WorldWideScience

Sample records for mass spectrometry analyses

  1. Fourier Transform Mass Spectrometry: The Transformation of Modern Environmental Analyses

    Directory of Open Access Journals (Sweden)

    Lucy Lim

    2016-01-01

    Full Text Available Unknown compounds in environmental samples are difficult to identify using standard mass spectrometric methods. Fourier transform mass spectrometry (FTMS has revolutionized how environmental analyses are performed. With its unsurpassed mass accuracy, high resolution and sensitivity, researchers now have a tool for difficult and complex environmental analyses. Two features of FTMS are responsible for changing the face of how complex analyses are accomplished. First is the ability to quickly and with high mass accuracy determine the presence of unknown chemical residues in samples. For years, the field has been limited by mass spectrometric methods that were based on knowing what compounds of interest were. Secondly, by utilizing the high resolution capabilities coupled with the low detection limits of FTMS, analysts also could dilute the sample sufficiently to minimize the ionization changes from varied matrices.

  2. Structural analyses of sucrose laurate regioisomers by mass spectrometry techniques

    DEFF Research Database (Denmark)

    Lie, Aleksander; Stensballe, Allan; Pedersen, Lars Haastrup

    2015-01-01

    6- And 6′-O-lauroyl sucrose were isolated and analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS), Orbitrap high-resolution (HR) MS, and electrospray-ionization (ESI) tandem mass spectrometry (MS/MS). The analyses aimed to explore.......8, respectively, and Orbitrap HRMS confirmed the mass of [M+Na]+ (m/z 547.2712). ESI-MS/MS on the precursor ion [M+Na]+ resulted in product ion mass spectra showing two high-intensity signals for each sample. 6-O-Lauroyl sucrose produced signals located at m/z 547.27 and m/z 385.21, corresponding to the 6-O......-lauroyl glucose sodium adduct ions, while the signals for 6′-O-lauroyl sucrose were located at m/z 385.22 and 367.20, respectively corresponding to the sodium adduct ions with 6-O-lauroyl fructose and 6-O-lauroyl fructosyl. The mass spectra of the two regioisomers were clearly different, and the investigation...

  3. Mass spectrometry-based proteomic analyses of contact lens deposition.

    Science.gov (United States)

    Green-Church, Kari B; Nichols, Jason J

    2008-02-08

    The purpose of this report is to describe the contact lens deposition proteome associated with two silicone hydrogel contact lenses and care solutions using a mass spectrometric-based approach. This was a randomized, controlled, examiner-masked crossover clinical trial that included 48 participants. Lenses and no-rub care solutions evaluated included galyfilcon A (Acuvue Advance, Vistakon Inc., Jacksonville, FL), lotrafilcon B (O2 Optix, CIBA Vision Inc., Duluth, GA), AQuify (CIBA Vision Inc.), and ReNu MoistureLoc (Bausch and Lomb Inc., Rochester, NY). After two weeks of daily wear in each lens-solution combination, the left lens was removed by the examiner (using gloves and forceps) and placed in a protein precipitation buffer (acetone). The precipitate was quantitated for total protein concentration (per lens), and proteins were then identified using liquid chromatography tandem mass spectrometry (nano-LC-MS/MS) and peptide sequencing. Between 7.32 and 9.76 microg/lens of protein was observed on average from each lens-solution combination. There were 19 total unique proteins identified across the two lens materials, and six proteins were identified in all four lens-solution combinations including lipocalin, lysozyme, lacritin, lactoferrin, proline rich 4, and Ig Alpha. Lotrafilcon B was associated with 15 individual proteins (across both care solutions), and 53% of these proteins were observed in at least 50% of the analyses. Galyfilcon A was associated with 13 individual proteins, and 38.5% of these proteins were observed in at least 50% of the analyses. There were three unique proteins identified from galyfilcon A and four unique proteins identified from lotrafilcon B. The total amount of proteins identified from silicone hydrogel materials is much less than the amount from traditional soft lens materials. For the most part, the deposition proteome across these lenses is similar, although the different polymer characteristics might be associated with some

  4. Review of Mass Spectrometry Data from Waste Tank Headspace Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Sklarew, Debbie S.; Mitroshkov, Alexandre V.

    2006-02-28

    Numerous analytes have been categorized as tentatively identified compounds (TICs) in air samples from the headspaces of the Hanford Site high-level radioactive waste tanks. The tentative identification of these compounds was based mainly on the agreement between the observed mass spectra and a library of published mass spectra with consideration given to the gas chromatographic conditions and retention times. Many of the TICs were found in a limited number of tanks, were identified by only one laboratory or by one method, and/or were thought to be unlikely components of the waste or its degradation products. Consequently, the mass spectra of selected analytes have been reviewed to determine if their tentative identifications were correct. From our current review of 49 TICs, we found 25 that were misidentified and recommend that 54 of the associated results be flagged as suspect and 22 of the associated results be assigned a different compound name.

  5. Mass spectrometry-based proteomic analyses of contact lens deposition

    OpenAIRE

    Green-Church, Kari B.; Nichols, Jason J.

    2008-01-01

    Purpose The purpose of this report is to describe the contact lens deposition proteome associated with two silicone hydrogel contact lenses and care solutions using a mass spectrometric-based approach. Methods This was a randomized, controlled, examiner-masked crossover clinical trial that included 48 participants. Lenses and no-rub care solutions evaluated included galyfilcon A (Acuvue Advance, Vistakon Inc., Jacksonville, FL), lotrafilcon B (O2 Optix, CIBA Vision Inc., Duluth, GA), AQuify (...

  6. Mass spectrometry-based proteomic analyses of contact lens deposition

    OpenAIRE

    Green-Church, Kari B.; Nichols, Jason J.

    2008-01-01

    Purpose The purpose of this report is to describe the contact lens deposition proteome associated with two silicone hydrogel contact lenses and care solutions using a mass spectrometric-based approach. Methods This was a randomized, controlled, examiner-masked crossover clinical trial that included 48 participants. Lenses and no-rub care solutions evaluated included galyfilcon A (Acuvue Advance, Vistakon Inc., Jacksonville, FL), lotrafilcon B (O2 Optix, CIBA Vision Inc., Duluth, GA), AQuify (...

  7. Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xueyun [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352,; Wojcik, Roza [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352,; Zhang, Xing [Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, University of Colorado, Denver, Colorado 80045; Ibrahim, Yehia M. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352,; Burnum-Johnson, Kristin E. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352,; Orton, Daniel J. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352,; Monroe, Matthew E. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352,; Moore, Ronald J. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352,; Smith, Richard D. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352,; Baker, Erin S. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352,

    2017-06-12

    Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. IMS alone is useful, but its coupling with mass spectrometry (MS) and front-end separations has been extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information in biological and environmental sample analyses. Multiple studies in disease screening and environmental evaluations have even shown these IMS-based multidimensional separations extract information not possible with each technique individually. This review highlights 3-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography (GC), supercritical fluid chromatography (SFC), liquid chromatography (LC), solid phase extractions (SPE), capillary electrophoresis (CE), field asymmetric ion mobility spectrometry (FAIMS), and microfluidic devices. The origination, current state, various applications, and future capabilities for these multidimensional approaches are described to provide insight into the utility and potential of each technique.

  8. Proteins isolated with TRIzol are compatible with two-dimensional electrophoresis and mass spectrometry analyses.

    Science.gov (United States)

    Young, Clifford; Truman, Penelope

    2012-02-01

    TRIzol is used for RNA isolation but also permits protein recovery. We investigated whether proteins prepared with TRIzol were suitable for two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization mass spectrometry. Proteins from TRIzol-treated SH-SY5Y cells produced 2-DE spot patterns similar to those from an equivalent untreated sample. Subsequent identification of TRIzol-treated proteins using peptide mass fingerprinting was successful. TRIzol exposure altered neither the mass of myoglobin extracted from sodium dodecyl sulfate (SDS) gels nor the masses of myoglobin peptides produced by in-gel trypsin digestion. These findings suggest that proteins isolated with TRIzol remain amenable to proteomic analyses.

  9. Mass spectrometry

    DEFF Research Database (Denmark)

    Nyvang Hartmeyer, Gitte; Jensen, Anne Kvistholm; Böcher, Sidsel

    2010-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently being introduced for the rapid and accurate identification of bacteria. We describe 2 MALDI-TOF MS identification cases - 1 directly on spinal fluid and 1 on grown bacteria. Rapidly obtained r...

  10. Analyses of acute kidney injury biomarkers by ultra-high performance liquid chromatography with mass spectrometry.

    Science.gov (United States)

    Al Za'abi, Mohammed; Ali, Badreldin H; ALOthman, Zeid A; Ali, Imran

    2016-01-01

    The newly developed acute kidney injury biomarkers are very important for the early and timely detection of kidney diseases. This review contains details of the analyses of several acute kidney injury biomarkers using ultra-high performance liquid chromatography-mass spectrometry in urine and plasma samples. In this review we attempt to discuss some aspects of the types of the biomarkers, patents, sample preparation, and the analyses. Besides, efforts were also made to discuss the possible uses of superficially porous (core-shell) columns in traditional and inexpensive high-performance liquid chromatography instruments. Additionally, the challenges and the future prospects are also highlighted. The present review will be useful for the academicians, scientists, and clinicians for the early detection of acute kidney injury biomarkers.

  11. Qualitative Gas Chromatography-Mass Spectrometry Analyses Using Amines as Chemical Ionization Reagent Gases

    Science.gov (United States)

    Little, James L.; Howard, Adam S.

    2013-12-01

    Ammonia is a very useful chemical ionization (CI) reagent gas for the qualitative analyses of compounds by positive ion gas chromatography-mass spectrometry (GCMS). The gas is readily available, inexpensive, and leaves no carbon contamination in the MS source. Compounds of interest to our laboratory typically yield abundant protonated or ammoniated species, which are indicative of a compound's molecular weight. Nevertheless, some labile compounds fragment extensively by substitution and elimination reactions and yield no molecular weight information. In these cases, a CI reagent gas mixture of methylamine in methane prepared dynamically was found to be very useful in obtaining molecular weight data. Likewise, deuterated ammonia and deuterated methylamine are useful CI reagent gases for determining the exchangeable protons in organic compounds. Deuterated methylamine CI reagent gas is conveniently prepared by dynamically mixing small amounts of methylamine with excess deuterated ammonia.

  12. An accessible, scalable ecosystem for enabling and sharing diverse mass spectrometry imaging analyses.

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, CR; Ruebel, O; Bowen, BP

    2016-01-01

    Mass spectrometry imaging (MSI) is used in an increasing number of biological applications. Typical MSI datasets contain unique, high-resolution mass spectra from tens of thousands of spatial locations, resulting in raw data sizes of tens of gigabytes per sample. In this paper, we review technical progress that is enabling new biological applications and that is driving an increase in the complexity and size of MSI data. Handling such data often requires specialized computational infrastructure, software, and expertise. OpenMSI, our recently described platform, makes it easy to explore and share MSI datasets via the web - even when larger than 50 GB. Here we describe the integration of OpenMSI with IPython notebooks for transparent, sharable, and replicable MSI research. An advantage of this approach is that users do not have to share raw data along with analyses; instead, data is retrieved via OpenMSI's web API. The IPython notebook interface provides a low-barrier entry point for data manipulation that is accessible for scientists without extensive computational training. Via these notebooks, analyses can be easily shared without requiring any data movement. We provide example notebooks for several common MSI analysis types including data normalization, plotting, clustering, and classification, and image registration.

  13. An accessible, scalable ecosystem for enabling and sharing diverse mass spectrometry imaging analyses.

    Science.gov (United States)

    Fischer, Curt R; Ruebel, Oliver; Bowen, Benjamin P

    2016-01-01

    Mass spectrometry imaging (MSI) is used in an increasing number of biological applications. Typical MSI datasets contain unique, high-resolution mass spectra from tens of thousands of spatial locations, resulting in raw data sizes of tens of gigabytes per sample. In this paper, we review technical progress that is enabling new biological applications and that is driving an increase in the complexity and size of MSI data. Handling such data often requires specialized computational infrastructure, software, and expertise. OpenMSI, our recently described platform, makes it easy to explore and share MSI datasets via the web - even when larger than 50 GB. Here we describe the integration of OpenMSI with IPython notebooks for transparent, sharable, and replicable MSI research. An advantage of this approach is that users do not have to share raw data along with analyses; instead, data is retrieved via OpenMSI's web API. The IPython notebook interface provides a low-barrier entry point for data manipulation that is accessible for scientists without extensive computational training. Via these notebooks, analyses can be easily shared without requiring any data movement. We provide example notebooks for several common MSI analysis types including data normalization, plotting, clustering, and classification, and image registration.

  14. Cyclodextrin--piroxicam inclusion complexes: analyses by mass spectrometry and molecular modelling

    Science.gov (United States)

    Gallagher, Richard T.; Ball, Christopher P.; Gatehouse, Deborah R.; Gates, Paul J.; Lobell, Mario; Derrick, Peter J.

    1997-11-01

    Mass spectrometry has been used to investigate the natures of non-covalent complexes formed between the anti-inflammatory drug piroxicam and [alpha]-, [beta]- and [gamma]-cyclodextrins. Energies of these complexes have been calculated by means of molecular modelling. There is a correlation between peak intensities in the mass spectra and the calculated energies.

  15. Accelerator mass spectrometry analyses of environmental radionuclides: sensitivity, precision and standardisation

    Science.gov (United States)

    Hotchkis; Fink; Tuniz; Vogt

    2000-07-01

    Accelerator Mass Spectrometry (AMS) is the analytical technique of choice for the detection of long-lived radionuclides which cannot be practically analysed with decay counting or conventional mass spectrometry. AMS allows an isotopic sensitivity as low as one part in 10(15) for 14C (5.73 ka), 10Be (1.6 Ma), 26Al (720 ka), 36Cl (301 ka), 41Ca (104 ka), 129I (16 Ma) and other long-lived radionuclides occurring in nature at ultra-trace levels. These radionuclides can be used as tracers and chronometers in many disciplines: geology, archaeology, astrophysics, biomedicine and materials science. Low-level decay counting techniques have been developed in the last 40-50 years to detect the concentration of cosmogenic, radiogenic and anthropogenic radionuclides in a variety of specimens. Radioactivity measurements for long-lived radionuclides are made difficult by low counting rates and in some cases the need for complicated radiochemistry procedures and efficient detectors of soft beta-particles and low energy x-rays. The sensitivity of AMS is unaffected by the half-life of the isotope being measured, since the atoms not the radiations that result from their decay, are counted directly. Hence, the efficiency of AMS in the detection of long-lived radionuclides is 10(6)-10(9) times higher than decay counting and the size of the sample required for analysis is reduced accordingly. For example, 14C is being analysed in samples containing as little as 20 microg carbon. There is also a world-wide effort to use AMS for the analysis of rare nuclides of heavy mass, such as actinides, with important applications in safeguards and nuclear waste disposal. Finally, AMS microprobes are being developed for the in-situ analysis of stable isotopes in geological samples, semiconductors and other materials. Unfortunately, the use of AMS is limited by the expensive accelerator technology required, but there are several attempts to develop compact AMS spectrometers at low (< or = 0.5 MV

  16. Mass spectrometry-based proteomics and analyses of serum: a primer for the clinical investigator.

    Science.gov (United States)

    Fusaro, V A; Stone, J H

    2003-01-01

    The vocabulary of proteomics and the swiftly-developing, technological nature of the field constitute substantial barriers to clinical investigators. In recent years, mass spectrometry has emerged as the most promising technique in this field. The purpose of this review is to introduce the field of mass spectrometry-based proteomics to clinical investigators, to explain many of the relevant terms, to introduce the equipment employed in this field, and to outline approaches to asking clinical questions using a proteomic approach. Examples of clinical applications of proteomic techniques are provided from the fields of cancer and vasculitis research, with an emphasis on a pattern recognition approach.

  17. The use of secondary ion mass spectrometry in forensic analyses of ultra-small samples

    Science.gov (United States)

    Cliff, John

    2010-05-01

    It is becoming increasingly important in forensic science to perform chemical and isotopic analyses on very small sample sizes. Moreover, in some instances the signature of interest may be incorporated in a vast background making analyses impossible by bulk methods. Recent advances in instrumentation make secondary ion mass spectrometry (SIMS) a powerful tool to apply to these problems. As an introduction, we present three types of forensic analyses in which SIMS may be useful. The causal organism of anthrax (Bacillus anthracis) chelates Ca and other metals during spore formation. Thus, the spores contain a trace element signature related to the growth medium that produced the organisms. Although other techniques have been shown to be useful in analyzing these signatures, the sample size requirements are generally relatively large. We have shown that time of flight SIMS (TOF-SIMS) combined with multivariate analysis, can clearly separate Bacillus sp. cultures prepared in different growth media using analytical spot sizes containing approximately one nanogram of spores. An important emerging field in forensic analysis is that of provenance of fecal pollution. The strategy of choice for these analyses-developing host-specific nucleic acid probes-has met with considerable difficulty due to lack of specificity of the probes. One potentially fruitful strategy is to combine in situ nucleic acid probing with high precision isotopic analyses. Bulk analyses of human and bovine fecal bacteria, for example, indicate a relative difference in d13C content of about 4 per mil. We have shown that sample sizes of several nanograms can be analyzed with the IMS 1280 with precisions capable of separating two per mil differences in d13C. The NanoSIMS 50 is capable of much better spatial resolution than the IMS 1280, albeit at a cost of analytical precision. Nevertheless we have documented precision capable of separating five per mil differences in d13C using analytical spots containing

  18. Authenticity of Benin metalworks evaluated by inductively coupled plasma mass spectrometry and lead isotope analyses

    Science.gov (United States)

    Fabbri, E.; Soffritti, C.; Merlin, M.; Vaccaro, C.; Garagnani, G. L.

    2017-05-01

    Two metal plaques and a cock statuette belonging to a private collection and stylistically consistent with the Royal Art of Benin (Nigeria) were investigated in order to verify their authenticity. The characterization of alloys and patinas were carried out by inductively coupled plasma mass spectrometry, optical microscopy, scanning electron microscopy and energy dispersion spectroscopy, and X-Ray diffraction spectrometry. Furthermore, thermal ionization mass spectrometry was used to assess the abundances of lead isotopes and to attempt a dating by the measurement of 210Pb/204Pb ratio. The results showed that all three artefacts were mainly composed of low lead-brass alloys, with relatively high concentrations of zinc, antimony, cadmium and aluminum in the solid copper solution. Microstructures were mostly dendritic, typical of as-cast brasses, and characterized by recrystallized non-homogeneous twinned grains in areas corresponding to surface decorations, probably due to multiple hammering steps followed by partial annealing treatments. The matrix was composed of a cored α-Cu solid solution together with non-metallic inclusions, lead globules and Sn-rich precipitates in interdendritic spaces. On the surface of all metalworks, both copper and zinc oxides, a non-continuous layer of sulphur-containing contaminants and chloride-containing compounds, were identified. The lead isotope results were consistent with brasses produced shortly before or after 1900 CE. Overall, the data obtained by different techniques supported the hypothesis that the three artefacts were not authentic.

  19. Analyses of Phytohormones in Coconut (Cocos Nucifera L. Water Using Capillary Electrophoresis-Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Swee Ngin Tan

    2014-12-01

    Full Text Available Capillary electrophoresis (CE coupled with mass spectrometry (MS or tandem mass spectrometry (MS/MS is reported as an alternative and potentially useful method for the simultaneous analysis of various classes of phytohormones with diversified structures, including indole-3-acetic acid (IAA, indole-3-butyric acid (IBA, abscisic acid (ABA, gibberellic acid (GA, zeatin (Z, N6-benzyladenine (BA, α-naphthaleneacetic acid (NAA and 2,4-dichlorophenoxyacetic acid (2,4-D. The key to the CE-MS/MS analysis was based on electroosmotic flow reversal using a cationic polymer-coated capillary. Under optimum conditions, a baseline separation of eight phytohormones was accomplished within 30 min using 60 mM ammonium formate/formic acid buffer of pH 3.8 with −20 kV as the separation voltage. The accessibility of MS/MS together with the characterization by migration properties obtained by CE allows for the development of CE-MS/MS as an emerging potential method for the analysis of different classes of phytohormones in a single run. The utility of the CE-MS/MS method was demonstrated by the comprehensive screening of phytohormones in coconut (Cocos nucifera L. water after pre-concentration and purification through solid-phase extraction (SPE cartridge. IAA, ABA, GA and Z were detected and quantified in the purified coconut water extract sample.

  20. Enhancing glycan isomer separations with metal ions and positive and negative polarity ion mobility spectrometry-mass spectrometry analyses

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xueyun; Zhang, Xing; Schocker, Nathaniel S.; Renslow, Ryan S.; Orton, Daniel J.; Khamsi, Jamal; Ashmus, Roger A.; Almeida, Igor C.; Tang, Keqi; Costello, Catherine E.; Smith, Richard D.; Michael, Katja; Baker, Erin S.

    2016-09-07

    Glycomics has become an increasingly important field of research since glycans play critical roles in biology processes ranging from molecular recognition and signaling to cellular communication. Glycans often conjugate with other biomolecules such as proteins and lipids, and alter their properties and functions, so understanding the effect glycans have on cellular systems is essential. However the analysis of glycans is extremely difficult due to their complexity and structural diversity (i.e., the number and identity of monomer units, and configuration of their glycosidic linkages and connectivities). In this work, we coupled ion mobility spectrometry with mass spectrometry (IMS-MS) to characterize glycan standards and biologically important isomers of synthetic αGal-containing O-glycans including glycotopes of the protozoan parasite Trypanosoma cruzi, which is the causative agent of Chagas disease. IMS-MS results showed significant differences for the glycan structural isomers when analyzed in positive and negative polarity and complexed with different metal cations. These results suggest specific metal ions or ion polarities could be used to target and baseline separate glycan isomers of interest with IMS-MS.

  1. Forensic Mass Spectrometry

    Science.gov (United States)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  2. Review of application of mass spectrometry for analyses of anterior eye proteome

    Institute of Scientific and Technical Information of China (English)

    Sherif; Elsobky; Ashley; M; Crane; Michael; Margolis; Teresia; A; Carreon; Sanjoy; K; Bhattacharya

    2014-01-01

    Proteins have important functional roles in the body, which can be altered in disease states. The eye is a complex organ rich in proteins; in particular, the anterior eye is very sophisticated in function and is most commonly involved in ophthalmic diseases. Proteomics, the large scale study of proteins, has greatly impacted our knowledge and understanding of gene function in the post-genomic period. The most significant breakthrough in proteomics has been mass spectrometric identification of proteins, which extends analysis far beyond the mere display of proteins that classical techniques provide. Mass spectrometry functions as a "mass analyzer" which simplifies the identification and quantification of proteins extracted from biological tissue. Mass spectrometric analysis of the anterior eye proteome provides a differential display for protein comparison of normal and diseased tissue. In this article wepresent the key proteomic findings in the recent literature related to the cornea, aqueous humor, trabecular meshwork, iris, ciliary body and lens. Through this we identified unique proteins specific to diseases related to the anterior eye.

  3. Comparative mass spectrometric analyses of Photofrin oligomers by fast atom bombardment mass spectrometry, UV and IR matrix-assisted laser desorption/ionization mass spectrometry, electrospray ionization mass spectrometry and laser desorption/jet-cooling photoionization mass spectrometry.

    Science.gov (United States)

    Siegel, M M; Tabei, K; Tsao, R; Pastel, M J; Pandey, R K; Berkenkamp, S; Hillenkamp, F; de Vries, M S

    1999-06-01

    Photofrin (porfimer sodium) is a porphyrin derivative used in the treatment of a variety of cancers by photodynamic therapy. This oligomer complex and a variety of porphyrin monomers, dimers and trimers were analyzed with five different mass spectral ionization techniques: fast atom bombardment, UV and IR matrix-assisted laser desorption/ionization, electrospray ionization, and laser desorption/jet-cooling photoionization. All five approaches resulted in very similar oligomer distributions with an average oligomer length of 2.7 +/- 0.1 porphyrin units. In addition to the Photofrin analysis, this study provides a side-by-side comparison of the spectra for the five different mass spectrometric techniques.

  4. Optimizing Mass Spectrometry Analyses: A Tailored Review on the Utility of Design of Experiments.

    Science.gov (United States)

    Hecht, Elizabeth S; Oberg, Ann L; Muddiman, David C

    2016-05-01

    Mass spectrometry (MS) has emerged as a tool that can analyze nearly all classes of molecules, with its scope rapidly expanding in the areas of post-translational modifications, MS instrumentation, and many others. Yet integration of novel analyte preparatory and purification methods with existing or novel mass spectrometers can introduce new challenges for MS sensitivity. The mechanisms that govern detection by MS are particularly complex and interdependent, including ionization efficiency, ion suppression, and transmission. Performance of both off-line and MS methods can be optimized separately or, when appropriate, simultaneously through statistical designs, broadly referred to as "design of experiments" (DOE). The following review provides a tutorial-like guide into the selection of DOE for MS experiments, the practices for modeling and optimization of response variables, and the available software tools that support DOE implementation in any laboratory. This review comes 3 years after the latest DOE review (Hibbert DB, 2012), which provided a comprehensive overview on the types of designs available and their statistical construction. Since that time, new classes of DOE, such as the definitive screening design, have emerged and new calls have been made for mass spectrometrists to adopt the practice. Rather than exhaustively cover all possible designs, we have highlighted the three most practical DOE classes available to mass spectrometrists. This review further differentiates itself by providing expert recommendations for experimental setup and defining DOE entirely in the context of three case-studies that highlight the utility of different designs to achieve different goals. A step-by-step tutorial is also provided.

  5. Investigation of naproxen drug using mass spectrometry, thermal analyses and semi-empirical molecular orbital calculation

    Directory of Open Access Journals (Sweden)

    M.A. Zayed

    2017-03-01

    Full Text Available Naproxen (C14H14O3 is a non-steroidal anti-inflammatory drug (NSAID. It is important to investigate its structure to know the active groups and weak bonds responsible for medical activity. In the present study, naproxen was investigated by mass spectrometry (MS, thermal analysis (TA measurements (TG/DTG and DTA and confirmed by semi empirical molecular orbital (MO calculation, using PM3 procedure. These calculations included, bond length, bond order, bond strain, partial charge distribution, ionization energy and heat of formation (ΔHf. The mass spectra and thermal analysis fragmentation pathways were proposed and compared to select the most suitable scheme representing the correct fragmentation pathway of the drug in both techniques. The PM3 procedure reveals that the primary cleavage site of the charged molecule is the rupture of the COOH group (lowest bond order and high strain which followed by CH3 loss of the methoxy group. Thermal analysis of the neutral drug reveals a high response to the temperature variation with very fast rate. It decomposed in several sequential steps in the temperature range 80–400 °C. These mass losses appear as two endothermic and one exothermic peaks which required energy values of 255.42, 10.67 and 371.49 J g−1 respectively. The initial thermal ruptures are similar to that obtained by mass spectral fragmentation (COOH rupture. It was followed by the loss of the methyl group and finally by ethylene loss. Therefore, comparison between MS and TA helps in selection of the proper pathway representing its fragmentation. This comparison is successfully confirmed by MO-calculation.

  6. Optimizing Mass Spectrometry Analyses: A Tailored Review on the Utility of Design of Experiments

    Science.gov (United States)

    Hecht, Elizabeth S.; Oberg, Ann L.; Muddiman, David C.

    2016-05-01

    Mass spectrometry (MS) has emerged as a tool that can analyze nearly all classes of molecules, with its scope rapidly expanding in the areas of post-translational modifications, MS instrumentation, and many others. Yet integration of novel analyte preparatory and purification methods with existing or novel mass spectrometers can introduce new challenges for MS sensitivity. The mechanisms that govern detection by MS are particularly complex and interdependent, including ionization efficiency, ion suppression, and transmission. Performance of both off-line and MS methods can be optimized separately or, when appropriate, simultaneously through statistical designs, broadly referred to as "design of experiments" (DOE). The following review provides a tutorial-like guide into the selection of DOE for MS experiments, the practices for modeling and optimization of response variables, and the available software tools that support DOE implementation in any laboratory. This review comes 3 years after the latest DOE review (Hibbert DB, 2012), which provided a comprehensive overview on the types of designs available and their statistical construction. Since that time, new classes of DOE, such as the definitive screening design, have emerged and new calls have been made for mass spectrometrists to adopt the practice. Rather than exhaustively cover all possible designs, we have highlighted the three most practical DOE classes available to mass spectrometrists. This review further differentiates itself by providing expert recommendations for experimental setup and defining DOE entirely in the context of three case-studies that highlight the utility of different designs to achieve different goals. A step-by-step tutorial is also provided.

  7. Correction of the data generated by mass spectrometry analyses of biological tissues: application to food authentication.

    Science.gov (United States)

    Engel, Erwan; Ratel, Jérémy

    2007-06-22

    The objective of the work was to assess the relevance for the authentication of food of a novel chemometric method developed to correct mass spectrometry (MS) data from instrumental drifts, namely, the comprehensive combinatory standard correction (CCSC). Applied to gas chromatography (GC)-MS data, the method consists in analyzing a liquid sample with a mixture of n internal standards and in using the best combination of standards to correct the MS signal provided by each compound. The paper focuses on the authentication of the type of feeding in farm animals based on the composition in volatile constituents of their adipose tissues. The first step of the work enabled on one hand to ensure the feasibility of the conversion of the adipose tissue sample into a liquid phase required for the use of the CCSC method and on the other hand, to determine the key parameters of the extraction of the volatile fraction from this liquid phase by dynamic headspace. The second step showed the relevance of the CCSC pre-processing of the MS fingerprints generated by dynamic headspace-MS analysis of lamb tissues, for the discrimination of animals fed exclusively with pasture (n=8) or concentrate (n=8). When compared with filtering of raw data, internal normalization and correction by a single standard, the CCSC method increased by 17.1-, 3.3- and 1.3-fold, respectively, the number of mass fragments which discriminated the type of feeding. The final step confirmed the advantage of the CCSC pre-processing of dynamic headspace-gas chromatography-MS data for revealing molecular tracers of the type of feeding those number (n=72) was greater when compared to the number of tracers obtained with raw data (n=42), internal normalization (n=63) and correction by a single standard (n=57). The relevance of the information gained by using the CCSC method is discussed.

  8. Continuous ice-core chemical analyses using inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    McConnell, Joseph R; Lamorey, Gregg W; Lambert, Steven W; Taylor, Kendrick C

    2002-01-01

    Impurities trapped in ice sheets and glaciers have the potential to provide detailed, high temporal resolution proxy information on paleo-environments, atmospheric circulation, and environmental pollution through the use of chemical, isotopic, and elemental tracers. We present a novel approach to ice-core chemical analyses in which an ice-core melter is coupled directly with both an inductively coupled plasma mass spectrometer and a traditional continuous flow analysis system. We demonstrate this new approach using replicated measurements of ice-core samples from Summit, Greenland. With this method, it is possible to readily obtain continuous, exactly coregistered concentration records for a large number of elements and chemical species at ppb and ppt levels and at unprecedented depth resolution. Such very-high depth resolution, multiparameter measurements will significantly expand the use of ice-core records for environmental proxies.

  9. ANALYSES OF FISH TISSUE BY VACUUM DISTILLATION/GAS CHROMATOGRAPHY/MASS SPECTROMETRY

    Science.gov (United States)

    The analyses of fish tissue using VD/GC/MS with surrogate-based matrix corrections is described. Techniques for equilibrating surrogate and analyte spikes with a tissue matrix are presented, and equilibrated spiked samples are used to document method performance. The removal of a...

  10. Comparative Proteomics of Tandem Mass Spectrometry Analyses for Bacterial Strains Identification and Differentiation

    Science.gov (United States)

    2012-02-01

    Psenner R. (1998). Determination of Bacterial Cell Dry Mass by Transmission Electron Microscopy and Densitometric Image Analysis, Applied Environ... Bacillus anthracis spore attack on the US postal system in the fall of 2001 (Demirev & Fenselau,2008b; Dworzanski & Snyder, 2005; Friess, 2010; Ho, 2002...approach allowed for a faster search of the product ion spectra than that using genomic database searching. Also, it eliminates inconsistencies observed in

  11. MSiReader v1.0: Evolving Open-Source Mass Spectrometry Imaging Software for Targeted and Untargeted Analyses.

    Science.gov (United States)

    Bokhart, Mark T; Nazari, Milad; Garrard, Kenneth P; Muddiman, David C

    2017-09-20

    A major update to the mass spectrometry imaging (MSI) software MSiReader is presented, offering a multitude of newly added features critical to MSI analyses. MSiReader is a free, open-source, and vendor-neutral software written in the MATLAB platform and is capable of analyzing most common MSI data formats. A standalone version of the software, which does not require a MATLAB license, is also distributed. The newly incorporated data analysis features expand the utility of MSiReader beyond simple visualization of molecular distributions. The MSiQuantification tool allows researchers to calculate absolute concentrations from quantification MSI experiments exclusively through MSiReader software, significantly reducing data analysis time. An image overlay feature allows the incorporation of complementary imaging modalities to be displayed with the MSI data. A polarity filter has also been incorporated into the data loading step, allowing the facile analysis of polarity switching experiments without the need for data parsing prior to loading the data file into MSiReader. A quality assurance feature to generate a mass measurement accuracy (MMA) heatmap for an analyte of interest has also been added to allow for the investigation of MMA across the imaging experiment. Most importantly, as new features have been added performance has not degraded, in fact it has been dramatically improved. These new tools and the improvements to the performance in MSiReader v1.0 enable the MSI community to evaluate their data in greater depth and in less time. Graphical Abstract ᅟ.

  12. Silica nanoparticles pre-spotted onto target plate for laser desorption/ionization mass spectrometry analyses of peptides.

    Science.gov (United States)

    Dupré, Mathieu; Cantel, Sonia; Durand, Jean-Olivier; Martinez, Jean; Enjalbal, Christine

    2012-09-05

    We report on the simple deposition of Stöber silica nanoparticles (SiO(2) NPs) on conventional MALDI target plate for high throughput laser desorption/ionization mass spectrometry (LDI-MS) analyses of peptide mixtures with sensitivity in the femtomolar range. This low-cost easily prepared material allowed straightforward LDI experiments by deposition of the studied samples directly onto a pre-spotted MALDI plate. This analytical strategy can be performed in any laboratory equipped with a MALDI-TOF instrument. All key benefits of organic matrix-free technologies were satisfied while maintaining a high level of detection performances (sensitivity and reproducibility/repeatability). In particular, sample preparation was simple and detection in the low mass range was not hampered by matrix ions. Imaging studies were undertaken to query sample dispersion into the inert SiO(2) NPs and to help into the search of the best experimental conditions producing homogeneous analyte distribution within the deposit. In contrast to commercial disposable LDI targets designed for single use and requiring an adaptor such as NALDI™, the proposed SiO(2) NPs pre-spotting on a MALDI target plate allowed very easily switching between MALDI and LDI experiments. They can be conducted either simultaneously (positions with an organic matrix or SiO(2) NPs) or in the row (support prepared in advance, stored and washed after use). The overall cost and versatility of the methodology made it very attractive to MALDI users in many domains (peptidomics, proteomics, metabolomics).

  13. Fourier transform mass spectrometry.

    Science.gov (United States)

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-07-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook.

  14. Lipid fatty acid profile analyses in liver and serum in rats with nonalcoholic steatohepatitis using improved gas chromatography-mass spectrometry methodology

    Science.gov (United States)

    Fatty acids (FA) are essential components of lipids and exhibit important biological functions. The analyses of FAs are routinely carried out by gas chromatography-mass spectrometry, after multi-step sample preparation. In this study, several key experimental factors were carefully examined, validat...

  15. Miniaturization and Mass Spectrometry

    NARCIS (Netherlands)

    le Gac, S.; le Gac, Severine; van den Berg, Albert; van den Berg, A.; Unknown, [Unknown

    2009-01-01

    With this book we want to illustrate how two quickly growing fields of instrumentation and technology, both applied to life sciences, mass spectrometry and microfluidics (or microfabrication) naturally came to meet at the end of the last century and how this marriage impacts on several types of appl

  16. Analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  17. Analytical mass spectrometry. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  18. Development of Localized Plasma Etching System for Failure Analyses in Semiconductor Devices: (3)Etching-Monitoring Using Quadrupole Mass Spectrometry

    Science.gov (United States)

    Takahashi, Satoshi; Horie, Tomoyuki; Shirayama, Yuya; Yokosuka, Shuntaro; Kashimura, Kenta; Hayashi, Akihiro; Iwase, Chikatsu; Shimbori, Shun'ichiro; Tokumoto, Hiroshi; Naitoh, Yasuhisa; Shimizu, Tetsuo

    Quadrupole mass spectrometry (QMS) has been applied to monitor the etching processes in a localized plasma etching system. An inward plasma was employed for etching in which the etching gas was discharged in the narrow gap between the etched sample and the entrance of an evacuating capillary tube. As the etching products are immediately evacuated through the capillary, a QMS system equipped at the capillary exit is able to analyze the products without any loss in concentration via diffusion into the chamber. Two kinds of samples, thermally grown SiO2 on Si and spin-coated polyimide film on Si, were etched, and the chemical species in the evacuated etching gas were analyzed with QMS, which enables monitoring of the composition of the surface being etched. Samples of thermal SiO2 were etched with CF4 plasma. The peak height of the SiF3+ signal during the SiO2 etching was lower than that observed during etching of the silicon substrate, leading to endpoint detection. The endpoint detection of the polyimide film etching was conducted using two etching gases: pure O2 and pure CF4. When O2 was used, the endpoint was detected by the decrease of the mass peak attributed to CO. When CF4 was employed, the plasma was able to etch both the polyimide film and Si substrate. Then the endpoint was detected by the increase of the mass peak of SiF3+ produced by the etching of the Si substrate.

  19. Mass spectrometry with accelerators.

    Science.gov (United States)

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  20. Hydrogen Exchange Mass Spectrometry.

    Science.gov (United States)

    Mayne, Leland

    2016-01-01

    Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data.

  1. "Magic" Ionization Mass Spectrometry

    Science.gov (United States)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  2. Laser Ablation - Accelerator Mass Spectrometry: An Approach for Rapid Radiocarbon Analyses of Carbonate Archives at High Spatial Resolution.

    Science.gov (United States)

    Welte, Caroline; Wacker, Lukas; Hattendorf, Bodo; Christl, Marcus; Fohlmeister, Jens; Breitenbach, Sebastian F M; Robinson, Laura F; Andrews, Allen H; Freiwald, André; Farmer, Jesse R; Yeman, Christiane; Synal, Hans-Arno; Günther, Detlef

    2016-09-06

    A new instrumental setup, combining laser ablation (LA) with accelerator mass spectrometry (AMS), has been investigated for the online radiocarbon ((14)C) analysis of carbonate records. Samples were placed in an in-house designed LA-cell, and CO2 gas was produced by ablation using a 193 nm ArF excimer laser. The (14)C/(12)C abundance ratio of the gas was then analyzed by gas ion source AMS. This configuration allows flexible and time-resolved acquisition of (14)C profiles in contrast to conventional measurements, where only the bulk composition of discrete samples can be obtained. Three different measurement modes, i.e. discrete layer analysis, survey scans, and precision scans, were investigated and compared using a stalagmite sample and, subsequently, applied to terrestrial and marine carbonates. Depending on the measurement mode, a precision of typically 1-5% combined with a spatial resolution of 100 μm can be obtained. Prominent (14)C features, such as the atomic bomb (14)C peak, can be resolved by scanning several cm of a sample within 1 h. Stalagmite, deep-sea coral, and mollusk shell samples yielded comparable signal intensities, which again were comparable to those of conventional gas measurements. The novel LA-AMS setup allowed rapid scans on a variety of sample materials with high spatial resolution.

  3. Analyses of in vitro nonenzymatic glycation of normal and variant hemoglobins by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Lee, Bao-Shiang; Jayathilaka, G D Lasanthi P; Huang, Jin-Sheng; Vida, Loyda N; Honig, George R; Gupta, Shalini

    2011-09-01

    MALDI-TOF mass spectrometry is used here to differentiate different glycoisoforms of normal and variant hemoglobins (Hbs) in nonenzymatic in vitro glycation. Single, double, and/or multiple glycation of the α-globin, β-globin, and/or γ-globin is observed. Different glycation rates are observed for various Hbs, and the normal Hb A has the slowest rate. Although the Hb A is relatively stable upon condensation with glucose at 37°C, the variants Hb C, Hb E, Hb F, Hb Leiden, and Hb San Diego are less stable. In addition, data reveal that the number of glucose attached/Hb molecule (state of glycation) increases with longer incubation time, higher glucose concentration, and higher temperature. The pH dependence of the state of glycation is more complex and varies for different Hbs. Although pH has little effect on the state of glycation for Hb C, Hb E, and Hb Leiden, it increases for Hb A and Hb F upon changing the pH of the solution from phosphate buffer saline (pH 7.4) to carbonate buffer (pH 10). Results obtained in this study could lead to the inference that the linkage of Hbs with glucose occurs in diabetic conditions in vivo (37°C, ∼neutral pH, ∼0.007 M glucose), and the state of glycation is more severe in the individuals who carry abnormal Hbs.

  4. Cathodoluminescence, laser ablasion inductively coupled plasma mass spectrometry, electron probe microanalysis and electron paramagnetic resonance analyses of natural sphalerite

    Science.gov (United States)

    Karakus, M.; Hagni, R.D.; Koenig, A.; Ciftc, E.

    2008-01-01

    Natural sphalerite associated with copper, silver, lead-zinc, tin and tungsten deposits from various world-famous mineral deposits have been studied by cathodoluminescence (CL), laser ablasion inductively coupled plasma mass spectrometry (LA-ICP-MS), electron probe microanalysis (EPMA) and electron paramagnetic resonance (EPR) to determine the relationship between trace element type and content and the CL properties of sphalerite. In general, sphalerite produces a spectrum of CL colour under electron bombardment that includes deep blue, turquoise, lime green, yellow-orange, orange-red and dull dark red depending on the type and concentration of trace quantities of activator ions. Sphalerite from most deposits shows a bright yellow-orange CL colour with ??max centred at 585 nm due to Mn2+ ion, and the intensity of CL is strongly dependent primarily on Fe2+ concentration. The blue emission band with ??max centred at 470-490 nm correlates with Ga and Ag at the Tsumeb, Horn Silver, Balmat and Kankoy mines. Colloform sphalerite from older well-known European lead-zinc deposits and late Cretaceous Kuroko-type VMS deposits of Turkey shows intense yellowish CL colour and their CL spectra are characterised by extremely broad emission bands ranging from 450 to 750 nm. These samples are characterised by low Mn (behaviour of sphalerite serves to characterise ore types and help detect technologically important trace elements.

  5. Development of SI-traceable C-peptide certified reference material NMIJ CRM 6901-a using isotope-dilution mass spectrometry-based amino acid analyses.

    Science.gov (United States)

    Kinumi, Tomoya; Goto, Mari; Eyama, Sakae; Kato, Megumi; Kasama, Takeshi; Takatsu, Akiko

    2012-07-01

    A certified reference material (CRM) is a higher-order calibration material used to enable a traceable analysis. This paper describes the development of a C-peptide CRM (NMIJ CRM 6901-a) by the National Metrology Institute of Japan using two independent methods for amino acid analysis based on isotope-dilution mass spectrometry. C-peptide is a 31-mer peptide that is utilized for the evaluation of β-cell function in the pancreas in clinical testing. This CRM is a lyophilized synthetic peptide having the human C-peptide sequence, and contains deamidated and pyroglutamylated forms of C-peptide. By adding water (1.00 ± 0.01) g into the vial containing the CRM, the C-peptide solution in 10 mM phosphate buffer saline (pH 6.6) is reconstituted. We assigned two certified values that represent the concentrations of total C-peptide (mixture of C-peptide, deamidated C-peptide, and pyroglutamylated C-peptide) and C-peptide. The certified concentration of total C-peptide was determined by two amino acid analyses using pre-column derivatization liquid chromatography-mass spectrometry and hydrophilic chromatography-mass spectrometry following acid hydrolysis. The certified concentration of C-peptide was determined by multiplying the concentration of total C-peptide by the ratio of the relative area of C-peptide to that of the total C-peptide measured by liquid chromatography. The certified value of C-peptide (80.7 ± 5.0) mg/L represents the concentration of the specific entity of C-peptide; on the other hand, the certified value of total C-peptide, (81.7 ± 5.1) mg/L can be used for analyses that does not differentiate deamidated and pyroglutamylated C-peptide from C-peptide itself, such as amino acid analyses and immunochemical assays.

  6. Analyses of nitrobenzene,benzene and aniline in environmental water samples by headspace solid phase micro-extraction coupled with gas chromatography-mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    CHEN Ming; YIN Yongguang; TAI Chao; ZHANG Qinghua; LIU Jiyan; HU Jingtian; JIANG Guibin

    2006-01-01

    A headspace solid phase microextraction coupled with gas chromatography mass spectrometry (HS-SPME/GC-MS) method was established for analyzing nitrobenzene, benzene and aniline in environmental water samples simultaneously.Factors affecting extraction efficiency (SPME fiber selection, acidity, temperature, salt addition, extraction time, headspace, etc) were verified. Under optimal extraction conditions, the detection limits are 0.50, 0.11 and 1.00 μg/L for nitrobenzene, benzene and aniline, respectively. The results indicate that this method is capable of making sensitive and accuracy analyses on nitrobenzene, benzene and aniline in environmental water samples.

  7. Screening of marine seaweeds for bioactive compound against fish pathogenic bacteria and active fraction analysed by gas chromatography– mass spectrometry

    Directory of Open Access Journals (Sweden)

    Rajasekar Thirunavukkarasu

    2014-05-01

    Full Text Available Objective: To isolate bioactive molecules from marine seaweeds and check the antimicrobial activity against the fish pathogenic bacteria. Methods: Fresh marine seaweeds Gracilaria edulis, Kappaphycus spicifera, Sargassum wightii (S. wightii were collected. Each seaweed was extracted with different solvents. In the study, test pathogens were collected from microbial type culture collection. Antibacterial activity was carried out by using disc diffusion method and minimum inhibition concentration (MIC was calculated. Best seaweed was analysed by fourier transform infrared spectroscopy. The cured extract was separated by thin layer chromatography (TLC. Fraction was collected from TLC to check the antimicrobial activity. Best fraction was analysed by gas chromatography mass spectrometer (GCMS. Results: Based on the disc diffusion method, S. wightii showed a better antimicrobial activity than other seaweed extracts. Based on the MIC, methanol extract of S. wightii showed lower MIC than other solvents. S. wightii were separated by TLC. In this TLC, plate showed a two fraction. These two fractions were separated in preparative TLC and checked for their antimicrobial activity. Fraction 2 showed best MIC value against the tested pathogen. Fraction 2 was analysed by GCMS. Based on the GCMS, fraction 2 contains n-hexadecanoic acid (59.44%. Conclusions: From this present study, it can be concluded that S. wightii was potential sources of bioactive compounds.

  8. Preliminary study to characterize plastic polymers using elemental analyser/isotope ratio mass spectrometry (EA/IRMS).

    Science.gov (United States)

    Berto, Daniela; Rampazzo, Federico; Gion, Claudia; Noventa, Seta; Ronchi, Francesca; Traldi, Umberto; Giorgi, Giordano; Cicero, Anna Maria; Giovanardi, Otello

    2017-06-01

    Plastic waste is a growing global environmental problem, particularly in the marine ecosystems, in consideration of its persistence. The monitoring of the plastic waste has become a global issue, as reported by several surveillance guidelines proposed by Regional Sea Conventions (OSPAR, UNEP) and appointed by the EU Marine Strategy Framework Directive. Policy responses to plastic waste vary at many levels, ranging from beach clean-up to bans on the commercialization of plastic bags and to Regional Plans for waste management and recycling. Moreover, in recent years, the production of plant-derived biodegradable plastic polymers has assumed increasing importance. This study reports the first preliminary characterization of carbon stable isotopes (δ(13)C) of different plastic polymers (petroleum- and plant-derived) in order to increase the dataset of isotopic values as a tool for further investigation in different fields of polymers research as well as in the marine environment surveillance. The δ(13)C values determined in different packaging for food uses reflect the plant origin of "BIO" materials, whereas the recycled plastic materials displayed a δ(13)C signatures between plant- and petroleum-derived polymers source. In a preliminary estimation, the different colours of plastic did not affect the variability of δ(13)C values, whereas the abiotic and biotic degradation processes that occurred in the plastic materials collected on beaches and in seawater, showed less negative δ(13)C values. A preliminary experimental field test confirmed these results. The advantages offered by isotope ratio mass spectrometry with respect to other analytical methods used to characterize the composition of plastic polymers are: high sensitivity, small amount of material required, rapidity of analysis, low cost and no limitation in black/dark samples compared with spectroscopic analysis.

  9. Efficient method of protein extraction from Theobroma cacao L. roots for two-dimensional gel electrophoresis and mass spectrometry analyses.

    Science.gov (United States)

    Bertolde, F Z; Almeida, A-A F; Silva, F A C; Oliveira, T M; Pirovani, C P

    2014-07-04

    Theobroma cacao is a woody and recalcitrant plant with a very high level of interfering compounds. Standard protocols for protein extraction were proposed for various types of samples, but the presence of interfering compounds in many samples prevented the isolation of proteins suitable for two-dimensional gel electrophoresis (2-DE). An efficient method to extract root proteins for 2-DE was established to overcome these problems. The main features of this protocol are: i) precipitation with trichloroacetic acid/acetone overnight to prepare the acetone dry powder (ADP), ii) several additional steps of sonication in the ADP preparation and extractions with dense sodium dodecyl sulfate and phenol, and iii) adding two stages of phenol extractions. Proteins were extracted from roots using this new protocol (Method B) and a protocol described in the literature for T. cacao leaves and meristems (Method A). Using these methods, we obtained a protein yield of about 0.7 and 2.5 mg per 1.0 g lyophilized root, and a total of 60 and 400 spots could be separated, respectively. Through Method B, it was possible to isolate high-quality protein and a high yield of roots from T. cacao for high-quality 2-DE gels. To demonstrate the quality of the extracted proteins from roots of T. cacao using Method B, several protein spots were cut from the 2-DE gels, analyzed by tandem mass spectrometry, and identified. Method B was further tested on Citrus roots, with a protein yield of about 2.7 mg per 1.0 g lyophilized root and 800 detected spots.

  10. Laser sputter neutral mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    King, B.V.; Clarke, M.; Hu, H.; Betz [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    Laser sputter neutral mass spectrometry (LSNMS) is an emerging technique for highly sensitive surface analysis. In this technique a target is bombarded with a pulsed beam of keV ions. The sputtered particles are intercepted by a high intensity pulsed laser beam above the surface and ionised with almost 100% efficiency. The photions may then be mass analysed using a quadrupole or, more commonly, using time of flight (TOF) techniques. In this method photoions are extracted from the ionisation region, accelerated to a known energy E{sub o} and strike a channelplate detector a distance `d` away. The flight time `t` of the photoions is then related to their mass by `d` {radical}m / {radical} 2E{sub o} so measurement of `t` allows mass spectra to be obtained. It is found that LSNMS is an emerging technique of great sensitivity and flexibility, useful for both applied analysis and to investigate basic sputtering processes. 4 refs., 3 figs.

  11. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging for Peptide and Protein Analyses: A Critical Review of On-Tissue Digestion

    NARCIS (Netherlands)

    Cillero-Pastor, B.; Heeren, R.M.A.

    2013-01-01

    Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has established itself among the plethora of mass spectrometry applications. In the biomedical field, MALDI-MSI is being more frequently recognized as a new method for the discovery of biomarkers and targets of treatme

  12. Structure investigation of sertraline drug and its iodine product using mass spectrometry, thermal analyses and MO-calculations

    Science.gov (United States)

    Zayed, M. A.; Hawash, M. F.; Fahmey, M. A.; El-Habeeb, Abeer A.

    2007-11-01

    Sertraline (C 17H 17Cl 2N) as an antidepressant drug was investigated using thermal analysis (TA) measurements (TG/DTG and DTA) in comparison with electron impact (EI) mass spectral (MS) fragmentation at 70 eV. Semi-empirical MO-calculations, using PM3 procedure, has been carried out on neutral molecule and positively charged species. These calculations included bond length, bond order, bond strain, partial charge distribution and heats of formation (Δ Hf). Also, in the present work sertraline-iodine product was prepared and its structure was investigated using elemental analyses, IR, 1H NMR, 13C NMR, MS and TA. It was also subjected to molecular orbital calculations (MOC) in order to confirm its fragmentation behavior by both MS and TA in comparison with the sertraline parent drug. In MS of sertraline the initial rupture occurred was CH 3NH 2+ fragment ion via H-rearrangement while in sertraline-iodine product the initial rupture was due to the loss of I + and/or HI + fragment ions followed by CH 2dbnd NH + fragment ion loss. In thermal analyses (TA) the initial rupture in sertraline is due to the loss of C 6H 3Cl 2 followed by the loss of CH 3-NH forming tetraline molecule which thermally decomposed to give C 4H 8, C 6H 6 or the loss of H 2 forming naphthalene molecule which thermally sublimated. In sertraline-iodine product as a daughter the initial thermal rupture is due to successive loss of HI and CH 3NH followed by the loss of C 6H 5HI and HCl. Sertraline biological activity increases with the introduction of iodine into its skeleton. The activities of the drug and its daughter are mainly depend upon their fragmentation to give their metabolites in vivo systems, which are very similar to the identified fragments in both MS and TA. The importance of the present work is also due to the decision of the possible mechanism of fragmentation of the drug and its daughter and its confirmation by MOC.

  13. Biomedical accelerator mass spectrometry

    Science.gov (United States)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  14. International Mass Spectrometry Society (IMSS).

    Science.gov (United States)

    Cooks, R G; Gelpi, E; Nibbering, N M

    2001-02-01

    This paper gives a brief description of the recently formalized International Mass Spectrometry Society (IMSS). It is presented here in order to increase awareness of the opportunities for collaboration in mass spectrometry in an international context. It also describes the recent 15th International Mass Spectrometry Conference, held August/September 2000, in Barcelona. Each of the authors is associated with the IMSS. The 15th Conference, which covers all of mass spectrometry on a triennial basis, was chaired by Professor Emilio Gelpi of the Instituto de Investigaciones Biomedicas, Barcelona. The outgoing and founding President of the IMSS is Professor Graham Cooks, Purdue University, and the incoming President is Professor Nico Nibbering, University of Amsterdam. Similar material has been provided to the Editors of other journals that cover mass spectrometry.

  15. Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses.

    Science.gov (United States)

    Zhang, Kaihua; Zhang, Kai; Cao, Yan; Pan, Wei-ping

    2013-03-01

    Despite much research on co-combustion of tobacco stem and high-sulfur coal, their blending optimization has not been effectively found. This study investigated the combustion profiles of tobacco stem, high-sulfur bituminous coal and their blends by thermogravimetric analysis. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions were also studied by thermogravimetric and mass spectrometry analyses. The results indicated that combustion of tobacco stem was more complicated than that of high-sulfur bituminous coal, mainly shown as fixed carbon in it was divided into two portions with one early burning and the other delay burning. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions of the blends present variable trends with the increase of tobacco stem content. Taking into account the above three factors, a blending ratio of 0–20% tobacco stem content is conservatively proposed as optimum amount for blending.

  16. Accelerator mass spectrometry.

    Science.gov (United States)

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples.

  17. The 2012/2013 ABRF Proteomic Research Group Study: Assessing Longitudinal Intralaboratory Variability in Routine Peptide Liquid Chromatography Tandem Mass Spectrometry Analyses.

    Science.gov (United States)

    Bennett, Keiryn L; Wang, Xia; Bystrom, Cory E; Chambers, Matthew C; Andacht, Tracy M; Dangott, Larry J; Elortza, Félix; Leszyk, John; Molina, Henrik; Moritz, Robert L; Phinney, Brett S; Thompson, J Will; Bunger, Maureen K; Tabb, David L

    2015-12-01

    Questions concerning longitudinal data quality and reproducibility of proteomic laboratories spurred the Protein Research Group of the Association of Biomolecular Resource Facilities (ABRF-PRG) to design a study to systematically assess the reproducibility of proteomic laboratories over an extended period of time. Developed as an open study, initially 64 participants were recruited from the broader mass spectrometry community to analyze provided aliquots of a six bovine protein tryptic digest mixture every month for a period of nine months. Data were uploaded to a central repository, and the operators answered an accompanying survey. Ultimately, 45 laboratories submitted a minimum of eight LC-MSMS raw data files collected in data-dependent acquisition (DDA) mode. No standard operating procedures were enforced; rather the participants were encouraged to analyze the samples according to usual practices in the laboratory. Unlike previous studies, this investigation was not designed to compare laboratories or instrument configuration, but rather to assess the temporal intralaboratory reproducibility. The outcome of the study was reassuring with 80% of the participating laboratories performing analyses at a medium to high level of reproducibility and quality over the 9-month period. For the groups that had one or more outlying experiments, the major contributing factor that correlated to the survey data was the performance of preventative maintenance prior to the LC-MSMS analyses. Thus, the Protein Research Group of the Association of Biomolecular Resource Facilities recommends that laboratories closely scrutinize the quality control data following such events. Additionally, improved quality control recording is imperative. This longitudinal study provides evidence that mass spectrometry-based proteomics is reproducible. When quality control measures are strictly adhered to, such reproducibility is comparable among many disparate groups. Data from the study are

  18. Human tear peptide/protein profiling study of ocular surface diseases by SPE-MALDI-TOF mass spectrometry analyses

    Directory of Open Access Journals (Sweden)

    Nerea González

    2014-06-01

    Obtained spectra were aligned by variable penalty dynamic time warping (VPdtw and the resulting data analyzed using multivariate statistics. Comparative analyses revealed good performance of VPdtw and a high discrimination of groups with a correct assignment of 89.3% using twelve informative peaks. SDS–PAGE followed by MALDI-TOF/TOF analysis allowed identification of lipocalin-1 as a biomarker candidate.

  19. Mass Spectrometry of Halopyrazolium Salts

    DEFF Research Database (Denmark)

    Larsen, Elfinn; Egsgaard, Helge; Pande, U. C.;

    1983-01-01

    Eleven halogen substituted 1-methyl-2-phenylpyrazolium bromides or chlorides were investigated by field desorption, field ionization, and electron impact mass spectrometry. Dealkylation was found to be the predominant thermal decomposition. An exchange between covalent and ionic halogen prior...

