis and cancer of the lung. Other less frequent causes, such as arteriovenous fistula, Aspergilloma, aneurysm, etc.; are also evaluated, and the most demonstrative images of each produced by the most precise imaging methods for their assessment are presented

  1. Massively Parallel Computing: A Sandia Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Dosanjh, Sudip S.; Greenberg, David S.; Hendrickson, Bruce; Heroux, Michael A.; Plimpton, Steve J.; Tomkins, James L.; Womble, David E.

    1999-05-06

    The computing power available to scientists and engineers has increased dramatically in the past decade, due in part to progress in making massively parallel computing practical and available. The expectation for these machines has been great. The reality is that progress has been slower than expected. Nevertheless, massively parallel computing is beginning to realize its potential for enabling significant break-throughs in science and engineering. This paper provides a perspective on the state of the field, colored by the authors' experiences using large scale parallel machines at Sandia National Laboratories. We address trends in hardware, system software and algorithms, and we also offer our view of the forces shaping the parallel computing industry.

  2. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still

  3. A spin-4 analog of 3D massive gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Kovacevic, Marija; Rosseel, Jan; Townsend, Paul K.; Yin, Yihao

    2011-01-01

    A sixth-order, but ghost-free, gauge-invariant action is found for a fourth-rank symmetric tensor potential in a three-dimensional (3D) Minkowski spacetime. It propagates two massive modes of spin 4 that are interchanged by parity and is thus a spin-4 analog of linearized 'new massive gravity'. Also

  4. Cooling device in thermonuclear device

    International Nuclear Information System (INIS)

    Honda, Tsutomu.

    1988-01-01

    Purpose: To prevent loss of cooling effect over the entire torus structure directly after accidental toubles in a cooling device of a thermonuclear device. Constitution: Coolant recycling means of a cooling device comprises two systems, which are alternately connected with in-flow pipeways and exit pipeways of adjacent modules. The modules are cooled by way of the in-flow pipeways and the exist pipeways connected to the respective modules by means of the coolant recycling means corresponding to the respective modules. So long as one of the coolant recycling means is kept operative, since every one other modules of the torus structure is still kept cooled, the heat generated from the module put therebetween, for which the coolant recycling is interrupted, is removed by means of heat conduction or radiation from the module for which the cooling is kept continued. No back-up emergency cooling system is required and it can provide high economic reliability. (Kamimura, M.)

  5. Auxiliary cooling device for power plant

    International Nuclear Information System (INIS)

    Yamanoi, Kozo.

    1996-01-01

    An auxiliary cooling sea water pipeline for pumping up cooling sea water, an auxiliary cooling sea water pipeline and a primary side of an auxiliary cooling heat exchanger are connected between a sea water taking vessel and a sea water discharge pit. An auxiliary cooling water pump is connected to an auxiliary water cooling pipeline on the second side of the auxiliary cooling heat exchanger. The auxiliary cooling water pipeline is connected with each of auxiliary equipments of a reactor system and each of auxiliary equipments of the turbine system connected to a turbine auxiliary cooling water pipeline in parallel. During ordinary operation of the reactor, heat exchange for each of the auxiliary equipments of the reactor and heat exchange for each of the equipments of the turbine system are conducted simultaneously. Since most portions of the cooling devices of each of the auxiliary equipments of the reactor system and each of the auxiliary equipments of the turbine system can be used in common, the operation efficiency of the cooling device is improved. In addition, the space for the pipelines and the cost for the equipments can be reduced. (I.N.)

  6. NEW APPROACHES TO EFFICIENCY OF MASSIVE ONLINE COURSE

    Directory of Open Access Journals (Sweden)

    Liubov S. Lysitsina

    2014-09-01

    Full Text Available This paper is focused on efficiency of e-learning, in general, and massive online course in programming and information technology, in particular. Several innovative approaches and scenarios have been proposed, developed, implemented and verified by the authors, including 1 a new approach to organize and use automatic immediate feedback that significantly helps a learner to verify developed code and increases an efficiency of learning, 2 a new approach to construct learning interfaces – it is based on “develop a code – get a result – validate a code” technique, 3 three scenarios of visualization and verification of developed code, 4 a new multi-stage approach to solve complex programming assignments, 5 a new implementation of “perfectionism” game mechanics in a massive online course. Overall, due to implementation of proposed and developed approaches, the efficiency of massive online course has been considerably increased, particularly 1 the additional 27.9 % of students were able to complete successfully “Web design and development using HTML5 and CSS3” massive online course at ITMO University, and 2 based on feedback from 5588 students a “perfectionism” game mechanics noticeably improves students’ involvement into course activities and retention factor.

  7. Comparative growth analysis of cool- and warm-season grasses in a cool-temperate environment

    International Nuclear Information System (INIS)

    Belesky, D.P.; Fedders, J.M.

