WorldWideScience

Sample records for mars space weather

  1. Space Weather at Mars: MAVEN and MSL/RAD Observations of CME and SEP Events

    Science.gov (United States)

    Lee, C. O.; Ehresmann, B.; Lillis, R. J.; Dunn, P.; Rahmati, A.; Larson, D. E.; Guo, J.; Zeitlin, C.; Luhmann, J. G.; Halekas, J. S.; Espley, J. R.; Thiemann, E.; Hassler, D.

    2017-12-01

    While MAVEN have been observing the space weather conditions driven by ICMEs and SEPs in orbit around Mars, MSL/RAD have been measuring the surface radiation environment due to E > 150 MeV/nuc SEPs and the higher-energy galactic cosmic rays. The suite of MAVEN instruments measuring the particles (SEP), plasma (SWIA) and fields (MAG) information provides detailed local space weather information regarding the solar activity-related fluctuations in the measured surface dose rates. At the same time, the related enhancements in the RAD surface dose rates indicate the degree to which the SEPs affect the lower atmosphere and surface. We will present an overview of the MAVEN observations together with the MSL/RAD measurements and focus our discussion on a number of space weather events driven by CMEs and SEPs. During the March 2015 solar storm period, a succession of CMEs produced intense SEP proton fluxes that were detected by MAVEN/SEP in the 20 keV to 6 MeV detected energy channels. At higher energies, MAVEN/SEP record `FTO' SEP events that were triggered by > 13 MeV energetic protons passing through all three silicon detector layers (Front, Thick, and Open). Using the detector response matrix for an FTO event (incident energy vs detected energy), the minimum incident energy of the SEP protons observed in March 2015 was inferred to be > 40 MeV. The lack of any notable enhancements in the surface dose rate by MSL/RAD suggests that the highest incident energies of the SEP protons were 150 MeV SEP protons impacted the Martian atmosphere and surface. The source of the October 2015 SEP event was probably the CME that erupted near the solar west limb with respect to the Sun-Mars line. As part of the discussion, we will also show solar-heliospheric observations from near-Earth assets together with WSA-Enlil-cone results for some global heliospheric context.

  2. Comparative Science and Space Weather Around the Heliosphere

    Science.gov (United States)

    Grande, Manuel; Andre, Nicolas; COSPAR/ILWS Roadmap Team

    2016-10-01

    Space weather refers to the variable state of the coupled space environment related to changing conditions on the Sun and in the terrestrial atmosphere. The presentation will focus on the critical missing knowledge or observables needed to significantly advance our modelling and forecasting capabilities throughout the solar system putting these in perspective to the recommendations in the recent COSPAR/ILWS roadmap. The COSPAR/ILWS RoadMap focuses on high-priority challenges in key areas of research leading to a better understanding of the space environment and a demonstrable improvement in the provision of timely, reliable information pertinent to effects on civilian space- and ground-based systems, for all stakeholders around the world. The RoadMap prioritizes those advances that can be made on short, intermediate and decadal time scales, identifying gaps and opportunities from a predominantly, but not exclusively, geocentric perspective. While discussion of space weather effects has so far largely been concerned to the near-Earth environment, there are significant present and future applications to the locations beyond, and to other planets. Most obviously, perhaps, are the radiation hazards experienced by astronauts on the way to, and on the surface of, the Moon and Mars. Indeed, the environment experienced by planetary spacecraft in transit and at their destinations is of course critical to their design and successful operation. The case of forthcoming missions to Jupiter and Europa is an extreme example. Moreover, such craft can provide information which in turn increases our understanding of geospace. One initiative is that under Horizon 2020, Europlanet RI will set up a Europlanet Planetary Space Weather Service (PSWS). PSWS will make five entirely new `toolkits' accessible to the research community and to industrial partners planning for space missions: - a General planetary space weather toolkit; Mars (in support of the ESA ExoMars missions to be launched

  3. Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    Science.gov (United States)

    André, Nicolas; Grande, Manuel

    2016-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in

  4. Planetary Space Weather Service: Part of the the Europlanet 2020 Research Infrastructure

    Science.gov (United States)

    Grande, Manuel; Andre, Nicolas

    2016-07-01

    Over the next four years the Europlanet 2020 Research Infrastructure will set up an entirely new European Planetary Space Weather service (PSWS). Europlanet RI is a part of of Horizon 2020 (EPN2020-RI, http://www.europlanet-2020-ri.eu). The Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools

  5. Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure

    Science.gov (United States)

    André, N.; Grande, M.; Achilleos, N.; Barthélémy, M.; Bouchemit, M.; Benson, K.; Blelly, P.-L.; Budnik, E.; Caussarieu, S.; Cecconi, B.; Cook, T.; Génot, V.; Guio, P.; Goutenoir, A.; Grison, B.; Hueso, R.; Indurain, M.; Jones, G. H.; Lilensten, J.; Marchaudon, A.; Matthiä, D.; Opitz, A.; Rouillard, A.; Stanislawska, I.; Soucek, J.; Tao, C.; Tomasik, L.; Vaubaillon, J.

    2018-01-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. PSWS will make twelve new services accessible to the research community, space agencies, and industrial partners planning for space missions. These services will in particular be dedicated to the following key planetary environments: Mars (in support of the NASA MAVEN and European Space Agency (ESA) Mars Express and ExoMars missions), comets (building on the outstanding success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUpiter ICy moon Explorer mission), and one of these services will aim at predicting and detecting planetary events like meteor showers and impacts in the Solar System. This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather as well as to space situational awareness in the tools and models available within the partner institutes. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. PSWS will provide the additional research and tailoring required to apply them for these purposes. PSWS will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end

  6. Large-Scale Traveling Weather Systems in Mars Southern Extratropics

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2017-01-01

    Between late fall and early spring, Mars' middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  7. NASA Space Weather Center Services: Potential for Space Weather Research

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  8. A Milestone in Commercial Space Weather: USTAR Center for Space Weather

    Science.gov (United States)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2009-12-01

    As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.

  9. Socio-Economic Impacts of Space Weather and User Needs for Space Weather Information

    Science.gov (United States)

    Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.

    2017-12-01

    The 2015 National Space Weather Strategy and Space Weather Action Plan (SWAP) details the activities, outcomes, and timelines to build a "Space Weather Ready Nation." NOAA's Space Weather Prediction Center and Abt Associates are working together on two SWAP initiatives: (1) identifying, describing, and quantifying the socio-economic impacts of moderate and severe space weather; and (2) outreach to engineers and operators to better understand user requirements for space weather products and services. Both studies cover four technological sectors (electric power, commercial aviation, satellites, and GNSS users) and rely heavily on industry input. Findings from both studies are essential for decreasing vulnerabilities and enhancing preparedness.

  10. Terrestrial Planet Space Weather Information: An Update

    Science.gov (United States)

    Luhmann, J. G.; Li, Y.; Lee, C.; Mays, M. L.; Odstrcil, D.; Jian, L.; Galvin, A. B.; Mewaldt, R. A.; von Rosenvinge, T. T.; Russell, C. T.; Halekas, J. S.; Connerney, J. E. P.; Jakosky, B. M.; Thompson, W. T.; Baker, D. N.; Dewey, R. M.; Zheng, Y.; Holmstrom, M.; Futaana, Y.

    2015-12-01

    Space weather research is now a solar system-wide enterprise. While with the end of the Venus Express Express mission and MESSENGER, we lost our 'inside' sentinels, new missions such as Solar Orbiter and SPP, and Bepi-Colombo will soon be launched and operating. In the meantime the combination of L1 resources (ACE,WIND,SOHO) and STEREO-A at 1 AU, and Mars Express and MAVEN missions at ~1.5 AU, provide opportunities. Comparative conditions at the Earth orbit and Mars orbit locations are of special interest because they are separated by the region where most solar wind stream interaction regions develop. These alter the propagation of disturbances including the interplanetary CME-driven shocks that make the space radiation affecting future Human mission planning. We share some observational and modeling results thatillustrate present capabilities, as well as developing ones such as ENLIL-based SEP event models that use a range of available observations.

  11. Extratropical Weather Systems on Mars: Radiatively-Active Water Ice Effects

    Science.gov (United States)

    Hollingsworth, J. L.; Kahre, M. A.; Haberle, R. M.; Urata, R. A.; Montmessin, F.

    2017-01-01

    Extratropical, large-scale weather disturbances, namely transient, synoptic-period,baroclinic barotropic eddies - or - low- (high-) pressure cyclones (anticyclones), are components fundamental to global circulation patterns for rapidly rotating, differentially heated, shallow atmospheres such as Earth and Mars. Such "wave-like" disturbances that arise via (geophysical) fluid shear instability develop, mature and decay, and travel west-to-east in the middle and high latitudes within terrestrial-like planetary atmospheres. These disturbances serve as critical agents in the transport of heat and momentum between low and high latitudes of the planet. Moreover, they transport trace species within the atmosphere (e.g., water vapor/ice, other aerosols (dust), chemical species, etc). Between early autumn through early spring, middle and high latitudes on Mars exhibit strong equator-to-pole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems [Banfield et al., 2004; Barnes et al., 1993]. A good example of traveling weather systems, frontal wave activity and sequestered dust activity from MGS/MOC image analyses is provided in Figure 1 (cf. Wang et al. [2005]). Utilizing an upgraded and evolving version of the NASA Ames Research Center (ARC) Mars global climate model, investigated here are key dynamical and physical aspects of simulated northern hemisphere (NH) large-scale extratropica lweather systems,with and without radiatively-active water ice clouds. Mars Climate Model:

  12. Training Early Career Space Weather Researchers and other Space Weather Professionals at the CISM Space Weather Summer School

    Science.gov (United States)

    Gross, N. A.; Hughes, W.

    2011-12-01

    This talk will outline the organization of a summer school designed to introduce young professions to a sub-discipline of geophysics. Through out the 10 year life time of the Center for Integrated Space Weather Modeling (CISM) the CISM Team has offered a two week summer school that introduces new graduate students and other interested professional to the fundamentals of space weather. The curriculum covers basic concepts in space physics, the hazards of space weather, and the utility of computer models of the space environment. Graduate students attend from both inside and outside CISM, from all the sub-disciplines involved in space weather (solar, heliosphere, geomagnetic, and aeronomy), and from across the nation and around the world. In addition, between 1/4 and 1/3 of the participants each year are professionals involved in space weather in some way, such as: forecasters from NOAA and the Air Force, Air Force satellite program directors, NASA specialists involved in astronaut radiation safety, and representatives from industries affected by space weather. The summer school has adopted modern pedagogy that has been used successfully at the undergraduate level. A typical daily schedule involves three morning lectures followed by an afternoon lab session. During the morning lectures, student interaction is encouraged using "Timeout to Think" questions and peer instruction, along with question cards for students to ask follow up questions. During the afternoon labs students, working in groups of four, answer thought provoking questions using results from simulations and observation data from a variety of source. Through the interactions with each other and the instructors, as well as social interactions during the two weeks, students network and form bonds that will last them through out their careers. We believe that this summer school can be used as a model for summer schools in a wide variety of disciplines.

  13. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    Science.gov (United States)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; hide

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  14. Operational Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    Science.gov (United States)

    André, Nicolas; Grande, Manuel

    2017-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI, http://www.europlanet-2020-ri.eu) includes an entirely new Virtual Access Service, "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. PSWS will provide at the end of 2017 12 services distributed over 4 different service domains - 1) Prediction, 2) Detection, 3) Modelling, 4) Alerts. These services include 1.1) A 1D MHD solar wind prediction tool, 1.2) Extensions of a Propagation Tool, 1.3) A meteor showers prediction tool, 1.4) A cometary tail crossing prediction tool, 2.1) Detection of lunar impacts, 2.2) Detection of giant planet fireballs, 2.3) Detection of cometary tail events, 3.1) A Transplanet model of magnetosphere-ionosphere coupling, 3.2) A model of the Mars radiation environment, 3.3.) A model of giant planet magnetodisc, 3.4) A model of Jupiter's thermosphere, 4) A VO-event based alert system. We will detail in the present paper some of these services with a particular emphasis on those already operational at the time of the presentation (1.1, 1.2, 1.3, 2.2, 3.1, 4). The proposed Planetary Space Weather Services will be accessible to the research community, amateur astronomers as well as to industrial partners planning for space missions dedicated in particular to the following key planetary environments: Mars, in support of ESA's ExoMars missions; comets, building on the success of the ESA Rosetta mission; and outer planets, in preparation for the ESA JUpiter ICy moon Explorer (JUICE). These services will also be augmented by the future Solar Orbiter and BepiColombo observations. This new facility will not only have an impact on planetary space missions but will also allow the hardness of spacecraft and their components to be evaluated under variety of known conditions, particularly radiation conditions, extending

  15. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations

    Science.gov (United States)

    Fisher, G.; Jones, B.

    2006-12-01

    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.

  16. Space Weather Services of Korea

    Science.gov (United States)

    Yoon, K.; Hong, S.; Jangsuk, C.; Dong Kyu, K.; Jinyee, C.; Yeongoh, C.

    2016-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  17. Space Weather in Operation

    Data.gov (United States)

    National Aeronautics and Space Administration — The “Space Weather in Operations” effort will provide on-demand and near-real time space weather event information to the Data Access Toolkit (DAT), which is the...

  18. Space Weather- Physics and Effects

    CERN Document Server

    Bothmer, Volker

    2007-01-01

    This book is a state-of-the-art review on the physics of space weather and on space weather impacts on human technology, including manned spaceflight. With contributions from a team of international experts, this comprehensive work covers all aspects of space weather physical processes, and all known aspects of space hazards from humans, both in space and on Earth. Space Weather - Physics and Effects provides the first comprehensive, scientific background of space storms caused by the sun and its impact on geospace focuses on weather issues that have become vital for the development of nationwide technological infrastructures explains magnetic storms on Earth, including the effects of EUV radiation on the atmosphere is an invaluable aid in establishing real-time weather forecasts details the threat that solar effects might have on modern telecommunication systems, including national power grid systems, aircraft and manned spaceflight.

  19. Mars weathering analogs - Secondary mineralization in Antarctic basalts

    Science.gov (United States)

    Berkley, J. L.

    1982-01-01

    Alkalic basalt samples from Ross Island, Antarctica, are evaluated as terrestrial analogs to weathered surface materials on Mars. Secondary alteration in the rocks is limited to pneumatolytic oxidation of igneous minerals and glass, rare groundmass clay and zeolite mineralization, and hydrothermal minerals coating fractures and vesicle surfaces. Hydrothermal mineral assemblages consist mainly of K-feldspar, zeolites (phillipsite and chabazite), calcite, and anhydrite. Low alteration rates are attributed to cold and dry environmental factors common to both Antarctica and Mars. It is noted that mechanical weathering (aeolian abrasion) of Martian equivalents to present Antarctic basalts would yield minor hydrothermal minerals and local surface fines composed of primary igneous minerals and glass but would produce few hydrous products, such as palagonite, clay or micas. It is thought that leaching of hydrothermal vein minerals by migrating fluids and redeposition in duricrust deposits may represent an alternate process for incorporating secondary minerals of volcanic origin into Martian surface fines.

  20. Elevated olivine weathering rates and sulfate formation at cryogenic temperatures on Mars.

    Science.gov (United States)

    Niles, Paul B; Michalski, Joseph; Ming, Douglas W; Golden, D C

    2017-10-17

    Large Hesperian-aged (~3.7 Ga) layered deposits of sulfate-rich sediments in the equatorial regions of Mars have been suggested to be evidence for ephemeral playa environments. But early Mars may not have been warm enough to support conditions similar to what occurs in arid environments on Earth. Instead cold, icy environments may have been widespread. Under cryogenic conditions sulfate formation might be blocked, since kinetics of silicate weathering are typically strongly retarded at temperatures well below 0 °C. But cryo-concentration of acidic solutions may counteract the slow kinetics. Here we show that cryo-concentrated acidic brines rapidly chemically weather olivine minerals and form sulfate minerals at temperatures as low as -60 °C. These experimental results demonstrate the viability of sulfate formation under current Martian conditions, even in the polar regions. An ice-hosted sedimentation and weathering model may provide a compelling description of the origin of large Hesperian-aged layered sulfate deposits on Mars.

  1. NASA Space Environments Technical Discipline Team Space Weather Activities

    Science.gov (United States)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  2. Space Weather Research: Indian perspective

    Science.gov (United States)

    Bhardwaj, Anil; Pant, Tarun Kumar; Choudhary, R. K.; Nandy, Dibyendu; Manoharan, P. K.

    2016-12-01

    Space weather, just like its meteorological counterpart, is of extreme importance when it comes to its impact on terrestrial near- and far-space environments. In recent years, space weather research has acquired an important place as a thrust area of research having implications both in space science and technology. The presence of satellites and other technological systems from different nations in near-Earth space necessitates that one must have a comprehensive understanding not only of the origin and evolution of space weather processes but also of their impact on technology and terrestrial upper atmosphere. To address this aspect, nations across the globe including India have been investing in research concerning Sun, solar processes and their evolution from solar interior into the interplanetary space, and their impact on Earth's magnetosphere-ionosphere-thermosphere system. In India, over the years, a substantial amount of work has been done in each of these areas by various agencies/institutions. In fact, India has been, and continues to be, at the forefront of space research and has ambitious future programs concerning these areas encompassing space weather. This review aims at providing a glimpse of this Indian perspective on space weather research to the reader and presenting an up-to-date status of the same.

  3. Traveling Weather Disturbances in Mars Southern Extratropics: Sway of the Great Impact Basins

    Science.gov (United States)

    Hollingsworth, Jeffery L.

    2016-01-01

    As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e. "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e. transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical weather disturbances are critical components of the global circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (Mars GCM). This global circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e. globally averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e. east-west varying) topography on southern large-scale weather disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars

  4. Space Weather and Real-Time Monitoring

    Directory of Open Access Journals (Sweden)

    S Watari

    2009-04-01

    Full Text Available Recent advance of information and communications technology enables to collect a large amount of ground-based and space-based observation data in real-time. The real-time data realize nowcast of space weather. This paper reports a history of space weather by the International Space Environment Service (ISES in association with the International Geophysical Year (IGY and importance of real-time monitoring in space weather.

  5. Activities of NICT space weather project

    Science.gov (United States)

    Murata, Ken T.; Nagatsuma, Tsutomu; Watari, Shinichi; Shinagawa, Hiroyuki; Ishii, Mamoru

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  6. Chemical weathering on Mars. Collection of papers. LPI-MSATT Workshop on Chemical Weathering on Mars, Cocoa Beach, FL (USA), 10 - 12 Sep 1992.

    Science.gov (United States)

    Burns, R. G.; Banin, A.

    1993-10-01

    The Workshop on Chemical Weathering on Mars consisted of thirty papers, extended abstracts of which were published in the LPI Technical Report, No. 92-04. The collection of seven papers in this issue report new data and interpretations about the chemical evolution of the Martian surface.

  7. Space weather in the EU’s FP7 Space Theme

    Directory of Open Access Journals (Sweden)

    Chiarini Paola

    2013-11-01

    Full Text Available Technological infrastructures in space and on ground provide services on which modern society and economies rely. Space weather related research is funded under the 7th Framework Programme for Research and Innovation (FP7 of the European Union in response to the need of protecting such critical infrastructures from the damage which could be caused by extreme space weather events. The calls for proposals published under the topic “Security of space assets from space weather events” of the FP7 Space Theme aimed to improve forecasts and predictions of disruptive space weather events as well as identify best practices to limit the impacts on space- and ground-based infrastructures and their data provision. Space weather related work was also funded under the topic “Exploitation of space science and exploration data”, which aims to add value to space missions and Earth-based observations by contributing to the effective scientific exploitation of collected data. Since 2007 a total of 20 collaborative projects have been funded, covering a variety of physical phenomena associated with space weather, from ionospheric disturbances and scintillation, to geomagnetically induced currents at Earth’s surface, to coronal mass ejections and solar energetic particles. This article provides an overview of the funded projects, touching upon some results and referring to specific websites for a more exhaustive description of the projects’ outcomes.

  8. Towards a National Space Weather Predictive Capability

    Science.gov (United States)

    Fox, N. J.; Ryschkewitsch, M. G.; Merkin, V. G.; Stephens, G. K.; Gjerloev, J. W.; Barnes, R. J.; Anderson, B. J.; Paxton, L. J.; Ukhorskiy, A. Y.; Kelly, M. A.; Berger, T. E.; Bonadonna, L. C. M. F.; Hesse, M.; Sharma, S.

    2015-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review the space weather system developed for the Van Allen Probes mission, together with other datasets, tools and models that have resulted from research by scientists at JHU/APL. We will look at how these, and results from future missions such as Solar Probe Plus, could be applied to support space weather applications in coordination with other community assets and capabilities.

  9. Looking toward to the next-generation space weather forecast system. Comments former a former space weather forecaster

    International Nuclear Information System (INIS)

    Tomita, Fumihiko

    1999-01-01

    In the 21st century, man's space-based activities will increase significantly and many kinds of space utilization technologies will assume a vital role in the infrastructure, creating new businesses, securing the global environment, contributing much to human welfare in the world. Communications Research Laboratory (CRL) has been contributing to the safety of human activity in space and to the further understanding of the solar terrestrial environment through the study of space weather, including the upper atmosphere, magnetosphere, interplanetary space, and the sun. The next-generation Space Weather Integrated Monitoring System (SWIMS) for future space activities based on the present international space weather forecasting system is introduced in this paper. (author)

  10. Space radiation protection: Destination Mars.

    Science.gov (United States)

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure. Copyright © 2014 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  11. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  12. SPace weather applications in a technology-dependent society

    Science.gov (United States)

    Ngwira, C. M.

    2017-12-01

    Space weather can adversely key technology assets, such as, high-voltage electric power transmission grids, oil and gas pipelines, and communications systems that are critical to national security and economy. However, the term of "space weather" is not well known in our society. This presentation will introduce key concepts related to the space weather problem and show how space weather impacts our everyday life. The goal is to promote awareness among the general public. Also, this presentation will highlight how space weather is being used to promote STEM education for community college students through the NASA internship program.

  13. Bringing Space Weather Down to Earth

    Science.gov (United States)

    Reiff, P. H.; Sumners, C.

    2005-05-01

    Most of the public has no idea what Space Weather is, but a number of innovative programs, web sites, magazine articles, TV shows and planetarium shows have taken space weather from an unknown quantity to a much more visible field. This paper reviews new developments, including the new Space Weather journal, the very popular spaceweather.com website, new immersive planetarium shows that can go "on the road", and well-publicized Sun-Earth Day activities. Real-time data and reasonably accurate spaceweather forecasts are available from several websites, with many subscribers. Even the renaissance of amateur radio because of Homeland Security brings a new generation of learners to wonder what is going on in the Sun today. The NSF Center for Integrated Space Weather Modeling has a dedicated team to reach both the public and a greater diversity of new scientists.

  14. Vodcasting space weather: The Space Weather FX vodcast series

    Science.gov (United States)

    Collins Petersen, C.; Erickson, P. J.

    2008-06-01

    The topic of space weather is the subject of a series of nine vodcasts (video podcasts) being created by MIT Haystack Observatory (Westford, Massachusetts, USA) and Loch Ness Productions (Groton, Massachusetts, USA). This paper describes the project, its science and outreach goals, and introduces the principal participants.

  15. Space Weather, Environment and Societies

    CERN Document Server

    Lilensten, Jean

    2006-01-01

    Our planet exists within a space environment affected by constantly changing solar atmosphere producing cosmic particles and electromagnetic waves. This "space weather" profoundly influences the performance of our technology because we primarily use two means for transmitting information and energy; namely, electromagnetic waves and electricity. On an everyday basis, we have developed methods to cope with the normal conditions. However, the sun remains a fiery star whose 'angry' outbursts can potentially destroy spacecrafts, kill astronauts, melt electricity transformers, stop trains, and generally wreak havoc with human activities. Space Weather is the developing field within astronomy that aims at predicting the sun’s violent activity and minimizing the impacts on our daily lives. Space Weather, Environment, and Societies explains why our technological societies are so dependent on solar activity and how the Sun disturbs the transmission of information and energy. Footnotes expand specific points and the ...

  16. Space Weather Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of space weather datasets from the National Oceanic and Atmospheric Administration and from the World Data Service for Geophysics,...

  17. Pushing the Envelope of Extreme Space Weather

    Science.gov (United States)

    Pesnell, W. D.

    2014-12-01

    Extreme Space Weather events are large solar flares or geomagnetic storms, which can cost billions of dollars to recover from. We have few examples of such events; the Carrington Event (the solar superstorm) is one of the few that had superlatives in three categories: size of solar flare, drop in Dst, and amplitude of aa. Kepler observations show that stars similar to the Sun can have flares releasing millions of times more energy than an X-class flare. These flares and the accompanying coronal mass ejections could strongly affect the atmosphere surrounding a planet. What level of solar activity would be necessary to strongly affect the atmosphere of the Earth? Can we map out the envelope of space weather along the evolution of the Sun? What would space weather look like if the Sun stopped producing a magnetic field? To what extreme should Space Weather go? These are the extremes of Space Weather explored in this talk.

  18. Space weather and coronal mass ejections

    CERN Document Server

    Howard, Tim

    2013-01-01

    Space weather has attracted a lot of attention in recent times. Severe space weather can disrupt spacecraft, and on Earth can be the cause of power outages and power station failure. It also presents a radiation hazard for airline passengers and astronauts. These ""magnetic storms"" are most commonly caused by coronal mass ejections, or CMES, which are large eruptions of plasma and magnetic field from the Sun that can reach speeds of several thousand km/s. In this SpringerBrief, Space Weather and Coronal Mass Ejections, author Timothy Howard briefly introduces the coronal mass ejection, its sc

  19. The Space Physics of Life: Searching for Biosignatures on Habitable Icy Worlds Affected by Space Weathering

    Science.gov (United States)

    Cooper, John F.

    2006-01-01

    Accessible surfaces of the most likely astrobiological habitats (Mars, Europa, Titan) in the solar system beyond Earth are exposed to various chemical and hydrologic weathering processes directly or indirectly induced by interaction with the overlying space environment. These processes can be both beneficial, through provision of chemical compounds and energy, and destructive, through chemical dissociation or burial, to detectable presence of biosignatures. Orbital, suborbital, and surface platforms carrying astrobiological instrumentation must survive, and preferably exploit, space environment interactions to reach these habitats and search for evidence of life or its precursors. Experience from Mars suggests that any detection of biosignatures must be accompanied by characterization of the local chemical environment and energy sources including irradiation by solar ultraviolet photons and energetic particles from the space environment. Orbital and suborbital surveys of surface chemistry and astrobiological potential in the context of the space environment should precede targeted in-situ measurements to maximize probability of biosignature detection through site selection. The Space Physics of Life (SPOL) investigation has recently been proposed to the NASA Astrobiology Institute and is briefly described in this presentation. SPOL is the astrobiologically relevant study of the interactions and relationships of potentially? or previously inhabited, bodies of the solar system with the surrounding environments. This requires an interdisciplinary effort in space physics, planetary science, and radiation biology. The proposed investigation addresses the search for habitable environments, chemical resources to support life, and techniques for detection of organic and inorganic signs of life in the context of the space environment.

  20. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    Science.gov (United States)

    Minow, Joseph I.; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  1. Space Weather Studies at Istanbul Technical University

    Science.gov (United States)

    Kaymaz, Zerefsan

    2016-07-01

    This presentation will introduce the Upper Atmosphere and Space Weather Laboratory of Istanbul Technical University (ITU). It has been established to support the educational needs of the Faculty of Aeronautics and Astronautics in 2011 to conduct scientific research in Space Weather, Space Environment, Space Environment-Spacecraft Interactions, Space instrumentation and Upper Atmospheric studies. Currently the laboratory has some essential infrastructure and the most instrumentation for ionospheric observations and ground induced currents from the magnetosphere. The laboratory has two subunits: SWIFT dealing with Space Weather Instrumentation and Forecasting unit and SWDPA dealing with Space Weather Data Processing and Analysis. The research area covers wide range of upper atmospheric and space science studies from ionosphere, ionosphere-magnetosphere coupling, magnetic storms and magnetospheric substorms, distant magnetotail, magnetopause and bow shock studies, as well as solar and solar wind disturbances and their interaction with the Earth's space environment. We also study the spacecraft environment interaction and novel plasma instrument design. Several scientific projects have been carried out in the laboratory. Operational objectives of our laboratory will be carried out with the collaboration of NASA's Space Weather Laboratory and the facilities are in the process of integration to their prediction services. Educational and research objectives, as well as the examples from the research carried out in our laboratory will be demonstrated in this presentation.

  2. Successfully Transitioning Science Research to Space Weather Applications

    Science.gov (United States)

    Spann, James

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  3. Progress in space weather predictions and applications

    Science.gov (United States)

    Lundstedt, H.

    The methods of today's predictions of space weather and effects are so much more advanced and yesterday's statistical methods are now replaced by integrated knowledge-based neuro-computing models and MHD methods. Within the ESA Space Weather Programme Study a real-time forecast service has been developed for space weather and effects. This prototype is now being implemented for specific users. Today's applications are not only so many more but also so much more advanced and user-oriented. A scientist needs real-time predictions of a global index as input for an MHD model calculating the radiation dose for EVAs. A power company system operator needs a prediction of the local value of a geomagnetically induced current. A science tourist needs to know whether or not aurora will occur. Soon we might even be able to predict the tropospheric climate changes and weather caused by the space weather.

  4. CCMC: bringing space weather awareness to the next generation

    Science.gov (United States)

    Chulaki, A.; Muglach, K.; Zheng, Y.; Mays, M. L.; Kuznetsova, M. M.; Taktakishvili, A.; Collado-Vega, Y. M.; Rastaetter, L.; Mendoza, A. M. M.; Thompson, B. J.; Pulkkinen, A. A.; Pembroke, A. D.

    2017-12-01

    Making space weather an element of core education is critical for the future of the young field of space weather. Community Coordinated Modeling Center (CCMC) is an interagency partnership established to aid the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable our small group to serve as a hub for rising generations of young space scientists and engineers. CCMC offers a variety of educational tools and resources publicly available online and providing access to the largest collection of modern space science models developed by the international research community. CCMC has revolutionized the way these simulations are utilized in classrooms settings, student projects, and scientific labs. Every year, this online system serves hundreds of students, educators and researchers worldwide. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unique capabilities and experiences, the team also provides in-depth space weather training to hundreds of students and professionals. One training module offers undergraduates an opportunity to actively engage in real-time space weather monitoring, analysis, forecasting, tools development and research, eventually serving remotely as NASA space weather forecasters. In yet another project, CCMC is collaborating with Hayden Planetarium and Linkoping University on creating a visualization platform for planetariums (and classrooms) to provide simulations of dynamic processes in the large domain stretching from the solar corona to the Earth's upper

  5. Communicating space weather to policymakers and the wider public

    Science.gov (United States)

    Ferreira, Bárbara

    2014-05-01

    As a natural hazard, space weather has the potential to affect space- and ground-based technological systems and cause harm to human health. As such, it is important to properly communicate this topic to policymakers and the general public alike, informing them (without being unnecessarily alarmist) about the potential impact of space-weather phenomena and how these can be monitored and mitigated. On the other hand, space weather is related to interesting phenomena on the Sun such as coronal-mass ejections, and incorporates one of the most beautiful displays in the Earth and its nearby space environment: aurora. These exciting and fascinating aspects of space weather should be cultivated when communicating this topic to the wider public, particularly to younger audiences. Researchers have a key role to play in communicating space weather to both policymakers and the wider public. Space scientists should have an active role in informing policy decisions on space-weather monitoring and forecasting, for example. And they can exercise their communication skills by talking about space weather to school children and the public in general. This presentation will focus on ways to communicate space weather to wider audiences, particularly policymakers. It will also address the role researchers can play in this activity to help bridge the gap between the space science community and the public.

  6. Space Weather: Where Is The Beef?

    Science.gov (United States)

    Koskinen, H. E. J.

    Space weather has become a highly fashionable topic in solar-terrestrial physics. It is perhaps the best tool to popularise the field and it has contributed significantly to the dialogue between solar, magnetospheric, and ionospheric scientist, and also to mu- tual understanding between science and engineering communities. While these are laudable achievements, it is important for the integrity of scientific space weather re- search to recognise the central open questions in the physics of space weather and the progress toward solving them. We still lack sufficient understanding of the solar physics to be able to tell in advance when and where a solar eruption will take place and whether it will turn to a geoeffective event. There is much to do to understand ac- celeration of solar energetic particles and propagation of solar mass ejecta toward the Earth. After more than 40 years of research scientific discussion of energy and plasma transfer through the magnetopause still deals mostly with qualitative issues and the rapid acceleration processes in the magnetosphere are not yet explained in a satisfac- tory way. Also the coupling to the ionosphere and from there to the strong induction effects on ground is another complex of research problems. For space weather science the beef is in the investigation of these and related topics, not in marketing half-useful space weather products to hesitant customers.

  7. Solar EUV irradiance for space weather applications

    Science.gov (United States)

    Viereck, R. A.

    2015-12-01

    Solar EUV irradiance is an important driver of space weather models. Large changes in EUV and x-ray irradiances create large variability in the ionosphere and thermosphere. Proxies such as the F10.7 cm radio flux, have provided reasonable estimates of the EUV flux but as the space weather models become more accurate and the demands of the customers become more stringent, proxies are no longer adequate. Furthermore, proxies are often provided only on a daily basis and shorter time scales are becoming important. Also, there is a growing need for multi-day forecasts of solar EUV irradiance to drive space weather forecast models. In this presentation we will describe the needs and requirements for solar EUV irradiance information from the space weather modeler's perspective. We will then translate these requirements into solar observational requirements such as spectral resolution and irradiance accuracy. We will also describe the activities at NOAA to provide long-term solar EUV irradiance observations and derived products that are needed for real-time space weather modeling.

  8. Space weather and power grids: findings and outlook

    Science.gov (United States)

    Krausmann, Elisabeth; Andersson, Emmelie; Murtagh, William; Mitchison, Neil

    2014-05-01

    The impact of space weather on the power grid is a tangible and recurring threat with potentially serious consequences on society. Of particular concern is the long-distance high-voltage power grid, which is vulnerable to the effects of geomagnetic storms that can damage or destroy equipment or lead to grid collapse. In order to launch a dialogue on the topic and encourage authorities, regulators and operators in European countries and North America to learn from each other, the European Commission's Joint Research Centre, the Swedish Civil Contingencies Agency, and NOAA's Space Weather Prediction Centre, with the contribution of the UK Civil Contingencies Secretariat, jointly organised a workshop on the impact of extreme space weather on the power grid on 29-30 October 2013. Being structured into 6 sessions, the topics addressed were space-weather phenomena and the dynamics of their impact on the grid, experiences with prediction and now-casting in the USA and in Europe, risk assessment and preparedness, as well as policy implications arising from increased awareness of the space-weather hazard. The main workshop conclusions are: • There is increasing awareness of the risk of space-weather impact among power-grid operators and regulators and some countries consider it a priority risk to be addressed. • The predictability of space-weather phenomena is still limited and relies, in part, on data from ageing satellites. NOAA is working with NASA to launch the DSCOVR solar wind spacecraft, the replacement for the ACE satellite, in early 2015. • In some countries, models and tools for GIC prediction and grid impact assessment have been developed in collaboration with national power grids but equipment vulnerability models are scarce. • Some countries have successfully hardened their transmission grids to space-weather impact and sustained relatively little or no damage due to currents induced by past moderate space-weather events. • While there is preparedness

  9. Concept for an International Standard related to Space Weather Effects on Space Systems

    Science.gov (United States)

    Tobiska, W. Kent; Tomky, Alyssa

    There is great interest in developing an international standard related to space weather in order to specify the tools and parameters needed for space systems operations. In particular, a standard is important for satellite operators who may not be familiar with space weather. In addition, there are others who participate in space systems operations that would also benefit from such a document. For example, the developers of software systems that provide LEO satellite orbit determination, radio communication availability for scintillation events (GEO-to-ground L and UHF bands), GPS uncertainties, and the radiation environment from ground-to-space for commercial space tourism. These groups require recent historical data, current epoch specification, and forecast of space weather events into their automated or manual systems. Other examples are national government agencies that rely on space weather data provided by their organizations such as those represented in the International Space Environment Service (ISES) group of 14 national agencies. Designers, manufacturers, and launchers of space systems require real-time, operational space weather parameters that can be measured, monitored, or built into automated systems. Thus, a broad scope for the document will provide a useful international standard product to a variety of engineering and science domains. The structure of the document should contain a well-defined scope, consensus space weather terms and definitions, and internationally accepted descriptions of the main elements of space weather, its sources, and its effects upon space systems. Appendices will be useful for describing expanded material such as guidelines on how to use the standard, how to obtain specific space weather parameters, and short but detailed descriptions such as when best to use some parameters and not others; appendices provide a path for easily updating the standard since the domain of space weather is rapidly changing with new advances

  10. Verification of Space Weather Forecasts using Terrestrial Weather Approaches

    Science.gov (United States)

    Henley, E.; Murray, S.; Pope, E.; Stephenson, D.; Sharpe, M.; Bingham, S.; Jackson, D.

    2015-12-01

    The Met Office Space Weather Operations Centre (MOSWOC) provides a range of 24/7 operational space weather forecasts, alerts, and warnings, which provide valuable information on space weather that can degrade electricity grids, radio communications, and satellite electronics. Forecasts issued include arrival times of coronal mass ejections (CMEs), and probabilistic forecasts for flares, geomagnetic storm indices, and energetic particle fluxes and fluences. These forecasts are produced twice daily using a combination of output from models such as Enlil, near-real-time observations, and forecaster experience. Verification of forecasts is crucial for users, researchers, and forecasters to understand the strengths and limitations of forecasters, and to assess forecaster added value. To this end, the Met Office (in collaboration with Exeter University) has been adapting verification techniques from terrestrial weather, and has been working closely with the International Space Environment Service (ISES) to standardise verification procedures. We will present the results of part of this work, analysing forecast and observed CME arrival times, assessing skill using 2x2 contingency tables. These MOSWOC forecasts can be objectively compared to those produced by the NASA Community Coordinated Modelling Center - a useful benchmark. This approach cannot be taken for the other forecasts, as they are probabilistic and categorical (e.g., geomagnetic storm forecasts give probabilities of exceeding levels from minor to extreme). We will present appropriate verification techniques being developed to address these forecasts, such as rank probability skill score, and comparing forecasts against climatology and persistence benchmarks. As part of this, we will outline the use of discrete time Markov chains to assess and improve the performance of our geomagnetic storm forecasts. We will also discuss work to adapt a terrestrial verification visualisation system to space weather, to help

  11. Third Space Weather Summit Held for Industry and Government Agencies

    Science.gov (United States)

    Intriligator, Devrie S.

    2009-12-01

    The potential for space weather effects has been increasing significantly in recent years. For instance, in 2008 airlines flew about 8000 transpolar flights, which experience greater exposure to space weather than nontranspolar flights. This is up from 368 transpolar flights in 2000, and the number of such flights is expected to continue to grow. Transpolar flights are just one example of the diverse technologies susceptible to space weather effects identified by the National Research Council's Severe Space Weather Events—Understanding Societal and Economic Impacts: A Workshop Report (2008). To discuss issues related to the increasing need for reliable space weather information, experts from industry and government agencies met at the third summit of the Commercial Space Weather Interest Group (CSWIG) and the National Oceanic and Atmospheric Administration's (NOAA) Space Weather Prediction Center (SWPC), held 30 April 2009 during Space Weather Week (SWW), in Boulder, Colo.

  12. Experimental Acid Weathering of Fe-Bearing Mars Analog Minerals and Rocks: Implications for Aqueous Origin of Hematite-Bearing Sediments in Meridiani Planum, Mars

    Science.gov (United States)

    Golden, D. C.; Koster, A. M.; Ming, D. W.; Morris, R. V.; Mertzman, S. A.

    2011-01-01

    A working hypothesis for Meridiani evaporite formation involves the evaporation of fluids derived from acid weathering of Martian basalts and subsequent diagenesis [1, 2]. However, there are no reported experimental studies for the formation of jarosite and gray hematite (spherules), which are characteristic of Meridiani rocks from Mars analog precursor minerals. A terrestrial analog for hematite spherule formation from basaltic rocks under acidic hydrothermal conditions has been reported [3], and we have previously shown that the hematite spherules and jarosite can be synthetically produced in the laboratory using Fe3+ -bearing sulfate brines under hydrothermal conditions [4]. Here we expand and extend these studies by reacting Mars analog minerals with sulfuric acid to form Meridiani-like rock-mineral compositions. The objective of this study is to provide environmental constraints on past aqueous weathering of basaltic materials on Mars.

  13. Space weather and space anomalies

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available A large database of anomalies, registered by 220 satellites in different orbits over the period 1971-1994 has been compiled. For the first time, data from 49 Russian Kosmos satellites have been included in a statistical analysis. The database also contains a large set of daily and hourly space weather parameters. A series of statistical analyses made it possible to quantify, for different satellite orbits, space weather conditions on the days characterized by anomaly occurrences. In particular, very intense fluxes (>1000 pfu at energy >10 MeV of solar protons are linked to anomalies registered by satellites in high-altitude (>15000 km, near-polar (inclination >55° orbits typical for navigation satellites, such as those used in the GPS network, NAVSTAR, etc. (the rate of anomalies increases by a factor ~20, and to a much smaller extent to anomalies in geostationary orbits, (they increase by a factor ~4. Direct and indirect connections between anomaly occurrence and geomagnetic perturbations are also discussed.

  14. Space weather effects on ground based technology

    Science.gov (United States)

    Clark, T.

    Space weather can affect a variety of forms of ground-based technology, usually as a result of either the direct effects of the varying geomagnetic field, or as a result of the induced electric field that accompanies such variations. Technologies affected directly by geomagnetic variations include magnetic measurements made d ringu geophysical surveys, and navigation relying on the geomagnetic field as a direction reference, a method that is particularly common in the surveying of well-bores in the oil industry. The most obvious technology affected by induced electric fields during magnetic storms is electric power transmission, where the example of the blackout in Quebec during the March 1989 magnetic storm is widely known. Additionally, space weather effects must be taken into account in the design of active cathodic protection systems on pipelines to protect them against corrosion. Long-distance telecommunication cables may also have to be designed to cope with space weather related effects. This paper reviews the effects of space weather in these different areas of ground-based technology, and provides examples of how mitigation against hazards may be achieved. (The paper does not include the effects of space weather on radio communication or satellite navigation systems).

  15. Space Weather Outreach: Connection to STEM Standards

    Science.gov (United States)

    Dusenbery, P. B.

    2008-12-01

    Many scientists are studying the Sun-Earth system and attempting to provide timely, accurate, and reliable space environment observations and forecasts. Research programs and missions serve as an ideal focal point for creating educational content, making this an ideal time to inform the public about the importance and value of space weather research. In order to take advantage of this opportunity, the Space Science Institute (SSI) is developing a comprehensive Space Weather Outreach program to reach students, educators, and other members of the public, and share with them the exciting discoveries from this important scientific discipline. The Space Weather Outreach program has the following five components: (1) the Space Weather Center Website that includes online educational games; (2) Small Exhibits for Libraries, Shopping Malls, and Science Centers; (3) After-School Programs; (4) Professional Development Workshops for Educators, and (5) an innovative Evaluation and Education Research project. Its overarching goal is to inspire, engage, and educate a broad spectrum of the public and make strategic and innovative connections between informal and K-12 education communities. An important factor in the success of this program will be its alignment with STEM standards especially those related to science and mathematics. This presentation will describe the Space Weather Outreach program and how standards are being used in the development of each of its components.

  16. SWIFF: Space weather integrated forecasting framework

    Directory of Open Access Journals (Sweden)

    Frederiksen Jacob Trier

    2013-02-01

    Full Text Available SWIFF is a project funded by the Seventh Framework Programme of the European Commission to study the mathematical-physics models that form the basis for space weather forecasting. The phenomena of space weather span a tremendous scale of densities and temperature with scales ranging 10 orders of magnitude in space and time. Additionally even in local regions there are concurrent processes developing at the electron, ion and global scales strongly interacting with each other. The fundamental challenge in modelling space weather is the need to address multiple physics and multiple scales. Here we present our approach to take existing expertise in fluid and kinetic models to produce an integrated mathematical approach and software infrastructure that allows fluid and kinetic processes to be modelled together. SWIFF aims also at using this new infrastructure to model specific coupled processes at the Solar Corona, in the interplanetary space and in the interaction at the Earth magnetosphere.

  17. Space Weather Models at the CCMC And Their Capabilities

    Science.gov (United States)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2007-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. In this presentation, we will provide an overview of the community-provided, space weather-relevant, model suite, which resides at CCMC. We will discuss current capabilities, and analyze expected future developments of space weather related modeling.

  18. National Space Weather Program Advances on Several Fronts

    Science.gov (United States)

    Gunzelman, Mark; Babcock, Michael

    2008-10-01

    The National Space Weather Program (NSWP; http://www.nswp.gov) is a U.S. federal government interagency initiative through the Office of the Federal Coordinator for Meteorology that was created to speed the improvement of space weather services for the nation. The Committee for Space Weather (CSW) under the NSWP has continued to advance the program on a number of fronts over the past 12 months.

  19. Global Space Weather Observational Network: Challenges and China's Contribution

    Science.gov (United States)

    Wang, C.

    2017-12-01

    To understand space weather physical processes and predict space weather accurately, global space-borne and ground-based space weather observational network, making simultaneous observations from the Sun to geo-space (magnetosphere, ionosphere and atmosphere), plays an essential role. In this talk, we will present the advances of the Chinese space weather science missions, including the ASO-S (Advanced Space-borne Solar Observatory), MIT (Magnetosphere - Ionosphere- Thermosphere Coupling Exploration), and the ESA-China joint space weather science mission SMILE (Solar wind - Magnetosphere - Ionosphere Link Explore), a new mission to image the magnetosphere. Compared to satellites, ground-based monitors are cheap, convenient, and provide continuous real-time data. We will also introduce the Chinese Meridian Project (CMP), a ground-based program fully utilizing the geographic location of the Chinese landmass to monitor the geo-space environment. CMP is just one arm of a larger program that Chinese scientists are proposing to the international community. The International Meridian Circle Program (IMCP) for space weather hopes to connect chains of ground-based monitors at the longitudinal meridians 120 deg E and 60 deg W. IMCP takes advantage of the fact that these meridians already have the most monitors of any on Earth, with monitors in Russia, Australia, Brazil, the United States, Canada, and other countries. This data will greatly enhance the ability of scientists to monitor and predict the space weather worldwide.

  20. Predicting Space Weather: Challenges for Research and Operations

    Science.gov (United States)

    Singer, H. J.; Onsager, T. G.; Rutledge, R.; Viereck, R. A.; Kunches, J.

    2013-12-01

    Society's growing dependence on technologies and infrastructure susceptible to the consequences of space weather has given rise to increased attention at the highest levels of government as well as inspired the need for both research and improved space weather services. In part, for these reasons, the number one goal of the recent National Research Council report on a Decadal Strategy for Solar and Space Physics is to 'Determine the origins of the Sun's activity and predict the variations in the space environment.' Prediction of conditions in our space environment is clearly a challenge for both research and operations, and we require the near-term development and validation of models that have sufficient accuracy and lead time to be useful to those impacted by space weather. In this presentation, we will provide new scientific results of space weather conditions that have challenged space weather forecasters, and identify specific areas of research that can lead to improved capabilities. In addition, we will examine examples of customer impacts and requirements as well as the challenges to the operations community to establish metrics that enable the selection and transition of models and observations that can provide the greatest economic and societal benefit.

  1. Presenting Critical Space Weather Information to Customers and Stakeholders (Invited)

    Science.gov (United States)

    Viereck, R. A.; Singer, H. J.; Murtagh, W. J.; Rutledge, B.

    2013-12-01

    Space weather involves changes in the near-Earth space environment that impact technological systems such as electric power, radio communication, satellite navigation (GPS), and satellite opeartions. As with terrestrial weather, there are several different kinds of space weather and each presents unique challenges to the impacted technologies and industries. But unlike terrestrial weather, many customers are not fully aware of space weather or how it impacts their systems. This issue is further complicated by the fact that the largest space weather events occur very infrequently with years going by without severe storms. Recent reports have estimated very large potential costs to the economy and to society if a geomagnetic storm were to cause major damage to the electric power transmission system. This issue has come to the attention of emergency managers and federal agencies including the office of the president. However, when considering space weather impacts, it is essential to also consider uncertainties in the frequency of events and the predicted impacts. The unique nature of space weather storms, the specialized technologies that are impacted by them, and the disparate groups and agencies that respond to space weather forecasts and alerts create many challenges to the task of communicating space weather information to the public. Many customers that receive forecasts and alerts are highly technical and knowledgeable about the subtleties of the space environment. Others know very little and require ongoing education and explanation about how a space weather storm will affect their systems. In addition, the current knowledge and understanding of the space environment that goes into forecasting storms is quite immature. It has only been within the last five years that physics-based models of the space environment have played important roles in predictions. Thus, the uncertainties in the forecasts are quite large. There is much that we don't know about space

  2. Space Weather Forecasting and Research at the Community Coordinated Modeling Center

    Science.gov (United States)

    Aronne, M.

    2015-12-01

    The Space Weather Research Center (SWRC), within the Community Coordinated Modeling Center (CCMC), provides experimental research forecasts and analysis for NASA's robotic mission operators. Space weather conditions are monitored to provide advance warning and forecasts based on observations and modeling using the integrated Space Weather Analysis Network (iSWA). Space weather forecasters come from a variety of backgrounds, ranging from modelers to astrophysicists to undergraduate students. This presentation will discuss space weather operations and research from an undergraduate perspective. The Space Weather Research, Education, and Development Initiative (SW REDI) is the starting point for many undergraduate opportunities in space weather forecasting and research. Space weather analyst interns play an active role year-round as entry-level space weather analysts. Students develop the technical and professional skills to forecast space weather through a summer internship that includes a two week long space weather boot camp, mentorship, poster session, and research opportunities. My unique development of research projects includes studying high speed stream events as well as a study of 20 historic, high-impact solar energetic particle events. This unique opportunity to combine daily real-time analysis with related research prepares students for future careers in Heliophysics.

  3. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    Science.gov (United States)

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  4. Recent Activities on the Embrace Space Weather Regional Warning Center: the New Space Weather Data Center

    Science.gov (United States)

    Denardini, Clezio Marcos; Dal Lago, Alisson; Mendes, Odim; Batista, Inez S.; SantAnna, Nilson; Gatto, Rubens; Takahashi, Hisao; Costa, D. Joaquim; Banik Padua, Marcelo; Campos Velho, Haroldo

    2016-07-01

    On August 2007 the National Institute for Space Research started a task force to develop and operate a space weather program, which is known by the acronyms Embrace that stands for the Portuguese statement "Estudo e Monitoramento BRAasileiro de Clima Espacial" Program (Brazilian Space Weather Study and Monitoring program). The mission of the Embrace/INPE program is to monitor the Solar-Terrestrial environment, the magnetosphere, the upper atmosphere and the ground induced currents to prevent effects on technological and economic activities. The Embrace/INPE system monitors the physical parameters of the Sun-Earth environment, such as Active Regions (AR) in the Sun and solar radiation by using radio telescope, Coronal Mass Ejection (CME) information by satellite and ground-based cosmic ray monitoring, geomagnetic activity by the magnetometer network, and ionospheric disturbance by ionospheric sounders and using data collected by four GPS receiver network, geomagnetic activity by a magnetometer network, and provides a forecasting for Total Electronic Content (TEC) - 24 hours ahead - using a version of the SUPIM model which assimilates the two latter data using nudging approach. Most of these physical parameters are daily published on the Brazilian space weather program web portal, related to the entire network sensors available. Regarding outreach, it has being published a daily bulletin in Portuguese and English with the status of the space weather environment on the Sun, the Interplanetary Medium and close to the Earth. Since December 2011, all these activities are carried out at the Embrace Headquarter, a building located at the INPE's main campus. Recently, a comprehensive data bank and an interface layer are under commissioning to allow an easy and direct access to all the space weather data collected by Embrace through the Embrace web Portal. The information being released encompasses data from: (a) the Embrace Digisonde Network (Embrace DigiNet) that monitors

  5. Space Weather Forecasting and Supporting Research in the USA

    Science.gov (United States)

    Pevtsov, A. A.

    2017-12-01

    In the United State, scientific research in space weather is funded by several Government Agencies including the National Science Foundation (NSF) and the National Aeronautics and Space Agency (NASA). For civilian and commercial purposes, space weather forecast is done by the Space Weather Prediction Center (SWPC) of the National Oceanic and Atmospheric Administration (NOAA). Observational data for modeling come from the network of groundbased observatories funded via various sources, as well as from the instruments on spacecraft. Numerical models used in forecast are developed in framework of individual research projects. The article provides a brief review of current state of space weather-related research and forecasting in the USA.