  20. Chemical deamidation: a common pitfall in large-scale N-linked glycoproteomic mass spectrometry-based analyses

    DEFF Research Database (Denmark)

    Palmisano, Giuseppe; Melo-Braga, Marcella Nunes; Engholm-Keller, Kasper

    2012-01-01

    . We have evaluated this common large-scale N-linked glycoproteomic strategy and proved potential pitfalls using Escherichia coli as a model organism, since it lacks the N-glycosylation machinery found in mammalian systems and some pathogenic microbes. After isolation and proteolytic digestion of E...... indentified deamidated peptides with incorporation of 18O, showing the pitfalls of glycosylation site assignment based on deamidation of asparagine induced by PNGase F in 18O-water in large-scale analyses. These data experimentally prove the need for more caution in assigning glycosylation sites and "new" N......-linked consensus sites based on common N-linked glycoproteomics strategies without proper control experiments. Beside showing the spontaneous deamidation we provide alternative methods for validation that should be used in such experiments....

  1. Hemoglobin redux: combining neutron and X-ray diffraction with mass spectrometry to analyse the quaternary state of oxidized hemoglobins.

    Science.gov (United States)

    Mueser, Timothy C; Griffith, Wendell P; Kovalevsky, Andrey Y; Guo, Jingshu; Seaver, Sean; Langan, Paul; Hanson, B Leif

    2010-11-01

    Improvements in neutron diffraction instrumentation are affording the opportunity to re-examine the structures of vertebrate hemoglobins and to interrogate proton and solvent position changes between the different quaternary states of the protein. For hemoglobins of unknown primary sequence, structural studies of cyanomethemoglobin (CNmetHb) are being used to help to resolve sequence ambiguity in the mass spectra. These studies have also provided additional structural evidence for the involvement of oxidized hemoglobin in the process of erythrocyte senescence. X-ray crystal studies of Tibetan snow leopard CNmetHb have shown that this protein crystallizes in the B state, a structure with a more open dyad, which possibly has relevance to RBC band 3 protein binding and erythrocyte senescence. R-state equine CNmetHb crystal studies elaborate the solvent differences in the switch and hinge region compared with a human deoxyhemoglobin T-state neutron structure. Lastly, comparison of histidine protonation between the T and R state should enumerate the Bohr-effect protons.

  2. Hemoglobin redux: combining neutron and X-ray diffraction with mass spectrometry to analyse the quaternary state of oxidized hemoglobins

    Energy Technology Data Exchange (ETDEWEB)

    Mueser, Timothy C., E-mail: timothy.mueser@utoledo.edu; Griffith, Wendell P. [Department of Chemistry, University of Toledo, Toledo, OH 43606 (United States); Kovalevsky, Andrey Y. [Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Guo, Jingshu; Seaver, Sean [Department of Chemistry, University of Toledo, Toledo, OH 43606 (United States); Langan, Paul [Department of Chemistry, University of Toledo, Toledo, OH 43606 (United States); Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hanson, B. Leif [Department of Chemistry, University of Toledo, Toledo, OH 43606 (United States)

    2010-11-01

    X-ray and neutron diffraction studies of cyanomethemoglobin are being used to evaluate the structural waters within the dimer–dimer interface involved in quaternary-state transitions. Improvements in neutron diffraction instrumentation are affording the opportunity to re-examine the structures of vertebrate hemoglobins and to interrogate proton and solvent position changes between the different quaternary states of the protein. For hemoglobins of unknown primary sequence, structural studies of cyanomethemoglobin (CNmetHb) are being used to help to resolve sequence ambiguity in the mass spectra. These studies have also provided additional structural evidence for the involvement of oxidized hemoglobin in the process of erythrocyte senescence. X-ray crystal studies of Tibetan snow leopard CNmetHb have shown that this protein crystallizes in the B state, a structure with a more open dyad, which possibly has relevance to RBC band 3 protein binding and erythrocyte senescence. R-state equine CNmetHb crystal studies elaborate the solvent differences in the switch and hinge region compared with a human deoxyhemoglobin T-state neutron structure. Lastly, comparison of histidine protonation between the T and R state should enumerate the Bohr-effect protons.

  3. Mass spectrometry. [in organic chemistry

    Science.gov (United States)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  4. Instrumentation for mass spectrometry: 1997

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  5. Mass Spectrometry Instrumentation in Proteomics

    DEFF Research Database (Denmark)

    Sprenger, Richard Remko; Roepstorff, Peter

    2012-01-01

    Mass spectrometry has evolved into a crucial technology for the field of proteomics, enabling the comprehensive study of proteins in biological systems. Innovative developments have yielded flexible and versatile mass spectrometric tools, including quadrupole time-of-flight, linear ion trap...

  6. Functional genomics by mass spectrometry

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Mann, M

    2000-01-01

    Systematic analysis of the function of genes can take place at the oligonucleotide or protein level. The latter has the advantage of being closest to function, since it is proteins that perform most of the reactions necessary for the cell. For most protein based ('proteomic') approaches to gene...... function, mass spectrometry is the method of choice. Mass spectrometry can now identify proteins with very high sensitivity and medium to high throughput. New instrumentation for the analysis of the proteome has been developed including a MALDI hybrid quadrupole time of flight instrument which combines...... numbers of intact proteins by mass spectrometry directly. Examples from this laboratory illustrate biological problem solving by modern mass spectrometric techniques. These include the analysis of the structure and function of the nucleolus and the analysis of signaling complexes....

  7. Digital Imaging Mass Spectrometry

    CERN Document Server

    Bamberger, Casimir; Bamberger, Andreas

    2011-01-01

    Methods to visualize the two-dimensional distribution of molecules by mass spectrometric imaging evolve rapidly and yield novel applications in biology, medicine, and material surface sciences. Most mass spectrometric imagers acquire high mass resolution spectra spot-by-spot and thereby scan the object's surface. Thus, imaging is slow and image reconstruction remains cumbersome. Here we describe an imaging mass spectrometer that exploits the true imaging capabilities by ion optical means for the time of flight mass separation. The mass spectrometer is equipped with the ASIC Timepix chip as an array detector to acquire the position, mass, and intensity of ions that are imaged by MALDI directly from the target sample onto the detector. This imaging mass spectrometer has a spatial resolving power at the specimen of (84\\pm35) \\mu m with a mass resolution of 45 and locates atoms or organic compounds on a surface area up to ~2 cm2. Extended laser spots of ~5 mm2 on structured specimens allowed parallel imaging of s...

  8. Penicillin analyses by capillary electrochromatography-mass spectrometry with different charged poly(stearyl methacrylate-divinylbenzene) monoliths as stationary phases.

    Science.gov (United States)

    Liu, Wan-Ling; Wu, Ching-Yi; Li, Yi-Ting; Huang, Hsi-Ya

    2012-11-15

    This study describes the ability of an on-line concentration capillary electrochromatography (CEC) coupled with mass spectrometry (MS) for the determination of eight common penicillin antibiotics. Poly(stearyl methacrylate-divinylbenzene) (poly(SMA-DVB)) based monolithic columns prepared under the same conditions but differing only in the charged monomer were used as separation columns. Vinylbenzyl trimethylammonium chloride (VBTA) and vinylbenzenesulfonate (VBSA) were employed as the positively charged monolith and negatively charged monolith, respectively. Results indicated that poly(SMA-DVB-VBTA) monolithic column provided reproducible performance for penicillin separation through ion-exchange interaction, while the negatively charged poly(SMA-DVB-VBSA) column produced unstable separation due to the electrostatic repulsion between the electrophilic analytes and the negatively charged stationary phase. On-line concentration steps of step-gradient elution combined with anion selective injection (ASEI) were used to enhance the detection sensitivity of the CEC-MS method and all penicillin detection sensitivities were further improved (reduction in the limits of detection from 1.9-31 μg/L (normal injection mode) to 0.05-0.2 μg/L (on-line concentration mode)). Finally, this optimal on-line concentration CEC-MS method was applied to trace penicillin analyses in milk samples.

  9. Negative-ion Electrospray Tandem Mass Spectrometry and Microarray Analyses of Developmentally-regulated Antigens Based on Type 1 and Type 2 Backbone Sequences

    Science.gov (United States)

    Gao, Chao; Zhang, Yibing; Liu, Yan; Feizi, Ten; Chai, Wengang

    2016-01-01

    Type 1 (Galβ1-3GlcNAc) and type 2 (Galβ1-4GlcNAc) sequences are constituents of the backbones of a large family of glycans of glycoproteins and glycolipids whose branching and peripheral substitutions are developmentally-regulated. It is highly desirable to have micro-sequencing methods that can be used to precisely identify and monitor these oligosaccharide sequences with high sensitivity. Negative-ion electrospray tandem mass spectrometry with collision-induced dissociation has been used for characterization of branching points, peripheral substitutions and partial assignment of linkages in reducing oligosaccharides. We now extend this method to characterizing entire sequences of linear type 1 and type 2 chain-based glycans, focusing on the type 1 and -2 units in the internal regions including the linkages connecting type 1 and type 2 disaccharide units. We apply the principles to sequence analysis of closely related isomeric oligosaccharides and demonstrate by microarray analyses distinct binding activities of antibodies and a lectin toward various combinations of type 1 and 2 units joined by 1,3- and 1,6-linkages. These sequence-specific carbohydrate-binding proteins are in turn valuable tools for detecting and distinguishing the type 1 and type 2-based developmentally-regulated glycan sequences. PMID:26530895

  10. Negative-Ion Electrospray Tandem Mass Spectrometry and Microarray Analyses of Developmentally Regulated Antigens Based on Type 1 and Type 2 Backbone Sequences.

    Science.gov (United States)

    Gao, Chao; Zhang, Yibing; Liu, Yan; Feizi, Ten; Chai, Wengang

    2015-12-01

    Type 1 (Galβ1-3GlcNAc) and type 2 (Galβ1-4GlcNAc) sequences are constituents of the backbones of a large family of glycans of glycoproteins and glycolipids whose branching and peripheral substitutions are developmentally regulated. It is highly desirable to have microsequencing methods that can be used to precisely identify and monitor these oligosaccharide sequences with high sensitivity. Negative-ion electrospray tandem mass spectrometry with collision-induced dissociation has been used for characterization of branching points, peripheral substitutions, and partial assignment of linkages in reducing oligosaccharides. We now extend this method to characterizing entire sequences of linear type 1 and type 2 chain-based glycans, focusing on the type 1 and type 2 units in the internal regions including the linkages connecting type 1 and type 2 disaccharide units. We apply the principles to sequence analysis of closely related isomeric oligosaccharides and demonstrate by microarray analyses distinct binding activities of antibodies and a lectin toward various combinations of type 1 and 2 units joined by 1,3- and 1,6-linkages. These sequence-specific carbohydrate-binding proteins are in turn valuable tools for detecting and distinguishing the type 1 and type 2-based developmentally regulated glycan sequences.

  11. Analysing persistent organic pollutants in eggs, blood and tissue of the green sea turtle (Chelonia mydas) using gas chromatography with tandem mass spectrometry (GC-MS/MS).

    Science.gov (United States)

    van de Merwe, Jason Paul; Hodge, Mary; Whittier, Joan Margaret; Lee, Shing Yip

    2009-03-01

    Investigation into persistent organic pollutants (POPs) in sea turtles is an important area of conservation research due to the harmful effects of these chemicals. However, the analysis of POPs in the green sea turtle (Chelonia mydas) has been limited by methods with relatively high limits of detection and high costs associated with multiple sample injections into complex arrangements of analytical equipment. The present study aimed to develop a method that could detect a large number of POPs in the blood, eggs and tissue of C. mydas at trace concentrations. A gas chromatography with tandem mass spectrometry (GC-MS/MS) method was developed that could report 125 POP compounds to a limit of detection of <35 pg g(-1) using a single sample injection. The recoveries of internal standards ranged from 30% to 96%, and the standard reference materials were reported to within 70% of the certified values. The coefficient of variation of ten replicates of pooled egg sample was <20% for all compounds, indicating low within-run variation. This GC-MS/MS method is an improvement of previous methods for analysing POPs in C. mydas in that more compounds can be reported at lower concentrations and the accuracy and precision of the method are sound. This is particularly important for C. mydas as they occupy a low trophic level and have lower concentrations of POPs. This method is also simple to set up, and there are minimal differences in sample preparation for the different tissue types.

  12. Analysing persistent organic pollutants in eggs, blood and tissue of the green sea turtle (Chelonia mydas) using gas chromatography with tandem mass spectrometry (GC-MS/MS)

    Energy Technology Data Exchange (ETDEWEB)

    Merwe, Jason Paul van de; Lee, Shing Yip [Griffith University, Griffith School of Environment and Australian Rivers Institute, Gold Coast, QLD (Australia); Hodge, Mary [Queensland Health Scientific Services, Queensland Government, Coopers Plains, QLD (Australia); Whittier, Joan Margaret [Univ. of Queensland, St. Lucia (Australia). School of Biomedical Sciences

    2009-03-15

    Investigation into persistent organic pollutants (POPs) in sea turtles is an important area of conservation research due to the harmful effects of these chemicals. However, the analysis of POPs in the green sea turtle (Chelonia mydas) has been limited by methods with relatively high limits of detection and high costs associated with multiple sample injections into complex arrangements of analytical equipment. The present study aimed to develop a method that could detect a large number of POPs in the blood, eggs and tissue of C. mydas at trace concentrations. A gas chromatography with tandem mass spectrometry (GC-MS/MS) method was developed that could report 125 POP compounds to a limit of detection of <35 pg g{sup -1} using a single sample injection. The recoveries of internal standards ranged from 30% to 96%, and the standard reference materials were reported to within 70% of the certified values. The coefficient of variation of ten replicates of pooled egg sample was <20% for all compounds, indicating low within-run variation. This GC-MS/MS method is an improvement of previous methods for analysing POPs in C. mydas in that more compounds can be reported at lower concentrations and the accuracy and precision of the method are sound. This is particularly important for C. mydas as they occupy a low trophic level and have lower concentrations of POPs. This method is also simple to set up, and there are minimal differences in sample preparation for the different tissue types. (orig.)

  13. Symposium on accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  14. Mass spectrometry for biomarker development

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel; Rodland, Karin D.; Smith, Richard D.

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  15. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging

    NARCIS (Netherlands)

    Kiss, A.; Smith, D.F.; Jungmann, JH; Heeren, R.M.A.

    2013-01-01

    RATIONALE: Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with

  16. A mass spectrometry primer for mass spectrometry imaging.

    Science.gov (United States)

    Rubakhin, Stanislav S; Sweedler, Jonathan V

    2010-01-01

    Mass spectrometry imaging (MSI), a rapidly growing subfield of chemical imaging, employs mass spectrometry (MS) technologies to create single- and multi-dimensional localization maps for a variety of atoms and molecules. Complimentary to other imaging approaches, MSI provides high chemical specificity and broad analyte coverage. This powerful analytical toolset is capable of measuring the distribution of many classes of inorganics, metabolites, proteins, and pharmaceuticals in chemically and structurally complex biological specimens in vivo, in vitro, and in situ. The MSI approaches highlighted in this Methods in Molecular Biology volume provide flexibility of detection, characterization, and identification of multiple known and unknown analytes. The goal of this chapter is to introduce investigators who may be unfamiliar with MS to the basic principles of the mass spectrometric approaches as used in MSI. In addition to guidelines for choosing the most suitable MSI method for specific investigations, cross-references are provided to the chapters in this volume that describe the appropriate experimental protocols.

  17. Accelerator mass spectrometry: state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Tuniz, C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Accelerator Mass Spectrometry (AMS) is the analytical technique of choice for the detection of long-lived radionuclides which cannot be practically analysed with decay counting or conventional mass spectrometry. The main use of AMS has been in the analysis of radiocarbon and other cosmogenic radionuclides for archaeological, geological and environmental applications. In addition, AMS has been recently applied in biomedicine to study exposure of human tissues to chemicals and biomolecules at attomole levels. There is also a world-wide effort to analyse rare nuclides of heavier masses, such as long-lived actinides, with important applications in safeguards and nuclear waste disposal. The use of AMS is limited by the expensive accelerator technology required and there are several attempts to develop smaller and cheaper AMS spectrometers. 5 refs.

  18. Chemical Ionization Mass Spectrometry.

    Science.gov (United States)

    1980-01-30

    mass spectrometer. Also discussed were Corporation, St. Louis , Mo. unique analytical applications of several negative ion chemical Synthesis of the...were purchsed from obtained at a probe temperature of 180-200 °C and displays Sigma Chemical Co.. St. Louis , Mo. Arginine hydrochloride (4) a M4...13) Rosenstock. H, M.: Drax . K.: Stener. B. W: Hernon J. T. J. Phys. Chem, Ref. Data 1977, 6, Supl. 1. 774-783,167 occur in the ratio of 10/ 1

  19. Analyses of polychlorinated biphenyls in waters and wastewaters using vortex-assisted liquid-liquid microextraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Ozcan, Senar

    2011-03-01

    A method was developed for viable and rapid determination of seven polychlorinated biphenyls (PCBs) in water samples with vortex-assisted liquid-liquid microextraction (VALLME) using gas chromatography-mass spectrometry (GC-MS). At first, the most suitable extraction solvent and extraction solvent volume were determined. Later, the parameters affecting the extraction efficiency such as vortex extraction time, rotational speed of the vortex, and ionic strength of the sample were optimized by using a 2(3) factorial experimental design. The optimized extraction conditions for 5 mL water sample were as follows: extractant solvent 200 μL of chloroform; vortex extraction time of 2 min at 3000 rpm; centrifugation 5 min at 4000 rpm, and no ionic strength. Under the optimum condition, limits of detection (LOD) ranged from 0.36 to 0.73 ng/L. Mean recoveries of PCBs from fortified water samples are 96% for three different fortification levels and RSDs of the recoveries are below 5%. The developed procedure was successfully applied to the determination of PCBs in real water and wastewater samples such as tap, well, surface, bottled waters, and municipal, treated municipal, and industrial wastewaters. The performance of the proposed method was compared with traditional liquid-liquid extraction (LLE) of real water samples and the results show that efficiency of proposed method is comparable to the LLE. However, the proposed method offers several advantages, i.e. reducing sample requirement for measurement of target compounds, less solvent consumption, and reducing the costs associated with solvent purchase and waste disposal. It is also viable, rapid, and easy to use for the analyses of PCBs in water samples by using GC-MS.

  20. Qualitative and Quantitative Drug residue analyses: Florfenicol in white-tailed deer (Odocoileus virginianus) and supermarket meat by liquid chromatography tandem-mass spectrometry.

    Science.gov (United States)

    Anderson, Shanoy C; Subbiah, Seenivasan; Gentles, Angella; Austin, Galen; Stonum, Paul; Brooks, Tiffanie A; Brooks, Chance; Smith, Ernest E

    2016-10-15

    A method for confirmation and detection of Florfenicol amine residues in white-tailed deer tissues was developed and validated in our laboratory. Tissue samples were extracted with ethyl acetate and cleaned up on sorbent (Chem-elut) cartridges. Liguid chromatography (LC) separation was achieved on a Zorbax Eclipse plus C18 column with gradient elution using a mobile phase composed of ammonium acetate in water and methanol at a flow rate of 300μL/min. Qualitative and quantitative analyses were carried out using liquid chromatography - heated electrospray ionization(HESI) and atmospheric pressure chemical ionization (APCI)-tandem mass spectrometry in the multiple reaction monitoring (MRM) interface. The limits of detection (LODs) for HESI and APCI probe were 1.8ng/g and 1.4ng/g respectively. Limits of quantitation (LOQs) for HESI and APCI probe were 5.8ng/g and 3.4ng/g respectively. Mean recovery values ranged from 79% to 111% for APCI and 30% to 60% for HESI. The validated method was used to determine white-tailed deer florfenicol tissue residue concentration 10-days after exposure. Florfenicol tissue residues concentration ranged from 0.4 to 0.6μg/g for liver and 0.02-0.05μg/g for muscle and a trace in blood samples. The concentration found in the tested edible tissues were lower than the maximum residual limit (MRL) values established by the federal drug administration (FDA) for bovine tissues. In summary, the resulting optimization procedures using the sensitivity of HESI and APCI probes in the determination of florfenicol in white-tailed deer tissue are the most compelling conclusions in this study, to the extent that we have applied this method in the evaluation of supermarket samples drug residue levels as a proof of principle.

  1. Analyses of organochlorine pesticides residues in eels (Anguilla anguilla from Lake Garda using Gas chromatography coupled with Tandem Mass Spectrometry (GC-MS/MS.

    Directory of Open Access Journals (Sweden)

    Giuseppe Federico Labella

    2017-05-01

    Full Text Available Lake Garda is located in Insubria region, that is known for being the most populated and industrialized area of Italy (Camusso et al., 2001. Therefore, the Lake water, and also the fish species present, could be affected by environmental contamination.  European eel (Anguilla anguilla are considered as suitable matrix for biomonitoring environmental contaminants in European water (Belpaire et al., 2007, being widespread in many European waters and highly contaminated by lipophilic compounds, due to the high lipid content (up to 40% (Larsson et al., 1991. Moreover, eel is an edible species (its farming currently supplies approximately 45,000 tons/year (Nielsen et al., 2008, so it also represents a public health issue. Based on these considerations, the aim of this study was to evaluate the occurrence of fourteen organochlorine pesticides (OCs in forty-five eels (Anguilla anguilla from Lake Garda, using Accelerated Solvent Extraction (ASE procedure for the analytes extraction and Gas chromatography coupled with Tandem Mass Spectrometry (GC-MS/MS for the analysis of OCs. GC-MS/MS analysis was developed and validated according to the SANTE/11945/2015 guidelines.  Uncontaminated eel sample (previously checked for the presence of OCs and considered blank with a concentration of compounds < Limit of Detection were used for all procedure's optimization steps. For all the OCs analysed, satisfactory results were achieved. Regarding eel samples, several pesticides were detected, but DDTs (DDT and its metabolites were found with the highest prevalence (92 %. The concentration rage was from not detected (n.d. to 19000 ng g-1. Although DDTs levels in the environment are declining (Albaiges et al., 2011, they continue to bioaccumulate in tissues of human and animal and biomagnify in food chains.

  2. Poly(N-vinylcarbazole-co-divinylbenzene) monolith microextraction coupled to liquid chromatography-high resolution Orbitrap mass spectrometry to analyse benzodiazepines in beer and urine.

    Science.gov (United States)

    Yao, Weixuan; Fan, Zhefeng; Zhang, Suling

    2016-09-23

    A poly(N-vinylcarbazole-co-divinylbenzene) (NVC/DVB) monolithic column was successfully prepared in a silanized capillary for microextraction of six benzodiazepines (BZPs) in complex samples. The polymerization was optimized primarily by changing the ratio of porogen content. The optimized polymer monolith had a homogeneous and continuous column bed, good permeability and mechanical stability. Poly(NVC/DVB) had good affinity to BZPs because of its through-pore structure and strong π-π stacking interactions derived from the rich benzene functional groups in the polymer. Potential factors that affect the extraction efficiency were studied in detail. In the optimized method, 3mL of sample (pH 2) was extracted with the polymer monolithic column and eluted with 80μL of methanol, and the eluent was analysed with ultra-high-performance liquid chromatography and quadrupole high resolution Orbitrap mass spectrometry (UHPLC/Q-Orbitrap MS). Under these conditions, the developed method gave the linear range of 0.005-0.5ng/mL for most of the six BZPs, whereas 0.05-0.5ng/mL for nitrazepam, 0.01-0.5ng/mL for lorazepam, respectively, with coefficients of determination (R(2))≥0.9991. The detection limits (LODs) were 1.08-6.04ng/L, and the quantification limits (LOQs) were 3.60-20.1ng/L. The method repeatability was investigated in terms of intra- and inter-day precision, which were indicated by relative standard deviations (RSDs) of ≤8.3% and ≤9.9%, respectively. Finally, the proposed method was successfully applied to detect BZPs in beer and human urine samples. The percentages of extraction recovery were 80.4-94.2% for beer and 79.6-95.2% for urine.

  3. Mass Spectrometry in Polymer Chemistry

    CERN Document Server

    Barner-Kowollik, Christopher; Falkenhagen, Jana; Weidner, Steffen

    2011-01-01

    Combining an up-to-date insight into mass-spectrometric polymer analysis beyond MALDI with application details of the instrumentation, this is a balanced and thorough presentation of the most important and widely used mass-spectrometric methods.Written by the world's most proficient experts in the field, the book focuses on the latest developments, covering such technologies and applications as ionization protocols, tandem and liquid chromatography mass spectrometry, gas-phase ion-separation techniques and automated data processing. Chapters on sample preparation, polymer degradation and the u

  4. Quantitative fluorescence spectroscopy and flow cytometry analyses of cell-penetrating peptides internalization pathways: optimization, pitfalls, comparison with mass spectrometry quantification

    Science.gov (United States)

    Illien, Françoise; Rodriguez, Nicolas; Amoura, Mehdi; Joliot, Alain; Pallerla, Manjula; Cribier, Sophie; Burlina, Fabienne; Sagan, Sandrine

    2016-11-01

    The mechanism of cell-penetrating peptides entry into cells is unclear, preventing the development of more efficient vectors for biotechnological or therapeutic purposes. Here, we developed a protocol relying on fluorometry to distinguish endocytosis from direct membrane translocation, using Penetratin, TAT and R9. The quantities of internalized CPPs measured by fluorometry in cell lysates converge with those obtained by our previously reported mass spectrometry quantification method. By contrast, flow cytometry quantification faces several limitations due to fluorescence quenching processes that depend on the cell line and occur at peptide/cell ratio >6.108 for CF-Penetratin. The analysis of cellular internalization of a doubly labeled fluorescent and biotinylated Penetratin analogue by the two independent techniques, fluorometry and mass spectrometry, gave consistent results at the quantitative and qualitative levels. Both techniques revealed the use of two alternative translocation and endocytosis pathways, whose relative efficacy depends on cell-surface sugars and peptide concentration. We confirmed that Penetratin translocates at low concentration and uses endocytosis at high μM concentrations. We further demonstrate that the hydrophobic/hydrophilic nature of the N-terminal extremity impacts on the internalization efficiency of CPPs. We expect these results and the associated protocols to help unraveling the translocation pathway to the cytosol of cells.

  5. delta 13C analyses of vegetable oil fatty acid components, determined by gas chromatography--combustion--isotope ratio mass spectrometry, after saponification or regiospecific hydrolysis.

    Science.gov (United States)

    Woodbury, S E; Evershed, R P; Rossell, J B

    1998-05-01

    The delta 13C values of the major fatty acids of several different commercially important vegetable oils were measured by gas chromatography--combustion--isotope ratio mass spectrometry. The delta 13C values obtained were found to fall into two distinct groups, representing the C3 and C4 plants classes from which the oils were derived. The delta 13C values of the oils were measured by continuous flow elemental isotope ratio mass spectrometry and were found to be similar to their fatty acids, with slight differences between individual fatty acids. Investigations were then made into the influence on the delta 13C values of fatty acids of the position occupied on the glycerol backbone. Pancreatic lipase was employed to selectively hydrolyse fatty acids from the 1- and 3-positions with the progress of the reaction being followed by high-temperature gas chromatography in order to determine the optimum incubation time. The 2-monoacylglycerols were then isolated by thin-layer chromatography and fatty acid methyl esters prepared. The delta 13C values obtained indicate that fatty acids from any position on the glycerol backbone are isotopically identical. Thus, whilst quantification of fatty acid composition at the 2-position and measurement of delta 13C values of oils and their major fatty acids are useful criteria in edible oil purity assessment, measurement of delta 13C values of fatty acids from the 2-position does not assist with oil purity assignments.

  6. Distinguishing between the metabolome and xenobiotic exposome in environmental field samples analysed by direct-infusion mass spectrometry based metabolomics and lipidomics.

    Science.gov (United States)

    Southam, Andrew D; Lange, Anke; Al-Salhi, Raghad; Hill, Elizabeth M; Tyler, Charles R; Viant, Mark R

    2014-01-01

    Environmental metabolomics is increasingly used to investigate organismal responses to complex chemical mixtures, including waste water effluent (WWE). In parallel, increasingly sensitive analytical methods are being used in metabolomics studies, particularly mass spectrometry. This introduces a considerable, yet overlooked, challenge that high analytical sensitivity will not only improve the detection of endogenous metabolites in biological specimens but also exogenous chemicals. If these often unknown xenobiotic features are not removed from the "biological" dataset, they will bias the interpretation and could lead to incorrect conclusions about the biotic response. Here we illustrate and validate a novel workflow classifying the origin of peaks detected in biological samples as: endogenous, xenobiotics, or metabolised xenobiotics. The workflow is demonstrated using direct infusion mass spectrometry-based metabolomic analysis of testes from roach exposed to different concentrations of a complex WWE. We show that xenobiotics and their metabolic products can be detected in roach testes (including triclosan, chloroxylenol and chlorophene), and that these compounds have a disproportionately high level of statistical significance within the total (bio)chemical changes induced by the WWE. Overall we have demonstrated that this workflow extracts more information from an environmental metabolomics study of complex mixture exposures than was possible previously.

  7. Quantitative mass spectrometry: an overview

    Science.gov (United States)

    Urban, Pawel L.

    2016-10-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue 'Quantitative mass spectrometry'.

  8. Trends in mass spectrometry instrumentation for proteomics.

    Science.gov (United States)

    Smith, Richard D

    2002-12-01

    Mass spectrometry has become a primary tool for proteomics because of its capabilities for rapid and sensitive protein identification and quantitation. It is now possible to identify thousands of proteins from microgram sample quantities in a single day and to quantify relative protein abundances. However, the need for increased capabilities for proteome measurements is immense and is now driving both new strategies and instrument advances. These developments include those based on integration with multi-dimensional liquid separations and high accuracy mass measurements and promise more than order of magnitude improvements in sensitivity, dynamic range and throughput for proteomic analyses in the near future.

  9. Electrophoresis-mass spectrometry probe

    Science.gov (United States)

    Andresen, Brian D.; Fought, Eric R.

    1987-01-01

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.

  10. Small molecule adduct formation with the components of the mobile phase as a way to analyse valproic acid in human serum with liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Dziadosz, Marek; Klintschar, Michael; Teske, Jörg

    2014-05-15

    A valproic acid (VPA) LC-MS/MS analytical method using analyte adduct formation was developed and validated in human serum. The fragmentation of the sodium acetate adduct (mass transition: 225/143) and acetic acid adduct (mass transition: 203/143) were used as the target and qualifier mass transition, respectively. A Luna 5 μm C18 (2) 100 A, 150 mm×2 mm analytical column and a mobile phase consisting of A (H2O/methanol=95/5, v/v) and B (H2O/methanol=3/97, v/v), both with 10mM ammonium acetate and 0.1% acetic acid (pH=3.2) were used. A binary flow pumping mode with a total flow rate of 0.4 mL/min was applied. Protein precipitation with 1 mL of the mobile phase B was used as sample preparation. The calculated limit of detection/quantification was 0.45/1.0 μg/mL and the inter-/intra-day precision was adduct formation reproducibility. The strategy applied made the VPA LC-MS/MS analysis in human serum on the basis of two mass transitions possible. Therefore, it is an interesting alternative for the VPA pseudo multiple reaction monitoring methods (mass transition 143/143) and a proof that the developed strategy is also useful for the analysis of compounds which do not produce any stable ion fragments detectable by tandem mass spectrometry.

  11. Analyse des kérosènes et des gas oils moyens par spectrométrie de masse à moyenne résolution Analysis of Kerosenes and Middle Distillates by Medium-Resolution Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Castex H.

    2006-11-01

    Full Text Available Une méthode d'analyse par spectrométrie de masse des kérosènes et des distillats moyens dérivée de la norme ASTM D2425, a été développée. Elle utilise le même principe de calcul du carbone moyen pour déterminer le choix des matrices appropriées. Mais elle opère à moyenne résolution, effectuant ainsi le tri des différentes masses exactes d'hydrocarbures, composés soufrés et oxygénés et évitant de ce fait toute séparation préalable par chromatographie liquide (ASTM D2 549 . Les valeurs des matrices ont été modifiées en conséquence et le calcul du carbone moyen adapté à l'étude des coupes étroites et larges. A mass-spectrometry analysis method derived from the ASTM D2425 standard has been developed for kerosenes and middle distillates (185-345°C. It uses the same principle for calculating the mean carbon value to determine the appropriate matrices. But it works with medium reso-lution so as to sort out the different exact masses of hydrocarbons, sulfur and oxygenated compounds, thus avoiding any prior separation by liquid chromatography (ASTM D2549. Therefore, the matrix values have been modified, and the calculation of the mean carbon value has been adapted for analyzing narrow and wide distillation cuts.

  12. Protein Analysis by Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Cindic, M.

    2008-04-01

    Full Text Available Soft ionization techniques, electrospray (ESI and matrix-assisted laser desorption/ionization (MALDI make the analysis of biomolecules by mass spectrometry (MS possible. MS is used for determination of the molecular weight of peptides and protein, sequence analysis, characterization of protein-ligand interactions etc. The detection limit, resolution and mass accuracy depend on instrument used (Table 1. Impurities (buffers, salts, detergents can reduce the ion intensities or even totally suppress them, so a separation method (chromatography, 2D-gel electrophoresis must be used for purification of the sample.Molecular mass of intact protein can be determined by ESI or MALDI MS. Multiply charged ions are produced by ESI MS, while singly charged ions are predominant in MALDI spectra (Fig. 2.Sequence analysis of proteins by MS can be performed using peptide mass fingerprint. In this method, proteins are separated by 2-D gel electrophoresis and digested with specific protease (Table 2 or digested and then separated by two-dimensional chromatography (Fig. 1. The obtained peptide mixtures are analyzed by MS or MALDI-TOF technique. The masses determined by MS are compared with calculated masses from database entries. Different algorithms have been developed for protein identification. Example of posttranslational modifications (N- and O-glycosylation and protein sequence complex analysis after dual digestion (endoproteinase digestion followed by endoglycosidase digestion is shown in Fig. 3.It is known that detection of peptides by MS is influenced by intrinsic properties like amino acid composition, the basicity of the C-terminal amino acid, hydrophobicity, etc. Arginine-containing peptides dominate in MS spectra of tryptic digest, so the chemical derivatization of lysine terminal residue by O-methilisourea or 2-methoxy-4,5-1H-imidazole was suggested (Fig. 4.The peptide mass fingerprint method can be improved further by peptide fragmentation using tandem

  13. Neuroscience and Accelerator Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Palmblad, M N; Buchholz, B A; Hillegonds, D J; Vogel, J S

    2004-08-02

    Accelerator mass spectrometry (AMS) is a mass spectrometric method for quantifying rare isotopes. It has had great impact in geochronology and archaeology and is now being applied in biomedicine. AMS measures radioisotopes such as {sup 3}H, {sup 14}C, {sup 26}Al, {sup 36}Cl and {sup 41}Ca, with zepto- or attomole sensitivity and high precision and throughput, enabling safe human pharmacokinetic studies involving: microgram doses, agents having low bioavailability, or toxicology studies where administered doses must be kept low (<1 {micro}g/kg). It is used to study long-term pharmacokinetics, to identify biomolecular interactions, to determine chronic and low-dose effects or molecular targets of neurotoxic substances, to quantify transport across the blood-brain barrier and to resolve molecular turnover rates in the human brain on the timescale of decades. We will here review how AMS is applied in neurotoxicology and neuroscience.

  14. Mass Spectrometry Applications for Toxicology

    Science.gov (United States)

    Mbughuni, Michael M.; Jannetto, Paul J.

    2016-01-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both. To date, MS applications have permeated all fields of toxicology which include; environmental, clinical, and forensic toxicology. While many different analytical applications are used in these fields, MS and its hyphenated applications such as; gas chromatography MS (GC-MS), liquid chromatography MS (LC-MS), inductively coupled plasma ionization MS (ICP-MS), tandem mass spectrometry (MS/MS and MSn) have emerged as powerful tools used in toxicology laboratories. This review will focus on these hyphenated MS technologies and their applications for toxicology.

  15. Mass Spectrometry Applications for Toxicology.

    Science.gov (United States)

    Mbughuni, Michael M; Jannetto, Paul J; Langman, Loralie J

    2016-12-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both. To date, MS applications have permeated all fields of toxicology which include; environmental, clinical, and forensic toxicology. While many different analytical applications are used in these fields, MS and its hyphenated applications such as; gas chromatography MS (GC-MS), liquid chromatography MS (LC-MS), inductively coupled plasma ionization MS (ICP-MS), tandem mass spectrometry (MS/MS and MS(n)) have emerged as powerful tools used in toxicology laboratories. This review will focus on these hyphenated MS technologies and their applications for toxicology.

  16. Quantitative mass spectrometry: an overview

    Science.gov (United States)

    2016-01-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry—especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644965

  17. Analyses of Indole Compounds in Sugar Cane (Saccharum officinarum L. Juice by High Performance Liquid Chromatography and Liquid Chromatography-Mass Spectrometry after Solid-Phase Extraction

    Directory of Open Access Journals (Sweden)

    Jean Wan Hong Yong

    2017-03-01

    Full Text Available Simultaneous quantitative analysis of 10 indole compounds, including indole-3-acetic acid (IAA, one of the most important naturally occurring auxins and some of its metabolites, by high performance liquid chromatography (HPLC and liquid chromatography-mass spectrometry (LC-MS after solid-phase extraction (SPE was reported for the first time. The analysis was carried out using a reverse phase HPLC gradient elution, with an aqueous mobile phase (containing 0.1% formic acid modified by methanol. Furthermore, a novel SPE procedure was developed for the pre-concentration and purification of indole compounds using C18 SPE cartridges. The combination of SPE, HPLC, and LC-MS was applied to screen for the indole compounds present in sugar cane (Saccharum officinarum L. juice, a refreshing beverage with various health benefits. Finally, four indole compounds were successfully detected and quantified in sugar cane juice by HPLC, which were further unequivocally confirmed by LC-MS/MS experiments operating in the multiple reaction monitoring (MRM mode.

  18. Pure cerium dioxide preparation for use as spectrochemical standard and analysed by inductively coupled plasma mass spectrometry (SF ICP-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Carlos A. da S.; Abrao, Alcidio; Rocha, Soraya M.R. da; Vasconcellos, Mari E. de; Seneda, Jose A.; Forbicini, Christina A.L.G. de O. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: cqueiroz@ipen.br; Pedreira, Walter R.; Boaventura, Geraldo R. [Brasilia Univ., DF (Brazil). Dept. de Geociencias; Pimentel, Marcio M. [Fundacao Jorge Duprat Figueiredo de Seguranca e Medicina do Trabalho (FUNDACENTRO), Sao Paulo, SP (Brazil)]. E-mail: walter.pedreira@fundacentro.gov.br

    2005-11-15

    several years, IPEN/CNEN-SP has been working in the separation of the Rare Earth (RE) elements. A simple and economic procedure for the purification of technical grade cerium concentrate is described. The highly pure cerium dioxide is designed to be used as spectrochemical standard. It is obtained by association of the fractional precipitation technique, in the system RECl{sub 3}/NH{sub 4}OH/ Air/H{sub 2}O{sub 2}, to enrich the cerium up to 90% and then it is upgraded by ion exchange technique to 99.99% CeO{sub 2}. The quality control warranty was accomplished by inductively coupled mass spectrometry (ICP-MS) and neutron activation analysis. The collected values for the accompanying Rare Earth elements in a CeO{sub 2} sample are the following (ppm): La(36), Pr(19), Nd(161), Sm(11), Eu(5.3), Gd(113), Tb(89), Dy(2), Ho(0.05), Er(1), Tm(<0.05), Yb(11), Lu(19) and Y(2.1), respectively. The purity of this cerium oxide is comparable to the international spectrographic standards. (author)

  19. Automated Multiplug Filtration Cleanup for Pesticide Residue Analyses in Kiwi Fruit (Actinidia chinensis) and Kiwi Juice by Gas Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Qin, Yuhong; Zhang, Jingru; He, Yining; Han, Yongtao; Zou, Nan; Li, Yanjie; Chen, Ronghua; Li, Xuesheng; Pan, Canping

    2016-08-10

    To reduce labor-consuming manual operation workload in the cleanup steps, an automated multiplug filtration cleanup (m-PFC) method for QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts was developed. It could control the volume and speed of pulling and pushing cycles accurately. In this study, m-PFC was based on multiwalled carbon nanotubes (MWCNTs) mixed with primary-secondary amines (PSA) and anhydrous magnesium sulfate (MgSO4) in a packed column for analysis of pesticide residues followed by gas chromatography-mass spectrometry (GC-MS) detection. It was validated by analyzing 33 pesticides in kiwi fruit and kiwi juice matrices spiked at two concentration levels of 10 and 100 μg/kg. Salts, sorbents, m-PFC procedure, 4 mL of automated pulling and pushing volume, 6 mL/min automated pulling speed, and 8 mL/min pushing speed were optimized for each matrix. After optimization, spike recoveries were within 71-120% and kiwi fruit and kiwi juice. Matrix-matched calibrations were performed with the coefficients of determination >0.99 between concentration levels of 10 and 1000 μg/kg. The developed method was successfully applied to the determination of pesticide residues in market samples.

  20. Analyses of black fungi by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS): species-level identification of clinical isolates of Exophiala dermatitidis.

    Science.gov (United States)

    Kondori, Nahid; Erhard, Marcel; Welinder-Olsson, Christina; Groenewald, Marizeth; Verkley, Gerard; Moore, Edward R B

    2015-01-01

    Conventional mycological identifications based on the recognition of morphological characteristics can be problematic. A relatively new methodology applicable for the identification of microorganisms is based on the exploitation of taxon- specific mass patterns recorded from abundant cell proteins directly from whole-cell preparations, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This study reports the application of MALDI-TOF MS for the differentiation and identifications of black yeasts, isolated from the respiratory tracts of patients with cystic fibrosis (CF). Initial phenotypic and DNA sequence-based analyses identified these isolates to be Exophiala dermatitidis. The type strains of E. dermatitidis (CBS 207.35(T)) and other species of Exophiala were included in the MALDI-TOF MS analyses to establish the references for comparing the mass spectra of the clinical isolates of Exophiala. MALDI-TOF MS analyses exhibited extremely close relationships among the clinical isolates and with the spectra generated from the type strain of E. dermatitidis. The relationships observed between the E. dermatitidis strains from the MALDI-TOF MS profiling analyses were supported by DNA sequence-based analyses of the rRNA ITS1 and ITS2 regions. These data demonstrated the applicability of MALDI-TOF MS as a reliable, rapid and cost-effective method for the identification of isolates of E. dermatitidis and other clinically relevant fungi and yeasts that typically are difficult to identify by conventional methods.

  1. NICHD Biomedical Mass Spectrometry Core Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NICHD Biomedical Mass Spectrometry Core Facility was created under the auspices of the Office of the Scientific Director to provide high-end mass-spectrometric...

  2. Screening of marine seaweeds for bioactive compound against fish pathogenic bacteria and active fraction analysed by gas chromatography-mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Rajasekar Thirunavukkarasu; Priyadharshini Pandiyan; Kumaran Subaramaniyan; Deivasigamani Balaraman; Sakthivel Manikkam; Balamurugan Sadaiyappan; George Edward Gnana Jothi

    2014-01-01

    Objective:To isolate bioactive molecules from marine seaweeds and check the antimicrobial activity against the fish pathogenic bacteria. Methods: Fresh marine seaweeds Gracilaria edulis, Kappaphycus spicifera, Sargassum wightii (S. wightii) were collected. Each seaweed was extracted with different solvents. In the study, test pathogens were collected from microbial type culture collection. Antibacterial activity was carried out by using disc diffusion method and minimum inhibition concentration (MIC) was calculated. Best seaweed was analysed by fourier transform infrared spectroscopy. The cured extract was separated by thin layer chromatography (TLC). Fraction was collected from TLC to check the antimicrobial activity. Best fraction was analysed by gas chromatography mass spectrometer (GCMS). Results: Based on the disc diffusion method, S. wightii showed a better antimicrobial activity than other seaweed extracts. Based on the MIC, methanol extract of S. wightii showed lower MIC than other solvents. S. wightii were separated by TLC. In this TLC, plate showed a two fraction. These two fractions were separated in preparative TLC and checked for their antimicrobial activity. Fraction 2 showed best MIC value against the tested pathogen. Fraction 2 was analysed by GCMS. Based on the GCMS, fraction 2 contains n-hexadecanoic acid (59.44%). Conclusions:From this present study, it can be concluded that S. wightii was potential sources of bioactive compounds.

  3. Aerosol MALDI mass spectrometry for bioaerosol analysis

    NARCIS (Netherlands)

    Kleefsman, W.A.

    2008-01-01

    In the thesis Aerosol MALDI mass spectrometry for bioaerosol analysis is described how the aerosol mass spectrometer of the TU Delft has been further developed for the on-line analysis of bioaerosols. Due to the implemented improvements mass spectra with high resolution and a high mass range can be

  4. Absorption Mode FTICR Mass Spectrometry Imaging

    NARCIS (Netherlands)

    Smith, D.F.; Kilgour, D.P.A.; Konijnenburg, M.; O'Connor, P.B.; Heeren, R.M.A.

    2013-01-01

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields

  5. Advances in mass spectrometry driven O-glycoproteomics

    DEFF Research Database (Denmark)

    Levery, Steven B; Steentoft, Catharina; Halim, Adnan;

    2015-01-01

    BACKGROUND: Global analyses of proteins and their modifications by mass spectrometry are essential tools in cell biology and biomedical research. Analyses of glycoproteins represent particular challenges and we are only at the beginnings of the glycoproteomic era. Some of the challenges have been...

  6. Zero voltage mass spectrometry probes and systems

    Energy Technology Data Exchange (ETDEWEB)

    Cooks, Robert Graham; Wleklinski, Michael Stanley; Bag, Soumabha; Li, Yafeng

    2017-10-10

    The invention generally relates to zero volt mass spectrometry probes and systems. In certain embodiments, the invention provides a system including a mass spectrometry probe including a porous material, and a mass spectrometer (bench-top or miniature mass spectrometer). The system operates without an application of voltage to the probe. In certain embodiments, the probe is oriented such that a distal end faces an inlet of the mass spectrometer. In other embodiments, the distal end of the probe is 5 mm or less from an inlet of the mass spectrometer.

  7. Testing the limits of micro-scale analyses of Si stable isotopes by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry with application to rock weathering

    Energy Technology Data Exchange (ETDEWEB)

    Schuessler, Jan A., E-mail: jan.schuessler@gfz-potsdam.de; Blanckenburg, Friedhelm von

    2014-08-01

    An analytical protocol for accurate in-situ Si stable isotope analysis has been established on a new second-generation custom-built femtosecond laser ablation system. The laser was coupled to a multicollector inductively coupled plasma mass spectrometer (fsLA-MC-ICP-MS). We investigated the influence of laser parameters such as spot size, laser focussing, energy density and repetition rate, and ICP-MS operating conditions such as ICP mass load, spectral and non-spectral matrix effects, signal intensities, and data processing on precision and accuracy of Si isotope ratios. We found that stable and reproducible ICP conditions were obtained by using He as aerosol carrier gas mixed with Ar/H{sub 2}O before entering the plasma. Precise δ{sup 29}Si and δ{sup 30}Si values (better than ± 0.23‰, 2SD) can be obtained if the area ablated is at least 50 × 50 μm; or, alternatively, for the analysis of geometric features down to the width of the laser spot (about 20 μm) if an equivalent area is covered. Larger areas can be analysed by rastering the laser beam, whereas small single spot analyses reduce the attainable precision of δ{sup 30}Si to ca. ± 0.6‰, 2SD, for < 30 μm diameter spots. It was found that focussing the laser beam beneath the sample surface with energy densities between 1 and 3.8 J/cm{sup 2} yields optimal analytical conditions for all materials investigated here. Using pure quartz (NIST 8546 aka. NBS-28) as measurement standard for calibration (standard-sample-bracketing) did result in accurate and precise data of international reference materials and samples covering a wide range in chemical compositions (Si single crystal IRMM-017, basaltic glasses KL2-G, BHVO-2G and BHVO-2, andesitic glass ML3B-G, rhyolitic glass ATHO-G, diopside glass JER, soda-lime glasses NIST SRM 612 and 610, San Carlos olivine). No composition-dependent matrix effect was discernible within uncertainties of the method. The method was applied to investigate the Si isotope

  8. Composition and mechanisms analysis of aromatic telechelic oligomers by mass spectroscopy; Analyse de la composition et de mecanismes de polymerisation d`oligomeres telecheliques aromatiques par spectrometrie de masse

    Energy Technology Data Exchange (ETDEWEB)

    Damerval, V.

    1997-10-22

    The aim of this work was to apply mass spectrometry, on the one hand to the characterization of telechelic oligo-imides with oxazoline and lactane end-caps and, on the other hand to the determination of the thermal reticulation mechanism of nadimides. First bis-oxazoline and buslactane end-capped, oligomers used to form blocks copolymers were studied by liquid secondary ion mass spectroscopy (LSIMS) and Matrix-assisted laser desorption ionization time of flight spectroscopy (MALDI-TOF). An acetamide end-cap by-product was detected. Then the analysis was modified to avoid the formation of this by-product which was unable to copolymerize. Secondly, to circumvent the experimental difficulties related to crosslinked networks, the study of the thermal polymerization of nadimides was performed ones (LSIMS, electroscopy, MALDI-TOF) led to the determination of the polynadimide structure. Thanks to MS/MS studies the nature of the linkages and the structure of the end-caps were established. Finally, this work evidenced the opportunity to use mass spectrometry to analyze synthetic polymers. (author) 222 refs.

  9. Methods for recalibration of mass spectrometry data

    Science.gov (United States)

    Tolmachev, Aleksey V.; Smith, Richard D.

    2009-03-03

    Disclosed are methods for recalibrating mass spectrometry data that provide improvement in both mass accuracy and precision by adjusting for experimental variance in parameters that have a substantial impact on mass measurement accuracy. Optimal coefficients are determined using correlated pairs of mass values compiled by matching sets of measured and putative mass values that minimize overall effective mass error and mass error spread. Coefficients are subsequently used to correct mass values for peaks detected in the measured dataset, providing recalibration thereof. Sub-ppm mass measurement accuracy has been demonstrated on a complex fungal proteome after recalibration, providing improved confidence for peptide identifications.

  10. Introduction to mass spectrometry-based proteomics

    DEFF Research Database (Denmark)

    Matthiesen, Rune; Bunkenborg, Jakob

    2013-01-01

    Mass spectrometry has been widely applied to study biomolecules and one rapidly developing field is the global analysis of proteins, proteomics. Understanding and handling mass spectrometry data is a multifaceted task that requires many decisions to be made to get the most comprehensive information...... from an experiment. Later chapters in this book deal in-depth with various aspects of the process and how different tools can be applied to the many analytical challenges. This introductory chapter is intended as a basic introduction to mass spectrometry (MS)-based proteomics to set the scene...... for newcomers and give pointers to reference material. There are many applications of mass spectrometry in proteomics and each application is associated with some analytical choices, instrumental limitations and data processing steps that depend on the aim of the study and means of conducting it. Different...

  11. Pyrolysis - gas chromatography - mass spectrometry of lignins

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.; Saiz-Jimenez, C.; Gonzalez-Vila, F.J.

    1979-01-01

    Milled wood lignins from spruce, beech and bamboo were pyrolysed. The high-boiling products of pyrolysis were studied by GLC and mass spectrometry. The forty-three products identified provide information on the structural units of lignin.

  12. Mass spectrometry of fluorocarbon-labeled glycosphingolipids

    DEFF Research Database (Denmark)

    Li, Yunsen; Arigi, Emma; Eichert, Heather;

    2010-01-01

    A method for generation of novel fluorocarbon derivatives of glycosphingolipids (GSLs) with high affinity for fluorocarbon phases has been developed, and their potential applications to mass spectrometry (MS)-based methodologies for glycosphingolipidomics have been investigated. Sphingolipid...

  13. Imaging mass spectrometry of polymeric materials

    NARCIS (Netherlands)

    Klerk, L.A.

    2009-01-01

    Imaging mass spectrometry (MS) is a technique that makes images of molecular distributions at surfaces based on mass spectral information. At a range (typically a raster) of positions, mass spectra are measured from the surface giving a characteristic fingerprint for the material that is present at

  14. Isotope ratio analysis by Orbitrap mass spectrometry

    Science.gov (United States)

    Eiler, J. M.; Chimiak, L. M.; Dallas, B.; Griep-Raming, J.; Juchelka, D.; Makarov, A.; Schwieters, J. B.

    2016-12-01

    Several technologies are being developed to examine the intramolecular isotopic structures of molecules (i.e., site-specific and multiple substitution), but various limitations in sample size and type or (for IRMS) resolution have so far prevented the creation of a truly general technique. We will discuss the initial findings of a technique based on Fourier transform mass spectrometry, using the Thermo Scientific Q Exactive GC — an instrument that contains an Orbitrap mass analyzer. Fourier transform mass spectrometry is marked by exceptionally high mass resolutions (the Orbitrap reaches M/∆M in the range 250,000-1M in the mass range of greatest interest, 50-200 amu). This allows for resolution of a large range of nearly isobaric interferences for isotopologues of volatile and semi-volatile compounds (i.e., involving isotopes of H, C, N, O and S). It also provides potential to solve very challenging mass resolution problems for isotopic analysis of other, heavier elements. Both internal and external experimental reproducibilities of isotope ratio analyses using the Orbitrap typically conform to shot-noise limits down to levels of 0.2 ‰ (1SE), and routinely in the range 0.5-1.0 ‰, with similar accuracy when standardized to concurrently run reference materials. Such measurements can be made without modifications to the ion optics of the Q Exactive GC, but do require specially designed sample introduction devices to permit sample/standard comparison and long integration times. The sensitivity of the Q Exactive GC permits analysis of sub-nanomolar samples and quantification of multiply-substituted species. The site-specific capability of this instrument arises from the fact that mass spectra of molecular analytes commonly contain diverse fragment ion species, each of which samples a specific sub-set of molecular sites. We will present applications of this technique to the biological and abiological chemistry of amino acids, forensic identification of

  15. Cluster SIMS Microscope Mode Mass Spectrometry Imaging

    CERN Document Server

    Kiss, András; Jungmann, Julia H; Heeren, Ron M A

    2013-01-01

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source is combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The mass spectral and imaging performance of the system is tested with various benchmark samples and thin tissue sections. We show that the high secondary ion yield (with respect to traditional monatomic primary ion sources) of the C60 primary ion ...

  16. Microbial proteomics using mass spectrometry.

    Science.gov (United States)

    Hines, Harry B

    2012-01-01

    Proteomic analyses involve a series of intricate, interdependent steps involving approaches and technical issues that must be fully coordinated to obtain the optimal amount of required information about the test subject. Fortunately, many of these steps are common to most test subjects, requiring only modifications to or, in some cases, substitution of some of the steps to ensure they are relevant to the desired objective of a study. This fortunate occurrence creates an essential core of proteomic approaches and techniques that are consistently available for most studies, regardless of test subject. In this chapter, an overview of some of these core approaches, techniques, and mass spectrometric instrumentation is given, while indicating how such steps are useful for and applied to bacterial investigations. To exemplify how such proteomic concepts and techniques are applicable to bacterial investigations, a practical, quantitative method useful for bacterial proteomic analysis is presented with a discussion of possibilities, pitfalls, and some emerging technology to provide a compilation of information from the diverse literature that is intermingled with experimental experience.

  17. Analysis of mass spectrometry data in proteomics

    DEFF Research Database (Denmark)

    Matthiesen, Rune; Jensen, Ole N

    2008-01-01

    that in turn allow protein identification, annotation of secondary modifications, and determination of the absolute or relative abundance of individual proteins. Advances in mass spectrometry-driven proteomics rely on robust bioinformatics tools that enable large-scale data analysis. This chapter describes......The systematic study of proteins and protein networks, that is, proteomics, calls for qualitative and quantitative analysis of proteins and peptides. Mass spectrometry (MS) is a key analytical technology in current proteomics and modern mass spectrometers generate large amounts of high-quality data...... some of the basic concepts and current approaches to the analysis of MS and MS/MS data in proteomics....

  18. Characterisation of DEFB107 by mass spectrometry

    Science.gov (United States)

    McCullough, Bryan J.; Eastwood, Hayden; Clark, Dave J.; Polfer, Nick C.; Campopiano, Dominic J.; Dorin, Julia A.; Maxwell, Alison; Langley, Ross J.; Govan, John R. W.; Bernstein, Summer L.; Bowers, Michael T.; Barran, Perdita E.

    2006-05-01

    Mammalian defensins are small endogenous cationic proteins which form a class of antimicrobial peptides that is part of the innate immune response of all mammalian species [R. Lehrer, Nat. Rev. Microbiol. 2 (9) (2004) 727; T. Ganz, R.I. Lehrer, Curr. Opin. Immunol. 6 (4) (1994) 584] [1] and [2]. We have developed mass spectrometry based strategies for characterising the structure-activity relationship of defensins [D.J. Campopiano, D.J. Clarke, N.C. Polfer, P.E. Barran, R.J. Langley, J.R.W. Govan, A. Maxwell, J.R. Dorin, J. Biol. Chem. 279 (47) (2004) 48671; P.E. Barran, N.C. Polfer, D.J. Campopiano, D.J. Clarke, P.R.R. Langridge-Smith, R.J. Langley, J.R.W. Govan, A. Maxwell, J.R. Dorin, R.P. Millar, M.T. Bowers, Int. J. Mass Spectrom. 240 (2005) 273] [3] and [4], and here we present data obtained from a five cysteine containing [beta]-defensin, DEFB107. The synthetic product of this human defensin exists with a glutathione capping group, its oxidation state and disulphide connectivity have been determined via accurate mass measurements and peptide mass mapping respectively, and despite possessing three disulphide bridges, it does not fit the [beta]-defensin canonical motif. With the use of molecular modelling, we have generated candidate geometries to discern the influence of disulphide bridging on the overall tertiary structure of DEFB107. These are compared with experimental results from ion mobility measurements. Defensins display activity against a wide variety of pathogens including both gram-negative and gram-positive bacteria. Their mechanism of mode of action is unknown, but is believed to involve defensin aggregation at cell surfaces, followed by cell permeabilisation and hence deathE To probe this mechanism, the localisation of DEFB107 in synthetic vesicles was studied using H/D exchange and mass spectrometry. The results obtained are used to analyse the antimicrobial activity of DEFB107.