    1995-01-01

    Using both cool-season (C3) and warm-season (C4) species is a viable means of optimizing herbage productivity over varying climatic conditions in temperate environments. Despite well-documented differences in water, N, and radiation use, no consistent evidence demonstrates productivity differences among C3 and C4 perennial grass species under identical management. A field study was conducted to determine relative growth rates (RGR), nitrogen productivity (NP), and mean radiation productivity (RP) (dry matter production as a function of incident radiation) of cool- and warm-season grasses managed identically. Results were used to identify management practices thd could lead to optimal productivity in combinations or mixtures of cool- and warm-season grasses. Dry matter yields of warm-season grasses equaled or surpassed those of cool-season grasses, despite a 40% shorter growth interval. Certain cool- and warm-season grasses appear to be suitable for use in mixtures, based on distribution of herbage production; however, actual compatibility may be altered by defoliation management. Relative growth rates varied among years and were about 40% lower for canopies clipped to a 10-cm residue height each time 20-cm of growth accumulated compared with other treatments. The RGR of warm-season grasses was twice that of cool-season grasses Nitrogen productivity (g DM g-1 N d -1) and mean radiation productivity (g DM MJ-1) for warm-season grasses was also more than twice that of cool-season grasses. Radiation productivity of cool-season grasses was dependent on N, while this was not always the case for warm-season grasses. The superior production capability of certain warm-season compared with cool-season grasses in a cool-temperate environment can be sustained under a range of defoliation treatments and demonstrates suitability for use in frequently defoliated situations

  8. Hybrid Cooling Loop Technology for Robust High Heat Flux Cooling, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Cooling Technologies, Inc. (ACT) proposes to develop a hybrid cooling loop and cold plate technology for space systems thermal management. The proposed...

  9. Passive low energy cooling of buildings

    CERN Document Server

    Givoni, Baruch

    1994-01-01

    A practical sourcebook for building designers, providing comprehensive discussion of the impact of basic architectural choices on cooling efficiency, including the layout and orientation of the structure, window size and shading, exterior color, and even the use of plantings around the site. All major varieties of passive cooling systems are presented, with extensive analysis of performance in different types of buildings and in different climates: ventilation; radiant cooling; evaporative cooling; soil cooling; and cooling of outdoor spaces.

  10. Cooling system for auxiliary reactor component

    International Nuclear Information System (INIS)

    Fujihira, Tomoko.

    1991-01-01

    A cooling system for auxiliary reactor components comprises three systems, that is, two systems of reactor component cooling water systems (RCCW systems) and a high pressure component cooling water system (HPCCW system). Connecting pipelines having partition valves are intervened each in a cooling water supply pipeline to an emmergency component of each of the RCCW systems, a cooling water return pipeline from the emmergency component of each of the RCCW systems, a cooling water supply pipeline to each of the emmergency components of one of the RCCW system and the HPCCW system and a cooling water return pipeline from each of the emmergency components of one of the RCCW system and the HPCCW system. With such constitution, cooling water can be supplied also to the emmergency components in the stand-by system upon periodical inspection or ISI, thereby enabling to improve the backup performance of the emmergency cooling system. (I.N.)

  11. Photon emission from massive projectile impacts on solids.

    Science.gov (United States)

    Fernandez-Lima, F A; Pinnick, V T; Della-Negra, S; Schweikert, E A

    2011-01-01

    First evidence of photon emission from individual impacts of massive gold projectiles on solids for a number of projectile-target combinations is reported. Photon emission from individual impacts of massive Au(n) (+q) (1 ≤ n ≤ 400; q = 1-4) projectiles with impact energies in the range of 28-136 keV occurs in less than 10 ns after the projectile impact. Experimental observations show an increase in the photon yield from individual impacts with the projectile size and velocity. Concurrently with the photon emission, electron emission from the impact area has been observed below the kinetic emission threshold and under unlikely conditions for potential electron emission. We interpret the puzzling electron emission and correlated luminescence observation as evidence of the electronic excitation resulting from the high-energy density deposited by massive cluster projectiles during the impact.

  12. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Vakilian, M.

    1977-05-01

    The present study is the second part of a general survey of Gas Cooled Reactors (GCRs). In this part, the course of development, overall performance and present development status of High Temperature Gas Cooled Reactors (HTCRs) and advances of HTGR systems are reviewed. (author)

  13. 46 CFR 153.432 - Cooling systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a manual...

  14. Multiple Lightning Discharges in Wind Turbines Associated with Nearby Cloud-to-Ground Lightning

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Cummins, Kenneth L.; Madsen, Søren Find

    2015-01-01

    This paper presents the analysis of five events where simultaneous lightning currents were registered in different wind turbines of a wind farm with lightning monitoring equipment installed. Measurements from current monitoring devices installed at the wind turbines and observations from auto......-triggering video cameras were correlated with data from the U.S. National Lighting Detection Network. In all five events, the correlation showed that a cloud-to-ground (CG) lightning stroke with high peak current struck the ground within 10 km of the affected turbines at the time of the currents in the wind...... by the nearby CG strokes, involving mechanisms that vary depending on the polarity of the associated CG stroke. The analysis also suggests that the event of upward lightning from wind turbines triggered by nearby lightning activity occurs very often and therefore it should be considered carefully...