  6. The ESA Space Weather Applications Pilot Project

    Science.gov (United States)

    Glover, A.; Hilgers, A.; Daly, E.

    Following the completion in 2001 of two parallel studies to consider the feasibility of a European Space Weather Programme ESA embarked upon a space weather pilot study with the goal of prototyping European space weather services and assessing the overall market for such within Europe This pilot project centred on a number of targeted service development activities supported by a common infrastructure and making use of only existing space weather assets Each service activity included clear participation from at least one identified service user who was requested to provide initial requirements and regular feedback during the operational phase of the service These service activities are now reaching the end of their 2-year development and testing phase and are now accessible each with an element of the service in the public domain see http www esa-spaceweathet net swenet An additional crucial element of the study was the inclusion of a comprehensive and independent analysis of the benefits both economic and strategic of embarking on a programme which would include the deployment of an infrastructure with space-based elements The results of this study will be reported together with their implication for future coordinated European activities in this field

  7. Achievements and Challenges in the Science of Space Weather

    Science.gov (United States)

    Koskinen, Hannu E. J.; Baker, Daniel N.; Balogh, André; Gombosi, Tamas; Veronig, Astrid; von Steiger, Rudolf

    2017-11-01

    In June 2016 a group of 40 space weather scientists attended the workshop on Scientific Foundations of Space Weather at the International Space Science Institute in Bern. In this lead article to the volume based on the talks and discussions during the workshop we review some of main past achievements in the field and outline some of the challenges that the science of space weather is facing today and in the future.

  8. NASA Dryden Flight Research Center's Space Weather Needs

    Science.gov (United States)

    Wiley, Scott

    2011-01-01

    Presentation involves educating Goddard Space Weather staff about what our needs are, what type of aircraft we have and to learn what we have done in the past to minimize our exposure to Space Weather Hazards.

  9. An abridged history of federal involvement in space weather forecasting

    Science.gov (United States)

    Caldwell, Becaja; McCarron, Eoin; Jonas, Seth

    2017-10-01

    Public awareness of space weather and its adverse effects on critical infrastructure systems, services, and technologies (e.g., the electric grid, telecommunications, and satellites) has grown through recent media coverage and scientific research. However, federal interest and involvement in space weather dates back to the decades between World War I and World War II when the National Bureau of Standards led efforts to observe, forecast, and provide warnings of space weather events that could interfere with high-frequency radio transmissions. The efforts to observe and predict space weather continued through the 1960s during the rise of the Cold War and into the present with U.S. government efforts to prepare the nation for space weather events. This paper provides a brief overview of the history of federal involvement in space weather forecasting from World War II, through the Apollo Program, and into the present.

  10. Space Weather Forecasting at IZMIRAN

    Science.gov (United States)

    Gaidash, S. P.; Belov, A. V.; Abunina, M. A.; Abunin, A. A.

    2017-12-01

    Since 1998, the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN) has had an operating heliogeophysical service—the Center for Space Weather Forecasts. This center transfers the results of basic research in solar-terrestrial physics into daily forecasting of various space weather parameters for various lead times. The forecasts are promptly available to interested consumers. This article describes the center and the main types of forecasts it provides: solar and geomagnetic activity, magnetospheric electron fluxes, and probabilities of proton increases. The challenges associated with the forecasting of effects of coronal mass ejections and coronal holes are discussed. Verification data are provided for the center's forecasts.

  11. Optimized Strategies for Detecting Extrasolar Space Weather

    Science.gov (United States)

    Hallinan, Gregg

    2018-06-01

    Fully understanding the implications of space weather for the young solar system, as well as the wider population of planet-hosting stars, requires remote sensing of space weather in other stellar systems. Solar coronal mass ejections can be accompanied by bright radio bursts at low frequencies (typically measurement of the magnetic field strength of the planet, informing on whether the atmosphere of the planet can survive the intense magnetic activity of its host star. However, both stellar and planetary radio emission are highly variable and optimal strategies for detection of these emissions requires the capability to monitor 1000s of nearby stellar/planetary systems simultaneously. I will discuss optimized strategies for both ground and space-based experiments to take advantage of the highly variable nature of the radio emissions powered by extrasolar space weather to enable detection of stellar CMEs and planetary magnetospheres.

  12. Superposed epoch analysis of physiological fluctuations: possible space weather connections.

    Science.gov (United States)

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events-space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  13. Superposed epoch analysis of physiological fluctuations: possible space weather connections

    Science.gov (United States)

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events—space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  14. Forecasting Space Weather Hazards for Astronauts in Deep Space

    Science.gov (United States)

    Martens, P. C.

    2018-02-01

    Deep Space Gateway provides a unique platform to develop, calibrate, and test a space weather forecasting system for interplanetary travel in a real life setting. We will discuss requirements and design of such a system.

  15. Geospace monitoring for space weather research and operation

    Directory of Open Access Journals (Sweden)

    Nagatsuma Tsutomu

    2017-01-01

    Full Text Available Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.

  16. Geospace monitoring for space weather research and operation

    Science.gov (United States)

    Nagatsuma, Tsutomu

    2017-10-01

    Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.

  17. NASA's Internal Space Weather Working Group

    Science.gov (United States)

    St. Cyr, O. C.; Guhathakurta, M.; Bell, H.; Niemeyer, L.; Allen, J.

    2011-01-01

    Measurements from many of NASA's scientific spacecraft are used routinely by space weather forecasters, both in the U.S. and internationally. ACE, SOHO (an ESA/NASA collaboration), STEREO, and SDO provide images and in situ measurements that are assimilated into models and cited in alerts and warnings. A number of years ago, the Space Weather laboratory was established at NASA-Goddard, along with the Community Coordinated Modeling Center. Within that organization, a space weather service center has begun issuing alerts for NASA's operational users. NASA's operational user community includes flight operations for human and robotic explorers; atmospheric drag concerns for low-Earth orbit; interplanetary navigation and communication; and the fleet of unmanned aerial vehicles, high altitude aircraft, and launch vehicles. Over the past three years we have identified internal stakeholders within NASA and formed a Working Group to better coordinate their expertise and their needs. In this presentation we will describe this activity and some of the challenges in forming a diverse working group.

  18. An introduction to Space Weather Integrated Modeling

    Science.gov (United States)

    Zhong, D.; Feng, X.

    2012-12-01

    The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.

  19. Ultraviolet Testing of Space Suit Materials for Mars

    Science.gov (United States)

    Larson, Kristine; Fries, Marc

    2017-01-01

    Human missions to Mars may require radical changes in the approach to extra-vehicular (EVA) suit design. A major challenge is the balance of building a suit robust enough to complete multiple EVAs under intense ultraviolet (UV) light exposure without losing mechanical strength or compromising the suit's mobility. To study how the materials degrade on Mars in-situ, the Jet Propulsion Laboratory (JPL) invited the Advanced Space Suit team at NASA's Johnson Space Center (JSC) to place space suit materials on the Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) instrument's calibration target of the Mars 2020 rover. In order to select materials for the rover and understand the effects from Mars equivalent UV exposure, JSC conducted ground testing on both current and new space suit materials when exposed to 2500 hours of Mars mission equivalent UV. To complete this testing, JSC partnered with NASA's Marshall Space Flight Center to utilize their UV vacuum chambers. Materials tested were Orthofabric, polycarbonate, Teflon, Dacron, Vectran, spectra, bladder, nGimat coated Teflon, and nGimat coated Orthofabric. All samples were measured for mass, tensile strength, and chemical composition before and after radiation. Mass loss was insignificant (less than 0.5%) among the materials. Most materials loss tensile strength after radiation and became more brittle with a loss of elongation. Changes in chemical composition were seen in all radiated materials through Spectral Analysis. Results from this testing helped select the materials that will fly on the Mars 2020 rover. In addition, JSC can use this data to create a correlation to the chemical changes after radiation-which is what the rover will send back while on Mars-to the mechanical changes, such as tensile strength.

  20. Dosimetry of a Deep-Space (Mars) Mission using Measurements from RAD on the Mars Science Laboratory

    Science.gov (United States)

    Hassler, D.; Zeitlin, C.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Guo, J.; Matthiae, D.; Reitz, G.

    2017-12-01

    The space radiation environment is one of the outstanding challenges of a manned deep-space mission to Mars. To improve our understanding and take us one step closer to enabling a human Mars to mission, the Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) has been characterizing the radiation environment, both during cruise and on the surface of Mars for the past 5 years. Perhaps the most significant difference between space radiation and radiation exposures from terrestrial exposures is that space radiation includes a significant component of heavy ions from Galactic Cosmic Rays (GCRs). Acute exposures from Solar Energetic Particles (SEPs) are possible during and around solar maximum, but the energies from SEPs are generally lower and more easily shielded. Thus the greater concern for long duration deep-space missions is the GCR exposure. In this presentation, I will review the the past 5 years of MSL RAD observations and discuss current approaches to radiation risk estimation used by NASA and other space agencies.

  1. Workshop Report on Space Weather Risks and Society

    Science.gov (United States)

    Langhoff, Stephanie R.; Straume, Tore

    2012-01-01

    As technological innovations produce new capabilities, complexities, and interdependencies, our susceptibility to the societal impacts of space weather increase. There is real concern in the scientific community that our infrastructure would be at significant risk if a major geomagnetic storm should occur. To discuss the societal impacts of space weather, we brought together an interdisciplinary group of subject matter experts and societal stakeholders to participate in a workshop entitled Space Weather Risks and Society. The workshop was held at Ames Research Center (ARC) on 15-16 October 2011. The workshop was co-sponsored by NASA Ames Research Center (ARC), the Lockheed Martin Advanced Technology Center (LMATC), the Space Weather Prediction Center (SWPC, part of the National Oceanic and Atmospheric Administration NOAA), and the Rutherford Appleton Laboratory (RAL, part of the UK Science and Technology Facilities Council STFC). The workshop is part of a series of informal weekend workshops hosted by Center Director Pete Worden.

  2. Space Weather Research Towards Applications in Europe

    CERN Document Server

    Lilensten, Jean

    2007-01-01

    This book shows the state of the art in Europe on a very new discipline, Space Weather. This discipline lies at the edge between science and industry. This book reflects such a position, with theoretic papers and applicative papers as well. It is divided into 5 chapters. Each chapter starts with a short introduction, which shows the coherence of a given domain. Then, 4 to 5 contributions written by the best specialists in Europe give detailed hints of a hot topic in space weather. From the reading of this book, it becomes evident that space weather is a living discipline, full of promises and already full of amazing realizations. The strength of Europe is clear through the book, but it is also clear that this discipline is world wide.

  3. A coronagraph for operational space weather predication

    Science.gov (United States)

    Middleton, Kevin F.

    2017-09-01

    Accurate prediction of the arrival of solar wind phenomena, in particular coronal mass ejections (CMEs), at Earth, and possibly elsewhere in the heliosphere, is becoming increasingly important given our ever-increasing reliance on technology. The potentially severe impact on human technological systems of such phenomena is termed space weather. A coronagraph is arguably the instrument that provides the earliest definitive evidence of CME eruption; from a vantage point on or near the Sun-Earth line, a coronagraph can provide near-definitive identification of an Earth-bound CME. Currently, prediction of CME arrival is critically dependent on ageing science coronagraphs whose design and operation were not optimized for space weather services. We describe the early stages of the conceptual design of SCOPE (the Solar Coronagraph for OPErations), optimized to support operational space weather services.

  4. NSF's Perspective on Space Weather Research for Building Forecasting Capabilities

    Science.gov (United States)

    Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.

    2017-12-01

    Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.

  5. Vodcasting Space Weather

    Science.gov (United States)

    Collins Petersen, Carolyn; Erickson, P. J.; Needles, M.

    2009-01-01

    The topic of space weather is the subject of a series of vodcasts (video podcasts) produced by MIT Haystack Observatory (Westford, MA) and Loch Ness Productions (Groton, MA). This paper discusses the production and distribution of the series via Webcast, Youtube, and other avenues. It also presents preliminary evaluation of the effectiveness and outreach of the project through feedback from both formal and information education venues. The vodcast series is linked to the NASA Living With a Star Targeted Research and Technology project award "Multi-Instrument Investigation of Inner-Magnetospheric/Ionosphere Disturbances.” It is being carried out by Principal Investigator Dr. John Foster, under the auspices of NASA Grant # NNX06AB86G. The research involves using ionospheric total electron content (TEC) observations to study the location, extent, and duration of perturbations within stormtime ionospheric electric fields at mid- to low latitudes. It combines ground-based global positioning system (GPS) TEC data, incoherent scatter radar measurements of the mid-latitude ionospheric state, and DMSP satellite observations to characterize conditions which lead to severe low-latitude ionospheric perturbations. Each vodcast episode covers a certain aspect of space weather and the research program.

  6. New Space Weather Systems Under Development and Their Contribution to Space Weather Management

    Science.gov (United States)

    Tobiska, W.; Bouwer, D.; Schunk, R.; Garrett, H.; Mertens, C.; Bowman, B.

    2008-12-01

    There have been notable successes during the past decade in the development of operational space environment systems. Examples include the Magnetospheric Specification Model (MSM) of the Earth's magnetosphere, 2000; SOLAR2000 (S2K) solar spectral irradiances, 2001; High Accuracy Satellite Drag Model (HASDM) neutral atmosphere densities, 2004; Global Assimilation of Ionospheric Measurements (GAIM) ionosphere specification, 2006; Hakamada-Akasofu-Fry (HAF) solar wind parameters, 2007; Communication Alert and Prediction System (CAPS) ionosphere, high frequency radio, and scintillation S4 index prediction, 2008; and GEO Alert and Prediction System (GAPS) geosynchronous environment satellite charging specification and forecast, 2008. Operational systems that are in active operational implementation include the Jacchia-Bowman 2006/2008 (JB2006/2008) neutral atmosphere, 2009, and the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) aviation radiation model using the Radiation Alert and Prediction System (RAPS), 2010. U.S. national agency and commercial assets will soon reach a state where specification and prediction will become ubiquitous and where coordinated management of the space environment and space weather will become a necessity. We describe the status of the CAPS, GAPS, RAPS, and JB2008 operational development. We additionally discuss the conditions that are laying the groundwork for space weather management and estimate the unfilled needs as we move beyond specification and prediction efforts.

  7. Extreme Space Weather Events: From Cradle to Grave

    Science.gov (United States)

    Riley, Pete; Baker, Dan; Liu, Ying D.; Verronen, Pekka; Singer, Howard; Güdel, Manuel

    2018-02-01

    Extreme space weather events, while rare, can have a substantial impact on our technologically-dependent society. And, although such events have only occasionally been observed, through careful analysis of a wealth of space-based and ground-based observations, historical records, and extrapolations from more moderate events, we have developed a basic picture of the components required to produce them. Several key issues, however, remain unresolved. For example, what limits are imposed on the maximum size of such events? What are the likely societal consequences of a so-called "100-year" solar storm? In this review, we summarize our current scientific understanding about extreme space weather events as we follow several examples from the Sun, through the solar corona and inner heliosphere, across the magnetospheric boundary, into the ionosphere and atmosphere, into the Earth's lithosphere, and, finally, its impact on man-made structures and activities, such as spacecraft, GPS signals, radio communication, and the electric power grid. We describe preliminary attempts to provide probabilistic forecasts of extreme space weather phenomena, and we conclude by identifying several key areas that must be addressed if we are better able to understand, and, ultimately, predict extreme space weather events.

  8. Operational space weather service for GNSS precise positioning

    Directory of Open Access Journals (Sweden)

    N. Jakowski

    2005-11-01

    Full Text Available The ionospheric plasma can significantly influence the propagation of radio waves and the ionospheric disturbances are capable of causing range errors, rapid phase and amplitude fluctuations (radio scintillations of satellite signals that may lead to degradation of the system performance, its accuracy and reliability. The cause of such disturbances should be sought in the processes originating in the Sun. Numerous studies on these phenomena have been already carried out at a broad international level, in order to measure/estimate these space weather induced effects, to forecast them, and to understand and mitigate their impact on present-day technological systems. SWIPPA (Space Weather Impact on Precise Positioning Applications is a pilot project jointly supported by the German Aerospace Centre (DLR and the European Space Agency (ESA. The project aims at establishing, operating, and evaluating a specific space-weather monitoring service that can possibly lead to improving current positioning applications based on Global Navigation Satellite Systems (GNSS. This space weather service provides GNSS users with essential expert information delivered in the form of several products - maps of TEC values, TEC spatial and temporal gradients, alerts for ongoing/oncoming ionosphere disturbances, etc.

  9. Operational space weather service for GNSS precise positioning

    Directory of Open Access Journals (Sweden)

    N. Jakowski

    2005-11-01

    Full Text Available The ionospheric plasma can significantly influence the propagation of radio waves and the ionospheric disturbances are capable of causing range errors, rapid phase and amplitude fluctuations (radio scintillations of satellite signals that may lead to degradation of the system performance, its accuracy and reliability. The cause of such disturbances should be sought in the processes originating in the Sun. Numerous studies on these phenomena have been already carried out at a broad international level, in order to measure/estimate these space weather induced effects, to forecast them, and to understand and mitigate their impact on present-day technological systems.

    SWIPPA (Space Weather Impact on Precise Positioning Applications is a pilot project jointly supported by the German Aerospace Centre (DLR and the European Space Agency (ESA. The project aims at establishing, operating, and evaluating a specific space-weather monitoring service that can possibly lead to improving current positioning applications based on Global Navigation Satellite Systems (GNSS. This space weather service provides GNSS users with essential expert information delivered in the form of several products - maps of TEC values, TEC spatial and temporal gradients, alerts for ongoing/oncoming ionosphere disturbances, etc.

  10. Space Weather in the Machine Learning Era: A Multidisciplinary Approach

    Science.gov (United States)

    Camporeale, E.; Wing, S.; Johnson, J.; Jackman, C. M.; McGranaghan, R.

    2018-01-01

    The workshop entitled Space Weather: A Multidisciplinary Approach took place at the Lorentz Center, University of Leiden, Netherlands, on 25-29 September 2017. The aim of this workshop was to bring together members of the Space Weather, Mathematics, Statistics, and Computer Science communities to address the use of advanced techniques such as Machine Learning, Information Theory, and Deep Learning, to better understand the Sun-Earth system and to improve space weather forecasting. Although individual efforts have been made toward this goal, the community consensus is that establishing interdisciplinary collaborations is the most promising strategy for fully utilizing the potential of these advanced techniques in solving Space Weather-related problems.

  11. GOES-16 Space Weather Data Availability and Applications

    Science.gov (United States)

    Tilton, M.; Rowland, W. F.; Codrescu, S.; Seaton, D. B.; Redmon, R. J.; Hsu, V.

    2017-12-01

    In November 2016, NOAA launched the first in the "R" series of Geostationary Operational Environmental Satellites, GOES-16. Compared to its GOES predecessors, the GOES-R series satellites provide improved in situ measurements of charged particles, higher cadence magnetic field measurements, and enhanced remote sensing of the sun through ultraviolet (UV) imagery and X-ray/UV irradiance. GOES-16 space weather instruments will nominally reach provisional status near the beginning of 2018. After this milestone has been achieved, NOAA's National Centers for Environmental Information (NCEI) will provide archive access to GOES-16 space weather data. This presentation will describe the status of the space weather instruments, including available products and their applicability for forecasters, modelers, academics, spacecraft operators, and other users. It will discuss the available access systems for all levels of data-raw telemetry (Level 0), science measurements in high resolution (L1b), and higher-level (L2+) products developed by NCEI scientists. Finally, it will cover NCEI's efforts to promote space weather awareness through data visualization tools and image dissemination via the Helioviewer project.

  12. Operational Numerical Weather Prediction at the Met Office and potential ways forward for operational space weather prediction systems

    Science.gov (United States)

    Jackson, David

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  13. The magnetic field of Mars according to data of Mars-3 and Mars-5 space vehicles

    International Nuclear Information System (INIS)

    Dolginov, Sh.Sh.; Eroshenko, E.G.; Zhuzgov, L.N.

    1975-01-01

    Magnitograms obtained by the space probe ''Mars-5'' on the evening and day sides as well as those from the ''Mars-3'' obtained earlier suggest the following: In the vicinity of Mars there exists a shock front and its disposition is tracked at various angles to the direction to the sun. Magnetometers have registered a region in space where magnetic field features the properties of a magnetosphere field in its topology and action on plasma. The magnetic field in the region of the ''magnitosphere'' does not change its sign when the interplanetary field does shile in adjacent boundary regions the regular part of the field changes its sign when that of the interplanetary field does. The configuration and dimensions of the ''magnitosphere'' depend on thesolar wind intensity. On the day side (''Mars-3'') the magnitospheric field ceases to be registered at an altitude of 2200km, whereas on the night side (''Mars-5'') the regular field is traced up to 7500-9500km from the planet surface. All the above unambiguously suggests that the planet Mars has its own magnetic field. Under the influence of the solar wind the field takes the characteristic form: it is limited on the day side and elongated on the night one. The topology oif force lines is explicable if one assumes that the axis of the Mars magnetic dipole is inclined to the rotation axis at an abgle of 15-20deg. The northern magnetic pole of the dipole is licated in the northern hemisphere, i.e. the Mars fields in their regularity are opposite to the geomagnetic field. The magnetic moment of the Mars dipole is equal to M=2.5x10 22 Gauss.cm 3 . (author)

  14. Future Missions for Space Weather Specifications and Forecasts

    Science.gov (United States)

    Onsager, T. G.; Biesecker, D. A.; Anthes, R. A.; Maier, M. W.; Gallagher, F. W., III; St Germain, K.

    2017-12-01

    The progress of technology and the global integration of our economic and security infrastructures have introduced vulnerabilities to space weather that demand a more comprehensive ability to specify and to predict the dynamics of the space environment. This requires a comprehensive network of real-time space-based and ground-based observations with long-term continuity. In order to determine the most cost effective space architectures for NOAA's weather, space weather, and environmental missions, NOAA conducted the NOAA Satellite Observing System Architecture (NSOSA) study. This presentation will summarize the process used to document the future needs and the relative priorities for NOAA's operational space-based observations. This involves specifying the most important observations, defining the performance attributes at different levels of capability, and assigning priorities for achieving the higher capability levels. The highest priority observations recommended by the Space Platform Requirements Working Group (SPRWG) for improvement above a minimal capability level will be described. Finally, numerous possible satellite architectures have been explored to assess the costs and benefits of various architecture configurations.

  15. The effort to increase the space weather forecasting accuracy in KSWC

    Science.gov (United States)

    Choi, J. S.

    2017-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition as the Regional Warning Center of the International Space Environment Service (ISES). KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. Recently, KSWC are focusing on increasing the accuracy of space weather forecasting results and verifying the model generated results. The forecasting accuracy will be calculated based on the probability statistical estimation so that the results can be compared numerically. Regarding the cosmic radiation does, we are gathering the actual measured data of radiation does using the instrument by cooperation with the domestic airlines. Based on the measurement, we are going to verify the reliability of SAFE system which was developed by KSWC to provide the cosmic radiation does information with the airplane cabin crew and public users.

  16. Evaluating predictions of ICME arrival at Earth and Mars

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Taktakishvili, A.; Pulkkinen, A.

    2011-01-01

    We present a study of interplanetary coronal mass ejection (ICME) propagation to Earth and Mars. Because of the significant space weather hazard posed by ICMEs, understanding and predicting their arrival and impact at Mars is important for current and future robotic and manned missions...... to the planet. We compare running ENLILv2.6 with coronal mass ejection (CME) input parameters from both a manual and an automated method. We analyze shock events identified at Mars in Mars Global Surveyor data in 2001 and 2003, when Earth and Mars were separated by...

  17. Briefing highlights space weather risks to GPS

    Science.gov (United States)

    Tretkoff, Ernie

    2011-07-01

    Solar storms, which are expected to increase as the Sun nears the most active phase of the solar cycle, can disrupt a variety of technologies on which society relies. Speakers at a 22 June briefing on Capitol Hill in Washington, D. C., focused on how space weather can affect the Global Positioning System (GPS), which is used in a wide range of industries, including commercial air travel, agriculture, national security, and emergency response. Rocky Stone, chief technical pilot for United Airlines, noted that GPS allows more aircraft to be in airspace, saves fuel, and helps aircraft move safely on runways. “Improvements in space weather forecasting need to be pursued,” he said. Precision GPS has also “changed the whole nature of farming,” said Ron Hatch, Director of Navigation Systems, NavCom Technology/John Deere. GPS makes it possible for tractors to be driven in the most efficient paths and for fertilizer and water to be applied precisely to the areas that most need them. Space weather-induced degradation of GPS signals can cause significant loss to farms that rely on GPS. Elizabeth Zimmerman, Deputy Associate Administrator for the Office of Response and Recovery at the Federal Emergency Management Agency (FEMA), described how FEMA relies on GPS for disaster recovery. The agency is developing an operations plan for dealing with space weather, she said.

  18. Space Weather Models and Their Validation and Verification at the CCMC

    Science.gov (United States)

    Hesse, Michael

    2010-01-01

    The Community Coordinated l\\lodeling Center (CCMC) is a US multi-agency activity with a dual mission. With equal emphasis, CCMC strives to provide science support to the international space research community through the execution of advanced space plasma simulations, and it endeavors to support the space weather needs of the CS and partners. Space weather support involves a broad spectrum, from designing robust forecasting systems and transitioning them to forecasters, to providing space weather updates and forecasts to NASA's robotic mission operators. All of these activities have to rely on validation and verification of models and their products, so users and forecasters have the means to assign confidence levels to the space weather information. In this presentation, we provide an overview of space weather models resident at CCMC, as well as of validation and verification activities undertaken at CCMC or through the use of CCMC services.

  19. Characterizing Space Weather Effects in the Post-DMSP Era

    Science.gov (United States)

    Groves, K. M.

    2015-12-01

    Space weather generally refers to heliophysical phenomena or events that produce a negative impact on manmade systems. While many space weather events originate with impulsive disturbances on the sun, others result from complex internal interactions in the ionosphere-thermosphere system. The reliance of mankind on satellite-based services continues to increase rapidly, yet the global capacity for sensing space weather in the ionosphere seems headed towards decline. A number of recent ionospheric-focused space-based missions are either presently, or soon-to-be, no longer available, and the end of the multi-decade Defense Meteorological Satellite Program is now in sight. The challenge facing the space weather community is how to maintain or increase sensing capabilities in an operational environment constrained by a decreasing numbers of sensors. The upcoming launch of COSMIC-2 in 2016/2018 represents the most significant new capability planned for the future. GNSS RO data has some benefit for background ionospheric models, particularly over regions where ground-based GNSS TEC measurements are unavailable, but the space weather community has a dire need to leverage such missions for far more knowledge of the ionosphere, and specifically for information related to space weather impacts. Meanwhile, the number of ground-based GNSS sensors worldwide has increased substantially, yet progress instrumenting some vastly undersampled regions, such as Africa, remains slow. In fact, the recent loss of support for many existing ground stations in such areas under the former Scintillation Network Decision Aid (SCINDA) program may actually result in a decrease in such sensing sites over the next 1-2 years, abruptly reversing a positive trend established over the last decade. Here we present potential solutions to the challenges these developments pose to the space weather enterprise. Specific topics include modeling advances required to detect and accurately characterize

  20. Geodetic Space Weather Monitoring by means of Ionosphere Modelling

    Science.gov (United States)

    Schmidt, Michael

    2017-04-01

    The term space weather indicates physical processes and phenomena in space caused by radiation of energy mainly from the Sun. Manifestations of space weather are (1) variations of the Earth's magnetic field, (2) the polar lights in the northern and southern hemisphere, (3) variations within the ionosphere as part of the upper atmosphere characterized by the existence of free electrons and ions, (4) the solar wind, i.e. the permanent emission of electrons and photons, (5) the interplanetary magnetic field, and (6) electric currents, e.g. the van Allen radiation belt. It can be stated that ionosphere disturbances are often caused by so-called solar storms. A solar storm comprises solar events such as solar flares and coronal mass ejections (CMEs) which have different effects on the Earth. Solar flares may cause disturbances in positioning, navigation and communication. CMEs can effect severe disturbances and in extreme cases damages or even destructions of modern infrastructure. Examples are interruptions to satellite services including the global navigation satellite systems (GNSS), communication systems, Earth observation and imaging systems or a potential failure of power networks. Currently the measurements of solar satellite missions such as STEREO and SOHO are used to forecast solar events. Besides these measurements the Earth's ionosphere plays another key role in monitoring the space weather, because it responses to solar storms with an increase of the electron density. Space-geodetic observation techniques, such as terrestrial GNSS, satellite altimetry, space-borne GPS (radio occultation), DORIS and VLBI provide valuable global information about the state of the ionosphere. Additionally geodesy has a long history and large experience in developing and using sophisticated analysis and combination techniques as well as empirical and physical modelling approaches. Consequently, geodesy is predestinated for strongly supporting space weather monitoring via

  1. A Heliospheric Weather Expert Service Centre for ESA's Space Situational Awareness Space Weather Activities

    Science.gov (United States)

    Barnes, D.; Perry, C. H.

    2017-12-01

    The Heliospheric Weather Expert Service Centre (H-ESC) is one of five thematic virtual centres that are currently being developed as part of ESA's Space Situational Awareness pre-operational Space Weather service. In this presentation we introduce the current products and service that the H-ESC is providing. The immediate and downstream user groups that the centre is aiming to support are discussed. A description is provided on how the H-ESC is largely built on adoption and tailoring of federated products from expert groups around Europe and how these can be used to add value to the overall system. Having only recently been established the H-ESC is continuing to address gaps in its capabilities. Some of the priorities for products, their assessment, validation and integration into the system are discussed together with plans for bespoke development activities tailored to specific end-user group needs.

  2. Forecasting Space Weather-Induced GPS Performance Degradation Using Random Forest

    Science.gov (United States)

    Filjar, R.; Filic, M.; Milinkovic, F.

    2017-12-01

    Space weather and ionospheric dynamics have a profound effect on positioning performance of the Global Satellite Navigation System (GNSS). However, the quantification of that effect is still the subject of scientific activities around the world. In the latest contribution to the understanding of the space weather and ionospheric effects on satellite-based positioning performance, we conducted a study of several candidates for forecasting method for space weather-induced GPS positioning performance deterioration. First, a 5-days set of experimentally collected data was established, encompassing the space weather and ionospheric activity indices (including: the readings of the Sudden Ionospheric Disturbance (SID) monitors, components of geomagnetic field strength, global Kp index, Dst index, GPS-derived Total Electron Content (TEC) samples, standard deviation of TEC samples, and sunspot number) and observations of GPS positioning error components (northing, easting, and height positioning error) derived from the Adriatic Sea IGS reference stations' RINEX raw pseudorange files in quiet space weather periods. This data set was split into the training and test sub-sets. Then, a selected set of supervised machine learning methods based on Random Forest was applied to the experimentally collected data set in order to establish the appropriate regional (the Adriatic Sea) forecasting models for space weather-induced GPS positioning performance deterioration. The forecasting models were developed in the R/rattle statistical programming environment. The forecasting quality of the regional forecasting models developed was assessed, and the conclusions drawn on the advantages and shortcomings of the regional forecasting models for space weather-caused GNSS positioning performance deterioration.

  3. Cost-Loss Analysis of Ensemble Solar Wind Forecasting: Space Weather Use of Terrestrial Weather Tools

    Science.gov (United States)

    Henley, E. M.; Pope, E. C. D.

    2017-12-01

    This commentary concerns recent work on solar wind forecasting by Owens and Riley (2017). The approach taken makes effective use of tools commonly used in terrestrial weather—notably, via use of a simple model—generation of an "ensemble" forecast, and application of a "cost-loss" analysis to the resulting probabilistic information, to explore the benefit of this forecast to users with different risk appetites. This commentary aims to highlight these useful techniques to the wider space weather audience and to briefly discuss the general context of application of terrestrial weather approaches to space weather.

  4. Space weather impact on radio device operation

    Directory of Open Access Journals (Sweden)

    Berngardt O.I.

    2017-09-01

    Full Text Available This paper reviews the space weather impact on operation of radio devices. The review is based on recently published papers, books, and strategic scientific plans of space weather investigations. The main attention is paid to ionospheric effects on propagation of radiowaves, basically short ones. Some examples of such effects are based on 2012–2016 ISTP SB RAS EKB radar data: attenuation of ground backscatter signals during solar flares, effects of traveling ionospheric disturbances of different scales in ground backscatter signals, effects of magnetospheric waves in ionospheric scatter signals.

  5. Space weather impact on radio device operation

    Science.gov (United States)

    Berngardt, Oleg

    2017-09-01

    This paper reviews the space weather impact on operation of radio devices. The review is based on recently published papers, books, and strategic scientific plans of space weather investigations. The main attention is paid to ionospheric effects on propagation of radiowaves, basically short ones. Some examples of such effects are based on 2012–2016 ISTP SB RAS EKB radar data: attenuation of ground backscatter signals during solar flares, effects of traveling ionospheric disturbances of different scales in ground backscatter signals, effects of magnetospheric waves in ionospheric scatter signals.

  6. Arctic Region Space Weather Customers and SSA Services

    DEFF Research Database (Denmark)

    Høeg, Per; Kauristi, Kirsti; Wintoft, Peter

    Arctic inhabitants, authorities, and companies rely strongly on precise localization information and communication covering vast areas with low infrastructure and population density. Thus modern technology is crucial for establishing knowledge that can lead to growth in the region. At the same time...... and communication can be established without errors resulting from Space Weather effects. An ESA project have identified and clarified, how the products of the four ESA Space Weather Expert Service Centres (SWE) in the ESA Space Situational Awareness Programme (SSA), can contribute to the requirements of SSA...

  7. New Federal Government Space Weather Website and Document Repository Launched

    Science.gov (United States)

    Bonadonna, Michael; Jonas, Seth; McNamara, Erin

    2017-11-01

    On Tuesday, 19 September 2017, the NOAA Space Weather Prediction Center and Office of the Federal Coordinator for Meteorology (OFCM) launched the new Space Weather Operations, Research, and Mitigation website SWORM.GOV. The website provides access to the public to Federal activities supporting the Executive Office of the President National Science and Technology Council SWORM Subcommittee as well as other activities and events relevant to the National Space Weather Enterprise. SWORM.GOV was approved by the SWORM Subcommittee, funded by NOAA, and maintained by OFCM.

  8. The Social and Economic Impacts of Space Weather (US Project)

    Science.gov (United States)

    Pulkkinen, A. A.; Bisi, M. M.; Webb, D. F.; Oughton, E. J.; Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.; Basoli, D.; Griot, O.

    2017-12-01

    The National Space Weather Action Plan calls for new research into the social and economic impacts of space weather and for the development of quantitative estimates of potential costs. In response to this call, NOAA's Space Weather Prediction Center (SWPC) and Abt Associates are working together to identify, describe, and quantify the impact of space weather to U.S. interests. This study covers impacts resulting from both moderate and severe space weather events across four technological sectors: Electric power, commercial aviation, satellites, and Global Navigation Satellite System (GNSS) users. It captures the full range of potential impacts, identified from an extensive literature review and from additional conversations with more than 50 sector stakeholders of diverse expertise from engineering to operations to end users. We organize and discuss our findings in terms of five broad but interrelated impact categories including Defensive Investments, Mitigating Actions, Asset Damages, Service Interruptions, and Health Effects. We also present simple, tractable estimates of the potential costs where we focused on quantifying a subset of all identified impacts that are apt to be largest and are also most plausible during moderate and more severe space weather scenarios. We hope that our systematic exploration of the social and economic impacts provides a foundation for the future work that is critical for designing technologies, developing procedures, and implementing policies that can effectively reduce our known and evolving vulnerabilities to this natural hazard.

  9. Human Space Exploration: The Moon, Mars, and Beyond

    Science.gov (United States)

    Sexton, Jeffrey D.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed, to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. Why the Moon? Many questions about the Moon's potential resources and how its history is linked to that of Earth were spurred by the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment for extended expeditions. The Moon also will serve as a training ground before embarking on the longer, more difficult trip to Mars. NASA plans to build a lunar outpost at one of the lunar poles, learn to live off the land, and reduce dePendence on Earth for longer missions. America needs to extend its ability to survive in hostile environments close to our home planet before astronauts will reach Mars, a planet very much like Earth. NASA has worked with scientists to define lunar exploration goals and is addressing the opportunities for a range of scientific study on Mars. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I

  10. Writing the History of Space Missions: Rosetta and Mars Express

    Science.gov (United States)

    Coradini, M.; Russo, A.

    2011-10-01

    Mars Express is the first planetary mission accomplished by the European Space Agency (ESA). Launched in early June 2003, the spacecraft entered Mars's orbit on Christmas day of that year, demonstrating the new European commitment to planetary exploration. Following a failed attempt in the mid-­-1980s, two valid proposals for a European mission to Mars were submitted to ESA's decision-­-making bodies in the early 1990s, in step with renewed international interest in Mars exploration. Both were rejected, however, in the competitive selection process for the agency's Science Programme. Eventually, the Mars Express proposal emerged during a severe budgetary crisis in the mid-­-1990s as an exemplar of a "flexible mission" that could reduce project costs and development time. Its successful maneuvering through financial difficulties and conflicting scientific interests was due to the new management approach as well as to the public appeal of Mars exploration. In addition to providing a case study in the functioning of the ESA's Science Programme, the story of Mars Express discussed in this paper provides a case study in the functioning of the European Space Agency's Science Programme and suggests some general considerations on the peculiar position of space research in the general field of the history of science and technology.

  11. Weathering Profiles in Phosphorus-Rich Rocks at Gusev Crater, Mars, Suggest Dissolution of Phosphate Minerals into Potentially Habitable Near-Neutral Waters.

    Science.gov (United States)

    Adcock, Christopher T; Hausrath, Elisabeth M

    2015-12-01

    Abundant evidence indicates that significant surface and near-surface liquid water has existed on Mars in the past. Evaluating the potential for habitable environments on Mars requires an understanding of the chemical and physical conditions that prevailed in such aqueous environments. Among the geological features that may hold evidence of past environmental conditions on Mars are weathering profiles, such as those in the phosphorus-rich Wishstone-class rocks in Gusev Crater. The weathering profiles in these rocks indicate that a Ca-phosphate mineral has been lost during past aqueous interactions. The high phosphorus content of these rocks and potential release of phosphorus during aqueous interactions also make them of astrobiological interest, as phosphorus is among the elements required for all known life. In this work, we used Mars mission data, laboratory-derived kinetic and thermodynamic data, and data from terrestrial analogues, including phosphorus-rich basalts from Idaho, to model a conceptualized Wishstone-class rock using the reactive transport code CrunchFlow. Modeling results most consistent with the weathering profiles in Wishstone-class rocks suggest a combination of chemical and physical erosion and past aqueous interactions with near-neutral waters. The modeling results also indicate that multiple Ca-phosphate minerals are likely in Wishstone-class rocks, consistent with observations of martian meteorites. These findings suggest that Gusev Crater experienced a near-neutral phosphate-bearing aqueous environment that may have been conducive to life on Mars in the past. Mars-Gusev Crater-Wishstone-Reactive transport modeling-CrunchFlow-Aqueous interactions-Neutral pH-Habitability.

  12. Swarm Products and Space Weather Applications

    DEFF Research Database (Denmark)

    Stolle, Claudia; Olsen, Nils; Martini, Daniel

    The Swarm satellite constellation mission provides high precision magnetic field data and models and other observations that enable us to explore near Earth space for example in terms of in situ electron density and electric fields. On board GPS observables can be used for sounding ionospheric...... in aeronomy and space weather. We will emphasize results from the Swarm mission....

  13. Comparison of SPACE to MARS-KS under SUBO experimental conditions

    International Nuclear Information System (INIS)

    Kim, Min-Gil; Lee, Wonwoong; Lee, Jeong Ik; Bang, Young Seok

    2015-01-01

    To evaluate safety of a Korean Nuclear Power Plant (NPP) MARS-KS code is being used by the Korean regulator. The governing equations of MARS-KS are based on two-phase and two-fluid model. Recently, SPACE (Safety and Performance Analysis CodE for nuclear power plants) was developed by a consortium led by Korea Hydro and Nuclear Power Co., Ltd. (KHNP), which the code is aimed for evaluating the safety of the designed nuclear power plant. The governing equations of SPACE are based on two-phase (liquid and gas phase) three-fluid (continuous liquid, gas and droplet) model. However, MARS-KS and SPACE have different governing equations, as well as model and correlations implemented in two codes. Due to this reason, the authors are studying the difference in the analysis result of SET (Separate Effect Test) of each code.. To compare the SPACE and MARS-KS performances, the authors chose SUBO experiment as the first reference case. Input deck of each code was prepared. The results from the two codes were compared to the experimental data, but due to the lack of information on the uncertainties it is too early to conclude the code performance. However, from the obtained analysis results, some differences between MARS-KS and SPACE are observed. Especially, flow regimes at heated region are considerably different. More detailed analysis of the flow regime and its effect in MARS-KS and SPACE analysis results will be followed in the near future. The heat transfer coefficient and friction factor at the interface and at the wall will be compared with similar method used in this study

  14. Space Weather Influence on the Earth wheat markets: past, present, and future.

    Science.gov (United States)

    Pustil'Nik, Lev

    We consider problem of a possible influence of unfavorable states of the space weather on agriculture market through chain of connections: "space weather"-"earth weather"-"agriculture crops"-"price reaction". We show that new manifestations of "space weather"-"earth weather" relations discovered in the last time allow to revise wide field of expected solar-terrestrial connections. In the previous works we proposed possible mechanisms of wheat market reaction in the form of price bursts on the specific unfavorable states of space weather. We show that implementation of considered "price reaction scenarios" is possible only for condition of simultaneous realization of several necessary conditions: high sensitivity of local earth weather in selected region to space weather; state of "high risk agriculture" in selected agriculture zone; high sensitivity of agricultural market to possible deficit of supply. Results of previous works (I, II) included application of this approach to wheat market in Medieval England and to modern USA durum market showed that real connection between wheat price bursts and space weather state is observed with high confidence level. The aim of present work is answer on the question, why wheat markets in one region are sensitive to space weather factor, while another regional wheat markets demonstrate absolute indifferent reaction on this factor. For this aim we consider distribution of sensitivity of wheat markets in Europe to space weather as function of localization in different climatic zones. We analyze giant database of 95 European wheat markets from 14 countries during about 600-year period (1260-1912). We show that observed sensitivity of wheat market to space weather effects controlled, first of all, by type of predominant climate in different zones of agriculture. Wheat markets in the North and part of Central Europe (England, Iceland, Holland) shows reliable sensitivity to space weather in minimum states of solar activity with low

  15. Ionospheric Response to Extremes in the Space Environment: Establishing Benchmarks for the Space Weather Action Plan.

    Science.gov (United States)

    Viereck, R. A.; Azeem, S. I.

    2017-12-01

    One of the goals of the National Space Weather Action Plan is to establish extreme event benchmarks. These benchmarks are estimates of environmental parameters that impact technologies and systems during extreme space weather events. Quantitative assessment of anticipated conditions during these extreme space weather event will enable operators and users of affected technologies to develop plans for mitigating space weather risks and improve preparedness. The ionosphere is one of the most important regions of space because so many applications either depend on ionospheric space weather for their operation (HF communication, over-the-horizon radars), or can be deleteriously affected by ionospheric conditions (e.g. GNSS navigation and timing, UHF satellite communications, synthetic aperture radar, HF communications). Since the processes that influence the ionosphere vary over time scales from seconds to years, it continues to be a challenge to adequately predict its behavior in many circumstances. Estimates with large uncertainties, in excess of 100%, may result in operators of impacted technologies over or under preparing for such events. The goal of the next phase of the benchmarking activity is to reduce these uncertainties. In this presentation, we will focus on the sources of uncertainty in the ionospheric response to extreme geomagnetic storms. We will then discuss various research efforts required to better understand the underlying processes of ionospheric variability and how the uncertainties in ionospheric response to extreme space weather could be reduced and the estimates improved.

  16. Space Weather Effects Produced by the Ring Current Particles

    Science.gov (United States)

    Ganushkina, Natalia; Jaynes, Allison; Liemohn, Michael

    2017-11-01

    One of the definitions of space weather describes it as the time-varying space environment that may be hazardous to technological systems in space and/or on the ground and/or endanger human health or life. The ring current has its contributions to space weather effects, both in terms of particles, ions and electrons, which constitute it, and magnetic and electric fields produced and modified by it at the ground and in space. We address the main aspects of the space weather effects from the ring current starting with brief review of ring current discovery and physical processes and the Dst-index and predictions of the ring current and storm occurrence based on it. Special attention is paid to the effects on satellites produced by the ring current electrons. The ring current is responsible for several processes in the other inner magnetosphere populations, such as the plasmasphere and radiation belts which is also described. Finally, we discuss the ring current influence on the ionosphere and the generation of geomagnetically induced currents (GIC).

  17. Adaptive Numerical Algorithms in Space Weather Modeling

    Science.gov (United States)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; hide

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical

  18. The Critical Role of the Research Community in Space Weather Planning and Execution

    Science.gov (United States)

    Robinson, Robert M.; Behnke, Richard A.; Moretto, Therese

    2018-03-01

    The explosion of interest in space weather in the last 25 years has been due to a confluence of efforts all over the globe, motivated by the recognition that events on the Sun and the consequent conditions in interplanetary space and Earth's magnetosphere, ionosphere, and thermosphere can have serious impacts on vital technological systems. The fundamental research conducted at universities, government laboratories, and in the private sector has led to tremendous improvements in the ability to forecast space weather events and predict their impacts on human technology and health. The mobilization of the research community that made this progress possible was the result of a series of actions taken by the National Science Foundation (NSF) to build a national program aimed at space weather. The path forward for space weather is to build on those successes through continued involvement of the research community and support for programs aimed at strengthening basic research and education in academia, the private sector, and government laboratories. Investments in space weather are most effective when applied at the intersection of research and applications. Thus, to achieve the goals set forth originally by the National Space Weather Program, the research community must be fully engaged in the planning, implementation, and execution of space weather activities, currently being coordinated by the Space Weather Operations, Research, and Mitigation Subcommittee under the National Science and Technology Council.

  19. The Research-to-Operations-to-Research Cycle at NOAA's Space Weather Prediction Center

    Science.gov (United States)

    Singer, H. J.

    2017-12-01

    The provision of actionable space weather products and services by NOAA's Space Weather Prediction Center relies on observations, models and scientific understanding of our dynamic space environment. It also depends on a deep understanding of the systems and capabilities that are vulnerable to space weather, as well as national and international partnerships that bring together resources, skills and applications to support space weather forecasters and customers. While these activities have been evolving over many years, in October 2015, with the release of the National Space Weather Strategy and National Space Weather Action Plan (NSWAP) by National Science and Technology Council in the Executive Office of the President, there is a new coordinated focus on ensuring the Nation is prepared to respond to and recover from severe space weather storms. One activity highlighted in the NSWAP is the Operations to Research (O2R) and Research to Operations (R2O) process. In this presentation we will focus on current R2O and O2R activities that advance our ability to serve those affected by space weather and give a vision for future programs. We will also provide examples of recent research results that lead to improved operational capabilities, lessons learned in the transition of research to operations, and challenges for both the science and operations communities.

  20. Basalt Weathering in a Cold and Icy Climate: Three Sisters, Oregon as an Analog for Early Mars

    Science.gov (United States)

    Rampe, E. B.; Horgan, B.; Smith, R. J.; Scudder, N. A.; Rutledge, A. M.; Bamber, E.; Morris, R. V.

    2017-01-01

    There is abundant evidence for liquid water on early Mars, but the debate remains whether early Mars was warm and wet or cold and icy with punctuated periods of melting. To further investigate the hypothesis of a cold and icy early Mars, we collected rocks and sediments from the Collier and Diller glacial valleys in the Three Sisters volcanic complex in Oregon. We analyzed rocks and sediments with X-ray diffraction (XRD), scanning and transmission electron microscopies with energy dispersive spectroscopy (SEM, TEM, EDS), and visible, short-wave infrared (VSWIR) and thermal-IR (TIR) spectroscopies to characterize chemical weathering and sediment transport through the valleys. Here, we focus on the composition and mineralogy of the weathering products and how they compare to those identified on the martian surface. Phyllosilicates (smectite), zeolites, and poorly crystalline phases were discovered in pro- and supra-glacial sediments, whereas Si-rich regelation films were found on hand samples and boulders in the proglacial valleys. Most phyllosilicates and zeolites are likely detrital, originating from hydrothermally altered units on North Sister. TEM-EDS analyses of the flour samples demonstrate a variety of poorly crystalline (i.e., no long-range crystallographic order) phases: iron oxides, devitrified volcanic glass, and Fe-Si-Al phases. The CheMin XRD on the Curiosity rover in Gale crater has identified significant amounts of X-ray amorphous materials in all samples measured to date. The amorphous component is likely a combination of silicates, iron oxides, and sulfates. Although we have not yet observed amorphous sulfate in the samples from Three Sisters, the variety of poorly crystalline weathering products found at this site is consistent with the variable composition of the X-ray amorphous component identified by CheMin. We suggest that these amorphous phases on Mars could have formed in a similarly cold and icy environment.

  1. Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center

    Science.gov (United States)

    Mullinix, R.; Maddox, M. M.; Berrios, D.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Zheng, Y.

    2012-12-01

    Space weather affects virtually all of NASA's endeavors, from robotic missions to human exploration. Knowledge and prediction of space weather conditions are therefore essential to NASA operations. The diverse nature of currently available space environment measurements and modeling products compels the need for a single access point to such information. The Integrated Space Weather Analysis (iSWA) System provides this single point access along with the capability to collect and catalog a vast range of sources including both observational and model data. NASA Goddard Space Weather Research Center heavily utilizes the iSWA System daily for research, space weather model validation, and forecasting for NASA missions. iSWA provides the capabilities to view and analyze near real-time space weather data from any where in the world. This presentation will describe the technology behind the iSWA system and describe how to use the system for space weather research, forecasting, training, education, and sharing.

  2. The influence of thermal inertia on Mars' seasonal pressure variation and the effect of the weather component

    Science.gov (United States)

    Wood, S. E.; Paige, D. A.

    Using a Leighton-Murray type diurnal and seasonal Mars thermal model, we found that it is possible to reproduce the seasonal variation in daily-averaged pressures (approximately 680-890 Pa) measured by Viking Lander 1 (VL1), during years without global dust storms, with a standard deviation of less than 5 Pa. In this simple model, surface CO2, frost condensation, and sublimation rates at each latitude are determined by the net effects of radiation, latent heat, and heat conduction in subsurface soil layers. An inherent assumption of our model is that the seasonal pressure variation is due entirely to the exchange of mass between the atmosphere and polar caps. However, the results of recent Mars GCM modeling have made it clear that there is a significant dynamical contribution to the seasonal pressure variation. This 'weather' component is primarily due to large-scale changes in atmospheric circulation, and its magnitude depends somewhat on the dust content of the atmosphere. The overall form of the theoretical weather component at the location of VL1, as calculated by the AMES GCM, remains the same over the typical range of Mars dust opacities.

  3. Space-weathering processes and products on volatile-rich asteroids

    Science.gov (United States)

    Britt, D.; Schelling, P.; Consolmagno, G.; Bradley, T.