  19. Chemical analysis of surfaces by resonance ionization mass spectroscopy associated to ionic pulverization; Analyse chimique de surfaces par spectrometrie d`ionisation resonante associee a la pulverisation ionique

    Energy Technology Data Exchange (ETDEWEB)

    Kern, P.

    1995-12-19

    This work shows that if resonance ionization mass spectroscopy was first applied in isotopic separation, it`s also an analyzing method adapted to the study of semi-conductor materials and thin foils. We have improved this technic: a neodymium laser coupled with a dye laser, a new argon ions gun, a gallium ions gun and a new collection optic for the secondary ions quadrupole spectrometer to allow quantitative and selective measurements. (S.G.). 84 refs.

  20. A REVIEW ON MASS SPECTROMETRY DETECTORS

    Directory of Open Access Journals (Sweden)

    Khatri Neetu

    2012-10-01

    Full Text Available Mass spectrometry is an analytical technique for "weighing" molecules. Obviously, this is not done with a conventional scale or balance. Instead, mass spectrometry is based upon the principle of the motion of a charged particle that is called an ion, in an electric or magnetic field. The mass to charge ratio (m/z of the ion affects particles motion. Since the charge of an electron is known, the mass to charge ratio (m/z is a measurement of mass of an ion. Mass spectrometry research focuses on the formation of gas phase ions, and detection of ions. Detectors in mass spectrometer detect the separated ions according to m/z ratio. The main disadvantages of conventional detectors are very low sensitivity and poor detection efficiency. Detectors are of a great interest to a wide range of industrial, military, environmental and even biological applications. In recent developments, molecules of higher mass can also be detected and enhanced lifetime under the less than ideal environments typically encountered in mass spectrometers. This review deals in detail about the design, working and principle of mass spectrometric detectors and their recent developments.

  1. Linear electric field mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McComas, D.J.; Nordholt, J.E.

    1991-03-29

    A mass spectrometer is described having a low weight and low power requirement, for use in space. It can be used to analyze the ionized particles in the region of the spacecraft on which it is mounted. High mass resolution measurements are made by timing ions moving through a gridless cylindrically sysmetric linear electric field.

  2. Delineation of pulmonary airway fluid protein fractions with HRPO binding-avidity by far-Western ligand blot and mass spectrometry analyses: a model methodology for detecting mannose-binding protein expression profiles.

    Science.gov (United States)

    Coyne, Cody P; Rashmir-Raven, Ann; Jones, Toni; Mochal, Cathleen; Linford, Robert L; Brashier, Michael; Eddy, Alison

    2009-01-01

    Limited research to date has characterized the potential for HRPO to function as a primary molecular probe. Pulmonary airway fluid was developed by non-reducing far-Western (ligand) blot analyses utilizing conjugated HRPO-strepavidin or non-conjugated HRPO without the presence of primary immunoglobulin. Endogenous esterase-like biochemical activity of fractions within pulmonary airway fluid was inactivated to determine if they were capable of biochemically converting HRPO chemiluminescent substrate. Complementary analyses modified pulmonary fluid and HRPO with beta-galactosidase and alpha-mannosidase respectively, in addition to determining the influence of mannose and maltose competitive binding on HRPO far-Western (ligand) blot analyses. Identification of pulmonary fluid fractions detected by HRPO far-Western blot analyses was determined by mass spectrometry. Modification of pulmonary fluid with beta-galactosidase, and HRPO with alpha-mannosidase in concert with maltose and mannose competitive binding analyses altered the intensity and spectrum of pulmonary fluid fractions detected by HRPO far-Western blot analysis. Identity of pulmonary airway fluid fractions detected by HRPO far-Western (ligand) blot analysis were transferrin, dynein, albumin precursor, and two 156 kDa equine peptide fragments. HRPO can function as a partially-selective primary molecular probe when applied in either a conjugated or non-conjugated form. Some protein fractions can form complexes with HRPO through molecular mechanisms that involve physical interactions at the terminal alpha-mannose-rich regions of HRPO glycan side-chains. Based on its known molecular composition and structure, HRPO provides an opportunity for the development of diagnostics methodologies relevant to disease biomarkers that possess mannose-binding avidity.

  3. Characterization of Synthetic Peptides by Mass Spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala K; Mirza, Osman; Højrup, Peter;

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI-TOF-MS an......Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI...

  4. Mass spectrometry based protein identification with accurate statistical significance assignment

    OpenAIRE

    Alves, Gelio; Yu, Yi-Kuo

    2014-01-01

    Motivation: Assigning statistical significance accurately has become increasingly important as meta data of many types, often assembled in hierarchies, are constructed and combined for further biological analyses. Statistical inaccuracy of meta data at any level may propagate to downstream analyses, undermining the validity of scientific conclusions thus drawn. From the perspective of mass spectrometry based proteomics, even though accurate statistics for peptide identification can now be ach...

  5. Human sports drug testing by mass spectrometry.

    Science.gov (United States)

    Schänzer, Wilhelm; Thevis, Mario

    2017-01-01

    Since the installation of anti-doping rules and regulations and their international enforcement in the mid-1960s, mass spectrometry has been an integral part of doping control procedures. Although its utility was limited in the first decade, instrumental improvements and method optimizations have made mass spectrometry, in all its facets, an indispensable tool in modern sports drug testing. In this review, milestones in doping control analysis accomplished in Germany and reaching from the early developments to the current use of hyphenated mass spectrometric techniques concerning low- and high molecular mass analytes are presented. The considered drug classes include anabolic agents, peptidic drugs, nucleotide-derived therapeutics, approved and non-approved organic as well as inorganic analytes, and particular focus is put on drug class- and instrument-driven strategies. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:16-46, 2017.

  6. Analyses of gibberellins in coconut (Cocos nucifera L.) water by partial filling-micellar electrokinetic chromatography-mass spectrometry with reversal of electroosmotic flow.

    Science.gov (United States)

    Ge, Liya; Yong, Jean Wan Hong; Tan, Swee Ngin; Hua, Lin; Ong, Eng Shi

    2008-05-01

    In this paper, we present the results of simultaneous screening of eight gibberellins (GAs) in coconut (Cocos nucifera L.) water by MEKC directly coupled to ESI-MS detection. During the development of MEKC-MS, partial filling (PF) was used to prevent the micelles from reaching the mass spectrometer as this is detrimental to the MS signal, and a cationic surfactant, cetyltrimethylammonium hydroxide, was added to the electrolyte to reverse the EOF. On the basis of the resolution of the neighboring peaks, different parameters (i.e., the pH and concentration of buffer, surfactant concentrations, length of the injected micellar plug, organic modifier, and applied separation voltage) were optimized to achieve a satisfactory PF-MEKC separation of eight GA standards. Under optimum conditions, a baseline separation of GA standards, including GA1, GA3, GA5, GA6, GA7, GA9, GA12, and GA13, was accomplished within 25 min. Satisfactory results were obtained in terms of precision (RSD of migration time below 0.9%), sensitivity (LODs in the range of 0.8-1.9 microM) and linearity (R2 between 0.981 and 0.997). MS/MS with multiple reaction monitoring (MRM) detection was carried out to obtain sufficient selectivity. PF-MEKC-MS/MS allowed the direct identification and confirmation of the GAs presented in coconut water (CW) sample after SPE, while, the quantitative analysis of GAs was performed by PF-MEKC-MS approach. GA1 and GA3 were successfully detected and quantified in CW. It is anticipated that the current PF-MEKC-MS method can be applicable to analyze GAs in a wide range of biological samples.

  7. A history of mass spectrometry in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Downard, K.M.; de Laeter, J.R. [University of Sydney, Sydney, NSW (Australia)

    2005-09-01

    An interest in mass spectrometry in Australia can be traced back to the 1920s with an early correspondence with Francis Aston who first visited these shores a decade earlier. The region has a rich tradition in both the development of the field and its application, from early measurements of ionization and appearance potentials by Jim Morrison at the Council for Scientific and Industrial Research (CSIR) around 1950 to the design and construction of instrumentation including the first use of a triple quadrupole mass spectrometer for tandem mass spectrometry, the first suite of programs to simulate ion optics (SIMION), the development of early TOF/TOF instruments and orthogonal acceleration and the local design and construction of several generations of a sensitive high-resolution ion microprobe (SHRIMP) instrument. Mass spectrometry has been exploited in the study and characterization of the constituents of this nation's unique flora and fauna from Australian apples, honey, tea plant and eucalyptus oil, snake, spider, fish and frog venoms, coal, oil, sediments and shale, environmental studies of groundwater to geochronological dating of limestone and granite, other terrestrial and meteoritic rocks and coral from the Great Barrier Reef. This article traces the history of mass spectrometry in its many guises and applications in the island continent of Australia. It focuses on contributions of scientists who played a major role in the early establishment of mass spectrometry in Australia. In general, those who are presently active in the field, and whose histories are incomplete, have been mentioned at best only briefly despite their important contributions to the field.

  8. Absorption mode FTICR mass spectrometry imaging.

    Science.gov (United States)

    Smith, Donald F; Kilgour, David P A; Konijnenburg, Marco; O'Connor, Peter B; Heeren, Ron M A

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here, we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image, and then, these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode "Datacubes" for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  9. Introduction to mass spectrometry-based proteomics

    DEFF Research Database (Denmark)

    Matthiesen, R.; Bunkenborg, J.

    2013-01-01

    for newcomers and give pointers to reference material. There are many applications of mass spectrometry in proteomics and each application is associated with some analytical choices, instrumental limitations and data processing steps that depend on the aim of the study and means of conducting it. Different...

  10. Atmospheric pressure femtosecond laser imaging mass spectrometry

    Science.gov (United States)

    Coello, Yves; Gunaratne, Tissa C.; Dantus, Marcos

    2009-02-01

    We present a novel imaging mass spectrometry technique that uses femtosecond laser pulses to directly ionize the sample. The method offers significant advantages over current techniques by eliminating the need of a laser-absorbing sample matrix, being suitable for atmospheric pressure sampling, and by providing 10μm resolution, as demonstrated here with a chemical image of vegetable cell walls.

  11. Nanostructure-initiator mass spectrometry biometrics

    Science.gov (United States)

    Leclerc, Marion; Bowen, Benjamin; Northen, Trent

    2015-09-08

    Several embodiments described herein are drawn to methods of identifying an analyte on a subject's skin, methods of generating a fingerprint, methods of determining a physiological change in a subject, methods of diagnosing health status of a subject, and assay systems for detecting an analyte and generating a fingerprint, by nanostructure-initiator mass spectrometry (NIMS).

  12. Nanostructure-initiator mass spectrometry biometrics

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, Marion; Bowen, Benjamin; Northen, Trent

    2015-09-08

    Several embodiments described herein are drawn to methods of identifying an analyte on a subject's skin, methods of generating a fingerprint, methods of determining a physiological change in a subject, methods of diagnosing health status of a subject, and assay systems for detecting an analyte and generating a fingerprint, by nanostructure-initiator mass spectrometry (NIMS).

  13. Mass spectrometry and bioinformatics analysis data

    Directory of Open Access Journals (Sweden)

    Mainak Dutta

    2015-03-01

    Full Text Available 2DE and 2D-DIGE based proteomics analysis of serum from women with endometriosis revealed several proteins to be dysregulated. A complete list of these proteins along with their mass spectrometry data and subsequent bioinformatics analysis are presented here. The data is related to “Investigation of serum proteome alterations in human endometriosis” by Dutta et al. [1].

  14. Introduction to mass spectrometry-based proteomics

    DEFF Research Database (Denmark)

    Matthiesen, R.; Bunkenborg, J.

    2013-01-01

    for newcomers and give pointers to reference material. There are many applications of mass spectrometry in proteomics and each application is associated with some analytical choices, instrumental limitations and data processing steps that depend on the aim of the study and means of conducting it. Different...

  15. Four decades of joy in mass spectrometry

    NARCIS (Netherlands)

    Nibbering, Nico M.M.

    2006-01-01

    Tremendous developments in mass spectrometry have taken place in the last 40 years. This holds for both the science and the instrumental revolutions in this field. In chemistry the research was heavily focused on organic molecules that upon electron ionization fragmented via complex mechanistic path

  16. Mass spectrometry in a multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Mullan, A.A. (Applied Physical Science, University of Ulster, Coleraine (Northern Ireland)); Graham, W.G. (Physics Department, Queen' s University, Belfast, (Northern Ireland))

    1990-08-05

    Mass spectrometry has been used for the detection of positive and negative ions in a multicusp ion source operating with both hydrogen and deuterium gas. The mass spectrometer operation has been optimized and it is shown that applying ion extraction voltages can disturb the discharge. Using this technique combined with a Langmuir probe technique we are able to study the positive ionic fractions present when operating with both gases (and the negative ion densities.)

  17. Polymer and Additive Mass Spectrometry Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Shear, Trevor Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-06

    The use of mass spectrometry in fields related to polymers has increased significantly over the past three decades and will be explored in this literature review. The importance of this technique is highlighted when exploring how polymers degrade, verifying purchased materials, and as internal requirements change. The primary focus will be on four ionization techniques and the triple quadrupole and quadrupole / time-of-flight mass spectrometers. The advantages and limitations of each will also be explored.

  18. The Vanderbilt Mass Spectrometry Shared Facilities

    Science.gov (United States)

    Friedman, D.B.; Reyzer, M.L.; Seeley, E.H.; Calcutt, M. Wade; Hachey, D.L.; Caprioli, R.M.; McDonald, W.H.

    2010-01-01

    CF-33 The Vanderbilt Mass Spectrometry Research Center (MSRC) provides an integrated bioanalytical service facility to Vanderbilt researchers coupled with a strong MS research component.The synergies achieved by merging research and service provide investigators with state-of-the-art proteomics, tissue profiling/imaging, and bioanalytical MS technologies. These cores are managed by a professional staff of six faculty members and five research assistants, bioinformatics specialists, and an instrument engineer. The Proteomics Laboratory supports multiple technology platforms, including HPLC peptide separations and 2D gel separations of intact proteins. Analysis can be performed by ESI-linear ion trap/orbitrap and MALDI-TOF/TOF MS with all of the necessary downstream bioinformatics for protein identification and characterization. We routinely utilize single- and multi-dimensional LC/MS/MS for protein cataloguing and differential-expression studies (using spectral counting), and Difference Gel Electrophoresis (DIGE) for large-scale expression studies on complex proteomes. The Tissue Imaging core provides tissue sectioning, staining, and MS directly from tissue sections via either high resolution imaging across an entire tissue section, or higher-throughput histology-directed profiling using specific tissue areas.As with the proteomics analysis, the necessary tools and infrastructure are available for downstream biostatistical analysis of the MS data. Both of these cores work closely with users at all stages of experiments including detailed informatics consultations and training. They generally operate as limited-access facilities where users prepare samples and core technical staff performs the analyses. The Bioanalytical MS Core provides instrumentation to perform a wide variety of analyses (e.g. identification and structural analysis of biological molecules, and qualitative and quantitative assays of drugs and metabolites). The MS Core operates in an open access

  19. Guideline on Isotope Dilution Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, Amy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-19

    Isotope dilution mass spectrometry is used to determine the concentration of an element of interest in a bulk sample. It is a destructive analysis technique that is applicable to a wide range of analytes and bulk sample types. With this method, a known amount of a rare isotope, or ‘spike’, of the element of interest is added to a known amount of sample. The element of interest is chemically purified from the bulk sample, the isotope ratio of the spiked sample is measured by mass spectrometry, and the concentration of the element of interest is calculated from this result. This method is widely used, although a mass spectrometer required for this analysis may be fairly expensive.

  20. Space Applications of Mass Spectrometry. Chapter 31

    Science.gov (United States)

    Hoffman, John H.; Griffin, Timothy P.; Limero, Thomas; Arkin, C. Richard

    2010-01-01

    Mass spectrometers have been involved in essentially all aspects of space exploration. This chapter outlines some of these many uses. Mass spectrometers have not only helped to expand our knowledge and understanding of the world and solar system around us, they have helped to put man safely in space and expand our frontier. Mass spectrometry continues to prove to be a very reliable, robust, and flexible analytical instrument, ensuring that its use will continue to help aid our investigation of the universe and this small planet that we call home.

  1. Assessment of anti-inflammatory and anti-arthritic properties of Acmella uliginosa (Sw.) Cass. based on experiments in arthritic rat models and qualitative gas chromatography-mass spectrometry analyses

    Science.gov (United States)

    Paul, Subhashis; Sarkar, Sudeb; Dutta, Tanmoy; Bhattacharjee, Soumen

    2016-01-01

    Aim: The principle objective of the study was to explore the anti-arthritic properties of Acmella uliginosa (AU) (Sw.) Cass. flower in a rat model and to identify potential anti-inflammatory compounds derived from flower extracts. The synergistic role played by a combination of AU flower and Aloe vera (AV) gel crude extracts was also investigated. Materials and Methods: Male Wistar rats induced with Freund’s complete adjuvant (FCA) were used as a disease model of arthritic paw swelling. There were three experimental and two control groups, each consisting of five rats. Paw circumference and serum biochemical parameters were evaluated to investigate the role of the flower extracts in disease amelioration through a feeding schedule spanning 21 days. Gas chromatography/mass spectrometry (GC/MS) analyses were performed to search for the presence of anti-inflammatory compounds in the ethanolic and n-hexane solvent extracts of the flower. Results: As a visual cue to the experimental outcomes, FCA-induced paw swelling decreased to the normal level; and hemoglobin, serum protein, and albumin levels were significantly increased in the treated animals. The creatinine level was estimated to be normal in the experimental rats after the treatment. The combination of AU and AV showed the best recovery potential in all the studied parameters, confirming the synergistic efficacy of the herbal formulation. GC/MS analyses revealed the presence of at least 5 anti-inflammatory compounds including 9-octadecenoic acid (Z)-, phenylmethyl ester, astaxanthin, à-N-Normethadol, fenretinide that have reported anti-inflammatory/anti-arthritic properties. Conclusion: Our findings indicated that the crude flower homogenate of AU contains potential anti-inflammatory compounds which could be used as an anti-inflammatory/anti-arthritic medication. PMID:27366352

  2. Quantitative aspects of inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Bulska, Ewa; Wagner, Barbara

    2016-10-01

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue 'Quantitative mass spectrometry'.

  3. Use of mass spectrometry to study signaling pathways

    DEFF Research Database (Denmark)

    Pandey, A; Andersen, Jens S.; Mann, M

    2000-01-01

    biochemical assays have been used to identify molecules involved in signaling pathways. Lately, mass spectrometry, combined with elegant biochemical approaches, has become a powerful tool for identifying proteins and posttranslational modifications. With this protocol, we hope to bridge the gap between...... identification by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry and nanoelectrospray tandem mass spectrometry. We discuss the special requirements for the identification of phosphorylation sites in proteins by mass spectrometry. We describe enrichment of phosphopeptides from unseparated...

  4. Boundaries of mass resolution in native mass spectrometry

    NARCIS (Netherlands)

    Lössl, Philip; Snijder, Joost; Heck, Albert J R

    2014-01-01

    Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)-protein interactions, to nanomachineries such as the proteasome and ribosome, to even viru

  5. Laser-cooling-assisted mass spectrometry

    CERN Document Server

    Schneider, Christian; Chen, Kuang; Sullivan, Scott T; Hudson, Eric R

    2014-01-01

    Mass spectrometry is used in a wide range of scientific disciplines including proteomics, pharmaceutics, forensics, and fundamental physics and chemistry. Given this ubiquity, there is a worldwide effort to improve the efficiency and resolution of mass spectrometers. However, the performance of all techniques is ultimately limited by the initial phase-space distribution of the molecules being analyzed. Here, we dramatically reduce the width of this initial phase-space distribution by sympathetically cooling the input molecules with laser-cooled, co-trapped atomic ions, improving both the mass resolution and detection efficiency of a time-of-flight mass spectrometer by over an order of magnitude. Detailed molecular dynamics simulations verify the technique and aid with evaluating its effectiveness. Our technique appears to be applicable to other types of mass spectrometers.

  6. Laser-Cooling-Assisted Mass Spectrometry

    Science.gov (United States)

    Schneider, Christian; Schowalter, Steven J.; Chen, Kuang; Sullivan, Scott T.; Hudson, Eric R.

    2014-09-01

    Mass spectrometry is used in a wide range of scientific disciplines including proteomics, pharmaceutics, forensics, and fundamental physics and chemistry. Given this ubiquity, there is a worldwide effort to improve the efficiency and resolution of mass spectrometers. However, the performance of all techniques is ultimately limited by the initial phase-space distribution of the molecules being analyzed. Here, we dramatically reduce the width of this initial phase-space distribution by sympathetically cooling the input molecules with laser-cooled, cotrapped atomic ions, improving both the mass resolution and detection efficiency of a time-of-flight mass spectrometer by over an order of magnitude. Detailed molecular-dynamics simulations verify the technique and aid with evaluating its effectiveness. This technique appears to be applicable to other types of mass spectrometers.

  7. Crux: rapid open source protein tandem mass spectrometry analysis.

    Science.gov (United States)

    McIlwain, Sean; Tamura, Kaipo; Kertesz-Farkas, Attila; Grant, Charles E; Diament, Benjamin; Frewen, Barbara; Howbert, J Jeffry; Hoopmann, Michael R; Käll, Lukas; Eng, Jimmy K; MacCoss, Michael J; Noble, William Stafford

    2014-10-03

    Efficiently and accurately analyzing big protein tandem mass spectrometry data sets requires robust software that incorporates state-of-the-art computational, machine learning, and statistical methods. The Crux mass spectrometry analysis software toolkit ( http://cruxtoolkit.sourceforge.net ) is an open source project that aims to provide users with a cross-platform suite of analysis tools for interpreting protein mass spectrometry data.

  8. Preliminary Investigation into Pyrotechnic Chemical Products via Mass Spectrometry Techniques

    Science.gov (United States)

    2015-03-11

    via Mass Spectrometry Techniques 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jonathan Dilger, Eric...undesirable side reactions within the combustion. Mass spectrometry (MS) enables the rapid analysis of these products with instrumentation that offers...predicted by theory. 15. SUBJECT TERMS mass spectrometry , gas chromatography, pyrolysis, combustion products, pyrotechnics 16. SECURITY CLASSIFICATION OF

  9. Application of Nanodiamonds in Biomolecular Mass Spectrometry

    OpenAIRE

    Ping Cheng; Xianglei Kong

    2010-01-01

    The combination of nanodiamond (ND) with biomolecular mass spectrometry (MS) makes rapid, sensitive detection of biopolymers from complex biosamples feasible. Due to its chemical inertness, optical transparency and biocompatibility, the advantage of NDs in MS study is unique. Furthermore, functionalization on the surfaces of NDs expands their application in the fields of proteomics and genomics for specific requirements greatly. This review presents methods of MS analysis based on solid phase...

  10. Laser mass spectrometry for selective ultratrace determination

    CERN Document Server

    Wendt, K; Müller, P; Nörtershäuser, W; Schmitt, A; Trautmann, N; Bushaw, B A

    1999-01-01

    Resonance ionization mass spectrometry has been explored in respect to its capabilities for isobaric suppression, isotopic selectivity, and overall efficiency. Theoretical calculations within the density matrix formalism on coherent multi-step excitation processes predict high specifications, which have been confirmed by spectroscopic measurements in Ca and which make the technique attractive for ultratrace detection. Analytical applications are found in the determination of the ultratrace isotope sup 4 sup 1 Ca for cosmochemical, radiodating, and medical applications.

  11. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    Science.gov (United States)

    Wang, Daojing; Yang, Peidong; Kim, Woong; Fan, Rong

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  12. Accelerator Mass Spectrometry (AMS) 1977-1987

    Science.gov (United States)

    Gove, H. E.; Purser, K. H.; Litherland, A. E.

    2010-04-01

    The eleventh Accelerator Mass Spectrometry (AMS 11) Conference took place in September 2008, the Thirtieth Anniversary of the first Conference. That occurred in 1978 after discoveries with nuclear physics accelerators in 1977. Since the first Conference there have now been ten further conferences on the development and applications of what has become known as AMS. This is the accepted acronym for the use of accelerators, together with nuclear and atomic physics techniques, to enhance the performance of mass spectrometers for the detection and measurement of rare long-lived radioactive elements such as radiocarbon. This paper gives an outline of the events that led to the first conference together with a brief account of the first four conferences before the introduction of the second generation of accelerator mass spectrometers at AMS 5.

  13. Direct Analysis in Real Time (DART) of an Organothiophosphate at Ultrahigh Resolution by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry.

    Science.gov (United States)

    Prokai, Laszlo; Stevens, Stanley M

    2016-01-16

    Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae.

  14. Analytical validation of accelerator mass spectrometry for pharmaceutical development.

    Science.gov (United States)

    Keck, Bradly D; Ognibene, Ted; Vogel, John S

    2010-03-01

    The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of (14)C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the (14)C label), stable across samples storage conditions for at least 1 year, linear over four orders of magnitude with an analytical range from 0.1 Modern to at least 2000 Modern (instrument specific). Furthermore, accuracy was excellent (between 1 and 3%), while precision expressed as coefficient of variation was between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of (14)C, respectively (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with (14)C corresponds to 30 fg equivalents. Accelerator mass spectrometry provides a sensitive, accurate and precise method of measuring drug compounds in biological matrices.

  15. Native Mass Spectrometry: What is in the Name?

    Science.gov (United States)

    Leney, Aneika C.; Heck, Albert J. R.

    2016-12-01

    Electrospray ionization mass spectrometry (ESI-MS) is nowadays one of the cornerstones of biomolecular mass spectrometry and proteomics. Advances in sample preparation and mass analyzers have enabled researchers to extract much more information from biological samples than just the molecular weight. In particular, relevant for structural biology, noncovalent protein-protein and protein-ligand complexes can now also be analyzed by MS. For these types of analyses, assemblies need to be retained in their native quaternary state in the gas phase. This initial small niche of biomolecular mass spectrometry, nowadays often referred to as "native MS," has come to maturation over the last two decades, with dozens of laboratories using it to study mostly protein assemblies, but also DNA and RNA-protein assemblies, with the goal to define structure-function relationships. In this perspective, we describe the origins of and (re)define the term native MS, portraying in detail what we meant by "native MS," when the term was coined and also describing what it does (according to us) not entail. Additionally, we describe a few examples highlighting what native MS is, showing its successes to date while illustrating the wide scope this technology has in solving complex biological questions.

  16. Native Mass Spectrometry: What is in the Name?

    Science.gov (United States)

    Leney, Aneika C.; Heck, Albert J. R.

    2017-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is nowadays one of the cornerstones of biomolecular mass spectrometry and proteomics. Advances in sample preparation and mass analyzers have enabled researchers to extract much more information from biological samples than just the molecular weight. In particular, relevant for structural biology, noncovalent protein-protein and protein-ligand complexes can now also be analyzed by MS. For these types of analyses, assemblies need to be retained in their native quaternary state in the gas phase. This initial small niche of biomolecular mass spectrometry, nowadays often referred to as "native MS," has come to maturation over the last two decades, with dozens of laboratories using it to study mostly protein assemblies, but also DNA and RNA-protein assemblies, with the goal to define structure-function relationships. In this perspective, we describe the origins of and (re)define the term native MS, portraying in detail what we meant by "native MS," when the term was coined and also describing what it does (according to us) not entail. Additionally, we describe a few examples highlighting what native MS is, showing its successes to date while illustrating the wide scope this technology has in solving complex biological questions.

  17. Biological accelerator mass spectrometry at Uppsala University.

    Science.gov (United States)

    Salehpour, Mehran; Possnert, Göran; Bryhni, Helge; Palminger-Hallén, Ira; Ståhle, Lars

    2009-03-01

    A new research programme for the biological applications of accelerator mass spectrometry has been initiated at Uppsala University and the first results are presented. A (14)C-labelled pharmaceutical substance has been dissolved in human blood, plasma and urine and diluted over 3 orders of magnitude. The measured drug concentrations were found to be in good agreement with the predicted values. Furthermore, the effect of the sample preparation background contribution has been studied as the sample amount was varied down to sub-microl sizes.

  18. Neutral particle Mass Spectrometry with Nanomechanical Systems

    CERN Document Server

    Sage, Eric; Alava, Thomas; Morel, Robert; Dupré, Cécilia; Hanay, Mehmet Selim; Duraffourg, Laurent; Masselon, Christophe; Hentz, Sébastien

    2014-01-01

    Current approaches to Mass Spectrometry (MS) necessarily rely on the ionization of the analytes of interest and subsequent spectrum interpretation is based on the mass-to-charge ratios of the ions. The resulting charge state distribution can be very complex for high-mass species which may hinder correct interpretation. A new form of MS analysis based on Nano-Electro-Mechanical Systems (NEMS) was recently demonstrated with high-mass ions. Thanks to a dedicated setup comprising both conventional time-of-flight MS (TOF-MS) and NEMS-MS in-situ, we show here for the first time that NEMS-MS analysis is insensitive to charge state: it provides one single peak regardless of the species charge state, highlighting effective clarification over existing MS analysis. All charged particles were thereafter removed from the beam electrostatically, and unlike TOF-MS, NEMS-MS retained its ability to perform mass measurements. This constitutes the first unequivocal measurement of mass spectra of neutral particles. This ability ...

  19. Simultaneous mass detection for direct inlet mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, R.L.

    1979-05-01

    The evolution of analytical techniques for application in trace analysis has led to interest in practical methods for real-time monitoring. Direct inlet mass spectrometry (DIMS) has been the subject of considerable activity in recent years. A DIMS instrument is described which consists of an inlet system designed to permit particles entrained in the inlet air stream to strike a hot, oxidized rhenium filament which serves as a surface ionization source. A mass analyzer and detection system then permits identification of the elemental composition of particulates which strike the filament.

  20. Mass spectrometry imaging: applications to food science.

    Science.gov (United States)

    Taira, Shu; Uematsu, Kohei; Kaneko, Daisaku; Katano, Hajime

    2014-01-01

    Two-dimensional mass spectrometry (MS) analysis of biological samples by means of what is called MS imaging (MSI) is now being used to analyze analyte distribution because it facilitates determination of the existence (what is it?) and localization (where is it?) of biomolecules. Reconstruction of mass image by target signal is given after two-dimensional MS measurements on a sample section. From only one section, we can understand the existence and localization of many molecules without the need of an antibody or fluorescent reagent. In this review, we introduce the analysis of localization of functional constituents and nutrients in herbal medicine products via MSI. The ginsenosides were mainly distributed in the periderm and the tip region of the root of Panax ginseng. The capsaicin was found to be more dominantly localized in the placenta than the pericarp and seed in Capsicum fruits. We expect MSI will be a useful technique for optical quality assurance.

  1. Radiocarbon positive-ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Stewart P.H.T.; Shanks, Richard P. [Scottish Universities Environmental Research Centre (SUERC), Scottish Enterprise Technology Park, East Kilbride G75 0QF (United Kingdom); Donzel, Xavier; Gaubert, Gabriel [Pantechnik S.A., 13 Rue de la Résistance, 14400 Bayeux (France)

    2015-10-15

    Proof-of-principle of a new mass spectrometric technique for radiocarbon measurement is demonstrated. Interfering nitrogen and hydrocarbon molecules are largely eliminated in a charge-exchange cell operating on non-metallic gas. The positive-to-negative ion conversion is the reverse of that conventionally used in accelerator mass spectrometry (AMS) and is compatible with plasma ion sources that may be significantly more efficient and capable of greater output than are AMS sputter ion sources. The Nanogan electron cyclotron resonance (ECR) ion source employed exhibited no sample memory and the >50 kyrs age range of AMS was reproduced. A bespoke prototype new instrument is now required to optimise the plasma and cell physics and to realise hypothetical performance gains over AMS.

  2. Damping effects in Penning trap mass spectrometry

    CERN Document Server

    George, S; Kowalska, M; Dworschak, M; Neidherr, D; Blaum, K; Schweikhard, L; Ramirez, E M; Breitenfeldt, M; Kretzschmar, M; Herfurth, F; Schwarz, S; Herlert, A

    2011-01-01

    Collisions of ions with residual gas atoms in a Penning trap can have a strong influence on the trajectories of the ions, depending on the atom species and the gas pressure. We report on investigations of damping effects in time-of-flight ion-cyclotron resonance mass spectrometry with the Penning trap mass spectrometers ISOLTRAP at ISOLDE/CERN (Geneva, Switzerland) and SHIPTRAP at GSI (Darmstadt, Germany). The work focuses on the interconversion of the magnetron and cyclotron motional modes, in particular the modification of the resonance profiles for quadrupolar excitation due to the damping effect of the residual gas. Extensive experiments have been performed with standard and Ramsey excitation schemes. The results are in good agreement with predictions obtained by analytical continuation of the formulae for the undamped case.

  3. Proteome analysis of adenovirus using mass spectrometry.

    Science.gov (United States)

    Lind, Sara Bergström; Artemenko, Konstantin A; Pettersson, Ulf

    2014-01-01

    Analysis of proteins and their posttranslational modifications is important for understanding different biological events. For analysis of viral proteomes, an optimal protocol includes production of a highly purified virus that can be investigated with a high-resolving analytical method. In this Methods in Molecular Biology paper we describe a working strategy for how structural proteins in the Adenovirus particle can be studied using liquid chromatography-high-resolving mass spectrometry. This method provides information on the chemical composition of the virus particle. Further, knowledge about amino acids carrying modifications that could be essential for any part of the virus life cycle is collected. We describe in detail alternatives available for preparation of virus for proteome analysis as well as choice of mass spectrometric instrumentation suitable for this kind of analysis.

  4. Mass Spectrometry for Rapid Characterization of Microorganisms

    Science.gov (United States)

    Demirev, Plamen A.; Fenselau, Catherine

    2008-07-01

    Advances in instrumentation, proteomics, and bioinformatics have contributed to the successful applications of mass spectrometry (MS) for detection, identification, and classification of microorganisms. These MS applications are based on the detection of organism-specific biomarker molecules, which allow differentiation between organisms to be made. Intact proteins, their proteolytic peptides, and nonribosomal peptides have been successfully utilized as biomarkers. Sequence-specific fragments for biomarkers are generated by tandem MS of intact proteins or proteolytic peptides, obtained after, for instance, microwave-assisted acid hydrolysis. In combination with proteome database searching, individual biomarker proteins are unambiguously identified from their tandem mass spectra, and from there the source microorganism is also identified. Such top-down or bottom-up proteomics approaches permit rapid, sensitive, and confident characterization of individual microorganisms in mixtures and are reviewed here. Examples of MS-based functional assays for detection of targeted microorganisms, e.g., Bacillus anthracis, in environmental or clinically relevant backgrounds are also reviewed.

  5. Imaging mass spectrometry at cellular length scales.

    Science.gov (United States)

    Altelaar, A F Maarten; Luxembourg, Stefan L; McDonnell, Liam A; Piersma, Sander R; Heeren, Ron M A

    2007-01-01

    Imaging mass spectrometry (IMS) allows the direct investigation of both the identity and the spatial distribution of the molecular content directly in tissue sections, single cells and many other biological surfaces. In this protocol, we present the steps required to retrieve the molecular information from tissue sections using matrix-enhanced (ME) and metal-assisted (MetA) secondary ion mass spectrometry (SIMS) as well as matrix-assisted laser desorption/ionization (MALDI) IMS. These techniques require specific sample preparation steps directed at optimal signal intensity with minimal redistribution or modification of the sample analytes. After careful sample preparation, different IMS methods offer a unique discovery tool in, for example, the investigation of (i) drug transport and uptake, (ii) biological processing steps and (iii) biomarker distributions. To extract the relevant information from the huge datasets produced by IMS, new bioinformatics approaches have been developed. The duration of the protocol is highly dependent on sample size and technique used, but on average takes approximately 5 h.

  6. Mass Spectrometry on Future Mars Landers

    Science.gov (United States)

    Brinckerhoff, W. B.; Mahaffy, P. R.

    2011-01-01

    Mass spectrometry investigations on the 2011 Mars Science Laboratory (MSL) and the 2018 ExoMars missions will address core science objectives related to the potential habitability of their landing site environments and more generally the near-surface organic inventory of Mars. The analysis of complex solid samples by mass spectrometry is a well-known approach that can provide a broad and sensitive survey of organic and inorganic compounds as well as supportive data for mineralogical analysis. The science value of such compositional information is maximized when one appreciates the particular opportunities and limitations of in situ analysis with resource-constrained instrumentation in the context of a complete science payload and applied to materials found in a particular environment. The Sample Analysis at Mars (SAM) investigation on MSL and the Mars Organic Molecule Analyzer (MOMA) investigation on ExoMars will thus benefit from and inform broad-based analog field site work linked to the Mars environments where such analysis will occur.

  7. O estado da arte da cromatografia associada à espectrometria de massas acoplada à espectrometria de massas na análise de compostos tóxicos em alimentos The state of the art of chromatography associated with the tandem mass spectrometry for toxic compound analyses in food

    Directory of Open Access Journals (Sweden)

    Mariza C. Chiaradia

    2008-01-01

    Full Text Available Chromatography combined with several different detection systems is one of the more used and better performing analytical tools. Chromatography with tandem mass spectrometric detection gives highly selective and sensitive analyses and permits obtaining structural information about the analites and about their molar masses. Due to these characteristics, this analytical technique is very efficient when used to detect substances at trace levels in complex matrices. In this paper we review instrumental and technical aspects of chromatography-tandem mass spectrometry and the state of the art of the technique as it is applied to analysis of toxic substances in food.

  8. Developments in mass spectrometry for the analysis of complex protein mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Khalsa-Moyers, Gurusahai K [ORNL; McDonald, W Hayes [ORNL

    2006-01-01

    State-of-the-art proteomics workflows involve multiple interdependent steps: sample preparation, protein peptide separation, mass spectrometry and data analysis.While improvements in any of these steps can increase the depth and breadth of analysis, advances in mass spectrometry have catalysed many of the most important developments. We discuss common classes of mass analysers and how these analysers are put together to produce some of the most popular mass spectrometry platforms.The capabilities of these platforms determine how they can be used in a variety of common proteomic strategies and, in turn, what types of biological questions can be addressed. Moving forward, powerful new hybridmass spectrometers and application of emerging types of tandemmass spectrometry promise that our ability to analyse complex mixtures of proteins will continue to advance.

  9. Ambient ionization mass spectrometry: A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Shiea, Jentaie, E-mail: jetea@fac.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2011-09-19

    Highlights: {yields} Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. {yields} We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. {yields} The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  10. Multinozzle Emitter Arrays for Nanoelectrospray Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Pan; Wang, Hung-Ta; Yang, Peidong; Wang, Daojing

    2011-06-16

    Mass spectrometry (MS) is the enabling technology for proteomics and metabolomics. However, dramatic improvements in both sensitivity and throughput are still required to achieve routine MS-based single cell proteomics and metabolomics. Here, we report the silicon-based monolithic multinozzle emitter array (MEA), and demonstrate its proof-of-principle applications in high-sensitivity and high-throughput nanoelectrospray mass spectrometry. Our MEA consists of 96 identical 10-nozzle emitters in a circular array on a 3-inch silicon chip. The geometry and configuration of the emitters, the dimension and number of the nozzles, and the micropillar arrays embedded in the main channel, can be systematically and precisely controlled during the microfabrication process. Combining electrostatic simulation and experimental testing, we demonstrated that sharpened-end geometry at the stem of the individual multinozzle emitter significantly enhanced the electric fields at its protruding nozzle tips, enabling sequential nanoelectrospray for the high-density emitter array. We showed that electrospray current of the multinozzle emitter at a given total flow rate was approximately proportional to the square root of the number of its spraying-nozzles, suggesting the capability of high MS sensitivity for multinozzle emitters. Using a conventional Z-spray mass spectrometer, we demonstrated reproducible MS detection of peptides and proteins for serial MEA emitters, achieving sensitivity and stability comparable to the commercial capillary emitters. Our robust silicon-based MEA chip opens up the possibility of a fully-integrated microfluidic system for ultrahigh-sensitivity and ultrahigh-throughput proteomics and metabolomics.

  11. Mass spectrometry on the surface of Mercury

    Science.gov (United States)

    Whitby, J.; Rohner, U.; Benz, W.; Wurz, P.

    2003-04-01

    The proposed Mercury Surface Element of the BepiColombo mission will place a lander on Mercury equipped with a geochemistry instrumentation package. We will discuss the utility of elemental and isotopic analyses of individual mineral grains in the hermean regolith, and present relevant results from a prototype laser-ablation time-of-flight mass spectrometer.

  12. Mass spectrometry for high-throughput metabolomics analysis of urine

    OpenAIRE

    Abdelrazig, Salah M.A.

    2015-01-01

    Direct electrospray ionisation-mass spectrometry (direct ESI-MS), by omitting the chromatographic step, has great potential for application as a high-throughput approach for untargeted urine metabolomics analysis compared to liquid chromatography-mass spectrometry (LC-MS). The rapid development and technical innovations revealed in the field of ambient ionisation MS such as nanoelectrospray ionisation (nanoESI) chip-based infusion and liquid extraction surface analysis mass spectrometry (LESA...

  13. SPME-GC-MS versus Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) analyses for the study of volatile compound generation and oxidation status during dry fermented sausage processing.

    Science.gov (United States)

    Olivares, Alicia; Dryahina, Kseniya; Navarro, José Luis; Smith, David; Spanĕl, Patrik; Flores, Mónica

    2011-03-09

    The use of selected ion flow tube mass spectrometry (SIFT-MS) and gas chromatography-mass spectrometry together with solid phase microextraction (GC-MS-SPME) has been compared in the analysis of volatile compounds during dry fermented sausage processing. Thus, the headspace (HS) of samples of dry fermented sausages with different fat contents was analyzed during their manufacture using both techniques, and significant and positive correlations were found between SIFT-MS and SPME-GC-MS measurements for the compounds pentanal, hexanal, 2-heptenal, octanal, 2-nonenal, 2-butanone, 2-pentanone, ethanol, acetic acid, and hexanoic acid. The oxidative status of fermented sausages during processing was also evaluated, and a significant correlation was obtained between the HS concentration of lipid autoxidation volatile compounds measured by SIFT-MS and SPME-GC-MS and the level of thiobarbituric acid reactive substances (TBARS) in the sausage. The hexanal measured by SIFT-MS resulted in a higher correlation coefficient (r = 0.936) than that obtained using SPME-GC-MS (r = 0.927). SIFT-MS is shown to be a fast, real time analytical technique for monitoring changes in the profile of volatile compounds in dry fermented sausages during processing and a useful tool to evaluate the oxidative status of meat products.

  14. Accelerator mass spectrometry (AMS) in plutonium analysis.

    Science.gov (United States)

    Strumińska-Parulska, Dagmara I

    The paper summarizes the results of the (240)Pu/(239)Pu atomic ratio studies in atmospheric fallout samples collected in 1986 over Gdynia (Poland) as well as three Baltic fish species collected in 1997 using the accelerator mass spectrometry. A new generation of AMS has been developed during last years and this method is an efficient and good technique to measure long-lived radioisotopes in the environment and provides the most accurate determination of the atomic ratios between (240)Pu and (239)Pu. The nuclide compositions of plutonium in filter samples correspond to their means of production. AMS measurements of atmospheric fallout collected in April showed sufficient increase of the (240)Pu/(239)Pu atomic ratio from 0.28 from March to 0.47. Also such high increase of (240)Pu/(239)Pu atomic ratio, close to reactor core (240)Pu/(239)Pu atomic ratio, was observed in September and equaled 0.47.

  15. Subattomole sensitivity in biological accelerator mass spectrometry.

    Science.gov (United States)

    Salehpour, Mehran; Possnert, Göran; Bryhni, Helge

    2008-05-15

    The Uppsala University 5 MV Pelletron tandem accelerator has been used to study (14)C-labeled biological samples utilizing accelerator mass spectrometry (AMS) technology. We have adapted a sample preparation method for small biological samples down to a few tens of micrograms of carbon, involving among others, miniaturizing of the graphitization reactor. Standard AMS requires about 1 mg of carbon with a limit of quantitation of about 10 amol. Results are presented for a range of small sample sizes with concentrations down to below 1 pM of a pharmaceutical substance in human blood. It is shown that (14)C-labeled molecular markers can be routinely measured from the femtomole range down to a few hundred zeptomole (10 (-21) mol), without the use of any additional separation methods.

  16. Mass spectrometry and Web 2.0.

    Science.gov (United States)

    Murray, Kermit K

    2007-10-01

    The term Web 2.0 is a convenient shorthand for a new era in the Internet in which users themselves are both generating and modifying existing web content. Several types of tools can be used. With social bookmarking, users assign a keyword to a web resource and the collection of the keyword 'tags' from multiple users form the classification of these resources. Blogs are a form of diary or news report published on the web in reverse chronological order and are a popular form of information sharing. A wiki is a website that can be edited using a web browser and can be used for collaborative creation of information on the site. This article is a tutorial that describes how these new ways of creating, modifying, and sharing information on the Web are being used for on-line mass spectrometry resources.

  17. Recent trends in inorganic mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.H.; Barshick, C.M.; Duckworth, D.C.; Riciputi, L.R.

    1996-10-01

    The field of inorganic mass spectrometry has seen substantial change in the author`s professional lifetime (over 30 years). Techniques in their infancy 30 years ago have matured; some have almost disappeared. New and previously unthought of techniques have come into being; some of these, such as ICP-MS, are reasonably mature now, while others have some distance to go before they can be so considered. Most of these new areas provide fertile fields for researchers, both in the development of new analytical techniques and by allowing fundamental studies to be undertaken that were previously difficult, impossible, or completely unforeseen. As full coverage of the field is manifestly impossible within the framework of this paper, only those areas with which the author has personal contact will be discussed. Most of the work originated in his own laboratory, but that of other laboratories is covered where it seemed appropriate.

  18. Application of Nanodiamonds in Biomolecular Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ping Cheng

    2010-03-01

    Full Text Available The combination of nanodiamond (ND with biomolecular mass spectrometry (MS makes rapid, sensitive detection of biopolymers from complex biosamples feasible. Due to its chemical inertness, optical transparency and biocompatibility, the advantage of NDs in MS study is unique. Furthermore, functionalization on the surfaces of NDs expands their application in the fields of proteomics and genomics for specific requirements greatly. This review presents methods of MS analysis based on solid phase extraction and elution on NDs and different application examples including peptide, protein, DNA, glycan and others. Owing to the quick development of nanotechnology, surface chemistry, new MS methods and the intense interest in proteomics and genomics, a huge increase of their applications in biomolecular MS analysis in the near future can be predicted.

  19. [Application of mass spectrometry in mycology].

    Science.gov (United States)

    Quiles Melero, Inmaculada; Peláez, Teresa; Rezusta López, Antonio; Garcia-Rodríguez, Julio

    2016-06-01

    MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometry (MS) is becoming an essential tool in most microbiology laboratories. At present, by using a characteristic fungal profile obtained from whole cells or through simple extraction protocols, MALDI-TOF MS allows the identification of pathogenic fungi with a high performance potential. This methodology decreases the laboratory turnaround time, optimizing the detection of mycoses. This article describes the state-of-the-art of the use of MALDI-TOF MS for the detection of human clinical fungal pathogens in the laboratory and discusses the future applications of this technology, which will further improve routine mycological diagnosis. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  20. Mass Spectrometry Methodology in Lipid Analysis

    Directory of Open Access Journals (Sweden)

    Lin Li

    2014-06-01

    Full Text Available Lipidomics is an emerging field, where the structures, functions and dynamic changes of lipids in cells, tissues or body fluids are investigated. Due to the vital roles of lipids in human physiological and pathological processes, lipidomics is attracting more and more attentions. However, because of the diversity and complexity of lipids, lipid analysis is still full of challenges. The recent development of methods for lipid extraction and analysis and the combination with bioinformatics technology greatly push forward the study of lipidomics. Among them, mass spectrometry (MS is the most important technology for lipid analysis. In this review, the methodology based on MS for lipid analysis was introduced. It is believed that along with the rapid development of MS and its further applications to lipid analysis, more functional lipids will be identified as biomarkers and therapeutic targets and for the study of the mechanisms of disease.

  1. Glass microfabricated nebulizer chip for mass spectrometry.

    Science.gov (United States)

    Saarela, Ville; Haapala, Markus; Kostiainen, Risto; Kotiaho, Tapio; Franssila, Sami

    2007-05-01

    A microfluidic nebulizer chip for mass spectrometry is presented. It is an all-glass device which consists of fusion bonded Pyrex wafers with embedded flow channels and a nozzle at the chip edge. A platinum heater is located on the wafer backside. Fabrication of the chip is detailed, especially glass deep etching, wafer bonding, and metal patterning. Various process combinations of bonding and metallization have been considered (anodic bonding vs. fusion bonding; heater inside/outside channel; metallization before/after bonding; platinum lift-off vs. etching). The chip vaporizes the liquid sample (0.1-10 microL min(-1)) and mixes it with a nebulizer gas (ca. 100 sccm N2). Operating temperatures can go up to 500 degrees C ensuring efficient vaporization. Thermal insulation of the glass ensures low temperatures at the far end of the chip, enabling easy interconnections.

  2. Enantioselectivity of mass spectrometry: challenges and promises.

    Science.gov (United States)

    Awad, Hanan; El-Aneed, Anas

    2013-01-01

    With the fast growing market of pure enantiomer drugs and bioactive molecules, new chiral-selective analytical tools have been instigated including the use of mass spectrometry (MS). Even though MS is one of the best analytical tools that has efficiently been used in several pharmaceutical and biological applications, traditionally MS is considered as a "chiral-blind" technique. This limitation is due to the MS inability to differentiate between two enantiomers of a chiral molecule based merely on their masses. Several approaches have been explored to assess the potential role of MS in chiral analysis. The first approach depends on the use of MS-hyphenated techniques utilizing fast and sensitive chiral separation tools such as liquid chromatography (LC), gas chromatography (GC), and capillary electrophoresis (CE) coupled to MS detector. More recently, several alternative separation techniques have been evaluated such as supercritical fluid chromatography (SFC) and capillary electrochromatography (CEC); the latter being a hybrid technique that combines the efficiency of CE with the selectivity of LC. The second approach is based on using the MS instrument solely for the chiral recognition. This method depends on the behavioral differences between enantiomers towards a foreign molecule and the ability of MS to monitor such differences. These behavioral differences can be divided into three types: (i) differences in the enantiomeric affinity for association with the chiral selector, (ii) differences of the enantiomeric exchange rate with a foreign reagent, and (iii) differences in the complex MS dissociation behaviors of the enantiomers. Most recently, ion mobility spectrometry was introduced to qualitatively and quantitatively evaluate chiral compounds. This article provides an overview of MS role in chiral analysis by discussing MS based methodologies and presenting the challenges and promises associated with each approach.

  3. Plutonium measurements by accelerator mass spectrometry at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, J E; Hamilton, T F; Broan, T A; Jokela, T A; Knezovich, T J; Ognibene, T J; Proctor, I D; Roberts, M L; Southon, J R; Vogel, J S; Sideras-Haddad, E

    1999-10-26

    Mass spectrometric methods provide sensitive, routine, and cost-effective analyses of long-lived radionuclides. Here the authors report on the status of work at Lawrence Livermore National Laboratory (LLNL) to develop a capability for actinide measurements by accelerator mass spectrometry (AMS) to take advantage of the high potential of AMS for rejection of interferences. This work demonstrates that the LLNL AMS spectrometer is well-suited for providing high sensitivity, robust, high throughput measurements of plutonium concentrations and isotope ratios. Present backgrounds are {approximately}2 x 10{sup 7}atoms per sample for environmental samples prepared using standard alpha spectrometry protocols. Recent measurements of {sup 239+240}Pu and {sup 241}Pu activities and {sup 240}Pu/{sup 239}Pu isotope ratios in IAEA reference materials agree well with IAEA reference values and with alpha spectrometry and recently published ICP-MS results. Ongoing upgrades of the AMS spectrometer are expected to reduce backgrounds below 1 x 10{sup 6} atoms per sample while allowing simplifications of the sample preparation chemistry. These simplifications will lead to lower per-sample costs, higher throughput, faster turn around and, ultimately, to larger and more robust data sets.

  4. Capillary supercritical fluid chromatography-mass spectrometry (SFC-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Kalinoski, H.T.; Udseth, H.R.; Chess, E.K.; Smith, R.D.

    1986-10-01

    The physical and chemical characteristics of supercritical fluids have prompted the development of supercritical fluid chromatography (SFC) for the analysis of labile and less volatile compounds. High resolution chromatographic separations with efficiencies approaching those of gas chromatography and high speed analyses are possible in capillary SFC using pressure programming methods and narrow bore columns. Further refinement of the SFC-mass spectrometry interface (SFC-MS) provides the basis for extension to more polar fluid systems with greater solvating power and the selectivity and sensitivity of mass spectrometric detection. The use of polar modified fluids has been facilitated by advances in understanding of supercritical fluid phase behavior. Fluid mixtures have been prepared for analysis of more polar, higher molecular weight analytes, that allow mild chromatographic temperatures and allow full exploitation of selectivity offered through control of fluid pressure (i.e., density). Continuing development of the SFC-MS interface has led to designs which can be near routinely applied with fluids such as CO/sub 2/, and providing enhanced transport of truly nonvolatile compounds to the mass spectrometer ionization regions. These advances also include an SFC interface to a high resolution, dual electric magnetic sector instrument, allowing supercritical fluid solvents to be explited for on-line extraction-mass spectrometry for characterization of complex, often otherwise intractable, materials. 26 refs., 5 figs., 1 tab.

  5. Advantageous Uses of Mass Spectrometry for the Quantification of Proteins

    Directory of Open Access Journals (Sweden)

    John E. Hale

    2013-01-01

    Full Text Available Quantitative protein measurements by mass spectrometry have gained wide acceptance in research settings. However, clinical uptake of mass spectrometric protein assays has not followed suit. In part, this is due to the long-standing acceptance by regulatory agencies of immunological assays such as ELISA assays. In most cases, ELISAs provide highly accurate, sensitive, relatively inexpensive, and simple assays for many analytes. The barrier to acceptance of mass spectrometry in these situations will remain high. However, mass spectrometry provides solutions to certain protein measurements that are difficult, if not impossible, to accomplish by immunological methods. Cases where mass spectrometry can provide solutions to difficult assay development include distinguishing between very closely related protein species and monitoring biological and analytical variability due to sample handling and very high multiplexing capacity. This paper will highlight several examples where mass spectrometry has made certain protein measurements possible where immunological techniques have had a great difficulty.

  6. Mass and emission spectrometry in the Analytical Chemistry Division of Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.H. (ed.)

    1978-11-01

    The capabilities of the Mass and Emission Spectrometry Section of the Analytical Chemistry Division of Oak Ridge National Laboratory are described. Many different areas of mass spectrometric expertise are represented in the section: gas analysis, high abundance sensitivity measurements, high- and low-resolution organic analyses, spark source trace constituent analysis, and ion microprobe analysis of surfaces. These capabilities are complemented by emission spectrometry. The instruments are described along with a few applications, some of which are unique.

  7. Fluxomics: mass spectrometry versus quantitative imaging.

    Science.gov (United States)

    Wiechert, Wolfgang; Schweissgut, Oliver; Takanaga, Hitomi; Frommer, Wolf B

    2007-06-01

    The recent development of analytic high-throughput technologies enables us to take a bird's view of how metabolism is regulated in real time. We have known for a long time that metabolism is highly regulated at all levels, including transcriptional, posttranslational and allosteric controls. Flux through a metabolic or signaling pathway is determined by the activity of its individual components. Fluxomics aims to define the genes involved in regulation by following the flux. Two technologies are used to monitor fluxes. Pulse labeling of the organism or cell with a tracer, such as 13C, followed by mass spectrometric analysis of the partitioning of label into different compounds provides an efficient tool to study flux and to compare the effect of mutations on flux. The second approach is based on the use of flux sensors, proteins that respond with a conformational change to ligand binding. Fluorescence resonance energy transfer (FRET) detects the conformational change and serves as a proxy for ligand concentration. In contrast to the mass spectrometry assays, FRET nanosensors monitor only a single compound. Both methods provide high time resolution. The major advantages of FRET nanosensors are that they yield data with cellular and subcellular resolution and the method is minimally invasive.

  8. Applications of accelerator mass spectrometry to nuclear physics and astrophysics

    CERN Document Server

    Guo, Z Y

    2002-01-01

    As an ultra high sensitive analyzing method, accelerator mass spectrometry is playing an important role in the studies of nuclear physics and astrophysics. The accelerator mass spectrometry (AMS) applications in searching for violation of Pauli exclusion principle and study on supernovae are discussed as examples

  9. From structure to function : Protein assemblies dissected by mass spectrometry

    NARCIS (Netherlands)

    Lorenzen, K.

    2008-01-01

    This thesis demonstrates some of the possibilities mass spectrometry can provide to gain new insight into structure and function of protein complexes. While technologies in native mass spectrometry are still under development, it already allows research on complete proteins and protein complexes up

  10. Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Annesley, Thomas M.; Cooks, Robert G.; Herold, David A.; Hoofnagle, Andrew N.

    2016-01-04

    Each year the journal Clinical Chemistry publishes a January special issue on a topic that is relevant to the laboratory medicine community. In January 2016 the topic is mass spectrometry, and the issue is entitled “Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine”. One popular feature in our issues is a Q&A on a topic, clearly in this case mass spectrometry. The journal is assembling a panel of 5-6 experts from various areas of mass spectrometry ranging from instrument manufacturing to practicing clinical chemists. Dick Smith is one of the scientist requested to participate in this special issue Q&A on Mass Spectrometry. The Q&A Transcript is attached

  11. Proteomics by mass spectrometry: approaches, advances, and applications.

    Science.gov (United States)

    Yates, John R; Ruse, Cristian I; Nakorchevsky, Aleksey

    2009-01-01

    Mass spectrometry (MS) is the most comprehensive and versatile tool in large-scale proteomics. In this review, we dissect the overall framework of the MS experiment into its key components. We discuss the fundamentals of proteomic analyses as well as recent developments in the areas of separation methods, instrumentation, and overall experimental design. We highlight both the inherent strengths and limitations of protein MS and offer a rough guide for selecting an experimental design based on the goals of the analysis. We emphasize the versatility of the Orbitrap, a novel mass analyzer that features high resolution (up to 150,000), high mass accuracy (2-5 ppm), a mass-to-charge range of 6000, and a dynamic range greater than 10(3). High mass accuracy of the Orbitrap expands the arsenal of the data acquisition and analysis approaches compared with a low-resolution instrument. We discuss various chromatographic techniques, including multidimensional separation and ultra-performance liquid chromatography. Multidimensional protein identification technology (MudPIT) involves a continuum sample preparation, orthogonal separations, and MS and software solutions. We discuss several aspects of MudPIT applications to quantitative phosphoproteomics. MudPIT application to large-scale analysis of phosphoproteins includes (a) a fractionation procedure for motif-specific enrichment of phosphopeptides, (b) development of informatics tools for interrogation and validation of shotgun phosphopeptide data, and (c) in-depth data analysis for simultaneous determination of protein expression and phosphorylation levels, analog to western blot measurements. We illustrate MudPIT application to quantitative phosphoproteomics of the beta adrenergic pathway. We discuss several biological discoveries made via mass spectrometry pipelines with a focus on cell signaling proteomics.