  15. Not-so-simple stellar populations in nearby, resolved massive star clusters

    Science.gov (United States)

    de Grijs, Richard; Li, Chengyuan

    2018-02-01

    Around the turn of the last century, star clusters of all kinds were considered ‘simple’ stellar populations. Over the past decade, this situation has changed dramatically. At the same time, star clusters are among the brightest stellar population components and, as such, they are visible out to much greater distances than individual stars, even the brightest, so that understanding the intricacies of star cluster composition and their evolution is imperative for understanding stellar populations and the evolution of galaxies as a whole. In this review of where the field has moved to in recent years, we place particular emphasis on the properties and importance of binary systems, the effects of rapid stellar rotation, and the presence of multiple populations in Magellanic Cloud star clusters across the full age range. Our most recent results imply a reverse paradigm shift, back to the old simple stellar population picture for at least some intermediate-age (˜1-3 Gyr old) star clusters, opening up exciting avenues for future research efforts.

  16. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Schulten, R.; Trauger, D.B.

    1976-01-01

    Experience to date with operation of high-temperature gas-cooled reactors has been quite favorable. Despite problems in completion of construction and startup, three high-temperature gas-cooled reactor (HTGR) units have operated well. The Windscale Advanced Gas-Cooled Reactor (AGR) in the United Kingdom has had an excellent operating history, and initial operation of commercial AGRs shows them to be satisfactory. The latter reactors provide direct experience in scale-up from the Windscale experiment to fullscale commercial units. The Colorado Fort St. Vrain 330-MWe prototype helium-cooled HTGR is now in the approach-to-power phase while the 300-MWe Pebble Bed THTR prototype in the Federal Republic of Germany is scheduled for completion of construction by late 1978. THTR will be the first nuclear power plant which uses a dry cooling tower. Fuel reprocessing and refabrication have been developed in the laboratory and are now entering a pilot-plant scale development. Several commercial HTGR power station orders were placed in the U.S. prior to 1975 with similar plans for stations in the FRG. However, the combined effects of inflation, reduced electric power demand, regulatory uncertainties, and pricing problems led to cancellation of the 12 reactors which were in various stages of planning, design, and licensing

  17. THE HST/ACS COMA CLUSTER SURVEY. IV. INTERGALACTIC GLOBULAR CLUSTERS AND THE MASSIVE GLOBULAR CLUSTER SYSTEM AT THE CORE OF THE COMA GALAXY CLUSTER

    International Nuclear Information System (INIS)

    Peng, Eric W.; Ferguson, Henry C.; Goudfrooij, Paul; Hammer, Derek; Lucey, John R.; Marzke, Ronald O.; Puzia, Thomas H.; Carter, David; Balcells, Marc; Bridges, Terry; Chiboucas, Kristin; Del Burgo, Carlos; Graham, Alister W.; Guzman, Rafael; Hudson, Michael J.; Matkovic, Ana

    2011-01-01

    Intracluster stellar populations are a natural result of tidal interactions in galaxy clusters. Measuring these populations is difficult, but important for understanding the assembly of the most massive galaxies. The Coma cluster of galaxies is one of the nearest truly massive galaxy clusters and is host to a correspondingly large system of globular clusters (GCs). We use imaging from the HST/ACS Coma Cluster Survey to present the first definitive detection of a large population of intracluster GCs (IGCs) that fills the Coma cluster core and is not associated with individual galaxies. The GC surface density profile around the central massive elliptical galaxy, NGC 4874, is dominated at large radii by a population of IGCs that extend to the limit of our data (R +4000 -5000 (systematic) IGCs out to this radius, and that they make up ∼70% of the central GC system, making this the largest GC system in the nearby universe. Even including the GC systems of other cluster galaxies, the IGCs still make up ∼30%-45% of the GCs in the cluster core. Observational limits from previous studies of the intracluster light (ICL) suggest that the IGC population has a high specific frequency. If the IGC population has a specific frequency similar to high-S N dwarf galaxies, then the ICL has a mean surface brightness of μ V ∼ 27 mag arcsec -2 and a total stellar mass of roughly 10 12 M sun within the cluster core. The ICL makes up approximately half of the stellar luminosity and one-third of the stellar mass of the central (NGC 4874+ICL) system. The color distribution of the IGC population is bimodal, with blue, metal-poor GCs outnumbering red, metal-rich GCs by a ratio of 4:1. The inner GCs associated with NGC 4874 also have a bimodal distribution in color, but with a redder metal-poor population. The fraction of red IGCs (20%), and the red color of those GCs, implies that IGCs can originate from the halos of relatively massive, L* galaxies, and not solely from the disruption of

  18. Improve crossflow cooling tower operation

    International Nuclear Information System (INIS)

    Burger, R.