    2014-07-01

    Space weathering is a generic term for the effects on atmosphereless solid bodies in the solar system from a range of processes associated with direct exposure to the space environment. These include impact processes (shock, vaporization, fragmentation, heating, melting, and ejecta formation), radiation damage (from galactic and solar cosmic rays), solar-wind effects (irradiation, ion implantation, and sputtering), and the chemical reactions driven by these processes. The classic example of space weathering is the formation of the lunar spectral red slope associated with the production of nanophase Fe (npFe0) in the dusty lunar regolith (C.R. Chapman, 2004, Annual Review of Earth & Planet. Sci. 32, C.M. Pieters, 2000, MAPS 35). Similar npFe0 has been recovered from asteroid (25143) Itokawa and some asteroid classes do exhibit modest spectral red slopes (T. Noguchi, 2011, Science 333). Space weathering can be thought of as driven by a combination of the chemical environment of space (hard vacuum, low oxygen fugacity, solar-wind implantation of hydrogen) along with thermal energy supplied by micrometeorite impacts. The forward modeling of space weathering as thermodynamically-driven decomposition of common rock-forming minerals suggests the production of a range of daughter products: (1) The silicate products typically lose oxygen, other volatile elements (i.e., sulfur and sodium), and metallic cations, producing minerals that are typically more disordered and less optically active than the original parent materials. (2) The decomposed metallic cations form in nano-sized blebs including npFe0, on the surfaces or in condensing rims of mineral grains. This creates a powerful optical component as seen in the lunar red slope. Surfaces with exposed npFe0 are an ideal environment for catalyzing further reactions. (3) The liberated volatile elements and gases (O, S, Na) may form an observable exosphere (e.g., Moon and Mercury) and can either escape from the body or

  4. Lanzerotti to Head New AGU Journal on Space Weather

    Science.gov (United States)

    Lifland, Jonathan

    Louis J. Lanzerotti has been named editor of a new AGU online publication devoted to the emerging field of near-Earth space conditions and their effects on technical systems. Space Weather: The International Journal of Research and Applications, will be the first journal dedicated solely to the subject, and will include peer-reviewed research, as well as news, features, and opinion articles. A quarterly magazine digest will also be published from the online edition and distributed free of charge to space weather professionals. Lanzerotti, a longtime AGU member who was elected an AGU Fellow in 1985, is currently a consulting physicist at Lucent Technologies Bell Laboratories, and a distinguished research professor at the New Jersey Institute of Technology. He also serves on the governing board of the American Institute of Physics. He is author or co-author of more than 500 publications, including many related to space weather and its effects on communications.

  5. Space Weather Monitoring for ISS Geomagnetic Storm Studies

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda Neergaard

    2013-01-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  6. Space Weather Influence on the Earth Climate: Possible Manifestations in Wheat Markets Reaction

    Science.gov (United States)

    Pustilnik, Lev; Yom Din, Gregory; Zagnetko, Alexander

    We consider problem of a possible influence of unfavorable states of the space weather on agri-culture market through chain of connections: "space weather"-"earth weather"-"agriculture crops"-"price reaction". We show that new manifestations of "space weather"-"earth weather" relations discovered in the last time allow to revise wide field of expected solar-terrestrial con-nections. In the previous works we proposed possible mechanisms of wheat market reaction in the form of price bursts on the specific unfavorable states of space weather. We show that implementation of considered "price reaction scenarios" is possible only for condition of simul-taneous realization of several necessary conditions: high sensitivity of local earth weather in selected region to space weather; state of "high risk agriculture" in selected agriculture zone; high sensitivity of agricultural market to possible deficit of supply. Results of previous works included application of this approach to wheat market in Medieval England and to modern USA durum market showed that real connection between wheat price bursts and space weather state is observed with high confidence level. The aim of present work is answer on the ques-tion, why wheat markets in one region are sensitive to space weather factor, while another regional wheat markets demonstrate absolute indifferent reaction on this factor. For this aim we consider distribution of sensitivity of wheat markets in Europe to space weather as function of localization in different climatic zones. We analyze giant database of 95 European wheat markets from 14 countries during about 600-year period (1260-1912). We show that observed sensitivity of wheat market to space weather effects controlled, first of all, by type of predomi-nant climate in different zones of agriculture. Wheat markets in the North and part of Central Europe (England, Iceland, Holland) shows reliable sensitivity to space weather in minimum states of solar activity with low

  7. Discover Space Weather and Sun's Superpowers: Using CCMC's innovative tools and applications

    Science.gov (United States)

    Mendoza, A. M. M.; Maddox, M. M.; Kuznetsova, M. M.; Chulaki, A.; Rastaetter, L.; Mullinix, R.; Weigand, C.; Boblitt, J.; Taktakishvili, A.; MacNeice, P. J.; Pulkkinen, A. A.; Pembroke, A. D.; Mays, M. L.; Zheng, Y.; Shim, J. S.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) has developed a comprehensive set of tools and applications that are directly applicable to space weather and space science education. These tools, some of which were developed by our student interns, are capable of serving a wide range of student audiences, from middle school to postgraduate research. They include a web-based point of access to sophisticated space physics models and visualizations, and a powerful space weather information dissemination system, available on the web and as a mobile app. In this demonstration, we will use CCMC's innovative tools to engage the audience in real-time space weather analysis and forecasting and will share some of our interns' hands-on experiences while being trained as junior space weather forecasters. The main portals to CCMC's educational material are ccmc.gsfc.nasa.gov and iswa.gsfc.nasa.gov

  8. Synoptic Traveling Weather Systems on Mars: Effects of Radiatively-Active Water Ice Clouds

    Science.gov (United States)

    Hollingsworth, Jeffery; Kahre, Melinda; Haberle, Robert; Urata, Richard

    2017-01-01

    Atmospheric aerosols on Mars are critical in determining the nature of its thermal structure, its large-scale circulation, and hence the overall climate of the planet. We conduct multi-annual simulations with the latest version of the NASA Ames Mars global climate model (GCM), gcm2.3+, that includes a modernized radiative-transfer package and complex water-ice cloud microphysics package which permit radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and mutual interactions) to influence the net diabatic heating. Results indicate that radiatively active water ice clouds profoundly affect the seasonal and annual mean climate. The mean thermal structure and balanced circulation patterns are strongly modified near the surface and aloft. Warming of the subtropical atmosphere at altitude and cooling of the high latitude atmosphere at low levels takes place, which increases the mean pole-to-equator temperature contrast (i.e., "baroclinicity"). With radiatively active water ice clouds (RAC) compared to radiatively inert water ice clouds (nonRAC), significant changes in the intensity of the mean state and forced stationary Rossby modes occur, both of which affect the vigor and intensity of traveling, synoptic period weather systems.Such weather systems not only act as key agents in the transport of heat and momentum beyond the extent of the Hadley circulation, but also the transport of trace species such as water vapor, water ice-clouds, dust and others. The northern hemisphere (NH) forced Rossby waves and resultant wave train are augmented in the RAC case: the modes are more intense and the wave train is shifted equatorward. Significant changes also occur within the subtropics and tropics. The Rossby wave train sets up, combined with the traveling synoptic period weather systems (i.e., cyclones and anticyclones), the geographic extent of storm zones (or storm tracks) within the NH. A variety of circulation

  9. Space plasma observations - observations of solar-terrestrial environment. Space Weather Forecast

    International Nuclear Information System (INIS)

    Sagawa, Eiichi; Akioka, Maki

    1996-01-01

    The space environment becomes more important than ever before because of the expansion in the utilization of near-earth space and the increase in the vulnerability of large scale systems on the ground such as electrical power grids. The concept of the Space Weather Forecast program emerged from the accumulation of understanding on basic physical processes and from our activities as one of the regional warning centers of the international network of space environment services. (author)

  10. Cause and Properties of the Extreme Space Weather Event of 2012 July 23

    Science.gov (United States)

    Liu, Y. D.; Luhmann, J. G.; Kajdic, P.; Kilpua, E.; Lugaz, N.; Nitta, N.; Lavraud, B.; Bale, S. D.; Farrugia, C. J.; Galvin, A. B.

    2013-12-01

    Extreme space weather refers to extreme conditions in space driven by solar eruptions and subsequent disturbances in interplanetary space, or otherwise called solar superstorms. Understanding extreme space weather events is becoming ever more vital, as the vulnerability of our society and its technological infrastructure to space weather has increased dramatically. Instances of extreme space weather, however, are very rare by definition and therefore are difficult to study. Here we report and investigate an extreme event, which occurred on 2012 July 23 with a maximum speed of about 3050 km/s near the Sun. This event, with complete modern remote sensing and in situ observations from multiple vantage points, provides an unprecedented opportunity to study the cause and consequences of extreme space weather. It produced a superfast shock with a peak solar wind speed of 2246 km/s and a superstrong magnetic cloud with a peak magnetic field of 109 nT observed near 1 AU at STEREO A. The record solar wind speed and magnetic field would produce a record geomagnetic storm since the space era with a minimum Dst of -1200 - -600 nT, if this event hit the Earth. We demonstrate how successive coronal mass ejections (CMEs) can be enhanced into a solar superstorm as they interact en route from the Sun to 1 AU. These results not only provide a benchmark for studies of extreme space weather, but also present a new view of how an extreme space weather event can be generated from usual solar eruptions.

  11. Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroid Space Weathering Studies

    Science.gov (United States)

    Dominque, Deborah L.; Chapman, Clark R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Orlando, Thomas M.; Schriver, David; hide

    2011-01-01

    Understanding the composition of Mercury's crust is key to comprehending the formation of the planet. The regolith, derived from the crustal bedrock, has been altered via a set of space weathering processes. These processes are the same set of mechanisms that work to form Mercury's exosphere, and are moderated by the local space environment and the presence of an intrinsic planetary magnetic field. The alterations need to be understood in order to determine the initial crustal compositions. The complex interrelationships between Mercury's exospheric processes, the space environment, and surface composition are examined and reviewed. The processes are examined in the context of our understanding of these same processes on the lunar and asteroid regoliths. Keywords: Mercury (planet) Space weathering Surface processes Exosphere Surface composition Space environment 3

  12. The sun and space weather Second Edition

    CERN Document Server

    Hanslmeier, Arnold

    2007-01-01

    This second edition is a great enhancement of literature which will help the reader get deeper into the specific topics. There are new sections included such as space weather data sources and examples, new satellite missions, and the latest results. At the end a comprehensive index is given which will allow the reader to quickly find his topics of interest. The Sun and Space weather are two rapidly evolving topics. The importance of the Sun for the Earth, life on Earth, climate and weather processes was recognized long ago by the ancients. Now, for the first time there is a continuous surveillance of solar activity at nearly all wavelengths. These data can be used to improve our understanding of the complex Sun-Earth interaction. The first chapters of the book deal with the Sun as a star and its activity phenomena as well as its activity cycle in order to understand the complex physics of the Sun-Earth system. The reader will see that there are many phenomena but still no definite explanations and models exis...

  13. The Mars Environmental Compatibility Assessment (MECA) Wet Chemistry Experiment on the Mars 2001 Lander

    Science.gov (United States)

    Grannan, S. M.; Meloy, T. P.; Hecht, H.; Anderson, M. S.; Buehler, M.; Frant, M.; Kounaves, S. P.; Manatt, K. S.; Pike, W. T.; Schubert, W.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) is an instrument suite that will fly on the Mars Surveyor 2001 Lander Spacecraft. MECA is sponsored by the Human Exploration and Development of Space (HEDS) program and will evaluate potential hazards that the dust and soil of Mars might present to astronauts and their equipment on a future human mission to Mars. Four elements constitute the integrated MECA payload: a microscopy station, patch plates, an electrometer, and the wet chemistry experiment (WCE). The WCE is the first application of electrochemical sensors to study soil chemistry on another planetary body, in addition to being the first measurement of soil/water solution properties on Mars. The chemical composition and properties of the watersoluble materials present in the Martian soil are of considerable interest to the planetary science community because characteristic salts are formed by the water-based weathering of rocks, the action of volcanic gases, and biological activity. Thus the characterization of water-soluble soil materials on Mars can provide information on the geochemical history of the planet surface. Additional information is contained in the original extended abstract.

  14. Space weather effects measured in atmospheric radiation on aircraft

    Science.gov (United States)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Wieman, S. R.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, L. D.; Mertens, C. J.; Xu, X.; Wiltberger, M. J.; Wiley, S.; Teets, E.; Shea, M. A.; Smart, D. F.; Jones, J. B. L.; Crowley, G.; Azeem, S. I.; Halford, A. J.

    2016-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Since 2013 Space Environment Technologies (SET) has been conducting observations of the atmospheric radiation environment at aviation altitudes using a small fleet of six instruments. The objective of this work is to improve radiation risk management in air traffic operations. Under the auspices of the Automated Radiation Measurements for Aerospace Safety (ARMAS) and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) projects our team is making dose rate measurements on multiple aircraft flying global routes. Over 174 ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the radiation environment resulting from Galactic Cosmic Rays (GCRs), Solar Energetic Protons (SEPs), and outer radiation belt energetic electrons. The real-time radiation exposure is measured as an absorbed dose rate in silicon and then computed as an ambient dose equivalent rate for reporting dose relevant to radiative-sensitive organs and tissue in units of microsieverts per hour. ARMAS total ionizing absorbed dose is captured on the aircraft, downlinked in real-time, processed on the ground into ambient dose equivalent rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users. Dose rates from flight altitudes up to 56,700 ft. are shown for flights across the planet under a variety of space weather conditions. We discuss several space weather

  15. Challenges for Transitioning Science Research to Space Weather Applications

    Science.gov (United States)

    Spann, James

    2013-01-01

    Effectively transitioning science knowledge to useful applications relevant to space weather has become important. The effort to transition scientific knowledge to a useful application is not a research nor is it operations, but an activity that connects two. Successful transitioning must be an intentional effort with a clear goal and measureable outcome. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  16. Space Weather opportunities from the Swarm mission including near real time applications

    DEFF Research Database (Denmark)

    Stolle, Claudia; Floberghagen, Rune; Luehr, Hermann

    2013-01-01

    Sophisticated space weather monitoring aims at nowcasting and predicting solar-terrestrial interactions because their effects on the ionosphere and upper atmosphere may seriously impact advanced technology. Operating alert infrastructures rely heavily on ground-based measurements and satellite...... these products in timely manner will add significant value in monitoring present space weather and helping to predict the evolution of several magnetic and ionospheric events. Swarm will be a demonstrator mission for the valuable application of LEO satellite observations for space weather monitoring tools....

  17. Aurorasaurus: Citizen Scientists Experiencing Extremes of Space Weather

    Science.gov (United States)

    MacDonald, E.; Hall, M.; Tapia, A.

    2013-12-01

    Aurorasaurus is a new citizen science mapping platform to nowcast the visibility of the Northern Lights for the public in the current solar maximum, the first with social media. As a recently funded NSF INSPIRE program, we have joint goals among three research disciplines: space weather forecasting, the study of human-computer interactions, and informal science education. We will highlight results from the prototype www.aurorasaurus.org and outline future efforts to motivate online participants and crowdsource viable data. Our citizen science effort is unique among space programs as it includes both reporting observations and data analysis activities to engage the broadest participant network possible. In addition, our efforts to improve space weather nowcasting by including real-time mapping of ground truth observers for rare, sporadic events are a first in the field.

  18. Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations

    Science.gov (United States)

    Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.

    2013-12-01

    There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.

  19. Challenges for Transitioning Science Knowledge to an Operational Environment for Space Weather

    Science.gov (United States)

    Spann, James

    2012-01-01

    Effectively transitioning science knowledge to an operational environment relevant to space weather is critical to meet the civilian and defense needs, especially considering how technologies are advancing and present evolving susceptibilities to space weather impacts. The effort to transition scientific knowledge to a useful application is not a research task nor is an operational activity, but an effort that bridges the two. Successful transitioning must be an intentional effort that has a clear goal for all parties and measureable outcome and deliverable. This talk will present proven methodologies that have been demonstrated to be effective for terrestrial weather and disaster relief efforts, and how those methodologies can be applied to space weather transition efforts.

  20. Mitigating Aviation Communication and Satellite Orbit Operations Surprises from Adverse Space Weather

    Science.gov (United States)

    Tobiska, W. Kent

    2008-01-01

    Adverse space weather affects operational activities in aviation and satellite systems. For example, large solar flares create highly variable enhanced neutral atmosphere and ionosphere electron density regions. These regions impact aviation communication frequencies as well as precision orbit determination. The natural space environment, with its dynamic space weather variability, is additionally changed by human activity. The increase in orbital debris in low Earth orbit (LEO), combined with lower atmosphere CO2 that rises into the lower thermosphere and causes increased cooling that results in increased debris lifetime, adds to the environmental hazards of navigating in near-Earth space. This is at a time when commercial space endeavors are posed to begin more missions to LEO during the rise of the solar activity cycle toward the next maximum (2012). For satellite and aviation operators, adverse space weather results in greater expenses for orbit management, more communication outages or aviation and ground-based high frequency radio used, and an inability to effectively plan missions or service customers with space-based communication, imagery, and data transferal during time-critical activities. Examples of some revenue-impacting conditions and solutions for mitigating adverse space weather are offered.

  1. MAGDAS Project for Space Weather Research and Application

    International Nuclear Information System (INIS)

    Yumoto, Kiyohumi

    2009-01-01

    The Space Environment Research Center (SERC), Kyushu University, is currently deploying a new ground-based magnetometer network of MAGnetic Data Acqusition System (MAGDAS), in cooperation with about 30 organizations in the world, in order to understand the complex Sun-Earth system for space weather research and application. SERC will conducts MAGDAS observation at 50 stations in the Circum-pan Pacific Magnetometer Network (CPMN) region, and FM-CW radar observation along the 210 deg. magnetic meridian (MM) during the IHY/ILWS/CAWSES periods. This project is actively providing the following space weather monitoring:(1) Global 3-dimensional current system to know electromagnetic coupling of the region 1 and 2 field-aligned currents, auroral electrojet current, Sq current, and equatorial electrojet current. (2) Plasma mass density along the 210 deg. MM to understand plasma environment change during space storms. (3) Ionospheric electric field intensity with 10-sec sampling at L = 1.26 to understand how the external electric field penetrates into the equatorial ionosphere.

  2. Solar origins of space weather and space climate

    CERN Document Server

    Komm, Rudolf; Pevtsov, Alexei; Leibacher, John

    2014-01-01

    This topical issue is based on the presentations given at the 26th National Solar Observatory (NSO) Summer Workshop held at the National Solar Observatory/Sacramento Peak, New Mexico, USA from 30 April to 4 May 2012. This unique forum brought together experts in different areas of solar and space physics to help in developing a full picture of the origin of solar phenomena that affect Earth’s technological systems.  The articles include theory, model, and observation research on the origin of the solar activity and its cycle, as well as a discussion on how to incorporate the research into space-weather forecasting tools.  This volume is aimed at graduate students and researchers active in solar physics and space science.  Previously published in Solar Physics, Vol. 289/2, 2014.

  3. Space Weather Concerns for All-Electric Propulsion Satellites

    Science.gov (United States)

    Horne, Richard B.; Pitchford, David

    2015-08-01

    The introduction of all-electric propulsion satellites is a game changer in the quest for low-cost access to space. It also raises new questions for satellite manufacturers, operators, and the insurance industry regarding the general risks and specifically the threat of adverse space weather. The issues surrounding this new concept were discussed by research scientists and up to 30 representatives from the space industry at a special meeting at the European Space Weather Week held in November 2014. Here we report on the discussions at that meeting. We show that for a satellite undergoing electric orbit raising for 200 days the radiation dose due to electrons is equivalent to approximately 6.7 year operation at geostationary orbit or approximately half the typical design life. We also show that electrons can be injected into the slot region (8000 km) where they pose a risk of satellite internal charging. The results highlight the importance of additional radiation protection. We also discuss the benefits, the operational considerations, the other risks from the Van Allen radiation belts, the new business opportunities for space insurance, and the need for space situation awareness in medium Earth orbit where electric orbit raising takes place.

  4. Severe Space Weather Events--Understanding Societal and Economic Impacts: A Workshop Report - Extended Summary

    Science.gov (United States)

    2009-01-01

    The effects of space weather on modern technological systems are well documented in both the technical literature and popular accounts. Most often cited perhaps is the collapse within 90 seconds of northeastern Canada's Hydro-Quebec power grid during the great geomagnetic storm of March 1989, which left millions of people without electricity for up to 9 hours. This event exemplifies the dramatic impact that severe space weather can have on a technology upon which modern society critically depends. Nearly two decades have passed since the March 1989 event. During that time, awareness of the risks of severe space weather has increased among the affected industries, mitigation strategies have been developed, new sources of data have become available, new models of the space environment have been created, and a national space weather infrastructure has evolved to provide data, alerts, and forecasts to an increasing number of users. Now, 20 years later and approaching a new interval of increased solar activity, how well equipped are we to manage the effects of space weather? Have recent technological developments made our critical technologies more or less vulnerable? How well do we understand the broader societal and economic impacts of severe space weather events? Are our institutions prepared to cope with the effects of a 'space weather Katrina,' a rare, but according to the historical record, not inconceivable eventuality? On May 22 and 23, 2008, a one-and-a-half-day workshop held in Washington, D.C., under the auspices of the National Research Council's (NRC's) Space Studies Board brought together representatives of industry, the federal government, and the social science community to explore these and related questions. The key themes, ideas, and insights that emerged during the presentations and discussions are summarized in 'Severe Space Weather Events--Understanding Societal and Economic Impacts: A Workshop Report' (The National Academies Press, Washington, D

  5. Web-based Weather Expert System (WES) for Space Shuttle Launch

    Science.gov (United States)

    Bardina, Jorge E.; Rajkumar, T.

    2003-01-01

    The Web-based Weather Expert System (WES) is a critical module of the Virtual Test Bed development to support 'go/no go' decisions for Space Shuttle operations in the Intelligent Launch and Range Operations program of NASA. The weather rules characterize certain aspects of the environment related to the launching or landing site, the time of the day or night, the pad or runway conditions, the mission durations, the runway equipment and landing type. Expert system rules are derived from weather contingency rules, which were developed over years by NASA. Backward chaining, a goal-directed inference method is adopted, because a particular consequence or goal clause is evaluated first, and then chained backward through the rules. Once a rule is satisfied or true, then that particular rule is fired and the decision is expressed. The expert system is continuously verifying the rules against the past one-hour weather conditions and the decisions are made. The normal procedure of operations requires a formal pre-launch weather briefing held on Launch minus 1 day, which is a specific weather briefing for all areas of Space Shuttle launch operations. In this paper, the Web-based Weather Expert System of the Intelligent Launch and range Operations program is presented.

  6. GOES-R Space Weather Data: Achieving User Ready Products

    Science.gov (United States)

    Rowland, W. F.; Tilton, M.; Redmon, R. J.; Goodman, S. J.; Comerford, M.

    2017-12-01

    Forecasters and the science community will rely on improved Space Weather products from the next generation of Geostationary Operational Environmental Satellite (GOES-R Series) for decades to come. Many issues must be successfully addressed in order to produce useful products. The instruments themselves and their basic scientific measurements (Level 1b data, i.e. L1b) must be calibrated and validated. Algorithms must be created to transform L1b into the specific environmental parameters that are of interest to forecasters and the community (Level 2+, i.e. L2+). In the case of Space Weather data, because the L2+ products are not generated within the core GOES-R Ground Segment, a separate system had to be developed in order to implement the L2+ products. Finally, the products must be made available to real time and retrospective users, as well as preserved for future generations. We give an overview of the path to production of the GOES-R Space Weather products, and the role of the National Centers for Environmental Information (NCEI) in this process.

  7. The Origin of the "Seasons" in Space Weather

    Science.gov (United States)

    Dikpati, Mausumi; Cally, Paul S.; McIntosh, Scott W.; Heifetz, Eyal

    2017-11-01

    Powerful `space weather' events caused by solar activity pose serious risks to human health, safety, economic activity and national security. Spikes in deaths due to heart attacks, strokes and other diseases occurred during prolonged power outages. Currently it is hard to prepare for and mitigate the impact of space weather because it is impossible to forecast the solar eruptions that can cause these terrestrial events until they are seen on the Sun. However, as recently reported in Nature, eruptive events like coronal mass ejections and solar flares, are organized into quasi-periodic "seasons", which include enhanced bursts of eruptions for several months, followed by quiet periods. We explored the dynamics of sunspot-producing magnetic fields and discovered for the first time that bursty and quiet seasons, manifested in surface magnetic structures, can be caused by quasi-periodic energy-exchange among magnetic fields, Rossby waves and differential rotation of the solar interior shear-layer (called tachocline). Our results for the first time provide a quantitative physical mechanism for forecasting the strength and duration of bursty seasons several months in advance, which can greatly enhance our ability to warn humans about dangerous solar bursts and prevent damage to satellites and power stations from space weather events.

  8. A Mission Concept: Re-Entry Hopper-Aero-Space-Craft System on-Mars (REARM-Mars)

    Science.gov (United States)

    Davoodi, Faranak

    2013-01-01

    Future missions to Mars that would need a sophisticated lander, hopper, or rover could benefit from the REARM Architecture. The mission concept REARM Architecture is designed to provide unprecedented capabilities for future Mars exploration missions, including human exploration and possible sample-return missions, as a reusable lander, ascend/descend vehicle, refuelable hopper, multiple-location sample-return collector, laboratory, and a cargo system for assets and humans. These could all be possible by adding just a single customized Re-Entry-Hopper-Aero-Space-Craft System, called REARM-spacecraft, and a docking station at the Martian orbit, called REARM-dock. REARM could dramatically decrease the time and the expense required to launch new exploratory missions on Mars by making them less dependent on Earth and by reusing the assets already designed, built, and sent to Mars. REARM would introduce a new class of Mars exploration missions, which could explore much larger expanses of Mars in a much faster fashion and with much more sophisticated lab instruments. The proposed REARM architecture consists of the following subsystems: REARM-dock, REARM-spacecraft, sky-crane, secure-attached-compartment, sample-return container, agile rover, scalable orbital lab, and on-the-road robotic handymen.

  9. Towards a Global Hub and a Network for Collaborative Advancing of Space Weather Predictive Capabilities.

    Science.gov (United States)

    Kuznetsova, M. M.; Heynderickz, D.; Grande, M.; Opgenoorth, H. J.

    2017-12-01

    The COSPAR/ILWS roadmap on space weather published in 2015 (Advances in Space Research, 2015: DOI: 10.1016/j.asr.2015.03.023) prioritizes steps to be taken to advance understanding of space environment phenomena and to improve space weather forecasting capabilities. General recommendations include development of a comprehensive space environment specification, assessment of the state of the field on a 5-yr basis, standardization of meta-data and product metrics. To facilitate progress towards roadmap goals there is a need for a global hub for collaborative space weather capabilities assessment and development that brings together research, engineering, operational, educational, and end-user communities. The COSPAR Panel on Space Weather is aiming to build upon past progress and to facilitate coordination of established and new international space weather research and development initiatives. Keys to the success include creating flexible, collaborative, inclusive environment and engaging motivated groups and individuals committed to active participation in international multi-disciplinary teams focused on topics addressing emerging needs and challenges in the rapidly growing field of space weather. Near term focus includes comprehensive assessment of the state of the field and establishing an internationally recognized process to quantify and track progress over time, development of a global network of distributed web-based resources and interconnected interactive services required for space weather research, analysis, forecasting and education.

  10. Space Tweetup - from a participant to a Mars Tweetup organizer and a new format of space communication

    Science.gov (United States)

    Haider, O.; Groemer, G.

    2014-01-01

    In September 2011, the European Space Agency (ESA) and the German Space Agency (DLR) organized the first European SpaceTweetup during the German Aerospace day. One of the authors was one of 60 participants at this SpaceTweetup in Cologne and experienced the concept of a Tweetup and the engagement of the participants from the inside view. Building upon this experience, the Austrian Space Forum (OeWF) organized the first Austrian MarsTweetup during the “Dachstein Mars analog simulation”. Between 27 Apr,2001 and May,2012, a five day Mars simulation was conducted by the Austrian Space Forum and international research partners at the Giant Ice caves at the Dachstein region in Austria. During this field test, the Aouda.X spacesuit simulator and selected geophysical and life-science related experiments were conducted. In this paper we outline the potential and limitations of social media and how to engage the general public to participate and communicate about space projects through their own experience. We show examples of material SpaceTweetup participants produced e.g. hundreds of tweets during the actual event, blog entries, photo galleries and how space communication can benefit from it. Our considerations on organizing a SpaceTweetup are complemented with a section on lessons learned.

  11. Space Weather: The Solar Perspective

    Directory of Open Access Journals (Sweden)

    Schwenn Rainer

    2006-08-01

    Full Text Available The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.

  12. Space Weather: The Solar Perspective

    Science.gov (United States)

    Schwenn, Rainer

    2006-08-01

    The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.

  13. Space weathering of small Koronis family members

    Science.gov (United States)

    Thomas, Cristina A.; Rivkin, Andrew S.; Trilling, David E.; Enga, Marie-therese; Grier, Jennifer A.

    2011-03-01

    The space weathering process and its implications for the relationships between S- and Q-type asteroids and ordinary chondrite meteorites is an often debated topic in asteroid science. Q-type asteroids have been shown to display the best spectral match to ordinary chondrites (McFadden, L.A., Gaffey, M.J., McCord, T.B. [1985]. Science 229, 160-163). While the Q-types and ordinary chondrites share some spectral features with S-type asteroids, the S-types have significantly redder spectral slopes than the Q-types in visible and near-infrared wavelengths. This reddening of spectral slope is attributed to the effects of space weathering on the observed surface composition. The analysis by Binzel et al. (Binzel, R.P., Rivkin, A.S., Stuart, J.S., Harris, A.W., Bus, S.J., Burbine, T.H. [2004]. Icarus 170, 259-294) provided a missing link between the Q- and S-type bodies in near-Earth space by showing a reddening of spectral slope in objects from 0.1 to 5 km that corresponded to a transition from Q-type to S-type asteroid spectra, implying that size, and therefore surface age, is related to the relationship between S- and Q-types. The existence of Q-type asteroids in the main-belt was not confirmed until Mothé-Diniz and Nesvorny (Mothé-Diniz, T., Nesvorny, D. [2008]. Astron. Astrophys. 486, L9-L12) found them in young S-type clusters. The young age of these families suggest that the unweathered surface could date to the formation of the family. This leads to the question of whether older S-type main-belt families can contain Q-type objects and display evidence of a transition from Q- to S-type. To answer this question we have carried out a photometric survey of the Koronis family using the Kitt Peak 2.1 m telescope. This provides a unique opportunity to compare the effects of the space weathering process on potentially ordinary chondrite-like bodies within a population of identical initial conditions. We find a trend in spectral slope for objects 1-5 km that shows the

  14. The USGS Geomagnetism Program and its role in Space-Weather Monitoring

    Science.gov (United States)

    Love, Jeffrey J.; Finn, Carol A.

    2011-01-01

    Magnetic storms result from the dynamic interaction of the solar wind with the coupled magnetospheric-ionospheric system. Large storms represent a potential hazard for the activities and infrastructure of a modern, technologically based society [Baker et al., 2008]; they can cause the loss of radio communications, reduce the accuracy of global positioning systems, damage satellite electronics and affect satellite operations, increase pipeline corrosion, and induce voltage surges in electric power grids, causing blackouts. So while space weather starts with the Sun and is driven by the solar wind, it is on, or just above, the surface of the Earth that the practical effects of space weather are realized. Therefore, ground-based sensor networks, including magnetic observatories [Love, 2008], play an important role in space weather monitoring.

  15. Modeling extreme "Carrington-type" space weather events using three-dimensional global MHD simulations

    Science.gov (United States)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex

    2014-06-01

    There is a growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure. In the last two decades, significant progress has been made toward the first-principles modeling of space weather events, and three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, thereby playing a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for the modern global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events with a Dst footprint comparable to the Carrington superstorm of September 1859 based on the estimate by Tsurutani et. al. (2003). Results are presented for a simulation run with "very extreme" constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated induced geoelectric field on the ground to such extreme driving conditions. The model setup is further tested using input data for an observed space weather event of Halloween storm October 2003 to verify the MHD model consistence and to draw additional guidance for future work. This extreme space weather MHD model setup is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in ground-based conductor systems such as power transmission grids. Therefore, our ultimate goal is to explore the level of geoelectric fields that can be induced from an assumed storm of the reported magnitude, i.e., Dst˜=-1600 nT.

  16. Stronger Collaborations Needed for Successful Space Weather Research

    Science.gov (United States)

    Akasofu, Syun-Ichi

    2007-12-01

    One of the purposes of space weather research is to predict when and how the electromagnetic environment around the Earth will be disturbed after specific (solar storms,) which are defined here as various transient solar phenomena that occur at the time of solar flares [Akasofu and Chapman, 1972]. Accurate space weather predictions require an integrating and synthesizing research effort by a close collaboration among solar physicists, interplanetary physicists, magnetospheric physicists, and upper atmosphere physicists. Unfortunately, such integration/synthesis (I/S) projects in the past have often become an umbrella under which individual researchers in the four disciplines pursue only subjects of their own interests, disintegrate into individual projects, and even encourage the trend of infinite specialization because of the potential availability of additional funds.

  17. Weathering of rock 'Ginger'

    Science.gov (United States)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  18. Upper-atmospheric Space and Earth Weather eXperiment (USEWX)

    Science.gov (United States)

    Wiley, Scott Lee

    2014-01-01

    This presentation is an update from the 2011 and 2012 talks given to Teachers in Space. These slides include some recent space weather issues that are hot topics, including the adding our USEWX and USEWX partners, and information relevant to GSFC researchers.

  19. Solar energetic particles and space weather

    Science.gov (United States)

    Reames, Donald V.; Tylka, Allan J.; Ng, Chee K.

    2001-02-01

    The solar energetic particles (SEPs) of consequence to space weather are accelerated at shock waves driven out from the Sun by fast coronal mass ejections (CMEs). In the large events, these great shocks fill half of the heliosphere. SEP intensity profiles change appearance with longitude. Events with significant intensities of >10 MeV protons occur at an average rate of ~13 yr-1 near solar maximum and several events with high intensities of >100 MeV protons occur each decade. As particles stream out along magnetic field lines from a shock near the Sun, they generate waves that scatter subsequent particles. At high intensities, wave growth throttles the flow below the ``streaming limit.'' However, if the shock maintains its strength, particle intensities can rise above this limit to a peak when the shock itself passes over the observer creating a `delayed' radiation hazard, even for protons with energies up to ~1 GeV. The streaming limit makes us blind to the intensities at the oncoming shock, however, heavier elements such as He, O, and Fe probe the shape of the wave spectrum, and variation in abundances of these elements allow us to evade the limit and probe conditions at the shock, with the aid of detailed modeling. At high energies, spectra steepen to form a spectral `knee.' The location of the proton spectral knee can vary from ~10 MeV to ~1 GeV, depending on shock conditions, greatly affecting the radiation hazard. Hard spectra are a serious threat to astronauts, placing challenging requirements for shielding, especially on long-duration missions to the moon or Mars. .

  20. An Examination of the Space Weathering Patina of Lunar Rock 76015

    Science.gov (United States)

    Noble, S.; Chrisoffersen, R.; Rahman, Z.

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. Rocks have much longer surface lifetimes than an individual soil grain and thus record a longer history of exposure. By studying the weathering products which have built up on a rock surface, we can gain a deeper perspective on the weathering process and better assess the relative importance of various weathering components. The weathered coating, or patina, of the lunar rock 76015 has been previously studied under SEM and also by TEM using ultramicrotome sample preparation methods. However, to really understand the products involved in creating these coatings, it is helpful to examine the patina in cross section, something which is now possible though the use of Focused Ion Beam (FIB) sample prep techniques, which allows us to preserve intact the delicate stratigraphy of the patina coating and provides a unique cross-sectional view of the space weathering process. Several samples have been prepared from the rock and the coatings are found to be quite variable in thickness and composition from one sample to the next.

  1. National Space Weather Program Releases Strategy for the New Decade

    Science.gov (United States)

    Williamson, Samuel P.; Babcock, Michael R.; Bonadonna, Michael F.

    2010-12-01

    The National Space Weather Program (NSWP; http://www.nswp.gov) is a U.S. federal government interagency program established by the Office of the Federal Coordinator for Meteorology (OFCM) in 1995 to coordinate, collaborate, and leverage capabilities across stakeholder agencies, including space weather researchers, service providers, users, policy makers, and funding agencies, to improve the performance of the space weather enterprise for the United States and its international partners. Two important documents released in recent months have established a framework and the vision, goals, and strategy to move the enterprise forward in the next decade. The U.S. federal agency members of the NSWP include the departments of Commerce, Defense, Energy, Interior, State, and Transportation, plus NASA, the National Science Foundation, and observers from the White House Office of Science and Technology Policy (OSTP) and the Office of Management and Budget (OMB). The OFCM is also working with the Department of Homeland Security's Federal Emergency Management Agency to formally join the program.

  2. Space Weathering in Houston: A Role for the Experimental Impact Laboratory at JSC

    Science.gov (United States)

    Cintala, M. J.; Keller, L. P.; Christoffersen, R.; Hoerz, F.

    2015-01-01

    The effective investigation of space weathering demands an interdisciplinary approach that is at least as diversified as any other in planetary science. Because it is a macroscopic process affecting all bodies in the solar system, impact and its resulting shock effects must be given detailed attention in this regard. Direct observation of the effects of impact is most readily done for the Moon, but it still remains difficult for other bodies in the solar system. Analyses of meteorites and precious returned samples provide clues for space weathering on asteroids, but many deductions arising from those studies must still be considered circumstantial. Theoretical work is also indispensable, but it can only go as far as the sometimes meager data allow. Experimentation, however, can permit near real-time study of myriad processes that could contribute to space weathering. This contribution describes some of the capabilities of the Johnson Space Center's Experimental Impact Laboratory (EIL) and how they might help in understanding the space weathering process.

  3. A new technique for observationally derived boundary conditions for space weather

    Science.gov (United States)

    Pagano, Paolo; Mackay, Duncan Hendry; Yeates, Anthony Robinson

    2018-04-01

    Context. In recent years, space weather research has focused on developing modelling techniques to predict the arrival time and properties of coronal mass ejections (CMEs) at the Earth. The aim of this paper is to propose a new modelling technique suitable for the next generation of Space Weather predictive tools that is both efficient and accurate. The aim of the new approach is to provide interplanetary space weather forecasting models with accurate time dependent boundary conditions of erupting magnetic flux ropes in the upper solar corona. Methods: To produce boundary conditions, we couple two different modelling techniques, MHD simulations and a quasi-static non-potential evolution model. Both are applied on a spatial domain that covers the entire solar surface, although they extend over a different radial distance. The non-potential model uses a time series of observed synoptic magnetograms to drive the non-potential quasi-static evolution of the coronal magnetic field. This allows us to follow the formation and loss of equilibrium of magnetic flux ropes. Following this a MHD simulation captures the dynamic evolution of the erupting flux rope, when it is ejected into interplanetary space. Results.The present paper focuses on the MHD simulations that follow the ejection of magnetic flux ropes to 4 R⊙. We first propose a technique for specifying the pre-eruptive plasma properties in the corona. Next, time dependent MHD simulations describe the ejection of two magnetic flux ropes, that produce time dependent boundary conditions for the magnetic field and plasma at 4 R⊙ that in future may be applied to interplanetary space weather prediction models. Conclusions: In the present paper, we show that the dual use of quasi-static non-potential magnetic field simulations and full time dependent MHD simulations can produce realistic inhomogeneous boundary conditions for space weather forecasting tools. Before a fully operational model can be produced there are a

  4. Space Weather Impacts to Conjunction Assessment: A NASA Robotic Orbital Safety Perspective

    Science.gov (United States)

    Ghrist, Richard; Ghrist, Richard; DeHart, Russel; Newman, Lauri

    2013-01-01

    National Aeronautics and Space Administration (NASA) recognizes the risk of on-orbit collisions from other satellites and debris objects and has instituted a process to identify and react to close approaches. The charter of the NASA Robotic Conjunction Assessment Risk Analysis (CARA) task is to protect NASA robotic (unmanned) assets from threats posed by other space objects. Monitoring for potential collisions requires formulating close-approach predictions a week or more in the future to determine analyze, and respond to orbital conjunction events of interest. These predictions require propagation of the latest state vector and covariance assuming a predicted atmospheric density and ballistic coefficient. Any differences between the predicted drag used for propagation and the actual drag experienced by the space objects can potentially affect the conjunction event. Therefore, the space environment itself, in particular how space weather impacts atmospheric drag, is an essential element to understand in order effectively to assess the risk of conjunction events. The focus of this research is to develop a better understanding of the impact of space weather on conjunction assessment activities: both accurately determining the current risk and assessing how that risk may change under dynamic space weather conditions. We are engaged in a data-- ]mining exercise to corroborate whether or not observed changes in a conjunction event's dynamics appear consistent with space weather changes and are interested in developing a framework to respond appropriately to uncertainty in predicted space weather. In particular, we use historical conjunction event data products to search for dynamical effects on satellite orbits from changing atmospheric drag. Increased drag is expected to lower the satellite specific energy and will result in the satellite's being 'later' than expected, which can affect satellite conjunctions in a number of ways depending on the two satellites' orbits

  5. On the Nature of People's Reaction to Space Weather and Meteorological Weather Changes

    Science.gov (United States)

    Khabarova, O. V.; Dimitrova, S.

    2009-12-01

    Our environment includes many natural and artificial agents affecting any person on the Earth in one way or other. This work is focused on two of them - weather and space weather, which are permanently effective. Their cumulative effect is proved by means of the modeling. It is shown that combination of geomagnetic and solar indices and weather strength parameter (which includes six main meteorological parameters) correlates with health state significantly better (up to R=0.7), than separate environmental parameters do. The typical shape of any health characteristics' time-series during human body reaction to any negative impact represents a curve, well-known in medicine as a General Adaptation Syndrome curve by Hans Selye. We demonstrate this on the base of blood pressure time-series and acupunctural experiment data, averaged by group. The first stage of adaptive stress-reaction (resistance to stress) is sometimes observed 1-2 days before geomagnetic storm onset. The effect of "outstripping reaction to magnetic storm", named Tchizhevsky- Velkhover effect, had been known for many years, but its explanation was obtained recently due to the consideration of the near-Earth space plasma processes. It was shown that lowfrequency variations of the solar wind density on a background of the density growth can stimulate the development of the geomagnetic filed (GMF) variations of the wide frequency range. These variations seem to have "bioeffective frequencies", resonant with own frequencies of body organs and systems. The mechanism of human body reaction is supposed to be a parametrical resonance in low-frequency range (which is determined by the resonance in large-scale organs and systems) and a simple forced resonance in GHz-range of variations (the resonance of micro-objects in the organism such as DNA, cell membranes, blood ions etc.) Given examples of mass-reaction of the objects to ULF-range GMF variations during quiet space weather time prove this hypothesis.

  6. Space Weather Research Presented at the 2007 AGU Fall Meeting

    Science.gov (United States)

    Kumar, Mohi

    2007-12-01

    AGU's 47th annual Fall Meeting, held 10-14 December 2007 in San Francisco, Calif., was the largest gathering of geoscientists in the Union's history. More than 14,600 people attended. The Space Physics and Aeronomy (SPA) sections sported excellent turnout, with more than 1300 abstracts submitted over 114 poster and oral sessions. Topics discussed that related to space weather were manifold: the nature of the Sun-Earth system revealed through newly launched satellites, observations and models of ionospheric convection, advances in the understanding of radiation belt physics, Sun-Earth coupling via energetic coupling, data management and archiving into virtual observatories, and the applications of all this research to space weather forecasting and prediction.

  7. Space weather effects and commerical airlines

    Science.gov (United States)

    Jones, J.; Bentley, R.; Hunter, R.; Taylor, G.; Thomas, D.

    Space Weather (SW) phenomena can effect many areas of commercial airline operations including avionics, communications and GPS navigation systems. Of particular importance at present is the recently introduced EU legislation requiring the monitoring of aircrew radiation exposure, including any variations at aircraft altitudes due to solar activity. The Mullard Space Science Laboratory is collaborating with Virgin Atlantic Airways, the Civil Aviation Authority and the National Physical Laboratory on a 3- year project to monitor the levels of cosmic radiation on long-haul flights. The study will determine whether computer models currently used to predict radiation exposure of aircrew are adequate. It also aims to determine whether solar or geomagnetic activity can cause significant modifications to the doses. This presentation will begin by showing some of the preliminary results obtained so far. As an example, we present a comparison of flight doses measured following the 14t h July 2000 X - class flare that was accompanied by a major Solar Particle Event (SPE). The results highlight the importance of a range of external factors that can strongly influence how SPEs may effect the measured dose at aircraft altitudes. At present, any SPE contributions in the airlines' dose records can only be poorly estimated retrospectively. Ideally, it would be better to try to avoid operating during these possibly significant radiation - enhancing events by utilising SW information (alerts, warnings, etc.). However, doing so poses many difficult operational problems for such a heavily regulated international industry, in terms of safety, security and procedures. Therefore, the use of timely SW information, which is still very unreliable, in a similar manner to terrestrial weather will require agreement from the International Civil Aviation Organisation (ICAO) and International Air Transport Association (IATA) to Air Traffic Control and Aviation Regulatory Authority's. This

  8. In-Space Transportation for NASA's Evolvable Mars Campaign

    Science.gov (United States)

    Percy, Thomas K.; McGuire, Melissa; Polsgrove, Tara

    2015-01-01

    As the nation embarks on a new and bold journey to Mars, significant work is being done to determine what that mission and those architectural elements will look like. The Evolvable Mars Campaign, or EMC, is being evaluated as a potential approach to getting humans to Mars. Built on the premise of leveraging current technology investments and maximizing element commonality to reduce cost and development schedule, the EMC transportation architecture is focused on developing the elements required to move crew and equipment to Mars as efficiently and effectively as possible both from a performance and a programmatic standpoint. Over the last 18 months the team has been evaluating potential options for those transportation elements. One of the key aspects of the EMC is leveraging investments being made today in missions like the Asteroid Redirect Mission (ARM) mission using derived versions of the Solar Electric Propulsion (SEP) propulsion systems and coupling them with other chemical propulsion elements that maximize commonality across the architecture between both transportation and Mars operations elements. This paper outlines the broad trade space being evaluated including the different technologies being assessed for transportation elements and how those elements are assembled into an architecture. Impacts to potential operational scenarios at Mars are also investigated. Trades are being made on the size and power level of the SEP vehicle for delivering cargo as well as the size of the chemical propulsion systems and various mission aspects including Inspace assembly and sequencing. Maximizing payload delivery to Mars with the SEP vehicle will better support the operational scenarios at Mars by enabling the delivery of landers and habitation elements that are appropriately sized for the mission. The purpose of this investigation is not to find the solution but rather a suite of solutions with potential application to the challenge of sending cargo and crew to Mars

  9. Nanosatellite standardization and modularization as an asset to space weather measurements

    Science.gov (United States)

    Voss, D.; Carssow, D.; Fritz, T. A.; Voss, H. D.

    2009-12-01

    The continuity of measurements from satellites in the Magnetosphere and Ionosphere is essential for the space weather community as pointed out by the US National Space Weather Program. Challenges to space budgets and the growing dependence upon space weather prediction have opened the door for extremely small satellites to play a large role in making these measurements. Standardization allows for modularity and the ability to lower satellite cost by reusing instrumentation and satellite systems without redesigning interfaces. Use of nanosatellites gives a designer the freedom to depart from the customary larger satellite design by deploying standardized interfaces throughout the spacecraft bus. Examples from the Boston University Student Satellite for Application and Training (BUSAT), the Thunderstorms and Effects Scientific and Technology nanosatellite (TEST), and the Loss Cone Imaging Instrument (LCI) will be provided. BUSAT is a five instrument nanosatellite with a nine pixel Imaging Electron Spectrometer, a Magnetometer, an Auroral Imager, a Very Low Frequency receiver, and a Langmuir Plasma Probe. Its purpose is to further the understanding of the coupling between energetic particles originating in the magnetosphere and their subsequent effects on the Ionosphere. In addition to their space weather science objective, BUSAT’s subsystems are based on the Cubesat concept and have been standardized, enabling them to be stacked in any orientation. Subsystems are not limited in size to the basic 1U cube, but are able to be any multiple of that size in any direction.

  10. The new Athens Center applied to Space Weather Forecasting

    International Nuclear Information System (INIS)

    Mavromichalaki, H.; Sarlanis, C.; Souvatzoglou, G.; Mariatos, G.; Gerontidou, M.; Plainaki, C.; Papaioannou, A.; Tatsis, S.; Belov, A.; Eroshenko, E.; Yanke, V.

    2006-01-01

    The Sun provides most of the initial energy driving space weather and modulates the energy input from sources outside the solar system, but this energy undergoes many transformations within the various components of the solar-terrestrial system, which is comprised of the solar wind, magnetosphere and radiation belts, the ionosphere, and the upper and lower atmospheres of Earth. This is the reason why an Earth's based neutron monitor network can be used in order to produce a real time forecasting of space weather phenomena.Since 2004 a fully functioned new data analysis Center in real-time is in operation in Neutron Monitor Station of Athens University (ANMODAP Center) suitable for research applications. It provides a multi sided use of twenty three neutron monitor stations distributing in all world and operating in real-time given crucial information on space weather phenomena. In particular, the ANMODAP Center can give a preliminary alert of ground level enhancements (GLEs) of solar cosmic rays which can be registered around 20 to 30 minutes before the main part of lower energy particles. Therefore these energetic solar cosmic rays provide the advantage of forth warning. Moreover, the monitoring of the precursors of cosmic rays gives a forehand estimate on that kind of events should be expected (geomagnetic storms and/or Forbush decreases)

  11. Space Weather Operation at KASI With Van Allen Probes Beacon Signals

    Science.gov (United States)

    Lee, Jongkil; Kim, Kyung-Chan; Giuseppe, Romeo; Ukhorskiy, Sasha; Sibeck, David; Kessel, Ramona; Mauk, Barry; Giles, Barbara; Gu, Bon-Jun; Lee, Hyesook; Park, Young-Deuk; Lee, Jaejin

    2018-02-01

    The Van Allen Probes (VAPs) are the only modern National Aeronautics and Space Administration (NASA) spacecraft broadcasting real-time data on the Earth's radiation belts for space weather operations. Since 2012, the Korea Astronomy and Space Science Institute (KASI) has contributed to the receipt of these data via a 7 m satellite-tracking antenna and used these beacon data for space weather operations. An approximately 15 min period is required from measurement to acquisition of Level-1 data. In this paper, we demonstrate the use of VAP data for monitoring space weather conditions at geostationary orbit (GEO) by highlighting the Saint Patrick's Day storm of 2015. During that storm, Probe-A observed a significant increase in the relativistic electron flux at 3 RE. Those electrons diffused outward resulting in a large increase of the electron flux >2 MeV at GEO, which potentially threatened satellite operations. Based on this study, we conclude that the combination of VAP data and National Oceanic and Atmospheric Administration-Geostationary Operational Environmental Satellite (NOAA-GOES) data can provide improved space environment information to geostationary satellite operators. In addition, the findings obtained indicate that more data-receiving sites would be necessary and data connections improved if this or a similar system were to be used as an operational data service.

  12. Sensitivity of Earth Wheat Markets to Space Weather: Comparative Analysis based on data from Medieval European Markets

    Science.gov (United States)

    Pustil'Nik, Lev

    We consider a problem of the possible influence of unfavorable states of the space weather on agriculture markets through the chain of connections: "space weather"-"earth weather"- "agriculture crops"-"price reaction". We show that new manifestations of "space weather"- "earth weather" relations discovered in the recent time allow revising a wide range of the expected solar-terrestrial connections. In the previous works we proposed possible mechanisms of wheat market reaction on the specific unfavorable states of space weather in the form of price bursts and price asymmetry. We point out that implementation of considered "price reaction scenarios" is possible only for the case of simultaneous realization of several necessary conditions: high sensitivity of local earth weather in the selected region to space weather; the state of "high risk agriculture" in the selected agriculture zone; high sensitivity of agricultural market to a possible deficit of yield. Results of our previous works (I, II), including application of this approach to the Medieval England wheat market (1250-1700) and to the modern USA durum market (1910-1992), showed that connection between wheat price bursts and space weather state in these cases was absolutely real. The aim of the present work is to answer the question why wheat markets in one selected region may be sensitive to a space weather factor, while in other regions wheat markets demonstrate absolutely indifferent reaction on the space weather. For this aim, we consider dependence of sensitivity of wheat markets to space weather as a function of their location in different climatic zones of Europe. We analyze a database of 95 European wheat markets from 14 countries for the 600-year period (1260-1912). We show that the observed sensitivity of wheat markets to space weather effects is controlled, first of all, by a type of predominant climate in different zones of agricultural production. Wheat markets in the Northern and, partly, in

  13. Effects of Space Weathering on Reflectance Spectra of Ureilites: A Proof-of-Concept Study

    Science.gov (United States)

    Goodrich, C. A.; Gillis-Davis, J.; Cloutis, E.; Applin, D.; Hibbits, C.; Klima, R.; Christoffersen, R.; Fries, M.; Decker, S.

    2017-07-01

    Space weathering and spectral studies of three ureilitic samples show that space weathering causes significant changes in UV-VIS-IR spectra and Raman spectra. Changes due to amorphization of carbon could disguise ureilitic asteroids as CC-like.