  12. Identification of Unknown Contaminants in Water Samples from ISS Employing Liquid Chromatography/Mass Spectrometry/Mass Spectrometry

    Science.gov (United States)

    Rutz, Jeffrey A.; Schultz, John R.

    2008-01-01

    Mass Spectrometry/Mass Spectrometry (MS/MS) is a powerful technique for identifying unknown organic compounds. For non-volatile or thermally unstable unknowns dissolved in liquids, liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) is often the variety of MS/MS used for the identification. One type of LC/MS/MS that is rapidly becoming popular is time-of-flight (TOF) mass spectrometry. This technique is now in use at the Johnson Space Center for identification of unknown nonvolatile organics in water samples from the space program. An example of the successful identification of one unknown is reviewed in detail in this paper. The advantages of time-of-flight instrumentation are demonstrated through this example as well as the strategy employed in using time-of-flight data to identify unknowns.

  13. Accelerator Mass Spectrometry in Laboratory Nuclear Astrophysics

    Science.gov (United States)

    Nusair, O.; Bauder, W.; Gyürky, G.; Paul, M.; Collon, P.; Fülöp, Zs; Greene, J.; Kinoshita, N.; Palchan, T.; Pardo, R.; Rehm, K. E.; Scott, R.; Vondrasek, R.

    2016-01-01

    The extreme sensitivity and discrimination power of accelerator mass spectrometry (AMS) allows for the search and the detection of rare nuclides either in natural samples or produced in the laboratory. At Argonne National Laboratory, we are developing an AMS setup aimed in particular at the detection of medium and heavy nuclides, relying on the high ion energy achievable with the ATLAS superconducting linear accelerator and on gas-filled magnet isobaric separation. The setup was recently used for the detection of the 146Sm p-process nuclide and for a new determination of the 146Sm half-life (68.7 My). AMS plays an important role in the measurement of stellar nuclear reaction cross sections by the activation method, extending thus the technique to the study of production of long-lived radionuclides. Preliminary measurements of the 147Sm(γ,n)146Sm are described. A measurement of the 142Nd(α,γ)146Sm and 142Nd(α,n)145Sm reactions is in preparation. A new laser-ablation method for the feeding of the Electron Cyclotron Resonance (ECR) ion source is described.

  14. Accelerator mass spectrometry of small biological samples.

    Science.gov (United States)

    Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran

    2008-12-01

    Accelerator mass spectrometry (AMS) is an ultra-sensitive technique for isotopic ratio measurements. In the biomedical field, AMS can be used to measure femtomolar concentrations of labeled drugs in body fluids, with direct applications in early drug development such as Microdosing. Likewise, the regenerative properties of cells which are of fundamental significance in stem-cell research can be determined with an accuracy of a few years by AMS analysis of human DNA. However, AMS nominally requires about 1 mg of carbon per sample which is not always available when dealing with specific body substances such as localized, organ-specific DNA samples. Consequently, it is of analytical interest to develop methods for the routine analysis of small samples in the range of a few tens of microg. We have used a 5 MV Pelletron tandem accelerator to study small biological samples using AMS. Different methods are presented and compared. A (12)C-carrier sample preparation method is described which is potentially more sensitive and less susceptible to contamination than the standard procedures.

  15. Detection of Gunshot Residues Using Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Regina Verena Taudte

    2014-01-01

    Full Text Available In recent years, forensic scientists have become increasingly interested in the detection and interpretation of organic gunshot residues (OGSR due to the increasing use of lead- and heavy metal-free ammunition. This has also been prompted by the identification of gunshot residue- (GSR- like particles in environmental and occupational samples. Various techniques have been investigated for their ability to detect OGSR. Mass spectrometry (MS coupled to a chromatographic system is a powerful tool due to its high selectivity and sensitivity. Further, modern MS instruments can detect and identify a number of explosives and additives which may require different ionization techniques. Finally, MS has been applied to the analysis of both OGSR and inorganic gunshot residue (IGSR, although the “gold standard” for analysis is scanning electron microscopy with energy dispersive X-ray microscopy (SEM-EDX. This review presents an overview of the technical attributes of currently available MS and ionization techniques and their reported applications to GSR analysis.

  16. Secondary Ion Mass Spectrometry SIMS XI

    Science.gov (United States)

    Gillen, G.; Lareau, R.; Bennett, J.; Stevie, F.

    2003-05-01

    This volume contains 252 contributions presented as plenary, invited and contributed poster and oral presentations at the 11th International Conference on Secondary Ion Mass Spectrometry (SIMS XI) held at the Hilton Hotel, Walt Disney World Village, Orlando, Florida, 7 12 September, 1997. The book covers a diverse range of research, reflecting the rapid growth in advanced semiconductor characterization, ultra shallow depth profiling, TOF-SIMS and the new areas in which SIMS techniques are being used, for example in biological sciences and organic surface characterization. Papers are presented under the following categories: Isotopic SIMS Biological SIMS Semiconductor Characterization Techniques and Applications Ultra Shallow Depth Profiling Depth Profiling Fundamental/Modelling and Diffusion Sputter-Induced Topography Fundamentals of Molecular Desorption Organic Materials Practical TOF-SIMS Polyatomic Primary Ions Materials/Surface Analysis Postionization Instrumentation Geological SIMS Imaging Fundamentals of Sputtering Ion Formation and Cluster Formation Quantitative Analysis Environmental/Particle Characterization Related Techniques These proceedings provide an invaluable source of reference for both newcomers to the field and experienced SIMS users.

  17. Tandem mass spectrometry: analysis of complex mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, K.E.

    1985-01-01

    Applications of tandem mass spectrometry (MS/MS) for the analysis of complex mixtures results in increased specificity and selectivity by using a variety of reagent gases in both negative and positive ion modes. Natural isotopic abundance ratios were examined in both simple and complex mixtures using parent, daughter and neutral loss scans. MS/MS was also used to discover new compounds. Daughter scans were used to identify seven new alkaloids in a cactus species. Three of these alkaloids were novel compounds, and included the first simple, fully aromatic isoquinoline alkaloids reported in Cactaceae. MS/MS was used to characterize the chemical reaction products of coal in studies designed to probe its macromolecular structure. Negative ion chemical ionization was utilized to study reaction products resulting from the oxidation of coal. Possible structural units in the precursor coal were predicted based on the reaction products identified, aliphatic and aromatic acids and their anhydrides. The MS/MS method was also used to characterize reaction products resulting from coal liquefaction and/or extraction. These studies illustrate the types of problems for which MS/MS is useful. Emphasis has been placed on characterization of complex mixtures by selecting experimental parameters which enhance the information obtained. The value of using MS/MS in conjunction with other analytical techniques as well as the chemical pretreatment is demonstrated.

  18. Proton Dynamics in Protein Mass Spectrometry.

    Science.gov (United States)

    Li, Jinyu; Lyu, Wenping; Rossetti, Giulia; Konijnenberg, Albert; Natalello, Antonino; Ippoliti, Emiliano; Orozco, Modesto; Sobott, Frank; Grandori, Rita; Carloni, Paolo

    2017-02-22

    Native electrospray ionization/ion mobility-mass spectrometry (ESI/IM-MS) allows an accurate determination of low-resolution structural features of proteins. Yet, the presence of proton dynamics, observed already by us for DNA in the gas phase, and its impact on protein structural determinants, have not been investigated so far. Here, we address this issue by a multistep simulation strategy on a pharmacologically relevant peptide, the N-terminal residues of amyloid-β peptide (Aβ(1-16)). Our calculations reproduce the experimental maximum charge state from ESI-MS and are also in fair agreement with collision cross section (CCS) data measured here by ESI/IM-MS. Although the main structural features are preserved, subtle conformational changes do take place in the first ∼0.1 ms of dynamics. In addition, intramolecular proton dynamics processes occur on the picosecond-time scale in the gas phase as emerging from quantum mechanics/molecular mechanics (QM/MM) simulations at the B3LYP level of theory. We conclude that proton transfer phenomena do occur frequently during fly time in ESI-MS experiments (typically on the millisecond time scale). However, the structural changes associated with the process do not significantly affect the structural determinants.

  19. MSSimulator: Simulation of mass spectrometry data.

    Science.gov (United States)

    Bielow, Chris; Aiche, Stephan; Andreotti, Sandro; Reinert, Knut

    2011-07-01

    Mass spectrometry coupled to liquid chromatography (LC-MS and LC-MS/MS) is commonly used to analyze the protein content of biological samples in large scale studies, enabling quantitation and identification of proteins and peptides using a wide range of experimental protocols, algorithms, and statistical models to analyze the data. Currently it is difficult to compare the plethora of algorithms for these tasks. So far, curated benchmark data exists for peptide identification algorithms but data that represents a ground truth for the evaluation of LC-MS data is limited. Hence there have been attempts to simulate such data in a controlled fashion to evaluate and compare algorithms. We present MSSimulator, a simulation software for LC-MS and LC-MS/MS experiments. Starting from a list of proteins from a FASTA file, the simulation will perform in-silico digestion, retention time prediction, ionization filtering, and raw signal simulation (including MS/MS), while providing many options to change the properties of the resulting data like elution profile shape, resolution and sampling rate. Several protocols for SILAC, iTRAQ or MS(E) are available, in addition to the usual label-free approach, making MSSimulator the most comprehensive simulator for LC-MS and LC-MS/MS data.

  20. Charging of Proteins in Native Mass Spectrometry

    Science.gov (United States)

    Susa, Anna C.; Xia, Zijie; Tang, Henry Y. H.; Tainer, John A.; Williams, Evan R.

    2017-02-01

    Factors that influence the charging of protein ions formed by electrospray ionization from aqueous solutions in which proteins have native structures and function were investigated. Protein ions ranging in molecular weight from 12.3 to 79.7 kDa and pI values from 5.4 to 9.6 were formed from different solutions and reacted with volatile bases of gas-phase basicities higher than that of ammonia in the cell of a Fourier-transform ion cyclotron resonance mass spectrometer. The charge-state distribution of cytochrome c ions formed from aqueous ammonium or potassium acetate is the same. Moreover, ions formed from these two solutions do not undergo proton transfer to 2-fluoropyridine, which is 8 kcal/mol more basic than ammonia. These results provide compelling evidence that proton transfer between ammonia and protein ions does not limit protein ion charge in native electrospray ionization. Both circular dichroism and ion mobility measurements indicate that there are differences in conformations of proteins in pure water and aqueous ammonium acetate, and these differences can account for the difference in the extent of charging and proton-transfer reactivities of protein ions formed from these solutions. The extent of proton transfer of the protein ions with higher gas-phase basicity bases trends with how closely the protein ions are charged to the value predicted by the Rayleigh limit for spherical water droplets approximately the same size as the proteins. These results indicate that droplet charge limits protein ion charge in native mass spectrometry and are consistent with these ions being formed by the charged residue mechanism.

  1. Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry

    KAUST Repository

    Raji, Misjudeen

    2013-04-30

    RATIONALE Pterostilbene is a member of the hydroxystilbene family of compounds commonly found in plants such as blueberry and grapes. During the analysis of this compound by electrospray ionization mass spectrometry (ESI-MS), an ion was observed that corresponds to the dehydrodimer of pterostilbene in mass-to-charge ratio. Since such unexpected dimerization may lead to decreased monomer signal during quantitative analysis, it was of interest to identify the origin and structure of the observed pterostilbene dimer and examine the experimental conditions that influence its formation. METHODS Liquid Chromatography/Mass Spectrometry (LC/MS), Nuclear Magnetic Resonance (NMR), and High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) were used to examine the origin of the dimerization products. The structure of the formed pterostilbene dimer was examined by performing MSn analysis on the dimer ion. Effects of solvent composition, analyte concentration, radical scavenger, and other experimental conditions on the dimerization were also studied. RESULTS LC/MS and NMR analyses clearly showed that the starting solution did not contain the pterostilbene dimer. Solvent type and radical scavenger concentration were found to have pronounced effects on the dimer formation. Particularly, presence of acetonitrile or ammonium acetate had favorable effects on the extent of dimerization during ESI-MS analysis whereas hydroquinone and butylated hydroquinone had negative effects. Dimer formation decreased at high flow rates and when fused-silica capillary was used as the spray needle. CONCLUSIONS The data indicate that this dimerization occurs as a result of solution-phase electrochemical reactions taking place during the electrospray process. A possible structure for this dimer was proposed based on the MSn analysis and was similar to that of the enzymatically derived pterostilbene dehydrodimer already reported in the literature. Copyright © 2013 John Wiley & Sons, Ltd

  2. Mass spectrometry of hyper-velocity impacts of organic micrograins.

    Science.gov (United States)

    Srama, Ralf; Woiwode, Wolfgang; Postberg, Frank; Armes, Steven P; Fujii, Syuji; Dupin, Damien; Ormond-Prout, Jonathan; Sternovsky, Zoltan; Kempf, Sascha; Moragas-Klostermeyer, Georg; Mocker, Anna; Grün, Eberhard

    2009-12-01

    The study of hyper-velocity impacts of micrometeoroids is important for the calibration of dust sensors in space applications. For this purpose, submicron-sized synthetic dust grains comprising either polystyrene or poly[bis(4-vinylthiophenyl)sulfide] were coated with an ultrathin overlayer of an electrically conductive organic polymer (either polypyrrole or polyaniline) and were accelerated to speeds between 3 and 35 km s(-1) using the Heidelberg Dust Accelerator facility. Time-of-flight mass spectrometry was applied to analyse the resulting ionic impact plasma using a newly developed Large Area Mass Analyser (LAMA). Depending on the projectile type and the impact speed, both aliphatic and aromatic molecular ions and cluster species were identified in the mass spectra with masses up to 400 u. Clusters resulting from the target material (silver) and mixed clusters of target and projectile species were also observed. Impact velocities of between 10 and 35 km s(-1) are suitable for a principal identification of organic materials in micrometeoroids, whereas impact speeds below approximately 10 km s(-1) allow for an even more detailed analysis. Molecular ions and fragments reflect components of the parent molecule, providing determination of even complex organic molecules embedded in a dust grain. In contrast to previous measurements with the Cosmic Dust Analyser instrument, the employed LAMA instrument has a seven times higher mass resolution--approximately 200--which allowed for a detailed analysis of the complex mass spectra. These fundamental studies are expected to enhance our understanding of cometary, interplanetary and interstellar dust grains, which travel at similar hyper-velocities and are known to contain both aliphatic and aromatic organic compounds. Copyright 2009 John Wiley & Sons, Ltd.

  3. Interpretation of Tandem Mass Spectrometry (MSMS) Spectra for Peptide Analysis

    DEFF Research Database (Denmark)

    Hjernø, Karin; Højrup, Peter

    2015-01-01

    The aim of this chapter is to give a short introduction to peptide analysis by mass spectrometry (MS) and interpretation of fragment mass spectra. Through examples and guidelines we demonstrate how to understand and validate search results and how to perform de novo sequencing based on the often...... very complex fragmentation pattern obtained by tandem mass spectrometry (also referred to as MSMS). The focus is on simple rules for interpretation of MSMS spectra of tryptic as well as non-tryptic peptides....

  4. Determination of mercury in hair: Comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry.

    Science.gov (United States)

    Domanico, Francesco; Forte, Giovanni; Majorani, Costanza; Senofonte, Oreste; Petrucci, Francesco; Pezzi, Vincenzo; Alimonti, Alessandro

    2016-09-29

    Mercury is a heavy metal that causes serious health problems in exposed subjects. The most toxic form, i.e., methylmercury (MeHg), is mostly excreted through human hair. Numerous analytical methods are available for total Hg analysis in human hair, including cold vapour atomic fluorescence spectrometry (CV-AFS), inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation atomic absorption spectrometry (TDA-AAS). The aim of the study was to compare the TDA-AAS with the ICP-MS in the Hg quantification in human hair. After the washing procedure to minimize the external contamination, from each hair sample two aliquots were taken; the first was used for direct analysis of Hg by TDA-AAS and the second was digested for Hg determination by the ICP-MS. Results indicated that the two data sets were fully comparable (median; TDA-AAS, 475ngg(-1); ICP-MS, 437ngg(-1)) and were not statistically different (Mann-Whitney test; p=0.44). The two techniques presented results with a good coefficient of correlation (r=0.94) despite different operative ranges and method limits. Both techniques satisfied internal performance requirements and the parameters for method validation resulting sensitive, precise and reliable. Finally, the use of the TDA-AAS can be considered instead of the ICP-MS in hair analysis in order to reduce sample manipulation with minor risk of contamination, less time consuming due to the absence of the digestion step and cheaper analyses.

  5. Characterization of Membrane Protein-Lipid Interactions by Mass Spectrometry Ion Mobility Mass Spectrometry

    Science.gov (United States)

    Liu, Yang; Cong, Xiao; Liu, Wen; Laganowsky, Arthur

    2016-12-01

    Lipids in the biological membrane can modulate the structure and function of integral and peripheral membrane proteins. Distinguishing individual lipids that bind selectively to membrane protein complexes from an ensemble of lipid-bound species remains a daunting task. Recently, ion mobility mass spectrometry (IM-MS) has proven to be invaluable for interrogating the interactions between protein and individual lipids, where the complex undergoes collision induced unfolding followed by quantification of the unfolding pathway to assess the effect of these interactions. However, gas-phase unfolding experiments for membrane proteins are typically performed on the entire ensemble (apo and lipid bound species), raising uncertainty to the contribution of individual lipids and the species that are ejected in the unfolding process. Here, we describe the application of mass spectrometry ion mobility mass spectrometry (MS-IM-MS) for isolating ions corresponding to lipid-bound states of a model integral membrane protein, ammonia channel (AmtB) from Escherichia coli. Free of ensemble effects, MS-IM-MS reveals that bound lipids are ejected as neutral species; however, no correlation was found between the lipid-induced stabilization of complex and their equilibrium binding constants. In comparison to data obtained by IM-MS, there are surprisingly limited differences in stability measurements from IM-MS and MS-IM-MS. The approach described here to isolate ions of membrane protein complexes will be useful for other MS methods, such as surface induced dissociation or collision induced dissociation to determine the stoichiometry of hetero-oligomeric membrane protein complexes.

  6. Le souffre thiophénique dans les pétroles et les extraits de roche. Analyse par spectrométrie de masse et chromatographie en phase gazeuse Mass-Spectrometry and Gas-Chromatography Analysis of Thiophene Sulfur in Oil and Rock Extracts

    Directory of Open Access Journals (Sweden)

    Castex H.

    2006-11-01

    Full Text Available On étudie par spectrométrie de masse à haute résolution la répartition du soufre thiophénique par coupe de distillation et par nombre de carbone dans la fraction > C10 d'un pétrole brut. Parallèlement on chromatographie à l'aide d'un détecteur sélectif à photométrie de flamme les diverses fractions thiophéniques. L'examen des chromatogrammes permet de déterminer les zones dé réponse et l'allure générale des différentes coupes thiophéniques. Les applications sont variées : on vérifie le bien-fondé de l'utilisation d'un spectromètre de masse à basse résolution pour les analyses en routine d'huiles brutes et on peut, par la connaissance des différents profils de type thiophénique prévoir des analogies ou des différences au sein d'huiles brutes et d'extraits de roche d'un même bassin pétrolier, ce qui limite le nombre d'échantillons à analyser en détail. High-resolution mass spectrometry is used to analyze the distribution of thiophenic sulfur per distillation cut and per carbon number in the > C10 fraction of a crude oil. At the same time, a selective flame-photometry sensor is used to chromatograph the different thiophenic fractions. An analysis of the chromatograms serves to determine the response zones and the general aspect of the different thiophenic cuts. There are various applications of this process. The validity of using a low-resolution mass spectrometer is checked for routine crude-cil analyses. By determining the different profiles of the thiophenic type, similarities or differences can be predicted in the crude cils and rock extracts from the saure cil basin. This limits the number of samples having to be analyzed in detail.

  7. NMR and mass spectrometry of phosphorus in wetlands

    Science.gov (United States)

    El-Rifai, H.; Heerboth, M.; Gedris, T.E.; Newman, S.; Orem, W.; Cooper, W.T.

    2008-01-01

    There is at present little information on the long-term stability of phosphorus sequestered in wetlands. Phosphorus sequestered during high loading periods may be relatively unstable and easily remobilized following changes in nutrient status or hydrological regime, but the chemical forms of sequestered phosphorus that do remobilize are largely unknown at this time. A lack of suitable analytical techniques has contributed to this dearth of knowledge regarding the stability of soil organic phosphorus. We analysed phosphorus in soils from the 'head' of Rescue Strand tree island and an adjacent marsh in the Florida Everglades by 31P nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Tree islands are important areas of biodiversity within the Everglades and offer a unique opportunity to study phosphorus sequestration because they are exposed to large phosphorus loads and appear to be natural nutrient sinks. The 31P NMR profiling of extracts from surface and sediment samples in the tree island indicates that phosphorus input to Rescue Strand tree island soils is mostly in the form of inorganic ortho-phosphate and is either refractory when deposited or rapidly recycled by the native vegetation into a stable phosphorus pool largely resistant to re-utilization by plants or microbes. Mass spectrometry revealed the presence of inositol hexakisphosphate, a common organic monophosphate ester not previously observed in Everglades' soils. ?? 2008 The Authors.

  8. Mass spectrometry for characterizing plant cell wall polysaccharides

    Directory of Open Access Journals (Sweden)

    Stefan eBauer

    2012-03-01

    Full Text Available Mass spectrometry is a selective and powerful technique to obtain identification and structural information on compounds present in complex mixtures. Since it requires only small sample amount it is an excellent tool for researchers interested in detecting changes in composition of complex carbohydrates of plants. This mini-review gives an overview of common mass spectrometry techniques applied to the analysis of plant cell wall carbohydrates. It presents examples in which mass spectrometry has been used to elucidate the structure of oligosaccharides derived from hemicelluloses and pectins and illustrates how information on sequence, linkages, branching and modifications are obtained from characteristic fragmentation patterns.

  9. A Review on Mass Spectrometry: Technique and Tools

    Directory of Open Access Journals (Sweden)

    Ms. Ashwini Yerlekar

    2014-04-01

    Full Text Available Protein structure prediction has gain important in area of life sciences, because of its complex structure. The protein-protein interaction is necessary to study the behavior of protein in a specific environment, and study molecular relationship in living systems. Therefore, large scale proteomics technologies are required to measure physical connection of proteins in living organisms. Mass Spectrometry uses the technique to measure mass-to-charge ratio of ion. It's an evolving technique for characterization of proteins. A Mass Spectrometer can be more sensitive and specific, also complement with other LC detectors. Liquid Chromatography, unlike gas chromatography is a separation technique which helps to separate wide range of organic compounds from small molecular metabolites to peptides and proteins. This paper addresses the study of data analysis using mass Spectrometry. It also includes the study of various methods of Mass Spectrometry data analysis, the tools and various applications of Mass Spectrometry.This review briefs on Mass Spectrometry technique, its application, usage, and tools used by Mass Spectrometry

  10. Application of Lithium Attachment Mass Spectrometry for Knudsen Evaporation and Chemical Ionisation Mass Spectrometry (KEMS, CIMS)

    Science.gov (United States)

    Bannan, Thomas; Booth, A. Murray; Alfarra, Rami; Bacak, Asan; Pericval, Carl

    2016-04-01

    Lithium ion attachment mass spectrometry provides a non-specific, non-fragmenting and sensitive method for detection of volatile species in the gas phase. The design, manufacture, and results from lithium ion attachment ionisation sources for two mass spectrometry systems are presented. Trace gas analysis is investigated using a modified Chemical Ionization Mass Spectrometer (CIMS) and vapour pressure (VP) measurements using a modified Knudsen Effusion Mass Spectrometer (KEMS) are presented. The Li+ modified CIMS provided limits of detection of 4 ppt for acetone, 0.2 ppt for formic acid, 15 ppt for nitric acid and 120 ppt from ammonia. Despite improvements, the problem of burnout remained persistent. The Li+ CIMS would unlikely be suitable for field or aircraft work, but could be appropriate for certain lab applications. The KEMS currently utilizes an electron impact (EI) ionisation source which provides a highly sensitive source, with the drawback of fragmentation of ionized molecules (Booth et al., 2009). Using Li+ KEMS the VP of samples can be measured without fragmentation and can therefore be used to identify VPs of individual components in mixtures. The validity of using Li+ for determining the VP of mixtures was tested by making single component VP measurements, which showed good agreement with EI measurements of Poly ethylene glycol (PEG) 3 and PEG 4, both when individually measured and when mixed. The Li+ KEMS was then used to investigate a system of atmospheric relevance, α-pinene secondary organic aerosol, generated in a reaction chamber (Alfarra et al., 2012). The VPs of the individual components from this generated sample are within the range we expect for compounds capable of partitioning between the particle and gas phase of an aerosol (0.1-10-5 Pa). Li+ source has a calculated sensitivity approximately 75 times less than that of EI, but the lack of fragmentation using the Li+ source is a significant advantage.

  11. imzML: Imaging Mass Spectrometry Markup Language: A common data format for mass spectrometry imaging.

    Science.gov (United States)

    Römpp, Andreas; Schramm, Thorsten; Hester, Alfons; Klinkert, Ivo; Both, Jean-Pierre; Heeren, Ron M A; Stöckli, Markus; Spengler, Bernhard

    2011-01-01

    Imaging mass spectrometry is the method of scanning a sample of interest and generating an "image" of the intensity distribution of a specific analyte. The data sets consist of a large number of mass spectra which are usually acquired with identical settings. Existing data formats are not sufficient to describe an MS imaging experiment completely. The data format imzML was developed to allow the flexible and efficient exchange of MS imaging data between different instruments and data analysis software.For this purpose, the MS imaging data is divided in two separate files. The mass spectral data is stored in a binary file to ensure efficient storage. All metadata (e.g., instrumental parameters, sample details) are stored in an XML file which is based on the standard data format mzML developed by HUPO-PSI. The original mzML controlled vocabulary was extended to include specific parameters of imaging mass spectrometry (such as x/y position and spatial resolution). The two files (XML and binary) are connected by offset values in the XML file and are unambiguously linked by a universally unique identifier. The resulting datasets are comparable in size to the raw data and the separate metadata file allows flexible handling of large datasets.Several imaging MS software tools already support imzML. This allows choosing from a (growing) number of processing tools. One is no longer limited to proprietary software, but is able to use the processing software which is best suited for a specific question or application. On the other hand, measurements from different instruments can be compared within one software application using identical settings for data processing. All necessary information for evaluating and implementing imzML can be found at http://www.imzML.org .

  12. Broad Separation of Isomeric Lipids by High-Resolution Differential Ion Mobility Spectrometry with Tandem Mass Spectrometry

    Science.gov (United States)

    Bowman, Andrew P.; Abzalimov, Rinat R.; Shvartsburg, Alexandre A.

    2017-08-01

    Maturation of metabolomics has brought a deeper appreciation for the importance of isomeric identity of lipids to their biological role, mirroring that for proteoforms in proteomics. However, full characterization of the lipid isomerism has been thwarted by paucity of rapid and effective analytical tools. A novel approach is ion mobility spectrometry (IMS) and particularly differential or field asymmetric waveform IMS (FAIMS) at high electric fields, which is more orthogonal to mass spectrometry. Here we broadly explore the power of FAIMS to separate lipid isomers, and find a 75% success rate across the four major types of glycero- and phospho- lipids ( sn, chain length, double bond position, and cis/ trans). The resolved isomers were identified using standards, and (for the first two types) tandem mass spectrometry. These results demonstrate the general merit of incorporating high-resolution FAIMS into lipidomic analyses.

  13. Gas Chromatography Mass Spectrometry of Quassia undulata Seed ...

    African Journals Online (AJOL)

    Prof. Ogunji

    ... fatty acid methyl ester analysis. Gas chromatography (GC) and mass spectrometry (MS) has proved an effective ... extensive qualitative and quantitative research on the fatty ... chemical properties of biodiesel and other derivatives of fatty ...

  14. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Winston Chen, C.H.; Taranenko, N.I.; Zhu, Y.F.; Chung, C.N.; Allman, S.L.

    1997-03-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, the authors recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Snager`s enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. The preliminary results indicate laser mass spectrometry can possibly be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, the authors applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  15. Attomole quantitation of protein separations with accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J S; Grant, P G; Buccholz, B A; Dingley, K; Turteltaub, K W

    2000-12-15

    Quantification of specific proteins depends on separation by chromatography or electrophoresis followed by chemical detection schemes such as staining and fluorophore adhesion. Chemical exchange of short-lived isotopes, particularly sulfur, is also prevalent despite the inconveniences of counting radioactivity. Physical methods based on isotopic and elemental analyses offer highly sensitive protein quantitation that has linear response over wide dynamic ranges and is independent of protein conformation. Accelerator mass spectrometry quantifies long-lived isotopes such as 14C to sub-attomole sensitivity. We quantified protein interactions with small molecules such as toxins, vitamins, and natural biochemicals at precisions of 1-5% . Micro-proton-induced-xray-emission quantifies elemental abundances in separated metalloprotein samples to nanogram amounts and is capable of quantifying phosphorylated loci in gels. Accelerator-based quantitation is a possible tool for quantifying the genome translation into proteome.

  16. Dating Studies of Elephant Tusks Using Accelerator Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sideras-Haddad, E; Brown, T A

    2002-10-03

    A new method for determining the year of birth, the year of death, and hence, the age at death, of post-bomb and recently deceased elephants has been developed. The technique is based on Accelerator Mass Spectrometry radiocarbon analyses of small-sized samples extracted from along the length of a ge-line of an elephant tusk. The measured radiocarbon concentrations in the samples from a tusk can be compared to the {sup 14}C atmospheric bomb-pulse curve to derive the growth years of the initial and final samples from the tusk. Initial data from the application of this method to two tusks will be presented. Potentially, the method may play a significant role in wildlife management practices of African national parks. Additionally, the method may contribute to the underpinnings of efforts to define new international trade regulations, which could, in effect, decrease poaching and the killing of very young animals.

  17. Analysis of chirality by femtosecond laser ionization mass spectrometry.

    Science.gov (United States)

    Horsch, Philipp; Urbasch, Gunter; Weitzel, Karl-Michael

    2012-09-01

    Recent progress in the field of chirality analysis employing laser ionization mass spectrometry is reviewed. Emphasis is given to femtosecond (fs) laser ionization work from the author's group. We begin by reviewing fundamental aspects of determining circular dichroism (CD) in fs-laser ionization mass spectrometry (fs-LIMS) discussing an example from the literature (resonant fs-LIMS of 3-methylcyclopentanone). Second, we present new data indicating CD in non-resonant fs-LIMS of propylene oxide.

  18. Yeast expression proteomics by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Walther, Tobias C; Olsen, Jesper Velgaard; Mann, Matthias

    2010-01-01

    -translational controls contribute majorly to regulation of protein abundance, for example in heat shock stress response. The development of new sample preparation methods, high-resolution mass spectrometry and novel bioinfomatic tools close this gap and allow the global quantitation of the yeast proteome under different...... conditions. Here, we provide background information on proteomics by mass-spectrometry and describe the practice of a comprehensive yeast proteome analysis....

  19. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  20. Chiral recognition detected by fast atom bombardment mass spectrometry.

    Science.gov (United States)

    Sawada, M

    1997-01-01

    Detection of chiral recognition in various intermolecular interaction systems using mass spectrometry has become important for the modern fields of analytical chemistry, organic chemistry, and biochemistry due to the characteristic nature of the rapid method and the trace amount needed. This review presents the various methods for detecting and evaluating chiral recognition used primarily in fast atom bombardment mass spectrometry. Emphasis is put on fundamentals and applications of these methods for variously existing enantioselective intermolecular interaction systems.

  1. Transitioning from Targeted to Comprehensive Mass Spectrometry Using Genetic Algorithms

    Science.gov (United States)

    Jaffe, Jacob D.; Feeney, Caitlin M.; Patel, Jinal; Lu, Xiaodong; Mani, D. R.

    2016-11-01

    Targeted proteomic assays are becoming increasingly popular because of their robust quantitative applications enabled by internal standardization, and they can be routinely executed on high performance mass spectrometry instrumentation. However, these assays are typically limited to 100s of analytes per experiment. Considerable time and effort are often expended in obtaining and preparing samples prior to targeted analyses. It would be highly desirable to detect and quantify 1000s of analytes in such samples using comprehensive mass spectrometry techniques (e.g., SWATH and DIA) while retaining a high degree of quantitative rigor for analytes with matched internal standards. Experimentally, it is facile to port a targeted assay to a comprehensive data acquisition technique. However, data analysis challenges arise from this strategy concerning agreement of results from the targeted and comprehensive approaches. Here, we present the use of genetic algorithms to overcome these challenges in order to configure hybrid targeted/comprehensive MS assays. The genetic algorithms are used to select precursor-to-fragment transitions that maximize the agreement in quantification between the targeted and the comprehensive methods. We find that the algorithm we used provided across-the-board improvement in the quantitative agreement between the targeted assay data and the hybrid comprehensive/targeted assay that we developed, as measured by parameters of linear models fitted to the results. We also found that the algorithm could perform at least as well as an independently-trained mass spectrometrist in accomplishing this task. We hope that this approach will be a useful tool in the development of quantitative approaches for comprehensive proteomics techniques.

  2. Lipid and Glycolipid Isomer Analyses Using Ultra-High Resolution Ion Mobility Spectrometry Separations

    Energy Technology Data Exchange (ETDEWEB)

    Wojcik, Roza; Webb, Ian; Deng, Liulin; Garimella, Sandilya; Prost, Spencer; Ibrahim, Yehia; Baker, Erin; Smith, Richard

    2017-01-01

    Understanding the biological mechanisms related to lipids and glycolipids is challenging due to the vast number of possible isomers. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid structures. However, difficulties in distinguishing many structural isomers (e.g. distinct acyl chain positions, double bond locations, as well as glycan isomers) inhibit the understanding of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS) separations based upon the use of traveling waves in a serpentine long path length multi-pass Structures for Lossless Manipulations (SLIM) to enhance isomer resolution. The multi-pass arrangement allowed separations ranging from ~16 m (1 pass) to ~470 m (32 passes) to be investigated for the distinction of lipids and glycolipids with extremely small structural differences. These ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer specific biological and disease processes.

  3. Secondary Ion Mass Spectrometry Imaging of Dictyostelium discoideum Aggregation Streams

    Energy Technology Data Exchange (ETDEWEB)

    Debord, J. Daniel; Smith, Donald F.; Anderton, Christopher R.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana; Gomer, Richard H.; Fernandez-Lima, Francisco A.

    2014-06-09

    High resolution imaging mass spectrometry could become a valuable tool for cell and developmental biology, but both, high spatial and mass spectral resolution are needed to enable this. In this report, we employed Bi3 bombardment time-of-flight (Bi3 ToF-SIMS) and C60 bombardment Fourier transform ion cyclotron resonance secondary ion mass spectrometry (C60 FTICR-SIMS) to image Dictyostelium discoideum aggregation streams. Nearly 300 lipid species were identified from the aggregation streams. High resolution mass spectrometry imaging (FTICR-SIMS) enabled the generation of multiple molecular ion maps at the nominal mass level and provided good coverage for fatty acyls, prenol lipids, and sterol lipids. The comparison of Bi3 ToF-SIMS and C60 FTICR-SIMS suggested that while the first provides fast, high spatial resolution molecular ion images, the chemical complexity of biological samples warrants the use of high resolution analyzers for accurate ion identification.

  4. NCBI Peptidome: a new repository for mass spectrometry proteomics data.

    Science.gov (United States)

    Ji, Li; Barrett, Tanya; Ayanbule, Oluwabukunmi; Troup, Dennis B; Rudnev, Dmitry; Muertter, Rolf N; Tomashevsky, Maxim; Soboleva, Alexandra; Slotta, Douglas J

    2010-01-01

    Peptidome is a public repository that archives and freely distributes tandem mass spectrometry peptide and protein identification data generated by the scientific community. Data from all stages of a mass spectrometry experiment are captured, including original mass spectra files, experimental metadata and conclusion-level results. The submission process is facilitated through acceptance of data in commonly used open formats, and all submissions undergo syntactic validation and curation in an effort to uphold data integrity and quality. Peptidome is not restricted to specific organisms, instruments or experiment types; data from any tandem mass spectrometry experiment from any species are accepted. In addition to data storage, web-based interfaces are available to help users query, browse and explore individual peptides, proteins or entire Samples and Studies. Results are integrated and linked with other NCBI resources to ensure dissemination of the information beyond the mass spectroscopy proteomics community. Peptidome is freely accessible at http://www.ncbi.nlm.nih.gov/peptidome.

  5. Proteomics and Mass Spectrometry for Cancer Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Ming Lu

    2007-01-01

    Full Text Available Proteomics is a rapidly advancing field not only in the field of biology but also in translational cancer research. In recent years, mass spectrometry and associated technologies have been explored to identify proteins or a set of proteins specific to a given disease, for the purpose of disease detection and diagnosis. Such biomarkers are being investigated in samples including cells, tissues, serum/plasma, and other types of body fluids. When sufficiently refined, proteomic technologies may pave the way for early detection of cancer or individualized therapy for cancer. Mass spectrometry approaches coupled with bioinformatic tools are being developed for biomarker discovery and validation. Understanding basic concepts and application of such technology by investigators in the field may accelerate the clinical application of protein biomarkers in disease management.Abbreviations: 2DE: two-dimensional gel electrophoresis; ABPP: activity-based protein profiling; CEA: carcinoembryonic antigen; CI: confidence interval; ESI: electrospray ionization; FP: fluorophosphonate; HPLC: high performance liquid chromatography; ICAT: isotope coded affi nitytags; IEF: isoelectric focusing; iTRAQ: isobaric tags for relative and absolute quantification; LCMS: combined liquid chromatography-mass spectrometry; LCMSMS: liquid chromatography tandem mass spectrometry; LOD: limit of detection; m/z: mass to charge ratio; MALDI: matrix-assisted laser desorption ionization; MS: mass spectrometry; MUDPIT: multidimensional protein identification technology; NAF: nipple aspirate fluid; PMF: peptide mass fingerprinting; PSA: prostate specifi c antigen; PTMs: post-translational modifications; RPMA: reverse phase protein microarray; SELDI: surface enhanced laser desorption ionization; TOF: time-of-flight.

  6. 'Extreme mass spectrometry': the role of mass spectrometry in the study of the Antarctic environment.

    Science.gov (United States)

    Magi, Emanuele; Tanwar, Shivani

    2014-11-01

    A focus on the studies of the Antarctic environment that have been performed by mass spectrometry is presented herein; our aim is to give evidence of the essential role of this instrumental technique in the framework of the scientific research in Antarctica, with a comprehensive review on the main literature of the last two decades. Due to the wideness of the topic, the present review is limited to the determination of organic pollutants, natural molecules and biomarkers in Antarctica, thus excluding elemental analysis and studies on inorganic species. The work has been divided into five sections, on the basis of the considered environmental compartment: air; ice and snow; seawater, pack ice and lakes; soil and sediments; and organisms and biomarkers.

  7. Noncovalent Shiga-like toxin assemblies: characterization by means of mass spectrometry and tandem mass spectrometry.

    Science.gov (United States)

    Williams, Jonathan P; Green, Brian N; Smith, Daniel C; Jennings, Keith R; Moore, Katherine A H; Slade, Susan E; Roberts, Lynne M; Scrivens, James H

    2005-06-14

    Shiga-like toxin 1 (SLTx), produced by enterohemorrhagic strains of Escherichia coli (EHEC), belongs to a family of structurally and functionally related AB(5) protein toxins that are associated with human disease. EHEC infection often gives rise to hemolytic colitis, while toxin-induced kidney damage is one of the major causes of hemolytic uremic syndrome (HUS) and acute renal failure in children. As such, an understanding and analysis of the noncovalent interactions that maintain the quaternary structure of this toxin are fundamentally important since such interactions have significant biochemical and medical implications. This paper reports on the analysis of the noncovalent homopentameric complex of Shiga-like toxin B chain (SLTx-B(5)) using electrospray ionization (ESI) triple-quadrupole (QqQ) mass spectrometry (MS) and tandem mass spectrometry (MS/MS) and the analysis of the noncovalent hexameric holotoxin (SLTx-AB(5)) using ESI time-of-flight (TOF) MS. The triple-quadrupole analysis revealed highly charged monomer ions dissociate from the multiprotein complex to form dimer, trimer, and tetramer product ions, which were also seen to further dissociate. The ESI-TOFMS analysis of SLTx-AB(5) revealed the complex remained intact and was observed in the gas phase over a range of pHs. Theses findings demonstrate that the gas-phase structure observed for both the holotoxin and the isoloated B chains correlates well with the structures reported to exist in the solution phase for these proteins. Such analysis provides a rapid screening technique for assessing the noncovalent structure of this family of proteins and other structurally related toxins.

  8. Determining in vivo phosphorylation sites using mass spectrometry.

    Science.gov (United States)

    Breitkopf, Susanne B; Asara, John M

    2012-04-01

    Phosphorylation is the most studied protein post-translational modification (PTM) in biological systems, since it controls cell growth, proliferation, survival, and other processes. High-resolution/high mass accuracy mass spectrometers are used to identify protein phosphorylation sites due to their speed, sensitivity, selectivity, and throughput. The protocols described here focus on two common strategies: (1) identifying phosphorylation sites from individual proteins and small protein complexes, and (2) identifying global phosphorylation sites from whole-cell and tissue extracts. For the first, endogenous or epitope-tagged proteins are typically immunopurified from cell lysates, purified via gel electrophoresis or precipitation, and enzymatically digested into peptides. Samples can be optionally enriched for phosphopeptides using immobilized metal affinity chromatography (IMAC) or titanium dioxide (TiO(2)) and then analyzed by microcapillary liquid chromatography/tandem mass spectrometry (LC-MS/MS). Global phosphorylation site analyses that capture pSer/pThr/pTyr sites from biological sources sites are more resource and time consuming and involve digesting the whole-cell lysate, followed by peptide fractionation by strong cation-exchange chromatography, phosphopeptide enrichment by IMAC or TiO(2), and LC-MS/MS. Alternatively, the protein lysate can be fractionated by SDS-PAGE, followed by digestion, phosphopeptide enrichment, and LC-MS/MS. One can also immunoprecipitate only phosphotyrosine peptides using a pTyr antibody followed by LC-MS/MS.

  9. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  10. EP3 Fundamentals of Protein Sequence Characterization by Mass Spectrometry

    OpenAIRE

    Annan, R. S.; Johnson, R. S.; Papayannopoulos, I. A.

    2007-01-01

    The first section of the tutorial will describe the instrumentation typically used in biological mass spectrometry applications related to protein identification. We focus on the relevant ionization techniques, common mass analyzers, and sample introduction systems. Attention will be given to properties, such as mass accuracy and mass resolution, which are important to protein characterization and database search strategies for protein identification. Practical considerations regarding the se...

  11. Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry-mass spectrometry.

    Science.gov (United States)

    Lee, Jihyeon; Park, Sehwan; Cho, Soo Gyeong; Goh, Eun Mee; Lee, Sungman; Koh, Sung-Suk; Kim, Jeongkwon

    2014-03-01

    Corona discharge ionization combined with ion mobility spectrometry-mass spectrometry (IMS-MS) was utilized to investigate five common explosives: cyclonite (RDX), trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclotetramethylenetetranitramine (HMX), and 2,4-dinitrotoluene (DNT). The MS scan and the selected ion IMS analyses confirmed the identities of the existing ion species and their drift times. The ions observed were RDX·NO3(-), TNT(-), PETN·NO3(-), HMX·NO3(-), and DNT(-), with average drift times of 6.93 ms, 10.20 ms, 9.15 ms, 12.24 ms, 11.30 ms, and 8.89 ms, respectively. The reduced ion mobility values, determined from a standard curve calculated by linear regression of (normalized drift times)(-1) versus literature K0 values, were 2.09, 1.38, 1.55, 1.15, 1.25, and 1.60 cm(2) V(-1) s(-1), respectively. The detection limits were found to be 0.1 ng for RDX, 10 ng for TNT, 0.5 ng for PETN, 5.0 ng for HMX, and 10 ng for DNT. Simplified chromatograms were observed when nitrogen, as opposed to air, was used as the drift gas, but the detection limits were approximately 10 times worse (i.e., less sensitivity of detection). © 2013 Elsevier B.V. All rights reserved.

  12. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 2: Peptide Identification via Molecular Mass Determination

    Science.gov (United States)

    Arnquist, Isaac J.; Beussman, Douglas J.

    2009-01-01

    Mass spectrometry has become a routine analytical tool in the undergraduate curriculum in the form of GC-MS. While relatively few undergraduate programs have incorporated biological mass spectrometry into their programs, the importance of these techniques, as demonstrated by their recognition with the 2002 Nobel Prize, will hopefully lead to…

  13. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 2: Peptide Identification via Molecular Mass Determination

    Science.gov (United States)

    Arnquist, Isaac J.; Beussman, Douglas J.

    2009-01-01

    Mass spectrometry has become a routine analytical tool in the undergraduate curriculum in the form of GC-MS. While relatively few undergraduate programs have incorporated biological mass spectrometry into their programs, the importance of these techniques, as demonstrated by their recognition with the 2002 Nobel Prize, will hopefully lead to…

  14. Top-Down Mass Spectrometry: Proteomics to Proteoforms.

    Science.gov (United States)

    Patrie, Steven M

    2016-01-01

    This chapter highlights many of the fundamental concepts and technologies in the field of top-down mass spectrometry (TDMS), and provides numerous examples of contributions that TD is making in biology, biophysics, and clinical investigations. TD workflows include variegated steps that may include non-specific or targeted preparative strategies, orthogonal liquid chromatography techniques, analyte ionization, mass analysis, tandem mass spectrometry (MS/MS) and informatics procedures. This diversity of experimental designs has evolved to manage the large dynamic range of protein expression and diverse physiochemical properties of proteins in proteome investigations, tackle proteoform microheterogeneity, as well as determine structure and composition of gas-phase proteins and protein assemblies.

  15. Tissue proteomics using chemical immobilization and mass spectrometry.

    Science.gov (United States)

    Shah, Punit; Zhang, Bai; Choi, Caitlin; Yang, Shuang; Zhou, Jianying; Harlan, Robert; Tian, Yuan; Zhang, Zhen; Chan, Daniel W; Zhang, Hui

    2015-01-15

    Proteomics analysis is important for characterizing tissues to gain biological and pathological insights, which could lead to the identification of disease-associated proteins for disease diagnostics or targeted therapy. However, tissues are commonly embedded in optimal cutting temperature medium (OCT) or are formalin-fixed and paraffin-embedded (FFPE) in order to maintain tissue morphology for histology evaluation. Although several tissue proteomic analyses have been performed on FFPE tissues using advanced mass spectrometry (MS) technologies, high-throughput proteomic analysis of OCT-embedded tissues has been difficult due to the interference of OCT in the MS analysis. In addition, molecules other than proteins present in tissues further complicate tissue proteomic analysis. Here, we report the development of a method using chemical immobilization of proteins for peptide extraction (CIPPE). In this method, proteins are chemically immobilized onto a solid support; interferences from tissues and OCT embedding are removed by extensive washing of proteins conjugated on the solid support. Peptides are then released from the solid phase by proteolysis, enabling MS analysis. This method was first validated by eliminating OCT interference from a standard protein, human serum albumin, where all of the unique peaks contributed by OCT contamination were eradicated. Finally, this method was applied for the proteomic analysis of frozen and OCT-embedded tissues using iTRAQ (isobaric tag for relative and absolute quantitation) labeling and two-dimensional liquid chromatography tandem mass spectrometry. The data showed reproducible extraction and quantitation of 10,284 proteins from 3996 protein groups and a minimal impact of OCT embedding on the analysis of the global proteome of the stored tissue samples.

  16. NEGATIVE-ION MASS SPECTROMETRY OF SULFONYLUREA HERBICIDES

    Science.gov (United States)

    Sulfonylurea herbicides have been studied using neg-ion desorption chem.-ionization (DCI) mass spectrometry (MS) and DCI-MS/MS techniques. Both {M-H]- and M.- ions were obsd. in the DCI mass spectra. The collisonally activated dissocn. (CAD) spectra were characteristic of the str...

  17. A Review of the Emerging Field of Underwater Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Emily Chua

    2016-11-01

    Full Text Available Mass spectrometers are versatile sensor systems, owing to their high sensitivity and ability to simultaneously measure multiple chemical species. Over the last two decades, traditional laboratory-based membrane inlet mass spectrometers have been adapted for underwater use. Underwater mass spectrometry has drastically improved our capability to monitor a broad suite of gaseous compounds (e.g., dissolved atmospheric gases, light hydrocarbons, and volatile organic compounds in the aquatic environment. Here we provide an overview of the progress made in the field of underwater mass spectrometry since its inception in the 1990s to the present. In particular, we discuss the approaches undertaken by various research groups in developing in situ mass spectrometers. We also provide examples to illustrate how underwater mass spectrometers have been used in the field. Finally, we present future trends in the field of in situ mass spectrometry. Most of these efforts are aimed at improving the quality and spatial and temporal scales of chemical measurements in the ocean. By providing up-to-date information on underwater mass spectrometry, this review offers guidance for researchers interested in adapting this technology as well as goals for future progress in the field.

  18. Surface-MALDI mass spectrometry in biomaterials research

    DEFF Research Database (Denmark)

    Griesser, H.J.; Kingshott, P.; McArthur, S.L.;

    2004-01-01

    Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) has been used for over a decade for the determination of purity and accurate molecular masses of macromolecular analytes, such as proteins, in solution. In the last few years the technique has been adapted to become a new...

  19. Applications of Mass Spectrometry to Structural Analysis of Marine Oligosaccharides

    Directory of Open Access Journals (Sweden)

    Yinzhi Lang

    2014-06-01

    Full Text Available Marine oligosaccharides have attracted increasing attention recently in developing potential drugs and biomaterials for their particular physical and chemical properties. However, the composition and sequence analysis of marine oligosaccharides are very challenging for their structural complexity and heterogeneity. Mass spectrometry (MS has become an important technique for carbohydrate analysis by providing more detailed structural information, including molecular mass, sugar constituent, sequence, inter-residue linkage position and substitution pattern. This paper provides an overview of the structural analysis based on MS approaches in marine oligosaccharides, which are derived from some biologically important marine polysaccharides, including agaran, carrageenan, alginate, sulfated fucan, chitosan, glycosaminoglycan (GAG and GAG-like polysaccharides. Applications of electrospray ionization mass spectrometry (ESI-MS are mainly presented and the general applications of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS are also outlined. Some technical challenges in the structural analysis of marine oligosaccharides by MS have also been pointed out.

  20. Applications of mass spectrometry to structural analysis of marine oligosaccharides.

    Science.gov (United States)

    Lang, Yinzhi; Zhao, Xia; Liu, Lili; Yu, Guangli

    2014-06-30

    Marine oligosaccharides have attracted increasing attention recently in developing potential drugs and biomaterials for their particular physical and chemical properties. However, the composition and sequence analysis of marine oligosaccharides are very challenging for their structural complexity and heterogeneity. Mass spectrometry (MS) has become an important technique for carbohydrate analysis by providing more detailed structural information, including molecular mass, sugar constituent, sequence, inter-residue linkage position and substitution pattern. This paper provides an overview of the structural analysis based on MS approaches in marine oligosaccharides, which are derived from some biologically important marine polysaccharides, including agaran, carrageenan, alginate, sulfated fucan, chitosan, glycosaminoglycan (GAG) and GAG-like polysaccharides. Applications of electrospray ionization mass spectrometry (ESI-MS) are mainly presented and the general applications of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) are also outlined. Some technical challenges in the structural analysis of marine oligosaccharides by MS have also been pointed out.

  1. Determination of daminozide in apples and apple leaves by liquid chromatography-mass spectrometry

    NARCIS (Netherlands)

    Mol, H.G.J.; Dam, R.C.J. van; Vreeken, R.J.; Steijger, O.M.

    1999-01-01

    A straightforward and efficient method was developed for the determination of intact daminozide in apples and apple leaves. After extraction with methanol and a clean-up step using a graphitized carbon cartridge, the extract was analysed by ion-trap liquid chromatography-tandem mass spectrometry (LC

  2. Early prediction of wheat quality: analysis during grain development using mass spectrometry and multivariate data analysis

    DEFF Research Database (Denmark)

    Ghirardo, A.; Sørensen, Helle Aagaard; Petersen, M.;

    2005-01-01

    for bread-making purposes) were investigated. The samples were collected from grains from 15 until 45 days post-anthesis (dpa). Gluten proteins from wheat grains were extracted and subsequently analysed by mass spectrometry. Discrimination partial least-squares regression and soft independent modelling...

  3. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Perdian, David C. [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  4. Standard addition strip for quantitative electrostatic spray ionization mass spectrometry analysis: determination of caffeine in drinks.

    Science.gov (United States)

    Tobolkina, Elena; Qiao, Liang; Roussel, Christophe; Girault, Hubert H

    2014-12-01

    Standard addition strips were prepared for the quantitative determination of caffeine in different beverages by electrostatic spray ionization mass spectrometry (ESTASI-MS). The gist of this approach is to dry spots of caffeine solutions with different concentrations on a polymer strip, then to deposit a drop of sample mixed with an internal standard, here theobromine on each spot and to measure the mass spectrometry signals of caffeine and theobromine by ESTASI-MS. This strip approach is very convenient and provides quantitative analyses as accurate as the classical standard addition method by MS or liquid chromatography.

  5. Development of stereotactic mass spectrometry for brain tumor surgery.

    Science.gov (United States)

    Agar, Nathalie Y R; Golby, Alexandra J; Ligon, Keith L; Norton, Isaiah; Mohan, Vandana; Wiseman, Justin M; Tannenbaum, Allen; Jolesz, Ferenc A

    2011-02-01

    Surgery remains the first and most important treatment modality for the majority of solid tumors. Across a range of brain tumor types and grades, postoperative residual tumor has a great impact on prognosis. The principal challenge and objective of neurosurgical intervention is therefore to maximize tumor resection while minimizing the potential for neurological deficit by preserving critical tissue. To introduce the integration of desorption electrospray ionization mass spectrometry into surgery for in vivo molecular tissue characterization and intraoperative definition of tumor boundaries without systemic injection of contrast agents. Using a frameless stereotactic sampling approach and by integrating a 3-dimensional navigation system with an ultrasonic surgical probe, we obtained image-registered surgical specimens. The samples were analyzed with ambient desorption/ionization mass spectrometry and validated against standard histopathology. This new approach will enable neurosurgeons to detect tumor infiltration of the normal brain intraoperatively with mass spectrometry and to obtain spatially resolved molecular tissue characterization without any exogenous agent and with high sensitivity and specificity. Proof of concept is presented in using mass spectrometry intraoperatively for real-time measurement of molecular structure and using that tissue characterization method to detect tumor boundaries. Multiple sampling sites within the tumor mass were defined for a patient with a recurrent left frontal oligodendroglioma, World Health Organization grade II with chromosome 1p/19q codeletion, and mass spectrometry data indicated a correlation between lipid constitution and tumor cell prevalence. The mass spectrometry measurements reflect a complex molecular structure and are integrated with frameless stereotaxy and imaging, providing 3-dimensional molecular imaging without systemic injection of any agents, which can be implemented for surgical margins delineation of

  6. Mass spectrometry for structural characterization of therapeutic antibodies.

    Science.gov (United States)

    Zhang, Zhongqi; Pan, Hai; Chen, Xiaoyu

    2009-01-01

    Antibodies, also known as immunoglobulins, have emerged as one of the most promising classes of therapeutics in the biopharmaceutical industry. The need for complete characterization of the quality attributes of these molecules requires sophisticated techniques. Mass spectrometry (MS) has become an essential analytical tool for the structural characterization of therapeutic antibodies, due to its superior resolution over other analytical techniques. It has been widely used in virtually all phases of antibody development. Structural features determined by MS include amino acid sequence, disulfide linkages, carbohydrate structure and profile, and many different post-translational, in-process, and in-storage modifications. In this review, we will discuss various MS-based techniques for the structural characterization of monoclonal antibodies. These techniques are categorized as mass determination of intact antibodies, and as middle-up, bottom-up, top-down, and middle-down structural characterizations. Each of these techniques has its advantages and disadvantages in terms of structural resolution, sequence coverage, sample consumption, and effort required for analyses. The role of MS in glycan structural characterization and profiling will also be discussed.

  7. Laser electrospray mass spectrometry of adsorbed molecules at atmospheric pressure

    Science.gov (United States)

    Brady, John J.; Judge, Elizabeth J.; Simon, Kuriakose; Levis, Robert J.

    2010-02-01

    Atmospheric pressure mass analysis of solid phase biomolecules is performed using laser electrospray mass spectrometry (LEMS). A non-resonant femtosecond duration laser pulse vaporizes native samples at atmospheric pressure for subsequent electrospray ionization and transfer into a mass spectrometer. LEMS was used to detect a complex molecule (irinotecan HCl), a complex mixture (cold medicine formulation with active ingredients: acetaminophen, dextromethorphan HBr and doxylamine succinate), and a biological building block (deoxyguanosine) deposited on steel surfaces without a matrix molecule.

  8. Advanced Mass Calibration and Visualization for FT-ICR Mass Spectrometry Imaging

    CERN Document Server

    Smith, Donald F; Konijnenburg, Marco; Klinkert, Ivo; Pasa-Tolic, Ljiljana; Heeren, Ron M A

    2013-01-01

    Mass spectrometry imaging by Fourier transform ion cyclotron resonance yields hundreds of unique peaks, many of which cannot be resolved by lower performance mass spectrometers. The high mass accuracy and high mass resolving power allow confident identification of small molecules and lipids directly from biological tissue sections. Here, calibration strategies for Fourier transform ion cyclotron resonance mass spectrometry imaging were investigated. Sub parts-per-million mass accuracy is demonstrated over an entire tissue section. Ion abundance fluctuations are corrected for by addition of total and relative ion abundances for a root-mean-square error of 0.158 ppm on 16,764 peaks. A new approach for visualization of Fourier transform ion cyclotron resonance mass spectrometry imaging data at high resolution is presented. The Mosaic Data-cube provides a flexible means to visualize the entire mass range at a mass spectral bin width of 0.001 Dalton. The high resolution Mosaic Data-cube resolves spectral features ...