    1989-01-01

    This paper reports how various crossflow cooling tower elements can be upgraded. A typical retrofit example is presented. In the past decade, cooling tower technology has progressed. If a cooling tower is over ten years old, chances are the heat transfer media and mechanical equipment were designed over 30 to 40 years ago. When a chemical plant expansion is projected or a facility desires to upgrade its equipment for greater output and energy efficiency, the cooling tower is usually neglected until someone discovers that the limiting factor of production is the quality of cold water returning from the cooling tower

  19. ALFIL: A Crowd Simulation Serious Game for Massive Evacuation Training and Awareness

    Science.gov (United States)

    García-García, César; Fernández-Robles, José Luis; Larios-Rosillo, Victor; Luga, Hervé

    2012-01-01

    This article presents the current development of a serious game for the simulation of massive evacuations. The purpose of this project is to promote self-protection through awareness of the procedures and different possible scenarios during the evacuation of a massive event. Sophisticated behaviors require massive computational power and it has…

  20. Power electronics cooling apparatus

    Science.gov (United States)

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  1. Discovery of a New Nearby Star

    Science.gov (United States)

    Teegarden, B. J.; Pravdo, S. H.; Covey, K.; Frazier, O.; Hawley, S. L.; Hicks, M.; Lawrence, K.; McGlynn, T.; Reid, I. N.; Shaklan, S. B.

    2003-01-01

    We report the discovery of a nearby star with a very large proper motion of 5.06 +/- 0.03 arcsec/yr. The star is called SO025300.5+165258 and referred to herein as HPMS (high proper motion star). The discovery came as a result of a search of the SkyMorph database, a sensitive and persistent survey that is well suited for finding stars with high proper motions. There are currently only 7 known stars with proper motions greater than 5 arcsec/yr. We have determined a preliminary value for the parallax of pi = 0.43 +/- 0.13 arcsec. If this value holds our new star ranks behind only the Alpha Centauri system (including Proxima Centauri) and Barnard's star in the list of our nearest stellar neighbours. The spectrum and measured tangential velocity indicate that HPMS is a main-sequence star with spectral type M6.5. However, if our distance measurement is correct, the HPMS is underluminous by 1.2 +/- 0.7 mag.

  2. Effects of massive transfusion on oxygen availability

    Directory of Open Access Journals (Sweden)

    José Otávio Costa Auler Jr

    Full Text Available OBJECTIVE: To determine oxygen derived parameters, hemodynamic and biochemical laboratory data (2,3 Diphosphoglycerate, lactate and blood gases analysis in patients after cardiac surgery who received massive blood replacement. DESIGN: Prospective study. SETTING: Heart Institute (Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Brazil. PARTICIPANTS: Twelve patients after cardiac surgery who received massive transfusion replacement; six of them evolved to a fatal outcome within the three-day postoperative follow-up. MEASUREMENTS AND MAIN RESULTS: The non-survivors group (n=6 presented high lactate levels and low P50 levels, when compared to the survivors group (p<0.05. Both groups presented an increase in oxygen consumption and O2 extraction, and there were no significant differences between them regarding these parameters. The 2,3 DPG levels were slightly reduced in both groups. CONCLUSIONS: This study shows that patients who are massively transfused following cardiovascular surgery present cell oxygenation disturbances probably as a result of O2 transport inadequacy.

  3. Transcatheter emboilization therapy of massive colonic bleeding

    International Nuclear Information System (INIS)

    Shin, G. H.; Oh, J. H.; Yoon, Y.

    1996-01-01

    To evaulate the efficacy and safety of emergent superselective transcatheter embolization for controlling massive colonic bleeding. Six of the seven patients who had symptom of massive gastrointestinal bleeding underwent emergent transcatheter embolization for control of the bleeding. Gastrointestinal bleeding in these patients was originated from various colonic diseases: rectal cancer(n=1), proctitis(n=1), benign ulcer(n=1), mucosal injury by ventriculoperitoneal shunt(n=1), and unknown(n=2). All patients except one with rectal cancer were critically ill. Superselective embolization were done by using Gelfoam particles and/or coils. The vessels embolized were ileocolic artery(n=1). superior rectal artery(n=2), inferior rectal artery (n=1), and middle and inferior rectal arteries(n=1). Hemostasis was successful immediately in all patients. Two underwnet surgery due to recurrent bleeding developed 3 days after the procedure(n=1) or in associalion with underlying rectal cancer(n=1). On surgical specimen of two cases, there was no mucosal ischemic change. Transcatheter embolization is a safe and effective treatment of method for the control of massive colonic bleeding

  4. Relativistic N-body simulations with massive neutrinos

    Science.gov (United States)

    Adamek, Julian; Durrer, Ruth; Kunz, Martin

    2017-11-01

    Some of the dark matter in the Universe is made up of massive neutrinos. Their impact on the formation of large scale structure can be used to determine their absolute mass scale from cosmology, but to this end accurate numerical simulations have to be developed. Due to their relativistic nature, neutrinos pose additional challenges when one tries to include them in N-body simulations that are traditionally based on Newtonian physics. Here we present the first numerical study of massive neutrinos that uses a fully relativistic approach. Our N-body code, gevolution, is based on a weak-field formulation of general relativity that naturally provides a self-consistent framework for relativistic particle species. This allows us to model neutrinos from first principles, without invoking any ad-hoc recipes. Our simulation suite comprises some of the largest neutrino simulations performed to date. We study the effect of massive neutrinos on the nonlinear power spectra and the halo mass function, focusing on the interesting mass range between 0.06 eV and 0.3 eV and including a case for an inverted mass hierarchy.