  14. Ionospheric research for space weather service support

    Science.gov (United States)

    Stanislawska, Iwona; Gulyaeva, Tamara; Dziak-Jankowska, Beata

    2016-07-01

    Knowledge of the behavior of the ionosphere is very important for space weather services. A wide variety of ground based and satellite existing and future systems (communications, radar, surveillance, intelligence gathering, satellite operation, etc) is affected by the ionosphere. There are the needs for reliable and efficient support for such systems against natural hazard and minimalization of the risk failure. The joint research Project on the 'Ionospheric Weather' of IZMIRAN and SRC PAS is aimed to provide on-line the ionospheric parameters characterizing the space weather in the ionosphere. It is devoted to science, techniques and to more application oriented areas of ionospheric investigation in order to support space weather services. The studies based on data mining philosophy increasing the knowledge of ionospheric physical properties, modelling capabilities and gain applications of various procedures in ionospheric monitoring and forecasting were concerned. In the framework of the joint Project the novel techniques for data analysis, the original system of the ionospheric disturbance indices and their implementation for the ionosphere and the ionospheric radio wave propagation are developed since 1997. Data of ionosonde measurements and results of their forecasting for the ionospheric observatories network, the regional maps and global ionospheric maps of total electron content from the navigational satellite system (GNSS) observations, the global maps of the F2 layer peak parameters (foF2, hmF2) and W-index of the ionospheric variability are provided at the web pages of SRC PAS and IZMIRAN. The data processing systems include analysis and forecast of geomagnetic indices ap and kp and new eta index applied for the ionosphere forecasting. For the first time in the world the new products of the W-index maps analysis are provided in Catalogues of the ionospheric storms and sub-storms and their association with the global geomagnetic Dst storms is

  15. Cis-Lunar Reusable In-Space Transportation Architecture for the Evolvable Mars Campaign

    Science.gov (United States)

    McVay, Eric S.; Jones, Christopher A.; Merrill, Raymond G.

    2016-01-01

    Human exploration missions to Mars or other destinations in the solar system require large quantities of propellant to enable the transportation of required elements from Earth's sphere of influence to Mars. Current and proposed launch vehicles are incapable of launching all of the requisite mass on a single vehicle; hence, multiple launches and in-space aggregation are required to perform a Mars mission. This study examines the potential of reusable chemical propulsion stages based in cis-lunar space to meet the transportation objectives of the Evolvable Mars Campaign and identifies cis-lunar propellant supply requirements. These stages could be supplied with fuel and oxidizer delivered to cis-lunar space, either launched from Earth or other inner solar system sources such as the Moon or near Earth asteroids. The effects of uncertainty in the model parameters are evaluated through sensitivity analysis of key parameters including the liquid propellant combination, inert mass fraction of the vehicle, change in velocity margin, and change in payload masses. The outcomes of this research include a description of the transportation elements, the architecture that they enable, and an option for a campaign that meets the objectives of the Evolvable Mars Campaign. This provides a more complete understanding of the propellant requirements, as a function of time, that must be delivered to cis-lunar space. Over the selected sensitivity ranges for the current payload and schedule requirements of the 2016 point of departure of the Evolvable Mars Campaign destination systems, the resulting propellant delivery quantities are between 34 and 61 tonnes per year of hydrogen and oxygen propellant, or between 53 and 76 tonnes per year of methane and oxygen propellant, or between 74 and 92 tonnes per year of hypergolic propellant. These estimates can guide future propellant manufacture and/or delivery architectural analysis.

  16. Effects of Space Weathering on Reflectance Spectra of Ureilites: First Studies

    Science.gov (United States)

    Goodrich, C. A.; Gillis-Davis, J.; Cloutis, E.; Applin, D.; Takir, D.; Hibbitts, C.; Christoffersen, R.; Fries, M.; Klima, R.; Decker, S.

    2018-01-01

    Ureilites are differentiated meteorites (ultramafic rocks interpreted to be mantle residues) that contain as much carbon as the most carbon-rich carbonaceous chondrites (CCs). Reflectance spectra of ureilites are similar to those of some CCs. Hence, ureilitic asteroids may accidentally be categorized as primitive because their spectra could resemble those of C-complex asteroids, which are thought to be CC-like. We began spectral studies of progressively laser-weathered ureilites with the goals of predicting UV-VIS-IR spectra of ureilitic asteroids, and identifying features that could distinguish differentiated from primitive dark asteroids. Space weathering has not previously been studied for ureilites, and, based on space weathering studies of CCs and other C-rich materials, it could significantly alter their reflectance spectra.

  17. Addressing the Influence of Space Weather on Airline Navigation

    Science.gov (United States)

    Sparks, Lawrence

    2012-01-01

    The advent of satellite-based augmentation systems has made it possible to navigate aircraft safely using radio signals emitted by global navigation satellite systems (GNSS) such as the Global Positioning System. As a signal propagates through the earth's ionosphere, it suffers delay that is proportional to the total electron content encountered along the raypath. Since the magnitude of this total electron content is strongly influenced by space weather, the safety and reliability of GNSS for airline navigation requires continual monitoring of the state of the ionosphere and calibration of ionospheric delay. This paper examines the impact of space weather on GNSS-based navigation and provides an overview of how the Wide Area Augmentation System protects its users from positioning error due to ionospheric disturbances

  18. GEO Satellites as Space Weather Sensors

    Science.gov (United States)

    2016-04-26

    AFRL-AFOSR-VA-TR-2016-0161 GEO Satellites as Space Weather Sensors Kerri Cahoy MASSACHUSETTS INSTITUTE OF TECHNOLOGY 77 MASSACHUSETTS AVE CAMBRIDGE ... Cambridge , MA 02139 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) AF Office of Scientific...Lohmeyer  and  Cahoy,  2013;   Lohmeyer,  et  al.,  2015].  From  the   statistical  analysis,  we  identified  that

  19. Space weathering trends on carbonaceous asteroids: A possible explanation for Bennu's blue slope?

    Science.gov (United States)

    Lantz, C.; Binzel, R. P.; DeMeo, F. E.

    2018-03-01

    We compare primitive near-Earth asteroid spectral properties to the irradiated carbonaceous chondrite samples of Lantz et al. (2017) in order to assess how space weathering processes might influence taxonomic classification. Using the same eigenvectors from the asteroid taxonomy by DeMeo et al. (2009), we calculate the principal components for fresh and irradiated meteorites and find that change in spectral slope (blueing or reddening) causes a corresponding shift in the two first principal components along the same line that the C- and X-complexes track. Using a sample of B-, C-, X-, and D-type NEOs with visible and near-infrared spectral data, we further investigated the correlation between prinicipal components and the spectral curvature for the primitive asteroids. We find that space weathering effects are not just slope and albedo, but also include spectral curvature. We show how, through space weathering, surfaces having an original "C-type" reflectance can thus turn into a redder P-type or a bluer B-type, and that space weathering can also decrease (and disguise) the D-type population. Finally we take a look at the case of OSIRIS-REx target (101955) Bennu and propose an explanation for the blue and possibly red spectra that were previously observed on different locations of its surface: parts of Bennu's surface could have become blue due to space weathering, while fresher areas are redder. No clear prediction can be made on Hayabusa-2 target (162173) Ryugu.

  20. Review on the solar spectral variability in the EUV for space weather purposes

    Directory of Open Access Journals (Sweden)

    J. Lilensten

    2008-02-01

    Full Text Available The solar XUV-EUV flux is the main energy source in the terrestrial diurnal thermosphere: it produces ionization, dissociation, excitation and heating. Accurate knowledge of this flux is of prime importance for space weather. We first list the space weather applications that require nowcasting and forecasting of the solar XUV-EUV flux. We then review present models and discuss how they account for the variability of the solar spectrum. We show why the measurement of the full spectrum is difficult, and why it is illusory to retrieve it from its atmospheric effects. We then address the problem of determining a set of observations that are adapted for space weather purposes, in the frame of ionospheric studies. Finally, we review the existing and future space experiments that are devoted to the observation of the solar XUV-EUV spectrum.

  1. The Art and Science of Long-Range Space Weather Forecasting

    Science.gov (United States)

    Hathaway, David H.; Wilson, Robert M.

    2006-01-01

    Long-range space weather forecasts are akin to seasonal forecasts of terrestrial weather. We don t expect to forecast individual events but we do hope to forecast the underlying level of activity important for satellite operations and mission pl&g. Forecasting space weather conditions years or decades into the future has traditionally been based on empirical models of the solar cycle. Models for the shape of the cycle as a function of its amplitude become reliable once the amplitude is well determined - usually two to three years after minimum. Forecasting the amplitude of a cycle well before that time has been more of an art than a science - usually based on cycle statistics and trends. Recent developments in dynamo theory -the theory explaining the generation of the Sun s magnetic field and the solar activity cycle - have now produced models with predictive capabilities. Testing these models with historical sunspot cycle data indicates that these predictions may be highly reliable one, or even two, cycles into the future.

  2. Soil Crystallinity As a Climate Indicator: Field Experiments on Earth and Mars

    Science.gov (United States)

    Horgan, Briony; Scudder, Noel; Rampe, Elizabeth; Rutledge, Alicia

    2016-01-01

    Soil crystallinity is largely determined by leaching rates, as high leaching rates favor the rapid precipitation of short order or poorly-crystalline phases like the aluminosilicate allophane. High leaching rates can occur due to high precipitation rates, seasonal monsoons, or weathering of glass, but are also caused by the rapid onset of seasonal melting of snow and ice in cold environments. Thus, cold climate soils are commonly dominated by poorly crystalline phases, which mature into kaolin minerals over time. Thus, we hypothesize that, in some contexts, soils with high abundances of poorly crystalline phases could indicate formation under cold climatic conditions. This model could be helpful in interpreting the poorly-constrained paleoclimate of ancient Mars, as the crystallinity of ancient soils and soil-derived sediments appears to be highly variable in time and space. While strong signatures of crystalline phyllosilicates have been identified in possible ancient paleosols on Mars, Mars Science Laboratory rover investigations of diverse ancient sediments at Gale Crater has shown that they can contain very high abundances (40-50 wt%) of poorly crystalline phases. We hypothesize that these poorly crystalline phases could be the result of weathering by ice/snow melt, perhaps providing support for sustained cold climates on early Mars punctuated by more limited warm climates. Furthermore, such poorly crystalline soils could be highly fertile growth media for future human exploration and colonization on Mars. To test this hypothesis, we are currently using rover-like instrumentation to investigate the mineralogy and chemistry of weathering products generated by snow and ice melt in a Mars analog alpine environment: the glaciated Three Sisters volcanic complex in central Oregon. Alteration in this glacial environment generates high abundances of poorly crystalline phases, many of which have compositions distinct from those identified in previous terrestrial

  3. Space Weather Effects in the Earth's Radiation Belts

    Science.gov (United States)

    Baker, D. N.; Erickson, P. J.; Fennell, J. F.; Foster, J. C.; Jaynes, A. N.; Verronen, P. T.

    2018-02-01

    The first major scientific discovery of the Space Age was that the Earth is enshrouded in toroids, or belts, of very high-energy magnetically trapped charged particles. Early observations of the radiation environment clearly indicated that the Van Allen belts could be delineated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. The energy distribution, spatial extent and particle species makeup of the Van Allen belts has been subsequently explored by several space missions. Recent observations by the NASA dual-spacecraft Van Allen Probes mission have revealed many novel properties of the radiation belts, especially for electrons at highly relativistic and ultra-relativistic kinetic energies. In this review we summarize the space weather impacts of the radiation belts. We demonstrate that many remarkable features of energetic particle changes are driven by strong solar and solar wind forcings. Recent comprehensive data show broadly and in many ways how high energy particles are accelerated, transported, and lost in the magnetosphere due to interplanetary shock wave interactions, coronal mass ejection impacts, and high-speed solar wind streams. We also discuss how radiation belt particles are intimately tied to other parts of the geospace system through atmosphere, ionosphere, and plasmasphere coupling. The new data have in many ways rewritten the textbooks about the radiation belts as a key space weather threat to human technological systems.

  4. Assessing Space Weather Applications and Understanding: IMF Bz at L1

    Science.gov (United States)

    Riley, P.; Savani, N.; Mays, M. L.; Austin, H. J.

    2017-12-01

    The CCMC - International (CCMC-I) is designed as a self-organizing informal forum for facilitating novel global initiatives on space weather research, development, forecasting and education. Here we capitalize on CCMC'AGUs experience in providing highly utilized web-based services, leadership and trusted relationships with space weather model developers. One of the CCMC-I initiatives is the International Forum for Space Weather Capabilities Assessment. As part of this initiative, within the solar and heliosphere domain, we focus our community discussion on forecasting the magnetic structure of interplanetary CMEs and the ambient solar wind. During the International CCMC-LWS Working Meeting in April 2017 the group instigated open communication to agree upon a standardized process by which all current and future models can be compared under an unbiased test. In this poster, we present our initial findings how we expect different models will move forward with validating and forecasting the magnetic vectors of the solar wind at L1. We also present a new IMF Bz Score-board which will be used to assist in the transitioning of research models into more operational settings.

  5. Latest Community Coordinated Modeling Center (CCMC) services and innovative tools supporting the space weather research and operational communities.

    Science.gov (United States)

    Mendoza, A. M. M.; Rastaetter, L.; Kuznetsova, M. M.; Mays, M. L.; Chulaki, A.; Shim, J. S.; MacNeice, P. J.; Taktakishvili, A.; Collado-Vega, Y. M.; Weigand, C.; Zheng, Y.; Mullinix, R.; Patel, K.; Pembroke, A. D.; Pulkkinen, A. A.; Boblitt, J. M.; Bakshi, S. S.; Tsui, T.

    2017-12-01

    The Community Coordinated Modeling Center (CCMC), with the fundamental goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research, has been serving as an integral hub for over 15 years, providing invaluable resources to both space weather scientific and operational communities. CCMC has developed and provided innovative web-based point of access tools varying from: Runs-On-Request System - providing unprecedented global access to the largest collection of state-of-the-art solar and space physics models, Integrated Space Weather Analysis (iSWA) - a powerful dissemination system for space weather information, Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and Mobile apps to view space weather data anywhere to the scientific community. In addition to supporting research and performing model evaluations, CCMC also supports space science education by hosting summer students through local universities. In this poster, we will showcase CCMC's latest innovative tools and services, and CCMC's tools that revolutionized the way we do research and improve our operational space weather capabilities. CCMC's free tools and resources are all publicly available online (http://ccmc.gsfc.nasa.gov).

  6. Random Vibration of Space Shuttle Weather Protection Systems

    Directory of Open Access Journals (Sweden)

    Isaac Elishakoff

    1995-01-01

    Full Text Available The article deals with random vibrations of the space shuttle weather protection systems. The excitation model represents a fit to the measured experimental data. The cross-spectral density is given as a convex combination of three exponential functions. It is shown that for the type of loading considered, the Bernoulli-Euler theory cannot be used as a simplified approach, and the structure will be more properly modeled as a Timoshenko beam. Use of the simple Bernoulli-Euler theory may result in an error of about 50% in determining the mean-square value of the bending moment in the weather protection system.

  7. Fostering research aptitude among high school students through space weather competition

    Science.gov (United States)

    Abdullah, M.; Majid, R. A.; Bais, B.; Bahri, N. S.; Asillam, M. F.

    2018-01-01

    Cultivating research culture at an early stage is important for capacity building in a community. The high school level is the appropriate stage for research to be introduced because of students' competitive nature. Participation in the space weather competition is one of the ways in which research aptitude can be fostered in high school students in Malaysia. Accordingly, this paper presents how research elements were introduced to the students at the high school level through their participation in the space weather competition. The competition required the students to build a system to detect the presence of solar flares by utilizing VLF signals reflected from the ionosphere. The space weather competition started off with proposal writing for the space weather related project where the students were required to execute extensive literature review on the given topic. Additionally, the students were also required to conduct the experiments and analyse the data. Results obtained from data analysis were then validated by the students through various other observations that they had to carry out. At the end of the competition, students were expected to write a comprehensive technical report. Through this competition, the students learnt how to conduct research in accordance to the guidelines provided through the step by step approach exposed to them. Ultimately, this project revealed that the students were able to conduct research on their own with minimal guidance and that participation in the competition not only generated enjoyment in learning but also their interest in science and research.

  8. Enhancing the Awareness of the Interaction of the Space Weather and Public: Some Case Studies in Turkey

    Science.gov (United States)

    Tulunay, Y.; Tulunay, E.; Kocabas, Z.; Altuntas, E.; Yapici, T.; Senalp, E. T.; Hippler, R.

    2009-04-01

    Space Weather has important effects on many systems and peripherals that human interacts with. However, most of the people are not aware of those interactions. During the FP6 SWEETS, COST 724 and the ‘I love my Sun' activities it was aimed to create basis to bring together academicians from universities, experts from industry, scientific institutes, and the public, especially the school children of age 7-11, in order to enhance the awareness of space weather effects and to discuss appropriate countermeasures by different education and promotion methods including non-technical ones. This work mentions the activities performed in Turkey within the framework. Since 1990, a small group at METU has been developing data driven models in order to forecast some critical system parameters related with the near-Earth space processes. With the background on the subject the group feels responsible to organise activities in Turkey to inform public on enhancing the awareness of space weather effects. In order to inform and educate public on their interaction with the Space Weather, distinct social activities which take quick and strong attention were organised. Those include art shows and workshops, quizes, movies and entertainments, special programs for school children of age 7-11 under the ‘I love my Sun' activities, press releases, audio-visual media including webpages [Tulunay, 2007]. The impact of the activities can be evaluated considering the before and after activity record materials of the participants. For instance, under the ‘I love my Sun' activities, the school children drew pictures related with Sun before and after the informative programs. The performance of reaching the school children on the subject is very promising. Sub-activities conducted under the action are: 1. Space Weather Dance Show "Sonnensturm" 2. Web Quiz all over Europe: In Türkiye 3. Space Weather / Sun / Heliospheric Public Science Festivals in 27 Countries: In Türkiye 4. Space Weather on

  9. Dynamical Networks Characterization of Space Weather Events

    Science.gov (United States)

    Orr, L.; Chapman, S. C.; Dods, J.; Gjerloev, J. W.

    2017-12-01

    Space weather can cause disturbances to satellite systems, impacting navigation technology and telecommunications; it can cause power loss and aviation disruption. A central aspect of the earth's magnetospheric response to space weather events are large scale and rapid changes in ionospheric current patterns. Space weather is highly dynamic and there are still many controversies about how the current system evolves in time. The recent SuperMAG initiative, collates ground-based vector magnetic field time series from over 200 magnetometers with 1-minute temporal resolution. In principle this combined dataset is an ideal candidate for quantification using dynamical networks. Network properties and parameters allow us to characterize the time dynamics of the full spatiotemporal pattern of the ionospheric current system. However, applying network methodologies to physical data presents new challenges. We establish whether a given pair of magnetometers are connected in the network by calculating their canonical cross correlation. The magnetometers are connected if their cross correlation exceeds a threshold. In our physical time series this threshold needs to be both station specific, as it varies with (non-linear) individual station sensitivity and location, and able to vary with season, which affects ground conductivity. Additionally, the earth rotates and therefore the ground stations move significantly on the timescales of geomagnetic disturbances. The magnetometers are non-uniformly spatially distributed. We will present new methodology which addresses these problems and in particular achieves dynamic normalization of the physical time series in order to form the network. Correlated disturbances across the magnetometers capture transient currents. Once the dynamical network has been obtained [1][2] from the full magnetometer data set it can be used to directly identify detailed inferred transient ionospheric current patterns and track their dynamics. We will show

  10. Engaging Undergraduate Students in Space Weather Research at a 2- Year College

    Science.gov (United States)

    Damas, M. C.

    2017-07-01

    The Queensborough Community College (QCC) of the City University of New York (CUNY), a Hispanic and minority-serving institution, has been very successful at engaging undergraduate students in space weather research for the past ten years. Recently, it received two awards to support student research and education in solar and atmospheric physics under the umbrella discipline of space weather. Through these awards, students receive stipends during the academic year and summer to engage in scientific research. Students also have the opportunity to complete a summer internship at NASA and at other partner institutions. Funding also supports the development of course materials and tools in space weather. Educational materials development and the challenges of engaging students in research as early as their first year will be discussed. Once funding is over, how is the program sustained? Sustaining such a program, as well as how to implement it at other universities will also be discussed.

  11. Space weather biological and systems effects for suborbital flights

    Science.gov (United States)

    2008-10-31

    The Aerospace Corporation was tasked to assess the impacts of space weather on both RLVs and ELVs operating at suborbital altitudes from launch sites located in the low (equatorial regions), middle, and high latitudes. The present report presents a b...

  12. Comparison of MARS-KS and SPACE for UPTF TRAM Loop Seal Clearing Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Gil; Lee, Won Woong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Bang, Young Seok [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, the authors assessed SPACE code, which was developed by a consortium led by Korea Hydro and Nuclear Power Co., Ltd. (KHNP), now in licensing process and MARS-KS code for UPTF TRAM loop seal clearing experiment to evaluate the code predictability regarding loop seal clearing for supporting the regulatory review. The sensitivity of PT/CT sagging contact angle has been studied. The results of sagging contact angle could explain in different ways. In the case of wide sagging contact angle, the result is quite conservative in the aspect of containment as the heat is well-transferred to moderator. it causes the moderator to heat up. On the other hand, the narrow sagging contact angle results fuel heatup and give limiting condition for fuel integrity. As a result of estimation, a proper application of sagging contact angle is required to provide limiting condition for subsequent analysis. The results from the two codes were compared to the experimental data, but due to the lack of information on the uncertainties it is too early to conclude the both code's performance. However, from the obtained analysis results, some differences between MARS-KS and SPACE are initially observed. Especially, SPACE has larger oscillation in the calculated mass flow rate value than MARS-KS. This phenomenon was observed in comparison of SPACE and MARS-KS CCFL model as well.

  13. Scientific Payload Of The Emirates Mars Mission: Emirates Mars Infrared Spectrometer (Emirs) Overview.

    Science.gov (United States)

    Altunaiji, E. S.; Edwards, C. S.; Christensen, P. R.; Smith, M. D.; Badri, K. M., Sr.

    2017-12-01

    The Emirates Mars Mission (EMM) will launch in 2020 to explore the dynamics in the atmosphere of Mars on a global scale. EMM has three scientific instruments to an improved understanding of circulation and weather in the Martian lower and middle atmosphere. Two of the EMM's instruments, which are the Emirates eXploration Imager (EXI) and Emirates Mars Infrared Spectrometer (EMIRS) will focus on the lower atmosphere observing dust, ice clouds, water vapor and ozone. On the other hand, the third instrument Emirates Mars Ultraviolet Spectrometer (EMUS) will focus on both the thermosphere of the planet and its exosphere. The EMIRS instrument, shown in Figure 1, is an interferometric thermal infrared spectrometer that is jointly developed by Arizona State University (ASU) and Mohammed Bin Rashid Space Centre (MBRSC). It builds on a long heritage of thermal infrared spectrometers designed, built, and managed, by ASU's Mars Space Flight Facility, including the Thermal Emission Spectrometer (TES), Miniature Thermal Emission Spectrometer (Mini-TES), and the OSIRIS-REx Thermal Emission Spectrometer (OTES). EMIRS operates in the 6-40+ µm range with 5 cm-1 spectral sampling, enabled by a Chemical Vapor-Deposited (CVD) diamond beamsplitter and state of the art electronics. This instrument utilizes a 3×3 detector array and a scan mirror to make high-precision infrared radiance measurements over most of a Martian hemisphere. The EMIRS instrument is optimized to capture the integrated, lower-middle atmosphere dynamics over a Martian hemisphere and will capture 60 global images per week ( 20 images per orbit) at a resolution of 100-300 km/pixel. After processing through an atmospheric retrieval algorithm, EMIRS will determine the vertical temperature profiles to 50km altitude and measure the column integrated global distribution and abundances of key atmospheric parameters (e.g. dust, water ice (clouds) and water vapor) over the Martian day, seasons and year.

  14. Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroidal Space Weathering Studies

    Science.gov (United States)

    Domingue, Deborah L.; Chapman, Clark. R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Schriver, David; Travnicek, Pavel M.; hide

    2014-01-01

    Mercury's regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury's exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury's regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury's regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury's regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury's dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of

  15. High resolution solar observations in the context of space weather prediction

    Science.gov (United States)

    Yang, Guo

    Space weather has a great impact on the Earth and human life. It is important to study and monitor active regions on the solar surface and ultimately to predict space weather based on the Sun's activity. In this study, a system that uses the full power of speckle masking imaging by parallel processing to obtain high-spatial resolution images of the solar surface in near real-time has been developed and built. The application of this system greatly improves the ability to monitor the evolution of solar active regions and to predict the adverse effects of space weather. The data obtained by this system have also been used to study fine structures on the solar surface and their effects on the upper solar atmosphere. A solar active region has been studied using high resolution data obtained by speckle masking imaging. Evolution of a pore in an active region presented. Formation of a rudimentary penumbra is studied. The effects of the change of the magnetic fields on the upper level atmosphere is discussed. Coronal Mass Ejections (CMEs) have a great impact on space weather. To study the relationship between CMEs and filament disappearance, a list of 431 filament and prominence disappearance events has been compiled. Comparison of this list with CME data obtained by satellite has shown that most filament disappearances seem to have no corresponding CME events. Even for the limb events, only thirty percent of filament disappearances are associated with CMEs. A CME event that was observed on March 20, 2000 has been studied in detail. This event did not show the three-parts structure of typical CMEs. The kinematical and morphological properties of this event were examined.

  16. Space Weather Influence on Relative Motion Control using the Touchless Electrostatic Tractor

    Science.gov (United States)

    Hogan, Erik A.; Schaub, Hanspeter

    2016-09-01

    With recent interest in the use of electrostatic forces for contactless tugging and attitude control of noncooperative objects for orbital servicing and active debris mitigation, the need for a method of remote charge control arises. In this paper, the use of a directed electron beam for remote charge control is considered in conjunction with the relative motion control. A tug vehicle emits an electron beam onto a deputy object, charging it negatively. At the same time, the tug is charged positively due to beam emission, resulting in an attractive electrostatic force. The relative position feedback control between the tug and the passive debris object is studied subject to the charging being created through an electron beam. Employing the nominal variations of the GEO space weather conditions across longitude slots, two electrostatic tugging strategies are considered. First, the electron beam current is adjusted throughout the orbit in order to maximize this resulting electrostatic force. This open-loop control strategy compensates for changes in the nominally expected local space weather environment in the GEO region to adjust for fluctuations in the local plasma return currents. Second, the performance impact of using a fixed electron beam current on the electrostatic tractor is studied if the same natural space weather variations are assumed. The fixed electron beam current shows a minor performance penalty (<5 %) while providing a much simpler implementation that does not require any knowledge of local space weather conditions.

  17. Interaction of Space Suits with Windblown Soil: Preliminary Mars Wind Tunnel Results

    Science.gov (United States)

    Marshall, J.; Bratton, C.; Kosmo, J.; Trevino, R.

    1999-09-01

    Experiments in the Mars Wind Tunnel at NASA Ames Research Center show that under Mars conditions, spacesuit materials are highly susceptible to dust contamination when exposed to windblown soil. This effect was suspected from knowledge of the interaction of electrostatically adhesive dust with solid surfaces in general. However, it is important to evaluate the respective roles of materials, meteorological and radiation effects, and the character of the soil. The tunnel permits evaluation of dust contamination and sand abrasion of space suits by simulating both pressure and wind conditions on Mars. The long-term function of space suits on Mars will be primarily threatened by dust contamination. Lunar EVA activities caused heavy contamination of space suits, but the problem was never seriously manifest because of the brief utilization of the suits, and the suits were never reused. Electrostatically adhering dust grains have various detrimental effects: (1) penetration and subsequent wear of suit fabrics, (2) viewing obscuration through visors and scratching/pitting of visor surfaces, (3) penetration, wear, and subsequent seizing-up of mechanical suit joints, (4) changes in albedo and therefore of radiation properties of external heat-exchanger systems, (5) changes in electrical conductivity of suit surfaces which may affect tribocharging of suits and create spurious discharge effects detrimental to suit electronics/radio systems. Additional information is contained in the original.

  18. Possible space weather influence on the Earth wheat prices

    Science.gov (United States)

    Pustil'Nik, L.; Yom Din, G.; Dorman, L.

    We present development of our study of possible influence of space weather modulated by cycle of solar activity on the price bursts in the Earth markets In our previous works 1 2 we showed that correspondent response may have place in the specific locations characterized by a high sensitivity of the weather cloudiness in particular to cosmic ray variation b risk zone agriculture c isolated wheat market with limited external supply of agriculture production We showed that in this situation we may wait specific price burst reaction on unfavorable phase of solar activity and space weather what lead to corresponding abnormalities in the local weather and next crop failure We showed that main types of manifestation of this connection are a Distribution of intervals between price bursts must be like to the distribution of intervals between correspondent extremes of solar activity minimums or maximums b price asymmetry between opposite states of solar activity price in the one type of activity state is systematically higher then in the opposite one We showed in our previous publications that this influence in interval distribution is detected with high reliability in Mediaeval England 1250-1700 both for wheat prices and price of consumables basket We showed that for period of Maunder Minimum price asymmetry of wheat prices observed all prices in minimum state of solar activity was higher the prices in the next maximum state We showed later that this price asymmetry had place in 20-th century in USA durum prices too In

  19. Taking Risks for the Future of Space Weather Forecasting, Research, and Operations

    Science.gov (United States)

    Jaynes, A. N.; Baker, D. N.; Kanekal, S. G.; Li, X.; Turner, D. L.

    2017-12-01

    Taking Risks for the Future of Space Weather Forecasting, Research, and Operations The need for highly improved space weather modeling and monitoring is quickly becoming imperative as our society depends ever more on the sensitive technology that builds and connects our world. Instead of relying primarily on tried and true concepts, academic institutions and funding agencies alike should be focusing on truly new and innovative ways to solve this pressing problem. In this exciting time, where student-led groups can launch CubeSats for under a million dollars and companies like SpaceX are actively reducing the cost-cap of access to space, the space physics community should be pushing the boundaries of what is possible to enhance our understanding of the space environment. Taking great risks in instrumentation, mission concepts, operational development, collaborations, and scientific research is the best way to move our field forward to where it needs to be for the betterment of science and society.

  20. Motivating and Facilitating Advancements in Space Weather Real-Time Data Availability: Factors, Data, and Access Methods

    Science.gov (United States)

    Pankratz, C. K.; Baker, D. N.; Jaynes, A. N.; Elkington, S. R.; Baltzer, T.; Sanchez, F.

    2017-12-01

    Society's growing reliance on complex and highly interconnected technological systems makes us increasingly vulnerable to the effects of space weather events - maybe more than for any other natural hazard. An extreme solar storm today could conceivably impact hundreds of the more than 1400 operating Earth satellites. Such an extreme storm could cause collapse of the electrical grid on continental scales. The effects on navigation, communication, and remote sensing of our home planet could be devastating to our social functioning. Thus, it is imperative that the scientific community address the question of just how severe events might become. At least as importantly, it is crucial that policy makers and public safety officials be informed by the facts on what might happen during extreme conditions. This requires essentially real-time alerts, warnings, and also forecasts of severe space weather events, which in turn demands measurements, models, and associated data products to be available via the most effective data discovery and access methods possible. Similarly, advancement in the fundamental scientific understanding of space weather processes is also vital, requiring that researchers have convenient and effective access to a wide variety of data sets and models from multiple sources. The space weather research community, as with many scientific communities, must access data from dispersed and often uncoordinated data repositories to acquire the data necessary for the analysis and modeling efforts that advance our understanding of solar influences and space physics on the Earth's environment. The Laboratory for Atmospheric and Space Physics (LASP), as a leading institution in both producing data products and advancing the state of scientific understanding of space weather processes, is well positioned to address many of these issues. In this presentation, we will outline the motivating factors for effective space weather data access, summarize the various data

  1. Satellite navigation—Amazing technology but insidious risk: Why everyone needs to understand space weather

    Science.gov (United States)

    Hapgood, Mike

    2017-04-01

    Global navigation satellite systems (GNSS) are one of the technological wonders of the modern world. Popularly known as satellite navigation, these systems have provided global access to precision location and timing services and have thereby stimulated advances in industry and consumer services, including all forms of transport, telecommunications, financial trading, and even the synchronization of power grids. But this wonderful technology is at risk from natural phenomena in the form of space weather. GNSS signals experience a slight delay as they pass through the ionosphere. This delay varies with space weather conditions and is the most significant source of error for GNSS. Scientific efforts to correct these errors have stimulated billions of dollars of investment in systems that provide accurate correction data for suitably equipped GNSS receivers in a growing number of regions around the world. This accuracy is essential for GNSS use by aircraft and ships. Space weather also provides a further occasional but severe risk to GNSS: an extreme space weather event may deny access to GNSS as ionospheric scintillation scrambles the radio signals from satellites, and rapid ionospheric changes outstrip the ability of error correction systems to supply accurate corrections. It is vital that GNSS users have a backup for such occasions, even if it is only to hunker down and weather the storm.

  2. Application of the idea of morphism in solar-terrestrial physics and space weather

    International Nuclear Information System (INIS)

    Mateev, Lachezar; Tassev, Yordan; Velinov, Peter

    2016-01-01

    The actual problems of solar-terrestrial physics, in particular of space weather are related to the prediction of the space environment state and are solved by means of different analyses and models. In the present work we introduce a new mathematical approach to the study of physical processes in the system Sun-Earth. For example, in the ionization of the ionosphere and atmosphere under the influence of cosmic rays a model is used that applies the principle of homomorphism. When calculating the parameters of space weather such as solar wind, interplanetary magnetic fields, Earth’s magnetosphere, geomagnetic storms and others, the introduction and application of mathematical objects is appropriate: morphisms, groups, categories, monads, functors, natural transformations and others. Such an approach takes into account the general laws of physical processes in the system Sun – Earth and helps in their testing and calculation. It is useful for such complex systems and processes as these in the solar-terrestrial physics and space weather. Some methods for algebraic structures can be introduced. These methods give the possibility for axiomatization of the physical data reality and the application of algebraic methods for their processing. Here we give the base for the transformation from the algebraic theory of categories and morphisms to the physical structure of concepts and data. Such problems are principally considered in the proposed work. Key words: pace weather, space radiation environment, solar effects, forecasting, energetic solar particles, cosmic rays

  3. Space Weather Products and Tools Used in Auroral Monitoring and Forecasting at CCMC/SWRC

    Science.gov (United States)

    Zheng, Yihua; Rastaetter, Lutz

    2015-01-01

    Key points discussed in this chapter are (1) the importance of aurora research to scientific advances and space weather applications, (2) space weather products at CCMC that are relevant to aurora monitoring and forecasting, and (3) the need for more effort from the whole community to achieve a better and long-lead-time forecast of auroral activity. Aurora, as manifestations of solar wind-magnetosphere-ionosphere coupling that occurs in a region of space that is relatively easy to access for sounding rockets, satellites, and other types of observational platforms, serves as a natural laboratory for studying the underlying physics of the complex system. From a space weather application perspective, auroras can cause surface charging of technological assets passing through the region, result in scintillation effects affecting communication and navigation, and cause radar cluttering that hinders military and civilian applications. Indirectly, an aurora and its currents can induce geomagnetically induced currents (GIC) on the ground, which poses major concerns for the wellbeing and operation of power grids, particularly during periods of intense geomagnetic activity. In addition, accurate auroral forecasting is desired for auroral tourism. In this chapter, we first review some of the existing auroral models and discuss past validation efforts. Such efforts are crucial in transitioning a model(s) from research to operations and for further model improvement and development that also benefits scientific endeavors. Then we will focus on products and tools that are used for auroral monitoring and forecasting at the Space Weather Research Center (SWRC). As part of the CCMC (Community Coordinated Modeling Center), SWRC has been providing space weather services since 2010.

  4. Australian Space Weather Services - Past and Present

    Science.gov (United States)

    Wilkinson, P.; Patterson, G.; Cole, D. G.; Yuile, C.; Wang, Y.-J.; Tripathi, Y.; Marshall, R.; Thompson, R.; Phelan, P.

    HF radio and magnetic field changes were the first space weather problems experienced. Worldwide magnetometer and ionosonde networks were developed to better understand the problems and advance practical advice. The Ionospheric Predictions Service (IPS) was formed to co-ordinate Australian ionospheric monitoring and advise HF communicators and other groups interested in the effects of solar activity. Although customer numbers and sophistication have changed, service demand has remained steady. Currently, IPS distributes real-time services for HF radio, magnetic and space customers through the web (http://www.ips.gov.au) in addition to other conventional services. The Web HF services are based on an empirical ionospheric model updated hourly using ionosonde data. Magnetic services use similar, empirical, data-driven models

  5. Martian Chemical and Isotopic Reference Standards in Earth-based Laboratories — An Invitation for Geochemical, Astrobiological, and Engineering Dialog on Considering a Weathered Chondrite for Mars Sample Return.

    Science.gov (United States)

    Ashley, J. W.; Tait, A. W.; Velbel, M. A.; Boston, P. J.; Carrier, B. L.; Cohen, B. A.; Schröder, C.; Bland, P.

    2017-12-01

    Exogenic rocks (meteorites) found on Mars 1) have unweathered counterparts on Earth; 2) weather differently than indigenous rocks; and 3) may be ideal habitats for putative microorganisms and subsequent biosignature preservation. These attributes show the potential of meteorites for addressing hypothesis-driven science. They raise the question of whether chondritic meteorites, of sufficient weathering intensity, might be considered as candidates for sample return in a potential future mission. Pursuant to this discussion are the following questions. A) Is there anything to be learned from the laboratory study of a martian chondrite that cannot be learned from indigenous materials; and if so, B) is the science value high enough to justify recovery? If both A and B answer affirmatively, then C) what are the engineering constraints for sample collection for Mars 2020 and potential follow-on missions; and finally D) what is the likelihood of finding a favorable sample? Observations relevant to these questions include: i) Since 2005, 24 candidate and confirmed meteorites have been identified on Mars at three rover landing sites, demonstrating their ubiquity and setting expectations for future finds. All have been heavily altered by a variety of physical and chemical processes. While the majority of these are irons (not suitable for recovery), several are weathered stony meteorites. ii) Exogenic reference materials provide the only chemical/isotope standards on Mars, permitting quantification of alteration rates if residence ages can be attained; and possibly enabling the removal of Late Amazonian weathering overprints from other returned samples. iii) Recent studies have established the habitability of chondritic meteorites with terrestrial microorganisms, recommending their consideration when exploring astrobiological questions. High reactivity, organic content, and permeability show stony meteorites to be more attractive for colonization and subsequent biosignature

  6. Tool for evaluating the evolution Space Weather Regional Warning Centers under the innovation point of view: the Case Study of the Embrace Space Weather Program Early Stages

    Science.gov (United States)

    Denardini, Clezio Marcos

    2016-07-01

    We have developed a tool for measuring the evolutional stage of the space weather regional warning centers using the approach of the innovative evolution starting from the perspective presented by Figueiredo (2009, Innovation Management: Concepts, metrics and experiences of companies in Brazil. Publisher LTC, Rio de Janeiro - RJ). It is based on measuring the stock of technological skills needed to perform a certain task that is (or should) be part of the scope of a space weather center. It also addresses the technological capacity for innovation considering the accumulation of technological and learning capabilities, instead of the usual international indices like number of registered patents. Based on this definition, we have developed a model for measuring the capabilities of the Brazilian Study and Monitoring Program Space Weather (Embrace), a program of the National Institute for Space Research (INPE), which has gone through three national stages of development and an international validation step. This program was created in 2007 encompassing competence from five divisions of INPE in order to carry out the data collection and maintenance of the observing system in space weather; to model processes of the Sun-Earth system; to provide real-time information and to forecast space weather; and provide diagnostic their effects on different technological systems. In the present work, we considered the issues related to the innovation of micro-processes inherent to the nature of the Embrace program, not the macro-economic processes, despite recognizing the importance of these. During the development phase, the model was submitted to five scientists/managers from five different countries member of the International Space Environment Service (ISES) who presented their evaluations, concerns and suggestions. It was applied to the Embrace program through an interview form developed to be answered by professional members of regional warning centers. Based on the returning

  7. The NASA Community Coordinated Modeling Center (CCMC) Next Generation Space Weather Data Warehouse

    Science.gov (United States)

    Maddox, M. M.; Kuznetsova, M. M.; Pulkkinen, A. A.; Zheng, Y.; Rastaetter, L.; Chulaki, A.; Pembroke, A. D.; Wiegand, C.; Mullinix, R.; Boblitt, J.; Mendoza, A. M. M.; Swindell, M. J., IV; Bakshi, S. S.; Mays, M. L.; Shim, J. S.; Hesse, M.; Collado-Vega, Y. M.; Taktakishvili, A.; MacNeice, P. J.

    2014-12-01

    The Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center enables, supports, and performs research and development for next generation space science and space weather models. The CCMC currently hosts a large and expanding collection of state-or-the-art, physics-based space weather models that have been developed by the international research community. There are many tools and services provided by the CCMC that are currently available world-wide, along with the ongoing development of new innovative systems and software for research, discovery, validation, visualization, and forecasting. Over the history of the CCMC's existence, there has been one constant engineering challenge - describing, managing, and disseminating data. To address the challenges that accompany an ever-expanding number of models to support, along with a growing catalog of simulation output - the CCMC is currently developing a flexible and extensible space weather data warehouse to support both internal and external systems and applications. This paper intends to chronicle the evolution and future of the CCMC's data infrastructure, and the current infrastructure re-engineering activities that seek to leverage existing community data model standards like SPASE and the IMPEx Simulation Data Model.

  8. Data Products From Particle Detectors On-Board NOAA's Newest Space Weather Monitor

    Science.gov (United States)

    Kress, B. T.; Rodriguez, J. V.; Onsager, T. G.

    2017-12-01

    NOAA's newest Geostationary Operational Environmental Satellite, GOES-16, was launched on 19 November 2016. Instrumentation on-board GOES-16 includes the new Space Environment In-Situ Suite (SEISS), which has been collecting data since 8 January 2017. SEISS is composed of five magnetospheric particle sensor units: an electrostatic analyzer for measuring 30 eV - 30 keV ions and electrons (MPS-LO), a high energy particle sensor (MPS-HI) that measures keV to MeV electrons and protons, east and west facing Solar and Galactic Proton Sensor (SGPS) units with 13 differential channels between 1-500 MeV, and an Energetic Heavy Ion Sensor (EHIS) that measures 30 species of heavy ions (He-Ni) in five energy bands in the 10-200 MeV/nuc range. Measurement of low energy magnetospheric particles by MPS-LO and heavy ions by EHIS are new capabilities not previously flown on the GOES system. Real-time data from GOES-16 will support space weather monitoring and first-principles space weather modeling by NOAA's Space Weather Prediction Center (SWPC). Space weather level 2+ data products under development at NOAA's National Centers for Environmental Information (NCEI) include the Solar Energetic Particle (SEP) Event Detection algorithm. Legacy components of the SEP event detection algorithm (currently produced by SWPC) include the Solar Radiation Storm Scales. New components will include, e.g., event fluences. New level 2+ data products also include the SEP event Linear Energy Transfer (LET) Algorithm, for transforming energy spectra from EHIS into LET spectra, and the Density and Temperature Moments and Spacecraft Charging algorithm. The moments and charging algorithm identifies electron and ion signatures of spacecraft surface (frame) charging in the MPS-LO fluxes. Densities and temperatures from MPS-LO will also be used to support a magnetopause crossing detection algorithm. The new data products will provide real-time indicators of potential radiation hazards for the satellite

  9. Space Weather Drivers in the ACE Era

    Science.gov (United States)

    Vogt, M.; Puhl-Quinn, P.; Jordanova, V. K.; Smith, C. W.; Cohen, C. M.

    2004-12-01

    The Advanced Composition Explorer (ACE) spacecraft was launched Aug.~25, 1997 [Stone et al., 1998]. Beginning shortly after launch and continuing to the present day ACE has provided real-time data telemetry of solar wind conditions upstream of the Earth. The real-time data includes solar wind speed and density, magnetic field direction and magnitude, and a range of energetic particle intensities [Zwickl et al., 1999]. The real-time data product is provided within 5 minutes of observation and many partners from both industry and science use these data for a variety of purposes. The most common purpose of practical industrial application involves mitigation of lost services arising from magnetospheric storm activity. Many space weather efforts are directed at providing improved predictions of magnetospheric response that can be applied to real-time data in the hope of better predicting the vulnerability and required action of industry to approaching disturbances. It therefore seems prudent that following 6 years of activity including one solar maximum period we should evaluate the nature and strength of the largest disturbances observed with the hope of better assessing the industrial response. Simply put: ``Did ACE observe disturbances that were as large as those seen previously during the space age?'' If not, it may be the case that industry must evaluate its response to the real-time warnings and not become complacent by the simple act of survival. We compare the most intense space weather events of the ACE era with those recorded on the Omnitape data set spanning 40+ years of spacecraft measurements in the near-Earth environment. We compare both magnetospheric response parameters and solar wind drivers. In addition, we compare the large energetic particle events over the same time frame. Stone, E.~C., et al., Space Science Rev., 86(1-4), 357-408, 1998. Zwickl, R.~D., et al., Space Science Rev., 86(1-4), 633-648, 1998.

  10. Mars Science Laboratory Launch-Arrival Space Study: A Pork Chop Plot Analysis

    Science.gov (United States)

    Cianciolo, Alicia Dwyer; Powell, Richard; Lockwood, Mary Kae

    2006-01-01

    Launch-Arrival, or "pork chop", plot analysis can provide mission designers with valuable information and insight into a specific launch and arrival space selected for a mission. The study begins with the array of entry states for each pair of selected Earth launch and Mars arrival dates, and nominal entry, descent and landing trajectories are simulated for each pair. Parameters of interest, such as maximum heat rate, are plotted in launch-arrival space. The plots help to quickly identify launch and arrival regions that are not feasible under current constraints or technology and also provide information as to what technologies may need to be developed to reach a desired region. This paper provides a discussion of the development, application, and results of a pork chop plot analysis to the Mars Science Laboratory mission. This technique is easily applicable to other missions at Mars and other destinations.

  11. Developing Space Weather products and services in Europe – Preface to the Special Issue on COST Action ES0803

    Directory of Open Access Journals (Sweden)

    Belehaki Anna

    2014-01-01

    Full Text Available COST Action ES0803 “Developing Space Weather products and services in Europe” primarily aimed at forming an interdisciplinary network among European scientists dealing with different issues relevant to Geospace as well as warning system developers and operators in order to assess existing Space Weather products and recommend new ones. The work that has been implemented from 2008 to 2012 resulted in advances in modeling and predicting Space Weather, in recommendations for the validation of Space Weather models, in proposals for new Space Weather products and services, and in dissemination, training, and outreach activities. This preface summarizes the most important achievements of this European activity that are detailed in this special issue by the key scientists who participated in COST Action ES0803.

  12. Lander Radioscience LaRa, a Space Geodesy Experiment to Mars within the ExoMars 2020 mission.

    Science.gov (United States)

    Dehant, V. M. A.; Le Maistre, S.; Yseboodt, M.; Peters, M. J.; Karatekin, O.; Van Hove, B.; Rivoldini, A.; Baland, R. M.; Van Hoolst, T.

    2017-12-01

    The LaRa (Lander Radioscience) experiment is designed to obtain coherent two-way Doppler measurements from the radio link between the 2020 ExoMars lander and Earth over at least one Martian year. The LaRa instrument consists of a coherent transponder with up- and downlinks at X-band radio frequencies. The signal received from Earth is a pure carrier at 7.178 GHz; it is transponded back to Earth at a frequency of 8.434 GHz. The transponder is designed to maintain its lock and coherency over its planed one-hour observation sessions. The transponder mass is at the one-kg level. There are one uplink antenna and two downlink antennas. They are small patch antennas covered by a radome of 130gr for the downlink ones and of 200gr for the uplink. The signals will be generated and received by Earth-based radio antennas belonging to the NASA deep space network (DSN), the ESA tracking station network, or the Russian ground stations network. The instrument lifetime is more than twice the nominal mission duration of one Earth year. The Doppler measurements will be used to observe the orientation and rotation of Mars in space (precession, nutations, and length-of-day variations), as well as polar motion. The ultimate objective is to obtain information/constraints on the Martian interior, and on the sublimation/condensation cycle of atmospheric CO2. Orientation and rotational variations will allow us to constrain the moment of inertia of the entire planet, the moment of inertia of the core, and seasonal mass transfer between the atmosphere and the ice caps. The LaRa experiment will be combined with other previous radio science experiments such as the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) RISE experiment (Rotation and Interior Structure Experiment) with radio science data of the NASA Viking landers, Mars Pathfinder and Mars Exploration Rovers. In addition, other ExoMars2020 and TGO (Trace Gas Orbiter) experiments providing

  13. Assessing and Adapting Scientific Results for Space Weather Research to Operations (R2O)

    Science.gov (United States)

    Thompson, B. J.; Friedl, L.; Halford, A. J.; Mays, M. L.; Pulkkinen, A. A.; Singer, H. J.; Stehr, J. W.

    2017-12-01

    Why doesn't a solid scientific paper necessarily result in a tangible improvement in space weather capability? A well-known challenge in space weather forecasting is investing effort to turn the results of basic scientific research into operational knowledge. This process is commonly known as "Research to Operations," abbreviated R2O. There are several aspects of this process: 1) How relevant is the scientific result to a particular space weather process? 2) If fully utilized, how much will that result improve the reliability of the forecast for the associated process? 3) How much effort will this transition require? Is it already in a relatively usable form, or will it require a great deal of adaptation? 4) How much burden will be placed on forecasters? Is it "plug-and-play" or will it require effort to operate? 5) How can robust space weather forecasting identify challenges for new research? This presentation will cover several approaches that have potential utility in assessing scientific results for use in space weather research. The demonstration of utility is the first step, relating to the establishment of metrics to ensure that there will be a clear benefit to the end user. The presentation will then move to means of determining cost vs. benefit, (where cost involves the full effort required to transition the science to forecasting, and benefit concerns the improvement of forecast reliability), and conclude with a discussion of the role of end users and forecasters in driving further innovation via "O2R."

  14. Geostationary Communications Satellites as Sensors for the Space Weather Environment: Telemetry Event Identification Algorithms

    Science.gov (United States)

    Carlton, A.; Cahoy, K.

    2015-12-01

    Reliability of geostationary communication satellites (GEO ComSats) is critical to many industries worldwide. The space radiation environment poses a significant threat and manufacturers and operators expend considerable effort to maintain reliability for users. Knowledge of the space radiation environment at the orbital location of a satellite is of critical importance for diagnosing and resolving issues resulting from space weather, for optimizing cost and reliability, and for space situational awareness. For decades, operators and manufacturers have collected large amounts of telemetry from geostationary (GEO) communications satellites to monitor system health and performance, yet this data is rarely mined for scientific purposes. The goal of this work is to acquire and analyze archived data from commercial operators using new algorithms that can detect when a space weather (or non-space weather) event of interest has occurred or is in progress. We have developed algorithms, collectively called SEER (System Event Evaluation Routine), to statistically analyze power amplifier current and temperature telemetry by identifying deviations from nominal operations or other events and trends of interest. This paper focuses on our work in progress, which currently includes methods for detection of jumps ("spikes", outliers) and step changes (changes in the local mean) in the telemetry. We then examine available space weather data from the NOAA GOES and the NOAA-computed Kp index and sunspot numbers to see what role, if any, it might have played. By combining the results of the algorithm for many components, the spacecraft can be used as a "sensor" for the space radiation environment. Similar events occurring at one time across many component telemetry streams may be indicative of a space radiation event or system-wide health and safety concern. Using SEER on representative datasets of telemetry from Inmarsat and Intelsat, we find events that occur across all or many of

  15. From Early Exploration to Space Weather Forecasts: Canada's Geomagnetic Odyssey

    Science.gov (United States)

    Lam, Hing-Lan

    2011-05-01

    Canada is a region ideally suited for the study of space weather: The north magnetic pole is encompassed within its territory, and the auroral oval traverses its vast landmass from east to west. Magnetic field lines link the country directly to the outer magnetosphere. In light of this geographic suitability, it has been a Canadian tradition to install ground monitors to remotely sense the space above Canadian territory. The beginning of this tradition dates back to 1840, when Edward Sabine, a key figure in the “magnetic crusade” to establish magnetic observatories throughout the British Empire in the nineteenth century, founded the first Canadian magnetic observatory on what is now the campus of the University of Toronto, 27 years before the birth of Canada. This observatory, which later became the Toronto Magnetic and Meteorological Observatory, marked the beginning of the Canadian heritage of installing magnetic stations and other ground instruments in the years to come. This extensive network of ground-based measurement devices, coupled with space-based measurements in more modern times, has enabled Canadian researchers to contribute significantly to studies related to space weather.

  16. Ion Irradiation Experiments on the Murchison CM2 Carbonaceous Chondrite: Simulating Space Weathering of Primitive Asteroids

    Science.gov (United States)

    Keller, L. P.; Christoffersen, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.