  9. Pharmaceutical metabolite profiling using quadrupole/ion mobility spectrometry/time-of-flight mass spectrometry.

    Science.gov (United States)

    Chan, Eric C Y; New, Lee Sun; Yap, Chun Wei; Goh, Lin Tang

    2009-02-01

    The use of hybrid quadrupole ion mobility spectrometry time-of-flight mass spectrometry (Q/IMS/TOFMS) in the metabolite profiling of leflunomide (LEF) and acetaminophen (APAP) is presented. The IMS drift times (T(d)) of the drugs and their metabolites were determined in the IMS/TOFMS experiments and correlated with their exact monoisotopic masses and other in silico generated structural properties, such as connolly molecular area (CMA), connolly solvent-excluded volume (CSEV), principal moments of inertia along the X, Y and Z Cartesian coordinates (MI-X, MI-Y and MI-Z), inverse mobility and collision cross-section (CCS). The correlation of T(d) with these parameters is presented and discussed. IMS/TOF tandem mass spectrometry experiments (MS(2) and MS(3)) were successfully performed on the N-acetyl-p-benzoquinoneimine glutathione (NAPQI-GSH) adduct derived from the in vitro microsomal metabolism of APAP. As comparison, similar experiments were also performed using hybrid triple quadrupole linear ion trap mass spectrometry (QTRAPMS) and quadrupole time-of-flight mass spectrometry (QTOFMS). The abilities to resolve the product ions of the metabolite within the drift tube and fragment the ion mobility resolved product ions in the transfer travelling wave-enabled stacked ring ion guide (TWIG) demonstrated the potential applicability of the Q/IMS/TOFMS technique in pharmaceutical metabolite profiling.

  10. Data on mass spectrometry based identification of allergens from sunflower (Helianthus annuus L. pollen proteome

    Directory of Open Access Journals (Sweden)

    Nandini Ghosh

    2016-06-01

    Full Text Available Allergy is a type of abnormal immune reactions, which is triggered by environmental antigens or allergens and mediated by IgE antibodies. Now-a-days mass spectrometry is the method of choice for allergen identification based on homology searching. Here, we provide the mass spectrometry dataset associated with our previously published research article on identification of sunflower pollen allergens (Ghosh et al., 2015 [1]. In this study allergenicity of sunflower (Helianthus annuus pollen grains were primarily investigated by clinical studies followed by detailed immunobiochemical and immunoproteomic analyses. The mass spectrometry data for the identification of allergens were deposited to ProteomeXchange Consortium via PRIDE partner repository with the dataset identifier http://www.ebi.ac.uk/pride/archive/projects/PXD002397.

  11. Sample preparation in biological mass spectrometry

    CERN Document Server

    Ivanov, Alexander R

    2011-01-01

    The aim of this book is to provide the researcher with important sample preparation strategies in a wide variety of analyte molecules, specimens, methods, and biological applications requiring mass spectrometric analysis as a detection end-point.

  12. Issues and opportunities in accelerator mass spectrometry for stable isotopes.

    Science.gov (United States)

    Matteson, Sam

    2008-01-01

    Accelerator mass spectrometry (AMS) has developed in the last 30 years many notable applications to the spectrometry of radioisotopes, particularly in radiocarbon dating. The instrumentation science of trace element AMS (TEAMS) that analyzes stable isotopes, also called Accelerator SIMS or MegaSIMS, while unique in many features, has also shared in many of these significant advances and has pushed TEAMS sensitivity to concentration levels surpassing many competing mass spectroscopic technologies. This review examines recent instrumentation developments, the capabilities of the new instrumentation and discernable trends for future development.

  13. Xenon purity analysis for EXO-200 via mass spectrometry

    CERN Document Server

    Dobi, A; Slutsky, S; Yen, Y -R; Aharmin, B; Auger, M; Barbeau, P S; Benitez-Medina, C; Breidenbach, M; Cleveland, B; Conley, R; Cook, J; Cook, S; Counts, I; Craddock, W; Daniels, T; Davis, C G; Davis, J; deVoe, R; Dixit, M; Dolinski, M J; Donato, K; Fairbank, W; Farine, J; Fierlinger, P; Franco, D; Giroux, G; Gornea, R; Graham, K; Gratta, G; Green, C; Hagemann, C; Hall, K; Hallman, D; Hargrove, C; Herrin, S; Hughes, M; Hodgson, J; Juget, F; Karelin, A; Kaufman, L J; Kuchenkov, A; Kumar, K; Leonard, D S; Lutter, G; Mackay, D; MacLellan, R; Marino, M; Mong, B; Díez, M Montero; Morgan, P; Müller, A R; Neilson, R; Odian, A; O'Sullivan, K; Piepke, A; Pocar, A; Prescott, C Y; Pushkin, K; Rivas, A; Rollin, E; Rowson, P C; Sabourov, A; Sinclair, D; Skarpaas, K; Stekhanov, V; Strickland, V; Swift, M; Twelker, K; Vuilleumier, J -L; Vuilleumier, J -M; Weber, M; Wichoski, U; Wodin, J; Wright, J D; Yang, L

    2011-01-01

    We describe purity measurements of the natural and enriched xenon stockpiles used by the EXO-200 double beta decay experiment based on a mass spectrometry technique. The sensitivity of the spectrometer is enhanced by several orders of magnitude by the presence of a liquid nitrogen cold trap, and many impurity species of interest can be detected at the level of one part-per-billion or better. We have used the technique to screen the EXO-200 xenon before, during, and after its use in our detector, and these measurements have proven useful. This is the first application of the cold trap mass spectrometry technique to an operating physics experiment.

  14. Direct Protocol for Ambient Mass Spectrometry Imaging on Agar Culture.

    Science.gov (United States)

    Angolini, Célio Fernando F; Vendramini, Pedro Henrique; Araújo, Francisca D S; Araújo, Welington L; Augusti, Rodinei; Eberlin, Marcos N; de Oliveira, Luciana Gonzaga

    2015-07-07

    Herein we describe a new protocol that allows direct mass spectrometry imaging (IMS) of agar cultures. A simple sample dehydration leads to a thin solid agar, which enables the direct use of spray-based ambient mass spectrometry techniques. To demonstrate its applicability, metal scavengers siderophores were imaged directly from agar culture of S. wadayamensis, and well resolved and intense images were obtained using both desorption electrospray ionization (DESI) and easy ambient sonic-spray ionization (EASI) with well-defined selective spatial distributions for the free and the metal-bound molecules, providing clues for their roles in cellular metabolism.

  15. Identifying modifications in RNA by MALDI mass spectrometry

    DEFF Research Database (Denmark)

    Douthwaite, Stephen; Kirpekar, Finn

    2007-01-01

    Posttranscriptional modifications on the base or sugar of ribonucleosides generally result in mass increases that can be measured by mass spectrometry. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a direct and accurate means of determining the masses of RNAs. Mass...... spectra produced by MALDI are relatively straightforward to interpret, because they are dominated by singly charged ions, making it possible to analyze complex mixtures of RNA oligonucleotides ranging from trinucleotides up to 20-mers. Analysis of modifications within much longer RNAs, such as ribosomal...... RNAs, can be achieved by digesting the RNA with nucleotide-specific enzymes. In some cases, it may be desirable to isolate specific sequence regions before MALDI-MS analysis, and this requires a few additional steps. The method is applicable to the study of modified RNAs from cell extracts as well...

  16. Staying Alive: Measuring Intact Viable Microbes with Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Forsberg, Erica; Fang, Mingliang; Siuzdak, Gary

    2017-01-01

    Mass spectrometry has traditionally been the technology of choice for small molecule analysis, making significant inroads into metabolism, clinical diagnostics, and pharmacodynamics since the 1960s. In the mid-1980s, with the discovery of electrospray ionization (ESI) for biomolecule analysis, a new door opened for applications beyond small molecules. Initially, proteins were widely examined, followed by oligonucleotides and other nonvolatile molecules. Then in 1991, three intriguing studies reported using mass spectrometry to examine noncovalent protein complexes, results that have been expanded on for the last 25 years. Those experiments also raised the questions: How soft is ESI, and can it be used to examine even more complex interactions? Our lab addressed these questions with the analyses of viruses, which were initially tested for viability following electrospray ionization and their passage through a quadrupole mass analyzer by placing them on an active medium that would allow them to propagate. This observation has been replicated on multiple different systems, including experiments on an even bigger microbe, a spore. The question of analysis was also addressed in the early 2000s with charge detection mass spectrometry. This unique technology could simultaneously measure mass-to-charge and charge, allowing for the direct determination of the mass of a virus. More recent experiments on spores and enveloped viruses have given us insight into the range of mass spectrometry's capabilities (reaching 100 trillion Da), beginning to answer fundamental questions regarding the complexity of these organisms beyond proteins and genes, and how small molecules are integral to these supramolecular living structures.

  17. Hybrid ion mobility and mass spectrometry as a separation tool.

    Science.gov (United States)

    Ewing, Michael A; Glover, Matthew S; Clemmer, David E

    2016-03-25

    Ion mobility spectrometry (IMS) coupled to mass spectrometry (MS) has seen spectacular growth over the last two decades. Increasing IMS sensitivity and capacity with improvements in MS instrumentation have driven this growth. As a result, a diverse new set of techniques for separating ions by their mobility have arisen, each with characteristics that make them favorable for some experiments and some mass spectrometers. Ion mobility techniques can be broken down into dispersive and selective techniques based upon whether they pass through all mobilities for later analysis by mass spectrometry or select ions by mobility or a related characteristic. How ion mobility techniques fit within a more complicated separation including mass spectrometry and other techniques such as liquid chromatography is of fundamental interest to separations scientists. In this review we explore the multitude of ion mobility techniques hybridized to different mass spectrometers, detailing current challenges and opportunities for each ion mobility technique and for what experiments one technique might be chosen over another. The underlying principles of ion mobility separations, including: considerations regarding separation capabilities, ion transmission, signal intensity and sensitivity, and the impact that the separation has upon the ion structure (i.e., the possibility of configurational changes due to ion heating) are discussed.

  18. Mass Spectrometry Imaging, an Emerging Technology in Neuropsychopharmacology

    Science.gov (United States)

    Shariatgorji, Mohammadreza; Svenningsson, Per; Andrén, Per E

    2014-01-01

    Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience. PMID:23966069

  19. Fast Differential Analysis of Propolis Using Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Huang, Xue-yong; Guo, Xia-li; Luo, Huo-lin; Fang, Xiao-wei; Zhu, Teng-gao; Zhang, Xing-lei; Chen, Huan-wen; Luo, Li-ping

    2015-01-01

    Mass spectral fingerprints of 24 raw propolis samples, including 23 from China and one from the United States, were directly obtained using surface desorption atmospheric pressure chemical ionization mass spectrometry (SDAPCI-MS) without sample pretreatment. Under the optimized experimental conditions, the most abundant signals were detected in the mass ranges of 70 to 500 m/z and 200 to 350 m/z, respectively. Principal component analyses (PCA) for the two mass ranges showed similarities in that the colors had a significant correlation with the first two PCs; in contrast there was no correlation with the climatic zones from which the samples originated. Analytes such as chrysin, pinocembrin, and quercetin were detected and identified using multiple stage mass spectrometry within 3 min. Therefore, SDAPCI-MS can be used for rapid and reliable high-throughput analysis of propolis. PMID:26339245

  20. A New Accelerator-Based Mass Spectrometry.

    Science.gov (United States)

    Gove, H. E.

    1983-01-01

    Tandem electrostatic accelerators produce beams of positive ions which are used to penetrate atomic nuclei in a target, inducing nuclear reactions whose study elucidates varied properties of the nucleus. Uses of the system, which acts like a mass spectrometer, are discussed. These include radiocarbon dating measurements. (JN)

  1. Analyses of mouse breath with ion mobility spectrometry: a feasibility study.

    Science.gov (United States)

    Vautz, Wolfgang; Nolte, Jürgen; Bufe, Albrecht; Baumbach, Jörg I; Peters, Marcus

    2010-03-01

    Exhaled breath can provide comprehensive information about the metabolic state of the subject. Breath analysis carried out during animal experiments promises to increase the information obtained from a particular experiment significantly. This feasibility study should demonstrate the potential of ion mobility spectrometry for animal breath analysis, even for mice. In the framework of the feasibility study, an ion mobility spectrometer coupled with a multicapillary column for rapid preseparation was used to analyze the breath of orotracheally intubated spontaneously breathing mice during anesthesia for the very first time. The sampling procedure was validated successfully. Furthermore, the breath of four mice (2 healthy control mice, 2 with allergic airway inflammation) was analyzed. Twelve peaks were identified directly by comparison with a database. Additional mass spectrometric analyses were carried out for validation and for identification of unknown signals. Significantly different patterns of metabolites were detected in healthy mice compared with asthmatic mice, thus demonstrating the feasibility of analyzing mouse breath with ion mobility spectrometry. However, further investigations including a higher animal number for validation and identification of unknown signals are needed. Nevertheless, the results of the study demonstrate that the method is capable of rapid analyses of the breath of mice, thus significantly increasing the information obtained from each particular animal experiment.

  2. High-accuracy mass spectrometry for fundamental studies.

    Science.gov (United States)

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  3. Laser Mass Spectrometry in Planetary Science

    Science.gov (United States)

    Wurz, P.; Whitby, J. A.; Managadze, G. G.

    2009-06-01

    Knowing the chemical, elemental, and isotopic composition of planetary objects allows the study of their origin and evolution within the context of our solar system. Exploration plans in planetary research of several space agencies consider landing spacecraft for future missions. Although there have been successful landers in the past, more landers are foreseen for Mars and its moons, Venus, the jovian moons, and asteroids. Furthermore, a mass spectrometer on a landed spacecraft can assist in the sample selection in a sample-return mission and provide mineralogical context, or identify possible toxic soils on Mars for manned Mars exploration. Given the resources available on landed spacecraft mass spectrometers, as well as any other instrument, have to be highly miniaturised.

  4. Plasma source mass spectrometry in experimental nutrition.

    Science.gov (United States)

    Barnes, R M

    1998-01-01

    The development and commercial availability of plasma ion source, specifically inductively coupled plasma, mass spectrometers (ICP-MS) have significantly extended the potential application of stable isotopes for nutritional modeling. The status of research and commercial ICP-MS instruments, and their applications and limitations for stable isotopic studies are reviewed. The consequences of mass spectroscopic resolution and measurement sensitivity obtainable with quadrupole, sector, time-of-flight, and trap instruments on stable isotope analysis are examined. Requirements for reliable isotope measurements with practical biological samples including tissues and fluids are considered. The possibility for stable isotope analysis in chemically separated compounds (speciation) also is explored. On-line compound separations by chromatography or electrophoresis, for example, have been combined instrumentally with ICP-MS. Som possibilities and requirements are described for stable isotope speciation analysis.

  5. Calcium isotope analysis by mass spectrometry.

    Science.gov (United States)

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use

  6. Calcium Isotope Analysis by Mass Spectrometry

    Science.gov (United States)

    Boulyga, S.; Richter, S.

    2010-12-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. This presentation discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. Additionally, the availability of Ca isotope reference materials will be discussed.

  7. High-Performance Liquid Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Vestal, Marvin L.

    1984-01-01

    Reviews techniques for online coupling of high-performance liquid chromatography with mass spectrometry, emphasizing those suitable for application to nonvolatile samples. Also summarizes the present status, strengths, and weaknesses of various techniques and discusses potential applications of recently developed techniques for combined liquid…

  8. Decoding signalling networks by mass spectrometry-based proteomics

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Mann, Matthias

    2010-01-01

    Signalling networks regulate essentially all of the biology of cells and organisms in normal and disease states. Signalling is often studied using antibody-based techniques such as western blots. Large-scale 'precision proteomics' based on mass spectrometry now enables the system...

  9. Mass Spectrometry Imaging for the Classification of Tumor Tissue

    NARCIS (Netherlands)

    Mascini, N.E.

    2016-01-01

    Mass spectrometry imaging (MSI) can detect and identify many different molecules without the need for labeling. In addition, it can provide their spatial distributions as ‘molecular maps’. These features make MSI well suited for studying the molecular makeup of tumor tissue. Currently, there is an i

  10. Exploring signal transduction networks using mass spectrometry-based proteomics

    NARCIS (Netherlands)

    Meijer, L.A.T.

    2012-01-01

    Mass spectrometry (MS)-based proteomics can be used to answer a diversity of biological questions. In this thesis, we describe the application of several MS-based proteomics approaches to get insight into several aspects of signal transduction. In Chapter 2, quantitative global phosphoproteomics are

  11. Electrochemistry-mass spectrometry in drug metabolism and protein research

    NARCIS (Netherlands)

    Permentier, Hjalmar P.; Bruins, Andries P.; Bischoff, Rainer

    2008-01-01

    The combination of electrochemistry coupled on-line to mass spectrometry (EC-MS) forms a powerful analytical technique with unique applications in the fields of drug metabolism and proteomics. In this review the latest developments are surveyed from both instrumental and application perspectives. Th

  12. Characterisation of cholera toxin by liquid chromatography - Electrospray mass spectrometry

    NARCIS (Netherlands)

    Baar, B.L.M. van; Hulst, A.G.; Wils, E.R.J.

    1999-01-01

    Cholera toxin, one of the toxins that may be generated by various strains of the bacterium Vibrio cholerae, can be considered as a substance possibly used in biological warfare. The possibilities of characterising the toxin by liquid chromatography electrospray mass spectrometry (LC-ES-MS) were inve

  13. Diagnosing Prion Diseases: Mass Spectrometry-Based Approaches

    Science.gov (United States)

    Mass spectrometry is an established means of quantitating the prions present in infected hamsters. Calibration curves relating the area ratios of the selected analyte peptides and their oxidized analogs to stable isotope labeled internal standards were prepared. The limit of detection (LOD) and limi...

  14. MICELLAR ELECTROKINETIC CHROMATOGRAPHY-MASS SPECTROMETRY (R823292)

    Science.gov (United States)

    The combination of micellar electrokinetic chromatography (MEKC) with mass spectrometry (MS) is very attractive for the direct identification of analyte molecules, for the possibility of selectivity enhancement, and for the structure confirmation and analysis in a MS-MS mode. The...

  15. Traveling-wave ion mobility mass spectrometry of protein complexes

    DEFF Research Database (Denmark)

    Salbo, Rune; Bush, Matthew F; Naver, Helle

    2012-01-01

    The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization...

  16. Characterisation of cholera toxin by liquid chromatography - Electrospray mass spectrometry

    NARCIS (Netherlands)

    Baar, B.L.M. van; Hulst, A.G.; Wils, E.R.J.

    1999-01-01

    Cholera toxin, one of the toxins that may be generated by various strains of the bacterium Vibrio cholerae, can be considered as a substance possibly used in biological warfare. The possibilities of characterising the toxin by liquid chromatography electrospray mass spectrometry (LC-ES-MS) were

  17. Mass Spectrometry Imaging for the Classification of Tumor Tissue

    NARCIS (Netherlands)

    Mascini, N.E.

    2016-01-01

    Mass spectrometry imaging (MSI) can detect and identify many different molecules without the need for labeling. In addition, it can provide their spatial distributions as ‘molecular maps’. These features make MSI well suited for studying the molecular makeup of tumor tissue. Currently, there is an i

  18. Advancing liquid chromatography- mass spectrometry based technologies for proteome research

    NARCIS (Netherlands)

    Boersema, P.J.

    2010-01-01

    In proteomics, high-tech nano-liquid chromatography (LC) and mass spectrometry (MS) instrumentation is used to routinely sequence proteins at a large scale. In this thesis, several technological developments are described to advance proteomics and their applicability is demonstrated in several diffe

  19. Gas chromatography mass spectrometry : key technology in metabolomics

    NARCIS (Netherlands)

    Koek, Maud Marijtje

    2009-01-01

    Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues. Gas chromatography coupled to mass spectrometry (GC-MS) is very suitable for metabolomics analysis, as it combines high separation power with sensiti

  20. Fusion of mass spectrometry-based metabolomics data

    NARCIS (Netherlands)

    Smilde, A.K.; Werf, M.J. van der; Bijlsma, S.; Werff-van der Vat, B.J.C. van der; Jellema, R.H.

    2005-01-01

    A general method is presented for combining mass spectrometry-based metabolomics data. Such data are becoming more and more abundant, and proper tools for fusing these types of data sets are needed. Fusion of metabolomics data leads to a comprehensive view on the metabolome of an organism or biologi

  1. Analysis of essential oils by gas chromatography and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Masada, Y.

    1976-01-01

    The book is in two parts: first part Essential Oil includes compositae; labiatae; verbenaceae; oleaceae; umbelliferae; myrtaceae; euphorbiaceae; rutaceae; geraniaceae; rosaceae; lauraceae; myristicaceae; anonaceae; santalaceae; moraceae; piperaceae; zingiberaceae; araceae; gramineae; and cupressaceae written in English and Japanese. Part two includes essential oil; gas chromatography, and mass spectrometry written in Japanese. (DP)

  2. Triple Bioaffinity Mass Spectrometry Concept for Thyroid Transporter Ligands

    NARCIS (Netherlands)

    Aqai, P.; Fryganas, C.; Mizuguchi, M.; Haasnoot, W.; Nielen, M.W.F.

    2012-01-01

    For the analysis of thyroid transporter ligands, a triple bioaffinity mass spectrometry (BioMS) concept was developed, with the aim at three different analytical objectives: rapid screening of any ligand, confirmation of known ligands in accordance with legislative requirements, and identification o

  3. Gas chromatography mass spectrometry : key technology in metabolomics

    NARCIS (Netherlands)

    Koek, Maud Marijtje

    2009-01-01

    Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues. Gas chromatography coupled to mass spectrometry (GC-MS) is very suitable for metabolomics analysis, as it combines high separation power with

  4. On-Line Synthesis and Analysis by Mass Spectrometry

    Science.gov (United States)

    Bain, Ryan M.; Pulliam, Christopher J.; Raab, Shannon A.; Cooks, R. Graham

    2015-01-01

    In this laboratory experiment, students learn how to use ESI to accelerate chemical synthesis and to couple it with on-line mass spectrometry for structural analysis. The Hantzsch synthesis of symmetric 1,4-dihydropyridines is a classic example of a one-pot reaction in which multiple intermediates can serve to indicate the progress of the reaction…

  5. May the Best Molecule Win: Competition ESI Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Sarah Laughlin

    2015-10-01

    Full Text Available Electrospray ionization mass spectrometry has become invaluable in the characterization of macromolecular biological systems such as nucleic acids and proteins. Recent advances in the field of mass spectrometry and the soft conditions characteristic of electrospray ionization allow for the investigation of non-covalent interactions among large biomolecules and ligands. Modulation of genetic processes through the use of small molecule inhibitors with the DNA minor groove is gaining attention as a potential therapeutic approach. In this review, we discuss the development of a competition method using electrospray ionization mass spectrometry to probe the interactions of multiple DNA sequences with libraries of minor groove binding molecules. Such an approach acts as a high-throughput screening method to determine important information including the stoichiometry, binding mode, cooperativity, and relative binding affinity. In addition to small molecule-DNA complexes, we highlight other applications in which competition mass spectrometry has been used. A competitive approach to simultaneously investigate complex interactions promises to be a powerful tool in the discovery of small molecule inhibitors with high specificity and for specific, important DNA sequences.

  6. Mass Spectrometry Imaging for the Classification of Tumor Tissue

    NARCIS (Netherlands)

    Mascini, N.E.

    2016-01-01

    Mass spectrometry imaging (MSI) can detect and identify many different molecules without the need for labeling. In addition, it can provide their spatial distributions as ‘molecular maps’. These features make MSI well suited for studying the molecular makeup of tumor tissue. Currently, there is an

  7. On-Line Synthesis and Analysis by Mass Spectrometry

    Science.gov (United States)

    Bain, Ryan M.; Pulliam, Christopher J.; Raab, Shannon A.; Cooks, R. Graham

    2015-01-01

    In this laboratory experiment, students learn how to use ESI to accelerate chemical synthesis and to couple it with on-line mass spectrometry for structural analysis. The Hantzsch synthesis of symmetric 1,4-dihydropyridines is a classic example of a one-pot reaction in which multiple intermediates can serve to indicate the progress of the reaction…

  8. Data analysis for mass spectrometry imaging : methods and applications

    NARCIS (Netherlands)

    Abdelmoula, Walid Mohamed

    2017-01-01

    In this dissertation we developed a number of automatic methods for multi-modal data registration, mainly between mass spectrometry imaging, imaging microscopy, and the Allen Brain Atlas. We have shown the importance of these methods for performing large scale preclinical biomarker discovery

  9. Analysis of proteins using DIGE and MALDI mass spectrometry

    Science.gov (United States)

    In this work the sensitivity of the quantitative proteomics approach 2D-DIGE/MS (twoDimensional Difference Gel Electrophoresis / Mass Spectrometry) was tested by detecting decreasing amounts of a specific protein at the low picomole and sub-picomole range. Sensitivity of the 2D-D...

  10. Resolving brain regions using nanostructure initiator mass spectrometry imaging

    OpenAIRE

    Lee, Do Yup; Platt, Virginia; Bowen, Ben; Louie, Katherine; Canaria, Christie; McMurray, Cynthia T.; Northen, Trent

    2012-01-01

    Specific cell types are critically implicated in a variety of neuropathologies that exhibit region-specific susceptibility. Neuronal and glial function is impaired in a host of neurodegenerative diseases. Previous reports suggest that mass spectrometry imaging has the potential to resolve cell-specific enrichment in brain regions; however, individual ions cannot resolve glial and neuronal cells within the complex structure of brain tissue. Here, we utilized a matrix-free surface mass spectrom...

  11. Measurement of boron isotopes by negative thermal ionization mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The isobaric interference for boron isotopic measurement by negative thermal ionization mass spectrometry (NTIMS) has been studied. The result shows that the CNO- is not only from the organic material, but also from nitrate in loading reagent in NTIMS. Monitoring the mass 43 ion intensity and 43/42 ratio of blank are also necessary for the boron isotopic measurement by NTIMS, other than is only boron content.

  12. Accelerator mass spectrometry as a bioanalytical tool for nutritional research

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J.S.; Turteltaub, K.W.

    1997-09-01

    Accelerator Mass Spectrometry is a mass spectrometric method of detecting long-lived radioisotopes without regard to their decay products or half-life. The technique is normally applied to geochronology, but recently has been developed for bioanalytical tracing. AMS detects isotope concentrations to parts per quadrillion, quantifying labeled biochemicals to attomole levels in milligram- sized samples. Its advantages over non-isotopeic and stable isotope labeling methods are reviewed and examples of analytical integrity, sensitivity, specificity, and applicability are provided.

  13. An evaluation of tandem mass spectrometry in drug metabolism studies.

    Science.gov (United States)

    Naylor, S; Kajbaf, M; Lamb, J H; Jahanshahi, M; Gorrod, J W

    1993-07-01

    The use of precursor ion and constant neutral loss scanning as a means of rapidly detecting drug metabolites is evaluated. Four clinically useful drugs, namely (i) cyclophosphamide, (ii) mifentidine, (iii) cimetropium bromide and (iv) haloperidol, were subjected to microsomal incubations to afford phase I metabolites. Aside from a minor clean-up procedure involving zinc sulfate precipitation of microsomal proteins and solid-phase extraction of metabolites using a Sep-pak C-18 cartridge, the mixtures were analysed directly by fast atom bombardment tandem mass spectrometry. It is demonstrated that such screening strategies are important in detecting novel metabolites. However, there are some problems associated with only using such methods, including (i) the possibility of not detecting metabolites that undergo unusual collision-induced dissociation fragmentation pathways, (ii) the non-detection of metabolites that have undergone metabolic change at unusual sites of reactivity, and (iii) production of artifacts derived from the parent drug by the primary ionization process. Examples are discussed that highlight both the strengths and weaknesses of such an approach.

  14. Improving tritium exposure reconstructions using accelerator mass spectrometry

    Science.gov (United States)

    Hunt, J. R.; Vogel, J. S.; Knezovich, J. P.

    2010-01-01

    Direct measurement of tritium atoms by accelerator mass spectrometry (AMS) enables rapid low-activity tritium measurements from milligram-sized samples and permits greater ease of sample collection, faster throughput, and increased spatial and/or temporal resolution. Because existing methodologies for quantifying tritium have some significant limitations, the development of tritium AMS has allowed improvements in reconstructing tritium exposure concentrations from environmental measurements and provides an important additional tool in assessing the temporal and spatial distribution of chronic exposure. Tritium exposure reconstructions using AMS were previously demonstrated for a tree growing on known levels of tritiated water and for trees exposed to atmospheric releases of tritiated water vapor. In these analyses, tritium levels were measured from milligram-sized samples with sample preparation times of a few days. Hundreds of samples were analyzed within a few months of sample collection and resulted in the reconstruction of spatial and temporal exposure from tritium releases. Although the current quantification limit of tritium AMS is not adequate to determine natural environmental variations in tritium concentrations, it is expected to be sufficient for studies assessing possible health effects from chronic environmental tritium exposure. PMID:14735274

  15. Critical comparison of mass analyzers for forensic hair analysis by ambient ionizations mass spectrometry

    NARCIS (Netherlands)

    Duvivier, W.F.; Beek, van T.A.; Nielen, M.W.F.

    2016-01-01

    Rationale
    Recently, several direct and/or ambient mass spectrometry (MS) approaches have been suggested for drugs of abuse imaging in hair. The use of mass spectrometers with insufficient selectivity could result in false-positive measurements due to isobaric interferences. Different mass analyz

  16. Application of Laser Mass Spectrometry to Art and Archaeology

    Science.gov (United States)

    Gulian, Lase Lisa E.; Callahan, Michael P.; Muliadi, Sarah; Owens, Shawn; McGovern, Patrick E.; Schmidt, Catherine M.; Trentelman, Karen A.; deVries, Mattanjah S.

    2011-01-01

    REMPI laser mass spectrometry is a combination of resonance enhanced multiphoton ionization spectroscopy and time of flight mass spectrometry, This technique enables the collection of mass specific optical spectra as well as of optically selected mass spectra. Analytes are jet-cooled by entrainment in a molecular beam, and this low temperature gas phase analysis has the benefit of excellent vibronic resolution. Utilizing this method, mass spectrometric analysis of historically relevant samples can be simplified and improved; Optical selection of targets eliminates the need for chromatography while knowledge of a target's gas phase spectroscopy allows for facile differentiation of molecules that are in the aqueous phase considered spectroscopically indistinguishable. These two factors allow smaller sample sizes than commercial MS instruments, which in turn will require less damage to objects of antiquity. We have explored methods to optimize REMPI laser mass spectrometry as an analytical tool to archaeology using theobromine and caffeine as molecular markers in Mesoamerican pottery, and are expanding this approach to the field of art to examine laccaic acid in shellacs.

  17. Capillary electrophoresis-mass spectrometry of carbohydrates.

    Science.gov (United States)

    Zaia, Joseph

    2013-01-01

    The development of methods for capillary electrophoresis (CE) with on-line mass spectrometric detection (CE/MS) is driven by the need for accurate, robust, and sensitive glycomics analysis for basic biomedicine, biomarker discovery, and analysis of recombinant protein therapeutics. One important capability is to profile glycan mixtures with respect to the patterns of substituents including sialic acids, acetate, sulfate, phosphate, and other groups. There is additional need for an MS-compatible separation system capable of resolving carbohydrate isomers. This chapter summarizes applications of CS/MS to analysis of carbohydrates, glycoproteins, and glycopeptides that have appeared since 2008. Readers are referred to recent comprehensive reviews covering earlier publications.

  18. Analysis of Milk Oligosaccharides by Mass Spectrometry.

    Science.gov (United States)

    Wu, Lauren D; Ruhaak, L Renee; Lebrilla, Carlito B

    2017-01-01

    Human milk oligosaccharides (HMOs) are a highly abundant constituent in human milk, and its protective and prebiotic properties have attracted considerable attention. HMOs have been shown to directly and indirectly benefit the overall health of the infant due to a number of functions including serving as a beneficial food for gut bacteria, block to pathogens, and aiding in brain development. Researchers are currently exploring whether these structures may act as possible disease and nutrition biomarkers. Because of this, rapid-throughput methods are desired to investigate biological activity in large patient sets. We have optimized a rapid-throughput protocol to analyze human milk oligosaccharides using micro-volumes of human breast milk for nutritional biomarkers. This method may additionally be applied to other biological fluid substrates such as plasma, urine, and feces. The protocol involves lipid separation via centrifugation, protein precipitation using ethanol, alditol reduction with sodium borohydride, and a final solid-phase extraction purification step using graphitized carbon cartridges. Samples are analyzed using HPLC-Chip/TOF-MS and data filtered on Agilent MassHunter using an in-house library. Individual structural identification is matched against a previously developed HMO library using accurate mass and retention time. Using this method will allow in-depth characterization and profiling of HMOs in large patient sets, and will ease the process of discovering significant nutritional biomarkers in human milk.

  19. Early discovery drug screening using mass spectrometry.

    Science.gov (United States)

    Siegel, Marshall M

    2002-01-01

    Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometric methods useful for early discovery drug screening are reviewed. All methods described involve studies of non-covalent complexes between biopolymer receptors and small molecule ligands formed in the condensed phase. The complexes can be sprayed intact directly into the gas phase by ESI-MS using gentle experimental conditions. Gas phase screening applications are illustrated for drug ligand candidates non-covalently interacting with peptides, proteins, RNA, and DNA. In the condensed phase, the complexes can be also isolated, denatured and analyzed by ESI-MS to identify the small molecule ligands. Condensed phase drug screening examples are illustrated for the ESI-MS ancillary techniques of affinity chromatography, ultrafiltration, ultracentrifugation, gel permeation chromatography (GPC), reverse phase-high performance liquid chromatography (RP-HPLC) and capillary electrophoretic methods. Solid phase drug screening using MALDI-MS is illustrated for small molecule ligands bound to MALDI affinity probe tips and to beads. Since ESI and MALDI principally produce molecular ions, high throughput screening is achieved by analyzing mass indexed mixtures.

  20. HCN Polymers: Toward Structure Comprehension Using High Resolution Mass Spectrometry

    Science.gov (United States)

    Bonnet, Jean-Yves; Thissen, Roland; Frisari, Ma; Vuitton, Veronique; Quirico, Eric; Le Roy, Léna; Fray, Nicolas; Cottin, Hervé; Horst, Sarah; Yelle, Roger

    A lot of solar system materials, including cometary ices and Titan aerosols, contain dark matter that can be interpreted as complex nitrogen bearing organic matter [1]. In laboratory experi-ments, HCN polymers are thus analogs of great interest. In fact they may be present in Titan atmosphere and in comet nuclei and then reprocessed as a CN distributed source [2], when ices began to sublimate and ejects from the nucleus organic matter grains [3]. The presence of HCN polymers is suggested because HCN molecule has been directly observed in 1P/Halley comet [4] and others. HCN polymers are also of prebiotic interest [5] as it can form amino acid under hydrolysis conditions. Even if they have been studied during the last decades, their chemical composition and structure are still poorly understood, and a great analytical effort has to be continued. In this way we present a high resolution mass spectrometry (HRMS) and a high resolution tandem mass spectrometry (MS/HRMS) analysis of HCN polymers. It was shown [6] that this is a suitable technique to elucidate composition and structure of the soluble part of tholins analogs of Titan's atmosphere aerosols. HCN polymers have never been studied by HRMS, thus we used a LTQ-Orbitrap XL high resolution mass spectrometer to analyse the HCN polymers. These are produced at LISA by direct polymerisation of pure liquid HCN, catalyzed by ammonia. HCN polymers have been completely dissolved in methanol and then injected in the mass spectrometer by ElectroSpray Ionization (ESI). This atmospheric pressure ionization process produces protonated or deprotonated ions, but it does not fragment molecules. Thus HRMS, allows a direct access to the stoechiometry of all the ionizable molecules present in the samples. Fragmentation analyses (MS/MS) of selected ions have also been performed. Thess analysis provide information about the different chemical fonctionnalities present in HCN poly-mers and also about their structure. Thus we are able to

  1. Hands-on Electrospray Ionization-Mass Spectrometry for Upper-Level Undergraduate and Graduate Students

    Science.gov (United States)

    Stock, Naomi L.; March, Raymond E.

    2014-01-01

    Electrospray ionization-mass spectrometry (ESI-MS) is a powerful technique for the detection, identification, and quantification of organic compounds. As mass spectrometers have become more user-friendly and affordable, many students--often with little experience in mass spectrometry--find themselves needing to incorporate mass spectrometry into…

  2. Hands-on Electrospray Ionization-Mass Spectrometry for Upper-Level Undergraduate and Graduate Students

    Science.gov (United States)

    Stock, Naomi L.; March, Raymond E.

    2014-01-01

    Electrospray ionization-mass spectrometry (ESI-MS) is a powerful technique for the detection, identification, and quantification of organic compounds. As mass spectrometers have become more user-friendly and affordable, many students--often with little experience in mass spectrometry--find themselves needing to incorporate mass spectrometry into…

  3. Comprehensive characterisation of flame retardants in textile furnishings by ambient high resolution mass spectrometry, gas chromatography-mass spectrometry and environmental forensic microscopy.

    Science.gov (United States)

    Ionas, Alin C; Ballesteros Gómez, Ana; Uchida, Natsuyo; Suzuki, Go; Kajiwara, Natsuko; Takata, Kyoko; Takigami, Hidetaka; Leonards, Pim E G; Covaci, Adrian

    2015-10-01

    The presence and levels of flame retardants (FRs), such as polybrominated diphenyl ethers (PBDEs) and organophosphate flame retardants (PFRs), was determined in textile home furnishings, such as carpets and curtains from stores in Belgium. A comprehensive characterisation of FRs in textile was done by ambient high resolution mass spectrometry (qualitative screening), gas chromatography-mass spectrometry (GC-MS) (quantitation), and environmental forensic microscopy (surface distribution). Ambient ionisation coupled to a time-of-flight (TOF) high resolution mass spectrometer (direct probe-TOF-MS) was investigated for the rapid screening of FRs. Direct probe-TOF-MS proved to be useful for a first screening step of textiles to detect FRs below the levels required to impart flame retardancy and to reduce, in this way, the number of samples for further quantitative analysis. Samples were analysed by GC-MS to confirm the results obtained by ambient mass spectrometry and to obtain quantitative information. The levels of PBDEs and PFRs were typically too low to impart flame retardancy. Only high levels of BDE-209 (11-18% by weight) were discovered and investigated in localised hotspots by employing forensic microscopy techniques. Most of the samples were made of polymeric materials known to be inherently flame retarded to some extent, so it is likely that other alternative and halogen-free FR treatments/solutions are preferred for the textiles on the Belgian market. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Advances in structure elucidation of small molecules using mass spectrometry

    Science.gov (United States)

    Fiehn, Oliver

    2010-01-01

    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules. Electronic supplementary material The online version of this article (doi:10.1007/s12566-010-0015-9) contains supplementary material, which is available to authorized users. PMID:21289855

  5. Recent developments in Penning-trap mass spectrometry

    Science.gov (United States)

    Block, M.

    2016-06-01

    Penning-trap mass spectrometry provides atomic masses with the highest precision. At accelerator-based on-line facilities it is applied to investigate exotic radionuclides in the context of tests of fundamental symmetries, nuclear structure studies, and nuclear astrophysics research. Recent progress in slowing down radioactive ion-beams in buffer-gas cells in combination with advanced ion-manipulation techniques has paved the way to reach nuclides ever-more far from stability. In this endeavor many efforts are underway to increase the sensitivity, the efficiency, and the precision of Penning-trap mass spectrometry. In this article some recent experimental developments are addressed with the focus on the phase-imaging ion-cyclotron-resonance technique and the Fourier transform ion-cyclotron-resonance technique.

  6. Electrochemistry-mass spectrometry in drug metabolism and protein research.

    Science.gov (United States)

    Permentier, Hjalmar P; Bruins, Andries P; Bischoff, Rainer

    2008-01-01

    The combination of electrochemistry coupled on-line to mass spectrometry (EC-MS) forms a powerful analytical technique with unique applications in the fields of drug metabolism and proteomics. In this review the latest developments are surveyed from both instrumental and application perspectives. The limitations and solutions for coupling an electrochemical system to a mass spectrometer are discussed. The electrochemical mimicking of drug metabolism, specifically by Cytochrome P450, is high-lighted as an application with high biomedical relevance. The EC-MS analysis of proteins also has promising new applications for both proteomics research and biomarker discovery. EC-MS has furthermore advantages for improved analyte detection with mass spectrometry, both for small molecules and large biomolecules. Finally, potential future directions of development of the technique are briefly discussed.

  7. Determination of {sup 135}Cs by accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, C.M.; Charles, C.R.J. [Andre. E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Earth Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Zhao, X.-L.; Kieser, W.E. [Andre. E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Cornett, R.J. [Andre. E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Earth Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Litherland, A.E. [IsoTrace Laboratory, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7 (Canada)

    2015-10-15

    The ratio of anthropogenic {sup 135}Cs and {sup 137}Cs isotopes is characteristic of a uranium fission source. This research evaluates the technique of isotope dilution (yield tracing) for the purpose of quantifying {sup 135}Cs by accelerator mass spectrometry with on-line isobar separation. Interferences from Ba, Zn{sub 2}, and isotopes of equal mass to charge ratios were successfully suppressed. However, some sample crosstalk from source contamination remains. The transmission and di-fluoride ionization efficiencies of Cs isotopes were found to be 8 × 10{sup −3} and 1.7 × 10{sup −7} respectively. This quantification of {sup 135}Cs using yield tracing by accelerator mass spectrometry shows promise for future environmental sample analysis once the issues of sample crosstalk and low efficiency can be resolved.

  8. T cells recognizing a peptide contaminant undetectable by mass spectrometry

    DEFF Research Database (Denmark)

    Brezar, Vedran; Culina, Slobodan; Østerbye, Thomas

    2011-01-01

    Synthetic peptides are widely used in immunological research as epitopes to stimulate their cognate T cells. These preparations are never completely pure, but trace contaminants are commonly revealed by mass spectrometry quality controls. In an effort to characterize novel major histocompatibility...... complex (MHC) Class I-restricted ß-cell epitopes in non-obese diabetic (NOD) mice, we identified islet-infiltrating CD8+ T cells recognizing a contaminating peptide. The amount of this contaminant was so small to be undetectable by direct mass spectrometry. Only after concentration by liquid...... chromatography, we observed a mass peak corresponding to an immunodominant islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)(206-214) epitope described in the literature. Generation of CD8+ T-cell clones recognizing IGRP(206-214) using a novel method confirmed the identity...

  9. LILBID-mass spectrometry of the mitochondrial preprotein translocase TOM.

    Science.gov (United States)

    Mager, Frauke; Sokolova, Lucie; Lintzel, Julia; Brutschy, Bernhard; Nussberger, Stephan

    2010-11-17

    In the present work we applied a novel mass spectrometry method termed laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS) to the outer mitochondrial membrane protein translocon TOM to analyze its subunit composition and stoichiometry. With TOM core complex, purified at high pH, we demonstrate that a TOM core complex of Neurospora crassa is composed of at least two Tom40 and Tom22 molecules, respectively, and more than five small Tom subunits between 5.5 and 6.4 kDa. We show that the multiprotein complex has a total molecular mass higher than 170 depending on the number of Tom5, Tom6 and Tom7 molecules bound.

  10. Different Ways to On-Line Hyphenate Centrifugal Partition Chromatography and Mass Spectrometry: Application to Prenylated Xanthones from Garcinia mangostana.

    Science.gov (United States)

    Destandau, Emilie; Michel, Thomas; Toribio, Alix; Elfakir, Claire

    2015-11-01

    Centrifugal partition chromatography is a liquid-liquid separation method well adapted for the fractionation or purification of natural compounds from plant extracts. However, following the preparative isolation, the fractions collected must be analysed by high-performance thin-layer chromatography or high-performance liquid chromatography to evaluate their composition and/or their purity. These additional steps are time-consuming and increase the risk of compound degradation. In order to get an instantaneous analysis of fraction content with structural information on the phytochemicals eluted, it is possible to hyphenate on-line centrifugal partition chromatography with mass spectrometry. Depending on the complexity of the extract, two different kinds of centrifugal partition chromatography-mass spectrometry coupling can be performed: centrifugal partition chromatography-mass spectrometry or centrifugal partition chromatography-high-performance liquid chromatography-mass spectrometry coupling. In the first case, one part of the centrifugal partition chromatography effluent is directly introduced in the mass spectrometry ionisation source to identify the eluted compounds, while in the second case, it is directed to a high-performance liquid chromatography-mass spectrometry system where compounds are first separated thanks to high-performance liquid chromatography and then identified using mass spectrometry.

  11. Trends in biochemical and biomedical applications of mass spectrometry

    Science.gov (United States)

    Gelpi, Emilio

    1992-09-01

    This review attempts an in-depth evaluation of progress and achievements made since the last 11th International Mass Spectrometry Conference in the application of mass spectrometric techniques to biochemistry and biomedicine. For this purpose, scientific contributions in this field at major international meetings have been monitored, together with an extensive appraisal of literature data covering the period from 1988 to 1991. A bibliometric evaluation of the MEDLINE database for this period provides a total of almost 4000 entries for mass spectrometry. This allows a detailed study of literature and geographical sources of the most frequent applications, of disciplines where mass spectrometry is most active and of types of sample and instrumentation most commonly used. In this regard major efforts according to number of publications (over 100 literature reports) are concentrated in countries like Canada, France, Germany, Italy, Japan, Sweden, UK and the USA. Also, most of the work using mass spectrometry in biochemistry and biomedicine is centred on studies on biotransformation, metabolism, pharmacology, pharmacokinetics and toxicology, which have been carried out on samples of blood, urine, plasma and tissue, by order of frequency of use. Human and animal studies appear to be evenly distributed in terms of the number of reports published in the literature in which the authors make use of experimental animals or describe work on human samples. Along these lines, special attention is given to the real usefulness of mass spectrometry (MS) technology in routine medical practice. Thus the review concentrates on evaluating the progress made in disease diagnosis and overall patient care. As regards prevailing techniques, GCMS continues to be the mainstay of the state of the art methods for multicomponent analysis, stable isotope tracer studies and metabolic profiling, while HPLC--MS and tandem MS are becoming increasingly important in biomedical research. However

  12. Microscale mass spectrometry systems, devices and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, John Michael

    2017-04-11

    Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm.sup.2 to about 25 cm.sup.2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.

  13. Microscale mass spectrometry systems, devices and related methods

    Science.gov (United States)

    Ramsey, John Michael

    2016-06-21

    Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm.sup.2 to about 25 cm.sup.2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.

  14. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    CERN Document Server

    Smith, Donald F; Leach, Franklin E; Robinson, Errol W; Paša-Tolić, Ljiljana; Heeren, Ron M A

    2013-01-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for elemental formula assignment based on exact mass measurement. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissu...

  15. Optimization of Whole-Body Zebrafish Sectioning Methods for Mass Spectrometry Imaging

    Science.gov (United States)

    Mass spectrometry imaging methods and protocols have become widely adapted to a variety of tissues and species. However, the mass spectrometry imaging literature contains minimal information on whole-body cryosection preparation for the zebrafish (Danio rerio), a model organism ...

  16. High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Ståhlman, Marcus; Ejsing, Christer S.; Tarasov, Kirill;

    2009-01-01

    Technological advances in mass spectrometry and meticulous method development have produced several shotgun lipidomic approaches capable of characterizing lipid species by direct analysis of total lipid extracts. Shotgun lipidomics by hybrid quadrupole time-of-flight mass spectrometry allows...

  17. Advances in 193 nm excimer lasers for mass spectrometry applications

    Science.gov (United States)

    Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido

    2016-03-01

    Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.

  18. New Types of Ionization Sources for Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-12-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle (Contractor) and MDS Sciex (Participant) and ESA, Inc. (Participant) is to research, develop and apply new types of ionization sources and sampling/inlet systems for analytical mass spectrometry making use of the Participants state-of-the-art atmospheric sampling mass spectrometry electrochemical cell technology instrumentation and ancillary equipment. The two overriding goals of this research project are: to understand the relationship among the various instrumental components and operational parameters of the various ion sources and inlet systems under study, the chemical nature of the gases, solvents, and analytes in use, and the nature and abundances of the ions ultimately observed in the mass spectrometer; and to develop new and better analytical and fundamental applications of these ion sources and inlet systems or alternative sources and inlets coupled with mass spectrometry on the basis of the fundamental understanding obtained in Goal 1. The end results of this work are expected to be: (1) an expanded utility for the ion sources and inlet systems under study (such as the analysis of new types of analytes) and the control or alteration of the ionic species observed in the gas-phase; (2) enhanced instrument performance as judged by operational figures-of-merit such as dynamic range, detection limits, susceptibility to matrix signal suppression and sensitivity; and (3) novel applications (such as surface sampling with electrospray) in both applied and fundamental studies. The research projects outlined herein build upon work initiated under the previous CRADA between the Contractor and MDS Sciex on ion sources and inlet systems for mass spectrometry. Specific ion source and inlet systems for exploration of the fundamental properties and practical implementation of these principles are given.

  19. Lipid and Glycolipid Isomer Analyses Using Ultra-High Resolution Ion Mobility Spectrometry Separations

    Directory of Open Access Journals (Sweden)

    Roza Wojcik

    2017-01-01

    Full Text Available Understanding the biological roles and mechanisms of lipids and glycolipids is challenging due to the vast number of possible isomers that may exist. Mass spectrometry (MS measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid presence and changes. However, difficulties in distinguishing the many structural isomers, due to the distinct lipid acyl chain positions, double bond locations or specific glycan types, inhibit the delineation and assignment of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS separations by applying traveling waves in a serpentine multi-pass Structures for Lossless Ion Manipulations (SLIM platform to enhance the separation of selected lipid and glycolipid isomers. The multi-pass arrangement allowed the investigation of paths ranging from ~16 m (one pass to ~60 m (four passes for the distinction of lipids and glycolipids with extremely small structural differences. These ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer-specific biological activities and disease processes.

  20. Laser Ablation with Vacuum Capture for MALDI Mass Spectrometry of Tissue

    Science.gov (United States)

    Donnarumma, Fabrizio; Cao, Fan; Murray, Kermit K.

    2016-01-01

    We have developed a laser ablation sampling technique for matrix-assisted laser desorption ionization (MALDI) mass spectrometry and tandem mass spectrometry (MS/MS) analyses of in-situ digested tissue proteins. Infrared laser ablation was used to remove biomolecules from tissue sections for collection by vacuum capture and analysis by MALDI. Ablation and transfer of compounds from tissue removes biomolecules from the tissue and allows further analysis of the collected material to facilitate their identification. Laser ablated material was captured in a vacuum aspirated pipette-tip packed with C18 stationary phase and the captured material was dissolved, eluted, and analyzed by MALDI. Rat brain and lung tissue sections 10 μm thick were processed by in-situ trypsin digestion after lipid and salt removal. The tryptic peptides were ablated with a focused mid-infrared laser, vacuum captured, and eluted with an acetonitrile/water mixture. Eluted components were deposited on a MALDI target and mixed with matrix for mass spectrometry analysis. Initial experiments were conducted with peptide and protein standards for evaluation of transfer efficiency: a transfer efficiency of 16% was obtained using seven different standards. Laser ablation vacuum capture was applied to freshly digested tissue sections and compared with sections processed with conventional MALDI imaging. A greater signal intensity and lower background was observed in comparison with the conventional MALDI analysis. Tandem time-of-flight MALDI mass spectrometry was used for compound identification in the tissue.

  1. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    Science.gov (United States)

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  2. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    Science.gov (United States)

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  3. Capillary electrophoresis and mass spectrometry for screening of metabolic disorders in newborns.

    Science.gov (United States)

    Senk, Petr; Kozák, Libor; Foret, Frantisek

    2004-06-01

    Clinical analyses always represent a challenge for the sensitivity and selectivity of the analytical techniques. Of the most critical are the techniques required for the quick determination of the disease state and application of the proper treatment in newborns. This short critical review overviews the present state of the art of the use of mass spectrometry and capillary electrophoresis for screening of metabolic disorders in newborns.

  4. Proteomics and Mass Spectrometry for Cancer Biomarker Discovery

    Science.gov (United States)

    Lu, Ming; Faull, Kym F.; Whitelegge, Julian P.; He, Jianbo; Shen, Dejun; Saxton, Romaine E.; Chang, Helena R.

    2007-01-01

    Proteomics is a rapidly advancing field not only in the field of biology but also in translational cancer research. In recent years, mass spectrometry and associated technologies have been explored to identify proteins or a set of proteins specific to a given disease, for the purpose of disease detection and diagnosis. Such biomarkers are being investigated in samples including cells, tissues, serum/plasma, and other types of body fluids. When sufficiently refined, proteomic technologies may pave the way for early detection of cancer or individualized therapy for cancer. Mass spectrometry approaches coupled with bioinformatic tools are being developed for biomarker discovery and validation. Understanding basic concepts and application of such technology by investigators in the field may accelerate the clinical application of protein biomarkers in disease management. PMID:19662217

  5. Recent directions of electrospray mass spectrometry for elemental speciation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schaumloeffel, Dirk [Universite de Pau et des Pays de l' Adour/CNRS UMR 5254, Laboratoire de Chimie Analytique Bio-Inorganique et Environnement/IPREM, Pau (France); Tholey, Andreas [Christian-Albrechts-Universitaet, Institute for Experimental Medicine - Div. Systematic Proteome Research, Kiel (Germany)

    2011-06-15

    A brief survey is given of the last 2 years' literature on electrospray mass spectrometry (ESI-MS) for speciation analysis. As observed for many years, the main recent applications in this field concern arsenic and selenium species, especially in studies encompassing combined use of molecular and element mass spectrometry. A further application field is the stoichiometric characterization of metal complexes by ESI-MS, which in some studies was assisted by nuclear magnetic resonance spectroscopy. A few examples are presented to illustrate arsenic species involved in metabolic pathways, sulfur species in oils and bitumen, and aluminum complexes. On the basis of this review, we also give an outlook of expected future developments and trends in this research field. (orig.)

  6. Protein identification using nano liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Negroni, Luc

    2007-01-01

    Tandem mass spectrometry is an efficient technique for the identification of peptides on the basis of their fragmentation pattern (MS/MS scan). It can generate individual spectra for each peptide, thereby creating a powerful tool for protein identification on the basis of peptide characterization. This important advance in automatic data acquisition has allowed an efficient association between liquid chromatography and tandem mass spectrometry, and the use of nanocolumns and nanoelectrospray ionization has dramatically increased the efficiency of this method. Now large sets of peptides can be identified at a femtomole level. At the end of the process, batch processing of the MS/MS spectra produces peptide lists that identify purified proteins or protein mixtures with high confidence.

  7. Analysis of Protein O-GlcNAcylation by Mass Spectrometry.

    Science.gov (United States)

    Ma, Junfeng; Hart, Gerald W

    2017-02-02

    O-linked β-D-N-acetyl glucosamine (O-GlcNAc) addition (O-GlcNAcylation), a post-translational modification of serine/threonine residues of proteins, is involved in diverse cellular metabolic and signaling pathways. Aberrant O-GlcNAcylation underlies the initiation and progression of multiple chronic diseases including diabetes, cancer, and neurodegenerative diseases. Numerous methods have been developed for the analysis of protein O-GlcNAcylation, but instead of discussing the classical biochemical techniques, this unit covers O-GlcNAc characterization by combining several enrichment methods and mass spectrometry detection techniques [including collision-induced dissociation (CID), higher energy collision dissociation (HCD), and electron transfer dissociation (ETD) mass spectrometry]. © 2017 by John Wiley & Sons, Inc.

  8. Metabolome analysis - mass spectrometry and microbial primary metabolites

    DEFF Research Database (Denmark)

    Højer-Pedersen, Jesper Juul

    2008-01-01

    that are highly sensitive and specific, and to undertake this challenge mass spectrometry (MS) is among the best candidates. Along with analysis of the metabolome the research area of metabolomics has evolved. Metabolomics combines metabolite profiles, data mining and biochemistry and aims at understanding...... the interplay between metabolites. In this thesis, different topics have been addressed and discussed with the aim of advancing metabolomics to explore the concept in a physiological context. The metabolome comprises a wide variety of chemical compounds that act differently upon sample preparation...... glucose, galactose or ethanol, and metabolic footprinting by mass spectrometry was used to study the influence of carbon source on the extracellular metabolites. The results showed that footprints clustered according to the carbon source. Advances in technologies for analytical chemistry have mediated...