  5. CONSTRAINING THE SPIN-DOWN OF THE NEARBY ISOLATED NEUTRON STAR RX J0806.4-4123, AND IMPLICATIONS FOR THE POPULATION OF NEARBY NEUTRON STARS

    International Nuclear Information System (INIS)

    Kaplan, D. L.; Van Kerkwijk, M. H.

    2009-01-01

    The nearby isolated neutron stars (INSs) are a group of seven relatively slowly rotating neutron stars that show thermal X-ray spectra, most with broad absorption features. They are interesting both because they may allow one to determine fundamental neutron-star properties by modeling their spectra, and because they appear to be a large fraction of the overall neutron-star population. Here, we describe a series of XMM -Newton observations of the nearby INS RX J0806.4-4123, taken as part of larger program of timing studies. From these, we limit the spin-down rate to ν-dot=(-4.3±2.3)x10 -16 Hz s -1 . This constrains the dipole magnetic field to be 13 G at 2σ, significantly less than the field of ∼10 14 G implied by simple models for the X-ray absorption found at 0.45 keV. We confirm that the spectrum is thermal and stable (to within a few percent), but find that the 0.45 keV absorption feature is broader and more complex than previously thought. Considering the population of INSs, we find that magnetic field decay from an initial field of ∼ 14 G accounts most naturally for their timing and spectral properties, both qualitatively and in the context of the models for field decay of Pons and collaborators.

  6. Satisfying the Einstein-Podolsky-Rosen criterion with massive particles

    Science.gov (United States)

    Peise, J.; Kruse, I.; Lange, K.; Lücke, B.; Pezzè, L.; Arlt, J.; Ertmer, W.; Hammerer, K.; Santos, L.; Smerzi, A.; Klempt, C.

    2016-03-01

    In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum mechanics by devising a quantum state of two massive particles with maximally correlated space and momentum coordinates. The EPR criterion qualifies such continuous-variable entangled states, as shown successfully with light fields. Here, we report on the production of massive particles which meet the EPR criterion for continuous phase/amplitude variables. The created quantum state of ultracold atoms shows an EPR parameter of 0.18(3), which is 2.4 standard deviations below the threshold of 1/4. Our state presents a resource for tests of quantum nonlocality with massive particles and a wide variety of applications in the field of continuous-variable quantum information and metrology.

  7. The MASSIVE survey. I. A volume-limited integral-field spectroscopic study of the most massive early-type galaxies within 108 Mpc

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chung-Pei [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Greene, Jenny E.; Murphy, Jeremy D. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); McConnell, Nicholas [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Janish, Ryan [Department of Physics, University of California, Berkeley, CA 94720 (United States); Blakeslee, John P. [Dominion Astrophysical Observatory, NRC Herzberg Institute of Astrophysics, Victoria, BC V9E 2E7 (Canada); Thomas, Jens, E-mail: cpma@berkeley.edu [Max Planck-Institute for Extraterrestrial Physics, Giessenbachstr. 1, D-85741 Garching (Germany)

    2014-11-10

    Massive early-type galaxies represent the modern day remnants of the earliest major star formation episodes in the history of the universe. These galaxies are central to our understanding of the evolution of cosmic structure, stellar populations, and supermassive black holes, but the details of their complex formation histories remain uncertain. To address this situation, we have initiated the MASSIVE Survey, a volume-limited, multi-wavelength, integral-field spectroscopic (IFS) and photometric survey of the structure and dynamics of the ∼100 most massive early-type galaxies within a distance of 108 Mpc. This survey probes a stellar mass range M* ≳ 10{sup 11.5} M {sub ☉} and diverse galaxy environments that have not been systematically studied to date. Our wide-field IFS data cover about two effective radii of individual galaxies, and for a subset of them, we are acquiring additional IFS observations on sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band imaging to trace the extended halos of the galaxies and measure accurate total magnitudes. Dynamical orbit modeling of the combined data will allow us to simultaneously determine the stellar, black hole, and dark matter halo masses. The primary goals of the project are to constrain the black hole scaling relations at high masses, investigate systematically the stellar initial mass function and dark matter distribution in massive galaxies, and probe the late-time assembly of ellipticals through stellar population and kinematical gradients. In this paper, we describe the MASSIVE sample selection, discuss the distinct demographics and structural and environmental properties of the selected galaxies, and provide an overview of our basic observational program, science goals and early survey results.