  17. Using Science Data and Models for Space Weather Forecasting - Challenges and Opportunities

    Science.gov (United States)

    Hesse, Michael; Pulkkinen, Antti; Zheng, Yihua; Maddox, Marlo; Berrios, David; Taktakishvili, Sandro; Kuznetsova, Masha; Chulaki, Anna; Lee, Hyesook; Mullinix, Rick; hide

    2012-01-01

    Space research, and, consequently, space weather forecasting are immature disciplines. Scientific knowledge is accumulated frequently, which changes our understanding or how solar eruptions occur, and of how they impact targets near or on the Earth, or targets throughout the heliosphere. Along with continuous progress in understanding, space research and forecasting models are advancing rapidly in capability, often providing substantially increases in space weather value over time scales of less than a year. Furthermore, the majority of space environment information available today is, particularly in the solar and heliospheric domains, derived from research missions. An optimal forecasting environment needs to be flexible enough to benefit from this rapid development, and flexible enough to adapt to evolving data sources, many of which may also stem from non-US entities. This presentation will analyze the experiences obtained by developing and operating both a forecasting service for NASA, and an experimental forecasting system for Geomagnetically Induced Currents.

  18. Space weather monitoring by groundbased means

    CERN Document Server

    Troshichev, Oleg

    2012-01-01

    This book demonstrates that the method, based on the ground polar cap magnetic observations is a reliable diagnosis of the solar wind energy coming into the magnetosphere Method for the uninterruptive monitoring of the magnetosphere state (i.e. space weather). It shows that the solar wind energy pumping power, can be described by the PC growth rate, thus, the magnetospheric substorms features are predetermined by the PC dynamics. Furthermore, it goes on to show that the beginning and ending of magnetic storms is predictable. The magnetic storm start only if the solar energy input into the magn

  19. The application of heliospheric imaging to space weather operations: Lessons learned from published studies

    Science.gov (United States)

    Harrison, Richard A.; Davies, Jackie A.; Biesecker, Doug; Gibbs, Mark

    2017-08-01

    The field of heliospheric imaging has matured significantly over the last 10 years—corresponding, in particular, to the launch of NASA's STEREO mission and the successful operation of the heliospheric imager (HI) instruments thereon. In parallel, this decade has borne witness to a marked increase in concern over the potentially damaging effects of space weather on space and ground-based technological assets, and the corresponding potential threat to human health, such that it is now under serious consideration at governmental level in many countries worldwide. Hence, in a political climate that recognizes the pressing need for enhanced operational space weather monitoring capabilities most appropriately stationed, it is widely accepted, at the Lagrangian L1 and L5 points, it is timely to assess the value of heliospheric imaging observations in the context of space weather operations. To this end, we review a cross section of the scientific analyses that have exploited heliospheric imagery—particularly from STEREO/HI—and discuss their relevance to operational predictions of, in particular, coronal mass ejection (CME) arrival at Earth and elsewhere. We believe that the potential benefit of heliospheric images to the provision of accurate CME arrival predictions on an operational basis, although as yet not fully realized, is significant and we assert that heliospheric imagery is central to any credible space weather mission, particularly one located at a vantage point off the Sun-Earth line.

  20. Nanosatellites : A paradigm change for space weather studies.

    Science.gov (United States)

    Barthelemy, Mathieu

    2016-04-01

    Nanosatellites are changing the paradigm of space exploration and engineering. The past 15 years have seen a growing activity in this field, with a marked acceleration in the last 3 years. Whereas the educational value of nanosatellites is well recognized, their scientific and technological use is potentially extremely rich but not fully explored. Conventional attitudes towards space engineering need to be reviewed in light of the capabilities and characteristics of these miniature devices that enable approaches and applications not possible with traditional satellite platforms. After an evaluation of the past and near future nanosatellites missions in the domain of space weather and from the example of the Zegrensat/ATISE mission, we will give some perspectives on the possibilities opened by these small satellites.

  1. Space weather monitoring with neutron monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, Christian [Christian-Albrechts-Universitaet zu Kiel (Germany)

    2013-07-01

    Space Weather affects many areas of the modern society, advance knowledge about space weather events is important to protect personnel and infrastructure. Cosmic Rays (CR) measurements by ground-based Neutron Monitors are influenced by Coronal Mass Ejections (CME), the intensity of the ever present Cosmic Rays is reduced in a Forbush decrease (Fd). In the case of very energetic CMEs, the measured intensity can be significantly increased in a Ground Level Enhancement (GLE). By detecting the anisotropy of the CR environment, a CME can be detected hours before it arrives at Earth. During a GLE the high-energy particles from the Sun can be detected before the more abundant lower energy particles arrive at Earth, thus allowing to take protective measures. Since the beginning of the Neutron Monitor Database (NMDB) project, which has been started in 2008 with funding from the European Commission, real-time data from Neutron Monitors around the world has been made available through one web-portal. We have more than doubled the number of stations providing data since the start of the project to now over 30 stations. The effectiveness of the ALERT applications which are based on NMDB data has been shown by the recent GLE71. We present different applications through which the measurements and different data products are accessible.

  2. Space weather: Why are magnetospheric physicists interested in solar explosive phenomena

    Science.gov (United States)

    Koskinen, H. E. J.; Pulkkinen, T. I.

    That solar activity drives magnetospheric dynamics has for a long time been the basis of solar-terrestrial physics. Numerous statistical studies correlating sunspots, 10.7 cm radiation, solar flares, etc., with various magnetospheric and geomagnetic parameters have been performed. However, in studies of magnetospheric dynamics the role of the Sun has often remained in the background and only the actual solar wind impinging the magnetosphere has gained most of the attention. During the last few years a new applied field of solar-terrestrial physics, space weather, has emerged. The term refers to variable particle and field conditions in our space environment, which may be hazardous to space-borne or ground-based technological systems and can endanger human life and health. When the modern society is becoming increasingly dependent on space technology, the need for better modelling and also forecasting of space weather becomes urgent. While for post analysis of magnetospheric phenomena it is quite sufficient to include observations from the magnetospheric boundaries out to L1 where SOHO is located, these observations do not provide enough lead-time to run space weather forecasting models and to distribute the forecasts to potential customers. For such purposes we need improved physical understanding and models to predict which active processes on the Sun will impact the magnetosphere and what their expected consequences are. An important change of view on the role of the Sun as the origin of magnetospheric disturbances has taken place during last 10--20 years. For a long time, the solar flares were thought to be the most geoeffective solar phenomena. Now the attention has shifted much more towards coronal mass ejections and the SOHO coronal observations seem to have turned the epoch irreversibly. However, we are not yet ready to make reliable perdictions of the terrestrial environment based on CME observations. From the space weather viewpoint, the key questions are

  3. Integration of Space Weather Forecasts into Space Protection

    Science.gov (United States)

    Reeves, G.

    2012-09-01

    How would the US respond to a clandestine attack that disabled one of our satellites? How would we know that it was an attack, not a natural failure? The goal of space weather programs as applied to space protection are simple: Provide a rapid and reliable assessment of the probability that satellite or system failure was caused by the space environment. Achieving that goal is not as simple. However, great strides are being made on a number of fronts. We will report on recent successes in providing rapid, automated anomaly/attack assessment for the penetrating radiation environment in the Earth's radiation belts. We have previously reported on the Dynamic Radiation Environment Assimilation Model (DREAM) that was developed at Los Alamos National Laboratory to assess hazards posed by the natural and by nuclear radiation belts. This year we will report on recent developments that are moving this program from the research, test, and evaluation phases to real-time implementation and application. We will discuss the challenges of leveraging space environment data sets for applications that are beyond the scope of mission requirements, the challenges of moving data from where they exist to where they are needed, the challenges of turning data into actionable information, and how those challenges were overcome. We will discuss the state-of-the-art as it exists in 2012 including the new capabilities that have been enabled and the limitations that still exist. We will also discuss how currently untapped data resources could advance the state-of-the-art and the future steps for implementing automatic real-time anomaly forensics.

  4. Evaluating Space Weather Architecture Options to Support Human Deep Space Exploration of the Moon and Mars

    Science.gov (United States)

    Parker, L.; Minow, J.; Pulkkinen, A.; Fry, D.; Semones, E.; Allen, J.; St Cyr, C.; Mertens, C.; Jun, I.; Onsager, T.; Hock, R.

    2018-02-01

    NASA's Engineering and Space Center (NESC) is conducting an independent technical assessment of space environment monitoring and forecasting architecture options to support human and robotic deep space exploration.

  5. Asteroid age distributions determined by space weathering and collisional evolution models

    Science.gov (United States)

    Willman, Mark; Jedicke, Robert

    2011-01-01

    We provide evidence of consistency between the dynamical evolution of main belt asteroids and their color evolution due to space weathering. The dynamical age of an asteroid's surface (Bottke, W.F., Durda, D.D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H. [2005]. Icarus 175 (1), 111-140; Nesvorný, D., Jedicke, R., Whiteley, R.J., Ivezić, Ž. [2005]. Icarus 173, 132-152) is the time since its last catastrophic disruption event which is a function of the object's diameter. The age of an S-complex asteroid's surface may also be determined from its color using a space weathering model (e.g. Willman, M., Jedicke, R., Moskovitz, N., Nesvorný, D., Vokrouhlický, D., Mothé-Diniz, T. [2010]. Icarus 208, 758-772; Jedicke, R., Nesvorný, D., Whiteley, R.J., Ivezić, Ž., Jurić, M. [2004]. Nature 429, 275-277; Willman, M., Jedicke, R., Nesvorny, D., Moskovitz, N., Ivezić, Ž., Fevig, R. [2008]. Icarus 195, 663-673. We used a sample of 95 S-complex asteroids from SMASS and obtained their absolute magnitudes and u, g, r, i, z filter magnitudes from SDSS. The absolute magnitudes yield a size-derived age distribution. The u, g, r, i, z filter magnitudes lead to the principal component color which yields a color-derived age distribution by inverting our color-age relationship, an enhanced version of the 'dual τ' space weathering model of Willman et al. (2010). We fit the size-age distribution to the enhanced dual τ model and found characteristic weathering and gardening times of τw = 2050 ± 80 Myr and τg=4400-500+700Myr respectively. The fit also suggests an initial principal component color of -0.05 ± 0.01 for fresh asteroid surface with a maximum possible change of the probable color due to weathering of Δ PC = 1.34 ± 0.04. Our predicted color of fresh asteroid surface matches the color of fresh ordinary chondritic surface of PC1 = 0.17 ± 0.39.

  6. Exploring Space Weathering on Mercury Using Global UV-VIS Reflectance Spectroscopy

    Science.gov (United States)

    Izenberg, N. R.; Denevi, B. W.

    2018-05-01

    We apply UV analysis methods used on lunar LROC data to Mercury to explore space weathering maturity and possibly evidence of shocked minerals. What says the UV // about shock, maturity // on dear Mercury?

  7. Global Positioning System Energetic Particle Data: The Next Space Weather Data Revolution

    Science.gov (United States)

    Knipp, Delores J.; Giles, Barbara L.

    2016-01-01

    The Global Positioning System (GPS) has revolutionized the process of getting from point A to point Band so much more. A large fraction of the worlds population relies on GPS (and its counterparts from other nations) for precision timing, location, and navigation. Most GPS users are unaware that the spacecraft providing the signals they rely on are operating in a very harsh space environment the radiation belts where energetic particles trapped in Earths magnetic field dash about at nearly the speed of light. These subatomic particles relentlessly pummel GPS satellites. So by design, every GPS satellite and its sensors are radiation hardened. Each spacecraft carries particle detectors that provide health and status data to system operators. Although these data reveal much about the state of the space radiation environment, heretofore they have been available only to system operators and supporting scientists. Research scientists have long sought a policy shift to allow more general access. With the release of the National Space Weather Strategy and Action Plan organized by the White House Office of Science Technology Policy (OSTP) a sample of these data have been made available to space weather researchers. Los Alamos National Laboratory (LANL) and the National Center for Environmental Information released a months worth of GPS energetic particle data from an interval of heightened space weather activity in early 2014 with the hope of stimulating integration of these data sets into the research arena. Even before the public data release GPS support scientists from LANL showed the extraordinary promise of these data.

  8. Can We Distinguish Between Shock-Darkened and Space-Weathered Asteroids?

    Czech Academy of Sciences Publication Activity Database

    Kohout, Tomáš; Penttilä, A.; Gritsevich, M.; Britt, D.; Reddy, V.; Mann, P.; Haloda, J.; Halodová, P.; Grokhovsky, V.; Yakovlev, G.; Čuda, J.; Filip, J.; Muinonen, K.; Zbořil, R.

    2014-01-01

    Roč. 46, č. 5 (2014), s. 225-226 ISSN 0002-7537. [Annual Meeting of the Division for Planetary Sciences /46./. 09.11.2014-14.11.2014, Tuscon] Institutional support: RVO:67985831 Keywords : space weathering * reflectance spectra * olivine * asteroid * Moon Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  9. How Do Lessons Learned on the International Space Station (ISS) Help Plan Life Support for Mars?

    Science.gov (United States)

    Jones, Harry W.; Hodgson, Edward W.; Gentry, Gregory J.; Kliss, Mark H.

    2016-01-01

    How can our experience in developing and operating the International Space Station (ISS) guide the design, development, and operation of life support for the journey to Mars? The Mars deep space Environmental Control and Life Support System (ECLSS) must incorporate the knowledge and experience gained in developing ECLSS for low Earth orbit, but it must also meet the challenging new requirements of operation in deep space where there is no possibility of emergency resupply or quick crew return. The understanding gained by developing ISS flight hardware and successfully supporting a crew in orbit for many years is uniquely instructive. Different requirements for Mars life support suggest that different decisions may be made in design, testing, and operations planning, but the lessons learned developing the ECLSS for ISS provide valuable guidance.

  10. Space Weather Forecasting Operational Needs: A view from NOAA/SWPC

    Science.gov (United States)

    Biesecker, D. A.; Onsager, T. G.; Rutledge, R.

    2017-12-01

    The gaps in space weather forecasting are many. From long lead time forecasts, to accurate warnings with lead time to take action, there is plenty of room for improvement. Significant numbers of new observations would improve this picture, but it's also important to recognize the value of numerical modeling. The obvious interplanetary mission concepts that would be ideal would be 1) to measure the in-situ solar wind along the entire Sun-Earth line from as near to the Sun as possible all the way to Earth 2) a string of spacecraft in 1 AU heliocentric orbits making in-situ measurements as well as remote-sensing observations of the Sun, corona, and heliosphere. Even partially achieving these ideals would benefit space weather services, improving lead time and providing greater accuracy further into the future. The observations alone would improve forecasting. However, integrating these data into numerical models, as boundary conditions or via data assimilation, would provide the greatest improvements.

  11. Building resilience of the Global Positioning System to space weather

    Science.gov (United States)

    Fisher, Genene; Kunches, Joseph

    2011-12-01

    Almost every aspect of the global economy now depends on GPS. Worldwide, nations are working to create a robust Global Navigation Satellite System (GNSS), which will provide global positioning, navigation, and timing (PNT) services for applications such as aviation, electric power distribution, financial exchange, maritime navigation, and emergency management. The U.S. government is examining the vulnerabilities of GPS, and it is well known that space weather events, such as geomagnetic storms, contribute to errors in single-frequency GPS and are a significant factor for differential GPS. The GPS industry has lately begun to recognize that total electron content (TEC) signal delays, ionospheric scintillation, and solar radio bursts can also interfere with daily operations and that these threats grow with the approach of the next solar maximum, expected to occur in 2013. The key challenges raised by these circumstances are, first, to better understand the vulnerability of GPS technologies and services to space weather and, second, to develop policies that will build resilience and mitigate risk.

  12. Maintaining US Space Weather Capabilities after DMSP: Research to Operations

    Science.gov (United States)

    Machuzak, J. S.; Gentile, L. C.; Burke, W. J.; Holeman, E. G.; Ober, D. M.; Wilson, G. R.

    2012-12-01

    The first Defense Meteorological Satellite Program (DMSP) spacecraft was launched in 1972; the last is scheduled to fly in 2020. Presently, there is no replacement for the space-weather monitoring sensors that now fly on DMSP. The present suite has provided comprehensive, long-term records that constitute a critical component of the US space weather corporate memory. Evolving operational needs and research accomplishments justify continued collection of space environmental data. Examples include measurements to: (1) Monitor the Dst index in real time as a driver of next-generation satellite drag models; (2) Quantify electromagnetic energy fluxes from deep space to the ionosphere/ thermosphere that heat neutrals, drive disturbance-dynamo winds and degrade precise orbit determinations; (3) Determine strengths of stormtime electric fields at high and low latitudes that lead to severe blackouts and spacecraft anomalies; (4) Specify variability of plasma density irregularities, equatorial plasma bubbles, and the Appleton anomaly to improve reliability of communication, navigation and surveillance links; (5) Characterize energetic particle fluxes responsible for auroral clutter and radar degradation; (6) Map regions of L-Band scintillation for robust GPS applications; and (7) Update the World Magnetic Field Model needed to maintain guidance system superiority. These examples illustrate the utility of continued space environment awareness. Comprehensive assessments of both operational requirements and research advances are needed to make informed selections of sensors and spacecraft that support future capabilities. A proposed sensor set and satellite constellation to provide the needed measurement capabilities will be presented.

  13. LIFE experiment: isolation of cryptoendolithic organisms from Antarctic colonized sandstone exposed to space and simulated Mars conditions on the international space station.

    Science.gov (United States)

    Scalzi, Giuliano; Selbmann, Laura; Zucconi, Laura; Rabbow, Elke; Horneck, Gerda; Albertano, Patrizia; Onofri, Silvano

    2012-06-01

    Desiccated Antarctic rocks colonized by cryptoendolithic communities were exposed on the International Space Station (ISS) to space and simulated Mars conditions (LiFE-Lichens and Fungi Experiment). After 1.5 years in space samples were retrieved, rehydrated and spread on different culture media. Colonies of a green alga and a pink-coloured fungus developed on Malt-Agar medium; they were isolated from a sample exposed to simulated Mars conditions beneath a 0.1 % T Suprasil neutral density filter and from a sample exposed to space vacuum without solar radiation exposure, respectively. None of the other flight samples showed any growth after incubation. The two organisms able to grow were identified at genus level by Small SubUnit (SSU) and Internal Transcribed Spacer (ITS) rDNA sequencing as Stichococcus sp. (green alga) and Acarospora sp. (lichenized fungal genus) respectively. The data in the present study provide experimental information on the possibility of eukaryotic life transfer from one planet to another by means of rocks and of survival in Mars environment.

  14. Experts warn against cutting NOAA Space Weather Center

    Science.gov (United States)

    Showstack, Randy

    A well-timed congressional hearing, coming in the midst of fierce geomagnetic storms, could help to restore funding to the U.S. National Oceanic and Atmospheric Administration's Space Environment Center (SEC).The center, which is the nation's official source of space weather alerts and warnings, currently is funded at $5.24 million for fiscal year 2003. That amount is $2 million less than it received the previous year. The Bush Administration has requested $8.02 million in funding. The appropriations bill, for the departments of Commerce, Justice, and State for fiscal year 2004, passed on 23 July by the House of Representatives, calls for funding the SEC at the $5.29 million level.

  15. A contribution towards establishing more comfortable space weather to cope with increased human space passengers for ISS shuttles

    Science.gov (United States)

    Kalu, A.

    Space Weather is a specialized scienctific descipline in Meteorology which has recently emerged from man's continued research efforts to create a familiar spacecraft environment which is physiologically stable and life sustaining for astronauts and human passengers in distant space travels. As the population of human passengers in space shuttles rapidly increases, corresponding research on sustained micro-climate of spacecrafts is considered necessary and timely. This is because existing information is not meant for a large population in spacecrafts. The paper therefore discusses the role of meteorology (specifically micrometeorology) in relation to internal communication, spacecraft instrumentation and physiologic comfort of astronauts and space passengers (the later may not necessarily be trained astronauts, but merely business men or tourist space travellers for business transactions in the International Space Station (ISS)). It is recognized that me eorology which is a fundamental science amongt multidiscplinary sciences has been found to be vital in space travels and communication. Space weather therefore appears in slightly different format where temperature and humidity changes and variability within the spacecraft exert very significant influences on the efficiency of astronauts and the effectiveness of the various delicate instrument gadgets aimed at reducing the frequency of computer failures and malfunction of other instruments on which safety of the spacecraft depends. Apart from the engineering and technological problems which space scientists must have to overcome when human population in space shuttles increases as we now expect, based on evidence from successful missions to ISS, the maint enace of physiologic comfort state of astronauts, which, as far as scientifically possible, should be as near as possible to their Earth-Atmosphere condition. This is one of the most important and also most difficult conditions to attain. It demands a mor e

  16. Growing Diversity in Space Weather and Climate Change Research

    Science.gov (United States)

    Johnson, L. P.; Ng, C.; Marchese, P.; Austin, S.; Frost, J.; Cheung, T. D.; Robbins, I.; Carlson, B. E.; Steiner, J. C.; Tremberger, G.; Paglione, T.; Damas, C.; Howard, A.; Scalzo, F.

    2013-12-01

    Space Weather and Global Climate Impacts are critical items on the present national and international science agendas. Understanding and forecasting solar activity is increasingly important for manned space flight, unmanned missions (including communications satellites, satellites that monitor the space and earth environment), and regional power grids. The ability to predict the effects of forcings and feedback mechanisms on global and local climate is critical to survival of the inhabitants of planet Earth. It is therefore important to motivate students to continue their studies via advanced degrees and pursue careers related to these areas. This CUNY-based initiative, supported by NASA and NSF, provided undergraduate research experience for more than 70 students in topics ranging from urban impacts of global climate change to magnetic rope structure, solar flares and CMEs. Other research topics included investigations of the ionosphere using a CubeSat, stratospheric aerosols in Jupiter's atmosphere, and ocean climate modeling. Mentors for the primarily summer research experiences included CUNY faculty, GISS and GSFC scientists. Students were recruited from CUNY colleges as well as other colleges including Spelman, Cornell, Rutgers and SUNY colleges. Fifty-eight percent of the undergraduate students were under-represented minorities and thirty-four percent were female. Many of the research teams included high school teachers and students as well as graduate students. Supporting workshops for students included data analysis and visualization tools, space weather, planetary energy balance and BalloonSats. The project is supported by NASA awards NNX10AE72G and NNX09AL77G, and NSF REU Site award 0851932.

  17. Remote sensing optical instrumentation for enhanced space weather monitoring from the L1 and L5 Lagrange points

    Science.gov (United States)

    Kraft, S.; Puschmann, K. G.; Luntama, J. P.

    2017-09-01

    As part of the Space Situational Awareness Programme (SSA), ESA has initiated the assessment of two missions currently foreseen to be implemented to enable enhanced space weather monitoring. These missions utilize the positioning of satellites at the Lagrangian L1 and L5 points. These Phase 0 or Pre-Phase A mission studies are about to be completed and will thereby have soon passed the Mission Definition Review. Phase A studies are planned to start in 2017. The space weather monitoring system currently considers four remote sensing optical instruments and several in-situ instruments to analyse the Sun and the solar wind conditions, in order to provide early warnings of increased solar activity and to identify and mitigate potential threats to society and ground, airborne and space based infrastructure. The suggested optical instruments take heritage from ESA and NASA science missions like SOHO, STEREO and Solar Orbiter, but the instruments are foreseen to be optimized for operational space weather monitoring purposes with high reliability and robustness demands. The instruments are required to provide high quality measurements particularly during severe space weather events. The program intends to utilize the results of the on-going ESA instrument prototyping and technology development activities, and to initiate pre-developments of the operational space weather instruments to ensure the required maturity before the mission implementation.

  18. 2015 Los Alamos Space Weather Summer School Research Reports

    Energy Technology Data Exchange (ETDEWEB)

    Cowee, Misa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Yuxi [Univ. of Michigan, Ann Arbor, MI (United States); Desai, Ravindra [Univ. College London, Bloomsbury (United Kingdom); Hassan, Ehab [Univ. of Texas, Austin, TX (United States); Kalmoni, Nadine [Univ. College London, Bloomsbury (United Kingdom); Lin, Dong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Depascuale, Sebastian [Univ. of Iowa, Iowa City, IA (United States); Hughes, Randall Scott [Univ. of Southern California, Los Angeles, CA (United States); Zhou, Hong [Univ. of Colorado, Boulder, CO (United States)

    2015-11-24

    The fifth Los Alamos Space Weather Summer School was held June 1st - July 24th, 2015, at Los Alamos National Laboratory (LANL). With renewed support from the Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) and additional support from the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) Office of Science, we hosted a new class of five students from various U.S. and foreign research institutions. The summer school curriculum includes a series of structured lectures as well as mentored research and practicum opportunities. Lecture topics including general and specialized topics in the field of space weather were given by a number of researchers affiliated with LANL. Students were given the opportunity to engage in research projects through a mentored practicum experience. Each student works with one or more LANL-affiliated mentors to execute a collaborative research project, typically linked with a larger ongoing research effort at LANL and/or the student’s PhD thesis research. This model provides a valuable learning experience for the student while developing the opportunity for future collaboration. This report includes a summary of the research efforts fostered and facilitated by the Space Weather Summer School. These reports should be viewed as work-in-progress as the short session typically only offers sufficient time for preliminary results. At the close of the summer school session, students present a summary of their research efforts. Titles of the papers included in this report are as follows: Full particle-in-cell (PIC) simulation of whistler wave generation, Hybrid simulations of the right-hand ion cyclotron anisotropy instability in a sub-Alfvénic plasma flow, A statistical ensemble for solar wind measurements, Observations and models of substorm injection dispersion patterns, Heavy ion effects on Kelvin-Helmholtz instability: hybrid study, Simulating plasmaspheric electron densities with a two

  19. 2015 Los Alamos Space Weather Summer School Research Reports

    International Nuclear Information System (INIS)

    Cowee, Misa; Chen, Yuxi; Desai, Ravindra; Hassan, Ehab; Kalmoni, Nadine; Lin, Dong; Depascuale, Sebastian; Hughes, Randall Scott; Zhou, Hong

    2015-01-01

    The fifth Los Alamos Space Weather Summer School was held June 1st - July 24th, 2015, at Los Alamos National Laboratory (LANL). With renewed support from the Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) and additional support from the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) Office of Science, we hosted a new class of five students from various U.S. and foreign research institutions. The summer school curriculum includes a series of structured lectures as well as mentored research and practicum opportunities. Lecture topics including general and specialized topics in the field of space weather were given by a number of researchers affiliated with LANL. Students were given the opportunity to engage in research projects through a mentored practicum experience. Each student works with one or more LANL-affiliated mentors to execute a collaborative research project, typically linked with a larger ongoing research effort at LANL and/or the student's PhD thesis research. This model provides a valuable learning experience for the student while developing the opportunity for future collaboration. This report includes a summary of the research efforts fostered and facilitated by the Space Weather Summer School. These reports should be viewed as work-in-progress as the short session typically only offers sufficient time for preliminary results. At the close of the summer school session, students present a summary of their research efforts. Titles of the papers included in this report are as follows: Full particle-in-cell (PIC) simulation of whistler wave generation, Hybrid simulations of the right-hand ion cyclotron anisotropy instability in a sub-Alfv@@nic plasma flow, A statistical ensemble for solar wind measurements, Observations and models of substorm injection dispersion patterns, Heavy ion effects on Kelvin-Helmholtz instability: hybrid study, Simulating plasmaspheric electron densities with a

  20. Report on the survey for electrostatic discharges on Mars using NASA's Deep Space Network (DSN)

    Science.gov (United States)

    Arabshahi, S.; Majid, W.; Geldzahler, B.; Kocz, J.; Schulter, T.; White, L.

    2017-12-01

    Mars atmosphere has strong dust activity. It is suggested that the larger regional storms are capable of producing electric fields large enough to initiate electrostatic discharges. The storms have charging process similar to terrestrial dust devils and have hot cores and complicated vortex winds similar to terrestrial thunderstorms. However, due to uncertainties in our understanding of the electrical environment of the storms and absence of related in-situ measurements, the existence (or non-existence) of such electrostatic discharges on the planet is yet to be confirmed. Knowing about the electrical activity on Mars is essential for future human explorations of the planet. We have recently launched a long-term monitoring campaign at NASA's Madrid Deep Space Communication Complex (MDSCC) to search for powerful discharges on Mars. The search occurs during routine tracking of Mars orbiting spacecraft by Deep Space Network (DSN) radio telescope. In this presentation, we will report on the result of processing and analysis of the data from the first six months of our campaign.

  1. Micro-mapping Meteorite Surfaces on Mars using Microscopic Imager Mosaics — A Tool for Unraveling Weathering History at Meridiani Planum

    Science.gov (United States)

    Ashley, J. W.; Herkenhoff, K. E.; Golombek, M. P.; Johnson, J. R.

    2012-12-01

    Meteorites found on Mars provide valuable insights into martian surface processes. During the course of Mars Exploration Rover (MER) extended missions, Spirit and Opportunity have identified 17 confirmed and candidate meteorites on Mars, most of which are irons. The iron meteorites exhibit morphologies and coatings that communicate complex post-fall exposure histories relevant to an understanding of climate near the martian equator [1-4]. Both chemical and mechanical weathering effects are represented. Among the more significant of these are: 1) cm-scale hollowing, 2) surficial rounding, 3) mass excavation/dissolution and removal, 4) differential etching of kamacite plates and taenite lamellae, revealing Widmanstätten patterns, 5) discontinuous iron oxide coatings, and 6) the effects of cavernous weathering, which often penetrate to rock interiors. Determining the nature, magnitude, and timing of each process and its associated features is a complex problem that will be aided by laboratory experiments, image processing, and careful surface evaluation. Because some features appear to superpose others in ways analogous to stratigraphic relationships, Microscopic Imager (MI) mosaics are useful for sketching "geologic maps" of meteorite surfaces. Employing the techniques of conventional planetary mapping [5], each map was drafted manually using full-resolution MI mosaics and Adobe Photoshop software. Units were selected to represent the oxide coating, dust-coated surfaces, sand-coated surfaces, taenite lamellae, and uncoated metal. Also included are areas in shadow, and regions of blooming caused by specular reflection of metal. Regmaglypt rim crests are presented as lineations. As with stratigraphic relationships, noting embayments and other cross-cutting relationships assists with establishing the relative timing for observed weathering effects. In addition to suggesting alternating sequences of wind and water exposure [1], patterns in oxide coating occurrence show

  2. Space weather and human deaths distribution: 25 years' observation (Lithuania, 1989-2013).

    Science.gov (United States)

    Stoupel, Eliyahu G; Petrauskiene, Jadvyga; Kalediene, Ramune; Sauliune, Skirmante; Abramson, Evgeny; Shochat, Tzippy

    2015-09-01

    Human health is affected by space weather component [solar (SA), geomagnetic (GMA), cosmic ray (CRA) - neutrons, space proton flux] activity levels. The aim of this study was to check possible links between timing of human (both genders) monthly deaths distribution and space weather activity. Human deaths distribution in the Republic of Lithuania from 1989 to 2013 (25 years, i.e., 300 consecutive months) was studied, which included 1,050,503 deaths (549,764 male, 500,739 female). Pearson correlation coefficients (r) and their probabilities (p) were obtained for years: months 1-12, sunspot number, smoothed sunspot number, solar flux (2800 MGH, 10.7 cm), adjusted solar flux for SA; A, C indices of GMA; neutron activity at the earth's surface (imp/min) for CRA. The cosmophysical data were obtained from space science institutions in the USA, Russia and Finland. The mentioned physical parameters were compared with the total number of deaths, deaths from ischemic heart disease (n=376,074), stroke (n=132,020), non-cardiovascular causes (n=542,409), accidents (n=98,805), traffic accidents (n=21,261), oncology (n=193,017), diabetes mellitus (n=6631) and suicide (n=33,072). Space factors were interrelated as follows for the considered period: CRA was inversely related to SA and GMA, CRA/SA (r=-0.86, p>0.0001), CRA/GMA (r=-0.70, pweather component activity. Extreme levels of activities of both groups (SA, GMA, and opposite CRA - neutron) are related to some health risks. In the considered period, there were relatively few GMA storms and low GMA was dominating, accompanied by higher CRA (neutron) activity. The ways of action of the components of space weather on the human body need additional studies. There is a special need for the prevention of rising cerebral vascular accidents and oncology malignancies as the causes of death.

  3. Systems Analysis of In-Space Manufacturing Applications for the International Space Station and the Evolvable Mars Campaign

    Science.gov (United States)

    Owens, Andrew C.; De Weck, Olivier L.

    2016-01-01

    Maintenance logistics support is a significant challenge for extended human operations in space, especially for missions beyond Low Earth Orbit (LEO). For missions to Mars (such as NASA's Evolvable Mars Campaign (EMC)), where timely resupply or abort in the event of emergency will not be possible, maintenance logistics mass is directly linked to the Probability of Loss of Crew (P(LoC)), and the cost of driving down risk is an exponential increase in mass requirements. The logistics support strategies that have maintained human operations in LEO will not be effective for these deep space missions. In-Space Manufacturing (ISM) is a promising technological solution that could reduce logistics requirements, mitigate risks, and augment operational capabilities, enabling Earth- independent human spaceflight. This paper reviews maintenance logistics challenges for spaceflight operations in LEO and beyond, and presents a summary of selected results from a systems analysis of potential ISM applications for the ISS and EMC. A quantitative modeling framework and sample assessment of maintenance logistics and risk reduction potential of this new technology is also presented and discussed.

  4. Martian Feeling: An Analogue Study to Simulate a Round-Trip to Mars using the International Space Station

    Science.gov (United States)

    Felix, C. V.; Gini, A.

    When talking about human space exploration, Mars missions are always present. It is clear that sooner or later, humanity will take this adventure. Arguably the most important aspect to consider for the success of such an endeavour is the human element. The safety of the crew throughout a Martian mission is a top priority for all space agencies. Therefore, such a mission should not take place until all the risks have been fully understood and mitigated. A mission to Mars presents unique human and technological challenges in terms of isolation, confinement, autonomy, reliance on mission control, communication delays and adaptation to different gravity levels. Analogue environments provide the safest way to simulate these conditions, mitigate the risks and evaluate the effects of long-term space travel on the crew. Martian Feeling is one of nine analogue studies, from the Mars Analogue Path (MAP) report [1], proposed by the TP Analogue group of ISU Masters class 2010. It is an integrated analogue study which simulates the psychological, physiological and operational conditions that an international, six-person, mixed gender crew would experience on a mission to Mars. Set both onboard the International Space Station (ISS) and on Earth, the Martian Feeling study will perform a ``dress rehearsal'' of a mission to Mars. The study proposes to test both human performance and operational procedures in a cost-effective manner. Since Low Earth Orbit (LEO) is more accessible than other space-based locations, an analogue studies in LEO would provide the required level of realism to a simulated transit mission to Mars. The sustained presence of microgravity and other elements of true spaceflight are features of LEO that are neither currently feasible nor possible to study in terrestrial analogue sites. International collaboration, economics, legal and ethical issues were considered when the study was proposed. As an example of international collaboration, the ISS would

  5. Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure

    Science.gov (United States)

    Oughton, Edward J.; Skelton, Andrew; Horne, Richard B.; Thomson, Alan W. P.; Gaunt, Charles T.

    2017-01-01

    Extreme space weather due to coronal mass ejections has the potential to cause considerable disruption to the global economy by damaging the transformers required to operate electricity transmission infrastructure. However, expert opinion is split between the potential outcome being one of a temporary regional blackout and of a more prolonged event. The temporary blackout scenario proposed by some is expected to last the length of the disturbance, with normal operations resuming after a couple of days. On the other hand, others have predicted widespread equipment damage with blackout scenarios lasting months. In this paper we explore the potential costs associated with failure in the electricity transmission infrastructure in the U.S. due to extreme space weather, focusing on daily economic loss. This provides insight into the direct and indirect economic consequences of how an extreme space weather event may affect domestic production, as well as other nations, via supply chain linkages. By exploring the sensitivity of the blackout zone, we show that on average the direct economic cost incurred from disruption to electricity represents only 49% of the total potential macroeconomic cost. Therefore, if indirect supply chain costs are not considered when undertaking cost-benefit analysis of space weather forecasting and mitigation investment, the total potential macroeconomic cost is not correctly represented. The paper contributes to our understanding of the economic impact of space weather, as well as making a number of key methodological contributions relevant for future work. Further economic impact assessment of this threat must consider multiday, multiregional events.

  6. Decision Making and Risk Evaluation Frameworks for Extreme Space Weather Events

    Science.gov (United States)

    Uritskaya, O.; Robinson, R. M.; Pulkkinen, A. A.

    2017-12-01

    Extreme Space Weather events (ESWE) are in the spotlight nowadays because they can produce a significant impact not only due to their intensity and broad geographical scope, but also because of the widespread levels and the multiple sectors of the economy that could be involved. In the task of evaluation of the ESWE consequences, the most problematic and vulnerable aspect is the determination and calculation of the probability of statistically infrequent events and the subsequent assessment of the economic risks. In this work, we conduct a detailed analysis of the available frameworks of the general Decision-Making Theory in the presence of uncertainty, in the context of their applicability for the numerical estimation of the risks and losses associated with ESWE. The results of our study demonstrate that, unlike the Multiple-criteria decision analysis or Minimax approach to modeling of the possible scenarios for the ESWE effects, which prevail in the literature, the most suitable concept is the Games Against Nature (GAN). It enables an evaluation of every economically relevant aspect of space weather conditions and obtain more detailed results. Choosing the appropriate methods for solving GAN models, i.e. determining the most optimal strategy with a given level of uncertainty, requires estimating the conditional probabilities of Space Weather events for each outcome of possible scenarios of this natural disaster. Due to the specifics of complex natural and economic systems, with which we are dealing in this case, this problem remains unsolved, mainly because of inevitable loss of information at every stage of the decision-making process. The analysis is illustrated by deregulated electricity markets of the USA and Canada, whose power grid systems are known to be perceptive to ESWE. The GAN model is more appropriate in identifying potential risks in economic systems. The proposed approach, when applied to the existing database of Space Weather observations and

  7. Confronting data requirements and data provision in Space Weather: The Contribution of Long Term Archives. Part 2.

    Science.gov (United States)

    Glover, Alexi; Heynderickx, Daniel

    Operational space weather services rely heavily on reliable data streams from spacecraft and ground-based facilities, as well as from services providing processed data products. This event focuses on an unusual solar maximum viewed from several different perspectives, and as such highlights the important contribution of long term archives in supporting space weather studies and services. We invite the space weather community to contribute to a discussion on the key topics listed below, with the aim of formulating recommendations and guidelines for policy makers, stakeholders, data and service providers: - facilitating access to and awareness of existing data resources - establishing clear guidelines for space weather data archives including data quality, interoperability and metadata standards - ensuring data ownership and terms of (re)use are clearly identified such that this information can be taken into account when (potentially commercial) services are developed based on data provided without charge for scientific purposes only All participants are invited to submit input for the discussion to the authors ahead of the Assembly. The outcome of the session will be formulated as a set of proposed panel recommendations.

  8. Confronting data requirements and data provision in Space Weather: The Contribution of Long Term Archives. Part 1.

    Science.gov (United States)

    Heynderickx, Daniel; Glover, Alexi

    Operational space weather services rely heavily on reliable data streams from spacecraft and ground-based facilities, as well as from services providing processed data products. This event focuses on an unusual solar maximum viewed from several different perspectives, and as such highlights the important contribution of long term archives in supporting space weather studies and services. We invite the space weather community to contribute to a discussion on the key topics listed below, with the aim of formulating recommendations and guidelines for policy makers, stakeholders, data and service providers: - facilitating access to and awareness of existing data resources - establishing clear guidelines for space weather data archives including data quality, interoperability and metadata standards - ensuring data ownership and terms of (re)use are clearly identified such that this information can be taken into account when (potentially commercial) services are developed based on data provided without charge for scientific purposes only All participants are invited to submit input for the discussion to the authors ahead of the Assembly. The outcome of the session will be formulated as a set of proposed panel recommendations.

  9. Energy consumption analysis for the Mars deep space station

    Science.gov (United States)

    Hayes, N. V.

    1982-01-01

    Results for the energy consumption analysis at the Mars deep space station are presented. It is shown that the major energy consumers are the 64-Meter antenna building and the operations support building. Verification of the antenna's energy consumption is highly dependent on an accurate knowlege of the tracking operations. The importance of a regular maintenance schedule for the watt hour meters installed at the station is indicated.

  10. Space weathering on near-Earth objects investigated by neutral-particle detection

    Science.gov (United States)

    Plainaki, C.; Milillo, A.; Orsini, S.; Mura, A.; de Angelis, E.; di Lellis, A. M.; Dotto, E.; Livi, S.; Mangano, V.; Palumbo, M. E.

    2009-04-01

    The ion-sputtering (IS) process is active in many planetary environments in the solar system where plasma precipitates directly on the surface (for instance, Mercury, Moon and Europa). In particular, solar wind sputtering is one of the most important agents for the surface erosion of a near-Earth object (NEO), acting together with other surface release processes, such as photon stimulated desorption (PSD), thermal desorption (TD) and micrometeoroid impact vaporization (MIV). The energy distribution of the IS-released neutrals peaks at a few eVs and extends up to hundreds of eVs. Since all other release processes produce particles of lower energies, the presence of neutral atoms in the energy range above 10 eV and below a few keVs (sputtered high-energy atoms (SHEA)) identifies the IS process. SHEA easily escape from the NEO, due to NEO's extremely weak gravity. Detection and analysis of SHEA will give important information on surface-loss processes as well as on surface elemental composition. The investigation of the active release processes, as a function of the external conditions and the NEO surface properties, is crucial for obtaining a clear view of the body's present loss rate as well as for getting clues on its evolution, which depends significantly on space weather. In this work, an attempt to analyze processes that take place on the surface of these small airless bodies, as a result of their exposure to the space environment, has been realized. For this reason, a new space weathering model (space weathering on NEO-SPAWN) is presented. Moreover, an instrument concept of a neutral-particle analyzer specifically designed for the measurement of neutral density and the detection of SHEA from a NEO is proposed.

  11. Space weathering and the color indexes of minor bodies in the outer Solar System

    Science.gov (United States)

    Kaňuchová, Zuzana; Brunetto, Rosario; Melita, Mario; Strazzulla, Giovanni

    2012-09-01

    The surfaces of small bodies in the outer Solar System are rich in organic compounds and carbonaceous refractories mixed with ices and silicates. As made clear by dedicated laboratory experiments space weathering (e.g. energetic ion bombardment) can produce red colored materials starting from bright and spectrally flat ices. In a classical scenario, the space weathering processes “nurture” alter the small bodies surface spectra but are in competition with resurfacing agents that restore the original colors, and the result of these competing processes continuously modifying the surfaces is supposed to be responsible for the observed spectral variety of those small bodies. However an alternative point of view is that the different colors are due to “nature” i.e. to the different primordial composition of different objects. In this paper we present a model, based on laboratory results, that gives an original contribution to the “nature” vs. “nurture” debate by addressing the case of surfaces showing different fractions of rejuvenated vs. space weathered surface, and calculating the corresponding color variations. We will show how a combination of increasing dose coupled to different resurfacing can reproduce the whole range of observations of small outer Solar System bodies. Here we demonstrate, for the first time that objects having a fully weathered material turn back in the color-color diagrams. At the same time, object with the different ratio of pristine and weathered surface areas lay on specific lines in color-color diagrams, if exposed to the same amount of irradiation.

  12. Verification of space weather forecasts at the UK Met Office

    Science.gov (United States)

    Bingham, S.; Sharpe, M.; Jackson, D.; Murray, S.

    2017-12-01

    The UK Met Office Space Weather Operations Centre (MOSWOC) has produced space weather guidance twice a day since its official opening in 2014. Guidance includes 4-day probabilistic forecasts of X-ray flares, geomagnetic storms, high-energy electron events and high-energy proton events. Evaluation of such forecasts is important to forecasters, stakeholders, model developers and users to understand the performance of these forecasts and also strengths and weaknesses to enable further development. Met Office terrestrial near real-time verification systems have been adapted to provide verification of X-ray flare and geomagnetic storm forecasts. Verification is updated daily to produce Relative Operating Characteristic (ROC) curves and Reliability diagrams, and rolling Ranked Probability Skill Scores (RPSSs) thus providing understanding of forecast performance and skill. Results suggest that the MOSWOC issued X-ray flare forecasts are usually not statistically significantly better than a benchmark climatological forecast (where the climatology is based on observations from the previous few months). By contrast, the issued geomagnetic storm activity forecast typically performs better against this climatological benchmark.

  13. Understanding space weather with new physical, mathematical and philosophical approaches

    Science.gov (United States)

    Mateev, Lachezar; Velinov, Peter; Tassev, Yordan

    2016-07-01

    The actual problems of solar-terrestrial physics, in particular of space weather are related to the prediction of the space environment state and are solved by means of different analyses and models. The development of these investigations can be considered also from another side. This is the philosophical and mathematical approach towards this physical reality. What does it constitute? We have a set of physical processes which occur in the Sun and interplanetary space. All these processes interact with each other and simultaneously participate in the general process which forms the space weather. Let us now consider the Leibniz's monads (G.W. von Leibniz, 1714, Monadologie, Wien; Id., 1710, Théodicée, Amsterdam) and use some of their properties. There are total 90 theses for monads in the Leibniz's work (1714), f.e. "(1) The Monad, of which we shall here speak, is nothing but a simple substance, which enters into compounds. By 'simple' is meant 'without parts'. (Theod. 10.); … (56) Now this connexion or adaptation of all created things to each and of each to all, means that each simple substance has relations which express all the others, and, consequently, that it is a perpetual living mirror of the universe. (Theod. 130, 360.); (59) … this universal harmony, according to which every substance exactly expresses all others through the relations it has with them. (63) … every Monad is, in its own way, a mirror of the universe, and the universe is ruled according to a perfect order. (Theod. 403.)", etc. Let us introduce in the properties of monads instead of the word "monad" the word "process". We obtain the following statement: Each process reflects all other processes and all other processes reflect this process. This analogy is not formal at all, it reflects accurately the relation between the physical processes and their unity. The category monad which in the Leibniz's Monadology reflects generally the philosophical sense is fully identical with the

  14. Space Weather Impacts on Spacecraft Operations: Identifying and Establishing High-Priority Operational Services

    Science.gov (United States)

    Lawrence, G.; Reid, S.; Tranquille, C.; Evans, H.

    2013-12-01

    Space Weather is a multi-disciplinary and cross-domain system defined as, 'The physical and phenomenological state of natural space environments. The associated discipline aims, through observation, monitoring, analysis and modelling, at understanding and predicting the state of the Sun, the interplanetary and planetary environments, and the solar and non-solar driven perturbations that affect them, and also at forecasting and nowcasting the potential impacts on biological and technological systems'. National and Agency-level efforts to provide services addressing the myriad problems, such as ESA's SSA programme are therefore typically complex and ambitious undertakings to introduce a comprehensive suite of services aimed at a large number and broad range of end users. We focus on some of the particular threats and risks that Space Weather events pose to the Spacecraft Operations community, and the resulting implications in terms of User Requirements. We describe some of the highest-priority service elements identified as being needed by the Operations community, and outline some service components that are presently available, or under development. The particular threats and risks often vary according to orbit, so the particular User Needs for Operators at LEO, MEO and GEO are elaborated. The inter-relationship between these needed service elements and existing service components within the broader Space Weather domain is explored. Some high-priority service elements and potential correlation with Space Weather drivers include: solar array degradation and energetic proton storms; single event upsets at GEO and solar proton events and galactic cosmic rays; surface charging and deep dielectric charging at MEO and radiation belt dynamics; SEUs at LEO and the South Atlantic Anomaly and its variability. We examine the current capability to provide operational services addressing such threats and identify some advances that the Operations community can expect to benefit

  15. Space Weathering Evolution on Airless Bodies - Laboratory Simulations with Olivine

    Czech Academy of Sciences Publication Activity Database

    Kohout, Tomáš; Čuda, J.; Bradley, T.; Britt, D.; Filip, J.; Tuček, J.; Malina, O.; Kašlík, J.; Šišková, K.; Zbořil, R.

    2013-01-01

    Roč. 45, č. 9 (2013), s. 25-26 ISSN 0002-7537. [Annual meeting of the Division for Planetary Sciences of the American Astronomical Society /45./. 06.10.2013-11.10.2013, Denver] Institutional support: RVO:67985831 Keywords : space weathering * asteroid * Moon * olivine Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://aas.org/files/resources/dps_abstract_book.pdf

  16. Sleeping in Space: An Unexpected Challenge for Future Mars Explorers

    Science.gov (United States)

    Flynn-Evans, Erin

    2018-01-01

    This talk will serve as the keynote address for a research symposium being held at Washington State University. The purpose of the talk is to provide researchers and students at WSU with an overview about what it is like to sleep in space. Dr. Flynn-Evans will begin by highlighting how sleep is different in movies and science fiction compared to real life. She will next cover basic information about sleep and circadian rhythms, including how sleep works on earth. She will explain how people have circadian rhythms of different lengths and how the circadian clock has to be re-set each day. She will also describe how jet-lag works as an example of what happens during circadian misalignment. Dr. Flynn-Evans will also describe how sleep is different in space and will highlight the challenges that astronauts face in low-earth orbit. She will discuss how astronauts have a shorter sleep duration in space relative to on the ground and how their schedules can shift due to operational constraints. She will also describe how these issues affect alertness and performance. She will then discuss how sleep and scheduling may be different on a long-duration mission to Mars. She will discuss the differences in light and day length on earth and mars and illustrate how those differences pose significant challenges to sleep and circadian rhythms.

  17. The Sun/Earth System and Space Weather

    Science.gov (United States)

    Poland, Arthur I.; Fox, Nicola; Lucid, Shannon

    2003-01-01

    Solar variability and solar activity are now seen as significant drivers with respect to the Earth and human technology systems. Observations over the last 10 years have significantly advanced our understanding of causes and effects in the Sun/Earth system. On a practical level the interactions between the Sun and Earth dictate how we build our systems in space (communications satellites, GPS, etc), and some of our ground systems (power grids). This talk will be about the Sun/Earth system: how it changes with time, its magnetic interactions, flares, the solar wind, and how the Sun effects human systems. Data will be presented from some current spacecraft which show, for example, how we are able to currently give warnings to the scientific community, the Government and industry about space storms and how this data has improved our physical understanding of processes on the Sun and in the magnetosphere. The scientific advances provided by our current spacecraft has led to a new program in NASA to develop a 'Space Weather' system called 'Living With a Star'. The current plan for the 'Living With a Star' program will also be presented.

  18. Nonlinear dynamics of the magnetosphere and space weather

    Science.gov (United States)

    Sharma, A. Surjalal

    1996-01-01

    The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.

  19. Large-Scale Traveling Weather Systems in Mars’ Southern Extratropics

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2017-10-01

    Between late fall and early spring, Mars’ middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  20. Space Weather Research in Armenia

    Science.gov (United States)

    Chilingarian, A. A.

    DVIN for ASEC (Data Visualization interactive Network for Aragats Space Environmental Center) is product for accessing and analysis the on-line data from Solar Monitors located at high altitude research station on Mt. Aragats in Armenia. Data from ASEC monitors is used worldwide for scientific purposes and for monitoring of severe solar storms in progress. Alert service, based on the automatic analysis of variations of the different species of cosmic ray particles is available for subscribers. DVIN advantages: DVIN is strategically important as a scientific application to help develop space science and to foster global collaboration in forecasting potential hazards of solar storms. It precisely fits with the goals of the new evolving information society to provide long-term monitoring and collection of high quality scientific data, and enables adequate dialogue between scientists, decision makers, and civil society. The system is highly interactive and exceptional information is easily accessible online. Data can be monitored and analyzed for desired time spans in a fast and reliable manner. The ASEC activity is an example of a balance between the scientific independence of fundamental research and the needs of civil society. DVIN is also an example of how scientific institutions can apply the newest powerful methods of information technologies, such as multivariate data analysis, to their data and also how information technologies can provide convenient and reliable access to this data and to new knowledge for the world-wide scientific community. DVIN provides very wide possibilities for sharing data and sending warnings and alerts to scientists and other entities world-wide, which have fundamental and practical interest in knowing the space weather conditions.

  1. Advanced Analysis and Visualization of Space Weather Phenomena

    Science.gov (United States)

    Murphy, Joshua J.