  9. Sharing and community curation of mass spectrometry data with GNPS

    Science.gov (United States)

    Nguyen, Don Duy; Watrous, Jeramie; Kapono, Clifford A; Luzzatto-Knaan, Tal; Porto, Carla; Bouslimani, Amina; Melnik, Alexey V; Meehan, Michael J; Liu, Wei-Ting; Crüsemann, Max; Boudreau, Paul D; Esquenazi, Eduardo; Sandoval-Calderón, Mario; Kersten, Roland D; Pace, Laura A; Quinn, Robert A; Duncan, Katherine R; Hsu, Cheng-Chih; Floros, Dimitrios J; Gavilan, Ronnie G; Kleigrewe, Karin; Northen, Trent; Dutton, Rachel J; Parrot, Delphine; Carlson, Erin E; Aigle, Bertrand; Michelsen, Charlotte F; Jelsbak, Lars; Sohlenkamp, Christian; Pevzner, Pavel; Edlund, Anna; McLean, Jeffrey; Piel, Jörn; Murphy, Brian T; Gerwick, Lena; Liaw, Chih-Chuang; Yang, Yu-Liang; Humpf, Hans-Ulrich; Maansson, Maria; Keyzers, Robert A; Sims, Amy C; Johnson, Andrew R.; Sidebottom, Ashley M; Sedio, Brian E; Klitgaard, Andreas; Larson, Charles B; P., Cristopher A Boya; Torres-Mendoza, Daniel; Gonzalez, David J; Silva, Denise B; Marques, Lucas M; Demarque, Daniel P; Pociute, Egle; O'Neill, Ellis C; Briand, Enora; Helfrich, Eric J. N.; Granatosky, Eve A; Glukhov, Evgenia; Ryffel, Florian; Houson, Hailey; Mohimani, Hosein; Kharbush, Jenan J; Zeng, Yi; Vorholt, Julia A; Kurita, Kenji L; Charusanti, Pep; McPhail, Kerry L; Nielsen, Kristian Fog; Vuong, Lisa; Elfeki, Maryam; Traxler, Matthew F; Engene, Niclas; Koyama, Nobuhiro; Vining, Oliver B; Baric, Ralph; Silva, Ricardo R; Mascuch, Samantha J; Tomasi, Sophie; Jenkins, Stefan; Macherla, Venkat; Hoffman, Thomas; Agarwal, Vinayak; Williams, Philip G; Dai, Jingqui; Neupane, Ram; Gurr, Joshua; Rodríguez, Andrés M. C.; Lamsa, Anne; Zhang, Chen; Dorrestein, Kathleen; Duggan, Brendan M; Almaliti, Jehad; Allard, Pierre-Marie; Phapale, Prasad; Nothias, Louis-Felix; Alexandrov, Theodore; Litaudon, Marc; Wolfender, Jean-Luc; Kyle, Jennifer E; Metz, Thomas O; Peryea, Tyler; Nguyen, Dac-Trung; VanLeer, Danielle; Shinn, Paul; Jadhav, Ajit; Müller, Rolf; Waters, Katrina M; Shi, Wenyuan; Liu, Xueting; Zhang, Lixin; Knight, Rob; Jensen, Paul R; Palsson, Bernhard O; Pogliano, Kit; Linington, Roger G; Gutiérrez, Marcelino; Lopes, Norberto P; Gerwick, William H; Moore, Bradley S; Dorrestein, Pieter C; Bandeira, Nuno

    2017-01-01

    The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry techniques are well-suited to high-throughput characterization of natural products, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social molecular networking (GNPS, http://gnps.ucsd.edu), an open-access knowledge base for community wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of ‘living data’ through continuous reanalysis of deposited data. PMID:27504778

  10. Challenges ahead for mass spectrometry and proteomics applications in epigenetics.

    Science.gov (United States)

    Kessler, Benedikt M

    2010-02-01

    Inheritance of biological information to future generations depends on the replication of DNA and the Mendelian principle of distribution of genes. In addition, external and environmental factors can influence traits that can be propagated to offspring, but the molecular details of this are only beginning to be understood. The discoveries of DNA methylation and post-translational modifications on chromatin and histones provided entry points for regulating gene expression, an area now defined as epigenetics and epigenomics. Mass spectrometry turned out to be instrumental in uncovering molecular details involved in these processes. The central role of histone post-translational modifications in epigenetics related biological processes has revitalized mass spectrometry based investigations. In this special report, current approaches and future challenges that lay ahead due to the enormous complexity are discussed.

  11. Native Mass Spectrometry in Fragment-Based Drug Discovery

    Directory of Open Access Journals (Sweden)

    Liliana Pedro

    2016-07-01

    Full Text Available The advent of native mass spectrometry (MS in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein–ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD. Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.

  12. Practical aspects of trapped ion mass spectrometry, 5 applications of ion trapping devices

    CERN Document Server

    March, Raymond E

    2009-01-01

    Examines ion/neutral and ion/ion reactions, ion spectroscopy, and the structural characterization of proteins and peptides using quadropole ion trap mass spectrometry, Fourier transform - ion cyclotron resonance (FT-ICR) mass spectrometry, and traveling wave ion mobility mass spectrometry.

  13. Determining the topology of virus assembly intermediates using ion mobility spectrometry-mass spectrometry.

    Science.gov (United States)

    Knapman, Tom W; Morton, Victoria L; Stonehouse, Nicola J; Stockley, Peter G; Ashcroft, Alison E

    2010-10-30

    We have combined ion mobility spectrometry-mass spectrometry with tandem mass spectrometry to characterise large, non-covalently bound macromolecular complexes in terms of mass, shape (cross-sectional area) and stability (dissociation) in a single experiment. The results indicate that the quaternary architecture of a complex influences its residual shape following removal of a single subunit by collision-induced dissociation tandem mass spectrometry. Complexes whose subunits are bound to several neighbouring subunits to create a ring-like three-dimensional (3D) architecture undergo significant collapse upon dissociation. In contrast, subunits which have only a single neighbouring subunit within a complex retain much of their original shape upon complex dissociation. Specifically, we have determined the architecture of two transient, on-pathway intermediates observed during in vitro viral capsid assembly. Knowledge of the mass, stoichiometry and cross-sectional area of each viral assembly intermediate allowed us to model a range of potential structures based on the known X-ray structure of the coat protein building blocks. Comparing the cross-sectional areas of these potential architectures before and after dissociation provided tangible evidence for the assignment of the topologies of the complexes, which have been found to encompass both the 3-fold and the 5-fold symmetry axes of the final icosahedral viral shell. Such insights provide unique information about virus assembly pathways that could allow the design of anti-viral therapeutics directed at the assembly step. This methodology can be readily applied to the structural characterisation of many other non-covalently bound macromolecular complexes and their assembly pathways.

  14. Accelerator mass spectrometry – from DNA to astrophysics

    Directory of Open Access Journals (Sweden)

    Kutschera Walter

    2013-12-01

    Full Text Available A brief review of accelerator mass spectrometry (AMS is presented. The present work touches on a few technical aspects and recent developments of AMS, and describes two specific applications of AMS, the dating of human DNA with the 14C bomb peak and the search for superheavy elements in nature. Since two extended general reviews on technical developments in AMS [1] and applications of AMS [2] will appear in 2013, frequent reference to these reviews is made.

  15. Nanostructure-initiator mass spectrometry metabolite analysis and imaging.

    Science.gov (United States)

    Greving, Matthew P; Patti, Gary J; Siuzdak, Gary

    2011-01-01

    Nanostructure-Initiator Mass Spectrometry (NIMS) is a matrix-free desorption/ionization approach that is particularly well-suited for unbiased (untargeted) metabolomics. An overview of the NIMS technology and its application in the detection of biofluid and tissue metabolites are presented. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html .).

  16. Fluorescence preselection of bioaerosol for single-particle mass spectrometry

    Science.gov (United States)

    Stowers, M. A.; van Wuijckhuijse, A. L.; Marijnissen, J. C. M.; Kientz, Ch. E.; Ciach, T.

    2006-11-01

    We have designed, constructed, and tested a system that preselects the biological fraction of airborne particles from the overall aerosol. The preselection is based on fluorescence emission excited by a continuous 266 nm laser beam. This beam is one of two cw beams used to measure the aerodynamic particle size of sampled particles. The intention in our system is that single particles, based on size and fluorescence emission, can be selected and further examined for chemical composition by mass spectrometry.

  17. Accelerator mass spectrometry for quantitative in vivo tracing

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J S

    2005-04-19

    Accelerator mass spectrometry (AMS) counts individual rare, usually radio-, isotopes such as radiocarbon at high efficiency and specificity in milligram-sized samples. AMS traces very low chemical doses ({micro}g) and radiative doses (100 Bq) of isotope labeled compounds in animal models and directly in humans for pharmaceutical, nutritional, or toxicological research. Absorption, metabolism, distribution, binding, and elimination are all quantifiable with high precision after appropriate sample definition.

  18. Kinetic Studies of Reactions in Solution Using Fast Mass Spectrometry

    Science.gov (United States)

    2013-08-13

    REPORT Directorate of Chemistry and Materials Research NUMBER(S) AFOSR/RSA, 875 Randolph St., Suite 325, Rm 3112, Arlington, VA 222C 3 12...Mass Spectrometry to detect transient intermediates and decomposition products of catalyzed organometallic reactions Identifying intermediates is...in organometallic catalysis. HV N2 45o 5 mm 2 mm Reagent A Reagent B MS Secondary microdroplets Surface ~2-5 ms reaction time

  19. New Applications of Mass Spectrometry in Lipid Analysis*

    OpenAIRE

    Robert C. Murphy; Gaskell, Simon J

    2011-01-01

    Mass spectrometry has emerged as a powerful tool for the analysis of all lipids. Lipidomic analysis of biological systems using various approaches is now possible with a quantitative measurement of hundreds of lipid molecular species. Although availability of reference and internal standards lags behind the field, approaches using stable isotope-labeled derivative tagging permit precise determination of specific phospholipids in an experimental series. The use of reactivity of ozone has enabl...

  20. Quality management in clinical application of mass spectrometry measurement systems.

    Science.gov (United States)

    Vogeser, Michael; Seger, Christoph

    2016-09-01

    Thanks to highly specific analyte detection and potentially complete compensation for matrix variables based on the principle of stable isotope derivative internal standardisation, mass spectrometry methods allow the development of diagnostic tests of outstanding analytical quality. However, these features per se do not guarantee reliability of tests. A wide range of factors can introduce analytical errors and inaccuracy due to the extreme complexity of the methods involved. Furthermore, it can be expected that the application patterns of MS methods in diagnostic laboratories will change substantially during the coming years - with presumably less specialised laboratories implementing mass spectrometry. Introduction of highly automated test solutions by manufacturers will require some trade-off between operation convenience, sample throughput and analytical performance. Structured and careful quality and risk management is therefore crucial to translate the analytical power of mass spectrometry into actionable and reliable results for individual patients' care and to maintain the degree of reliability that is expected from MS methods in clinical pathology. This reflection review discusses whether particular quality assurance tools have to be applied for MS-based diagnostic tests and whether these tools are different from those applied for optical- and affinity-based standard tests. Both pre-implementation strategies and surveillance of assays with assessment of metadata in routine testing are addressed. The release of the CLSI guideline C62-A in 2014 was a substantial achievement in this context because it addresses a wide spectrum of relevant issues in quality assurance of mass spectrometry-based clinical tests. However, the translation of this best practice document into individual laboratory settings is likely to be heterogeneous.

  1. ESI and MALDI Mass Spectrometry of Large POSS Oligomers (Preprint)

    Science.gov (United States)

    2010-03-10

    Materials Science, 8 (2004) 21-29. [10] J. Wu and P. T. Mather, POSS Polymers: Physical Properties and Biomaterials Applications. Polym. Rev.. 49 (2009...10 (1999) 224-230. [16] M. Farahani, J. M. Antonucci and C. M. Guttman, Analysis of the interactions of a trialkoxysilane with dental monomers...Antonucci and C. M. Guttman, Analysis by mass spectrometry of the hydrolysis/condensation reaction of a trialkoxysilane in various dental monomer

  2. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    Science.gov (United States)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  3. History of mass spectrometry at the Olympic Games.

    Science.gov (United States)

    Hemmersbach, Peter

    2008-07-01

    Mass spectrometry has played a decisive role in doping analysis and doping control in human sport for almost 40 years. The standard of qualitative and quantitative determinations in body fluids has always attracted maximum attention from scientists. With its unique sensitivity and selectivity properties, mass spectrometry provides state-of-the-art technology in analytical chemistry. Both anti-doping organizations and the athletes concerned expect the utmost endeavours to prevent false-positive and false-negative results of the analytical evidence. The Olympic Games play an important role in international sport today and are milestones for technical development in doping analysis. This review of the part played by mass spectrometry in doping control from Munich 1972 to Beijing 2008 Olympics gives an overview of how doping analysis has developed and where we are today. In recognizing the achievements made towards effective doping control, it is of the utmost importance to applaud the joint endeavours of the World Anti-Doping Agency, the International Olympic Committee, the international federations and national anti-doping agencies to combat doping. Advances against the misuse of prohibited substances and methods, which are performance-enhancing, dangerous to health and violate the spirit of sport, can be achieved only if all the stakeholders work together.

  4. Multidimensional Mass Spectrometry of Synthetic Polymers and Advanced Materials.

    Science.gov (United States)

    Wesdemiotis, Chrys

    2017-02-01

    Multidimensional mass spectrometry interfaces a suitable ionization technique and mass analysis (MS) with fragmentation by tandem mass spectrometry (MS(2) ) and an orthogonal online separation method. Separation choices include liquid chromatography (LC) and ion-mobility spectrometry (IMS), in which separation takes place pre-ionization in the solution state or post-ionization in the gas phase, respectively. The MS step provides elemental composition information, while MS(2) exploits differences in the bond stabilities of a polymer, yielding connectivity and sequence information. LC conditions can be tuned to separate by polarity, end-group functionality, or hydrodynamic volume, whereas IMS adds selectivity by macromolecular shape and architecture. This Minireview discusses how selected combinations of the MS, MS(2) , LC, and IMS dimensions can be applied, together with the appropriate ionization method, to determine the constituents, structures, end groups, sequences, and architectures of a wide variety of homo- and copolymeric materials, including multicomponent blends, supramolecular assemblies, novel hybrid materials, and large cross-linked or nonionizable polymers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Significant advancement of mass spectrometry imaging for food chemistry.

    Science.gov (United States)

    Yoshimura, Yukihiro; Goto-Inoue, Naoko; Moriyama, Tatsuya; Zaima, Nobuhiro

    2016-11-01

    Food contains various compounds that have an impact on our daily lives. Many technologies have been established to analyze these molecules of interest in foods. However, the analysis of the spatial distribution of these compounds in foods using conventional technology, such as high-performance liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry is difficult. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is considered an ideal complementary approach. MALDI-MSI is a two-dimensional MALDI-MS technology that can detect compounds in a tissue section without extraction, purification, separation, or labeling. MALDI-MSI can be used to visualize the spatial distribution of chemical compounds or biomolecules in foods. Although the methodology of MALDI-MSI in food science is not yet fully established, the versatility of MALDI-MSI is expected to open a new frontier in food science. Herein, we describe the principles and applications of MALDI-MSI in food science and related fields.

  6. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    National Research Council Canada - National Science Library

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O’Connor, Peter B

    2015-01-01

    ...) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated...

  7. Characterization of individual particles in gaseous media by mass spectrometry

    Science.gov (United States)

    Sinha, M. P.

    1990-01-01

    An introduction is given to a system for particle analysis by mass spectrometry (PAMS) which employs particle-beam techniques to measure mass spectra on a continuous real-time basis. The system is applied to particles of both organic and inorganic compounds, and the measurements give the chemical characteristics of particles in mixtures and indicate source apportionment. The PAMS system can be used for process control and studying heterogeneous/catalytic reactions in particles, and can be fitted to study the real-time attributes of PAMS.

  8. SVSCf plasma desorption mass spectrometry: recent advances and applications

    Energy Technology Data Exchange (ETDEWEB)

    Kamensky, I.; Craig, A.G.

    1987-01-01

    SVSCf plasma desorption mass spectrometry (PDMS) as utilized in the BIO-ION instruments is described. The sensitivity of the technique is investigated for varying amounts of bovine insulin. The results show accurate mass assignment for pmole amounts of sample. Several methods, currently used for sample preparation in PDMS, are described. Spectra of the antibiotic nisin using two different sample preparation techniques show significant variation. The fragmentation pattern of reduced acetylated maltoheptaose is also presented. The initial results obtained using a new PDMS instrument equipped with variable flight path are shown. The increased resolution is illustrated using the extended flight path to measure the molecular ion region of the maltoheptaose.

  9. Tissue MALDI Mass Spectrometry Imaging (MALDI MSI) of Peptides.

    Science.gov (United States)

    Beine, Birte; Diehl, Hanna C; Meyer, Helmut E; Henkel, Corinna

    2016-01-01

    Matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a technique to visualize molecular features of tissues based on mass detection. This chapter focuses on MALDI MSI of peptides and provides detailed operational instructions for sample preparation of cryoconserved and formalin-fixed paraffin-embedded (FFPE) tissue. Besides sample preparation we provide protocols for the MALDI measurement, tissue staining, and data analysis. On-tissue digestion and matrix application are described for two different commercially available and commonly used spraying devices: the SunCollect (SunChrom) and the ImagePrep (Bruker Daltonik GmbH).

  10. Measurement of the 135Cs half-life with accelerator mass spectrometry and inductively coupled plasma mass spectrometry

    Science.gov (United States)

    MacDonald, C. M.; Cornett, R. J.; Charles, C. R. J.; Zhao, X. L.; Kieser, W. E.

    2016-01-01

    The isotope 135Cs is quoted as having a half-life of 2.3 Myr. However, there are three published values ranging from 1.8 to 3 Myr. This research reviews previous measurements and reports a new measurement of the half-life using newly developed accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICPMS) techniques along with β and γ radiometric analysis. The half-life was determined to be (1.6 ±0.6 ) ×106 yr by AMS and (1.3 ±0.2 ) ×106 yr by ICPMS with 95% confidence. The two values agree with each other but differ from the accepted value by ˜40 % .

  11. Neuropeptide Signaling in Crustaceans Probed by Mass Spectrometry

    Science.gov (United States)

    Liang, Zhidan

    Neuropeptides are one of the most diverse classes of signaling molecules whose identities and functions are not yet fully understood. They have been implicated in the regulation of a wide range of physiological processes, including feeding-related and motivated behaviors, and also environmental adaptations. In this work, improved mass spectrometry-based analytical platforms were developed and applied to the crustacean systems to characterize signaling molecules. This dissertation begins with a review of mass spectrometry-based neuropeptide studies from both temporal- and spatial-domains. This review is then followed by several chapters detailing a few research projects related to the crustacean neuropeptidomic characterization and comparative analysis. The neuropeptidome of crayfish, Orconectes rusticus is characterized for the first time using mass spectrometry-based tools. In vivo microdialysis sampling technique offers the capability of direct sampling from extracellular space in a time-resolved manner. It is used to investigate the secreted neuropeptide and neurotransmitter content in Jonah crab, Cancer borealis, in this work. A new quantitation strategy using alternative mass spectrometry data acquisition approach is developed and applied for the first time to quantify neuropeptides. Coupling of this method with microdialysis enables the study of neuropeptide dynamics concurrent with different behaviors. Proof-of-principle experiments validating this approach have been carried out in Jonah crab, Cancer borealis to study feeding- and circadian rhythm-related neuropeptide changes using micoridialysis in a time-resolved manner. This permits a close correlation between behavioral and neurochemical changes, providing potential candidates for future validation of regulatory roles. In addition to providing spatial information, mass spectrometry imaging (MSI) technique enables the characterization of signaling molecules while preserving the temporal resolution. A

  12. Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Farnsworth, Paul B.; Spencer, Ross L.

    2017-08-01

    Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.

  13. Fast characterization of cheeses by dynamic headspace-mass spectrometry.

    Science.gov (United States)

    Pérès, Christophe; Denoyer, Christian; Tournayre, Pascal; Berdagué, Jean-Louis

    2002-03-15

    This study describes a rapid method to characterize cheeses by analysis of their volatile fraction using dynamic headspace-mass spectrometry. Major factors governing the extraction and concentration of the volatile components were first studied. These components were extracted from the headspace of the cheeses in a stream of helium and concentrated on a Tenax TA trap. They were then desorbed by heating and injected directly into the source of a mass spectrometer via a short deactivated silica transfer line. The mass spectra of the mixture of volatile components were considered as fingerprints of the analyzed substances. Forward stepwise factorial discriminant analysis afforded a limited number of characteristic mass fragments that allowed a good classification of the batches of cheeses studied.

  14. Analysis of aromatic hydrocarbons in petroleum fractions using gas chromatography, mass spectrometry and mass fragmentrography

    Energy Technology Data Exchange (ETDEWEB)

    Kubelka, V.

    1980-01-01

    Mass spectrometry in combination with gas chrom. used to analyze hydrocarbon mixtures results in qualit. and semi-quant. data regarding composition of the analyzed mixture. Use of mass fragmentrography during chromatographic separation will allow simultaneous recording of changes in intensity of characteristic ions and thus determine the retention index, for this substance. Combining mass spectre and retention index, it is possible to identify the given subst. or limit the number of possible combinations.

  15. Accurate Mass Determination of Amino Alcohols by Turboionspray/Time-of-Flight Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    GENG,Yu(耿昱); GUO,Yin-Long(郭寅龙); ZHAO,Shi-Min(赵士民); MA,Sheng-Ming(麻生明)

    2002-01-01

    Amino alcohols were studied by turboionspray/time-of-flight mass spectrometry (TIS/TOF-MS) with the aim of determining the accurate mass of their protonated molecule ions.Polyethylene glycol (PEG) was used as the internal reference.Compared with the theoretical values, all relative errors were less than 5×10-6. The effects of nozzle potential, nozzle temperature, acquisition rate etc. on accurate mass determination were also studied.

  16. Elucidating rhizosphere processes by mass spectrometry - A review.

    Science.gov (United States)

    Rugova, Ariana; Puschenreiter, Markus; Koellensperger, Gunda; Hann, Stephan

    2017-03-01

    The presented review discusses state-of-the-art mass spectrometric methods, which have been developed and applied for investigation of chemical processes in the soil-root interface, the so-called rhizosphere. Rhizosphere soil's physical and chemical characteristics are to a great extent influenced by a complex mixture of compounds released from plant roots, i.e. root exudates, which have a high impact on nutrient and trace element dynamics in the soil-root interface as well as on microbial activities or soil physico-chemical characteristics. Chemical characterization as well as accurate quantification of the compounds present in the rhizosphere is a major prerequisite for a better understanding of rhizosphere processes and requires the development and application of advanced sampling procedures in combination with highly selective and sensitive analytical techniques. During the last years, targeted and non-targeted mass spectrometry-based methods have emerged and their combination with specific separation methods for various elements and compounds of a wide polarity range have been successfully applied in several studies. With this review we critically discuss the work that has been conducted within the last decade in the context of rhizosphere research and elemental or molecular mass spectrometry emphasizing different separation techniques as GC, LC and CE. Moreover, selected applications such as metal detoxification or nutrient acquisition will be discussed regarding the mass spectrometric techniques applied in studies of root exudates in plant-bacteria interactions. Additionally, a more recent isotope probing technique as novel mass spectrometry based application is highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Analysis of estrogens and androgens in postmenopausal serum and plasma by liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Wang, Qingqing; Bottalico, Lisa; Mesaros, Clementina; Blair, Ian A

    2015-07-01

    Liquid chromatography-selected reaction monitoring/mass spectrometry-based methodology has evolved to the point where accurate analyses of trace levels of estrogens and androgens in postmenopausal serum and plasma can be accomplished with high precision and accuracy. A suite of derivatization procedures has been developed, which together with modern mass spectrometry instrumentation provide investigators with robust and sensitive methodology. Pre-ionized derivatives are proving to be useful as they are not subject to suppression of the electrospray signal. Postmenopausal women with elevated plasma or serum estrogens are thought to be at increased risk for breast and endometrial cancer. Therefore, significant advances in risk assessment should be possible now that reliable methodology is available. It is also possible to conduct analyses of multiple estrogens in plasma or serum. Laboratories that are currently employing liquid chromatography/mass spectrometry methodology can now readily implement this strategy. This will help conserve important plasma and serum samples available in Biobanks, as it will be possible to conduct high sensitivity analyses using low initial sample volumes. Reported levels of both conjugated and non-conjugated estrogen metabolites are close to the limits of sensitivity of many assays to date, urging caution in the interpretation of these low values. The analysis of serum androgen precursors in postmenopausal women has not been conducted routinely in the past using liquid chromatography/mass spectrometry methodology. Integration of serum androgen levels into the panel of metabolites analyzed could provide additional information for assessing cancer risk and should be included in the future.

  18. Study of coal structure using secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tingey, G.L.; Lytle, J.M.; Baer, D.R.; Thomas, M.T.

    1980-12-01

    Secondary-ion Mass Spectrometry (SIMS) is examined as a tool for studying the chemical structure of coal. SIMS has potential for analysis of coal because of the following characteristics: sensitivity to chemical structure; high sensitivity to all masses; application to solids; excellent depth resolution; and reasonable spatial resolution. SIMS spectra of solid coals show differences with respect to coal rank, the spectra of high rank coal being similar to that of graphite, and the spectra of low rank coal being similar to that of wood. Some functional group analysis is also possible using SIMS. Low rank coals show a larger peak at 15 amu indicating more methyl groups than found in the higher rank coals. Fragments with two and three carbon atoms have also been examined; much larger fragments are undoubtedly present but were not evaluated in this study. Examination of these groups, which are expected to contain valuable information on coal structure, is planned for future work. It has been observed that mineral atoms present in the coal have large secondary ion yields which complicate the interpretation of the spectra. Studies on mineral-free coals and model compounds are therefore recommended to facilitate determination of organic coal structure. In addition, mass spectrometry with much greater mass resolution will aid in distinguishing between various ion species.

  19. Mass spectrometry improvement on an high current ion implanter

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, J.G., E-mail: jgabriel@deea.isel.ipl.pt [Instituto Superior de Engenharia de Lisboa and Centro de Fisica Nuclear of the University of Lisbon, Rua Conselheiro Emidio Navarro, 1, 1959-007 Lisbon (Portugal); Alegria, F.C., E-mail: falegria@lx.it.pt [Instituto Superior Tecnico/Technical University of Lisbon and Instituto de Telecomunicacoes, Av. Rovisco Pais, 1, 1049-001 Lisbon (Portugal); Redondo, L.M., E-mail: lmredondo@deea.isel.ipl.pt [Instituto Superior de Engenharia de Lisboa and Centro de Fisica Nuclear of the University of Lisbon, Rua Conselheiro Emidio Navarro, 1, 1959-007 Lisbon (Portugal); Rocha, J., E-mail: jrocha@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Alves, E., E-mail: ealves@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal)

    2011-12-15

    The development of accurate mass spectrometry, enabling the identification of all the ions extracted from the ion source in a high current implanter is described. The spectrometry system uses two signals (x-y graphic), one proportional to the magnetic field (x-axes), taken from the high-voltage potential with an optic fiber system, and the other proportional to the beam current intensity (y-axes), taken from a beam-stop. The ion beam mass register in a mass spectrum of all the elements magnetically analyzed with the same radius and defined by a pair of analyzing slits as a function of their beam intensity is presented. The developed system uses a PC to control the displaying of the extracted beam mass spectrum, and also recording of all data acquired for posterior analysis. The operator uses a LabVIEW code that enables the interfacing between an I/O board and the ion implanter. The experimental results from an ion implantation experiment are shown.

  20. Study of coal structure using secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tingey, G.L.; Lytle, J.M.; Baer, D.R.; Thomas, M.T.

    1980-12-01

    Secondary-ion Mass Spectrometry (SIMS) is examined as a tool for studying the chemical structure of coal. SIMS has potential for analysis of coal because of the following characteristics: sensitivity to chemical structure; high sensitivity to all masses; application to solids; excellent depth resolution; and reasonable spatial resolution. SIMS spectra of solid coals show differences with respect to coal rank, the spectra of high rank coal being similar to that of graphite, and the spectra of low rank coal being similar to that of wood. Some functional group analysis is also possible using SIMS. Low rank coals show a larger peak at 15 amu indicating more methyl groups than found in the higher rank coals. Fragments with two and three carbon atoms have also been examined; much larger fragments are undoubtedly present but were not evaluated in this study. Examination of these groups, which are expected to contain valuable information on coal structure, is planned for future work. It has been observed that mineral atoms present in the coal have large secondary ion yields which complicate the interpretation of the spectra. Studies on mineral-free coals and model compounds are therefore recommended to facilitate determination of organic coal structure. In addition, mass spectrometry with much greater mass resolution will aid in distinguishing between various ion species.

  1. Quantitative mass spectrometry of unconventional human biological matrices

    Science.gov (United States)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  2. Constraining Anthropogenic and Biogenic Emissions Using Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Spencer, Kathleen M.

    Numerous gas-phase anthropogenic and biogenic compounds are emitted into the atmosphere. These gases undergo oxidation to form other gas-phase species and particulate matter. Whether directly or indirectly, primary pollutants, secondary gas-phase products, and particulate matter all pose health and environmental risks. In this work, ambient measurements conducted using chemical ionization mass spectrometry are used as a tool for investigating regional air quality. Ambient measurements of peroxynitric acid (HO2NO2) were conducted in Mexico City. A method of inferring the rate of ozone production, PO3, is developed based on observations of HO2NO 2, NO, and NO2. Comparison of this observationally based PO3 to a highly constrained photochemical box model indicates that regulations aimed at reducing ozone levels in Mexico City by reducing NOx concentrations may be effective at higher NO x levels than predicted using accepted photochemistry. Measurements of SO2 and particulate sulfate were conducted over the Los Angeles basin in 2008 and are compared to measurements made in 2002. A large decrease in SO2 concentration and a change in spatial distribution are observed. Nevertheless, only a modest reduction in sulfate concentration is observed at ground sites within the basin. Possible explanations for these trends are investigated. Two techniques, single and triple quadrupole chemical ionization mass spectrometry, were used to quantify ambient concentrations of biogenic oxidation products, hydroxyacetone and glycolaldehyde. The use of these techniques demonstrates the advantage of triple quadrupole mass spectrometry for separation of mass analogues, provided the collision-induced daughter ions are sufficiently distinct. Enhancement ratios of hydroxyacetone and glycolaldehyde in Californian biomass burning plumes are presented as are concentrations of these compounds at a rural ground site downwind of Sacramento.

  3. Analysis of fluticasone propionate in induced sputum by mass spectrometry.

    Science.gov (United States)

    Hagan, John B; Taylor, Robert L; Kita, Hirohito; Singh, Ravinder J

    2011-01-01

    Although evaluation of induced sputum has shown promise as a marker of eosinophilic airway inflammation in asthmatic subjects, most studies, to date, do not adequately address the potential effect that inhaled corticosteroids may have on sputum eosinophilia. This study was designed to prospectively evaluate analysis of fluticasone propionate (FP) in whole sputum by mass spectrometry as a tool to determine recent administration of inhaled FP. Induced sputum of nonsmoking asthmatic subjects was prospectively analyzed 16-24 hours after witnessed administration of orally inhaled FP. FP was extracted from whole sputum via an acetonitrile protein precipitation followed by methylene chloride liquid extraction of the supernatant (AB 4000; AB Sciex). A portion of the reconstituted sample was analyzed by liquid chromatography tandem mass spectrometry using a triple quad tandem mass spectrometer. Results were compared with those from nonsmoking asthmatic subjects not receiving inhaled FP. Twenty-two asthmatic subjects on FP and 9 asthmatic subjects without FP underwent sputum induction 16-24 hours following witnessed administration of FP. Sufficient sputum for analysis was obtained from 30 of 31 subjects. FP was detected in 22 of 22 asthmatic subjects receiving FP (range, 29-133,000 pg/mL) and was undetectable in 8 of 8 subjects not receiving FP. The sensitivity and specificity of tandem mass spectrometry's ability to detect FP in sputum was 100% and 100%, respectively. Analysis of FP in induced sputum is a reliable method to verify recent administration of inhaled FP. Induced asthmatic sputum from one induction may be used to concomitantly assess sputum eosinophilia as well as recent administration of FP.

  4. Intact MicroRNA Analysis Using High Resolution Mass Spectrometry

    Science.gov (United States)

    Kullolli, Majlinda; Knouf, Emily; Arampatzidou, Maria; Tewari, Muneesh; Pitteri, Sharon J.

    2014-01-01

    MicroRNAs (miRNAs) are small single-stranded non-coding RNAs that post-transcriptionally regulate gene expression, and play key roles in the regulation of a variety of cellular processes and in disease. New tools to analyze miRNAs will add understanding of the physiological origins and biological functions of this class of molecules. In this study, we investigate the utility of high resolution mass spectrometry for the analysis of miRNAs through proof-of-concept experiments. We demonstrate the ability of mass spectrometry to resolve and separate miRNAs and corresponding 3' variants in mixtures. The mass accuracy of the monoisotopic deprotonated peaks from various miRNAs is in the low ppm range. We compare fragmentation of miRNA by collision-induced dissociation (CID) and by higher-energy collisional dissociation (HCD) which yields similar sequence coverage from both methods but additional fragmentation by HCD versus CID. We measure the linear dynamic range, limit of detection, and limit of quantitation of miRNA loaded onto a C18 column. Lastly, we explore the use of data-dependent acquisition of MS/MS spectra of miRNA during online LC-MS and demonstrate that multiple charge states can be fragmented, yielding nearly full sequence coverage of miRNA on a chromatographic time scale. We conclude that high resolution mass spectrometry allows the separation and measurement of miRNAs in mixtures and a standard LC-MS setup can be adapted for online analysis of these molecules.

  5. Invited review article: Recent developments in isotope-ratio mass spectrometry for geochemistry and cosmochemistry.

    Science.gov (United States)

    Ireland, Trevor R

    2013-01-01

    Mass spectrometry is fundamental to measurements of isotope ratios for applications in isotope geochemistry, geochronology, and cosmochemistry. Magnetic-sector mass spectrometers are most common because these provide the best precision in isotope ratio measurements. Where the highest precision is desired, chemical separation followed by mass spectrometric analysis is carried out with gas (noble gas and stable isotope mass spectrometry), liquid (inductively coupled plasma mass spectrometry), or solid (thermal ionization mass spectrometry) samples. Developments in in situ analysis, including ion microprobes and laser ablation inductively coupled plasma mass spectrometry, have opened up issues concerning homogeneity according to domain size, and allow ever smaller amounts of material to be analyzed. While mass spectrometry is built solidly on developments in the 20th century, there are new technologies that will push the limits in terms of precision, accuracy, and sample efficiency. Developments of new instruments based on time-of-flight mass spectrometers could open up the ultimate levels of sensitivity per sample atom.

  6. Capabilities and limitations of direct analysis in real time orbitrap mass spectrometry and tandem mass spectrometry for the analysis of synthetic and natural polymers.

    Science.gov (United States)

    Bridoux, Maxime C; Machuron-Mandard, Xavier

    2013-09-30

    Despite the widespread use of direct analysis in real time mass spectrometry (DART-MS), its capabilities in terms of accessible mass range and the types of polymers that can be analysed are not well known. The goal of this work was to evaluate the capabilities and limitations of this ionization technique combined with orbitrap mass spectrometry and tandem mass spectrometry, for the characterization (structural and polydispersity metrics) of various synthetic and natural polymers. The capabilities and limitations of DART-MS (and -MS(2)), using an orbitrap mass spectrometer, for polymer analysis were evaluated using various industrial synthetic polymers and biopolymers. Stainless steel mesh screens secured on a movable rail were used as the sampling surface, onto which 5 μL of various polymers dissolved in tetrahydrofuran were added. Assignment of spectral features and calculation of molecular weight and polydispersity metrics were performed using Polymerix™ software and the results were compared with those obtained by gel-permeation chromatography (GPC). Protonated oligomers and ammonium adducts were instantaneously detected as the major ionisation products in positive ion mode. Only perfluoropolyethers (PFPEs) were ionised in negative mode and detected as [M](-·) ions. Only singly charged molecular species were observed for all oligomers under study, allowing for a rapid determination of the molecular weight and polydispersity metrics of polymers. At elevated DART gas temperatures (400-500°C) the molecular weight and polydispersity metrics compared fairly well with those obtained by GPC, with polymers whose masses ranged from 200 g x mol(-1) to 4000 g x mol(-1). DART-MS allowed the direct and rapid analysis (mass spectra and tandem mass spectra of all the polymers were acquired in seconds) based on the exact masses of their [M+H](+) and [M+NH4](+) ions (in the positive mode) or [M](-·) ions (for polymers having a high sensitivity toward electron

  7. Analyzing the posttranslational modification status of Notch using mass spectrometry.

    Science.gov (United States)

    Kakuda, Shinako; Haltiwanger, Robert S

    2014-01-01

    Notch is modified by multiple types of posttranslational modifications, most of which are known to affect Notch function. The extracellular domain (ECD) is modified with N-glycosylation and at least three types of O-glycosylation (O-fucose, O-glucose, and O-GlcNAc), while the intracellular domain is hydroxylated, phosphorylated, and ubiquitinated. In order to analyze the structure and function of the O-glycans decorating the ECD, we have developed semiquantitative mass spectral methods for identifying modifications at individual sites on Notch that are generally applicable to most posttranslational modifications. Here we describe the expression and purification of Notch ECD fragments, digestion of the fragments with proteases to prepare for mass spectral analysis, and identification of peptides modified with O-glycans using mass spectrometry.

  8. Fourier transform ion cyclotron resonance mass spectrometry: a primer.

    Science.gov (United States)

    Marshall, A G; Hendrickson, C L; Jackson, G S

    1998-01-01

    This review offers an introduction to the principles and generic applications of FT-ICR mass spectrometry, directed to readers with no prior experience with the technique. We are able to explain the fundamental FT-ICR phenomena from a simplified theoretical treatment of ion behavior in idealized magnetic and electric fields. The effects of trapping voltage, trap size and shape, and other nonidealities are manifested mainly as perturbations that preserve the idealized ion behavior modified by appropriate numerical correction factors. Topics include: effect of ion mass, charge, magnetic field, and trapping voltage on ion cyclotron frequency; excitation and detection of ICR signals; mass calibration; mass resolving power and mass accuracy; upper mass limit(s); dynamic range; detection limit, strategies for mass and energy selection for MSn; ion axialization, cooling, and remeasurement; and means for guiding externally formed ions into the ion trap. The relation of FT-ICR MS to other types of Fourier transform spectroscopy and to the Paul (quadrupole) ion trap is described. The article concludes with selected applications, an appendix listing accurate fundamental constants needed for ultrahigh-precision analysis, and an annotated list of selected reviews and primary source publications that describe in further detail various FT-ICR MS techniques and applications.

  9. MALDI mass spectrometry imaging: A cutting-edge tool for fundamental and clinical histopathology.

    Science.gov (United States)

    Longuespée, Rémi; Casadonte, Rita; Kriegsmann, Mark; Pottier, Charles; Picard de Muller, Gaël; Delvenne, Philippe; Kriegsmann, Jörg; De Pauw, Edwin

    2016-07-01

    Histopathological diagnoses have been done in the last century based on hematoxylin and eosin staining. These methods were complemented by histochemistry, electron microscopy, immunohistochemistry (IHC), and molecular techniques. Mass spectrometry (MS) methods allow the thorough examination of various biocompounds in extracts and tissue sections. Today, mass spectrometry imaging (MSI), and especially matrix-assisted laser desorption ionization (MALDI) imaging links classical histology and molecular analyses. Direct mapping is a major advantage of the combination of molecular profiling and imaging. MSI can be considered as a cutting edge approach for molecular detection of proteins, peptides, carbohydrates, lipids, and small molecules in tissues. This review covers the detection of various biomolecules in histopathological sections by MSI. Proteomic methods will be introduced into clinical histopathology within the next few years.

  10. An Open Data Format for Visualization and Analysis of Cross-Linked Mass Spectrometry Results.

    Science.gov (United States)

    Hoopmann, Michael R; Mendoza, Luis; Deutsch, Eric W; Shteynberg, David; Moritz, Robert L

    2016-11-01

    Protein-protein interactions are an important element in the understanding of protein function, and chemical cross-linking shotgun mass spectrometry is rapidly becoming a routine approach to identify these specific interfaces and topographical interactions. Protein cross-link data analysis is aided by dozens of algorithm choices, but hindered by a lack of a common format for representing results. Consequently, interoperability between algorithms and pipelines utilizing chemical cross-linking remains a challenge. pepXML is an open, widely-used format for representing spectral search algorithm results that has facilitated information exchange and pipeline development for typical shotgun mass spectrometry analyses. We describe an extension of this format to incorporate cross-linking spectral search results. We demonstrate application of the extension by representing results of multiple cross-linking search algorithms. In addition, we demonstrate adapting existing pepXML-supporting software pipelines to analyze protein cross-linking results formatted in pepXML. Graphical Abstract ᅟ.

  11. Identification of Hypoxia-Regulated Proteins Using MALDI-Mass Spectrometry Imaging Combined with Quantitative Proteomics

    DEFF Research Database (Denmark)

    Djidja, Marie-Claude; Chang, Joan; Hadjiprocopis, Andreas;

    2014-01-01

    quantitative proteomics combined with MALDI-mass spectrometry imaging (MALDI-MSI). Here we present a comprehensive hypoxic proteome study and are the first to investigate changes in situ using tumor samples. In vitro quantitative mass spectrometry analysis of the hypoxic proteome was performed on breast cancer...... cells using stable isotope labeling with amino acids in cell culture (SILAC). MS analyses were performed on laser-capture microdissected samples isolated from normoxic and hypoxic regions from tumors derived from the same cells used in vitro. MALDI-MSI was used in combination to investigate hypoxia......-regulated protein localization within tumor sections. Here we identified more than 100 proteins, both novel and previously reported, that were associated with hypoxia. Several proteins were localized in hypoxic regions, as identified by MALDI-MSI. Visualization and data extrapolation methods for the in vitro SILAC...

  12. MALDI imaging mass spectrometry: spatial molecular analysis to enable a new age of discovery.

    Science.gov (United States)

    Gessel, Megan M; Norris, Jeremy L; Caprioli, Richard M

    2014-07-31

    Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) combines the sensitivity and selectivity of mass spectrometry with spatial analysis to provide a new dimension for histological analyses to provide unbiased visualization of the arrangement of biomolecules in tissue. As such, MALDI IMS has the capability to become a powerful new molecular technology for the biological and clinical sciences. In this review, we briefly describe several applications of MALDI IMS covering a range of molecular weights, from drugs to proteins. Current limitations and challenges are discussed along with recent developments to address these issues. This article is part of a Special Issue entitled: 20years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez.

  13. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of d13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  14. Characterisation of the volatile profiles of infant formulas by proton transfer reaction-mass spectrometry and gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Ruth, van S.M.; Floris, V.; Fayoux, S.

    2006-01-01

    The volatile profiles of 13 infant formulas were evaluated by proton transfer reaction-mass spectrometry (PTR-MS) and gas chromatography¿mass spectrometry (GC¿MS). The infant formulas varied in brand (Aptamil, Cow & Gate, SMA), type (for different infant target groups) and physical form (powder/

  15. Atmospheric-Pressure Chemical Ionization Tandem Mass Spectrometry (APGC/MS/MS) an Alternative to High-Resolution Mass Spectrometry (HRGC/HRMS) for the Determination of Dioxins

    NARCIS (Netherlands)

    Bavel, Van Bert; Geng, Dawei; Cherta, Laura; Nácher-Mestre, Jaime; Portolés, Tania; Ábalos, Manuela; Sauló, Jordi; Abad, Esteban; Dunstan, Jody; Jones, Rhys; Kotz, Alexander; Winterhalter, Helmut; Malisch, Rainer; Traag, Wim; Hagberg, Jessika; Ericson Jogsten, Ingrid; Beltran, Joaquim; Hernández, Félix

    2015-01-01

    The use of a new atmospheric-pressure chemical ionization source for gas chromatography (APGC) coupled with a tandem quadrupole mass spectrometry (MS/MS) system, as an alternative to high-resolution mass spectrometry (HRMS), for the determination of PCDDs/PCDFs is described. The potential of usin

  16. Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-01-01

    Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…

  17. Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-01-01

    Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…

  18. The role of mass spectrometry in atomic weight determinations.

    Science.gov (United States)

    De Laeter, John R

    2009-01-01

    The 1914 Nobel Prize for Chemistry was awarded to Theodore Richards, whose work provided an insight into the history of the birth and evolution of matter as embedded in the atomic weights. However, the secret to unlocking the hieroglyphics contained in the atomic weights is revealed by a study of the relative abundances of the isotopes. A consistent set of internationally accepted atomic weights has been a goal of the scientific community for over a century. Atomic weights were originally determined by chemical stoichiometry--the so-called "Harvard Method," but this methodology has now been superseded by the "physical method," in which the isotopic composition and atomic masses of the isotopes comprising an element are used to calculate the atomic weight with far greater accuracy than before. The role of mass spectrometry in atomic weight determinations was initiated by the discovery of isotopes by Thomson, and established by the pioneering work of Aston, Dempster, and Nier using sophisticated mass spectrographs. The advent of the sector field mass spectrometer in 1947, revolutionized the application of mass spectrometry for both solids and gases to other fields of science including atomic weights. Subsequently, technological advances in mass spectrometry have enabled atomic masses to be determined with an accuracy better than one part in 10(7), whilst the absolute isotopic composition of many elements has been determined to produce accurate values of their atomic weights. Conversely, those same technological developments have revealed significant variations in the isotope abundances of many elements caused by a variety of physiochemical mechanisms in natural materials. Although these variations were initially seen as an impediment to the accuracy with which atomic weights could be determined, it was quickly realized that nature had provided a new tool to investigate physiochemical and biogeochemical mechanisms in nature, which could be exploited by precise and

  19. Secondary electrospray ionization ion mobility spectrometry/mass spectrometry of illicit drugs.

    Science.gov (United States)

    Wu, C; Siems, W F; Hill, H H

    2000-01-15

    A secondary electrospray ionization (SESI) method was developed as a nonradioactive ionization source for ion mobility spectrometry (IMS). This SESI method relied on the gas-phase interaction between charged particles created by electrospray ionization (ESI) and neutral gaseous sample molecules. Mass spectrometry (MS) was used as the detection method after ion mobility separation for ion identification. Preliminary investigations focussed on understanding the ionization process of SESI. The performance of ESI-IMS and SESI-IMS for illicit drug detection was evaluated by determining the analytical figures of merit. In general, SESI had a higher ionization efficiency for small volatile molecules compared with the electrospray method. The potential of developing a universal interface for both GC- and LC-MS with an addition stage of mobility separation was demonstrated.

  20. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, Jennifer E.; Zhang, Xing; Weitz, Karl K.; Monroe, Matthew E.; Ibrahim, Yehia M.; Moore, Ronald J.; Cha, Jeeyeon; Sun, Xiaofei; Lovelace, Erica S.; Wagoner, Jessica; Polyak, Steve; Metz, Thomas O.; Dey, Sudhansu K.; Smith, Richard D.; Burnum-Johnson, Kristin E.; Baker, Erin Shammel

    2016-01-01

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Liquid chromatography and mass spectrometry (LC-MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids’ biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are unresolvable using present LC-MS approaches. Here we show that combining structurally-based ion mobility spectrometry (IMS) with LC-MS measurements distinguishes lipid isomers and allows insight into biological and disease processes.

  1. Rapid Analysis of Isobaric Exogenous Metabolites by Differential Mobility Spectrometry Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Parson, Whitney B [ORNL; Schneider, Bradley B [MDS Sciex; Kertesz, Vilmos [ORNL; Corr, Jay [AB Sciex; Covey, Thomas R. [MDS Sciex; Van Berkel, Gary J [ORNL

    2011-01-01

    The direct separation of isobaric glucuronide metabolites from propranolol dosed tissue extracts by differential mobility spectrometry mass spectrometry (DMS-MS) with the use of a polar gas-phase chemical modifier was demonstrated. The DMS gas-phase separation was able to resolve the isobaric metabolites with separation times on the order of ms instead of mins to hrs typically required when using pre-ionization chromatographic separation methods. Direct separation of isobaric metabolites from the complex tissue extract was validated using standards as well as implementing an HPLC separation prior to the DMS-MS analysis to pre-separate the species of interest. The ability to separate isobaric exogenous metabolites directly from a complex tissue extract is expected to facilitate the drug development process by increasing analytical throughput without the requirement for pre-ionization cleanup or separation strategies.

  2. Direct and Convenient Mass Spectrometry Sampling with Ambient Flame Ionization

    Science.gov (United States)

    Liu, Xiao-Pan; Wang, Hao-Yang; Zhang, Jun-Ting; Wu, Meng-Xi; Qi, Wan-Shu; Zhu, Hui; Guo, Yin-Long

    2015-11-01

    Recent innovations in ambient ionization technology for the direct analysis of various samples in their native environment facilitate the development and applications of mass spectrometry in natural science. Presented here is a novel, convenient and flame-based ambient ionization method for mass spectrometric analysis of organic compounds, termed as the ambient flame ionization (AFI) ion source. The key features of AFI ion source were no requirement of (high) voltages, laser beams and spray gases, but just using small size of n-butane flame (height approximately 1 cm, about 500 oC) to accomplish the rapid desorption and ionization for direct analysis of gaseous-, liquid- and solid-phase organic compounds, as well as real-world samples. This method has high sensitivity with a limit of detection of 1 picogram for propyphenazone, which allows consuming trace amount of samples. Compared to previous ionization methods, this ion source device is extremely simple, maintain-free, low-cost, user-friendly so that even an ordinary lighter (with n-butane as fuel) can achieve efficient ionization. A new orientation to mass spectrometry ion source exploitation might emerge from such a convenient, easy and inexpensive AFI ion source.

  3. Mass Spectrometry Based Lipidomics: An Overview of Technological Platforms

    Directory of Open Access Journals (Sweden)

    Harald C. Köfeler

    2012-01-01

    Full Text Available One decade after the genomic and the proteomic life science revolution, new ‘omics’ fields are emerging. The metabolome encompasses the entity of small molecules—Most often end products of a catalytic process regulated by genes and proteins—with the lipidome being its fat soluble subdivision. Within recent years, lipids are more and more regarded not only as energy storage compounds but also as interactive players in various cellular regulation cycles and thus attain rising interest in the bio-medical community. The field of lipidomics is, on one hand, fuelled by analytical technology advances, particularly mass spectrometry and chromatography, but on the other hand new biological questions also drive analytical technology developments. Compared to fairly standardized genomic or proteomic high-throughput protocols, the high degree of molecular heterogeneity adds a special analytical challenge to lipidomic analysis. In this review, we will take a closer look at various mass spectrometric platforms for lipidomic analysis. We will focus on the advantages and limitations of various experimental setups like ‘shotgun lipidomics’, liquid chromatography—Mass spectrometry (LC-MS and matrix assisted laser desorption ionization-time of flight (MALDI-TOF based approaches. We will also examine available software packages for data analysis, which nowadays is in fact the rate limiting step for most ‘omics’ workflows.

  4. Rapid analysis of trace pollutants using laser mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Organic pollution has been gaining more and more attention.Yet,at present the determination of virtually all of them,including polycyclic aromatic carbons (PAHs),the largest single class of chemical carcinogens known today,is made via pre-purification and pre-concentration.The major problems are complexity and time-consuming,thus,no ideal real-time on-line monitoring can be done.Laser mass spectrometry combines UV spectroscopy and time-of-flight mass spectrometry (TOF-MS) through resonance-enhanced multiphoton ionization (REMPI).It is characteristic of high sensitivity,high selectivity and rapidity.In this paper,after its principles,a small mobile laser mass spectrometer,in which a mini-excimer (KrF,248 nm) laser was used,is introduced.Real-time analysis of vehicle exhaust gas was made using this instrument,and the results showed some advantages over traditional methods:multicomponent detection,including benzene,toluene,xylene,C3-benzene,naphthalene,and methyl-naphthalene; high sensitivity (100 ppb);high time-resolution (0.1 s);and no need for pre-purification or pre-concentration of samples.

  5. Overview of mass spectrometry-based metabolomics: opportunities and challenges.

    Science.gov (United States)

    Gowda, G A Nagana; Djukovic, Danijel

    2014-01-01

    The field of metabolomics has witnessed an exponential growth in the last decade driven by important applications spanning a wide range of areas in the basic and life sciences and beyond. Mass spectrometry in combination with chromatography and nuclear magnetic resonance are the two major analytical avenues for the analysis of metabolic species in complex biological mixtures. Owing to its inherent significantly higher sensitivity and fast data acquisition, MS plays an increasingly dominant role in the metabolomics field. Propelled by the need to develop simple methods to diagnose and manage the numerous and widespread human diseases, mass spectrometry has witnessed tremendous growth with advances in instrumentation, experimental methods, software, and databases. In response, the metabolomics field has moved far beyond qualitative methods and simple pattern recognition approaches to a range of global and targeted quantitative approaches that are now routinely used and provide reliable data, which instill greater confidence in the derived inferences. Powerful isotope labeling and tracing methods have become very popular. The newly emerging ambient ionization techniques such as desorption ionization and rapid evaporative ionization have allowed direct MS analysis in real time, as well as new MS imaging approaches. While the MS-based metabolomics has provided insights into metabolic pathways and fluxes, and metabolite biomarkers associated with numerous diseases, the increasing realization of the extremely high complexity of biological mixtures underscores numerous challenges including unknown metabolite identification, biomarker validation, and interlaboratory reproducibility that need to be dealt with for realization of the full potential of MS-based metabolomics. This chapter provides a glimpse at the current status of the mass spectrometry-based metabolomics field highlighting the opportunities and challenges.

  6. Calibration using constrained smoothing with applications to mass spectrometry data.

    Science.gov (United States)

    Feng, Xingdong; Sedransk, Nell; Xia, Jessie Q

    2014-06-01

    Linear regressions are commonly used to calibrate the signal measurements in proteomic analysis by mass spectrometry. However, with or without a monotone (e.g., log) transformation, data from such functional proteomic experiments are not necessarily linear or even monotone functions of protein (or peptide) concentration except over a very restricted range. A computationally efficient spline procedure improves upon linear regression. However, mass spectrometry data are not necessarily homoscedastic; more often the variation of measured concentrations increases disproportionately near the boundaries of the instruments measurement capability (dynamic range), that is, the upper and lower limits of quantitation. These calibration difficulties exist with other applications of mass spectrometry as well as with other broad-scale calibrations. Therefore the method proposed here uses a functional data approach to define the calibration curve and also the limits of quantitation under the two assumptions: (i) that the variance is a bounded, convex function of concentration; and (ii) that the calibration curve itself is monotone at least between the limits of quantitation, but not necessarily outside these limits. Within this paradigm, the limit of detection, where the signal is definitely present but not measurable with any accuracy, is also defined. An iterative approach draws on existing smoothing methods to account simultaneously for both restrictions and is shown to achieve the global optimal convergence rate under weak conditions. This approach can also be implemented when convexity is replaced by other (bounded) restrictions. Examples from Addona et al. (2009, Nature Biotechnology 27, 663-641) both motivate and illustrate the effectiveness of this functional data methodology when compared with the simpler linear regressions and spline techniques.

  7. Small sample Accelerator Mass Spectrometry for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Salehpour, M., E-mail: mehran.salehpour@physics.uu.se; Håkansson, K.; Possnert, G.

    2015-10-15

    The Accelerator Mass Spectrometry activities at Uppsala University include a group dedicated to the biomedical applications, involving natural level samples, as well as {sup 14}C-labeled substances requiring separate handling and preparation. For most applications sufficient sample amounts are available but many applications are limited to samples sizes in the μg-range. We have developed a preparation procedure for small samples biomedical applications, where a few μg C can be analyzed, albeit with compromised precision. The latest results for the small sample AMS method are shown and some of the biomedical activities at our laboratory are presented.

  8. Mass spectrometry cancer data classification using wavelets and genetic algorithm.

    Science.gov (United States)

    Nguyen, Thanh; Nahavandi, Saeid; Creighton, Douglas; Khosravi, Abbas

    2015-12-21

    This paper introduces a hybrid feature extraction method applied to mass spectrometry (MS) data for cancer classification. Haar wavelets are employed to transform MS data into orthogonal wavelet coefficients. The most prominent discriminant wavelets are then selected by genetic algorithm (GA) to form feature sets. The combination of wavelets and GA yields highly distinct feature sets that serve as inputs to classification algorithms. Experimental results show the robustness and significant dominance of the wavelet-GA against competitive methods. The proposed method therefore can be applied to cancer classification models that are useful as real clinical decision support systems for medical practitioners.

  9. Monitoring of wine aging process by electrospray ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    Alexandra Christine Helena Frankland Sawaya

    2011-09-01

    Full Text Available The characterization of wine samples by direct insertion electrospray ionization mass spectrometry (ESI-MS, without pre-treatment or chromatographic separation, in a process denominated fingerprinting, has been applied to several samples of wine produced with grapes of the Pinot noir, Merlot and Cabernet Sauvignon varieties from the state o Rio Grande do Sul, in Brazil. The ESI-MS fingerprints of the samples detected changes which occurred during the aging process in the three grape varieties. Principal Component Analysis (PCA of the negative ion mode fingerprints was used to group the samples, pinpoint the main changes in their composition, and indicate marker ions for each group of samples.

  10. Temperature-programmed desorption for membrane inlet mass spectrometry

    DEFF Research Database (Denmark)

    Ketola, R.A.; Grøn, C.; Lauritsen, F.R.

    1998-01-01

    We present a novel technique for analyzing volatile organic compounds in air samples using a solid adsorbent together with temperature-programmed desorption and subsequent detection by membrane inlet mass spectrometry (TPD-MIMS). The new system has the advantage of a fast separation of compounds...... prior to the detection by MIMS. The gaseous sample is simply adsorbed on the adsorbent, which is then rapidly heated from 30 degrees C to 250 degrees C at a rate of 50 degrees C/min, Trapped organic compounds are released from the adsorbent into a helium stream at different temperatures depending...

  11. Optimizing the identification of citrullinated peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Bennike, Tue; Lauridsen, Kasper B.; Olesen, Michael Kruse

    2013-01-01

    using digested synovial fluid samples from a rheumatoid arthritis patient. The samples were analyzed using liquid chromatography/tandem MS with electrospray ionization. Our in vivo and in vitro studies clearly demonstrate the inability of trypsin to cleave after citrulline residues. Based on our......Citrullinated proteins have been associated with several diseases and citrullination can most likely function as a target for novel diagnostic agents and unravel disease etiologies. The correct identification of citrullinated proteins is therefore of most importance. Mass spectrometry (MS) driven...

  12. Application of accelerator mass spectrometry in aluminum metabolism studies

    Science.gov (United States)

    Meirav, O.; Sutton, R. A. L.; Fink, D.; Middleton, R.; Klein, J.; Walker, V. R.; Halabe, A.; Vetterli, D.; Johnson, R. R.

    1990-12-01

    The recent recognition that aluminum causes toxicity in uremie patients and may be associated with Alzheimer's disease has stimulated many studies of its biochemical effects. However, such studies were hampered by the lack of a suitable tracer. In a novel experiment, we have applied the new technique of accelerator mass spectrometry to investigate aluminum kinetics in rats, using as a marker the long-lived isotope 26Al. We present the first aluminum kinetic model for a biological system. The results clearly demonstrate the advantage this technique holds for isotope tracer studies in animals as well as in humans.

  13. Solid support resins and affinity purification mass spectrometry.

    Science.gov (United States)

    Havis, Spencer; Moree, Wilna J; Mali, Sujina; Bark, Steven J

    2017-02-28

    Co-affinity purification-mass spectrometry (CoAP-MS) is a primary technology for elucidating the protein-protein interactions that form the basis of all biological processes. A critical component of CoAP-MS is the affinity purification (AP) of the bait protein, usually by immobilization of an antibody to a solid-phase resin. This Minireview discusses common resins, reagents, tagging methods, and their consideration for successful AP of tagged proteins. We discuss our experiences with different solid supports, their impact in AP experiments, and propose areas where chemistry can advance this important technology.