  8. Spin-3 topologically massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chen Bin, E-mail: bchen01@pku.edu.cn [Department of Physics, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Center for High Energy Physics, Peking University, Beijing 100871 (China); Long Jiang, E-mail: longjiang0301@gmail.com [Department of Physics, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Wu Junbao, E-mail: wujb@ihep.ac.cn [Institute of High Energy Physics, and Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049 (China)

    2011-11-24

    In this Letter, we study the spin-3 topologically massive gravity (TMG), paying special attention to its properties at the chiral point. We propose an action describing the higher spin fields coupled to TMG. We discuss the traceless spin-3 fluctuations around the AdS{sub 3} vacuum and find that there is an extra local massive mode, besides the left-moving and right-moving boundary massless modes. At the chiral point, such extra mode becomes massless and degenerates with the left-moving mode. We show that at the chiral point the only degrees of freedom in the theory are the boundary right-moving graviton and spin-3 field. We conjecture that spin-3 chiral gravity with generalized Brown-Henneaux boundary condition is holographically dual to 2D chiral CFT with classical W{sub 3} algebra and central charge c{sub R}=3l/G.

  9. Minimal theory of massive gravity

    Directory of Open Access Journals (Sweden)

    Antonio De Felice

    2016-01-01

    Full Text Available We propose a new theory of massive gravity with only two propagating degrees of freedom. While the homogeneous and isotropic background cosmology and the tensor linear perturbations around it are described by exactly the same equations as those in the de Rham–Gabadadze–Tolley (dRGT massive gravity, the scalar and vector gravitational degrees of freedom are absent in the new theory at the fully nonlinear level. Hence the new theory provides a stable nonlinear completion of the self-accelerating cosmological solution that was originally found in the dRGT theory. The cosmological solution in the other branch, often called the normal branch, is also rendered stable in the new theory and, for the first time, makes it possible to realize an effective equation-of-state parameter different from (either larger or smaller than −1 without introducing any extra degrees of freedom.

  10. Environmental sustainability by adoption of alternate cooling media for condenser cooling

    International Nuclear Information System (INIS)

    Gandhi, Jaymin; Patel, Nilesh

    2015-01-01

    Water having ability to dissolve most substances and to support biological life, every cooling water system in power plant is subjected to potential operational problems which are mainly corrosion, scaling and biological fouling. Control of cooling water chemistry is very critical in preventing above said problems. In view of scarcity of water and looking into the future trends in the environment protection, water media can be replaced with air. Having such concept in thermal and combined cycle power plants, use of Air-cooled condenser (ACC) for Nuclear power plant may be explored. During last decade number of installations with ACC also increased, largely in response to the growing attention being paid to environmental concerns as well of water scarcity. The rising importance of 'Save Water and Environment', calls for a broader understanding of the design and application principles involved for ACC. This paper identifies the basic configurations of air cooled condensers used in the power industry together with their merits and demerits when compared to those exhibited by traditional steam surface condensers including environmental and corrosion issues. Several factors that affect the performance of air-cooled condensers are described in detail, especially the consequences that result from the fouling of the finned-tubes. To rectify the degradations in performance that result from external tube fouling, a number of cleaning procedures are described. Due to relatively high cost of sweet water and large requirement of sea water, Air cooled condenser may become viable option in future. (author)

  11. Gas cooled reactors

    International Nuclear Information System (INIS)

    Kojima, Masayuki.

    1985-01-01

    Purpose: To enable direct cooling of reactor cores thereby improving the cooling efficiency upon accidents. Constitution: A plurality sets of heat exchange pipe groups are disposed around the reactor core, which are connected by way of communication pipes with a feedwater recycling device comprising gas/liquid separation device, recycling pump, feedwater pump and emergency water tank. Upon occurrence of loss of primary coolants accidents, the heat exchange pipe groups directly absorb the heat from the reactor core through radiation and convection. Although the water in the heat exchange pipe groups are boiled to evaporate if the forcive circulation is interrupted by the loss of electric power source, water in the emergency tank is supplied due to the head to the heat exchange pipe groups to continue the cooling. Furthermore, since the heat exchange pipe groups surround the entire circumference of the reactor core, cooling is carried out uniformly without resulting deformation or stresses due to the thermal imbalance. (Sekiya, K.)

  12. Nearby supernova host galaxies from the CALIFA survey. II. Supernova environmental metallicity

    NARCIS (Netherlands)

    Galbany, L.; Stanishev, V.; Mourão, A. M.; Rodrigues, M.; Flores, H.; Walcher, C. J.; Sánchez, S. F.; García-Benito, R.; Mast, D.; Badenes, C.; González Delgado, R. M.; Kehrig, C.; Lyubenova, M.; Marino, R. A.; Mollá, M.; Meidt, S.; Pérez, E.; van de Ven, G.; Vílchez, J. M.

    2016-01-01

    The metallicity of a supernova progenitor, together with its mass, is one of the main parameters that can rule the progenitor's fate. We present the second study of nearby supernova (SN) host galaxies (0.005 ⊙) > 10 dex) by targeted searches. We neither found evidence that the metallicity at the SN

  13. Core cooling system for reactor

    International Nuclear Information System (INIS)

    Kondo, Ryoichi; Amada, Tatsuo.