    As the world becomes more technologically reliant, the more susceptible society as a whole is to adverse interactions with the sun. This "space weather'' can produce significant effects on modern technology, from interrupting satellite service, to causing serious damage to Earth-side power grids. These concerns have, over the past several years, prompted an out-welling of research in an attempt to understand the processes governing, and to provide a means of forecasting, space weather events. The research presented in this thesis couples to current work aimed at understanding Coronal Mass Ejections (CMEs) and their influence on the evolution of Earth's magnetic field and associated Van Allen radiation belts. To aid in the analysis of how these solar wind transients affect Earth's magnetic field, a system named Geospace/Heliosphere Observation & Simulation Tool-kit (GHOSTkit), along with its python analysis tools, GHOSTpy, has been devised to calculate the adiabatic invariants of trapped particle motion within Earth's magnetic field. These invariants aid scientists in ordering observations of the radiation belts, providing a more natural presentation of data, but can be computationally expensive to calculate. The GHOSTpy system, in the phase presented here, is aimed at providing invariant calculations based on LFM magnetic field simulation data. This research first examines an ideal dipole application to gain understanding on system performance. Following this, the challenges of applying the algorithms to gridded LFM MHD data is examined. Performance profiles are then presented, followed by a real-world application of the system.

  2. Academic Training: Surviving in space: the challenges of a manned mission to Mars

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 26, 27, 28 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Surviving in space: the challenges of a manned mission to Mars by L. S. Pinsky / Univ. Houston, USA Program : Lecture I: Understanding the Space Radiation Environment Lecture II: Dosimetry and the Effects of the Exposure of Human Tissue to Heavily Ionizing Radiation Lecture III: Modelling the Interaction of the Space Radiation in Spacecraft & Humans, and Assessing the Risks on a Mission to Mars... ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an 'application for training' form available from your Departmental Secretariat or from your DTO (Departmental Training Officer). Applications will be accepted in the order ...

  3. Space weather: Modeling and forecasting ionospheric

    International Nuclear Information System (INIS)

    Calzadilla Mendez, A.

    2008-01-01

    Full text: Space weather is the set of phenomena and interactions that take place in the interplanetary medium. It is regulated primarily by the activity originating in the Sun and affects both the artificial satellites that are outside of the protective cover of the Earth's atmosphere as the rest of the planets in the solar system. Among the phenomena that are of great relevance and impact on Earth are the auroras and geomagnetic storms , these are a direct result of irregularities in the flow of the solar wind and the interplanetary magnetic field . Given the high complexity of the physical phenomena involved (magnetic reconnection , particle inlet and ionizing radiation to the atmosphere) one of the great scientific challenges today is to forecast the state of plasmatic means either the interplanetary medium , the magnetosphere and ionosphere , for their importance to the development of various human activities such as radio , global positioning , navigation, etc. . It briefly address some of the international ionospheric modeling methods and contributions and participation that currently has the space group of the Institute of Geophysics Geophysics and Astronomy (IGA) in these activities of modeling and forecasting ionospheric. (author)

  4. Life Support for Deep Space and Mars

    Science.gov (United States)

    Jones, Harry W.; Hodgson, Edward W.; Kliss, Mark H.

    2014-01-01

    How should life support for deep space be developed? The International Space Station (ISS) life support system is the operational result of many decades of research and development. Long duration deep space missions such as Mars have been expected to use matured and upgraded versions of ISS life support. Deep space life support must use the knowledge base incorporated in ISS but it must also meet much more difficult requirements. The primary new requirement is that life support in deep space must be considerably more reliable than on ISS or anywhere in the Earth-Moon system, where emergency resupply and a quick return are possible. Due to the great distance from Earth and the long duration of deep space missions, if life support systems fail, the traditional approaches for emergency supply of oxygen and water, emergency supply of parts, and crew return to Earth or escape to a safe haven are likely infeasible. The Orbital Replacement Unit (ORU) maintenance approach used by ISS is unsuitable for deep space with ORU's as large and complex as those originally provided in ISS designs because it minimizes opportunities for commonality of spares, requires replacement of many functional parts with each failure, and results in substantial launch mass and volume penalties. It has become impractical even for ISS after the shuttle era, resulting in the need for ad hoc repair activity at lower assembly levels with consequent crew time penalties and extended repair timelines. Less complex, more robust technical approaches may be needed to meet the difficult deep space requirements for reliability, maintainability, and reparability. Developing an entirely new life support system would neglect what has been achieved. The suggested approach is use the ISS life support technologies as a platform to build on and to continue to improve ISS subsystems while also developing new subsystems where needed to meet deep space requirements.

  5. MAVEN Observations of Atmospheric Loss at Mars

    Science.gov (United States)

    Curry, Shannon; Luhmann, Janet; Jakosky, Bruce M.; Brain, David; LeBlanc, Francis; Modolo, Ronan; Halekas, Jasper S.; Schneider, Nicholas M.; Deighan, Justin; McFadden, James; Espley, Jared R.; Mitchell, David L.; Connerney, J. E. P.; Dong, Yaxue; Dong, Chuanfei; Ma, Yingjuan; Cohen, Ofer; Fränz, Markus; Holmström, Mats; Ramstad, Robin; Hara, Takuya; Lillis, Robert J.

    2016-06-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been making observations of the Martian upper atmosphere and its escape to space since November 2014. The subject of atmospheric loss at terrestrial planets is a subject of intense interest not only because of the implications for past and present water reservoirs, but also for its impacts on the habitability of a planet. Atmospheric escape may have been especially effective at Mars, relative to Earth or Venus, due to its smaller size as well as the lack of a global dynamo magnetic field. Not only is the atmosphere less gravitationally bound, but also the lack of global magnetic field allows the impinging solar wind to interact directly with the Martian atmosphere. When the upper atmosphere is exposed to the solar wind, planetary neutrals can be ionized and 'picked up' by the solar wind and swept away.Both neutral and ion escape have played significant roles the long term climate change of Mars, and the MAVEN mission was designed to directly measure both escaping planetary neutrals and ions with high energy, mass, and time resolution. We will present 1.5 years of observations of atmospheric loss at Mars over a variety of solar and solar wind conditions, including extreme space weather events. We will report the average ion escape rate and the spatial distribution of escaping ions as measured by MAVEN and place them in context both with previous measurements of ion loss by other spacecraft (e.g. Phobos 2 and Mars Express) and with estimates of neutral escape rates by MAVEN. We will then report on the measured variability in ion escape rates with different drivers (e.g. solar EUV, solar wind pressure, etc.) and the implications for the total ion escape from Mars over time. Additionally, we will also discuss the implications for atmospheric escape at exoplanets, particularly weakly magnetized planetary bodies orbiting M-dwarfs, and the dominant escape mechanisms that may drive atmospheric erosion in other

  6. Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS

    OpenAIRE

    Schrijver, Carolus J.; Kauristie, Kirsti; Aylward, Alan D.; Denardini, Clezio M.; Gibson, Sarah E.; Glover, Alexi; Gopalswamy, Nat; Grande, Manuel; Hapgood, Mike; Heynderickx, Daniel; Jakowski, Norbert; Kalegaev, Vladimir V.; Lapenta, Giovanni; Linker, Jon A.; Liu, Siqing

    2017-01-01

    There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. We recognize that much progress has been made and continues to be made with a powerful suite of research observatories on the ground and in space, forming the ...

  7. Pressure and Relative Humidity Measurement Devices for Mars 2020 Rover

    Science.gov (United States)

    Hieta, M.; Genzer, M.; Nikkanen, T.; Haukka, H.; Harri, A.-M.; Polkko, J.; Rodriguez-Manfredi, J. A.

    2017-09-01

    One of the scientific payloads onboard the NASA Mars 2020 rover mission is Mars Environmental Dynamic Analyzer (MEDA): a set of environmental sensors for Mars surface weather measurements. Finnish Meteorological Institute (FMI) provides a pressure measurement device (MEDA PS) and a relative humidity measurement device (MEDA HS) for MEDA.

  8. Briefing Highlights Vulnerability of GPS to Adverse Space Weather

    Science.gov (United States)

    Balcerak, Ernie

    2011-08-01

    Through its effects on GPS and other technologies, space weather can affect a variety of industries, including agriculture, commercial air travel, and emergency response. Speakers focused on these topics at a 22 June briefing on Capitol Hill in Washington, D. C. Solar flares can produce radio bursts that directly interfere with GPS signals. Solar activity can also cause ionospheric disturbances that produce distortions and delays in GPS signals, degrading the accuracy of positioning and navigation systems.

  9. Using the International Space Station (ISS) Oxygen Generation Assembly (OGA) Is Not Feasible for Mars Transit

    Science.gov (United States)

    Jones, Harry W.

    2016-01-01

    A review of two papers on improving the International Space Station (ISS) Oxygen Generation Assembly (OGA) shows that it would not save substantial mass on a Mars transit. The ISS OGA requires redesign for satisfactory operation, even for the ISS. The planned improvements of the OGA for ISS would not be sufficient to make it suitable for Mars, because Mars transit life support has significantly different requirements than ISS. The OGA for Mars should have lower mass, better reliability and maintainability, greater safety, radiation hardening, and capability for quiescent operation. NASA's methodical, disciplined systems engineering process should be used to develop the appropriate system.

  10. State of Art in space weather observational activities and data management in Europe

    Science.gov (United States)

    Stanislawska, Iwona

    One of the primary scientific and technical goals of space weather is to produce data in order to investigate the Sun impact on the Earth and its environment. Studies based on data mining philosophy yield increase the knowledge of space weather physical properties, modelling capabilities and gain applications of various procedures in space weather monitoring and forecasting. Exchanging tailored individually and/or jointly data between different entities, storing of the databases and making data accessible for the users is the most important task undertaken by investigators. National activities spread over Europe is currently consolidated pursuant to the terms of effectiveness and individual contributions embedded in joint integrated efforts. The role of COST 724 Action in animation of such a movement is essential. The paper focuses on the analysis of the European availability in the Internet near-real time and historical collections of the European ground based and satellite observations, operational indices and parameters. A detailed description of data delivered is included. The structure of the content is supplied according to the following selection: (1) observations, raw and/or corrected, updated data, (2) resolution, availability of real-time and historical data, (3) products, as the results of models and theory including (a) maps, forecasts and alerts, (b) resolution, availability of real-time and historical data, (4) platforms to deliver data. Characterization of the networking of stations, observatories and space related monitoring systems of data collections is integrated part of the paper. According to these provisions operational systems developed for these purposes is presented and analysed. It concerns measurements, observations and parameters from the theory and models referred to local, regional collections, European and worldwide networks. Techniques used by these organizations to generate the digital content are identified. As the reference pan

  11. Visualizing Space Weather: The Planeterrella Auroral Simulator as a Heliophysics Public Outreach Tool

    Science.gov (United States)

    Masongsong, E. V.; Lilensten, J.; Booth, M. J.; Suri, G.; Heflinger, T. G.; Angelopoulos, V.

    2014-12-01

    The NASA THEMIS and ARTEMIS satellite missions study "space weather," which describes the solar wind influence on Earth's protective magnetic shield, the magnetosphere. Space weather is important to study and predict because it can damage critical GPS and communications satellites, harm space travelers, and even disable our global electrical grid. The Planeterrella is an innovative heliophysics outreach demonstration, expanding public awareness of space weather by visualizing the sun-Earth connection up close and in-person. Using a glass vacuum chamber, two magnetized spheres and a 1kV power supply, the device can simulate plasma configurations of the solar corona, solar wind, Van Allen radiation belts, and auroral ovals, all of which are observable only by satellites. This "aurora in a bottle" is a modernized version of the original Terrella built by Kristian Birkeland in the 1890s to show that the aurora are electrical in nature. Adapted from plans by Lilensten et al. at CNRS-IPAG, the UCLA Planeterrella was completed in Nov. 2013, the second device of its kind in the U.S., and the centerpiece of the THEMIS/ARTEMIS mobile public outreach exhibit. In combination with captivating posters, 3D magnetic field models, dazzling aurora videos and magnetosphere animations, the Planeterrella has already introduced over 1200 people to the electrical link between our sun and the planets. Most visitors had seen solar flare images in the news, however the Planeterrella experience enhanced their appreciation of the dynamic solar wind and its effects on Earth's invisible magnetic field. Most importantly, visitors young and old realized that magnets are not just cool toys or only for powering hybrid car motors and MRIs, they are a fundamental aspect of ongoing life on Earth and are key to the formation and evolution of planets, moons, and stars, extending far beyond our galaxy to other planetary systems throughout the universe. Novel visualizations such as the Planeterrella can

  12. The Planeterrella: an Analog Model for Teaching About the Invisible Electromagnetic Processes Driving Space Weather

    Science.gov (United States)

    Masongsong, E. V.; Glesener, G. B.; Angelopoulos, V.; Lilensten, J.; Bingley, L.

    2015-12-01

    The Planeterrella can be used as an analog to help students visualize and understand the electromagnetic processes driving space weather that affect our daily lives. Solar storms and solar wind charged particles (plasma) cause "space weather" via their interaction with Earth's protective magnetic shield, the magnetosphere. The Planeterrella uses magnetized spheres in a vacuum chamber to demonstrate solar wind energy transfer to Earth and planets, with polar localization of aurora due to charged particles traveling along geomagnetic field lines. The Planeterrella provides a unique opportunity to experience and manipulate plasma, the dominant form of matter in our universe, yet seldom observable on Earth. Severe space weather events produce spectacular auroral displays as well as devastating consequences: radiation exposure to air and space travelers, prolonged radio blackouts, and damage to critical GPS and communications satellites. We will (1) discuss ways in which the Planeterrella may be most useful in classroom settings, including large lecture halls, laboratories, and small discussion sessions; (2) provide information on how instructors can produce their own Planeterrella for their courses; and (3) invite meeting attendees to engage in a discussion on how we might be able to improve on the current design of the Planeterrella, and how to reach students in more parts of the world.

  13. The Topography of Mars: Understanding the Surface of Mars Through the Mars Orbiter Laser Altimeter

    Science.gov (United States)

    Derby, C. A.; Neumann, G. A.; Sakimoto, S. E.

    2001-12-01

    The Mars Orbiter Laser Altimeter has been orbiting Mars since 1997 and has measured the topography of Mars with a meter of vertical accuracy. This new information has improved our understanding of both the surface and the interior of Mars. The topographic globe and the labeled topographic map of Mars illustrate these new data in a format that can be used in a classroom setting. The map is color shaded to show differences in elevation on Mars, presenting Mars with a different perspective than traditional geological and geographic maps. Through the differences in color, students can see Mars as a three-dimensional surface and will be able to recognize features that are invisible in imagery. The accompanying lesson plans are designed for middle school science students and can be used both to teach information about Mars as a planet and Mars in comparison to Earth, fitting both the solar system unit and the Earth science unit in a middle school curriculum. The lessons are referenced to the National Benchmark standards for students in grades 6-8 and cover topics such as Mars exploration, the Mars Orbiter Laser Altimeter, resolution and powers of 10, gravity, craters, seismic waves and the interior structure of a planet, isostasy, and volcanoes. Each lesson is written in the 5 E format and includes a student content activity and an extension showing current applications of Mars and MOLA data. These activities can be found at http://ltpwww.gsfc.nasa.gov/education/resources.html. Funding for this project was provided by the Maryland Space Grant Consortium and the MOLA Science Team, Goddard Space Flight Center.

  14. Space Weather effects on airline communications in the high latitude regions

    Science.gov (United States)

    Honary, Farideh

    2014-05-01

    Efficient air traffic management depends on reliable communications between aircraft and the air traffic control centres at all times. At high latitudes, and especially on polar routing, VHF ground infrastructure does not exist and the aircraft have to rely on HF radio for communications. HF relies on reflections from the ionosphere to achieve long distance communications. Unfortunately the high latitude ionosphere is affected by space weather events. During such events HF radio communication can be severely disrupted and aircraft are forced to use longer low latitude routes with consequent increased flight time, fuel consumption and cost. This presentation describes a new research programme at the University of Lancaster in collaboration with the University of Leicester, Solar Metrics Ltd and Natural Resources Canada for the development of a nowcasting and forecasting HF communications tool designed for the particular needs of civilian airlines. This project funded by EPSRC will access a wide variety of solar and interplanetary measurements to derive a complete picture of space weather disturbances affecting radio absorption and reflection

  15. NASA Mars Conference

    International Nuclear Information System (INIS)

    Reiber, D.B.

    1988-01-01

    Papers about Mars and Mars exploration are presented, covering topics such as Martian history, geology, volcanism, channels, moons, atmosphere, meteorology, water on the planet, and the possibility of life. The unmanned exploration of Mars is discussed, including the Phobos Mission, the Mars Observer, the Mars Aeronomy Observer, the seismic network, Mars sample return missions, and the Mars Ball, an inflatable-sectored-tire rover concept. Issues dealing with manned exploration of Mars are examined, such as the reasons for exploring Mars, mission scenarios, a transportation system for routine visits, technologies for Mars expeditions, the human factors for Mars missions, life support systems, living and working on Mars, and the report of the National Commission on Space

  16. Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure

    Czech Academy of Sciences Publication Activity Database

    André, N.; Grande, M.; Achilleos, N.; Barthélémy, M.; Bouchemit, M.; Benson, K.; Blelly, P. L.; Budnik, E.; Caussarieu, S.; Cecconi, B.; Cook, T.; Génot, V.; Guio, P.; Goutenoir, A.; Grison, Benjamin; Hueso, R.; Indurain, M.; Jones, G. H.; Lilensten, J.; Marchaudon, A.; Matthiä, D.; Opitz, A.; Rouillard, A.; Stanislawska, I.; Souček, Jan; Tao, C.; Tomasik, L.; Vaubaillon, J.

    2018-01-01

    Roč. 150, SI (2018), s. 50-59 ISSN 0032-0633 EU Projects: European Commission(XE) 654208 - EPN2020-RI Institutional support: RVO:68378289 Keywords : virtual observatory * space weather * planets * comets * solar wind * meteor showers Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 1.892, year: 2016 http://www.sciencedirect.com/science/article/pii/S0032063316304706

  17. Ionospheric effects during severe space weather events seen in ionospheric service data products

    Science.gov (United States)

    Jakowski, Norbert; Danielides, Michael; Mayer, Christoph; Borries, Claudia

    Space weather effects are closely related to complex perturbation processes in the magnetosphere-ionosphere-thermosphere systems, initiated by enhanced solar energy input. To understand and model complex space weather processes, different views on the same subject are helpful. One of the ionosphere key parameters is the Total Electron Content (TEC) which provides a first or-der approximation of the ionospheric range error in Global Navigation Satellite System (GNSS) applications. Additionally, horizontal gradients and time rate of change of TEC are important for estimating the perturbation degree of the ionosphere. TEC maps can effectively be gener-ated using ground based GNSS measurements from global receiver networks. Whereas ground based GNSS measurements provide good horizontal resolution, space based radio occultation measurements can complete the view by providing information on the vertical plasma density distribution. The combination of ground based TEC and vertical sounding measurements pro-vide essential information on the shape of the vertical electron density profile by computing the equivalent slab thickness at the ionosonde station site. Since radio beacon measurements at 150/400 MHz are well suited to trace the horizontal structure of Travelling Ionospheric Dis-turbances (TIDs), these data products essentially complete GNSS based TEC mapping results. Radio scintillation data products, characterising small scale irregularities in the ionosphere, are useful to estimate the continuity and availability of transionospheric radio signals. The different data products are addressed while discussing severe space weather events in the ionosphere e.g. events in October/November 2003. The complementary view of different near real time service data products is helpful to better understand the complex dynamics of ionospheric perturbation processes and to forecast the development of parameters customers are interested in.

  18. Selling space colonization and immortality: A psychosocial, anthropological critique of the rush to colonize Mars

    Science.gov (United States)

    Slobodian, Rayna Elizabeth

    2015-08-01

    Extensive media coverage regarding the proposal to send four people to Mars by 2025 has exploded recently. Private enterprise has taken the reins to venture into space, which has typically only been reserved for government agencies. I argue, that with this new direction comes less regulation, raising questions regarding the ethics of sending people into outer space to colonize Mars within a decade. Marketers selling colonization to the public include perspectives such as biological drives, species survival, inclusiveness and utopian ideals. I challenge these narratives by suggesting that much of our desire to colonize space within the next decade is motivated by ego, money and romanticism. More specifically, I will examine the roles that fear and stories of immortality play within selling space and how those stories are marketed. I am passionate about space and hope that one day humanity will colonize other worlds, but the rush to settle is dangerous and careless. I assert that humanity should first gain more experience and knowledge before colonizing outer space, using this research to mitigate the risk to astronauts and proceed with careful consideration for the lives of potential astronauts.

  19. Would Current International Space Station (ISS) Recycling Life Support Systems Save Mass on a Mars Transit?

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    The oxygen and water are recycled on the International Space Station (ISS) to save the cost of launching their mass into orbit. Usually recycling systems are justified by showing that their launch mass would be much lower than the mass of the oxygen or water they produce. Short missions such as Apollo or space shuttle directly provide stored oxygen and water, since the needed total mass of oxygen and water is much less than that of there cycling equipment. Ten year or longer missions such as the ISS or a future moon base easily save mass by recycling while short missions of days or weeks do not. Mars transit and long Mars surface missions have an intermediate duration, typically one to one and a half years. Some of the current ISS recycling systems would save mass if used on a Mars transit but others would not.

  20. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    Science.gov (United States)

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  1. Magnetogram Forecast: An All-Clear Space Weather Forecasting System

    Science.gov (United States)

    Barghouty, Nasser; Falconer, David

    2015-01-01

    Solar flares and coronal mass ejections (CMEs) are the drivers of severe space weather. Forecasting the probability of their occurrence is critical in improving space weather forecasts. The National Oceanic and Atmospheric Administration (NOAA) currently uses the McIntosh active region category system, in which each active region on the disk is assigned to one of 60 categories, and uses the historical flare rates of that category to make an initial forecast that can then be adjusted by the NOAA forecaster. Flares and CMEs are caused by the sudden release of energy from the coronal magnetic field by magnetic reconnection. It is believed that the rate of flare and CME occurrence in an active region is correlated with the free energy of an active region. While the free energy cannot be measured directly with present observations, proxies of the free energy can instead be used to characterize the relative free energy of an active region. The Magnetogram Forecast (MAG4) (output is available at the Community Coordinated Modeling Center) was conceived and designed to be a databased, all-clear forecasting system to support the operational goals of NASA's Space Radiation Analysis Group. The MAG4 system automatically downloads nearreal- time line-of-sight Helioseismic and Magnetic Imager (HMI) magnetograms on the Solar Dynamics Observatory (SDO) satellite, identifies active regions on the solar disk, measures a free-energy proxy, and then applies forecasting curves to convert the free-energy proxy into predicted event rates for X-class flares, M- and X-class flares, CMEs, fast CMEs, and solar energetic particle events (SPEs). The forecast curves themselves are derived from a sample of 40,000 magnetograms from 1,300 active region samples, observed by the Solar and Heliospheric Observatory Michelson Doppler Imager. Figure 1 is an example of MAG4 visual output

  2. Forecasting space weather: Can new econometric methods improve accuracy?

    Science.gov (United States)

    Reikard, Gordon

    2011-06-01

    Space weather forecasts are currently used in areas ranging from navigation and communication to electric power system operations. The relevant forecast horizons can range from as little as 24 h to several days. This paper analyzes the predictability of two major space weather measures using new time series methods, many of them derived from econometrics. The data sets are the A p geomagnetic index and the solar radio flux at 10.7 cm. The methods tested include nonlinear regressions, neural networks, frequency domain algorithms, GARCH models (which utilize the residual variance), state transition models, and models that combine elements of several techniques. While combined models are complex, they can be programmed using modern statistical software. The data frequency is daily, and forecasting experiments are run over horizons ranging from 1 to 7 days. Two major conclusions stand out. First, the frequency domain method forecasts the A p index more accurately than any time domain model, including both regressions and neural networks. This finding is very robust, and holds for all forecast horizons. Combining the frequency domain method with other techniques yields a further small improvement in accuracy. Second, the neural network forecasts the solar flux more accurately than any other method, although at short horizons (2 days or less) the regression and net yield similar results. The neural net does best when it includes measures of the long-term component in the data.

  3. Taking Extreme Space Weather to the Milky Way

    Science.gov (United States)

    Pesnell, W. Dean

    2014-06-01

    Extreme Space Weather events are large solar flares or geomagnetic storms, which can cause economic damage that cost billions of dollars to recover from. We have few examples of such events; only the Carrington Event (the solar superstorm) has superlatives in three categories: size of solar flare, drop in Dst, and amplitude of aa. Kepler observations show that stars similar to the Sun can have flares releasing thousands of times more energy than an X-class flare. These flares would strongly affect the atmosphere surrounding a planet orbiting such a star. Particle and magnetic field outflows from these stars could also be present. We are investigating the level of solar activity that is necessary to strongly affect the atmosphere of terrestrial planets. We assume that a habitable planet requires an atmosphere with a temperature and composition that is stable in time. Can we then extrapolate results from our solar system to determine a space of stellar parameters in which habitable planets can exist?

  4. Recent Weather Technologies Delivered to America's Space Program by the Applied Meteorology Unit

    Science.gov (United States)

    Bauman, WIlliam, H., III; Crawford, Winifred

    2009-01-01

    The Applied Meteorology Unit (AMU) is a unique joint venture of NASA, the Air Force and the National Weather Service (NWS) and has been supporting the Space Program for nearly two decades. The AMU acts as a bridge between the meteorological research community and operational forecasters by developing, evaluating and transitioning new technology and techniques to improve weather support to spaceport operations at the Eastern Range (ER) and Kennedy Space Center. Its primary customers are the 45th Weather Squadron at Cape Canaveral Air Force Station (CCAFS), the Spaceflight Meteorology Group at Johnson Space Center and the National Weather Service Office in Melbourne, FL. Its products are used to support NASA's Shuttle and ELV programs as well as Department of Defense and commercial launches from the ER. Shuttle support includes landing sites beyond the ER. The AMU is co-located with the Air Force operational forecasters at CCAFS to facilitate continuous two-way interaction between the AMU and its operational customers. It is operated under a NASA, Air Force, and NWS Memorandum of Understanding (MOU) by a competitively-selected contractor. The contract, which is funded and managed by NASA, provides five full time professionals with degrees in meteorology or related fields, some of whom also have operational experience. NASA provides a Ph.D.- level NASA civil service scientist as Chief of the AMU. The AMU is tasked by its customers through a unique, nationally recognized process. The tasks are limited to development, evaluation and operational transition of technology to improve weather support to spaceport operations and providing expert advice to the customers. The MOU expressly forbids using the AMU resources to conduct operations or do basic research. The presentation will provide a brief overview of the AMU and how it is tasked by its customers to provide high priority products and services. The balance of the presentation will cover a sampling of products

  5. Parameters of electromagnetic weather in near-terrestrial space determining the effects on biosystems

    International Nuclear Information System (INIS)

    Oraevskij, V.N.; Golyshev, S.A.; Levitin, A.E.; Breus, T.K.; Ivanova, S.V.; Komarov, F.I.; Rapoport, S.I.

    1995-01-01

    Space and time distribution of the electric and magnetic fields and current systems in the near terrestrial space (electromagnetic weather) were studied in connection with ambulance calls in Moscow, Russia, related to the cardia-vascular diseases. The some examples of the correlations between the solar activity parameters and geomagnetic variations and the events of the extreme number of ambulance calls were presented. 4 refs., 5 figs., 2 tabs

  6. A space weather forecasting system with multiple satellites based on a self-recognizing network.

    Science.gov (United States)

    Tokumitsu, Masahiro; Ishida, Yoshiteru

    2014-05-05

    This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  7. A Space Weather Forecasting System with Multiple Satellites Based on a Self-Recognizing Network

    Directory of Open Access Journals (Sweden)

    Masahiro Tokumitsu

    2014-05-01

    Full Text Available This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV. The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  8. Early Japanese contributions to space weather research (1945–1960

    Directory of Open Access Journals (Sweden)

    A. Nishida

    2010-04-01

    Full Text Available Major contributions by Japanese scientists in the period of 1945 to 1960 are reviewed. This was the period when the foundation of the space weather research was laid by ground-based observations and theoretical research. Important contributions were made on such subjects as equatorial ionosphere in quiet times, tidal wind system in the ionosphere, formation of the F2 layer, VLF propagation above the ionosphere, and precursory phenomena (type IV radio outburst and polar cap absorption to storms. At the IGY (1957, 1958, research efforts were intensified and new programs in space and Antarctica were initiated. Japanese scientists in this discipline held a tight network for communication and collaboration that has been kept to this day.

  9. Microbial biodiversity assessment of the European Space Agency's ExoMars 2016 mission.

    Science.gov (United States)

    Koskinen, Kaisa; Rettberg, Petra; Pukall, Rüdiger; Auerbach, Anna; Wink, Lisa; Barczyk, Simon; Perras, Alexandra; Mahnert, Alexander; Margheritis, Diana; Kminek, Gerhard; Moissl-Eichinger, Christine

    2017-10-25

    The ExoMars 2016 mission, consisting of the Trace Gas Orbiter and the Schiaparelli lander, was launched on March 14 2016 from Baikonur, Kazakhstan and reached its destination in October 2016. The Schiaparelli lander was subject to strict requirements for microbial cleanliness according to the obligatory planetary protection policy. To reach the required cleanliness, the ExoMars 2016 flight hardware was assembled in a newly built, biocontrolled cleanroom complex at Thales Alenia Space in Turin, Italy. In this study, we performed microbiological surveys of the cleanroom facilities and the spacecraft hardware before and during the assembly, integration and testing (AIT) activities. Besides the European Space Agency (ESA) standard bioburden assay, that served as a proxy for the microbiological contamination in general, we performed various alternative cultivation assays and utilised molecular techniques, including quantitative PCR and next generation sequencing, to assess the absolute and relative abundance and broadest diversity of microorganisms and their signatures in the cleanroom and on the spacecraft hardware. Our results show that the bioburden, detected microbial contamination and microbial diversity decreased continuously after the cleanroom was decontaminated with more effective cleaning agents and during the ongoing AIT. The studied cleanrooms and change room were occupied by very distinct microbial communities: Overall, the change room harboured a higher number and diversity of microorganisms, including Propionibacterium, which was found to be significantly increased in the change room. In particular, the so called alternative cultivation assays proved important in detecting a broader cultivable diversity than covered by the standard bioburden assay and thus completed the picture on the cleanroom microbiota. During the whole project, the bioburden stayed at acceptable level and did not raise any concern for the ExoMars 2016 mission. The cleanroom complex at

  10. Preparing for Mars: The Evolvable Mars Campaign 'Proving Ground' Approach

    Science.gov (United States)

    Bobskill, Marianne R.; Lupisella, Mark L.; Mueller, Rob P.; Sibille, Laurent; Vangen, Scott; Williams-Byrd, Julie

    2015-01-01

    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence beyond Low Earth Orbit, we are in the early stages of planning missions within the framework of an Evolvable Mars Campaign. Initial missions would be conducted in near-Earth cis-lunar space and would eventually culminate in extended duration crewed missions on the surface of Mars. To enable such exploration missions, critical technologies and capabilities must be identified, developed, and tested. NASA has followed a principled approach to identify critical capabilities and a "Proving Ground" approach is emerging to address testing needs. The Proving Ground is a period subsequent to current International Space Station activities wherein exploration-enabling capabilities and technologies are developed and the foundation is laid for sustained human presence in space. The Proving Ground domain essentially includes missions beyond Low Earth Orbit that will provide increasing mission capability while reducing technical risks. Proving Ground missions also provide valuable experience with deep space operations and support the transition from "Earth-dependence" to "Earth-independence" required for sustainable space exploration. A Technology Development Assessment Team identified a suite of critical technologies needed to support the cadence of exploration missions. Discussions among mission planners, vehicle developers, subject-matter-experts, and technologists were used to identify a minimum but sufficient set of required technologies and capabilities. Within System Maturation Teams, known challenges were identified and expressed as specific performance gaps in critical capabilities, which were then refined and activities required to close these critical gaps were identified. Analysis was performed to identify test and demonstration opportunities for critical technical capabilities across the Proving Ground spectrum of missions. This suite of critical capabilities is expected to

  11. Environmental Impact Specification for Direct Space Weathering of Kuiper Belt and Oort Cloud Objects

    Science.gov (United States)

    Cooper, John F.

    2010-01-01

    The Direct Space Weathering Project of NASA's Outer Planets Research Program addresses specification of the plasma and energetic particle environments for irradiation and surface chemical processing of icy bodies in the outer solar system and the local interstellar medium. Knowledge of the radiation environments is being expanded by ongoing penetration of the twin Voyager spacecraft into the heliosheath boundary region of the outer heliosphere and expected emergence within the next decade into the very local interstellar medium. The Voyager measurements are being supplemented by remote sensing from Earth orbit of energetic neutral atom emission from this boundary region by NASA's Interstellar Boundary Explorer (IBEX). Although the Voyagers long ago passed the region of the Classical Kuiper Belt, the New Horizons spacecraft will encounter Pluto in 2015 and thereafter explore one or more KBOs, meanwhile providing updated measurements of the heliospheric radiation environment in this region. Modeling of ion transport within the heliosphere allows specification of time-integrated irradiation effects while the combination of Voyager and IBEX data supports projection of the in-situ measurements into interstellar space beyond the heliosheath. Transformation of model ion flux distributions into surface sputtering and volume ionization profiles provides a multi-layer perspective for space weathering impact on the affected icy bodies and may account for some aspects of color and compositional diversity. Other important related factors may include surface erosion and gardening by meteoritic impacts and surface renewal by cryovolcanism. Chemical products of space weathering may contribute to energy resources for the latter.

  12. Operation of a Data Acquisition, Transfer, and Storage System for the Global Space-Weather Observation Network

    Directory of Open Access Journals (Sweden)

    T Nagatsuma

    2014-10-01

    Full Text Available A system to optimize the management of global space-weather observation networks has been developed by the National Institute of Information and Communications Technology (NICT. Named the WONM (Wide-area Observation Network Monitoring system, it enables data acquisition, transfer, and storage through connection to the NICT Science Cloud, and has been supplied to observatories for supporting space-weather forecast and research. This system provides us with easier management of data collection than our previously employed systems by means of autonomous system recovery, periodical state monitoring, and dynamic warning procedures. Operation of the WONM system is introduced in this report.

  13. Space Weather Research at the National Science Foundation

    Science.gov (United States)

    Moretto, T.

    2015-12-01

    There is growing recognition that the space environment can have substantial, deleterious, impacts on society. Consequently, research enabling specification and forecasting of hazardous space effects has become of great importance and urgency. This research requires studying the entire Sun-Earth system to understand the coupling of regions all the way from the source of disturbances in the solar atmosphere to the Earth's upper atmosphere. The traditional, region-based structure of research programs in Solar and Space physics is ill suited to fully support the change in research directions that the problem of space weather dictates. On the observational side, dense, distributed networks of observations are required to capture the full large-scale dynamics of the space environment. However, the cost of implementing these is typically prohibitive, especially for measurements in space. Thus, by necessity, the implementation of such new capabilities needs to build on creative and unconventional solutions. A particularly powerful idea is the utilization of new developments in data engineering and informatics research (big data). These new technologies make it possible to build systems that can collect and process huge amounts of noisy and inaccurate data and extract from them useful information. The shift in emphasis towards system level science for geospace also necessitates the development of large-scale and multi-scale models. The development of large-scale models capable of capturing the global dynamics of the Earth's space environment requires investment in research team efforts that go beyond what can typically be funded under the traditional grants programs. This calls for effective interdisciplinary collaboration and efficient leveraging of resources both nationally and internationally. This presentation will provide an overview of current and planned initiatives, programs, and activities at the National Science Foundation pertaining to space weathe research.

  14. The RMI Space Weather and Navigation Systems (SWANS) Project

    Science.gov (United States)

    Warnant, Rene; Lejeune, Sandrine; Wautelet, Gilles; Spits, Justine; Stegen, Koen; Stankov, Stan

    The SWANS (Space Weather and Navigation Systems) research and development project (http://swans.meteo.be) is an initiative of the Royal Meteorological Institute (RMI) under the auspices of the Belgian Solar-Terrestrial Centre of Excellence (STCE). The RMI SWANS objectives are: research on space weather and its effects on GNSS applications; permanent mon-itoring of the local/regional geomagnetic and ionospheric activity; and development/operation of relevant nowcast, forecast, and alert services to help professional GNSS/GALILEO users in mitigating space weather effects. Several SWANS developments have already been implemented and available for use. The K-LOGIC (Local Operational Geomagnetic Index K Calculation) system is a nowcast system based on a fully automated computer procedure for real-time digital magnetogram data acquisition, data screening, and calculating the local geomagnetic K index. Simultaneously, the planetary Kp index is estimated from solar wind measurements, thus adding to the service reliability and providing forecast capabilities as well. A novel hybrid empirical model, based on these ground-and space-based observations, has been implemented for nowcasting and forecasting the geomagnetic index, issuing also alerts whenever storm-level activity is indicated. A very important feature of the nowcast/forecast system is the strict control on the data input and processing, allowing for an immediate assessment of the output quality. The purpose of the LIEDR (Local Ionospheric Electron Density Reconstruction) system is to acquire and process data from simultaneous ground-based GNSS TEC and digital ionosonde measurements, and subsequently to deduce the vertical electron density distribution. A key module is the real-time estimation of the ionospheric slab thickness, offering additional infor-mation on the local ionospheric dynamics. The RTK (Real Time Kinematic) status mapping provides a quick look at the small-scale ionospheric effects on the RTK

  15. Space weather modeling using artificial neural network. (Slovak Title: Modelovanie kozmického počasia umelou neurónovou sietou)

    Science.gov (United States)

    Valach, F.; Revallo, M.; Hejda, P.; Bochníček, J.

    2010-12-01

    Our modern society with its advanced technology is becoming increasingly vulnerable to the Earth's system disorders originating in explosive processes on the Sun. Coronal mass ejections (CMEs) blasted into interplanetary space as gigantic clouds of ionized gas can hit Earth within a few hours or days and cause, among other effects, geomagnetic storms - perhaps the best known manifestation of solar wind interaction with Earth's magnetosphere. Solar energetic particles (SEP), accelerated to near relativistic energy during large solar storms, arrive at the Earth's orbit even in few minutes and pose serious risk to astronauts traveling through the interplanetary space. These and many other threats are the reason why experts pay increasing attention to space weather and its predictability. For research on space weather, it is typically necessary to examine a large number of parameters which are interrelated in a complex non-linear way. One way to cope with such a task is to use an artificial neural network for space weather modeling, a tool originally developed for artificial intelligence. In our contribution, we focus on practical aspects of the neural networks application to modeling and forecasting selected space weather parameters.

  16. Chemical Alteration of Soils on Earth as a Function of Precipitation: Insights Into Weathering Processes Relevant to Mars

    Science.gov (United States)

    Amundson, R.; Chadwick, O.; Ewing, S.; Sutter, B.; Owen, J.; McKay, C.

    2004-12-01

    Soils lie at the interface of the atmosphere and lithosphere, and the rates of chemical and physical processes that form them hinge on the availability of water. Here we quantify the effect of these processes on soil volume and mass in different rainfall regimes. We then use the results of this synthesis to compare with the growing chemical dataset for soils on Mars in order to identify moisture regimes on Earth that may provide crude analogues for past Martian weathering conditions. In this synthesis, the rates of elemental gains/losses, and corresponding volumetric changes, were compared for soils in nine soil chronosequences (sequences of soils of differing ages) - sequences formed in climates ranging from ~1 to ~4500 mm mean annual precipitation (MAP). Total elemental chemistry of soils and parent materials were determined via XRF, ICP-MS, and/or ICP-OES, and the absolute elemental gains or losses (and volume changes) were determined by normalizing data to an immobile index element. For the chronosequences examined, the initial stages of soil formation (103^ to 104^ yr), regardless of climate, generally show volumetric expansion due to (1) reduction in bulk density by biological/physical turbation, (2) addition of organic matter, (3) accumulation of water during clay mineral synthesis, and/or (4) accumulation of atmospheric salts and dust. Despite large differences in parent materials (basalt, sandstone, granitic alluvium), there was a systematic relationship between long-term (105^ to 106^ yr) volumetric change and rainfall, with an approximate cross-over point between net expansion (and accumulation of atmospheric solutes and dust) and net collapse (net losses of Si, Al, and alkaline earths and alkali metals) between approximately 20 and 100 mm MAP. Recently published geochemical data of soils at Gusev Crater (Gellert et al. 2004. Science 305:829), when normalized to Ti, show apparent net losses of Si and Al that range between 5 and 50% of values relative to

  17. Real Time Space Weather Support for Chandra X-Ray Observatory Operations

    Science.gov (United States)

    O'Dell, Stephen L.; Minow, Joseph I.; Miller, J. Scott; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz. Douglas A.

    2012-01-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ( soft , 100 500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth s magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (real-time data provided by NOAA s Space Weather Prediction Center. This presentation describes the radiation mitigation strategies to minimize the proton damage in the ACIS CCD detectors and the importance of real-time data

  18. Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS

    Science.gov (United States)

    Schrijver, Carolus J.; Kauristie, Kirsti; Aylward, Alan D.; Denardini, Clezio M.; Gibson, Sarah E.; Glover, Alexi; Gopalswamy, Nat; Grande, Manuel; Hapgood, Mike; Heynderickx, Daniel; Jakowski, Norbert; Kalegaev, Vladimir V.; Lapenta, Giovanni; Linker, Jon A.; Liu, Siqing; Mandrini, Cristina H.; Mann, Ian R.; Nagatsuma, Tsutomu; Nandy, Dibyendu; Obara, Takahiro; Paul O'Brien, T.; Onsager, Terrance; Opgenoorth, Hermann J.; Terkildsen, Michael; Valladares, Cesar E.; Vilmer, Nicole

    2015-06-01

    There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. We recognize that much progress has been made and continues to be made with a powerful suite of research observatories on the ground and in space, forming the basis of a Sun-Earth system observatory. But the domain of space weather is vast - extending from deep within the Sun to far outside the planetary orbits - and the physics complex - including couplings between various types of physical processes that link scales and domains from the microscopic to large parts of the solar system. Consequently, advanced understanding of space weather requires a coordinated international approach to effectively provide awareness of the processes within the Sun-Earth system through observation-driven models. This roadmap prioritizes the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications for society. Advancement of the existing system observatory through the addition of small to moderate state-of-the-art capabilities designed to fill observational gaps will enable significant advances. Such a strategy requires urgent action: key instrumentation needs to be sustained, and action needs to be taken before core capabilities are lost in the aging ensemble. We recommend advances through priority focus (1) on observation-based modeling throughout the Sun-Earth system, (2) on forecasts more than 12 h ahead of the magnetic structure of incoming coronal mass ejections, (3) on understanding the geospace response to variable solar-wind stresses that lead to intense geomagnetically-induced currents and ionospheric and radiation storms, and (4

  19. I Love My Sun: An Educational Space Weather Outreach Tool for Children and Senior People

    Science.gov (United States)

    Tulunay, Yurdanur; Tulunay, Ersin

    2014-05-01

    In the present day society, there is a vital need for setting up education and outreach activities in the Space Weather field for creating a healthy environment for the proper development of Space Weather markets along with the fundamental and applied research activities. It is important to educate children about the important role that the Sun has in their lives. This presentation gives an educational outreach tool entitled "I Love My Sun" that has been developed for school children in the approximate age group 7 through 11 years. Its main objective is to make children aware of space weather, the Sun, Sun-Earth relations and how they, the children, are part of this global picture. Children are given a lecture about the Sun; this is preceded and followed by the children drawing a picture of the Sun. The activity was initiated by Y. Tulunay in Ankara, Turkey as national project in the context of the 50th anniversary of Space Age and IHY activities. Since then it has been extended into a spatial (Europe) and temporal dimensions. A metric has been developed to facilitate an objective evaluation of the outcomes of the Events. In this presentation, the background behind the "I Love My Sun" initiative is given and it is described how to perform an "I Love My Sun" event. Impressions and main results from the case studies are given. As a new extension, preliminary examples are also given concerning senior people.

  20. Space Colonization Using Space-Elevators from Phobos

    Science.gov (United States)

    Weinstein, Leonard M.

    2003-01-01

    A novel approach is examined for creating an industrial civilization beyond Earth. The approach would take advantage of the unique configuration of Mars and its moon Phobos to make a transportation system capable of raising mass from the surface of Mars to space at a low cost. Mars would be used as the primary location for support personnel and infrastructure. Phobos would be used as a source of raw materials for space-based activity, and as an anchor for tethered carbon-nanotube-based space-elevators. One space-elevator would terminate at the upper edge of Mars' atmosphere. Small craft would be launched from Mars' surface to rendezvous with the moving elevator tip and their payloads detached and raised with solar powered loop elevators to Phobos. Another space-elevator would be extended outward from Phobos to launch craft toward the Earth/Moon system or the asteroid belt. The outward tip would also be used to catch arriving craft. This approach would allow Mars to be colonized, and allow transportation of people and supplies from Mars to support the space industry. In addition, large quantities of material obtained from Phobos could be used to construct space habitats and also supply propellant and material for space industry in the Earth/Moon system as well as around Mars.

  1. Considering space weather forces interaction on human health: the equilibrium paradigm in clinical cosmobiology - is it equal?

    Science.gov (United States)

    Stoupel, Eliyahu

    2015-03-01

    We are constantly affected by changes in space weather. The principal "players" are solar activity (SA), geomagnetic activity (GMA) and antagonistic to them, cosmic ray activity (CRA) and high energy proton flux. CRA is measured by neutron activity on the earth's surface in imp/min. SA and GMA are linked and serve as a shield for the earth from CRA. For a long time SA and GMA were the main areas of studies. The aim of this study was to compare some effects of the mentioned forces and discuss the temporal distribution of both groups of space weather, in relation to their effects on humans. The time distribution of GMA storms (daily) was compared with quiet (low) GMA, with higher CRA (neutron activity). Space weather data were obtained from the USA, Russia and Finland. A total of 4383 days were analyzed in the years 2000-2012. A total of 71 days (1.62%) of geomagnetic storms (GS) and 2753 days (63.8%) of quiet (I0) GMA were registered. A second study was provided including the years 1983-2007 (9131 days); here 3800 days (41.62%) were quiet GMA days and 400 storm days (4.38%). According to publications in the medical literature, many phenomena are connected with the extremes of space weather. Despite a great number of publications and the significant role of GS, it is a relatively rare event and most medical emergencies and deaths occur on days of low GMA, accompanied by higher CRA (neutron activity). High neutron activity deserves more attention when analyzing space effects on human health and their mechanism of action.

  2. Description of European Space Agency (ESA) Concept Development for a Mars Sample Receiving Facility (MSRF)

    Science.gov (United States)

    Vrublevskis, J.; Berthoud, L.; Guest, M.; Smith, C.; Bennett, A.; Gaubert, F.; Schroeven-Deceuninck, H.; Duvet, L.; van Winnendael, M.

    2018-04-01

    This presentation gives an overview of the several studies conducted for the European Space Agency (ESA) since 2007, which progressively developed layouts for a potential implementation of a Mars Sample Receiving Facility (MSRF).

  3. Case for a wet, warm climate on early Mars

    International Nuclear Information System (INIS)

    Pollack, J.B.; Kasting, J.F.; Richardson, S.M.; Poliakoff, K.

    1987-01-01

    Arguments are presented in support of the idea that Mars possessed a dense CO 2 atmosphere and a wet, warm climate early in its history. The plausibility of a CO 2 greenhouse is tested by formulating a simple model of the CO 2 geochemical cycle on early Mars. By scaling the rate of silicate weathering on Earth, researchers estimated a weathering time constant of the order of several times 10 to the 7th power years for early Mars. Thus, a dense atmosphere could have existed for a geologically significant time period (approx. 10 to the 9th power years) only if atmospheric CO 2 was being continuously resupplied. The most likely mechanism by which this could have been accomplished is the thermal decomposition of carbonate rocks induced directly or indirectly by intense, global scale volcanism

  4. A Space Weather mission concept: Observatories of the Solar Corona and Active Regions (OSCAR)

    DEFF Research Database (Denmark)

    Strugarek, Antoine; Janitzek, Nils; Lee, Arrow

    2015-01-01

    advancements in the field of solar physics, improvements of the current CME prediction models, and provide data for reliable space weather forecasting. These objectives are achieved by utilising two spacecraft with identical instrumentation, located at a heliocentric orbital distance of 1 AU from the Sun......Coronal Mass Ejections (CMEs) and Corotating Interaction Regions (CIRs) are major sources of magnetic storms on Earth and are therefore considered to be the most dangerous space weather events. The Observatories of Solar Corona and Active Regions (OSCAR) mission is designed to identify the 3D...... structure of coronal loops and to study the trigger mechanisms of CMEs in solar Active Regions (ARs) as well as their evolution and propagation processes in the inner heliosphere. It also aims to provide monitoring and forecasting of geo-effective CMEs and CIRs. OSCAR would contribute to significant...

  5. Space weather monitoring and forecasting in South America: products from the user requests to the development of regional magnetic indices and GNSS vertical error maps

    Science.gov (United States)

    Denardini, Clezio Marcos; Padilha, Antonio; Takahashi, Hisao; Souza, Jonas; Mendes, Odim; Batista, Inez S.; SantAnna, Nilson; Gatto, Rubens; Costa, D. Joaquim

    On August 2007 the National Institute for Space Research started a task force to develop and operate a space weather program, which is kwon by the acronyms Embrace that stands for the Portuguese statement “Estudo e Monitoramento BRAasileiro de Clima Espacial” Program (Brazilian Space Weather Study and Monitoring program). The main purpose of the Embrace Program is to monitor the space climate and weather from sun, interplanetary space, magnetosphere and ionosphere-atmosphere, and to provide useful information to space related communities, technological, industrial and academic areas. Since then we have being visiting several different space weather costumers and we have host two workshops of Brazilian space weather users at the Embrace facilities. From the inputs and requests collected from the users the Embrace Program decided to monitored several physical parameters of the sun-earth environment through a large ground base network of scientific sensors and under collaboration with space weather centers partners. Most of these physical parameters are daily published on the Brazilian space weather program web portal, related to the entire network sensors available. A comprehensive data bank and an interface layer are under development to allow an easy and direct access to the useful information. Nowadays, the users will count on products derived from a GNSS monitor network that covers most of the South American territory; a digisonde network that monitors the ionospheric profiles in two equatorial sites and in one low latitude site; several solar radio telescopes to monitor solar activity, and a magnetometer network, besides a global ionospheric physical model. Regarding outreach, we publish a daily bulletin in Portuguese with the status of the space weather environment on the Sun, in the Interplanetary Medium and close to the Earth. Since December 2011, all these activities are carried out at the Embrace Headquarter, a building located at the INPE's main campus

  6. Description of the University of Auckland Global Mars Mesoscale Meteorological Model (GM4)

    Science.gov (United States)

    Wing, D. R.; Austin, G. L.

    2005-08-01

    The University of Auckland Global Mars Mesoscale Meteorological Model (GM4) is a numerical weather prediction model of the Martian atmosphere that has been developed through the conversion of the Penn State University / National Center for Atmospheric Research fifth generation mesoscale model (MM5). The global aspect of this model is self consistent, overlapping, and forms a continuous domain around the entire planet, removing the need to provide boundary conditions other than at initialisation, yielding independence from the constraint of a Mars general circulation model. The brief overview of the model will be given, outlining the key physical processes and setup of the model. Comparison between data collected from Mars Pathfinder during its 1997 mission and simulated conditions using GM4 have been performed. Diurnal temperature variation as predicted by the model shows very good correspondence with the surface truth data, to within 5 K for the majority of the diurnal cycle. Mars Viking Data is also compared with the model, with good agreement. As a further means of validation for the model, various seasonal comparisons of surface and vertical atmospheric structure are conducted with the European Space Agency AOPP/LMD Mars Climate Database. Selected simulations over regions of interest will also be presented.

  7. Carbon Dioxide Control System for a Mars Space Suit Life Support System

    Science.gov (United States)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Copeland, Robert; Parker, Amanda; Paul, Heather L.

    2011-01-01

    Carbon dioxide (CO2) control during Extravehicular Activities (EVAs) on Mars will be challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable metal oxide (MetOx) canisters weigh too much. Cycling bed systems and permeable membranes that are regenerable in space vacuum cannot vent on Mars due to the high partial pressure of CO2 in the atmosphere. Although sweep gas regeneration is under investigation, the feasibility, logistics penalties, and failure modes associated with this technique have not been fully determined. TDA Research, Inc. is developing a durable, high-capacity regenerable adsorbent that can remove CO2 from the space suit ventilation loop. The system design allows sorbent regeneration at or above 6 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the ventilation loop. Regeneration during EVA minimizes the amount of consumables to be brought from Earth and makes the mission more affordable, while providing great operational flexibility during EVA. The feasibility of the concept has been demonstrated in a series of bench-scale experiments and a preliminary system analysis. This paper presents the latest results from these sorbent and system development efforts.