  14. Applications of ambient mass spectrometry in high-throughput screening.

    Science.gov (United States)

    Li, Li-Ping; Feng, Bao-Sheng; Yang, Jian-Wang; Chang, Cui-Lan; Bai, Yu; Liu, Hu-Wei

    2013-06-07

    The development of rapid screening and identification techniques is of great importance for drug discovery, doping control, forensic identification, food safety and quality control. Ambient mass spectrometry (AMS) allows rapid and direct analysis of various samples in open air with little sample preparation. Recently, its applications in high-throughput screening have been in rapid progress. During the past decade, various ambient ionization techniques have been developed and applied in high-throughput screening. This review discusses typical applications of AMS, including DESI (desorption electrospray ionization), DART (direct analysis in real time), EESI (extractive electrospray ionization), etc., in high-throughput screening (HTS).

  15. Vaporization Studies of Olivine via Knudsen Effusion Mass Spectrometry

    Science.gov (United States)

    Costa, G. C. C.; Jacobson, N. S.

    2014-01-01

    Olivine is the major mineral in the Earth's upper mantle occurring predominantly in igneous rocks and has been identified in meteorites, asteroids, the Moon and Mars. Among many other important applications in planetary and materials sciences, the thermodynamic properties of vapor species from olivine are crucial as input parameters in computational modelling of the atmospheres of hot, rocky exoplanets (lava planets). There are several weight loss studies of olivine vaporization in the literature and one Knudsen Effusion Mass Spectrometry (KEMS) study. In this study, we examine a forsterite-rich olivine (93% forsterite and 7% fayalite, Fo93Fa7) with KEMS to further understand its vaporization and thermodynamic properties.

  16. Clusters of Monoisotopic Elements for Calibration in (TOF) Mass Spectrometry

    Science.gov (United States)

    Kolářová, Lenka; Prokeš, Lubomír; Kučera, Lukáš; Hampl, Aleš; Peňa-Méndez, Eladia; Vaňhara, Petr; Havel, Josef

    2016-12-01

    Precise calibration in TOF MS requires suitable and reliable standards, which are not always available for high masses. We evaluated inorganic clusters of the monoisotopic elements gold and phosphorus (Au n +/Au n - and P n +/P n -) as an alternative to peptides or proteins for the external and internal calibration of mass spectra in various experimental and instrumental scenarios. Monoisotopic gold or phosphorus clusters can be easily generated in situ from suitable precursors by laser desorption/ionization (LDI) or matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Their use offers numerous advantages, including simplicity of preparation, biological inertness, and exact mass determination even at lower mass resolution. We used citrate-stabilized gold nanoparticles to generate gold calibration clusters, and red phosphorus powder to generate phosphorus clusters. Both elements can be added to samples to perform internal calibration up to mass-to-charge (m/z) 10-15,000 without significantly interfering with the analyte. We demonstrated the use of the gold and phosphorous clusters in the MS analysis of complex biological samples, including microbial standards and total extracts of mouse embryonic fibroblasts. We believe that clusters of monoisotopic elements could be used as generally applicable calibrants for complex biological samples.

  17. Tandem mass spectrometry data quality assessment by self-convolution

    Directory of Open Access Journals (Sweden)

    Tham Wai

    2007-09-01

    Full Text Available Abstract Background Many algorithms have been developed for deciphering the tandem mass spectrometry (MS data sets. They can be essentially clustered into two classes. The first performs searches on theoretical mass spectrum database, while the second based itself on de novo sequencing from raw mass spectrometry data. It was noted that the quality of mass spectra affects significantly the protein identification processes in both instances. This prompted the authors to explore ways to measure the quality of MS data sets before subjecting them to the protein identification algorithms, thus allowing for more meaningful searches and increased confidence level of proteins identified. Results The proposed method measures the qualities of MS data sets based on the symmetric property of b- and y-ion peaks present in a MS spectrum. Self-convolution on MS data and its time-reversal copy was employed. Due to the symmetric nature of b-ions and y-ions peaks, the self-convolution result of a good spectrum would produce a highest mid point intensity peak. To reduce processing time, self-convolution was achieved using Fast Fourier Transform and its inverse transform, followed by the removal of the "DC" (Direct Current component and the normalisation of the data set. The quality score was defined as the ratio of the intensity at the mid point to the remaining peaks of the convolution result. The method was validated using both theoretical mass spectra, with various permutations, and several real MS data sets. The results were encouraging, revealing a high percentage of positive prediction rates for spectra with good quality scores. Conclusion We have demonstrated in this work a method for determining the quality of tandem MS data set. By pre-determining the quality of tandem MS data before subjecting them to protein identification algorithms, spurious protein predictions due to poor tandem MS data are avoided, giving scientists greater confidence in the

  18. Distance-of-Flight Mass Spectrometry: What, Why, and How?

    Science.gov (United States)

    Dennis, Elise A.; Gundlach-Graham, Alexander W.; Ray, Steven J.; Enke, Christie G.; Hieftje, Gary M.

    2016-11-01

    Distance-of-flight mass spectrometry (DOFMS) separates ions of different mass-to-charge ( m/ z) by the distance they travel in a given time after acceleration. Like time-of-flight mass spectrometry (TOFMS), separation and mass assignment are based on ion velocity. However, DOFMS is not a variant of TOFMS; different methods of ion focusing and detection are used. In DOFMS, ions are driven orthogonally, at the detection time, onto an array of detectors parallel to the flight path. Through the independent detection of each m/ z, DOFMS can provide both wider dynamic range and increased throughput for m/ z of interest compared with conventional TOFMS. The iso-mass focusing and detection of ions is achieved by constant-momentum acceleration (CMA) and a linear-field ion mirror. Improved energy focus (including turn-around) is achieved in DOFMS, but the initial spatial dispersion of ions remains unchanged upon detection. Therefore, the point-source nature of surface ionization techniques could put them at an advantage for DOFMS. To date, three types of position-sensitive detectors have been used for DOFMS: a microchannel plate with a phosphorescent screen, a focal plane camera, and an IonCCD array; advances in detector technology will likely improve DOFMS figures-of-merit. In addition, the combination of CMA with TOF detection has provided improved resolution and duty factor over a narrow m/ z range (compared with conventional, single-pass TOFMS). The unique characteristics of DOFMS can enable the intact collection of large biomolecules, clusters, and organisms. DOFMS might also play a key role in achieving the long-sought goal of simultaneous MS/MS.

  19. Distance-of-Flight Mass Spectrometry: What, Why, and How?

    Science.gov (United States)

    Dennis, Elise A.; Gundlach-Graham, Alexander W.; Ray, Steven J.; Enke, Christie G.; Hieftje, Gary M.

    2016-08-01

    Distance-of-flight mass spectrometry (DOFMS) separates ions of different mass-to-charge (m/z) by the distance they travel in a given time after acceleration. Like time-of-flight mass spectrometry (TOFMS), separation and mass assignment are based on ion velocity. However, DOFMS is not a variant of TOFMS; different methods of ion focusing and detection are used. In DOFMS, ions are driven orthogonally, at the detection time, onto an array of detectors parallel to the flight path. Through the independent detection of each m/z, DOFMS can provide both wider dynamic range and increased throughput for m/z of interest compared with conventional TOFMS. The iso-mass focusing and detection of ions is achieved by constant-momentum acceleration (CMA) and a linear-field ion mirror. Improved energy focus (including turn-around) is achieved in DOFMS, but the initial spatial dispersion of ions remains unchanged upon detection. Therefore, the point-source nature of surface ionization techniques could put them at an advantage for DOFMS. To date, three types of position-sensitive detectors have been used for DOFMS: a microchannel plate with a phosphorescent screen, a focal plane camera, and an IonCCD array; advances in detector technology will likely improve DOFMS figures-of-merit. In addition, the combination of CMA with TOF detection has provided improved resolution and duty factor over a narrow m/z range (compared with conventional, single-pass TOFMS). The unique characteristics of DOFMS can enable the intact collection of large biomolecules, clusters, and organisms. DOFMS might also play a key role in achieving the long-sought goal of simultaneous MS/MS.

  20. Distance-of-Flight Mass Spectrometry: What, Why, and How?

    Science.gov (United States)

    Dennis, Elise A; Gundlach-Graham, Alexander W; Ray, Steven J; Enke, Christie G; Hieftje, Gary M

    2016-11-01

    Distance-of-flight mass spectrometry (DOFMS) separates ions of different mass-to-charge (m/z) by the distance they travel in a given time after acceleration. Like time-of-flight mass spectrometry (TOFMS), separation and mass assignment are based on ion velocity. However, DOFMS is not a variant of TOFMS; different methods of ion focusing and detection are used. In DOFMS, ions are driven orthogonally, at the detection time, onto an array of detectors parallel to the flight path. Through the independent detection of each m/z, DOFMS can provide both wider dynamic range and increased throughput for m/z of interest compared with conventional TOFMS. The iso-mass focusing and detection of ions is achieved by constant-momentum acceleration (CMA) and a linear-field ion mirror. Improved energy focus (including turn-around) is achieved in DOFMS, but the initial spatial dispersion of ions remains unchanged upon detection. Therefore, the point-source nature of surface ionization techniques could put them at an advantage for DOFMS. To date, three types of position-sensitive detectors have been used for DOFMS: a microchannel plate with a phosphorescent screen, a focal plane camera, and an IonCCD array; advances in detector technology will likely improve DOFMS figures-of-merit. In addition, the combination of CMA with TOF detection has provided improved resolution and duty factor over a narrow m/z range (compared with conventional, single-pass TOFMS). The unique characteristics of DOFMS can enable the intact collection of large biomolecules, clusters, and organisms. DOFMS might also play a key role in achieving the long-sought goal of simultaneous MS/MS. Graphical Abstract ᅟ.

  1. A Versatile Miniature Mass Analyser for Planetary Science

    Science.gov (United States)

    Wurz, P.; Whitby, J. A.; Abplanalp, D.; Iakovleva, M.; Rohner, U.

    2006-12-01

    We shall report progress in the development of a miniature solid-sampling mass spectrometer (the LMS instrument) intended to measure in situ elemental and isotopic abundances at a spatial resolution < 100 microns; a similar instrument is to be deployed as part of the russian Phobos-GRUNT mission. The mass analyser can be used with alternative ion sources and sample interfaces in order to measure molecular gases, liquids or aerosols as well as solids (rocks or regolith).

  2. Statistical analysis of proteomics, metabolomics, and lipidomics data using mass spectrometry

    CERN Document Server

    Mertens, Bart

    2017-01-01

    This book presents an overview of computational and statistical design and analysis of mass spectrometry-based proteomics, metabolomics, and lipidomics data. This contributed volume provides an introduction to the special aspects of statistical design and analysis with mass spectrometry data for the new omic sciences. The text discusses common aspects of design and analysis between and across all (or most) forms of mass spectrometry, while also providing special examples of application with the most common forms of mass spectrometry. Also covered are applications of computational mass spectrometry not only in clinical study but also in the interpretation of omics data in plant biology studies. Omics research fields are expected to revolutionize biomolecular research by the ability to simultaneously profile many compounds within either patient blood, urine, tissue, or other biological samples. Mass spectrometry is one of the key analytical techniques used in these new omic sciences. Liquid chromatography mass ...

  3. Analysis of paralytic shellfish toxins using high-field asymmetric waveform ion mobility spectrometry with liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Beach, Daniel G; Melanson, Jeremy E; Purves, Randy W

    2015-03-01

    The analysis of paralytic shellfish toxins (PSTs) by liquid chromatography-mass spectrometry remains a challenge because of their high polarity, large number of analogues and the complex matrix in which they occur. Here we investigate the potential utility of high-field asymmetric waveform ion mobility spectrometry (FAIMS) as a gas-phase ion separation tool for analysis of PSTs by mass spectrometry. We investigate the separation of PSTs using FAIMS with two divergent goals: using FAIMS as a primary separation tool for rapid screening by electrospray ionization (ESI)-FAIMS-MS or combined with LC in a multidimensional LC-ESI-FAIMS-MS separation. First, a survey of the parameters that affect the sensitivity and selectivity of PST analysis by FAIMS was carried out using ESI-FAIMS-MS. In particular, the use of acetonitrile as a gas additive in the carrier gas flow offered good separation of all PST epimeric pairs. A second set of FAIMS conditions was also identified, which focussed PSTs to a relatively narrow CV range allowing development of an LC-ESI-FAIMS-MS method for analysis of PST toxins in complex mussel tissue extracts. The quantitative capabilities of this method were evaluated by analysing a PST containing mussel tissue matrix material. Results compared favourably with analysis by an established LC-post-column oxidation-fluorescence method with recoveries ranging from 70 to 106%, although sensitivity was somewhat reduced. The current work represents the first successful separation of PST isomers using ion mobility and shows the promise of FAIMS as a tool for analysis of algal biotoxins in complex samples and outlines some critical requirements for its future improvement.

  4. Statistical design of quantitative mass spectrometry-based proteomic experiments.

    Science.gov (United States)

    Oberg, Ann L; Vitek, Olga

    2009-05-01

    We review the fundamental principles of statistical experimental design, and their application to quantitative mass spectrometry-based proteomics. We focus on class comparison using Analysis of Variance (ANOVA), and discuss how randomization, replication and blocking help avoid systematic biases due to the experimental procedure, and help optimize our ability to detect true quantitative changes between groups. We also discuss the issues of pooling multiple biological specimens for a single mass analysis, and calculation of the number of replicates in a future study. When applicable, we emphasize the parallels between designing quantitative proteomic experiments and experiments with gene expression microarrays, and give examples from that area of research. We illustrate the discussion using theoretical considerations, and using real-data examples of profiling of disease.

  5. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    Science.gov (United States)

    Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír

    2016-01-01

    The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions. PMID:28042492

  6. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Viktor Johánek

    2016-01-01

    Full Text Available The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc. on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed subjected to a wide range of conditions.

  7. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells.

    Science.gov (United States)

    Johánek, Viktor; Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír

    2016-01-01

    The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions.

  8. Sequencing of Oligourea Foldamers by Tandem Mass Spectrometry

    Science.gov (United States)

    Bathany, Katell; Owens, Neil W.; Guichard, Gilles; Schmitter, Jean-Marie

    2013-03-01

    This study is focused on sequence analysis of peptidomimetic helical oligoureas by means of tandem mass spectrometry, to build a basis for de novo sequencing for future high-throughput combinatorial library screening of oligourea foldamers. After the evaluation of MS/MS spectra obtained for model compounds with either MALDI or ESI sources, we found that the MALDI-TOF-TOF instrument gave more satisfactory results. MS/MS spectra of oligoureas generated by decay of singly charged precursor ions show major ion series corresponding to fragmentation across both CO-NH and N'H-CO urea bonds. Oligourea backbones fragment to produce a pattern of a, x, b, and y type fragment ions. De novo decoding of spectral information is facilitated by the occurrence of low mass reporter ions, representative of constitutive monomers, in an analogous manner to the use of immonium ions for peptide sequencing.

  9. Differential Rapid Screening of Phytochemicals by Leaf Spray Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Thomas; Graham Cooks, R. [Univ. of Innsbruck, Innsbruck (Austria)

    2014-03-15

    Ambient ionization can be achieved by generating an electrospray directly from plant tissue ('leaf spray'). The resulting mass spectra are characteristic of ionizable phytochemicals in the plant material. By subtracting the leaf spray spectra recorded from the petals of two hibiscus species H. moscheutos and H. syriacus one gains rapid access to the metabolites that differ most in the two petals. One such compound was identified as the sambubioside of quercitin (or delphinidin) while others are known flavones. Major interest centered on a C{sub 19}H{sub 29}NO{sub 5} compound that occurs only in the large H. moscheutos bloom. Attempts were made to characterize this compound by mass spectrometry alone as a test of such an approach. This showed that the compound is an alkaloid, assigned to the polyhydroxylated pyrrolidine class, and bound via a C{sub 3} hydrocarbon unit to a monoterpene.

  10. "Meta Elimination," a Diagnostic Fragmentation in Mass Spectrometry

    Science.gov (United States)

    Attygalle, Athula B.; Nishshanka, Upul; Weisbecker, Carl S.

    2011-09-01

    The diagnostic value of the "ortho effect" for unknown identification by mass spectrometry is well known. Here, we report the existence of a novel "meta effect," which adds to the repertoire of useful mass spectrometric fragmentation mechanisms. For example, the meta-specific elimination pathway described in this report enables unequivocal identification of meta isomers from ortho and para isomers of carboxyanilides. The reaction follows a specific path to eliminate a molecule of meta-benzyne, from the anion produced after the initial decarboxylation of the precursor. Consequently, in the CID spectra of carboxyanilides, a peak for the (R-CO-NH)- anion is observed only for the meta isomers. For example, the peaks observed at m/z 58, 86, 120, 128, and 170 from acetamido-, butamido-, benzamido, heptamido-, and decanamido-benzoates, respectively, were specific only to the spectra of meta isomers.

  11. Analysis of protein composition using multidimensional chromatography and mass spectrometry.

    Science.gov (United States)

    Link, Andrew J; Washburn, Michael P

    2014-11-03

    Multidimensional liquid chromatography of peptides produced by protease digestion of complex protein mixtures followed by tandem mass spectrometry can be coupled with automated database searching to identify large numbers of proteins in complex samples. These methods avoid the limitations of gel electrophoresis and in-gel digestions by directly identifying protein mixtures in solution. One method used extensively is named Multidimensional Protein Identification Technology (MudPIT), where reversed-phase chromatography and strong cation-exchange chromatography are coupled directly in a microcapillary column. This column is then placed in line between an HPLC and a mass spectrometer for complex mixture analysis. MudPIT remains a powerful approach for analyzing complex mixtures like whole proteomes and protein complexes. MudPIT is used for quantitative proteomic analysis of complex mixtures to generate novel biological insights.

  12. Mass spectrometry. [in organic ion and biorganic chemistry and medicine

    Science.gov (United States)

    Burlingame, A. L.; Cox, R. E.; Derrick, P. J.

    1974-01-01

    Review of the present status of mass spectrometry in the light of pertinent recent publications spanning the period from December 1971 to January 1974. Following an initial survey of techniques, instruments, and computer applications, a sharp distinction is made between the chemistry of organic (radical-)ions and analytical applications in biorganic chemistry and medicine. The emphasis is on the chemistry of organic (radical-)ions at the expense of inorganic, organometallic, and surface ion chemistry. Biochemistry and medicine are chosen because of their contemporary importance and because of the stupendous contributions of mass spectroscopy to these fields in the past two years. In the review of gas-phase organic ion chemistry, special attention is given to studies making significant contributions to the understanding of ion chemistry.

  13. Charge detection mass spectrometry: Instrumentation & applications to viruses

    Science.gov (United States)

    Pierson, Elizabeth E.

    For over three decades, electrospray ionization (ESI) has been used to ionize non-covalent complexes and subsequently transfer the intact ion into the gas phase for mass spectrometry (MS) analysis. ESI generates a distribution of multiple charged ions, resulting in an m/z spectrum comprised of a series of peaks, known as a charge state envelope. To obtain mass information, the number of charges for each peak must be deduced. For smaller biological analytes like peptides, the charge states are sufficiently resolved and this process is straightforward. For macromolecular complexes exceeding ~100 kDa, this process is complicated by the broadening and shifting of charge states due to incomplete desolvation, salt adduction, and inherent mass heterogeneity. As the analyte mass approaches the MDa regime, the m/z spectrum is often comprised of a broad distribution of unresolved charge states. In such cases, mass determination is precluded. Charge detection mass spectrometry (CDMS) is an emerging MS technique for determining the masses of heterogeneous, macromolecular complexes. In CDMS, the m/z and z of single ions are measured concurrently so that mass is easily calculated. With this approach, deconvolution of an m/z spectrum is unnecessary. This measurement is carried out by passing macroions through a conductive cylinder. The induced image charge on the cylindrical detector provides information about m/z and z: the m/z is related to its time-of-flight through the detector, and the z is related to the intensity of the image charge. We have applied CDMS to study the self-assembly of virus capsids. Late-stage intermediates in the assembly of hepatitis B virus, a devastating human pathogen, have been identified. This is the first time that such intermediates have been detected and represent a significant advancement towards understanding virus capsid assembly. CDMS has also been used to identify oversized, non-icosahedral polymorphs in the assembly of woodchuck hepatitis

  14. An ion-to-photon conversion detector for mass spectrometry

    Science.gov (United States)

    Dubois, F.; Knochenmuss, R.; Zenobi, R.

    1997-12-01

    An ion-to-photon conversion detector (IPD) for time-of-flight mass spectrometry was studied and tested with ions produced by matrix-assisted laser desorption-ionization. The detector consisted of a conversion surface located at the end of the drift tube of a time-of-flight mass spectrometer and, behind it, a head-on photomultiplier tube. Fluorescent organic scintillator materials like Bu-PBD [2-(4-t-buthylphenyl)-5-(4-biphenylyl)-1,3,4-oxidiazole] were found to be the most efficient converters of those materials tested. Similar mass resolutions were found with the ion-to-photo detector and standard microchannel plates in a linear time-of-flight instrument. The background noise of the IPD was more intense than with microchannel plates. Slow unfocused ions are suspected to contribute to this noise. Test analytes as large as 70 000 Da could be measured with the IPD. Even with no secondary particle conversion surface in front of the IPD, masses up to approximately 20 000 Da may be more efficiently detected with the IPD than the MCP. For higher masses, a conversion dynode should be considered for increased signal.

  15. High Resolution Mass Spectrometry of Polyfluorinated Polyether-Based Formulation

    Science.gov (United States)

    Dimzon, Ian Ken; Trier, Xenia; Frömel, Tobias; Helmus, Rick; Knepper, Thomas P.; de Voogt, Pim

    2016-02-01

    High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid of an instrument data processor. Highly accurate mass spectral data enabled the calculation of higher-order mass defects. The different plots of MW and the nth-order mass defects (up to n = 3) could aid in assessing the structure of the different repeating units and estimating their absolute and relative number per molecule. The three major repeating units were -C2H4O-, -C2F4O-, and -CF2O-. Tandem MS was used to identify the end groups that appeared to be phosphates, as well as the possible distribution of the repeating units. Reversed-phase HPLC separated of the polymer molecules on the basis of number of nonpolar repeating units. The elucidated structure resembles the structure in the published manufacturer technical data. This analytical approach to the characterization of a PFPE-based formulation can serve as a guide in analyzing not just other PFPE-based formulations but also other fluorinated and non-fluorinated polymers. The information from MS is essential in studying the physico-chemical properties of PFPEs and can help in assessing the risks they pose to the environment and to human health.

  16. Coherent pipeline for biomarker discovery using mass spectrometry and bioinformatics

    Directory of Open Access Journals (Sweden)

    Al-Shahib Ali

    2010-08-01

    Full Text Available Abstract Background Robust biomarkers are needed to improve microbial identification and diagnostics. Proteomics methods based on mass spectrometry can be used for the discovery of novel biomarkers through their high sensitivity and specificity. However, there has been a lack of a coherent pipeline connecting biomarker discovery with established approaches for evaluation and validation. We propose such a pipeline that uses in silico methods for refined biomarker discovery and confirmation. Results The pipeline has four main stages: Sample preparation, mass spectrometry analysis, database searching and biomarker validation. Using the pathogen Clostridium botulinum as a model, we show that the robustness of candidate biomarkers increases with each stage of the pipeline. This is enhanced by the concordance shown between various database search algorithms for peptide identification. Further validation was done by focusing on the peptides that are unique to C. botulinum strains and absent in phylogenetically related Clostridium species. From a list of 143 peptides, 8 candidate biomarkers were reliably identified as conserved across C. botulinum strains. To avoid discarding other unique peptides, a confidence scale has been implemented in the pipeline giving priority to unique peptides that are identified by a union of algorithms. Conclusions This study demonstrates that implementing a coherent pipeline which includes intensive bioinformatics validation steps is vital for discovery of robust biomarkers. It also emphasises the importance of proteomics based methods in biomarker discovery.

  17. Secondary ionization mass spectrometry analysis in petrochronology: Chapter 7

    Science.gov (United States)

    Schmitt, Axel K.; Vazquez, Jorge A.

    2017-01-01

    The goal of petrochronology is to extract information about the rates and conditions at which rocks and magmas are transported through the Earth’s crust. Garnering this information from the rock record greatly benefits from integrating textural and compositional data with radiometric dating of accessory minerals. Length scales of crystal growth and diffusive transport in accessory minerals under realistic geologic conditions are typically in the range of 1–10’s of μm, and in some cases even substantially smaller, with zircon having among the lowest diffusion coefficients at a given temperature (e.g., Cherniak and Watson 2003). Intrinsic to the compartmentalization of geochemical and geochronologic information from intra-crystal domains is the requirement to determine accessory mineral compositions using techniques that sample at commensurate spatial scales so as to not convolute the geologic signals that are recorded within crystals, as may be the case with single grain or large grain fragment analysis by isotope dilution thermal ionization mass spectrometry (ID-TIMS; e.g., Schaltegger and Davies 2017, this volume; Schoene and Baxter 2017, this volume). Small crystals can also be difficult to extract by mineral separation techniques traditionally used in geochronology, which also lead to a loss of petrographic context. Secondary Ionization Mass Spectrometry, that is SIMS performed with an ion microprobe, is an analytical technique ideally suited to meet the high spatial resolution analysis requirements that are critical for petrochronology (Table 1).

  18. Isotope determination of sulfur by mass spectrometry in soil samples

    Directory of Open Access Journals (Sweden)

    Alexssandra Luiza Rodrigues Molina Rossete

    2012-12-01

    Full Text Available Sulphur plays an essential role in plants and is one of the main nutrients in several metabolic processes. It has four stable isotopes (32S, 33S, 34S, and 36S with a natural abundance of 95.00, 0.76, 4.22, and 0.014 in atom %, respectively. A method for isotopic determination of S by isotope-ratio mass spectrometry (IRMS in soil samples is proposed. The procedure involves the oxidation of organic S to sulphate (S-SO4(2-, which was determined by dry combustion with alkaline oxidizing agents. The total S-SO4(2- concentration was determined by turbidimetry and the results showed that the conversion process was adequate. To produce gaseous SO2 gas, BaSO4 was thermally decomposed in a vacuum system at 900 ºC in the presence of NaPO3. The isotope determination of S (atom % 34S atoms was carried out by isotope ratio mass spectrometry (IRMS. In this work, the labeled material (K2(34SO4 was used to validate the method of isotopic determination of S; the results were precise and accurate, showing the viability of the proposed method.

  19. Bio-Aerosol Detection Using Mass Spectrometry: Public Health Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ludvigson, Laura D. [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    I recently spent a summer as an intern at the Lawrence Livermore National Laboratory. I worked on a project involving the real-time, reagentless, single cell detection of aerosolized pathogens using a novel mass spectrometry approach called Bio-Aerosol Mass Spectrometry (BAMS). Based upon preliminary results showing the differentiation capabilities of BAMS, I would like to explore the development and use of this novel detection system in the context of both environmental and clinical sample pathogen detection. I would also like to explore the broader public health applications that a system such as BAMS might have in terms of infectious disease prevention and control. In order to appreciate the potential of this instrument, I will demonstrate the need for better pathogen detection methods, and outline the instrumentation, data analysis and preliminary results that lead me toward a desire to explore this technology further. I will also discuss potential experiments for the future along with possible problems that may be encountered along the way.

  20. Analysis of hazardous biological material by MALDI mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    KL Wahl; KH Jarman; NB Valentine; MT Kingsley; CE Petersen; ST Cebula; AJ Saenz

    2000-03-21

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS) has become a valuable tool for analyzing microorganisms. The speed with which data can be obtained from MALDI-MS makes this a potentially important tool for biological health hazard monitoring and forensic applications. The excitement in the mass spectrometry community in this potential field of application is evident by the expanding list of research laboratories pursuing development of MALDI-MS for bacterial identification. Numerous research groups have demonstrated the ability to obtain unique MALDI-MS spectra from intact bacterial cells and bacterial cell extracts. The ability to differentiate strains of the same species has been investigated. Reproducibility of MALDI-MS spectra from bacterial species under carefully controlled experimental conditions has also been demonstrated. Wang et al. have reported on interlaboratory reproducibility of the MALDI-MS analysis of several bacterial species. However, there are still issues that need to be addressed, including the careful control of experimental parameters for reproducible spectra and selection of optimal experimental parameters such as solvent and matrix.

  1. Use of Tritium Accelerator Mass Spectrometry for Tree Ring Analysis

    Science.gov (United States)

    LOVE, ADAM H.; HUNT, JAMES R.; ROBERTS, MARK L.; SOUTHON, JOHN R.; CHIARAPPA - ZUCCA, MARINA L.; DINGLEY, KAREN H.

    2010-01-01

    Public concerns over the health effects associated with low-level and long-term exposure to tritium released from industrial point sources have generated the demand for better methods to evaluate historical tritium exposure levels for these communities. The cellulose of trees accurately reflects the tritium concentration in the source water and may contain the only historical record of tritium exposure. The tritium activity in the annual rings of a tree was measured using accelerator mass spectrometry to reconstruct historical annual averages of tritium exposure. Milligram-sized samples of the annual tree rings from a Tamarix located at the Nevada Test Site are used for validation of this methodology. The salt cedar was chosen since it had a single source of tritiated water that was well-characterized as it varied over time. The decay-corrected tritium activity of the water in which the salt cedar grew closely agrees with the organically bound tritium activity in its annual rings. This demonstrates that the milligram-sized samples used in tritium accelerator mass spectrometry are suited for reconstructing anthropogenic tritium levels in the environment. PMID:12144257

  2. Expanded newborn screening by mass spectrometry: New tests, future perspectives.

    Science.gov (United States)

    Ombrone, Daniela; Giocaliere, Elisa; Forni, Giulia; Malvagia, Sabrina; la Marca, Giancarlo

    2016-01-01

    Tandem mass spectrometry (MS/MS) has become a leading technology used in clinical chemistry and has shown to be particularly sensitive and specific when used in newborn screening (NBS) tests. The success of tandem mass spectrometry is due to important advances in hardware, software and clinical applications during the last 25 years. MS/MS permits a very rapid measurement of many metabolites in different biological specimens by using filter paper spots or directly on biological fluids. Its use in NBS give us the chance to identify possible treatable metabolic disorders even when asymptomatic and the benefits gained by this type of screening is now recognized worldwide. Today the use of MS/MS for second-tier tests and confirmatory testing is promising especially in the early detection of new disorders such as some lysosomal storage disorders, ADA and PNP SCIDs, X-adrenoleucodistrophy (X-ALD), Wilson disease, guanidinoacetate methyltransferase deficiency (GAMT), and Duchenne muscular dystrophy. The new challenge for the future will be reducing the false positive rate by using second-tier tests, avoiding false negative results by using new specific biomarkers and introducing new treatable disorders in NBS programs.

  3. Optimal selection of epitopes for TXP-immunoaffinity mass spectrometry

    Directory of Open Access Journals (Sweden)

    Joos Thomas

    2010-06-01

    Full Text Available Abstract Background Mass spectrometry (MS based protein profiling has become one of the key technologies in biomedical research and biomarker discovery. One bottleneck in MS-based protein analysis is sample preparation and an efficient fractionation step to reduce the complexity of the biological samples, which are too complex to be analyzed directly with MS. Sample preparation strategies that reduce the complexity of tryptic digests by using immunoaffinity based methods have shown to lead to a substantial increase in throughput and sensitivity in the proteomic mass spectrometry approach. The limitation of using such immunoaffinity-based approaches is the availability of the appropriate peptide specific capture antibodies. Recent developments in these approaches, where subsets of peptides with short identical terminal sequences can be enriched using antibodies directed against short terminal epitopes, promise a significant gain in efficiency. Results We show that the minimal set of terminal epitopes for the coverage of a target protein list can be found by the formulation as a set cover problem, preceded by a filtering pipeline for the exclusion of peptides and target epitopes with undesirable properties. Conclusions For small datasets (a few hundred proteins it is possible to solve the problem to optimality with moderate computational effort using commercial or free solvers. Larger datasets, like full proteomes require the use of heuristics.

  4. Bio-Aerosol Detection Using Mass Spectrometry: Public Health Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ludvigson, L D

    2004-03-05

    I recently spent a summer as an intern at the Lawrence Livermore National Laboratory. I worked on a project involving the real-time, reagentless, single cell detection of aerosolized pathogens using a novel mass spectrometry approach called Bio-Aerosol Mass Spectrometry (BAMS). Based upon preliminary results showing the differentiation capabilities of BAMS, I would like to explore the development and use of this novel detection system in the context of both environmental and clinical sample pathogen detection. I would also like to explore the broader public health applications that a system such as BAMS might have in terms of infectious disease prevention and control. In order to appreciate the potential of this instrument, I will demonstrate the need for better pathogen detection methods, and outline the instrumentation, data analysis and preliminary results that lead me toward a desire to explore this technology further. I will also discuss potential experiments for the future along with possible problems that may be encountered along the way.

  5. Rapid Detection of Irreversible Acetylcholineasterase Inhibitor by Mass Spectrometry Assay

    Institute of Scientific and Technical Information of China (English)

    蔡婷婷; 张立; 汪蓉; 梁晨; 赵武生; 傅得锋; 张玉荣; 郭寅龙

    2012-01-01

    Here we developed a rapid method to detect acetylcholinesterase (ACHE) activity by matrix-assisted laser de- sorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) for screening irreversible AChE inhibi- tors. Due to its good salt-tolerance and low sample consumption, MALDI-FTMS could facilitate rapid detection, especially detection in real application. AChE activity was determined through calculating abundance of substrate and product in mass spectrometry. By this approach, we investigated the relation of organophosphorous (OP) con- centrations and AChE inhibition. Shown in different inhibition curves from different OP pesticides, enzyme inhibi- tions still kept good correlation with concentration of OPs. Finally, this AChE-inhibited method was applied to screen whole bloods of four decedents and discuss their death reason. In contrast to healthy persons, three of dece- dents showed low AChE activity, and probably died for irreversible AChE inhibitors. Through the following de- tecting in GC-MS/MS, the possible death reason of these three decedents was confirmed, and another decedent actually died for sumicidin, a non-AChE inhibitor. It demonstrated that screening irreversible AChE inhibitors by detecting enzyme activity in MALDI-FTMS provided fast and accurate analysis results and excluded another toxicants not functioning on ACHE. This method offered alternative choices for indicating the existence of enzyme inhibitors.

  6. Quantitating subcellular metabolism with multi-isotope imaging mass spectrometry

    Science.gov (United States)

    Steinhauser, Matthew L.; Bailey, Andrew; Senyo, Samuel E.; Guillermier, Christelle; Perlstein, Todd S.; Gould, Alex P.; Lee, Richard T.; Lechene, Claude P.

    2011-01-01

    Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter1,2 but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with sub-micron resolution3,4. Here we apply MIMS to diverse organisms, including Drosophila, mice, and humans. We test the “immortal strand hypothesis,” which predicts that during asymmetric stem cell division chromosomes containing older template DNA are segregated to the daughter destined to remain a stem cell, thus insuring lifetime genetic stability. After labeling mice with 15N-thymidine from gestation through post-natal week 8, we find no 15N label retention by dividing small intestinal crypt cells after 4wk chase. In adult mice administered 15N-thymidine pulse-chase, we find that proliferating crypt cells dilute label consistent with random strand segregation. We demonstrate the broad utility of MIMS with proof-of-principle studies of lipid turnover in Drosophila and translation to the human hematopoietic system. These studies show that MIMS provides high-resolution quantitation of stable isotope labels that cannot be obtained using other techniques and that is broadly applicable to biological and medical research. PMID:22246326

  7. Pesticide residues screening in wine by mass spectrometry

    Directory of Open Access Journals (Sweden)

    Machado Andrea F.

    2016-01-01

    Full Text Available Recently, a study (from PAN Europe covered 40 bottles of wine – 34 conventional and six organic ones – purchased inside the EU. According to the results, the 34 bottles of conventional wine together contained 148 pesticide residues. All 34 bottles contained from one to ten pesticides, bringing the average per bottle to more than four. Of the six bottles of organic wine tested, one sample contained a low concentration of a possibly carcinogenic pesticide. According to PAN Europe, the “contamination of wines is a direct result of over-reliance on pesticides in grape production”. This study, between others, to prove the importance of develop methods sensivity and confident for pesticide detection in wine. A multi-residue method was developed for the determination ca of 250 pesticide residues in wine using Quechers extraction, gas chromatography-tandem mass spectrometry (GC-MS-MS and liquid chromatography-tandem mass spectrometry (LC-MS-MS. The method was validated with the evaluation of follow parameters: Linearity, Precision, Accuracy, Matrix effect, Limit of detection and Limit of Quantification. The method was approved and was able to quantify pesticide residues in more than 60 samples of wine.

  8. The Aspergillus niger Prolyl endoprotease (An-PEP) for hydrogen-deuterium exchange mass spectrometry and protein structural studies

    NARCIS (Netherlands)

    Tsiatsiani, Liana; Akeroyd, Michiel; Olsthoorn, Maurien; Heck, Albert J R

    2017-01-01

    To monitor the structural integrity of therapeutic proteins, hydrogen-deuterium exchange mass spectrometry (HDX-MS) is increasingly utilized in the pharmaceutical industry. The successful outcome of HDX-MS analyses depends on the sample preparation conditions, which involve the rapid digestion of pr

  9. ANALYSIS OF TRACE-LEVEL ORGANIC COMBUSTION PROCESS EMISSIONS USING NOVEL MULTIDIMENSIONAL GAS CHROMATOGRAPHY-MASS SPECTROMETRY PROCEDURES

    Science.gov (United States)

    The paper discusses the analysis of trace-level organic combustion process emissions using novel multidimensional gas chromatography-mass spectrometry (MDGC-MS) procedures. It outlines the application of the technique through the analyses of various incinerator effluent and produ...

  10. OpenMS: a flexible open-source software platform for mass spectrometry data analysis.

    Science.gov (United States)

    Röst, Hannes L; Sachsenberg, Timo; Aiche, Stephan; Bielow, Chris; Weisser, Hendrik; Aicheler, Fabian; Andreotti, Sandro; Ehrlich, Hans-Christian; Gutenbrunner, Petra; Kenar, Erhan; Liang, Xiao; Nahnsen, Sven; Nilse, Lars; Pfeuffer, Julianus; Rosenberger, George; Rurik, Marc; Schmitt, Uwe; Veit, Johannes; Walzer, Mathias; Wojnar, David; Wolski, Witold E; Schilling, Oliver; Choudhary, Jyoti S; Malmström, Lars; Aebersold, Ruedi; Reinert, Knut; Kohlbacher, Oliver

    2016-08-30

    High-resolution mass spectrometry (MS) has become an important tool in the life sciences, contributing to the diagnosis and understanding of human diseases, elucidating biomolecular structural information and characterizing cellular signaling networks. However, the rapid growth in the volume and complexity of MS data makes transparent, accurate and reproducible analysis difficult. We present OpenMS 2.0 (http://www.openms.de), a robust, open-source, cross-platform software specifically designed for the flexible and reproducible analysis of high-throughput MS data. The extensible OpenMS software implements common mass spectrometric data processing tasks through a well-defined application programming interface in C++ and Python and through standardized open data formats. OpenMS additionally provides a set of 185 tools and ready-made workflows for common mass spectrometric data processing tasks, which enable users to perform complex quantitative mass spectrometric analyses with ease.

  11. Biomarkers of systemic lupus erythematosus identified using mass spectrometry-based proteomics: a systematic review.

    Science.gov (United States)

    Nicolaou, Orthodoxia; Kousios, Andreas; Hadjisavvas, Andreas; Lauwerys, Bernard; Sokratous, Kleitos; Kyriacou, Kyriacos

    2016-11-23

    Advances in mass spectrometry technologies have created new opportunities for discovering novel protein biomarkers in systemic lupus erythematosus (SLE). We performed a systematic review of published reports on proteomic biomarkers identified in SLE patients using mass spectrometry-based proteomics and highlight their potential disease association and clinical utility. Two electronic databases, MEDLINE and EMBASE, were systematically searched up to July 2015. The methodological quality of studies included in the review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Twenty-five studies were included in the review, identifying 241 SLE candidate proteomic biomarkers related to various aspects of the disease including disease diagnosis and activity or pinpointing specific organ involvement. Furthermore, 13 of the 25 studies validated their results for a selected number of biomarkers in an independent cohort, resulting in the validation of 28 candidate biomarkers. It is noteworthy that 11 candidate biomarkers were identified in more than one study. A significant number of potential proteomic biomarkers that are related to a number of aspects of SLE have been identified using mass spectrometry proteomic approaches. However, further studies are required to assess the utility of these biomarkers in routine clinical practice.

  12. Hybrid mass spectrometry approaches in glycoprotein analysis and their usage in scoring biosimilarity

    Science.gov (United States)

    Yang, Yang; Liu, Fan; Franc, Vojtech; Halim, Liem Andhyk; Schellekens, Huub; Heck, Albert J. R.

    2016-01-01

    Many biopharmaceutical products exhibit extensive structural micro-heterogeneity due to an array of co-occurring post-translational modifications. These modifications often effect the functionality of the product and therefore need to be characterized in detail. Here, we present an integrative approach, combining two advanced mass spectrometry-based methods, high-resolution native mass spectrometry and middle-down proteomics, to analyse this micro-heterogeneity. Taking human erythropoietin and the human plasma properdin as model systems, we demonstrate that this strategy bridges the gap between peptide- and protein-based mass spectrometry platforms, providing the most complete profiling of glycoproteins. Integration of the two methods enabled the discovery of three undescribed C-glycosylation sites on properdin, and revealed in addition unexpected heterogeneity in occupancies of C-mannosylation. Furthermore, using various sources of erythropoietin we define and demonstrate the usage of a biosimilarity score to quantitatively assess structural similarity, which would also be beneficial for profiling other therapeutic proteins and even plasma protein biomarkers. PMID:27824045

  13. Elucidation of the mass fragmentation pathways of potato glycoalkaloids and aglycons using Orbitrap mass spectrometry.

    Science.gov (United States)

    Cahill, Michael G; Caprioli, Giovanni; Vittori, Sauro; James, Kevin J

    2010-09-01

    The mass fragmentation of potato glycoalkaloids, α-solanine and α-chaconine, and the aglycons, demissidine and solasodine were studied using the Orbitrap Fourier transform (FT) mass spectrometer. Using the linear ion trap (LIT) mass spectrometry, multistage collisional-induced dissociation (CID) experiments (MS(n)) on the [M + H](+) precursor ions were performed to aid the elucidation of the mass fragmentation pathways. In addition, higher energy collisional-induced dissociation (HCD) mass spectra were generated for these toxins at a high resolution setting [100,000 FWHM (full width at half maximum)] using the Orbitrap. This hybrid mass spectrometry instrumentation was exploited to produce MS(3) spectra by selecting MS(2) product ions, generated using LIT MS, and fragmentation using HCD. The accurate mass data in the MS(3) spectra aided the confirmation of proposed product ion formulae. The precursor and product ions from glycoalkaloids lost up to four sugars from different regions during MS(n) experiments. Mass fragmentation of the six-ring aglycons were similar, generating major product ions that resulted from cleavages at the B-rings and E-rings.

  14. Non-target screening with high-resolution mass spectrometry : critical review using a collaborative trial on water analysis

    OpenAIRE

    Emma L. Schymanski; Singer, Heinz P.; Slobodnik, Jaroslav; Onghena, Matthias; et al

    2015-01-01

    Abstract: In this article, a dataset from a collaborative non-target screening trial organised by the NORMAN Association is used to review the state-of-the-art and discuss future perspectives of non-target screening using high-resolution mass spectrometry in water analysis. A total of 18 institutes from 12 European countries analysed an extract of the same water sample collected from the River Danube with either one or both of liquid and gas chromatography coupled with mass spectrometry detec...

  15. Ion Mobility Spectrometry - High Resolution LTQ-Orbitrap Mass Spectrometry for Analysis of Homemade Explosives

    Science.gov (United States)

    Hagan, Nathan; Goldberg, Ilana; Graichen, Adam; St. Jean, Amanda; Wu, Ching; Lawrence, David; Demirev, Plamen

    2017-08-01

    The detailed chemical characterization of homemade explosives (HMEs) and other chemicals that can mimic or mask the presence of explosives is important for understanding and improving the performance of commercial instrumentation used for explosive detection. To that end, an atmospheric-pressure drift tube ion mobility spectrometry (IMS) instrument has been successfully coupled to a commercial tandem mass spectrometry (MS) system. The tandem MS system is comprised of a linear ion trap and a high resolution Orbitrap analyzer. This IMS-MS combination allows extensive characterization of threat chemical compounds, including HMEs, and complex real-world background chemicals that can interfere with detection. Here, the composition of ion species originating from a specific HME, erythritol tetranitrate, has been elucidated using accurate mass measurements, isotopic ratios, and tandem MS. Gated IMS-MS and high-resolution MS have been used to identify minor impurities that can be indicative of the HME source and/or synthesis route. Comparison between data obtained on the IMS/MS system and on commercial stand-alone IMS instruments used as explosive trace detectors (ETDs) has also been performed. Such analysis allows better signature assignments of threat compounds, modified detection algorithms, and improved overall ETD performance.

  16. Simultaneous Proteomic Discovery and Targeted Monitoring using Liquid Chromatography, Ion Mobility Spectrometry, and Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Burnum-Johnson, Kristin E.; Nie, Song; Casey, Cameron P.; Monroe, Matthew E.; Orton, Daniel J.; Ibrahim, Yehia M.; Gritsenko, Marina A.; Clauss, Therese R. W.; Shukla, Anil K.; Moore, Ronald J.; Purvine, Samuel O.; Shi, Tujin; Qian, Weijun; Liu, Tao; Baker, Erin S.; Smith, Richard D.

    2016-09-25

    Current proteomics approaches are comprised of both broad discovery measurements as well as more quantitative targeted measurements. These two different measurement types are used to initially identify potentially important proteins (e.g., candidate biomarkers) and then enable improved quantification for a limited number of selected proteins. However, both approaches suffer from limitations, particularly the lower sensitivity, accuracy, and quantitation precision for discovery approaches compared to targeted approaches, and the limited proteome coverage provided by targeted approaches. Herein, we describe a new proteomics approach that allows both discovery and targeted monitoring (DTM) in a single analysis using liquid chromatography, ion mobility spectrometry and mass spectrometry (LC-IMS-MS). In DTM, heavy labeled peptides for target ions are spiked into tryptic digests and both the labeled and unlabeled peptides are broadly detected using LC-IMS-MS instrumentation, allowing the benefits of discovery and targeted approaches. To understand the possible improvement of the DTM approach, it was compared to LC-MS broad measurements using an accurate mass and time tag database and selected reaction monitoring (SRM) targeted measurements. The DTM results yielded greater peptide/protein coverage and a significant improvement in the detection of lower abundance species compared to LC-MS discovery measurements. DTM was also observed to have similar detection limits as SRM for the targeted measurements indicating its potential for combining the discovery and targeted approaches.

  17. Non-Target Screening of Veterinary Drugs Using Tandem Mass Spectrometry on SmartMass

    Science.gov (United States)

    Xia, Bing; Liu, Xin; Gu, Yu-Cheng; Zhang, Zhao-Hui; Wang, Hai-Yan; Ding, Li-Sheng; Zhou, Yan

    2013-05-01

    Non-target screening of veterinary drugs using tandem mass spectrometric data was performed on the SmartMass platform. This newly developed software uses the characteristic fragmentation patterns (CFP) to identify chemicals, especially those containing particular substructures. A mixture of 17 sulfonamides was separated by ultra performance liquid chromatography (UPLC), and SmartMass was used to process the tandem mass spectrometry (MS/MS) data acquired on an Orbitrap mass spectrometer. The data were automatically extracted, and each sulfonamide was recognized and analyzed with a prebuilt analysis rule. By using this software, over 98 % of the false candidate structures were eliminated, and all the correct structures were found within the top 10 of the ranking lists. Furthermore, SmartMass could also be used to identify slightly modified contraband drugs and metabolites with simple prebuilt rules. [Figure not available: see fulltext.

  18. PyQuant: A Versatile Framework for Analysis of Quantitative Mass Spectrometry Data.

    Science.gov (United States)

    Mitchell, Christopher J; Kim, Min-Sik; Na, Chan Hyun; Pandey, Akhilesh

    2016-08-01

    Quantitative mass spectrometry data necessitates an analytical pipeline that captures the accuracy and comprehensiveness of the experiments. Currently, data analysis is often coupled to specific software packages, which restricts the analysis to a given workflow and precludes a more thorough characterization of the data by other complementary tools. To address this, we have developed PyQuant, a cross-platform mass spectrometry data quantification application that is compatible with existing frameworks and can be used as a stand-alone quantification tool. PyQuant supports most types of quantitative mass spectrometry data including SILAC, NeuCode, (15)N, (13)C, or (18)O and chemical methods such as iTRAQ or TMT and provides the option of adding custom labeling strategies. In addition, PyQuant can perform specialized analyses such as quantifying isotopically labeled samples where the label has been metabolized into other amino acids and targeted quantification of selected ions independent of spectral assignment. PyQuant is capable of quantifying search results from popular proteomic frameworks such as MaxQuant, Proteome Discoverer, and the Trans-Proteomic Pipeline in addition to several standalone search engines. We have found that PyQuant routinely quantifies a greater proportion of spectral assignments, with increases ranging from 25-45% in this study. Finally, PyQuant is capable of complementing spectral assignments between replicates to quantify ions missed because of lack of MS/MS fragmentation or that were omitted because of issues such as spectra quality or false discovery rates. This results in an increase of biologically useful data available for interpretation. In summary, PyQuant is a flexible mass spectrometry data quantification platform that is capable of interfacing with a variety of existing formats and is highly customizable, which permits easy configuration for custom analysis. © 2016 by The American Society for Biochemistry and Molecular Biology

  19. Laser desorption lamp ionization source for ion trap mass spectrometry.

    Science.gov (United States)

    Wu, Qinghao; Zare, Richard N

    2015-01-01

    A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm) is directed to a target inside a chamber evacuated to ~15 Pa causing desorption of molecules from the target's surface. The desorbed molecules are ionized by a vacuum ultraviolet (VUV) lamp (filled with xenon, major wavelength at 148 nm). The resulting ions are stored and detected in a three-dimensional quadrupole ion trap modified from a Finnigan Mat LCQ mass spectrometer operated at a pressure of ≥ 0.004 Pa. The limit of detection for desorbed coronene molecules is 1.5 pmol, which is about two orders of magnitude more sensitive than laser desorption laser ionization mass spectrometry using a fluorine excimer laser (157 nm) as the ionization source. The mass spectrum of four standard aromatic compounds (pyrene, coronene, rubrene and 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (OPC)) shows that parent ions dominate. By increasing the infrared laser power, this instrument is capable of detecting inorganic compounds.

  20. Super-atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2013-03-01

    Super-atmospheric pressure chemical ionization (APCI) mass spectrometry was performed using a commercial mass spectrometer by pressurizing the ion source with compressed air up to 7 atm. Similar to typical APCI source, reactant ions in the experiment were generated with corona discharge using a needle electrode. Although a higher needle potential was necessary to initiate the corona discharge, discharge current and detected ion signal were stable at all tested pressures. A Roots booster pump with variable pumping speed was installed between the evacuation port of the mass spectrometer and the original rough pumps to maintain a same pressure in the first pumping stage of the mass spectrometer regardless of ion source pressure. Measurement of gaseous methamphetamine and research department explosive showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. Beyond 5 atm, the ion intensity decreased with further increase of pressure, likely due to greater ion losses inside the ion transport capillary. For benzene, it was found that besides molecular ion and protonated species, ion due to [M + 2H](+) which was not so common in APCI, was also observed with high ion abundance under super-atmospheric pressure condition.

  1. Method for predicting peptide detection in mass spectrometry

    Science.gov (United States)

    Kangas, Lars [West Richland, WA; Smith, Richard D [Richland, WA; Petritis, Konstantinos [Richland, WA

    2010-07-13

    A method of predicting whether a peptide present in a biological sample will be detected by analysis with a mass spectrometer. The method uses at least one mass spectrometer to perform repeated analysis of a sample containing peptides from proteins with known amino acids. The method then generates a data set of peptides identified as contained within the sample by the repeated analysis. The method then calculates the probability that a specific peptide in the data set was detected in the repeated analysis. The method then creates a plurality of vectors, where each vector has a plurality of dimensions, and each dimension represents a property of one or more of the amino acids present in each peptide and adjacent peptides in the data set. Using these vectors, the method then generates an algorithm from the plurality of vectors and the calculated probabilities that specific peptides in the data set were detected in the repeated analysis. The algorithm is thus capable of calculating the probability that a hypothetical peptide represented as a vector will be detected by a mass spectrometry based proteomic platform, given that the peptide is present in a sample introduced into a mass spectrometer.

  2. Screening Non-colored Phenolics in Red Wines using Liquid Chromatography/Ultraviolet and Mass Spectrometry/Mass Spectrometry Libraries

    Directory of Open Access Journals (Sweden)

    Changqing Duan

    2007-03-01

    Full Text Available Liquid chromatography/ultraviolet (LC/UV and mass spectrometry/mass spectrometry (MS/MS libraries containing 39 phenolic compounds were established by coupling a LC and an ion trap MS with an electrospray ionization (ESI source, operated in negative ion mode. As a result, the deprotonated [M-H]- molecule was observed for all the analyzed compounds. Using MS/MS hydroxybenzoic acid and hydroxycinnamic acids showed a loss of CO2 and production of a [M-H-44] - fragment and as expected, the UV spectra of these two compounds were affected by their chemical structures. For flavonol and flavonol glycosides, the spectra of their glycosides and aglycones produced deprotonated [M-H]- and [A-H]- species, respectively, and their UV spectra each presented two major absorption peaks. The UV spectra and MS/MS data of flavan-3-ols and stilbenes were also investigated. Using the optimized LC/MS/MS analytical conditions, the phenolic extracts from six representative wine samples were analyzed and 31 phenolic compounds were detected, 26 of which were identified by searching the LC/UV and MS/MS libraries. Finally, the presence of phenolic compounds was confirmed in different wine samples using the LC/UV and LC/MS/MS libraries.

  3. A Retrospective Evaluation of the Use of Mass Spectrometry in FDA Biologics License Applications

    Science.gov (United States)

    Rogstad, Sarah; Faustino, Anneliese; Ruth, Ashley; Keire, David; Boyne, Michael; Park, Jun

    2016-11-01

    The characterization sections of biologics license applications (BLAs) approved by the United States Food and Drug Administration (FDA) between 2000 and 2015 were investigated to examine the extent of the use of mass spectrometry. Mass spectrometry was found to be integral to the characterization of these biotherapeutics. Of the 80 electronically submitted monoclonal antibody and protein biotherapeutic BLAs included in this study, 79 were found to use mass spectrometric workflows for protein or impurity characterization. To further examine how MS is being used in successful BLAs, the applications were filtered based on the type and number of quality attributes characterized, the mass spectrometric workflows used (peptide mapping, intact mass analysis, and cleaved glycan analysis), the methods used to introduce the proteins into the gas phase (ESI, MALDI, or LC-ESI), and the specific types of instrumentation used. Analyses were conducted over a time course based on the FDA BLA approval to determine if any trends in utilization could be observed over time. Additionally, the different classes of protein-based biotherapeutics among the approved BLAs were clustered to determine if any trends could be attributed to the specific type of biotherapeutic.

  4. microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling

    Science.gov (United States)

    Comi, Troy J.; Neumann, Elizabeth K.; Do, Thanh D.; Sweedler, Jonathan V.

    2017-09-01

    Image-guided mass spectrometry (MS) profiling provides a facile framework for analyzing samples ranging from single cells to tissue sections. The fundamental workflow utilizes a whole-slide microscopy image to select targets of interest, determine their spatial locations, and subsequently perform MS analysis at those locations. Improving upon prior reported methodology, a software package was developed for working with microscopy images. microMS, for microscopy-guided mass spectrometry, allows the user to select and profile diverse samples using a variety of target patterns and mass analyzers. Written in Python, the program provides an intuitive graphical user interface to simplify image-guided MS for novice users. The class hierarchy of instrument interactions permits integration of new MS systems while retaining the feature-rich image analysis framework. microMS is a versatile platform for performing targeted profiling experiments using a series of mass spectrometers. The flexibility in mass analyzers greatly simplifies serial analyses of the same targets by different instruments. The current capabilities of microMS are presented, and its application for off-line analysis of single cells on three distinct instruments is demonstrated. The software has been made freely available for research purposes. [Figure not available: see fulltext.

  5. microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling

    Science.gov (United States)

    Comi, Troy J.; Neumann, Elizabeth K.; Do, Thanh D.; Sweedler, Jonathan V.

    2017-06-01

    Image-guided mass spectrometry (MS) profiling provides a facile framework for analyzing samples ranging from single cells to tissue sections. The fundamental workflow utilizes a whole-slide microscopy image to select targets of interest, determine their spatial locations, and subsequently perform MS analysis at those locations. Improving upon prior reported methodology, a software package was developed for working with microscopy images. microMS, for microscopy-guided mass spectrometry, allows the user to select and profile diverse samples using a variety of target patterns and mass analyzers. Written in Python, the program provides an intuitive graphical user interface to simplify image-guided MS for novice users. The class hierarchy of instrument interactions permits integration of new MS systems while retaining the feature-rich image analysis framework. microMS is a versatile platform for performing targeted profiling experiments using a series of mass spectrometers. The flexibility in mass analyzers greatly simplifies serial analyses of the same targets by different instruments. The current capabilities of microMS are presented, and its application for off-line analysis of single cells on three distinct instruments is demonstrated. The software has been made freely available for research purposes.