    1976-01-01

    Purpose: To improve the function of residual heat dissipation from the reactor core in case of emergency by providing a secondary cooling system flow channel, through which fluid having been subjected to heat exchange with the fluid flowing in a primary cooling system flow channel flows, with a core residual heat removal system in parallel with a main cooling system provided with a steam generator. Constitution: Heat generated in the core during normal reactor operation is transferred from a primary cooling system flow channel to a secondary cooling system flow channel through a main heat exchanger and then transferred through a steam generator to a water-steam system flow channel. In the event if removal of heat from the core by the main cooling system becomes impossible due to such cause as breakage of the duct line of the primary cooling system flow channel or a trouble in a primary cooling system pump, a flow control valve is opened, and steam generator inlet and outlet valves are closed, thus increasing the flow rate in the core residual heat removal system. Thereafter, a blower is started to cause dissipation of the core residual heat from the flow channel of a system for heat dissipation to atmosphere. (Seki, T.)

  14. Stochastic cooling in muon colliders

    International Nuclear Information System (INIS)

    Barletta, W.A.; Sessler, A.M.

    1993-09-01

    Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10 30 cm -2 s -1 as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to ∼10 3 for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW

  15. Multimodality imaging findings of massive ovarian edema in children

    Energy Technology Data Exchange (ETDEWEB)

    Dahmoush, Hisham [Stanford University Medical Center, Department of Radiology, Neuroradiology Division, Stanford, CA (United States); Anupindi, Sudha A.; Chauvin, Nancy A. [University of Pennsylvania, The Children' s Hospital of Philadelphia, Department of Radiology, Perelman School of Medicine, Philadelphia, PA (United States); Pawel, Bruce R. [University of Pennsylvania, The Children' s Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA (United States)

    2017-05-15

    Massive ovarian edema is a rare benign condition that predominantly affects childbearing women as well as preadolescent girls. It is thought to result from intermittent or partial torsion of the ovary compromising the venous and lymphatic drainage but with preserved arterial supply. The clinical features of massive ovarian edema are nonspecific and can simulate tumors, leading to unnecessary oophorectomy. To demonstrate imaging features that should alert radiologists to consider the diagnosis of massive ovarian edema preoperatively so that fertility-sparing surgery may be considered. We identified five girls diagnosed with massive ovarian edema at pathology. Presenting symptoms, sidedness, imaging appearance, preoperative diagnosis, and operative and histopathological findings were reviewed. Age range was 9.6-14.3 years (mean age: 12.5 years). Common imaging findings included ovarian enlargement with edema of the stroma, peripherally placed follicles, isointense signal on T1-W MRI and markedly hyperintense signal on T2-W MRI, preservation of color Doppler flow by US, and CT Hounsfield units below 40. The uterus was deviated to the affected side in all patients. Two of the five patients had small to moderate amounts of free pelvic fluid. Mean ovarian volume on imaging was 560 mL (range: 108-1,361 mL). While the clinical presentation of massive ovarian edema is nonspecific, an enlarged ovary with stromal edema, peripherally placed follicles and preservation of blood flow may be suggestive and wedge biopsy should be considered intraoperatively to avoid unnecessary removal of the ovary. (orig.)

  16. Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity

    International Nuclear Information System (INIS)

    Bluhm, Robert; Fung Shuhong; Kostelecky, V. Alan

    2008-01-01

    Theories with spontaneous local Lorentz and diffeomorphism violation contain massless Nambu-Goldstone modes, which arise as field excitations in the minimum of the symmetry-breaking potential. If the shape of the potential also allows excitations above the minimum, then an alternative gravitational Higgs mechanism can occur in which massive modes involving the metric appear. The origin and basic properties of the massive modes are addressed in the general context involving an arbitrary tensor vacuum value. Special attention is given to the case of bumblebee models, which are gravitationally coupled vector theories with spontaneous local Lorentz and diffeomorphism violation. Mode expansions are presented in both local and spacetime frames, revealing the Nambu-Goldstone and massive modes via decomposition of the metric and bumblebee fields, and the associated symmetry properties and gauge fixing are discussed. The class of bumblebee models with kinetic terms of the Maxwell form is used as a focus for more detailed study. The nature of the associated conservation laws and the interpretation as a candidate alternative to Einstein-Maxwell theory are investigated. Explicit examples involving smooth and Lagrange-multiplier potentials are studied to illustrate features of the massive modes, including their origin, nature, dispersion laws, and effects on gravitational interactions. In the weak static limit, the massive mode and Lagrange-multiplier fields are found to modify the Newton and Coulomb potentials. The nature and implications of these modifications are examined.

  17. Multimodality imaging findings of massive ovarian edema in children

    International Nuclear Information System (INIS)

    Dahmoush, Hisham; Anupindi, Sudha A.; Chauvin, Nancy A.; Pawel, Bruce R.