  8. Connecting the Pioneers, Current Leaders and the Nature and History of Space Weather with K-12 Classrooms and the General Public

    Science.gov (United States)

    Ng, C.; Thompson, B. J.; Cline, T.; Lewis, E.; Barbier, B.; Odenwald, S.; Spadaccini, J.; James, N.; Stephenson, B.; Davis, H. B.; Major, E. R.; Space Weather Living History

    2011-12-01

    The Space Weather Living History program will explore and share the breakthrough new science and captivating stories of space environments and space weather by interviewing space physics pioneers and leaders active from the International Geophysical Year (IGY) to the present. Our multi-mission project will capture, document and preserve the living history of space weather utilizing original historical materials (primary sources). The resulting products will allow us to tell the stories of those involved in interactive new media to address important STEM needs, inspire the next generation of explorers, and feature women as role models. The project is divided into several stages, and the first stage, which began in mid-2011, focuses on resource gathering. The goal is to capture not just anecdotes, but the careful analogies and insights of researchers and historians associated with the programs and events. The Space Weather Living History Program has a Scientific Advisory Board, and with the Board's input our team will determine the chronology, key researchers, events, missions and discoveries for interviews. Education activities will be designed to utilize autobiographies, newspapers, interviews, research reports, journal articles, conference proceedings, dissertations, websites, diaries, letters, and artworks. With the help of a multimedia firm, we will use some of these materials to develop an interactive timeline on the web, and as a downloadable application in a kiosk and on tablet computers. In summary, our project augments the existing historical records with education technologies, connect the pioneers, current leaders and the nature and history of space weather with K-12 classrooms and the general public, covering all areas of studies in Heliophysics. The project is supported by NASA award NNX11AJ61G.

  9. MMPM - Mars MetNet Precursor Mission

    Science.gov (United States)

    Harri, A.-M.; Schmidt, W.; Pichkhadze, K.; Linkin, V.; Vazquez, L.; Uspensky, M.; Polkko, J.; Genzer, M.; Lipatov, A.; Guerrero, H.; Alexashkin, S.; Haukka, H.; Savijarvi, H.; Kauhanen, J.

    2008-09-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2009/2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Detailed characterization of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatology cycles, require simultaneous in-situ measurements by a network of observation posts on the Martian surface. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe technologies have been developed and the critical subsystems have been qualified to meet the Martian environmental and functional conditions. Prototyping of the payload instrumentation with final dimensions was carried out in 2003-2006.This huge development effort has been fulfilled in collaboration between the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Association (LA) and the Russian Space Research Institute (IKI) since August 2001. Currently the INTA (Instituto Nacional de Técnica Aeroespacial) from Spain is also participating in the MetNet payload development. To understand the behavior and dynamics of the Martian atmosphere, a wealth of simultaneous in situ observations are needed on varying types of Martian orography, terrain and altitude spanning all latitudes and longitudes. This will be performed by the Mars MetNet Mission. In addition to the science aspects the

  10. Improved Mars Upper Atmosphere Climatology

    Science.gov (United States)

    Bougher, S. W.

    2004-01-01

    The detailed characterization of the Mars upper atmosphere is important for future Mars aerobraking activities. Solar cycle, seasonal, and dust trends (climate) as well as planetary wave activity (weather) are crucial to quantify in order to improve our ability to reasonably depict the state of the Mars upper atmosphere over time. To date, our best information is found in the Mars Global Surveyor (MGS) Accelerometer (ACC) database collected during Phase 1 (Ls = 184 - 300; F10.7 = 70 - 90) and Phase 2 (Ls = 30 - 90; F10.7 = 90 - 150) of aerobraking. This database (100 - 170 km) consists of thermospheric densities, temperatures, and scale heights, providing our best constraints for exercising the coupled Mars General Circulation Model (MGCM) and the Mars Thermospheric General Circulation Model (MTGCM). The Planetary Data System (PDS) contains level 0 and 2 MGS Accelerometer data, corresponding to atmospheric densities along the orbit track. Level 3 products (densities, temperatures, and scale heights at constant altitudes) are also available in the PDS. These datasets provide the primary model constraints for the new MGCM-MTGCM simulations summarized in this report. Our strategy for improving the characterization of the Mars upper atmospheres using these models has been three-fold : (a) to conduct data-model comparisons using the latest MGS data covering limited climatic and weather conditions at Mars, (b) to upgrade the 15-micron cooling and near-IR heating rates in the MGCM and MTGCM codes for ad- dressing climatic variations (solar cycle and seasonal) important in linking the lower and upper atmospheres (including migrating tides), and (c) to exercise the detailed coupled MGCM and MTGCM codes to capture and diagnose the planetary wave (migrating plus non-migrating tidal) features throughout the Mars year. Products from this new suite of MGCM-MTGCM coupled simulations are being used to improve our predictions of the structure of the Mars upper atmosphere for the

  11. A Sounding-based Severe Weather Tool to Support Daily Operations at Kennedy Space Center and Cape Canaveral Air Force Station

    Science.gov (United States)

    Bauman, William H.; Roeder, William P.

    2014-01-01

    People and property at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are at risk when severe weather occurs. Strong winds, hail and tornadoes can injure individuals and cause costly damage to structures if not properly protected. NASA's Launch Services Program and Ground Systems Development and Operations Program and other KSC programs use the daily and weekly severe weather forecasts issued by the 45th Weather Squadron (45 WS) to determine if they need to limit an activity such as working on gantries, or protect property such as a vehicle on a pad. The 45 WS requested the Applied Meteorology Unit (AMU) develop a warm season (May-September) severe weather tool for use in the Meteorological Interactive Data Display System (MIDDS) based on the late morning, 1500 UTC (1100 local time), CCAFS (XMR) sounding. The 45 WS frequently makes decisions to issue a severe weather watch and other severe weather warning support products to NASA and the 45th Space Wing in the late morning, after the 1500 UTC sounding. The results of this work indicate that certain stability indices based on the late morning XMR soundings can depict differences between days with reported severe weather and days with no reported severe weather. The AMU determined a frequency of reported severe weather for the stability indices and implemented an operational tool in MIDDS.

  12. Phase-dependent space weathering effects and spectroscopic identification of retained helium in a lunar soil grain

    Science.gov (United States)

    Burgess, K. D.; Stroud, R. M.

    2018-03-01

    The solar wind is an important driver of space weathering on airless bodies. Over time, solar wind exposure alters the physical, chemical, and optical properties of exposed materials and can also impart a significant amount of helium into the surfaces of these bodies. However, common materials on the surface of the Moon, such as glass, crystalline silicates, and oxides, have highly variable responses to solar wind irradiation. We used scanning transmission electron microscopy (STEM) with electron energy loss spectroscopy (EELS) to examine the morphology and chemistry of a single grain of lunar soil that includes silicate glass, chromite and ilmenite, all present and exposed along the same surface. The exposure of the silicate glass and oxides to the same space weathering conditions allows for direct comparisons of the responses of natural materials to the complex lunar surface environment. The silicate glass shows minimal effects of solar wind irradiation, whereas both the chromite and ilmenite exhibit defect-rich rims that currently contain trapped helium. Only the weathered rim in ilmenite is rich in nanophase metallic iron (npFe0) and larger vesicles that retain helium at a range of internal pressures. The multiple exposed surfaces of the single grain of ilmenite demonstrate strong crystallographic controls of planar defects and non-spherical npFe0. The direct spectroscopic identification of helium in the vesicles and planar defects in the oxides provides additional evidence of the central role of solar wind irradiation in the formation of some common space weathering features.

  13. Utilizing Weather RADAR for Rapid Location of Meteorite Falls and Space Debris Re-Entry

    Science.gov (United States)

    Fries, Marc D.

    2016-01-01

    This activity utilizes existing NOAA weather RADAR imagery to locate meteorite falls and space debris falls. The near-real-time availability and spatial accuracy of these data allow rapid recovery of material from both meteorite falls and space debris re-entry events. To date, at least 22 meteorite fall recoveries have benefitted from RADAR detection and fall modeling, and multiple debris re-entry events over the United States have been observed in unprecedented detail.

  14. Evolution of iron crust and clayey Ferralsol in deeply weathered sandstones of Marília Formation (Western Minas Gerais State, Brazil)

    Science.gov (United States)

    Rosolen, Vania; Bueno, Guilherme Taitson; Melfi, Adolpho José; Montes, Célia Regina; de Sousa Coelho, Carla Vanessa; Ishida, Débora Ayumi; Govone, José Silvio

    2017-11-01

    Extensive flat plateaus are typical landforms in the cratonic compartment of tropical regions. Paleoclimate, pediplanation, laterization, and dissection have created complex and distinct geological, geomorphological, and pedological features in these landscapes. In the Brazilian territory, the flat plateau sculpted in sandstone of Marília Formation (Neocretaceous) belonging to the Sul-Americana surface presents a very clayey and pisolitic Ferralsol (Red and Yellow Latossolo in the Brazilian soil classification). The clayey texture of soil and the pisolites have been considered as weathering products of a Cenozoic detritical formation which is believed to overlay the Marília Formation sandstones. Using data of petrography (optical microscopy and SEM), mineralogy (RXD), and macroscopic structures (description in the field of the arrangement of horizons and layers), a complete profile of Ferralsol with ferricrete and pisolites was studied. The complex succession of facies is in conformity with a sedimentary structure of Serra da Galga member (uppermost member of Marília Formation). The hardening hematite concentration appears as layered accretions in the subparallel clayey lenses of sandstone saprolite, preserving its structure. Iron contents varied according to different soil fabrics. Higher concentrations of iron are found in the massive ferricrete or in pisolites in the mottled horizon. Kaolinite is a dominant clay mineral and shows two micro-organizations: (1) massive fabric intrinsic to the sedimentary rock, and (2) reworked in pisolites and illuviated features. The pisolites are relicts of ferricrete in the soft bioturbated topsoil. The continuous sequence of ferricrete from saprolite to the Ferralsol indicates that the regolith is autochthonous, developed directly from sandstones of Marília Formation, through a long and intense process of laterization.

  15. The GOES-16 Energetic Heavy Ion Instrument Proton and Helium Fluxes for Space Weather Applications

    Science.gov (United States)

    Connell, J. J.; Lopate, C.

    2017-12-01

    The Energetic Heavy Ion Sensor (EHIS) was built by the University of New Hampshire, subcontracted to Assurance Technology Corporation, as part of the Space Environmental In-Situ Suite (SEISS) on the new GOES-16 satellite, in geostationary Earth orbit. The EHIS measures energetic ions in space over the range 10-200 MeV for protons, and energy ranges for heavy ions corresponding to the same stopping range. Though an operational satellite instrument, EHIS will supply high quality data for scientific studies. For the GOES Level 1-B and Level 2 data products, protons and helium are distinguished in the EHIS using discriminator trigger logic. Measurements are provided in five energy bands. The instrumental cadence of these rates is 3 seconds. However, the primary Level 1-B proton and helium data products are 1-minute and 5-minute averages. The data latency is 1 minute, so data products can be used for real-time predictions as well as general science studies. Protons and helium, comprising approximately 99% of all energetic ions in space are of great importance for Space Weather predictions. We discuss the preliminary EHIS proton and helium data results and their application to Space Weather. The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  16. Observatory data as a proxy of space weather parameters: The importance of historical archives

    Czech Academy of Sciences Publication Activity Database

    Hejda, Pavel

    2016-01-01

    Roč. 20, Č. 2 (2016), s. 47-53 ISSN 0257-7968 R&D Projects: GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : geomagnetic observatory * geomagnetic indices * sunspot members * space weather Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography

  17. Meditations on the new space vision: The moon as a stepping stone to mars

    Science.gov (United States)

    Mendell, W. W.

    2005-07-01

    The Vision for Space Exploration invokes activities on the Moon in preparation for exploration of Mars and also directs International Space Station (ISS) research toward the same goal. Lunar missions will emphasize development of capability and concomitant reduction of risk for future exploration of Mars. Earlier papers identified three critical issues related to the so-called NASA Mars Design Reference Mission (MDRM) to be addressed in the lunar context: (a) safety, health, and performance of the human crew; (b) various modalities of mission operations ranging surface activities to logistics, planning, and navigation; and (c) reliability and maintainability of systems in the planetary environment. In simple terms, lunar expeditions build a résumé that demonstrates the ability to design, construct, and operate an enterprise such as the MDRM with an expectation of mission success. We can evolve from Apollo-like missions to ones that resemble the complexity and duration of the MDRM. Investment in lunar resource utilization technologies falls naturally into the Vision. NASA must construct an exit strategy from the Moon in the third decade. With a mandate for continuing exploration, it cannot assume responsibility for long-term operation of lunar assets. Therefore, NASA must enter into a partnership with some other entity—governmental, international, or commercial—that can responsibly carry on lunar development past the exploration phase.

  18. Femtosecond laser irradiation of olivine single crystals: Experimental simulation of space weathering

    Science.gov (United States)

    Fazio, A.; Harries, D.; Matthäus, G.; Mutschke, H.; Nolte, S.; Langenhorst, F.

    2018-01-01

    Space weathering is one of the most common surface process occurring on atmosphere-free bodies such as asteroids and the Moon. It is caused mainly by solar wind irradiation and the impact of micrometeoroids. In order to simulate space weathering effects, in particular those produced by hypervelocity impacts, we produced microcraters via ultra-short (∼100 fs) laser irradiation of crystallographically oriented slices of forsterite-rich (Fo94.7) olivine. The main advantages of the application of a femtosecond laser radiation to reproduce the space weathering effects are (1) the high peak irradiance (1015 W cm-2), which generates the propagation of the shock wave at the nanosecond timescale (i.e., timescale of the micrometeoroid impacts); (2) the rapid transfer of energy to the target material, which avoids the interaction of laser light with the developing vapor plume; (3) a small laser beam, which allows the effects of a single impact to be simulated. The results of our spectroscopic and electron microscopic investigation validate this approach: the samples show strong darkening and reddening of the reflectance spectra and structural damages similar to the natural microcraters found on regolith grains of the Moon and asteroid 25143 Itokawa. Detailed investigations of several microcrater cross-sections by transmission electron microscopy allowed the detection of shock-induced defect microstructures. From the top to the bottom of the grain, the shock wave causes evaporation, melting, solid-state recrystallization, misorientation, fracturing, and the propagation of dislocations with Burgers vectors parallel to [001]. The formation of a short-lived vapor plume causes the kinetic fractionation of the gas and the preferential loss of lighter elements, mostly magnesium and oxygen. The high temperatures within the melt layer and the kinetic loss of oxygen promote the thermal reduction of iron and nickel, which leads to the formation of metallic nanoparticles (npFe0). The

  19. Impact of space weather on human heart rate during the years 2011-2013

    Science.gov (United States)

    Galata, E.; Ioannidou, S.; Papailiou, M.; Mavromichalaki, H.; Paravolidakis, K.; Kouremeti, M.; Rentifis, L.; Simantirakis, E.; Trachanas, K.

    2017-08-01

    During the last years a possible link between different levels of solar and geomagnetic disturbances and human physiological parameters is suggested by several published studies. In this work the examination of the potential association between heart rate variations and specific space weather activities was performed. A total of 482 individuals treated at Hippocratio General Hospital in Athens, the Cardiology clinics of Nikaia General Hospital in Piraeus and the Heraklion University Hospital in Crete, Greece, were assessed from July 2011 to April 2013. The heart rate of the individuals was recorded by a Holter monitor on a n hourly basis, while the hourly variations of the cosmic ray intensity measured by the Neutron Monitor Station of the Athens University and of the geomagnetic index Dst provided by the Kyoto Observatory were used. The ANalysis Of VAriance (ANOVA) and the Multiple Linear Regression analysis were used for analysis of these data. A statistically significant effect of both cosmic rays and geomagnetic activity on heart rate was observed, which may indicate that changes in space weather could be linked to heart rate variations.

  20. Aurorasaurus Database of Real-Time, Soft-Sensor Sourced Aurora Data for Space Weather Research

    Science.gov (United States)

    Kosar, B.; MacDonald, E.; Heavner, M.

    2017-12-01

    Aurorasaurus is an innovative citizen science project focused on two fundamental objectives i.e., collecting real-time, ground-based signals of auroral visibility from citizen scientists (soft-sensors) and incorporating this new type of data into scientific investigations pertaining to aurora. The project has been live since the Fall of 2014, and as of Summer 2017, the database compiled approximately 12,000 observations (5295 direct reports and 6413 verified tweets). In this presentation, we will focus on demonstrating the utility of this robust science quality data for space weather research needs. These data scale with the size of the event and are well-suited to capture the largest, rarest events. Emerging state-of-the-art computational methods based on statistical inference such as machine learning frameworks and data-model integration methods can offer new insights that could potentially lead to better real-time assessment and space weather prediction when citizen science data are combined with traditional sources.

  1. In-Space Manufacturing: Pioneering a Sustainable Path to Mars

    Science.gov (United States)

    Werkheiser, Niki

    2015-01-01

    ISM is responsible for developing the on-demand manufacturing capabilities that will be required for affordable, sustainable operations during Exploration Missions (in-transit and on-surface) to destinations such as Mars. This includes advancing the needed technologies, as well as establishing the skills & processes (such as certification and characterization) that will enable the technologies to go from novel to institutionalized. These technologies are evolving rapidly due to terrestrial markets. ISM is leveraging this commercial development to develop these capabilities within a realistic timeframe and budget. ISM utilizes the International Space Station (ISS) as a test-bed to adapt these technologies for microgravity operations and evolve the current operations mindset from earth-reliant to earth-independent.

  2. A new open-source Python-based Space Weather data access, visualization, and analysis toolkit

    Science.gov (United States)

    de Larquier, S.; Ribeiro, A.; Frissell, N. A.; Spaleta, J.; Kunduri, B.; Thomas, E. G.; Ruohoniemi, J.; Baker, J. B.

    2013-12-01

    Space weather research relies heavily on combining and comparing data from multiple observational platforms. Current frameworks exist to aggregate some of the data sources, most based on file downloads via web or ftp interfaces. Empirical models are mostly fortran based and lack interfaces with more useful scripting languages. In an effort to improve data and model access, the SuperDARN community has been developing a Python-based Space Science Data Visualization Toolkit (DaViTpy). At the center of this development was a redesign of how our data (from 30 years of SuperDARN radars) was made available. Several access solutions are now wrapped into one convenient Python interface which probes local directories, a new remote NoSQL database, and an FTP server to retrieve the requested data based on availability. Motivated by the efficiency of this interface and the inherent need for data from multiple instruments, we implemented similar modules for other space science datasets (POES, OMNI, Kp, AE...), and also included fundamental empirical models with Python interfaces to enhance data analysis (IRI, HWM, MSIS...). All these modules and more are gathered in a single convenient toolkit, which is collaboratively developed and distributed using Github and continues to grow. While still in its early stages, we expect this toolkit will facilitate multi-instrument space weather research and improve scientific productivity.

  3. Mars: The Viking Discoveries.

    Science.gov (United States)

    French, Bevan M.

    This booklet describes the results of NASA's Viking spacecraft on Mars. It is intended to be useful for the teacher of basic courses in earth science, space science, astronomy, physics, or geology, but is also of interest to the well-informed layman. Topics include why we should study Mars, how the Viking spacecraft works, the winds of Mars, the…

  4. Growing crops for space explorers on the moon, Mars, or in space

    Science.gov (United States)

    Salisbury, F. B.

    1999-01-01

    An option in the long-duration exploration of space, whether on the Moon or Mars or in a spacecraft on its way to Mars or the asteroids, is to utilize a bioregenerative life-support system in addition to the physicochemical systems that will always be necessary. Green plants can use the energy of light to remove carbon dioxide from the atmosphere and add oxygen to it while at the same time synthesizing food for the space travelers. The water that crop plants transpire can be condensed in pure form, contributing to the water purification system. An added bonus is that green plants provide a familiar environment for humans far from their home planet. The down side is that such a bioregenerative life-support system--called a controlled environment life-support system (CELSS) in this paper--must be highly complex and relatively massive to maintain a proper composition of the atmosphere while also providing food. Thus, launch costs will be high. Except for resupply and removal of nonrecycleable substances, such a system is nearly closed with respect to matter but open with respect to energy. Although a CELSS facility is small compared to the Earth's biosphere, it must be large enough to feed humans and provide a suitable atmosphere for them. A functioning CELSS can only be created with the help of today's advanced technology, especially computerized controls. Needed are energy for light, possibly from a nuclear power plant, and equipment to provide a suitable environment for plant growth, including a way to supply plants with the necessary mineral nutrients. All this constitutes the biomass production unit. There must also be food preparation facilities and a means to recycle or dispose of waste materials and there must be control equipment to keep the facility running. Humans are part of the system as well as plants and possibly animals. Human brain power will often be needed to keep the system functional in spite of the best computer-driven controls. The particulars

  5. Examining Mars with SPICE

    Science.gov (United States)

    Acton, Charles H.; Bachman, Nathaniel J.; Bytof, Jeff A.; Semenov, Boris V.; Taber, William; Turner, F. Scott; Wright, Edward D.

    1999-01-01

    The International Mars Conference highlights the wealth of scientific data now and soon to be acquired from an international armada of Mars-bound robotic spacecraft. Underlying the planning and interpretation of these scientific observations around and upon Mars are ancillary data and associated software needed to deal with trajectories or locations, instrument pointing, timing and Mars cartographic models. The NASA planetary community has adopted the SPICE system of ancillary data standards and allied tools to fill the need for consistent, reliable access to these basic data and a near limitless range of derived parameters. After substantial rapid growth in its formative years, the SPICE system continues to evolve today to meet new needs and improve ease of use. Adaptations to handle landers and rovers were prototyped on the Mars pathfinder mission and will next be used on Mars '01-'05. Incorporation of new methods to readily handle non-inertial reference frames has vastly extended the capability and simplified many computations. A translation of the SPICE Toolkit software suite to the C language has just been announced. To further support cartographic calculations associated with Mars exploration the SPICE developers at JPL have recently been asked by NASA to work with cartographers to develop standards and allied software for storing and accessing control net and shape model data sets; these will be highly integrated with existing SPICE components. NASA specifically supports the widest possible utilization of SPICE capabilities throughout the international space science community. With NASA backing the Russian Space Agency and Russian Academy of Science adopted the SPICE standards for the Mars 96 mission. The SPICE ephemeris component will shortly become the international standard for agencies using the Deep Space Network. U.S. and European scientists hope that ESA will employ SPICE standards on the Mars Express mission. SPICE is an open set of standards, and

  6. Azolla as a component of the space diet during habitation on Mars

    Science.gov (United States)

    Katayama, Naomi; Yamashita, Masamichi; Kishida, Yoshiro; Liu, Chung-Chu; Watanabe, Iwao; Wada, Hidenori; Space Agriculture Task Force

    We evaluate a candidate diet and specify its space agricultural requirements for habitation on Mars. Rice, soybean, sweet potato and a green-yellow vegetable have been selected as the basic vegetarian menu. The addition of silkworm pupa, loach, and Azolla to that basic menu was found to meet human nutritional requirements. Co-culture of rice, Azolla, and loach is proposed for developing bio-regenerative life support capability with high efficiency of the usage of habitation and agriculture area. Agriculture designed under the severe constraints of limited materials resources in space would make a positive contribution toward solving the food shortages and environmental problems facing humans on Earth, and may provide an effective sustainable solution for our civilization.

  7. Validation of foF2 and TEC Modeling During Geomagnetic Disturbed Times: Preliminary Outcomes of International Forum for Space Weather Modeling Capabilities Assessment

    Science.gov (United States)

    Shim, J. S.; Tsagouri, I.; Goncharenko, L. P.; Kuznetsova, M. M.

    2017-12-01

    To address challenges of assessment of space weather modeling capabilities, the CCMC (Community Coordinated Modeling Center) is leading the newly established "International Forum for Space Weather Modeling Capabilities Assessment." This presentation will focus on preliminary outcomes of the International Forum on validation of modeled foF2 and TEC during geomagnetic storms. We investigate the ionospheric response to 2013 Mar. geomagnetic storm event using ionosonde and GPS TEC observations in North American and European sectors. To quantify storm impacts on foF2 and TEC, we first quantify quiet-time variations of foF2 and TEC (e.g., the median and the average of the five quietest days for the 30 days during quiet conditions). It appears that the quiet time variation of foF2 and TEC are about 10% and 20-30%, respectively. Therefore, to quantify storm impact, we focus on foF2 and TEC changes during the storm main phase larger than 20% and 50%, respectively, compared to 30-day median. We find that in European sector, both foF2 and TEC response to the storm are mainly positive phase with foF2 increase of up to 100% and TEC increase of 150%. In North America sector, however, foF2 shows negative effects (up to about 50% decrease), while TEC shows positive response (the largest increase is about 200%). To assess modeling capability of reproducing the changes of foF2 and TEC due to the storm, we use various model simulations, which are obtained from empirical, physics-based, and data assimilation models. The performance of each model depends on the selected metrics, therefore, only one metrics is not enough to evaluate the models' predictive capabilities in capturing the storm impact. The performance of the model also varies with latitude and longitude.

  8. Red rover: inside the story of robotic space exploration, from genesis to the mars rover curiosity

    CERN Document Server

    Wiens, Roger

    2013-01-01

    In its eerie likeness to Earth, Mars has long captured our imaginations—both as a destination for humankind and as a possible home to extraterrestrial life. It is our twenty-first century New World; its explorers robots, shipped 350 million miles from Earth to uncover the distant planet’s secrets.Its most recent scout is Curiosity—a one-ton, Jeep-sized nuclear-powered space laboratory—which is now roving the Martian surface to determine whether the red planet has ever been physically capable of supporting life. In Red Rover, geochemist Roger Wiens, the principal investigator for the ChemCam laser instrument on the rover and veteran of numerous robotic NASA missions, tells the unlikely story of his involvement in sending sophisticated hardware into space, culminating in the Curiosity rover's amazing journey to Mars.In so doing, Wiens paints the portrait of one of the most exciting scientific stories of our time: the new era of robotic space exploration. Starting with NASA’s introduction of the Discovery...

  9. A Transmission Electron Microscope Investigation of Space Weathering Effects in Hayabusa Samples

    Science.gov (United States)

    Keller, Lindsay P.; Berger, Eve L.

    2014-01-01

    The Hayabusa mission to asteroid 25143 Itokawa successfully returned the first direct samples of the regolith from the surface of an asteroid. The Hayabusa samples thus present a special opportunity to directly investigate the evolution of asteroidal surfaces, from the development of the regolith to the study of the more complex effects of space weathering. Here we describe the mineralogy, microstructure and composition of three Hayabusa mission particles using transmission electron microscope (TEM) techniques

  10. An Accelerated Development, Reduced Cost Approach to Lunar/Mars Exploration Using a Modular NTR-Based Space Transportation System

    Science.gov (United States)

    Borowski, S.; Clark, J.; Sefcik, R.; Corban, R.; Alexander, S.

    1995-01-01

    The results of integrated systems and mission studies are presented which quantify the benefits and rationale for developing a common, modular lunar/Mars space transportation system (STS) based on nuclear thermal rocket (NTR) technology. At present NASA's Exploration Program Office (ExPO) is considering chemical propulsion for an 'early return to the Moon' and NTR propulsion for the more demanding Mars missions to follow. The time and cost to develop these multiple systems are expected to be significant. The Nuclear Propulsion Office (NPO) has examined a variety of lunar and Mars missions and heavy lift launch vehicle (HLLV) options in an effort to determine a 'standardized' set of engine and stage components capable of satisfying a wide range of Space Exploration Initiative (SEI) missions. By using these components in a 'building block' fashion, a variety of single and multi-engine lunar and Mars vehicles can be configured. For NASA's 'First Lunar Outpost' (FLO) mission, an expendable NTR stage powered by two 50 klbf engines can deliver approximately 96 metric tons (t) to translunar injection (TLI) conditions for an initial mass in low earth orbit (IMLEO) of approximately 198 t compared to 250 t for a cryogenic chemical TLI stage. The NTR stage liquid hydrogen (LH2) tank has a 10 m diameter, 14.5 m length, and 66 t LH2 capacity. The NTR utilizes a UC-ZrC-graphite 'composite' fuel with a specific impulse (Isp) capability of approximately 900 s and an engine thrust-to-weight ratio of approximately 4.3. By extending the size and LH2 capacity of the lunar NTR stage to approximately 20 m and 96 t, respectively, a single launch Mars cargo vehicle capable of delivering approximately 50 t of surface payload is possible. Three 50 klbf NTR engines and the two standardized LH2 tank sizes developed for lunar and Mars cargo vehicle applications would be used to configure the Mars piloted vehicle for a mission as early as 2010. The paper describes the features of the 'common

  11. Potential High Priority Subaerial Environments for Mars Sample Return

    Science.gov (United States)

    iMOST Team; Bishop, J. L.; Horgan, B.; Benning, L. G.; Carrier, B. L.; Hausrath, E. M.; Altieri, F.; Amelin, Y.; Ammannito, E.; Anand, M.; Beaty, D. W.; Borg, L. E.; Boucher, D.; Brucato, J. R.; Busemann, H.; Campbell, K. A.; Czaja, A. D.; Debaille, V.; Des Marais, D. J.; Dixon, M.; Ehlmann, B. L.; Farmer, J. D.; Fernandez-Remolar, D. C.; Fogarty, J.; Glavin, D. P.; Goreva, Y. S.; Grady, M. M.; Hallis, L. J.; Harrington, A. D.; Herd, C. D. K.; Humayun, M.; Kleine, T.; Kleinhenz, J.; Mangold, N.; Mackelprang, R.; Mayhew, L. E.; McCubbin, F. M.; Mccoy, J. T.; McLennan, S. M.; McSween, H. Y.; Moser, D. E.; Moynier, F.; Mustard, J. F.; Niles, P. B.; Ori, G. G.; Raulin, F.; Rettberg, P.; Rucker, M. A.; Schmitz, N.; Sefton-Nash, E.; Sephton, M. A.; Shaheen, R.; Shuster, D. L.; Siljestrom, S.; Smith, C. L.; Spry, J. A.; Steele, A.; Swindle, T. D.; ten Kate, I. L.; Tosca, N. J.; Usui, T.; Van Kranendonk, M. J.; Wadhwa, M.; Weiss, B. P.; Werner, S. C.; Westall, F.; Wheeler, R. M.; Zipfel, J.; Zorzano, M. P.

    2018-04-01

    The highest priority subaerial environments for Mars Sample Return include subaerial weathering (paleosols, periglacial/glacial, and rock coatings/rinds), wetlands (mineral precipitates, redox environments, and salt ponds), or cold spring settings.

  12. The humanation of Mars

    Science.gov (United States)

    David, L. W.

    Early developments related to human excursions to Mars are examined, taking into account plans considered by von Braun, and the 'ambitious goal of a manned flight to Mars by the end of the century', proposed at the launch of Apollo 11. In response to public reaction, plans for manned flights to Mars in the immediate future were given up, and unmanned reconnaissance of Mars was continued. An investigation is conducted concerning the advantages of manned exploration of Mars in comparison to a study by unmanned space probes, and arguments regarding a justification for interplanetary flight to Mars are discussed. Attention is given to the possibility to consider Mars as a 'back-up' planet for preserving earth life, an international Mars expedition as a world peace project, the role of Mars in connection with resource utilization considerations, and questions of exploration ethics.

  13. Problems at the Leading Edge of Space Weathering as Revealed by TEM Combined with Surface Science Techniques

    Science.gov (United States)

    Christoffersen, R.; Dukes, C. A.; Keller, L. P.; Rahman, Z.; Baragiola, R. A.

    2015-01-01

    Both transmission electron micros-copy (TEM) and surface analysis techniques such as X-ray photoelectron spectroscopy (XPS) were instrumen-tal in making the first characterizations of material generated by space weathering in lunar samples [1,2]. Without them, the nature of nanophase metallic Fe (npFe0) correlated with the surface of lunar regolith grains would have taken much longer to become rec-ognized and understood. Our groups at JSC and UVa have been using both techniques in a cross-correlated way to investigate how the solar wind contributes to space weathering [e.g., 3]. These efforts have identified a number of ongoing problems and knowledge gaps. Key insights made by UVa group leader Raul Barag-iola during this work are gratefully remembered.

  14. Kameleon Live: An Interactive Cloud Based Analysis and Visualization Platform for Space Weather Researchers

    Science.gov (United States)

    Pembroke, A. D.; Colbert, J. A.

    2015-12-01

    The Community Coordinated Modeling Center (CCMC) provides hosting for many of the simulations used by the space weather community of scientists, educators, and forecasters. CCMC users may submit model runs through the Runs on Request system, which produces static visualizations of model output in the browser, while further analysis may be performed off-line via Kameleon, CCMC's cross-language access and interpolation library. Off-line analysis may be suitable for power-users, but storage and coding requirements present a barrier to entry for non-experts. Moreover, a lack of a consistent framework for analysis hinders reproducibility of scientific findings. To that end, we have developed Kameleon Live, a cloud based interactive analysis and visualization platform. Kameleon Live allows users to create scientific studies built around selected runs from the Runs on Request database, perform analysis on those runs, collaborate with other users, and disseminate their findings among the space weather community. In addition to showcasing these novel collaborative analysis features, we invite feedback from CCMC users as we seek to advance and improve on the new platform.

  15. Mars Atmospheric In Situ Resource Utilization Projects at the Kennedy Space Center

    Science.gov (United States)

    Muscatello, A. C.; Hintze, P. E.; Caraccio, A. J.; Bayliss, J. A.; Karr, L. J.; Paley, M. S.; Marone, M. J.; Gibson, T. L.; Surma, J. M.; Mansell, J. M.; hide

    2016-01-01

    The atmosphere of Mars, which is approximately 95% carbon dioxide (CO2), is a rich resource for the human exploration of the red planet, primarily by the production of rocket propellants and oxygen for life support. Three recent projects led by NASA's Kennedy Space Center have been investigating the processing of CO2. The first project successfully demonstrated the Mars Atmospheric Processing Module (APM), which freezes CO2 with cryocoolers and combines sublimated CO2 with hydrogen to make methane and water. The second project absorbs CO2 with Ionic Liquids and electrolyzes it with water to make methane and oxygen, but with limited success so far. A third project plans to recover up to 100% of the oxygen in spacecraft respiratory CO2. A combination of the Reverse Water Gas Shift reaction and the Boudouard reaction eventually fill the reactor up with carbon, stopping the process. A system to continuously remove and collect carbon is under construction.

  16. Mars Atmospheric In Situ Resource Utilization Projects at the Kennedy Space Center

    Science.gov (United States)

    Muscatello, Anthony; Hintze, Paul; Meier, Anne; Bayliss, Jon; Karr, Laurel; Paley, Steve; Marone, Matt; Gibson, Tracy; Surma, Jan; Mansell, Matt; hide

    2016-01-01

    The atmosphere of Mars, which is 96 percent carbon dioxide (CO2), is a rich resource for the human exploration of the red planet, primarily by the production of rocket propellants and oxygen for life support. Three recent projects led by NASAs Kennedy Space Center have been investigating the processing of CO2. The first project successfully demonstrated the Mars Atmospheric Processing Module (APM), which freezes CO2 with cryocoolers and combines sublimated CO2 with hydrogen to make methane and water. The second project absorbs CO2 with Ionic Liquids and electrolyzes it with water to make methane and oxygen, but with limited success so far. A third project plans to recover up to 100 of the oxygen in spacecraft respiratory CO2. A combination of the Reverse Water Gas Shift reaction and the Boudouard reaction eventually fill the reactor up with carbon, stopping the process. A system to continuously remove and collect carbon has been tested with encouraging results.

  17. Capacity Building in Space Weather in the context of the ISWI program

    Science.gov (United States)

    Vilmer, Nicole; Amory, Christine

    2012-07-01

    In the context of the International Space Weather Initiative program, we organized a school on solar-terrestrial physics for French- speaking professors and PhD students from African countries. The school was organized in Rabat (Morocco) in December 2011. We shall present here the goals of the school, our program and our funding. We shall also comment on the feedback of the school and on the potential organization of a similar school in Algeria in 2013.

  18. Robust catastrophe-free space agriculture on Mars

    Science.gov (United States)

    Yamashita, Masamichi

    preservation technology has been quite developed in modern age. After resource is accumulated enough to support the next term, go-decision for the succeeding mission is made. Life can be sustained by stock of food and oxygen produced during previous term. Terrestrial agriculture these days is not only for food production, but improves amenity for life. Psychological support for space crew is a keen issue at conducting long space mission under physically isolated confined environment. Farming plants and animals is an effective relief under such stressful environment. By utilizing on site resource available on Mars, space agriculture is an essential choice with more than 100 % materials recycling and total life management in space exploration. Among many merits, 100 % survivability is the top priority.

  19. Zeolites on Mars: Possible environmental indicators in soils and sediments

    International Nuclear Information System (INIS)

    Ming, D.W.; Gooding, J.L.

    1988-01-01

    Weathering products should serve as indicators of weathering environments and may provide the best evidence of the nature of climate change on Mars. No direct mineralogical measurements of Martian regolith were performed by the Viking missions, but the biology and X-ray fluorescence experiments provided some information on the physiochemical properties of Martian regolith. Most post-Viking studies of candidate weathering products have emphasized phyllosilicates and Fe-oxides; zeolites are potentially important, but overlooked, candidate Martian minerals. Zeolites would be important on Mars for three different reasons. First, they are major sinks of atmospheric gases and, per unit mass, are stronger and more efficient sorbents than are phyllosilicates. Secondly, they can be virtually unique sorbents and shelters for organic compounds and possible catalysts for organic-based reactions. Finally, their exchangeable ions are good indicators of the chemical properties of solutions with which they have communicated. Accordingly, the search for information on past compositions of the Martian atmosphere and hydrosphere should find zeolites to be rich repositories

  20. Space Shuttle 750 psi Helium Regulator Application on Mars Science Laboratory Propulsion

    Science.gov (United States)

    Mizukami, Masashi; Yankura, George; Rust, Thomas; Anderson, John R.; Dien, Anthony; Garda, Hoshang; Bezer, Mary Ann; Johnson, David; Arndt, Scott

    2009-01-01

    The Mars Science Laboratory (MSL) is NASA's next major mission to Mars, to be launched in September 2009. It is a nuclear powered rover designed for a long duration mission, with an extensive suite of science instruments. The descent and landing uses a unique 'skycrane' concept, where a rocket-powered descent stage decelerates the vehicle, hovers over the ground, lowers the rover to the ground on a bridle, then flies a safe distance away for disposal. This descent stage uses a regulated hydrazine propulsion system. Performance requirements for the pressure regulator were very demanding, with a wide range of flow rates and tight regulated pressure band. These indicated that a piloted regulator would be needed, which are notoriously complex, and time available for development was short. Coincidentally, it was found that the helium regulator used in the Space Shuttle Orbiter main propulsion system came very close to meeting MSL requirements. However, the type was out of production, and fabricating new units would incur long lead times and technical risk. Therefore, the Space Shuttle program graciously furnished three units for use by MSL. Minor modifications were made, and the units were carefully tuned to MSL requirements. Some of the personnel involved had built and tested the original shuttle units. Delta qualification for MSL application was successfully conducted on one of the units. A pyrovalve slam start and shock test was conducted. Dynamic performance analyses for the new application were conducted, using sophisticated tools developed for Shuttle. Because the MSL regulator is a refurbished Shuttle flight regulator, it will be the only part of MSL which has physically already been in space.

  1. On the in situ aqueous alteration of soils on Mars

    Science.gov (United States)

    Amundson, Ronald; Ewing, Stephanie; Dietrich, William; Sutter, Brad; Owen, Justine; Chadwick, Oliver; Nishiizumi, Kunihiko; Walvoord, Michelle; McKay, Christopher

    2008-08-01

    Early (>3 Gy) wetter climate conditions on Mars have been proposed, and it is thus likely that pedogenic processes have occurred there at some point in the past. Soil and rock chemistry of the Martian landing sites were evaluated to test the hypothesis that in situ aqueous alteration and downward movement of solutes have been among the processes that have transformed these portions of the Mars regolith. A geochemical mass balance shows that Martian soils at three landing sites have lost significant quantities of major rock-forming elements and have gained elements that are likely present as soluble ions. The loss of elements is interpreted to have occurred during an earlier stage(s) of weathering that may have been accompanied by the downward transport of weathering products, and the salts are interpreted to be emplaced later in a drier Mars history. Chemical differences exist among the sites, indicating regional differences in soil composition. Shallow soil profile excavations at Gusev crater are consistent with late stage downward migration of salts, implying the presence of small amounts of liquid water even in relatively recent Martian history. While the mechanisms for chemical weathering and salt additions on Mars remain unclear, the soil chemistry appears to record a decline in leaching efficiency. A deep sedimentary exposure at Endurance crater contains complex depth profiles of SO 4, Cl, and Br, trends generally consistent with downward aqueous transport accompanied by drying. While no model for the origin of Martian soils can be fully constrained with the currently available data, a pedogenic origin is consistent with observed Martian geology and geochemistry, and provides a testable hypothesis that can be evaluated with present and future data from the Mars surface.

  2. Solar Radio Bursts and Space Weather

    Science.gov (United States)

    Gopalswamy, Natchimuthuk,

    2012-01-01

    Radio bursts from the Sun are produced by electron accelerated to relativistic energies by physical processes on the Sun such as solar flares and coronal mass ejections (CMEs). The radio bursts are thus good indicators of solar eruptions. Three types of nonthermal radio bursts are generally associated with CMEs. Type III bursts due to accelerated electrons propagating along open magnetic field lines. The electrons are thought to be accelerated at the reconnection region beneath the erupting CME, although there is another view that the electrons may be accelerated at the CME-driven shock. Type II bursts are due to electrons accelerated at the shock front. Type II bursts are also excellent indicators of solar energetic particle (SEP) events because the same shock is supposed accelerate electrons and ions. There is a hierarchical relationship between the wavelength range of type /I bursts and the CME kinetic energy. Finally, Type IV bursts are due to electrons trapped in moving or stationary structures. The low frequency stationary type IV bursts are observed occasionally in association with very fast CMEs. These bursts originate from flare loops behind the erupting CME and hence indicate tall loops. This paper presents a summary of radio bursts and their relation to CMEs and how they can be useful for space weather predictions.

  3. The politics of Mars

    Science.gov (United States)

    Schmitt, Harrison H.

    1986-01-01

    A discussion is presented comparing past and present major accomplishments of the U.S. and the Soviet Union in space. It concludes that the Soviets are presently well ahead of the U.S. in several specific aspects of space accomplishment and speculates that the Soviet strategy is directed towards sending a man to the vicinity of Mars by the end of this century. A major successful multinational space endeavor, INTELSAT, is reviewed and it is suggested that the manned exploration of Mars offers a unique opportunity for another such major international cooperative effort. The current attitude of U.S. leadership and the general public is assessed as uniformed or ambivalent about the perceived threat of Soviet dominance in space.

  4. Mars Gashopper Airplane, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Gas Hopper Airplane, or "gashopper" is a novel concept for propulsion of a robust Mars flight and surface exploration vehicle that utilizes indigenous CO2...

  5. The GEM-Mars general circulation model for Mars: Description and evaluation

    Science.gov (United States)

    Neary, L.; Daerden, F.

    2018-01-01

    GEM-Mars is a gridpoint-based three-dimensional general circulation model (GCM) of the Mars atmosphere extending from the surface to approximately 150 km based on the GEM (Global Environmental Multiscale) model, part of the operational weather forecasting and data assimilation system for Canada. After the initial modification for Mars, the model has undergone considerable changes. GEM-Mars is now based on GEM 4.2.0 and many physical parameterizations have been added for Mars-specific atmospheric processes and surface-atmosphere exchange. The model simulates interactive carbon dioxide-, dust-, water- and atmospheric chemistry cycles. Dust and water ice clouds are radiatively active. Size distributed dust is lifted by saltation and dust devils. The model includes 16 chemical species (CO2, Argon, N2, O2, CO, H2O, CH4, O3, O(1D), O, H, H2, OH, HO2, H2O2 and O2(a1Δg)) and has fully interactive photochemistry (15 reactions) and gas-phase chemistry (31 reactions). GEM-Mars provides a good simulation of the water and ozone cycles. A variety of other passive tracers can be included for dedicated studies, such as the emission of methane. The model has both a hydrostatic and non-hydrostatic formulation, and together with a flexible grid definition provides a single platform for simulations on a variety of horizontal scales. The model code is fully parallelized using OMP and MPI. Model results are evaluated by comparison to a selection of observations from instruments on the surface and in orbit, relating to atmosphere and surface temperature and pressure, dust and ice content, polar ice mass, polar argon, and global water and ozone vertical columns. GEM-Mars will play an integral part in the analysis and interpretation of data that is received by the NOMAD spectrometer on the ESA-Roskosmos ExoMars Trace Gas Orbiter. The present paper provides an overview of the current status and capabilities of the GEM-Mars model and lays the foundations for more in-depth studies in support

  6. Surface navigation on Mars with a Navigation Satellite

    Science.gov (United States)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  7. GNSS monitoring of the ionosphere for Space Weather services

    Science.gov (United States)

    Krankowski, A.; Sieradzki, R.; Zakharenkova, I. E.; Cherniak, I. V.

    2012-04-01

    The International GNSS Service (IGS) Ionosphere Working Group routinely provides the users global ionosphere maps (GIMs) of vertical total electron content (vTEC). The IGS GIMs are provided with spatial resolution of 5.0 degrees x 2.5 degrees in longitude and latitude, respectively. The current temporal resolution is 2 hours, however, 1-hour maps are delivered as a pilot project. There are three types IGS GIMs: the final, rapid and predicted. The latencies of the IGS ionospheric final and rapid products are 10 days and 1 day, respectively. The predicted GIMs are generated for 1 and 2 days in advance. There are four IGS Associate Analysis Centres (IAACs) that provide ionosphere maps computed with independent methodologies using GNSS data. These maps are uploaded to the IGS Ionosphere Combination and Validation Center at the GRL/UWM (Geodynamics Research Laboratory of the University of Warmia and Mazury in Olsztyn, Poland) that produces the IGS official ionospheric products, which are published online via ftp and www. On the other hand, the increasing number of permanently tracking GNSS stations near the North Geomagnetic Pole allow for using satellite observations to detect the ionospheric disturbances at high latitudes with even higher spatial resolution. In the space weather service developed at GRL/UWM, the data from the Arctic stations belonging to IGS/EPN/POLENET networks were used to study TEC fluctuations and scintillations. Since the beginning of 2011, a near real-time service presenting the conditions in the ionosphere have been operational at GRL/UWM www site. The rate of TEC index (ROTI) expressed in TECU/min is used as a measure of TEC fluctuations. The service provides 2-hour maps of the TEC variability. In addition, for each day the daily map of the ionospheric fluctuations as a function geomagnetic local time is also created. This presentation shows the architecture, algorithms, performance and future developments of the IGS GIMs and this new space

  8. Approach to Integrate Global-Sun Models of Magnetic Flux Emergence and Transport for Space Weather Studies

    Science.gov (United States)

    Mansour, Nagi N.; Wray, Alan A.; Mehrotra, Piyush; Henney, Carl; Arge, Nick; Godinez, H.; Manchester, Ward; Koller, J.; Kosovichev, A.; Scherrer, P.; hide

    2013-01-01

    The Sun lies at the center of space weather and is the source of its variability. The primary input to coronal and solar wind models is the activity of the magnetic field in the solar photosphere. Recent advancements in solar observations and numerical simulations provide a basis for developing physics-based models for the dynamics of the magnetic field from the deep convection zone of the Sun to the corona with the goal of providing robust near real-time boundary conditions at the base of space weather forecast models. The goal is to develop new strategic capabilities that enable characterization and prediction of the magnetic field structure and flow dynamics of the Sun by assimilating data from helioseismology and magnetic field observations into physics-based realistic magnetohydrodynamics (MHD) simulations. The integration of first-principle modeling of solar magnetism and flow dynamics with real-time observational data via advanced data assimilation methods is a new, transformative step in space weather research and prediction. This approach will substantially enhance an existing model of magnetic flux distribution and transport developed by the Air Force Research Lab. The development plan is to use the Space Weather Modeling Framework (SWMF) to develop Coupled Models for Emerging flux Simulations (CMES) that couples three existing models: (1) an MHD formulation with the anelastic approximation to simulate the deep convection zone (FSAM code), (2) an MHD formulation with full compressible Navier-Stokes equations and a detailed description of radiative transfer and thermodynamics to simulate near-surface convection and the photosphere (Stagger code), and (3) an MHD formulation with full, compressible Navier-Stokes equations and an approximate description of radiative transfer and heating to simulate the corona (Module in BATS-R-US). CMES will enable simulations of the emergence of magnetic structures from the deep convection zone to the corona. Finally, a plan

  9. Zeolite Formation and Weathering Processes in Dry Valleys of Antartica: Martian Analogs

    Science.gov (United States)

    Gibson, E. K., Jr.; Wentworth, S. J.; McKay, D. S.; Socki, R. A.

    2004-01-01

    Terrestrial weathering processes in cold-desert climates such as the Dry Valleys of Antarctica may provide an excellent analog to chemical weathering and diagenesis of soils on Mars. Detailed studies of soil development and the chemical and mineralogical alterations occurring within soil columns in Wright Valley, Antarctica show incredible complexity in the upper meter of soil. Previous workers noted the ice-free Dry Valleys are the best terrestrial approximations to contemporary Mars. Images returned from the Pathfinder and Spirit landers show similarities to surfaces observed within the Dry Valleys. Similarities to Mars that exist in these valleys are: mean temperatures always below freezing (-20 C), no rainfall, sparse snowfall-rapidly removed by sublimation, desiccating winds, diurnal freeze-thaw cycles (even during daylight hours), low humidity, oxidative environment, relatively high solar radiation and low magnetic fields . The Dry Valley soils contain irregular distributions and low abundances of soil microorganisms that are somewhat unusual on Earth. Physical processes-such as sand abrasion-are dominant mechanisms of rock weathering in Antarctica. However, chemical weathering is also an important process even in such extreme climates. For example, ionic migration occurs even in frozen soils along liquid films on individual soil particles. It has also been shown that water with liquid-like properties is present in soils at temperatures on the order of approx.-80 C and it has been observed that the percentage of oxidized iron increases with increasing soil age and enrichments in oxidized iron occurs toward the surface. The presence of evaporates is evident and appear similar to "evaporite sites" within the Pathfinder and Spirit sites. Evaporites indicate ionic migration and chemical activity even in the permanently frozen zone. The presence of evaporates indicates that chemical weathering of rocks and possibly soils has been active. Authogenic zeolites have

  10. Review of NASA approach to space radiation risk assessments for Mars exploration.

    Science.gov (United States)

    Cucinotta, Francis A

    2015-02-01

    Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.

  11. SUVI Thematic Maps: A new tool for space weather forecasting

    Science.gov (United States)

    Hughes, J. M.; Seaton, D. B.; Darnel, J.

    2017-12-01

    The new Solar Ultraviolet Imager (SUVI) instruments aboard NOAA's GOES-R series satellites collect continuous, high-quality imagery of the Sun in six wavelengths. SUVI imagers produce at least one image every 10 seconds, or 8,640 images per day, considerably more data than observers can digest in real time. Over the projected 20-year lifetime of the four GOES-R series spacecraft, SUVI will provide critical imagery for space weather forecasters and produce an extensive but unwieldy archive. In order to condense the database into a dynamic and searchable form we have developed solar thematic maps, maps of the Sun with key features, such as coronal holes, flares, bright regions, quiet corona, and filaments, identified. Thematic maps will be used in NOAA's Space Weather Prediction Center to improve forecaster response time to solar events and generate several derivative products. Likewise, scientists use thematic maps to find observations of interest more easily. Using an expert-trained, naive Bayesian classifier to label each pixel, we create thematic maps in real-time. We created software to collect expert classifications of solar features based on SUVI images. Using this software, we compiled a database of expert classifications, from which we could characterize the distribution of pixels associated with each theme. Given new images, the classifier assigns each pixel the most appropriate label according to the trained distribution. Here we describe the software to collect expert training and the successes and limitations of the classifier. The algorithm excellently identifies coronal holes but fails to consistently detect filaments and prominences. We compare the Bayesian classifier to an artificial neural network, one of our attempts to overcome the aforementioned limitations. These results are very promising and encourage future research into an ensemble classification approach.