  6. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Watrous, Matthew George [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adamic, Mary Louise [Idaho National Lab. (INL), Idaho Falls, ID (United States); Olson, John Eric [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baeck, D. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fox, R. V. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hahn, P. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jenson, D. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lister, T. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The goal of the project, New Paradigms for Isotope Ratio Mass Spectrometry: Raising the Scientific Profile and Improved Performance for Accelerator Mass Spectrometry (AMS) and Thermal Ionization Mass Spectrometry (TIMS), is to ensure that the ongoing isotope ratio determination capability within the U.S. Department of Energy complex is the world’s best for application to nonproliferation. This report spells out the progress of Task 4, Transition of TIMS to AMS for Iodine Analysis, of the larger project. The subtasks under Task 4 and the accomplishments throughout the three year project life cycle are presented in this report. Progress was made in optimization of chemical extraction, determination of a detection limit for 127Iodine, production of standard materials for AMS analysis quality assurance, facilitation of knowledge exchange with respect to analyzing iodine on an AMS, cross comparison with a world-leading AMS laboratory, supercritical fluid extraction of iodine for AMS analysis and electrodeposition of seawater as a direct method of preparation for iodine analysis by AMS--all with the goal of minimizing the time required to stand up an AMS capability for iodine analysis of exposed air filters at INL. An effective extraction method has been developed and demonstrated for iodine analysis of exposed air filters. Innovative techniques to accomplish the cathode preparation for AMS analysis were developed and demonstrated and published. The known gap of a lack of available materials for reference standards in the analysis of iodine by AMS was filled by the preparation of homogenous materials that were calibrated against NIST materials. A minimum limit on the amount of abundant isotope in a sample was determined for AMS analysis. The knowledge exchange occurred with fantastic success. Scientists engaged the international AMS community at conferences, as well as in their laboratories for collaborative work. The supercritical fluid extraction work has positive

  7. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Donald F.; Kiss, Andras; Leach, Franklin E.; Robinson, Errol W.; Pasa-Tolic, Ljiljana; Heeren, Ronald M.

    2013-07-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for exact mass elemental formula assignment. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 μm spatial resolution (75 μm primary ion spot size) with mass resolving power (m/Δm50%) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with m/Δm50% > 3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 μm. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.

  8. Biomedical applications of accelerator mass spectrometry at ANU

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, L.K.; Tada, M.L. di; Liu, K.; Cresswell, R.G. [Australian National University, Canberra, ACT (Australia). Department of Nuclear Physics; Day, J.P.; Oldham, C.L.; Popplewell, J.; Carson, R. [University of Manchester, (United Kingdom). Department of Chemistry

    1997-10-01

    Radioactive isotopic tracers are widely used in biomedical research, but for some elements of much current interest such as aluminium, silicon and plutonium, suitable isotopes for radioactive decay counting are not available. Each of these elements, however, possesses a long-lived isotope which could in principle be used if a suitable atom-counting detection technique were available. Accelerator Mass Spectrometry (AMS) is such a technique. AMS can provide ultra-sensitive detection of fewer than 10{sup 6} atoms of isotope, thereby enabling tracer experiments with human subjects without adding significantly to radiation body burdens. At the ANU, the AMS system based on the 14UD accelerator is being applied to a number of biomedical projects using {sup 26}AI, {sup 32}Si and the isotopes of plutonium as tracers

  9. Centrosome isolation and analysis by mass spectrometry-based proteomics

    DEFF Research Database (Denmark)

    Jakobsen, Lis; Schrøder, Jacob Morville; Larsen, Katja M

    2013-01-01

    Centrioles are microtubule-based scaffolds that are essential for the formation of centrosomes, cilia, and flagella with important functions throughout the cell cycle, in physiology and during development. The ability to purify centriole-containing organelles on a large scale, combined with advan......Centrioles are microtubule-based scaffolds that are essential for the formation of centrosomes, cilia, and flagella with important functions throughout the cell cycle, in physiology and during development. The ability to purify centriole-containing organelles on a large scale, combined...... with advances in protein identification using mass spectrometry-based proteomics, have revealed multiple centriole-associated proteins that are conserved during evolution in eukaryotes. Despite these advances, the molecular basis for the plethora of processes coordinated by cilia and centrosomes is not fully...

  10. Mass spectrometry analysis of gliadins in celiac disease.

    Science.gov (United States)

    Ferranti, Pasquale; Mamone, Gianfranco; Picariello, Gianluca; Addeo, Francesco

    2007-12-01

    In recent years, scientific research on wheat gluten proteins has followed three main directions aimed at (1) finding relationships between individual genetic alleles coding for gliadins, high or low molecular weight glutenin subunits, and the viscoelastic dough properties of flour-derived products such as pasta and bread; (2) identifying prolamins and derived peptides involved in celiac disease, a pathological condition in which the small intestine of genetically predisposed individuals is reversibly damaged; and (3) developing and validating sensitive and specific methods for detecting trace amounts of gluten proteins in gluten-free foods for celiac disease patients. In this review, the main aspects of current and perspective applications of mass spectrometry and proteomic technologies to the structural characterization of gliadins are presented, with focus on issues related to detection, identification, and quantification of intact gliadins, as well as gliadin-derived peptides relevant to the biochemical, immunological, and toxicological aspects of celiac disease.

  11. The Role of Mass Spectrometry in the "Omics" Era.

    Science.gov (United States)

    Di Girolamo, Francesco; Lante, Isabella; Muraca, Maurizio; Putignani, Lorenza

    2013-12-01

    Mass spectrometry (MS) is one of the key analytical technology on which the emerging ''-omics'' approaches are based. It may provide detection and quantization of thousands of proteins and biologically active metabolites from a tissue, body fluid or cell culture working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. It can be expected that the high performance of MS technology, coupled to routine data handling, will soon bring fruit in the request for a better understanding of human diseases, leading to new molecular biomarkers, hence affecting drug targets and therapies. In this review, we focus on the main advances in the MS technologies, influencing genomics, transcriptomics, proteomics, lipidomics and metabolomics fields, up to the most recent MS applications to meta-omic studies.

  12. Monitoring the synthesis of biomolecules using mass spectrometry.

    Science.gov (United States)

    Miyagi, Masaru; Kasumov, Takhar

    2016-10-28

    The controlled and selective synthesis/clearance of biomolecules is critical for most cellular processes. In most high-throughput 'omics' studies, we measure the static quantities of only one class of biomolecules (e.g. DNA, mRNA, proteins or metabolites). It is, however, important to recognize that biological systems are highly dynamic in which biomolecules are continuously renewed and different classes of biomolecules interact and affect each other's production/clearance. Therefore, it is necessary to measure the turnover of diverse classes of biomolecules to understand the dynamic nature of biological systems. Herein, we explain why the kinetic analysis of a diverse range of biomolecules is important and how such an analysis can be done. We argue that heavy water ((2)H2O) could be a universal tracer for monitoring the synthesis of biomolecules on a global scale.This article is part of the themed issue 'Quantitative mass spectrometry'.

  13. Metallothionein dimers studied by nano-spray mass spectrometry.

    Science.gov (United States)

    Hathout, Yetrib; Reynolds, Kristy J; Szilagyi, Zoltan; Fenselau, Catherine

    2002-01-15

    Both transient and stable dimers of metallothionein have been characterized, based on earlier studies using NMR, circular dichroism and size-exclusion chromatography. Here additional characterization is provided by nanospray mass spectrometry. Rapid redistribution of metal ions between monomeric Cd7- and Zn7-metallothionein 2a is monitored by nanospray. An experiment in which theses two forms of the monomeric protein are separated by a dialysis membrane, which will pass metal ions but not proteins, confirms that a transient dimer must form for metal ions to be redistributed. On the other hand, size-exclusion chromatography of reconstituted Zn7- or Cd7-metallothionein revealed the presence of monomeric and dimeric species. These dimers do not equilibrate readily to form monomers and they are shown to be covalent.

  14. Evaluating plant immunity using mass spectrometry-based metabolomics workflows

    Science.gov (United States)

    Heuberger, Adam L.; Robison, Faith M.; Lyons, Sarah Marie A.; Broeckling, Corey D.; Prenni, Jessica E.

    2014-01-01

    Metabolic processes in plants are key components of physiological and biochemical disease resistance. Metabolomics, the analysis of a broad range of small molecule compounds in a biological system, has been used to provide a systems-wide overview of plant metabolism associated with defense responses. Plant immunity has been examined using multiple metabolomics workflows that vary in methods of detection, annotation, and interpretation, and the choice of workflow can significantly impact the conclusions inferred from a metabolomics investigation. The broad range of metabolites involved in plant defense often requires multiple chemical detection platforms and implementation of a non-targeted approach. A review of the current literature reveals a wide range of workflows that are currently used in plant metabolomics, and new methods for analyzing and reporting mass spectrometry (MS) data can improve the ability to translate investigative findings among different plant-pathogen systems. PMID:25009545

  15. Plant Phosphoproteomics: Analysis of Plasma Membrane Transporters by Mass Spectrometry

    DEFF Research Database (Denmark)

    Ye, Juanying; Rudashevskaya, Elena; Young, Clifford

    important physiological functions, such as stomata aperture, cell elongation, or cellular pH regulation. It is known that the activity of plant plasma membrane H+-ATPase is regulated by phosphorylation. Therefore, we first investigated the phosphorylation profile of plant H+-ATPase by enriching...... the phosphopeptides with optimized TiO2 and IMAC enrichment methods prior to MS analysis. We further investigated the global phosphorylation profile of the whole plant plasma membrane proteins using the combination of our recently established phosphopeptide enrichment method, Calcium phosphate precipitation......  Phosphorylation is a key regulatory factor in all aspects of eukaryotic biology including the regulation of plant membrane-bound transport proteins. To date, mass spectrometry (MS) has been introduced as powerful technology for study of post translational modifications (PTMs), including protein...

  16. Estimation of brassylic acid by gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed J. Nasrullah, Erica N. Pfarr, Pooja Thapliyal, Nicholas S. Dusek, Kristofer L. Schiele, Christy Gallagher-Lein, and James A. Bahr

    2010-10-29

    The main focus of this work is to estimate Brassylic Acid (BA) using gas chromatography-mass spectrometry (GC-MS). BA is a product obtained from the oxidative cleavage of Erucic Acid (EA). BA has various applications for making nylons and high performance polymers. BA is a 13 carbon compound with two carboxylic acid functional groups at the terminal end. BA has a long hydrocarbon chain that makes the molecule less sensitive to some of the characterization techniques. Although BA can be characterized by NMR, both the starting material (EA) and products BA and nonanoic acid (NA) have peaks at similar {delta}, ppm values. Hence it becomes difficult for the quick estimation of BA during its synthesis.

  17. Mass spectrometry imaging for visualizing organic analytes in food.

    Science.gov (United States)

    Handberg, Eric; Chingin, Konstantin; Wang, Nannan; Dai, Ximo; Chen, Huanwen

    2015-01-01

    The demand for rapid chemical imaging of food products steadily increases. Mass spectrometry (MS) is featured by excellent molecular specificity of analysis and is, therefore, a very attractive method for chemical profiling. MS for food imaging has increased significantly over the past decade, aided by the emergence of various ambient ionization techniques that allow direct and rapid analysis in ambient environment. In this article, the current status of food imaging with MSI is reviewed. The described approaches include matrix-assisted laser desorption/ionization (MALDI), but emphasize desorption atmospheric pressure photoionization (DAPPI), electrospray-assisted laser desorption/ionization (ELDI), probe electrospray ionization (PESI), surface desorption atmospheric pressure chemical ionization (SDAPCI), and laser ablation flowing atmospheric pressure afterglow (LA-FAPA). The methods are compared with regard to spatial resolution; analysis speed and time; limit of detection; and technical aspects. The performance of each method is illustrated with the description of a related application. Specific requirements in food imaging are discussed.

  18. Myofiber metabolic type determination by mass spectrometry imaging.

    Science.gov (United States)

    Centeno, Delphine; Vénien, Annie; Pujos-Guillot, Estelle; Astruc, Thierry; Chambon, Christophe; Théron, Laëtitia

    2017-08-01

    Matrix assisted laser desorption/ionization (MALDI) mass spectrometry imaging is a powerful tool that opens new research opportunities in the field of biology. In this work, predictive model was developed to discriminate metabolic myofiber types using the MALDI spectral data. Rat skeletal muscles are constituted of type I and type IIA fiber, which have an oxidative metabolism for glycogen degradation, and type IIX and type IIB fiber which have a glycolytic metabolism, present in different proportions according to the muscle function and physiological state. So far, myofiber type is determined by histological methods that are time consuming. Thanks to the predictive model, we were able to predict not only the metabolic fiber type but also their location, on the same muscle section that was used for MALDI imaging. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Mass spectrometry imaging of plant metabolites--principles and possibilities.

    Science.gov (United States)

    Bjarnholt, Nanna; Li, Bin; D'Alvise, Janina; Janfelt, Christian

    2014-06-01

    Covering: up to the end of 2013 New mass spectrometry imaging (MSI) techniques are gaining importance in the analysis of plant metabolite distributions, and significant technological improvements have been introduced in the past decade. This review provides an introduction to the different MSI techniques and their applications in plant science. The most common methods for sample preparation are described, and the review also features a comprehensive table of published studies in MSI of plant material. A number of significant works are highlighted for their contributions to advance the understanding of plant biology through applications of plant metabolite imaging. Particular attention is given to the possibility for imaging of surface metabolites since this is highly dependent on the methods and techniques which are applied in imaging studies.

  20. Acetonitrile Ion Suppression in Atmospheric Pressure Ionization Mass Spectrometry

    Science.gov (United States)

    Colizza, Kevin; Mahoney, Keira E.; Yevdokimov, Alexander V.; Smith, James L.; Oxley, Jimmie C.

    2016-11-01

    Efforts to analyze trace levels of cyclic peroxides by liquid chromatography/mass spectrometry gave evidence that acetonitrile suppressed ion formation. Further investigations extended this discovery to ketones, linear peroxides, esters, and possibly many other types of compounds, including triazole and menadione. Direct ionization suppression caused by acetonitrile was observed for multiple adduct types in both electrospray ionization and atmospheric pressure chemical ionization. The addition of only 2% acetonitrile significantly decreased the sensitivity of analyte response. Efforts to identify the mechanism were made using various nitriles. The ion suppression was reduced by substitution of an acetonitrile hydrogen with an electron-withdrawing group, but was exacerbated by electron-donating or steric groups adjacent to the nitrile. Although current theory does not explain this phenomenon, we propose that polar interactions between the various functionalities and the nitrile may be forming neutral aggregates that manifest as ionization suppression.

  1. Studies of Al metabolism in animal by accelerator mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    WangNa-Xiu; ZhuHan-Min; 等

    1997-01-01

    The correlation between Al metabolism and senile dementia in animal has been studied by AMS(accelerator mass spectrometry).Three groups of laboratory rats were fed with normal food.food with high Al content,and with enriched Ca and Mg together with high Al,respectively for six to eight months.Mapping test was made to recored th degree of wisdom degeneration.Half of the rats were sacrificed and Al contents in various organs were measured by atomic absorption spectroscopy.The rest were injected with 26Al,killed after 5,10,15,25,and 35d and 26Al contents measured by AMS.The distribution of Al as well as the correlation among the accumulation of 26Al,and the existed Al content and dementia was studied.

  2. A century of progress in molecular mass spectrometry.

    Science.gov (United States)

    McLafferty, Fred W

    2011-01-01

    The first mass spectrum of a molecule was measured by J.J. Thomson in 1910. Mass spectrometry (MS) soon became crucial to the study of isotopes and atomic weights and to the development of atomic weapons for World War II. Its notable applications to molecules began with the quantitative analysis of light hydrocarbons during World War II. When I joined the Dow Chemical Company in 1950, MS was not favored by organic chemists. This situation improved only with an increased understanding of gaseous ion chemistry, which was obtained through the use of extensive reference data. Gas chromatography-MS was developed in 1956, and tandem MS was first used a decade later. In neutralization-reionization MS, an unusual, unstable species is prepared by ion-beam neutralization and characterized by reionization. Electrospray ionization of a protein mixture produces its corresponding ionized molecules. In top-down proteomics, ions from an individual component can be mass separated and subjected to collision-activated and electron-capture dissociation to provide extensive sequence information.

  3. Combinatorial Labeling Method for Improving Peptide Fragmentation in Mass Spectrometry

    Science.gov (United States)

    Kuchibhotla, Bhanuramanand; Kola, Sankara Rao; Medicherla, Jagannadham V.; Cherukuvada, Swamy V.; Dhople, Vishnu M.; Nalam, Madhusudhana Rao

    2017-06-01

    Annotation of peptide sequence from tandem mass spectra constitutes the central step of mass spectrometry-based proteomics. Peptide mass spectra are obtained upon gas-phase fragmentation. Identification of the protein from a set of experimental peptide spectral matches is usually referred as protein inference. Occurrence and intensity of these fragment ions in the MS/MS spectra are dependent on many factors such as amino acid composition, peptide basicity, activation mode, protease, etc. Particularly, chemical derivatizations of peptides were known to alter their fragmentation. In this study, the influence of acetylation, guanidinylation, and their combination on peptide fragmentation was assessed initially on a lipase (LipA) from Bacillus subtilis followed by a bovine six protein mix digest. The dual modification resulted in improved fragment ion occurrence and intensity changes, and this resulted in the equivalent representation of b- and y-type fragment ions in an ion trap MS/MS spectrum. The improved representation has allowed us to accurately annotate the peptide sequences de novo. Dual labeling has significantly reduced the false positive protein identifications in standard bovine six peptide digest. Our study suggests that the combinatorial labeling of peptides is a useful method to validate protein identifications for high confidence protein inference. [Figure not available: see fulltext.

  4. Fast atom bombardment tandem mass spectrometry of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    van Breeman, R.B. [Univ. of Illinois, Chicago, IL (United States); Schmitz, H.H.; Schwartz, S.J. [North Carolina State Univ., Raleigh, NC (United States)

    1995-02-01

    Positive ion fast atom bombardment (FAB) tandem mass spectrometry (MS-MS) using a double-focusing mass spectrometer with linked scanning at constant B/E and high-energy collisionally activated dissociation (CAD) was used to differentiate 17 different cartenoids, including {beta}-apo-8{prime}- carotenal, astaxanthin, {alpha}-carotene, {beta}-carotene, {gamma}-carotene, {zeta}-carotene, canthaxanthin, {beta}-cryptoxanthin, isozeaxanthin bis (pelargonate), neoxanthin, neurosporene, nonaprene, lutein, lycopene, phytoene, phytofluene, and zeaxanthin. The carotenoids were either synthetic or isolated from plant tissues. The use of FAB ionization minimized degradation or rearrangement of the carotenoid structures due to the inherent thermal instability generally ascribed to these compounds. Instead of protonated molecules, both polar xanthophylls and nonpolar carotenes formed molecular ions, M{sup {center_dot}+}, during FAB ionization. Following collisionally activated dissociation, fragment ions of selected molecular ion precursors showed structural features indicative of the presence of hydroxyl groups, ring systems, ester groups, and aldehyde groups and the extent of aliphatic polyene conjugation. The fragmentation patterns observed in the mass spectra herein may be used as a reference for the structural determination of carotenoids isolated from plant and animal tissues. 18 refs., 4 figs.

  5. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry.

    Science.gov (United States)

    Balog, Júlia; Sasi-Szabó, László; Kinross, James; Lewis, Matthew R; Muirhead, Laura J; Veselkov, Kirill; Mirnezami, Reza; Dezső, Balázs; Damjanovich, László; Darzi, Ara; Nicholson, Jeremy K; Takáts, Zoltán

    2013-07-17

    Rapid evaporative ionization mass spectrometry (REIMS) is an emerging technique that allows near-real-time characterization of human tissue in vivo by analysis of the aerosol ("smoke") released during electrosurgical dissection. The coupling of REIMS technology with electrosurgery for tissue diagnostics is known as the intelligent knife (iKnife). This study aimed to validate the technique by applying it to the analysis of fresh human tissue samples ex vivo and to demonstrate the translation to real-time use in vivo in a surgical environment. A variety of tissue samples from 302 patients were analyzed in the laboratory, resulting in 1624 cancerous and 1309 noncancerous database entries. The technology was then transferred to the operating theater, where the device was coupled to existing electrosurgical equipment to collect data during a total of 81 resections. Mass spectrometric data were analyzed using multivariate statistical methods, including principal components analysis (PCA) and linear discriminant analysis (LDA), and a spectral identification algorithm using a similar approach was implemented. The REIMS approach differentiated accurately between distinct histological and histopathological tissue types, with malignant tissues yielding chemical characteristics specific to their histopathological subtypes. Tissue identification via intraoperative REIMS matched the postoperative histological diagnosis in 100% (all 81) of the cases studied. The mass spectra reflected lipidomic profiles that varied between distinct histological tumor types and also between primary and metastatic tumors. Thus, in addition to real-time diagnostic information, the spectra provided additional information on divergent tumor biochemistry that may have mechanistic importance in cancer.

  6. Electrospray ionisation mass spectrometry: principles and clinical applications.

    Science.gov (United States)

    Ho, C S; Lam, C W K; Chan, M H M; Cheung, R C K; Law, L K; Lit, L C W; Ng, K F; Suen, M W M; Tai, H L

    2003-01-01

    This mini-review provides a general understanding of electrospray ionisation mass spectrometry (ESI-MS) which has become an increasingly important technique in the clinical laboratory for structural study or quantitative measurement of metabolites in a complex biological sample. The first part of the review explains the electrospray ionisation process, design of mass spectrometers with separation capability, characteristics of the mass spectrum, and practical considerations in quantitative analysis. The second part then focuses on some clinical applications. The capability of ESI-tandem-MS in measuring bio-molecules sharing similar molecular structures makes it particularly useful in screening for inborn errors of amino acid, fatty acid, purine, pyrimidine metabolism and diagnosis of galactosaemia and peroxisomal disorders. Electrospray ionisation is also efficient in generating cluster ions for structural elucidation of macromolecules. This has fostered a new and improved approach (vs electrophoresis) for identification and quantification of haemoglobin variants. With the understanding of glycohaemoglobin structure, an IFCC reference method for glycohaemoglobin assay has been established using ESI-MS. It represents a significant advancement for the standardisation of HbA1c in diabetic monitoring. With its other applications such as in therapeutic drug monitoring, ESI-MS will continue to exert an important influence in the future development and organisation of the clinical laboratory service.

  7. Microchip atmospheric pressure chemical ionization source for mass spectrometry.

    Science.gov (United States)

    Ostman, Pekka; Marttila, Seppo J; Kotiaho, Tapio; Franssila, Sami; Kostiainen, Risto

    2004-11-15

    A novel microchip heated nebulizer for atmospheric pressure chemical ionization mass spectrometry is presented. Anisotropic wet etching is used to fabricate the flow channels, inlet, and nozzle on a silicon wafer. An integrated heater of aluminum is sputtered on a glass wafer. The two wafers are jointed by anodic bonding, creating a two-dimensional version of an APCI source with a sample channel in the middle and gas channels symmetrically on both sides. The ionization is initiated with an external corona-discharge needle positioned 2 mm in front of the microchip heated nebulizer. The microchip APCI source provides flow rates down to 50 nL/min, stable long-term analysis with chip lifetime of weeks, good quantitative repeatability (RSD 0.995) with linear dynamic rage of at least 4 orders of magnitude, and cost-efficient manufacturing. The limit of detection (LOD) for acridine measured with microchip APCI at flow rate of 6.2 muL/min was 5 nM, corresponding to a mass flow of 0.52 fmol/s. The LOD with commercial macro-APCI at a flow rate of 1 mL/min for acridine was the same, 5 nM, corresponding to a significantly worse mass flow sensitivity (83 fmol/s) than measured with microchip APCI. The advantages of microchip APCI makes it a very attractive new microfluidic detector.

  8. Organic secondary ion mass spectrometry: sensitivity enhancement by gold deposition.

    Science.gov (United States)

    Delcorte, A; Médard, N; Bertrand, P

    2002-10-01

    Hydrocarbon oligomers, high-molecular-weight polymers, and polymer additives have been covered with 2-60 nmol of gold/cm2 in order to enhance the ionization efficiency for static secondary ion mass spectrometry (s-SIMS) measurements. Au-cationized molecules (up to -3,000 Da) and fragments (up to the trimer) are observed in the positive mass spectra of metallized polystyrene (PS) oligomer films. Beyond 3,000 Da, the entanglement of polymer chains prevents the ejection of intact molecules from a "thick" organic film. This mass limit can be overcome by embedding the polymer chains in a low-molecular-weight matix. The diffusion of organic molecules over the metal surfaces is also demonstrated for short PS oligomers. In the case of high-molecular-weight polymers (polyethylene, polypropylene, PS) and polymer additives (Irganox 1010, Irgafos 168), the metallization procedure induces a dramatic increase of the fingerprint fragment ion yields as well as the formation of new Aucationized species that can be used for chemical diagnostics. In comparison with the deposition of submonolayers of organic molecules on metallic surfaces, metal evaporation onto organic samples provides a comparable sensitivity enhancement. The distinct advantage of the metal evaporation procedure is that it can be used for any kind of organic sample, irrespective of thickness, opening new perspectives for "real world" sample analysis and chemical imaging by s-SIMS.

  9. Cloud parallel processing of tandem mass spectrometry based proteomics data.

    Science.gov (United States)

    Mohammed, Yassene; Mostovenko, Ekaterina; Henneman, Alex A; Marissen, Rob J; Deelder, André M; Palmblad, Magnus

    2012-10-05

    Data analysis in mass spectrometry based proteomics struggles to keep pace with the advances in instrumentation and the increasing rate of data acquisition. Analyzing this data involves multiple steps requiring diverse software, using different algorithms and data formats. Speed and performance of the mass spectral search engines are continuously improving, although not necessarily as needed to face the challenges of acquired big data. Improving and parallelizing the search algorithms is one possibility; data decomposition presents another, simpler strategy for introducing parallelism. We describe a general method for parallelizing identification of tandem mass spectra using data decomposition that keeps the search engine intact and wraps the parallelization around it. We introduce two algorithms for decomposing mzXML files and recomposing resulting pepXML files. This makes the approach applicable to different search engines, including those relying on sequence databases and those searching spectral libraries. We use cloud computing to deliver the computational power and scientific workflow engines to interface and automate the different processing steps. We show how to leverage these technologies to achieve faster data analysis in proteomics and present three scientific workflows for parallel database as well as spectral library search using our data decomposition programs, X!Tandem and SpectraST.

  10. Human folate metabolism using 14C-accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Arjomand, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Duecker, S. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Johnson, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, P. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zulim, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bucholz, B. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vogel, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1999-03-25

    Folate is a water soluble vitamin required for optimal health, growth and development. It occurs naturally in various states of oxidation of the pteridine ring and with varying lengths to its glutamate chain. Folates function as one-carbon donors through methyl transferase catalyzed reactions. Low-folate diets, especially by those with suboptimal methyltransferase activity, are associated with increased risk of neural tube birth defects in children, hyperhomocysteinemic heart disease, and cancer in adults. Rapidly dividing (neoplastic) cells have a high folate need for DNA synthesis. Chemical analogs of folate (antifolates) that interfere with folate metabolism are used as therapeutic agents in cancer treatment. Although much is known about folate chemistry, metabolism of this vitamin in vivo in humans is not well understood. Since folate levels in blood and tissues are very low and methods to measure them are inadequate, the few previous studies that have examined folate metabolism used large doses of radiolabeled folic acid in patients with Hodgkin's disease and cancer (Butterworth et al. 1969, Krumdieck et al. 1978). A subsequent protocol using deuterated folic acid was also insufficiently sensitive to trace a physiologic folate dose (Stites et al. 1997). Accelerator mass spectrometry (AMS) is an emerging bioanalytical tool that overcomes the limitations of traditional mass spectrometry and of decay counting of long lived radioisotopes (Vogel et al. 1995). AMS can detect attomolar concentrations of 14 C in milligram-sized samples enabling in vivo radiotracer studies in healthy humans. We used AMS to study the metabolism of a physiologic 80 nmol oral dose of 14 C-folic acid (1/6 US RDA) by measuring the 14 C-folate levels in serial plasma, urine and feces samples taken over a 150-day period after dosing a healthy adult volunteer.

  11. Measurement uncertainty of isotopologue fractions in fluxomics determined via mass spectrometry.

    Science.gov (United States)

    Guerrasio, R; Haberhauer-Troyer, C; Steiger, M; Sauer, M; Mattanovich, D; Koellensperger, G; Hann, S

    2013-06-01

    Metabolic flux analysis implies mass isotopomer distribution analysis and determination of mass isotopologue fractions (IFs) of proteinogenic amino acids of cell cultures. In this work, for the first time, this type of analysis is comprehensively investigated in terms of measurement uncertainty by calculating and comparing budgets for different mass spectrometric techniques. The calculations addressed amino acids of Pichia pastoris grown on 10% uniformly (13)C labeled glucose. Typically, such experiments revealed an enrichment of (13)C by at least one order of magnitude in all proteinogenic amino acids. Liquid chromatography-time-of-flight mass spectrometry (LC-TOFMS), liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) analyses were performed. The samples were diluted to fit the linear dynamic range of the mass spectrometers used (10 μM amino acid concentration). The total combined uncertainties of IFs as well as the major uncertainty contributions affecting the IFs were determined for phenylalanine, which was selected as exemplary model compound. A bottom-up uncertainty propagation was performed according to Quantifying Uncertainty in Analytical Measurement and using the Monte Carlo method by considering all factors leading to an IF, i.e., the process of measurement and the addition of (13)C-glucose. Excellent relative expanded uncertainties (k = 1) of 0.32, 0.75, and 0.96% were obtained for an IF value of 0.7 by LC-MS/MS, GC-MS, and LC-TOFMS, respectively. The major source of uncertainty, with a relative contribution of 20-80% of the total uncertainty, was attributed to the signal intensity (absolute counts) uncertainty calculated according to Poisson counting statistics, regardless which of the mass spectrometry platforms was used. Uncertainty due to measurement repeatability was of importance in LC-MS/MS, showing a relative contribution up to 47% of the total uncertainty, whereas for GC-MS and LC

  12. Advanced capabilities for in situ planetary mass spectrometry

    Science.gov (United States)

    Arevalo, R. D., Jr.; Mahaffy, P. R.; Brinckerhoff, W. B.; Getty, S.; Benna, M.; van Amerom, F. H. W.; Danell, R.; Pinnick, V. T.; Li, X.; Grubisic, A.; Cornish, T.; Hovmand, L.

    2015-12-01

    NASA GSFC has delivered highly capable quadrupole mass spectrometers (QMS) for missions to Venus (Pioneer Venus), Jupiter (Galileo), Saturn/Titan (Cassini-Huygens), Mars (MSL and MAVEN), and the Moon (LADEE). Our understanding of the Solar System has been expanded significantly by these exceedingly versatile yet low risk and cost efficient instruments. GSFC has developed more recently a suite of advanced instrument technologies promising enhanced science return while selectively leveraging heritage designs. Relying on a traditional precision QMS, the Analysis of Gas Evolved from Samples (AGES) instrument measures organic inventory, determines exposure age and establishes the absolute timing of deposition/petrogenesis of interrogated samples. The Mars Organic Molecule Analyzer (MOMA) aboard the ExoMars 2018 rover employs a two-dimensional ion trap, built analogously to heritage QMS rod assemblies, which can support dual ionization sources, selective ion enrichment and tandem mass spectrometry (MS/MS). The same miniaturized analyzer serves as the core of the Linear Ion Trap Mass Spectrometer (LITMS) instrument, which offers negative ion detection (switchable polarity) and an extended mass range (>2000 Da). Time-of-flight mass spectrometers (TOF-MS) have been interfaced to a range of laser sources to progress high-sensitivity laser ablation and desorption methods for analysis of inorganic and non-volatile organic compounds, respectively. The L2MS (two-step laser mass spectrometer) enables the desorption of neutrals and/or prompt ionization at IR (1.0 up to 3.1 µm, with an option for tunability) or UV wavelengths (commonly 266 or 355 nm). For the selective ionization of specific classes of organics, such as aromatic hydrocarbons, a second UV laser may be employed to decouple the desorption and ionization steps and limit molecular fragmentation. Mass analyzers with substantially higher resolving powers (up to m/Δm > 100,000), such as the Advanced Resolution Organic

  13. Experimental simulation of negative ion chemistry in Martian atmosphere using ion mobility spectrometry-mass spectrometry

    Science.gov (United States)

    Sabo, Martin; Lichvanová, Zuzana; Orszagh, Juraj; Mason, Nigel; Matejčík, Štefan

    2014-08-01

    We have studied the formation of negative ions in a negative Corona Discharge (CD) fed by CO2/N2 mixtures (with 0, 2, 4, 6, 8, 10% N2) using the technique of ion mobility spectrometry-orthogonal acceleration time of flight mass spectrometry (IMS-oaTOF). The composition of the negative ions was found to be dependent on the initial gas composition, the gas flow regime, the concentrations of neutral reactive species formed in the discharge and the trace amounts on water in the gases were found to play an important role in the negative ions formation. In a pure CO2 discharge operating under standard gas flow conditions of IMS (associated with strong interaction of ions with neutral reactive species formed in discharge) the ions CO3 - (H2O) and CO4 -(H2O) dominated the measured negative ion spectrum while in CO2/N2 mixtures NO3 -(H2O) n , NO3 -(HNO3) ( n = 0, 1) ions prevailed. In the case of reverse gas flow regime (low interaction of ions with neutral reactive species formed in discharge), the negative ions detected were O2 -(H2O) n , and O2 -.CO2(H2O) n both in pure CO2 and N2/CO2 mixtures. The spectra of negative ions recorded for a gas mixture containing 4% N2 in CO2 were compared with theoretical predictions of negative ion composition in the lower atmosphere of Mars.

  14. Examining the Influence of Phosphorylation on Peptide Ion Structure by Ion Mobility Spectrometry-Mass Spectrometry

    Science.gov (United States)

    Glover, Matthew S.; Dilger, Jonathan M.; Acton, Matthew D.; Arnold, Randy J.; Radivojac, Predrag; Clemmer, David E.

    2016-05-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) techniques are used to study the general effects of phosphorylation on peptide structure. Cross sections for a library of 66 singly phosphorylated peptide ions from 33 pairs of positional isomers, and unmodified analogues were measured. Intrinsic size parameters (ISPs) derived from these measurements yield calculated collision cross sections for 85% of these phosphopeptide sequences that are within ±2.5% of experimental values. The average ISP for the phosphoryl group (0.64 ± 0.05) suggests that in general this moiety forms intramolecular interactions with the neighboring residues and peptide backbone, resulting in relatively compact structures. We assess the capability of ion mobility to separate positional isomers (i.e., peptide sequences that differ only in the location of the modification) and find that more than half of the isomeric pairs have >1% difference in collision cross section. Phosphorylation is also found to influence populations of structures that differ in the cis/ trans orientation of Xaa-Pro peptide bonds. Several sequences with phosphorylated Ser or Thr residues located N-terminally adjacent to Pro residues show fewer conformations compared to the unmodified sequences.

  15. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    Science.gov (United States)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  16. Using Spores for Fusarium spp. Classification by MALDI-Based Intact Cell/Spore Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Wolfgang Winkler

    2012-01-01

    Full Text Available Fusarium is a widespread genus of filamentous fungi and a member of the soil microbial community. Certain subspecies are health threatening because of their mycotoxin production that affects the human and animal food chain. Thus, for early and effective pest control, species identification is of particular interest; however, differentiation on the subspecies level is challenging and time-consuming for this fungus. In the present study, we show the possibilities of intact cell mass spectrometry for spore analysis of 22 different Fusarium strains belonging to six Fusarium subspecies. We found that species differentiation is possible if mass spectrometric analyses are performed under well-defined conditions with fixed parameters. A critical point for analysis is a proper sample preparation of spores, which increases the quality of mass spectra with respect to signal intensity and m/z value variations. It was concluded that data acquistion has to be performed automatically; otherwise, user-specific variations are introduced generating data which cannot fit the existing datasets. Data that show clearly that matrix-assisted laser desorption ionization-based intact cell/intact spore mass spectrometry (IC/ISMS can be applied to differentiate closely related Fusarium spp. are presented. Results show a potential to build a database on Fusarium species for accurate species identification, for fast response in the case of infections in the cornfield. We furthermore demonstrate the high precision of our approach in classification of intact Fusarium species according to the location of their collection.

  17. Data Collection and Processing Instrumentation for Time-of-Flight Mass Spectrometry and Ion Mobility Time-of-Flight Mass Spectrometry

    Science.gov (United States)

    Sysoev, Alexey A.; Fomin, O. I.; Poteshin, S. S.; Chernyshev, D. M.; Karpov, A. V.; Sysoev, Alexander A.

    Data processing characteristics can significantly affect reliability of obtained results. Here we discuss two recently developed data collection instruments based on analog-to-digital converters. The first instrument is based on three 500 MHz 12 bit ADC and used for extended dynamic range measurements. Based on 667 MHz 8 bit ADC the second one allows fast 3D data acquisition. The instruments were used for time-of-flight mass spectrometry and ion mobility TOF mass spectrometry fast data acquisition and processing.

  18. A new data evaluation approach for mass measurements of exotic nuclei performed with isochronous mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Diwisch, M.; Fabian, B.; Kuzminchuk, N. [Justus Liebig University Giessen (Germany); Knoebel, R.; Geissel, H.; Plass, W.R.; Scheidenberger, C.; Boutin, D.; Brandau, C.; Chen, L. [Justus Liebig University Giessen (Germany); GSI, Darmstadt (Germany); Patyk, Z. [Soltan Institute for Nuclear Studies, Warszawa (Poland); Weick, H.; Beckert, K.; Bosch, F.; Dimopoulou, C.; Dolinskii, A.; Klepper, O.; Kozhuharov, C.; Kurcewicz, J.; Litvinov, S.A.; Litvinov, Yu.A.; Mazzocco, M.; Muenzenberg, G.; Nociforo, C.; Nolden, F.; Steck, M.; Winkler, M. [GSI, Darmstadt (Germany); Cullen, I.J.; Liu, Z.; Walker, P.M. [University of Surrey, Guildford (United Kingdom); Hausmann, M.; Montes, F. [Michigan State University, East Lansing (United States); Musumarra, A. [Laboratori Nazionali del Sud, INFN Catania (Italy); Nakajima, S.; Suzuki, T.; Yamaguchi, T. [Saitama University, Saitama (Japan); Ohtsubo, T. [Niigata University, Niigata (Japan); Ozawa, A. [University of Tsukuba, Tsukuba (Japan); Sun, B. [GSI, Darmstadt (Germany); School of Physics, Peking University, Beijing (China); Winckler, N. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany)

    2014-07-01

    The Isochronous Mass Spectrometry (IMS) and Schottky Mass Spectrometry (SMS) are powerful tools to measure masses of rare exotic nuclei in a storage ring. While the SMS method provides very high accuracies it does not give access to rare isotopes with lifetimes in the sub second range because beam cooling has to be performed for a few seconds before the measurements start. As a complementary method IMS can be used without beam cooling to reach isotopes with lifetimes of only a few 10 μs. As a drawback of the IMS method one cannot achieve the high mass accuracy of the SMS method until now. For the data evaluation of the SMS data a correlation matrix method has been successfully applied in the past. In order to improve the accuracy of the IMS measurements the same method will now be used, which will allow to combine and to correlate data from different IMS measurements with each other. Applying this method to the analysis of previous experiments with uranium fission fragments at the FRS-ESR facility at GSI and to future experiments, will increase the accuracy of the IMS method and may lead to new mass values with reasonable accuracies for very rare and important nuclei for nuclear astrophysics such as {sup 130}Cd, which were not accessible before.

  19. Systematization of the mass spectra for speciation of inorganic salts with static secondary ion mass spectrometry.

    Science.gov (United States)

    Van Ham, Rita; Van Vaeck, Luc; Adams, Freddy C; Adriaens, Annemie

    2004-05-01

    The analytical use of mass spectra from static secondary ion mass spectrometry for the molecular identification of inorganic analytes in real life surface layers and microobjects requires an empirical insight in the signals to be expected from a given compound. A comprehensive database comprising over 50 salts has been assembled to complement prior data on oxides. The present study allows the systematic trends in the relationship between the detected signals and molecular composition of the analyte to be delineated. The mass spectra provide diagnostic information by means of atomic ions, structural fragments, molecular ions, and adduct ions of the analyte neutrals. The prediction of mass spectra from a given analyte must account for the charge state of the ions in the salt, the formation of oxide-type neutrals from oxy salts, and the occurrence of oxidation-reduction processes.

  20. Current use of high-resolution mass spectrometry in the environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, F.; Sancho, J.V.; Ibanez, M.; Portoles, T. [University Jaume I, Research Institute for Pesticides and Water, Castellon (Spain); Abad, E.; Mattioli, L. [IDAEA-CSIC, Laboratory of Dioxins, Department of Environmental Chemistry, Barcelona (Spain)

    2012-05-15

    During the last two decades, mass spectrometry (MS) has been increasingly used in the environmental sciences with the objective of investigating the presence of organic pollutants. MS has been widely coupled with chromatographic techniques, both gas chromatography (GC) and liquid chromatography (LC), because of their complementary nature when facing a broad range of organic pollutants of different polarity and volatility. A clear trend has been observed, from the very popular GC-MS with a single quadrupole mass analyser, to tandem mass spectrometry (MS-MS) and, more recently, high-resolution mass spectrometry (HRMS). For years GC has been coupled to HR magnetic sector instruments, mostly for dioxin analysis, although in the last ten years there has been growing interest in HRMS with time-of-flight (TOF) and Orbitrap mass analyzers, especially in LC-MS analysis. The increasing interest in the use of HRMS in the environmental sciences is because of its suitability for both targeted and untargeted analysis, owing to its sensitivity in full-scan acquisition mode and high mass accuracy. With the same instrument one can perform a variety of tasks: pre- and post-target analysis, retrospective analysis, discovery of metabolite and transformation products, and non-target analysis. All these functions are relevant to the environmental sciences, in which the analyst encounters thousands of different organic contaminants. Thus, wide-scope screening of environmental samples is one of the main applications of HRMS. This paper is a critical review of current use of HRMS in the environmental sciences. Needless to say, it is not the intention of the authors to summarise all contributions of HRMS in this field, as in classic descriptive reviews, but to give an overview of the main characteristics of HRMS, its strong potential in environmental mass spectrometry and the trends observed over the last few years. Most of the literature has been acquired since 2005, coinciding with the

  1. Thermodynamic Activity Measurements with Knudsen Cell Mass Spectrometry

    Science.gov (United States)

    Copland, Evan H.; Jacobson, Nathan S.

    2001-01-01

    Coupling the Knudsen effusion method with mass spectrometry has proven to be one of the most useful experimental techniques for studying the equilibrium between condensed phases and complex vapors. The Knudsen effusion method involves placing a condensed sample in a Knudsen cell, a small "enclosure", that is uniformly heated and held until equilibrium is attained between the condensed and vapor phases. The vapor is continuously sampled by effusion through a small orifice in the cell. A molecular beam is formed from the effusing vapor and directed into a mass spectrometer for identification and pressure measurement of the species in the vapor phase. Knudsen cell mass spectrometry (KCMS) has been used for nearly fifty years now and continues to be a leading technique for obtaining thermodynamic data. Indeed, much of the well-established vapor specie data in the JANAF tables has been obtained from this technique. This is due to the extreme versatility of the technique. All classes of materials can be studied and all constituents of the vapor phase can be measured over a wide range of pressures (approximately 10(exp -4) to 10(exp -11) bar) and temperatures (500-2800 K). The ability to selectively measure different vapor species makes KCMS a very powerful tool for the measurement of component activities in metallic and ceramic solutions. Today several groups are applying KCMS to measure thermodynamic functions in multicomponent metallic and ceramic systems. Thermodynamic functions, especially component activities, are extremely important in the development of CALPHAD (Calculation of Phase Diagrams) type thermodynamic descriptions. These descriptions, in turn, are useful for modeling materials processing and predicting reactions such as oxide formation and fiber/matrix interactions. The leading experimental methods for measuring activities are the Galvanic cell or electro-motive force (EMF) technique and the KCMS technique. Each has specific advantages, depending on

  2. Understanding ligand effects in gold clusters using mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Laskin, Julia

    2016-01-01

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because “each-atom-counts” toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted that may be compared with the results of high-level theoretical calculations. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well

  3. Understanding ligand effects in gold clusters using mass spectrometry.

    Science.gov (United States)

    Johnson, Grant E; Laskin, Julia

    2016-06-21

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because "each-atom-counts" toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well-defined surfaces may be explored using ion soft landing (SL) in a custom

  4. Direct Detection of Biotinylated Proteins by Mass Spectrometry

    Science.gov (United States)

    2015-01-01

    Mass spectrometric strategies to identify protein subpopulations involved in specific biological functions rely on covalently tagging biotin to proteins using various chemical modification methods. The biotin tag is primarily used for enrichment of the targeted subpopulation for subsequent mass spectrometry (MS) analysis. A limitation of these strategies is that MS analysis does not easily discriminate unlabeled contaminants from the labeled protein subpopulation under study. To solve this problem, we developed a flexible method that only relies on direct MS detection of biotin-tagged proteins called “Direct Detection of Biotin-containing Tags” (DiDBiT). Compared with conventional targeted proteomic strategies, DiDBiT improves direct detection of biotinylated proteins ∼200 fold. We show that DiDBiT is applicable to several protein labeling protocols in cell culture and in vivo using cell permeable NHS-biotin and incorporation of the noncanonical amino acid, azidohomoalanine (AHA), into newly synthesized proteins, followed by click chemistry tagging with biotin. We demonstrate that DiDBiT improves the direct detection of biotin-tagged newly synthesized peptides more than 20-fold compared to conventional methods. With the increased sensitivity afforded by DiDBiT, we demonstrate the MS detection of newly synthesized proteins labeled in vivo in the rodent nervous system with unprecedented temporal resolution as short as 3 h. PMID:25117199

  5. Rapid comparison of diacetylmorphine on banknotes by tandem mass spectrometry.

    Science.gov (United States)

    Ebejer, Karl A; Brereton, Richard G; Carter, James F; Ollerton, Samantha L; Sleeman, Richard

    2005-01-01

    A procedure is described for the determination of the distribution of the contamination of banknotes with controlled drugs using tandem mass spectrometry. The method is illustrated using diacetylmorphine, which is the major active component of heroin. A series of banknotes is introduced into the mass spectrometer and the intensities of two product ions (m/z 328 and 268) derived from the precursor protonated molecule (m/z 370) are recorded. A banknote is considered contaminated if it shows a significant peak for both product ions, and if the ratio of intensities of these two peaks falls within accepted limits. The distribution of diacetylmorphine on sterling banknotes taken from general circulation within the UK can be modelled by an arcsin (square root) transformation of the data or by a log transformation of the data with a higher proportion of contamination. The two models were found to be in close agreement, predicting an upper limit (at 99.9% confidence) of contamination on banknotes from general circulation between 9 and 10%. The percentage contamination in a case study was calculated and compared to the background distribution using the two models proposed. This comparison revealed that the contamination present in the case study was inconsistent with that present on banknotes in general circulation. (c) 2005 John Wiley & Sons, Ltd.

  6. Numerical modeling of capillary electrophoresis - electrospray mass spectrometry interface design.

    Science.gov (United States)

    Jarvas, Gabor; Guttman, Andras; Foret, Frantisek

    2015-01-01

    Capillary electrophoresis hyphenated with electrospray mass spectrometry (CE-ESI-MS) has emerged in the past decade as one of the most powerful bioanalytical techniques. As the sensitivity and efficiency of new CE-ESI-MS interface designs are continuously improving, numerical modeling can play important role during their development. In this review, different aspects of computer modeling and simulation of CE-ESI-MS interfaces are comprehensively discussed. Relevant essentials of hydrodynamics as well as state-of-the-art modeling techniques are critically evaluated. Sheath liquid-, sheathless-, and liquid-junction interfaces are reviewed from the viewpoint of multidisciplinary numerical modeling along with details of single and multiphase models together with electric field mediated flows, electrohydrodynamics, and free fluid-surface methods. Practical examples are given to help non-specialists to understand the basic principles and applications. Finally, alternative approaches like air amplifiers are also included. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 34: 558-569, 2015. © 2014 Wiley Periodicals, Inc.

  7. Issues and Applications in Label-Free Quantitative Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Xianyin Lai

    2013-01-01

    Full Text Available To address the challenges associated with differential expression proteomics, label-free mass spectrometric protein quantification methods have been developed as alternatives to array-based, gel-based, and stable isotope tag or label-based approaches. In this paper, we focus on the issues associated with label-free methods that rely on quantitation based on peptide ion peak area measurement. These issues include chromatographic alignment, peptide qualification for quantitation, and normalization. In addressing these issues, we present various approaches, assembled in a recently developed label-free quantitative mass spectrometry platform, that overcome these difficulties and enable comprehensive, accurate, and reproducible protein quantitation in highly complex protein mixtures from experiments with many sample groups. As examples of the utility of this approach, we present a variety of cases where the platform was applied successfully to assess differential protein expression or abundance in body fluids, in vitro nanotoxicology models, tissue proteomics in genetic knock-in mice, and cell membrane proteomics.

  8. MCMC-based inversion algorithm dedicated to NEMS mass Spectrometry

    Science.gov (United States)

    Pérenon, R.; Mohammad-Djafari, A.; Sage, E.; Duraffourg, L.; Hentz, S.; Brenac, A.; Morel, R.; Grangeat, P.

    2013-08-01

    Nano Electro Mechanical Systems (NEMS) provide new perspectives in the mass spectrometry field. This new generation of sensors is sensitive enough to detect a single molecule. Thus, it is possible to estimate a concentration profile in a counting-mode which brings a reduced noise and a higher sensitivity. In this paper, first, we briefly describe the measurement system. Then we propose a probabilistic model of the acquisition system in the form of an input-output system from which we can deduce the likelihood of the unknowns in the data and a Bayesian inference approach with a hierarchical Bernoulli-Gamma prior model. To do the computation we propose the use of a Multiple-Try Metropolis Monte-Carlo Markov-Chain algorithm. Multiple-Try Metropolis proposal functions are adapted to the model, especially to the discrete nature of the problem. Our approach provides an automatic robust estimation of mass spectra. We test the proposed algorithm both on experimental and on simulated data. We discuss the performances of the algorithm and the robustness of the estimation.

  9. Preparation of Single Cells for Imaging Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E S; Fortson, S L; Kulp, K S; Checchi, K D; Wu, L; Felton, J S; Wu, K J

    2007-10-24

    Characterizing chemical changes within single cells is important for determining fundamental mechanisms of biological processes that will lead to new biological insights and improved disease understanding. Imaging biological systems with mass spectrometry (MS) has gained popularity in recent years as a method for creating precise chemical maps of biological samples. In order to obtain high-quality mass spectral images that provide relevant molecular information about individual cells, samples must be prepared so that salts and other cell-culture components are removed from the cell surface and the cell contents are rendered accessible to the desorption beam. We have designed a cellular preparation protocol for imaging MS that preserves the cellular contents for investigation and removes the majority of the interfering species from the extracellular matrix. Using this method, we obtain excellent imaging results and reproducibility in three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation technique allows routine imaging MS analysis of cultured cells, allowing for any number of experiments aimed at furthering scientific understanding of molecular processes within individual cells.

  10. The Evolving Contribution of Mass Spectrometry to Integrative Structural Biology

    Science.gov (United States)

    Faini, Marco; Stengel, Florian; Aebersold, Ruedi

    2016-06-01

    Protein complexes are key catalysts and regulators for the majority of cellular processes. Unveiling their assembly and structure is essential to understanding their function and mechanism of action. Although conventional structural techniques such as X-ray crystallography and NMR have solved the structure of important protein complexes, they cannot consistently deal with dynamic and heterogeneous assemblies, limiting their applications to small scale experiments. A novel methodological paradigm, integrative structural biology, aims at overcoming such limitations by combining complementary data sources into a comprehensive structural model. Recent applications have shown that a range of mass spectrometry (MS) techniques are able to generate interaction and spatial restraints (cross-linking MS) information on native complexes or to study the stoichiometry and connectivity of entire assemblies (native MS) rapidly, reliably, and from small amounts of substrate. Although these techniques by themselves do not solve structures, they do provide invaluable structural information and are thus ideally suited to contribute to integrative modeling efforts. The group of Brian Chait has made seminal contributions in the use of mass spectrometric techniques to study protein complexes. In this perspective, we honor the contributions of the Chait group and discuss concepts and milestones of integrative structural biology. We also review recent examples of integration of structural MS techniques with an emphasis on cross-linking MS. We then speculate on future MS applications that would unravel the dynamic nature of protein complexes upon diverse cellular states.

  11. SELDI-TOF mass spectrometry of High-Density Lipoprotein

    Directory of Open Access Journals (Sweden)

    Rezaee Farhad

    2007-09-01

    Full Text Available Abstract Background High-Density Lipoprotein (HDL, one of the main plasma lipoproteins, serves as a docking station for proteins involved in inflammation, coagulation, and lipid metabolism. Methods To elucidate the protein composition of HDL, we employed SELDI-TOF mass spectrometry as a potential high-throughput proteomic candidate for protein profiling of HDL. HDL derived from normolipemic individuals was captured on PS20 protein-chips using covalently bound antibodies against apo A-I or A-II. Results After optimisation, on-chip capture of HDL particles directly from plasma or from pre-purified HDL resulted in comparable fingerprints confirming specific capture of HDL. Depending on the capture antibody some differences in the fingerprint were observed. The most detailed fingerprint was observed up to 50 kDa; approximately 95 peaks were detected in the 3–50 kDa molecular mass range. Between 50 and 160 kDa, 27 more peaks were detected. Conclusion Based on these results, SELDI-TOF MS may be a suitable high-throughput candidate for HDL protein profiling and marker search. This approach may be used to i investigate the underlying mechanisms that lead to increased atherothrombotic risk and ii to investigate the atherothrombotic state of an individual.

  12. Mass spectrometry for the discovery of biomarkers of sepsis.

    Science.gov (United States)

    Ludwig, Katelyn R; Hummon, Amanda B

    2017-03-28

    Sepsis is a serious medical condition that occurs in 30% of patients in intensive care units (ICUs). Early detection of sepsis is key to prevent its progression to severe sepsis and septic shock, which can cause organ failure and death. Diagnostic criteria for sepsis are nonspecific and hinder a timely diagnosis in patients. Therefore, there is currently a large effort to detect biomarkers that can aid physicians in the diagnosis and prognosis of sepsis. Mass spectrometry is often the method of choice to detect metabolomic and proteomic changes that occur during sepsis progression. These "omics" strategies allow for untargeted profiling of thousands of metabolites and proteins from human biological samples obtained from septic patients. Differential expression of or modifications to these metabolites and proteins can provide a more reliable source of diagnostic biomarkers for sepsis. Here, we focus on the current knowledge of biomarkers of sepsis and discuss the various mass spectrometric technologies used in their detection. We consider studies of the metabolome and proteome and summarize information regarding potential biomarkers in both general and neonatal sepsis.

  13. Low-Temperature Positive Secondary Ion Mass Spectrometry of Neat and Argon-Diluted Organic Solids

    NARCIS (Netherlands)

    Jonkman, Harry T.; Michl, Josef; King, Robert N.; Andrade, Joseph D.

    1978-01-01

    Secondary ion mass spectrometry of neat solid propane, n-pentane, benzene, toluene, and of propane imbedded in an argon matrix were observed at temperatures varying from 10 to 110 K and show fragmentation patterns similar to those known from ordinary electron impact mass spectrometry. The effects of

  14. Modeling of Plutonium Ionization Probabilities for Use in Nuclear Forensic Analysis by Resonance Ionization Mass Spectrometry

    Science.gov (United States)

    2016-12-01

    material and chemical composition within the sample. This data can then be included in analysis by law enforcement and intelligence agencies to...PLUTONIUM IONIZATION PROBABILITIES FOR USE IN NUCLEAR FORENSIC ANALYSIS BY RESONANCE IONIZATION MASS SPECTROMETRY by Steven F. Hutchinson...IONIZATION PROBABILITIES FOR USE IN NUCLEAR FORENSIC ANALYSIS BY RESONANCE IONIZATION MASS SPECTROMETRY 5. FUNDING NUMBERS 6. AUTHOR(S) Steven F

  15. Test Sample for the Spatially Resolved Quantification of Illicit Drugs on Fingerprints Using Imaging Mass Spectrometry

    NARCIS (Netherlands)

    Muramoto, S.; Forbes, T.P.; van Asten, A.C.; Gillen, G.

    2015-01-01

    A novel test sample for the spatially resolved quantification of illicit drugs on the surface of a fingerprint using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and desorption electrospray ionization mass spectrometry (DESI-MS) was demonstrated. Calibration curves relating the signal

  16. Quantitation of Acrylamide in Foods by High-Resolution Mass Spectrometry

    NARCIS (Netherlands)

    Troise, A.D.; Fogliano, Vincenzo

    2016-01-01

    The use of liquid chromatography high-resolution mass spectrometry (LC-HRMS) and direct analysis real-time high-resolution mass spectrometry (DART-HRMS) defines a new scenario in the analysis of thermal-induced toxicants, such as acrylamide. Several factors contribute to the definition of the

  17. Test Sample for the Spatially Resolved Quantification of Illicit Drugs on Fingerprints Using Imaging Mass Spectrometry

    NARCIS (Netherlands)

    Muramoto, S.; Forbes, T.P.; van Asten, A.C.; Gillen, G.

    2015-01-01

    A novel test sample for the spatially resolved quantification of illicit drugs on the surface of a fingerprint using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and desorption electrospray ionization mass spectrometry (DESI-MS) was demonstrated. Calibration curves relating the signal i

  18. Characterisation of covalent copper and manganese organometallic complexes with Schiff bases by ionspray mass spectrometry

    NARCIS (Netherlands)

    Raffaelli, A.; Minutolo, F.; Feringa, B.L.; Salvadori, P.

    1998-01-01

    Copper and manganese complexes containing Schiff bases as ligands, having potential interest in homogeneous catalysis, have been characterised by mass spectrometry using ionspray ionisation. Single stage mass spectrometry allowed us to confirm the molecular weight of complexes in all cases, providin

  19. Low-Temperature Positive Secondary Ion Mass Spectrometry of Neat and Argon-Diluted Organic Solids

    NARCIS (Netherlands)

    Jonkman, Harry T.; Michl, Josef; King, Robert N.; Andrade, Joseph D.

    1978-01-01

    Secondary ion mass spectrometry of neat solid propane, n-pentane, benzene, toluene, and of propane imbedded in an argon matrix were observed at temperatures varying from 10 to 110 K and show fragmentation patterns similar to those known from ordinary electron impact mass spectrometry. The effects of

  20. Quantitation of Acrylamide in Foods by High-Resolution Mass Spectrometry

    NARCIS (Netherlands)

    Troise, A.D.; Fogliano, Vincenzo

    2016-01-01

    The use of liquid chromatography high-resolution mass spectrometry (LC-HRMS) and direct analysis real-time high-resolution mass spectrometry (DART-HRMS) defines a new scenario in the analysis of thermal-induced toxicants, such as acrylamide. Several factors contribute to the definition of the com