    2017-01-01

    Massive ovarian edema is a rare benign condition that predominantly affects childbearing women as well as preadolescent girls. It is thought to result from intermittent or partial torsion of the ovary compromising the venous and lymphatic drainage but with preserved arterial supply. The clinical features of massive ovarian edema are nonspecific and can simulate tumors, leading to unnecessary oophorectomy. To demonstrate imaging features that should alert radiologists to consider the diagnosis of massive ovarian edema preoperatively so that fertility-sparing surgery may be considered. We identified five girls diagnosed with massive ovarian edema at pathology. Presenting symptoms, sidedness, imaging appearance, preoperative diagnosis, and operative and histopathological findings were reviewed. Age range was 9.6-14.3 years (mean age: 12.5 years). Common imaging findings included ovarian enlargement with edema of the stroma, peripherally placed follicles, isointense signal on T1-W MRI and markedly hyperintense signal on T2-W MRI, preservation of color Doppler flow by US, and CT Hounsfield units below 40. The uterus was deviated to the affected side in all patients. Two of the five patients had small to moderate amounts of free pelvic fluid. Mean ovarian volume on imaging was 560 mL (range: 108-1,361 mL). While the clinical presentation of massive ovarian edema is nonspecific, an enlarged ovary with stromal edema, peripherally placed follicles and preservation of blood flow may be suggestive and wedge biopsy should be considered intraoperatively to avoid unnecessary removal of the ovary. (orig.)

  18. A Massive-born Neutron Star with a Massive White Dwarf Companion

    Energy Technology Data Exchange (ETDEWEB)

    Cognard, Ismaël; Guillemot, Lucas; Theureau, Gilles [Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, Université d’Orléans/CNRS, F-45071 Orléans Cedex 02 (France); Freire, Paulo C. C. [Station de radioastronomie de Nançay, Observatoire de Paris, CNRS/INSU, F-18330 Nançay (France); Tauris, Thomas M.; Wex, Norbert; Graikou, Eleni; Kramer, Michael; Desvignes, Gregory; Lazarus, Patrick [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Stappers, Benjamin; Lyne, Andrew G. [Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, The University of Manchester, M13 9PL (United Kingdom); Bassa, Cees [ASTRON, The Netherlands Institute for Radioastronomy, Postbus 2, 7900 AA, Dwingeloo (Netherlands)

    2017-08-01

    We report on the results of a 4 year timing campaign of PSR J2222−0137, a 2.44 day binary pulsar with a massive white dwarf (WD) companion, with the Nançay, Effelsberg, and Lovell radio telescopes. Using the Shapiro delay for this system, we find a pulsar mass m {sub p} = 1.76 ± 0.06 M {sub ⊙} and a WD mass m {sub c} = 1.293 ± 0.025 M {sub ⊙}. We also measure the rate of advance of periastron for this system, which is marginally consistent with the general relativity prediction for these masses. The short lifetime of the massive WD progenitor star led to a rapid X-ray binary phase with little (< 10{sup −2} M {sub ⊙}) mass accretion onto the neutron star; hence, the current pulsar mass is, within uncertainties, its birth mass, which is the largest measured to date. We discuss the discrepancy with previous mass measurements for this system; we conclude that the measurements presented here are likely to be more accurate. Finally, we highlight the usefulness of this system for testing alternative theories of gravity by tightly constraining the presence of dipolar radiation. This is of particular importance for certain aspects of strong-field gravity, like spontaneous scalarization, since the mass of PSR J2222−0137 puts that system into a poorly tested parameter range.

  19. Reactor core cooling device

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro.

    1986-01-01

    Purpose: To safely and effectively cool down the reactor core after it has been shut down but is still hot due to after-heat. Constitution: Since the coolant extraction nozzle is situated at a location higher than the coolant injection nozzle, the coolant sprayed from the nozzle, is free from sucking immediately from the extraction nozzle and is therefore used effectively to cool the reactor core. As all the portions from the top to the bottom of the reactor are cooled simultaneously, the efficiency of the reactor cooling process is increased. Since the coolant extraction nozzle can be installed at a point considerably higher than the coolant injection nozzle, the distance from the coolant surface to the point of the coolant extraction nozzle can be made large, preventing cavitation near the coolant extraction nozzle. Therefore, without increasing the capacity of the heat exchanger, the reactor can be cooled down after a shutdown safely and efficiently. (Kawakami, Y.)

  20. The Fate of Massive Black Holes in Gas-Rich Galaxy Mergers

    Science.gov (United States)

    Escala, A.; Larson, R. B.; Coppi, P. S.; Mardones, D.

    2006-06-01

    Using SPH numerical simulations, we investigate the effects of gas on the inspiral and merger of a massive black hole binary. This study is motivated by the very massive nuclear gas disks observed in the central regions of merging galaxies. Here we present results that expand on the treatment in previous works (Escala et al. 2004, 2005), by studying the evolution of a binary with different black holes masses in a massive gas disk.