  12. Europe is going to Mars

    Science.gov (United States)

    1999-06-01

    The Agency's Science Programme Committee (SPC) approved Mars Express after ESA's Council, meeting at ministerial level in Brussels on 11 and 12 May, had agreed the level of the science budget for the next 4 years, just enough to make the mission affordable. "Mars Express is a mission of opportunity and we felt we just had to jump in and do it. We are convinced it will produce first-rate science", says Hans Balsiger, SPC chairman. As well as being a first for Europe in Mars exploration, Mars Express will pioneer new, cheaper ways of doing space science missions. "With a total cost of just 150 million euros, Mars Express will be the cheapest Mars mission ever undertaken", says Roger Bonnet, ESA's Director of Science. Mars Express will be launched in June 2003. When it arrives at the red planet six months later, it will begin to search for water and life. Seven instruments, provided by space research institutes throughout Europe, will make observations from the main spacecraft as it orbits the planet. Just before the spacecraft arrives, it will release a small lander, provided by research institutes in the UK, that will journey on to the surface to look for signs of life. The lander is called Beagle 2 after the ship in which Charles Darwin sailed round the world in search of evidence supporting his theory of evolution. But just as Darwin had to raise the money for his trip, so the search is on for public and private finance for Beagle 2. "Beagle 2 is an extremely important element of the mission", says Bonnet. Europe's space scientists have envisaged a mission to Mars for over fifteen years. But limited funding has prevented previous proposals from going ahead. The positioning of the planets in 2003, however, offers a particularly favourable passage to the red planet - an opportunity not to be missed. Mars Express will be joined by an international flotilla of spacecraft that will also be using this opportunity to work together on scientific questions and pave the way

  13. What can the annual 10Be solar activity reconstructions tell us about historic space weather?

    Science.gov (United States)

    Barnard, Luke; McCracken, Ken G.; Owens, Mat J.; Lockwood, Mike

    2018-04-01

    Context: Cosmogenic isotopes provide useful estimates of past solar magnetic activity, constraining past space climate with reasonable uncertainty. Much less is known about past space weather conditions. Recent advances in the analysis of 10Be by McCracken & Beer (2015, Sol Phys 290: 305-3069) (MB15) suggest that annually resolved 10Be can be significantly affected by solar energetic particle (SEP) fluxes. This poses a problem, and presents an opportunity, as the accurate quantification of past solar magnetic activity requires the SEP effects to be determined and isolated, whilst doing so might provide a valuable record of past SEP fluxes. Aims: We compare the MB15 reconstruction of the heliospheric magnetic field (HMF), with two independent estimates of the HMF derived from sunspot records and geomagnetic variability. We aim to quantify the differences between the HMF reconstructions, and speculate on the origin of these differences. We test whether the differences between the reconstructions appear to depend on known significant space weather events. Methods: We analyse the distributions of the differences between the HMF reconstructions. We consider how the differences vary as a function of solar cycle phase, and, using a Kolmogorov-Smirnov test, we compare the distributions under the two conditions of whether or not large space weather events were known to have occurred. Results: We find that the MB15 reconstructions are generally marginally smaller in magnitude than the sunspot and geomagnetic HMF reconstructions. This bias varies as a function of solar cycle phase, and is largest in the declining phase of the solar cycle. We find that MB15's excision of the years with very large ground level enhancement (GLE) improves the agreement of the 10Be HMF estimate with the sunspot and geomagnetic reconstructions. We find no statistical evidence that GLEs, in general, affect the MB15 reconstruction, but this analysis is limited by having too few samples. We do find

  14. Observations of Heliospheric Faraday Rotation (FR) and Interplanetary Scintillation (IPS) with the LOw Frequency ARray (LOFAR): Steps Towards Improving Space-Weather Forecasting Capabilities

    Science.gov (United States)

    Bisi, M. M.; Fallows, R. A.; Sobey, C.; Eftekhari, T.; Jensen, E. A.; Jackson, B. V.; Yu, H. S.; Hick, P. P.; Odstrcil, D.; Tokumaru, M.

    2015-12-01

    The phenomenon of space weather - analogous to terrestrial weather which describes the changing pressure, temperature, wind, and humidity conditions on Earth - is essentially a description of the changes in velocity, density, magnetic field, high-energy particles, and radiation in the near-Earth space environment including the effects of such changes on the Earth's magnetosphere, radiation belts, ionosphere, and thermosphere. Space weather can be considered to have two main strands: (i) scientific research, and (ii) applications. The former is self-explanatory, but the latter covers operational aspects which includes its forecasting. Understanding and forecasting space weather in the near-Earth environment is vitally important to protecting our modern-day reliance (militarily and commercially) on satellites, global-communication and navigation networks, high-altitude air travel (radiation concerns particularly on polar routes), long-distance power/oil/gas lines and piping, and for any future human exploration of space to list but a few. Two ground-based radio-observing remote-sensing techniques that can aid our understanding and forecasting of heliospheric space weather are those of interplanetary scintillation (IPS) and heliospheric Faraday rotation (FR). The LOw Frequency ARray (LOFAR) is a next-generation 'software' radio telescope centered in The Netherlands with international stations spread across central and northwest Europe. For several years, scientific observations of IPS on LOFAR have been undertaken on a campaign basis and the experiment is now well developed. More recently, LOFAR has been used to attempt scientific heliospheric FR observations aimed at remotely sensing the magnetic field of the plasma traversing the inner heliosphere. We present our latest progress using these two radio heliospheric-imaging remote-sensing techniques including the use of three-dimensional (3-D) modeling and reconstruction techniques using other, additional data as input

  15. International cooperation for Mars exploration and sample return

    Science.gov (United States)

    Levy, Eugene H.; Boynton, William V.; Cameron, A. G. W.; Carr, Michael H.; Kitchell, Jennifer H.; Mazur, Peter; Pace, Norman R.; Prinn, Ronald G.; Solomon, Sean C.; Wasserburg, Gerald J.

    1990-01-01

    The National Research Council's Space Studies Board has previously recommended that the next major phase of Mars exploration for the United States involve detailed in situ investigations of the surface of Mars and the return to earth for laboratory analysis of selected Martian surface samples. More recently, the European space science community has expressed general interest in the concept of cooperative Mars exploration and sample return. The USSR has now announced plans for a program of Mars exploration incorporating international cooperation. If the opportunity becomes available to participate in Mars exploration, interest is likely to emerge on the part of a number of other countries, such as Japan and Canada. The Space Studies Board's Committee on Cooperative Mars Exploration and Sample Return was asked by the National Aeronautics and Space Administration (NASA) to examine and report on the question of how Mars sample return missions might best be structured for effective implementation by NASA along with international partners. The committee examined alternatives ranging from scientific missions in which the United States would take a substantial lead, with international participation playing only an ancillary role, to missions in which international cooperation would be a basic part of the approach, with the international partners taking on comparably large mission responsibilities. On the basis of scientific strategies developed earlier by the Space Studies Board, the committee considered the scientific and technical basis of such collaboration and the most mutually beneficial arrangements for constructing successful cooperative missions, particularly with the USSR.

  16. Korean Mars Mission Design Using KSLV-III

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2006-12-01

    Full Text Available Mission opportunities and trajectory characteristics for the future Korean Mars mission have designed and analyzed using KSLV-III(Korea Space Launch Vehicle-III. Korea's first space center, ``NARO space center'' is selected as a launch site. For launch opportunities, year 2033 is investigated under considering the date of space center's completion with KSLV series development status. Optimal magnitude of various maneuvers, Trans Mars Injection (TMI maneuver, Trajectory Correction Maneuver (TCM, Mars Orbit Insertion (MOI maneuver and Orbit Trim Maneuver (OTM, which are required during the every Mars mission phases are computed with the formulation of nonlinear optimization problems using NPSOL software. Finally, mass budgets for upper stage (launcher for KSLV-III and spacecraft are derived using various optimized maneuver magnitudes. For results, daily launch window from NARO space center for successful Korean Mars mission is avaliable for next 27 minutes starting from Apr. 16. 2033. 12:17:26 (UTC. Maximum spacecraft gross mass which can delivered to Mars is about 206 kg, with propellant mass of 109 kg and structure mass of 97 kg, when on board spacecraft thruster's Isp is assumed to have 290 sec. For upper stage, having structure ratio of 0.15 and Isp value of 280 sec, gross mass is about 1293 kg with propellant mass of 1099 kg and structure mass of 194 kg. However, including 10% margins to computed optimal maneuver values, spacecraft gross mass is reduced to about 148 kg with upper stage's mass of 1352 kg. This work will give various insights, requiring performances to developing of KSLV-III and spacecraft design for future Korean Mars missions.

  17. Near real-time geomagnetic data for space weather applications in the European sector

    Science.gov (United States)

    Johnsen, M. G.; Hansen, T. L.

    2012-12-01

    Tromsø Geophysical Observatory (TGO) is responsible for making and maintaining long time-series of geomagnetic measurements in Norway. TGO is currently operating 3 geomagnetic observatories and 11 variometer stations from southern Norway to Svalbard . Data from these 14 locations are acquired, processed and made available for the user community in near real-time. TGO is participating in several European Union (EU) and European Space Agency (ESA) space weather related projects where both near real-time data and derived products are provided. In addition the petroleum industry is benefiting from our real-time data services for directional drilling. Near real-time data from TGO is freely available for non-commercial purposes. TGO is exchanging data in near real-time with several institutions, enabling the presentation of near real-time geomagnetic data from more than 40 different locations in Fennoscandia and Greenland. The open exchange of non real-time geomagnetic data has been successfully going on for many years through services such as the world data center in Kyoto, SuperMAG, IMAGE and SPIDR. TGO's vision is to take this one step further and make the exchange of near real-time geomagnetic data equally available for the whole community. This presentation contains an overview of TGO, our activities and future aims. We will show how our near real-time data are presented. Our contribution to the space weather forecasting and nowcasting effort in the EU and ESA will be presented with emphasis on our real-time auroral activity index and brand new auroral activity monitor and electrojet tracker.

  18. Mars Conjunction Crewed Missions With a Reusable Hybrid Architecture

    Science.gov (United States)

    Merrill, Raymond G.; Strange, Nathan J.; Qu, Min; Hatten, Noble

    2015-01-01

    A new crew Mars architecture has been developed that provides many potential benefits for NASA-led human Mars moons and surface missions beginning in the 2030s or 2040s. By using both chemical and electric propulsion systems where they are most beneficial and maintaining as much orbital energy as possible, the Hybrid spaceship that carries crew round trip to Mars is pre-integrated before launch and can be delivered to orbit by a single launch. After check-out on the way to cis-lunar space, it is refueled and can travel round trip to Mars in less than 1100 days, with a minimum of 300 days in Mars vicinity (opportunity dependent). The entire spaceship is recaptured into cis-lunar space and can be reused. The spaceship consists of a habitat for 4 crew attached to the Hybrid propulsion stage which uses long duration electric and chemical in-space propulsion technologies that are in use today. The hybrid architecture's con-ops has no in-space assembly of the crew transfer vehicle and requires only rendezvous of crew in a highly elliptical Earth orbit for arrival at and departure from the spaceship. The crew transfer vehicle does not travel to Mars so it only needs be able to last in space for weeks and re-enter at lunar velocities. The spaceship can be refueled and resupplied for multiple trips to Mars (every other opportunity). The hybrid propulsion stage for crewed transits can also be utilized for cargo delivery to Mars every other opportunity in a reusable manner to pre-deploy infrastructure required for Mars vicinity operations. Finally, the Hybrid architecture provides evolution options for mitigating key long-duration space exploration risks, including crew microgravity and radiation exposure.

  19. Torpor Inducing Transfer Habitat For Human Stasis To Mars

    Data.gov (United States)

    National Aeronautics and Space Administration — SpaceWorks proposes the design of a torpor-inducing Mars transfer habitat and an architectural-level assessment to fully characterize the impact to Mars...

  20. MEDA, The New Instrument for Mars Environment Analysis for the Mars 2020 Mission

    Science.gov (United States)

    Moreno-Alvarez, Jose F.; Pena-Godino, Antonio; Rodriguez-Manfredi, Jose Antonio; Cordoba, Elizabeth; MEDA Team

    2016-08-01

    The Mars 2020 rover mission is part of NASA's Mars Exploration Program, a long-term effort of robotic exploration of the red planet. Designed to advance high-priority science goals for Mars exploration, the mission will address key questions about the potential for life on Mars. The mission will also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.The Mars Environmental Dynamics Analyzer (MEDA) is an integrated full suite of sensors designed to address the Mars 2020 mission objectives of characterization of dust size and morphology and surface weather measurements.MEDA system consists of one control unit and 10 separated sensor enclosures distributed in different positions along the Mars 2020 rover. MEDA is composed of an ARM-based control computer with its flight software application, two wind sensors including mixed ASICs inside, five air temperature sensors, one sky pointing camera complemented with 16 photo- detectors looking up and around, one thermal infrared sensor using five measurement bands, one relative humidity sensor, one pressure sensor and the harness that interconnects all of them. It is a complex system intended to operate in one of the harshest environments possible, the Mars surface, for many years to come.This will become a short term reality thanks to the combination of a strong international science team driving the science and system requirements working together with a powerful industrial organization to design and build the instrument. The instrument is being built right now, with its Critical Design Review at the end of 2016, and the flight model to be provided in 2018.This paper summarizes the main scientific objective of the MEDA instrument, the links between the Mission and the MEDA science objectives, and the challenging environmental Mars requirements. It will then focus on the engineered definition of the instrument, showing the overall

  1. Modelling the perception of weather conditions by users of outdoor public spaces

    Science.gov (United States)

    Andrade, H.; Oliveira, S.; Alcoforado, M.-J.

    2009-09-01

    Outdoor public spaces play an important role for the quality of life in urban areas. Their usage depends, among other factors, on the bioclimatic comfort of the users. Climate change can modify the uses of outdoor spaces, by changing temperature and rainfall patterns. Understanding the way people perceive the microclimatic conditions is an important tool to the design of more comfortable outdoor spaces and in anticipating future needs to cope with climate change impacts. The perception of bioclimatic comfort by users of two different outdoor spaces was studied in Lisbon. A survey of about one thousand inquires was carried out simultaneously with weather measurements (air temperature, wind speed, relative humidity and solar and long wave radiation), during the years 2006 and 2007. The aim was to assess the relationships between weather variables, the individual characteristics of people (such as age and gender, among others) and their bioclimatic comfort. The perception of comfort was evaluated through the preference votes of the interviewees, which consisted on their answers concerning the desire to decrease, maintain or increase the values of the different weather parameters, in order to improve their comfort at the moment of the interview. The perception of the atmospheric conditions and of the bioclimatic comfort are highly influenced by subjective factors, which are difficult to integrate in a model. Nonetheless, the use of the multiple logistic regression allows the definition of patterns in the quantitative relation between preference votes and environmental and personal parameters. The thermal preference depends largely on the season and is associated with wind speed. Comfort in relation to wind depends not only on the speed but also on turbulence: a high variability in wind speed is generally perceived as uncomfortable. It was also found that the acceptability of warmer conditions is higher than for cooler conditions and the majority of people declared

  2. Mars Aqueous Processing System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Aqueous Processing System (MAPS) is a novel technology for recovering oxygen, iron, and other constituents from lunar and Mars soils. The closed-loop...

  3. Weather Information Processing

    Science.gov (United States)

    1991-01-01

    Science Communications International (SCI), formerly General Science Corporation, has developed several commercial products based upon experience acquired as a NASA Contractor. Among them are METPRO, a meteorological data acquisition and processing system, which has been widely used, RISKPRO, an environmental assessment system, and MAPPRO, a geographic information system. METPRO software is used to collect weather data from satellites, ground-based observation systems and radio weather broadcasts to generate weather maps, enabling potential disaster areas to receive advance warning. GSC's initial work for NASA Goddard Space Flight Center resulted in METPAK, a weather satellite data analysis system. METPAK led to the commercial METPRO system. The company also provides data to other government agencies, U.S. embassies and foreign countries.

  4. Confinement has no effect on visual space perception: The results of the Mars-500 experiment

    Czech Academy of Sciences Publication Activity Database

    Šikl, Radovan; Šimeček, Michal

    2014-01-01

    Roč. 76, č. 2 (2014), s. 438-451 ISSN 1943-3921 R&D Projects: GA ČR(CZ) GAP407/12/2528 Institutional support: RVO:68081740 Keywords : visual space perception * perspective * Mars-500 * size judgment * size constancy * confinement Subject RIV: AN - Psychology Impact factor: 2.168, year: 2014 http://dx.doi.org/10.3758/s13414-013-0594-y

  5. KSC Weather and Research

    Science.gov (United States)

    Maier, Launa; Huddleston, Lisa; Smith, Kristin

    2016-01-01

    This briefing outlines the history of Kennedy Space Center (KSC) Weather organization, past research sponsored or performed, current organization, responsibilities, and activities, the evolution of weather support, future technologies, and an update on the status of the buoys located offshore of Cape Canaveral Air Force Station and KSC.

  6. Nurturing Soft Skills Among High School Students Through Space Weather Competition

    Science.gov (United States)

    Abdullah, Mardina; Abd Majid, Rosadah; Bais, Badariah; Syaidah Bahri, Nor

    2016-07-01

    Soft skills fulfill an important role in shaping an individual's personality. It is of high importance for every student to acquire adequate skills beyond academic or technical knowledge. The objective of this project was to foster students' enthusiasm in space science and develop their soft skills such as; interpersonal communication, critical thinking and problem-solving, team work, lifelong learning and information management, and leadership skills. This is a qualitative study and the data was collected via group interviews. Soft skills development among high school students were nurtured through space weather competition in solar flare detection. High school students (16 to 17 years old) were guided by mentors consisting of science teachers to carry out this project based on a module developed by UKM's researchers. Students had to acquire knowledge on antenna development and construct the antenna with recyclable materials. They had to capture graphs and identify peaks that indicate solar flare. Their findings were compared to satellite data for verification. They also presented their work and their findings to the panel of judges. After observation, it can be seen that students' soft skills and interest in learning space science had become more positive after being involved in this project.

  7. Deep Space 2: The Mars Microprobe Mission

    Science.gov (United States)

    Smrekar, Suzanne; Catling, David; Lorenz, Ralph; Magalhães, Julio; Moersch, Jeffrey; Morgan, Paul; Murray, Bruce; Presley-Holloway, Marsha; Yen, Albert; Zent, Aaron; Blaney, Diana

    The Mars Microprobe Mission will be the second of the New Millennium Program's technology development missions to planetary bodies. The mission consists of two penetrators that weigh 2.4 kg each and are being carried as a piggyback payload on the Mars Polar Lander cruise ring. The spacecraft arrive at Mars on December 3, 1999. The two identical penetrators will impact the surface at ~190 m/s and penetrate up to 0.6 m. They will land within 1 to 10 km of each other and ~50 km from the Polar Lander on the south polar layered terrain. The primary objective of the mission is to demonstrate technologies that will enable future science missions and, in particular, network science missions. A secondary goal is to acquire science data. A subsurface evolved water experiment and a thermal conductivity experiment will estimate the water content and thermal properties of the regolith. The atmospheric density, pressure, and temperature will be derived using descent deceleration data. Impact accelerometer data will be used to determine the depth of penetration, the hardness of the regolith, and the presence or absence of 10 cm scale layers.

  8. The wide perspective on Mars-500 as an analog of deep space exploration: the Czech monograh

    Czech Academy of Sciences Publication Activity Database

    Stuchlíková, I.; Šolcová, Iva; Poláčková Šolcová, Iva; Mazehóová, Y.; Vinokhodova, A.; Gushin, V.

    2013-01-01

    Roč. 47, č. 4 (2013), s. 175-175 ISSN 0233-528X. [XIV. Conference on Space Biology and Aerospace Medicine. 28.10.2013-30.10.2013, Moskva] R&D Projects: GA ČR(CZ) GAP407/11/2226 Institutional support: RVO:68081740 Keywords : Mars-500 * group communication * resilience * motivation Subject RIV: AN - Psychology

  9. SEP Mission Design Space for Mars Orbiters

    Science.gov (United States)

    Woolley, Ryan C.; Nicholas, Austin K.

    2015-01-01

    The advancement of solar-electric propulsion (SEP) technologies and larger, light-weight solar arrays offer a tremendous advantage to Mars orbiters in terms of both mass and timeline flexibility. These advantages are multiplied for round-trip orbiters (e.g. potential Mars sample return) where a large total Delta V would be required. In this paper we investigate the mission design characteristics of mission concepts utilizing various combinations and types of SEP thrusters, solar arrays, launch vehicles, launch dates, arrival dates, etc. SEP allows for greater than 50% more mass delivered and launch windows of months to years. We also present the SEP analog to the ballistic Porkchop plot - the "Bacon" plot.

  10. Views from Space

    Science.gov (United States)

    Kitmacher, Gary H.

    2002-01-01

    Only in the last century have human beings flown in space and men and machines have explored the worlds of our solar system. Robots have gone to most of the our neighboring worlds, the valleys of Mars and the clouds and moons of Jupiter. Instruments like the Hubble Space Telescope have looked into deep space. Those of us on the earth have been able to participate as vicarious explorers through the records, and experiences and the photographs that have been returned. At the beginning of the space program hardly anyone thought of photographs from space as anything more than a branch of industrial photography. There were pictures of the spaceships, and launches and of astronauts in training, but these were all pictures taken on the ground. When John Glenn became America's first man in orbit, bringing a camera was an afterthought. An Ansco Autoset was purchased in a drug store and hastily modified so the astronaut could use it more easily while in his pressure suit. In 1962, everything that Glenn did was deemed an experiment. At the beginning of the program, no one knew for certain whether weightlessness would prevent a man from seeing, or from breathing, or from eating and swallowing. Photography was deemed nothing more than a recreational extra. Not only was little expected of those first pictures taken from space, but there was serious concern that taking pictures of other nations from orbit would be seen as an act of ill will and even one of war- as sovereign sensitive nations would resent having pictures taken by Americans orbiting overhead. A few years earlier, in 1957, in reaction to the Soviet launch of the first Sputnik satellite, scientists told congressman of the necessity of orbiting our own robot spacecraft-they predicted that one day we would take daily pictures of the world's weather. Congressman were incredulous. But space photography developed quickly. For security purposes, spy satellites took over many of the responsibilities we had depended upon

  11. Carbon Dioxide Control System for a Mars Space Suit Life Support System

    Science.gov (United States)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Copeland, Robert; Parker, amanda; Paul, Heather L.

    2010-01-01

    Carbon dioxide (CO2) control during Extravehicular Activities (EVAs) on Mars will be challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable metal oxide (MetOx) canisters weigh too much. Cycling bed systems and permeable membranes that are regenerable in space vacuum cannot vent on Mars due to the high partial pressure of CO2 in the atmosphere. Although sweep gas regeneration is under investigation, the feasibility, logistics penalties, and failure modes associated with this technique have not been fully determined. TDA Research, Inc. is developing a durable, high-capacity regenerable adsorbent that can remove CO2 from the space suit ventilation loop. The system design allows sorbent regeneration at or above 6 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the ventilation loop. Regeneration during EVA eliminates the consumable requirement related to the use of LiOH canisters and the mission duration limitations imposed by MetOx system. The concept minimizes the amount of consumable to be brought from Earth and makes the mission more affordable, while providing great operational flexibility during EVA. The feasibility of the concept has been demonstrated in a series of bench-scale experiments and a preliminary system analysis. Results indicate that sorbent regeneration can be accomplished by applying a 14 C temperature swing, while regenerating at 13 torr (well above the Martian atmospheric pressure), withstanding over 1,000 adsorption/regeneration cycles. This paper presents the latest results from these sorbent and system development efforts.

  12. Space Weather Magnetometer Set with Automated AC Spacecraft Field Correction for GEO-KOMPSAT-2A

    Science.gov (United States)

    Auster, U.; Magnes, W.; Delva, M.; Valavanoglou, A.; Leitner, S.; Hillenmaier, O.; Strauch, C.; Brown, P.; Whiteside, B.; Bendyk, M.; Hilgers, A.; Kraft, S.; Luntama, J. P.; Seon, J.

    2016-05-01

    Monitoring the solar wind conditions, in particular its magnetic field (interplanetary magnetic field) ahead of the Earth is essential in performing accurate and reliable space weather forecasting. The magnetic condition of the spacecraft itself is a key parameter for the successful performance of the magnetometer onboard. In practice a condition with negligible magnetic field of the spacecraft cannot always be fulfilled and magnetic sources on the spacecraft interfere with the natural magnetic field measured by the space magnetometer. The presented "ready-to-use" Service Oriented Spacecraft Magnetometer (SOSMAG) is developed for use on any satellite implemented without magnetic cleanliness programme. It enables detection of the spacecraft field AC variations on a proper time scale suitable to distinguish the magnetic field variations relevant to space weather phenomena, such as sudden increase in the interplanetary field or southward turning. This is achieved through the use of dual fluxgate magnetometers on a short boom (1m) and two additional AMR sensors on the spacecraft body, which monitor potential AC disturbers. The measurements of the latter sensors enable an automated correction of the AC signal contributions from the spacecraft in the final magnetic vector. After successful development and test of the EQM prototype, a flight model (FM) is being built for the Korean satellite Geo-Kompsat 2A, with launch foreseen in 2018.

  13. On the Stability of Deinoxanthin Exposed to Mars Conditions during a Long-Term Space Mission and Implications for Biomarker Detection on Other Planets

    Directory of Open Access Journals (Sweden)

    Stefan Leuko

    2017-09-01

    Full Text Available Outer space, the final frontier, is a hostile and unforgiving place for any form of life as we know it. The unique environment of space allows for a close simulation of Mars surface conditions that cannot be simulated as accurately on the Earth. For this experiment, we tested the resistance of Deinococcus radiodurans to survive exposure to simulated Mars-like conditions in low-Earth orbit for a prolonged period of time as part of the Biology and Mars experiment (BIOMEX project. Special focus was placed on the integrity of the carotenoid deinoxanthin, which may serve as a potential biomarker to search for remnants of life on other planets. Survival was investigated by evaluating colony forming units, damage inflicted to the 16S rRNA gene by quantitative PCR, and the integrity and detectability of deinoxanthin by Raman spectroscopy. Exposure to space conditions had a strong detrimental effect on the survival of the strains and the 16S rRNA integrity, yet results show that deinoxanthin survives exposure to conditions as they prevail on Mars. Solar radiation is not only strongly detrimental to the survival and 16S rRNA integrity but also to the Raman signal of deinoxanthin. Samples not exposed to solar radiation showed only minuscule signs of deterioration. To test whether deinoxanthin is able to withstand the tested parameters without the protection of the cell, it was extracted from cell homogenate and exposed to high/low temperatures, vacuum, germicidal UV-C radiation, and simulated solar radiation. Results obtained by Raman investigations showed a strong resistance of deinoxanthin against outer space and Mars conditions, with the only exception of the exposure to simulated solar radiation. Therefore, deinoxanthin proved to be a suitable easily detectable biomarker for the search of Earth-like organic pigment-containing life on other planets.

  14. Loss of Water to Space from Mars: Processes and Implications

    Science.gov (United States)

    Kass, D. M.

    2001-12-01

    One of the major sinks for water on Mars is the loss to space. This occurs via a complex series of processes that transport the individual atoms to the upper atmosphere, where several escape mechanisms remove them. Hydrogen and deuterium are lost primarily by Jeans escape. Non-thermal processes also remove H and D, but are only important in determining D loss at solar minimum under modern conditions. The present H loss rate is equivalent to the loss of 10-3~pr-\\micron~yr-1 of water. The loss of oxygen is more complicated. The three main processes are indirect (or ionospheric) sputtering, solar wind pickup of O+, and O2+ dissociative recombination. Their relative importance has varied over the history of Mars. The combined effect of the O loss processes is to remove a ~ 50~m global layer of water over the last 3.5 Gyr. Based on photochemical modeling, the loss of oxygen and hydrogen are balanced (over geological timescales) by a feedback process. During the early history of Mars, impact erosion and hydrodynamic blow-off may have removed significant water. But, it is difficult to estimate their quantitative effects. The transport of individual H, D and O atoms to the exosphere where they can escape is not completely understood. It occurs primarily via intermediate species, H2, HD, O2 and CO2. The H2 and HD are formed by photolysis of water and the odd hydrogen photochemistry. One open issue is the mechanism regulating the partitioning of D between HDO and HD (which controls the supply of D available for escape from the exosphere). The various loss processes isotopically enrich Martian water since the exospheric escape source region is depleted. Jeans escape and the transport from the lower atmosphere further fractionate hydrogen, the most useful isotopic system. Based on recent observations, the D/H fractionation factor, F ~ 0.02. Measurements of atmospheric water vapor indicate it is enriched in deuterium, with a D/H ratio ~ 5 times the terrestrial value. Since

  15. A Small Mission Concept to the Sun-Earth Lagrangian L5 Point for Innovative Solar, Heliospheric and Space Weather Science

    Science.gov (United States)

    Lavraud, B.; Liu, Y.; Segura, K.; He, J.; Qin, G.; Temmer, M.; Vial, J.-C.; Xiong, M.; Davies, J. A.; Rouillard, A. P.; hide

    2016-01-01

    We present a concept for a small mission to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science. The proposed INvestigation of Solar-Terrestrial Activity aNd Transients (INSTANT) mission is designed to identify how solar coronal magnetic fields drive eruptions, mass transport and particle acceleration that impact the Earth and the heliosphere. INSTANT is the first mission designed to (1) obtain measurements of coronal magnetic fields from space and (2) determine coronal mass ejection (CME) kinematics with unparalleled accuracy. Thanks to innovative instrumentation at a vantage point that provides the most suitable perspective view of the Sun-Earth system, INSTANT would uniquely track the whole chain of fundamental processes driving space weather at Earth. We present the science requirements, payload and mission profile that fulfill ambitious science objectives within small mission programmatic boundary conditions.

  16. Mars Mission Concepts: SAR and Solar Electric Propulsion

    Science.gov (United States)

    Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.

    2012-12-01

    Introduction: The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow (Models uniquely useful for exploration planning and science purposes. Since the SAR and the notional high-resolution stereo imaging system would be huge data volume producers - to maximize the science return we are currently considering the usage of laser communications systems; this notional spacecraft represents one pathway to evaluate the utility of laser communications in planetary exploration while providing useful science return.. Mission Concept: Using a common space craft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. SEP provides the greatest payload advantage albeit at the sacrifice of mission time. Our concept involves using a SEP enabled space craft (Boeing 702SP) with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Our concept of operations is to launch on May 5, 2018 using a launch vehicle with 2000kg launch capacity with a C3 of 7.4. After reaching Mars it takes 145 days to spiral down to a 250 km orbit above the surface of Mars when Mars SAR operations begin. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute the baseline science mission and conduct necessary Mars Sample Return Technology Demonstrations in Mars orbit on the same mission. An

  17. Red Dragon drill missions to Mars

    Science.gov (United States)

    Heldmann, Jennifer L.; Stoker, Carol R.; Gonzales, Andrew; McKay, Christopher P.; Davila, Alfonso; Glass, Brian J.; Lemke, Larry L.; Paulsen, Gale; Willson, David; Zacny, Kris

    2017-12-01

    We present the concept of using a variant of a Space Exploration Technologies Corporation (SpaceX) Dragon space capsule as a low-cost, large-capacity, near-term, Mars lander (dubbed ;Red Dragon;) for scientific and human precursor missions. SpaceX initially designed the Dragon capsule for flight near Earth, and Dragon has successfully flown many times to low-Earth orbit (LEO) and successfully returned the Dragon spacecraft to Earth. Here we present capsule hardware modifications that are required to enable flight to Mars and operations on the martian surface. We discuss the use of the Dragon system to support NASA Discovery class missions to Mars and focus in particular on Dragon's applications for drilling missions. We find that a Red Dragon platform is well suited for missions capable of drilling deeper on Mars (at least 2 m) than has been accomplished to date due to its ability to land in a powered controlled mode, accommodate a long drill string, and provide payload space for sample processing and analysis. We show that a Red Dragon drill lander could conduct surface missions at three possible targets including the ice-cemented ground at the Phoenix landing site (68 °N), the subsurface ice discovered near the Viking 2 (49 °N) site by fresh impact craters, and the dark sedimentary subsurface material at the Curiosity site (4.5 °S).

  18. Testing Realistic Disaster Scenarios for Space Weather: The Economic Impacts of Electricity Transmission Infrastructure Failure in the UK

    Science.gov (United States)

    Gibbs, M.; Oughton, E. J.; Hapgood, M. A.

    2017-12-01

    The socio-economic impacts of space weather have been under-researched, despite this threat featuring on the UK's National Risk Register. In this paper, a range of Realistic Disaster Scenarios due to failure in electricity transmission infrastructure are tested. We use regional Geomagnetically Induced Current (GIC) studies to identify areas in the UK high-voltage power system deemed to be high-risk. The potential level of disruption arising from a large geomagnetic disturbance in these `hot spots' on local economic activity is explored. Electricity is a necessary factor of production without which businesses cannot operate, so even short term power loss can cause significant loss of value. We utilise a spatially disaggregated approach that focuses on quantifying employment disruption by industrial sector, and relating this to direct Gross Value Added loss. We then aggregate this direct loss into a set of shocks to undertake macroeconomic modelling of different scenarios, to obtain the total economic impact which includes both direct and indirect supply chain disruption effects. These results are reported for a range of temporal periods, with the minimum increment being a one-hour blackout. This work furthers our understanding of the economic impacts of space weather, and can inform future reviews of the UK's National Risk Register. The key contribution of the paper is that the results can be used in the future cost-benefit analysis of investment in space weather forecasting.

  19. Psychosocial issues during an expedition to Mars

    Science.gov (United States)

    Kanas, Nick

    2014-10-01

    Much is known about psychological and interpersonal issues affecting astronauts participating in manned space missions near the Earth. But in a future long-distance, long-duration expedition to Mars, additional stressors will occur that will result in psychological, psychiatric, and interpersonal effects on the crew, both negative and positive. This paper will review what is known about important psychosocial issues in space and will extrapolate them to the scenario of a future manned space mission to Mars.

  20. Mars Oxygen In-Situ Resource Utilization Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) will be the first in-situ resource utilization (ISRU) technology demonstration on Mars. Competitively...

  1. Extremely Severe Space Weather and Geomagnetically Induced Currents in Regions with Locally Heterogeneous Ground Resistivity

    Science.gov (United States)

    Fujita, Shigeru; Kataoka, Ryuho; Pulkkinen, Antti; Watari, Shinichi

    2016-01-01

    Large geomagnetically induced currents (GICs) triggered by extreme space weather events are now regarded as one of the serious natural threats to the modern electrified society. The risk is described in detail in High-Impact, Low-Frequency Event Risk, A Jointly-Commissioned Summary Report of the North American Electric Reliability Corporation and the US Department of Energy's November 2009 Workshop, June 2010. For example, the March 13-14,1989 storm caused a large-scale blackout affecting about 6 million people in Quebec, Canada, and resulting in substantial economic losses in Canada and the USA (Bolduc 2002). Therefore, European and North American nations have invested in GIC research such as the Solar Shield project in the USA (Pulkkinen et al. 2009, 2015a). In 2015, the Japanese government (Ministry of Economy, Trade and Industry, METI) acknowledged the importance of GIC research in Japan. After reviewing the serious damages caused by the 2011 Tohoku-Oki earthquake, METI recognized the potential risk to the electric power grid posed by extreme space weather. During extreme events, GICs can be concerning even in mid- and low-latitude countries and have become a global issue.

  2. Real Time Space Weather Support for Chandra X-ray Observatory Operations

    Science.gov (United States)

    O'Dell, S. L.; Miller, S.; Minow, J. I.; Wolk, S.; Aldcroft, T. L.; Spitzbart, B. D.; Swartz, D. A.

    2012-12-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth's radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (real-time data provided by NOAA's Space Weather Prediction Center. This presentation will discuss radiation mitigation against proton damage, including models and real-time data sources used to protect the ACIS detector

  3. Space weather at planet Venus during the forthcoming BepiColombo flybys

    Science.gov (United States)

    McKenna-Lawlor, S.; Jackson, B.; Odstrcil, D.

    2018-03-01

    The BepiColombo (BC) Mission which will be launched in 2018, will include during its Cruise Phase two flybys of Venus and five Mercury flybys. It will then enter a one Earth year orbit about Mercury (with a possible one-year extension) during which two spacecraft, one provided by ESA (MPO) and one provided by JAXA (MMO), will perform both autonomous and coordinated observations of the Hermean environment at various separations. The measurements will take place during the minimum of solar cycle 24 and the rise of solar cycle 25. At the start of the minimum of solar cycle 23, four major flares, each associated with the production of MeV particle radiation and CME activity occurred. Predictions of the HAFv.2 model of the arrival of particle radiation and a travelling shock at Venus on 6 December 2006 were verified by in-situ measurements made aboard Venus Express (VEX) by the ASPERA 4 instrument. Interplanetary scintillation observations, as well as the ENLIL 3-D MHD model when employed separately or in combination, enable the making of predictions of the solar wind density and speed at various locations in the inner heliosphere. Both methods, which outdate HAFv.2, are utilized in the present paper to predict (retrospectively) the arrival of the flare related, interplanetary propagating shock recorded at Venus on 6 December 2006 aboard VEX with a view to putting in place the facility to make very reliable space weather predictions for BC during both its Cruise Phase and when in the Hermean environment itself. The successful matching of the December 2006 predictions with in-situ signatures recorded aboard Venus Express provide confidence that the predictive methodology to be adopted will be appropriate to provide space weather predictions for BepiColombo during its Venus flybys and throughout the mission.

  4. Carrington-L5: The UK/US Space Weather Operational Mission.

    Science.gov (United States)

    Bisi, M. M.; Trichas, M.

    2015-12-01

    Airbus Defence and Space (UK) have carried out a study for an operational L5 space weather mission, in collaboration with RAL, the UK Met Office, UCL and Imperial College London. The study looked at the user requirements for an operational mission, a model instrument payload, and a mission/spacecraft concept. A particular focus is cost effectiveness and timelineness of the data, suitable for operational forecasting needs. The study focussed on a mission at L5 assuming that a US mission to L1 will already occur, on the basis that L5 offers the greatest benefit for SWE predictions. The baseline payload has been selected to address all MOSWOC/SWPC priorities using UK/US instruments, consisting of: a heliospheric imager, coronagraph, EUV imager, magnetograph, magnetometer, solar wind analyser and radiation monitor. The platform is based on extensive re-use from Airbus' past missions to minimize the cost and a Falcon-9 launcher has been selected on the same basis. A schedule analysis shows that the earliest launch could occur in 2020, assuming Phase A KO in 2015. The study team have selected the name "Carrington" for the mission, reflecting the UK's proud history in this domain.

  5. An Investigation of Interplanetary Structures for Solar Cycles 23 and 24 and their Space Weather Consequences.

    Science.gov (United States)

    Sultan, M. S.; Jules, A.; Marchese, P.; Damas, M. C.

    2017-12-01

    It is crucial to study space weather because severe interplanetary conditions can cause geomagnetic storms that may damage both space- and ground-based technological systems such as satellites, communication systems, and power grids. Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are the primary drivers of geomagnetic storms. As they travel through interplanetary space and reach geospace, their spatial structures change which can result in various geomagnetic effects. Therefore, studying these drivers and their structures is essential in order to better understand and mitigate their impact on technological systems, as well as to forecast geomagnetic storms. In this study, over 150 storms were cross-checked for both solar cycles (SC) 23 and 24. This data has revealed the most common interplanetary structures, i.e., sheath (Sh); magnetic cloud following a shock front (sMC); sheath region and magnetic cloud (Sh/MC); and corotating interaction regions (CIRs). Furthermore, plasma parameters as well as variation in the intensity and duration of storms resulting from different interplanetary structures are studied for their effect on geomagnetically induced currents (GICs), as well as for their effect on power grids. Although preliminary results for SC 23 indicate that storm intensity may play a dominant role for GICs, duration might also be a factor, albeit smaller. Results from both SC 23 and 24 are analyzed and compared, and should lead to an enhanced understanding of space weather consequences of interplanetary structures and their possible forecasting.

  6. Probabilistic Space Weather Forecasting: a Bayesian Perspective

    Science.gov (United States)

    Camporeale, E.; Chandorkar, M.; Borovsky, J.; Care', A.

    2017-12-01

    Most of the Space Weather forecasts, both at operational and research level, are not probabilistic in nature. Unfortunately, a prediction that does not provide a confidence level is not very useful in a decision-making scenario. Nowadays, forecast models range from purely data-driven, machine learning algorithms, to physics-based approximation of first-principle equations (and everything that sits in between). Uncertainties pervade all such models, at every level: from the raw data to finite-precision implementation of numerical methods. The most rigorous way of quantifying the propagation of uncertainties is by embracing a Bayesian probabilistic approach. One of the simplest and most robust machine learning technique in the Bayesian framework is Gaussian Process regression and classification. Here, we present the application of Gaussian Processes to the problems of the DST geomagnetic index forecast, the solar wind type classification, and the estimation of diffusion parameters in radiation belt modeling. In each of these very diverse problems, the GP approach rigorously provide forecasts in the form of predictive distributions. In turn, these distributions can be used as input for ensemble simulations in order to quantify the amplification of uncertainties. We show that we have achieved excellent results in all of the standard metrics to evaluate our models, with very modest computational cost.

  7. Advanced Mars Water Acquisition System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Mars Water Acquisition System (AMWAS) recovers and purifies water from Mars soils for oxygen and fuel production, life support, food production, and...

  8. Study of counter current flow limitation model of MARS-KS and SPACE codes under Dukler's air/water flooding test conditions

    International Nuclear Information System (INIS)

    Lee, Won Woong; Kim, Min Gil; Lee, Jeong Ik; Bang, Young Seok

    2015-01-01

    In particular, CCFL(the counter current flow limitation) occurs in components such as hot leg, downcomer annulus and steam generator inlet plenum during LOCA which is possible to have flows in two opposite directions. Therefore, CCFL is one of the thermal-hydraulic models which has significant effect on the reactor safety analysis code performance. In this study, the CCFL model will be evaluated with MARS-KS based on two-phase two-field governing equations and SPACE code based on two-phase three-field governing equations. This study will be conducted by comparing MARS-KS code which is being used for evaluating the safety of a Korean Nuclear Power Plant and SPACE code which is currently under assessment for evaluating the safety of the designed nuclear power plant. In this study, comparison of the results of liquid upflow and liquid downflow rate for different gas flow rate from two code to the famous Dukler's CCFL experimental data are presented. This study will be helpful to understand the difference between system analysis codes with different governing equations, models and correlations, and further improving the accuracy of system analysis codes. In the nuclear reactor system, CCFL is an important phenomenon for evaluating the safety of nuclear reactors. This is because CCFL phenomenon can limit injection of ECCS water when CCFL occurs in components such as hot leg, downcomer annulus or steam generator inlet plenum during LOCA which is possible to flow in two opposite directions. Therefore, CCFL is one of the thermal-hydraulic models which has significant effect on the reactor safety analysis code performance. In this study, the CCFL model was evaluated with MARS-KS and SPACE codes for studying the difference between system analysis codes with different governing equations, models and correlations. This study was conducted by comparing MARS-KS and SPACE code results of liquid upflow and liquid downflow rate for different gas flow rate to the famous Dukler

  9. Clay Mineralogy and Crystallinity as a Climatic Indicator: Evidence for Both Cold and Temperate Conditions on Early Mars

    Science.gov (United States)

    Horgan, B.; Rutledge, A.; Rampe, E. B.

    2015-01-01

    Surface weathering on Earth is driven by precipitation (rain/snow melt). Here we summarize the influence of climate on minerals produced during surface weathering, based on terrestrial literature and our new laboratory analyses of weathering products from glacial analog sites. By comparison to minerals identified in likely surface environments on Mars, we evaluate the implications for early martian climate.

  10. Measurements of Forbush decreases at Mars: both by MSL on ground and by MAVEN in orbit

    Science.gov (United States)

    Guo, Jingnan; Lillis, Robert; Wimmer-Schweingruber, Robert F.; Zeitlin, Cary; Simonson, Patrick; Rahmati, Ali; Posner, Arik; Papaioannou, Athanasios; Lundt, Niklas; Lee, Christina O.; Larson, Davin; Halekas, Jasper; Hassler, Donald M.; Ehresmann, Bent; Dunn, Patrick; Böttcher, Stephan

    2018-04-01

    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory's (MSL) Curiosity rover, has been measuring ground level particle fluxes along with the radiation dose rate at the surface of Mars since August 2012. Similar to neutron monitors at Earth, RAD sees many Forbush decreases (FDs) in the galactic cosmic ray (GCR) induced surface fluxes and dose rates. These FDs are associated with coronal mass ejections (CMEs) and/or stream/corotating interaction regions (SIRs/CIRs). Orbiting above the Martian atmosphere, the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has also been monitoring space weather conditions at Mars since September 2014. The penetrating particle flux channels in the solar energetic particle (SEP) instrument onboard MAVEN can also be employed to detect FDs. For the first time, we study the statistics and properties of a list of FDs observed in-situ at Mars, seen both on the surface by MSL/RAD and in orbit detected by the MAVEN/SEP instrument. Such a list of FDs can be used for studying interplanetary coronal mass ejections (ICME) propagation and SIR evolution through the inner heliosphere. The magnitudes of different FDs can be well-fitted by a power-law distribution. The systematic difference between the magnitudes of the FDs within and outside the Martian atmosphere may be mostly attributed to the energy-dependent modulation of the GCR particles by both the pass-by ICMEs/SIRs and the Martian atmosphere.

  11. Assessment of the Space Weather Effect on Human Health in the Arctic Zone Using the Example of Tiksi Settlement

    Directory of Open Access Journals (Sweden)

    Alena A. Strekalovskaya

    2018-03-01

    Full Text Available In order to assess the space weather effect on the well-being and health of people with cardiovascular pathology in Arctic conditions, we carried out the processing and analysis of space weather parameters and the electronic database of patients with cardiovascular diseases at the Central District Hospital in Tiksi settlement (the Republic of Sakha (Yakutia (RS(Y. Patients visited the polyclinic or requested an ambulance because their health had deteriorated. As a result of our research, we found some conjunctions of trends in the change in geomagnetic disturbances (Kp-index and the number of patients' visits to medical institutions for arterial hypertension (AH in 2015, 2016 and 2017. It can therefore be concluded that geomagnetic disturbances have an impact on the cardiovascular system of a person living at high latitudes.

  12. The Effect of Topography on the Exposure of Airless Bodies to Space Radiation: Phobos Case Study

    Science.gov (United States)

    Stubbs, T. J.; Wang, Y.; Guo, J.; Schwadron, N.; Cooper, J. F.; Wimmer-Schweingruber, R. F.; Spence, H. E.; Jordan, A.; Sturner, S. J.; Glenar, D. A.; Wilson, J. K.

    2017-12-01

    The surfaces of airless bodies, such as the Moon and Phobos (innermost Martian moon), are directly exposed to the surrounding space environment, including energetic particle radiation from both the ever-present flux of galactic cosmic rays (GCRs) and episodic bursts of solar energetic particles (SEPs). Characterizing this radiation exposure is critical to our understanding of the evolution of these bodies from space weathering processes, such as radiation damage of regolith, radiolysis of organics and volatiles, and dielectric breakdown. Similarly, this also has important implications for the long-term radiation exposure of future astronauts and equipment on the surface. In this study, the focus is the influence of Phobian topography on the direct exposure of Phobos to space radiation. For a given point on its surface, this exposure depends on: (i) the solid angle subtended by the sky, (ii) the solid angle of the sky blocked by Mars, and (iii) the energy and angular distributions of ambient energetic particle populations. The sky solid angle, determined using the elevation of the local horizon calculated from a digital elevation model (DEM), can be significantly reduced around topographic lows, such as crater floors, or increased near highs like crater rims. The DEM used in this study was produced using images from the Mars Express High Resolution Stereo Camera (HRSC), and has the highest available spatial resolution ( 100m). The proximity of Phobos to Mars means the Martian disk appears large in the Phobian sky, but this only effects the moon's near side due its tidally locked orbit. Only isotropic distributions of energetic particles are initially considered, which is typically a reasonable assumption for GCRs and sometimes for SEPs. Observations of the radiation environments on Mars by Curiosity's Radiation Assessment Detector (RAD), and the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter (LRO) at the Moon

  13. Advanced Communication and Networking Technologies for Mars Exploration

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeff; Agre, Jonathan R.; Clare, Loren P.; Yan, Tsun-Yee

    2001-01-01

    Next-generation Mars communications networks will provide communications and navigation services to a wide variety of Mars science vehicles including: spacecraft that are arriving at Mars, spacecraft that are entering and descending in the Mars atmosphere, scientific orbiter spacecraft, spacecraft that return Mars samples to Earth, landers, rovers, aerobots, airplanes, and sensing pods. In the current architecture plans, the communication services will be provided using capabilities deployed on the science vehicles as well as dedicated communication satellites that will together make up the Mars network. This network will evolve as additional vehicles arrive, depart or end their useful missions. Cost savings and increased reliability will result from the ability to share communication services between missions. This paper discusses the basic architecture that is needed to support the Mars Communications Network part of NASA's Space Science Enterprise (SSE) communications architecture. The network may use various networking technologies such as those employed in the terrestrial Internet, as well as special purpose deep-space protocols to move data and commands autonomously between vehicles, at disparate Mars vicinity sites (on the surface or in near-Mars space) and between Mars vehicles and earthbound users. The architecture of the spacecraft on-board local communications is being reconsidered in light of these new networking requirements. The trend towards increasingly autonomous operation of the spacecraft is aimed at reducing the dependence on resource scheduling provided by Earth-based operators and increasing system fault tolerance. However, these benefits will result in increased communication and software development requirements. As a result, the envisioned Mars communications infrastructure requires both hardware and protocol technology advancements. This paper will describe a number of the critical technology needs and some of the ongoing research

  14. Sustainable Mars Sample Return

    Science.gov (United States)

    Alston, Christie; Hancock, Sean; Laub, Joshua; Perry, Christopher; Ash, Robert

    2011-01-01

    The proposed Mars sample return mission will be completed using natural Martian resources for the majority of its operations. The system uses the following technologies: In-Situ Propellant Production (ISPP), a methane-oxygen propelled Mars Ascent Vehicle (MAV), a carbon dioxide powered hopper, and a hydrogen fueled balloon system (large balloons and small weather balloons). The ISPP system will produce the hydrogen, methane, and oxygen using a Sabatier reactor. a water electrolysis cell, water extracted from the Martian surface, and carbon dioxide extracted from the Martian atmosphere. Indigenous hydrogen will fuel the balloon systems and locally-derived methane and oxygen will fuel the MAV for the return of a 50 kg sample to Earth. The ISPP system will have a production cycle of 800 days and the estimated overall mission length is 1355 days from Earth departure to return to low Earth orbit. Combining these advanced technologies will enable the proposed sample return mission to be executed with reduced initial launch mass and thus be more cost efficient. The successful completion of this mission will serve as the next step in the advancement of Mars exploration technology.

  15. Ionospheric Electron Densities at Mars: Comparison of Mars Express Ionospheric Sounding and MAVEN Local Measurement

    Czech Academy of Sciences Publication Activity Database

    Němec, F.; Morgan, D. D.; Fowler, C.M.; Kopf, A.J.; Andersson, L.; Gurnett, D. A.; Andrews, D.J.; Truhlík, Vladimír

    2017-01-01

    Roč. 122, č. 12 (2017), s. 12393-12405 E-ISSN 2169-9402 Institutional support: RVO:68378289 Keywords : Mars * ionosphere * MARSIS * Mars Express * MAVEN * radar sounding Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) http://onlinelibrary.wiley.com/doi/10.1002/2017JA024629/full

  16. Flashline Mars Arctic Research Station (FMARS) 2009 Crew Perspectives

    Science.gov (United States)

    Ferrone, Kristine; Cusack, Stacy L.; Garvin, Christy; Kramer, Walter Vernon; Palaia, Joseph E., IV; Shiro, Brian

    2010-01-01

    A crew of six "astronauts" inhabited the Mars Society s Flashline Mars Arctic Research Station (FMARS) for the month of July 2009, conducting a simulated Mars exploration mission. In addition to the various technical achievements during the mission, the crew learned a vast amount about themselves and about human factors relevant to a future mission to Mars. Their experiences, detailed in their own words, show the passion of those with strong commitment to space exploration and detail the human experiences for space explorers including separation from loved ones, interpersonal conflict, dietary considerations, and the exhilaration of surmounting difficult challenges.

  17. Mars Orbiter Camera Views the 'Face on Mars' - Best View from Viking

    Science.gov (United States)

    1998-01-01

    Shortly after midnight Sunday morning (5 April 1998 12:39 AM PST), the Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft successfully acquired a high resolution image of the 'Face on Mars' feature in the Cydonia region. The image was transmitted to Earth on Sunday, and retrieved from the mission computer data base Monday morning (6 April 1998). The image was processed at the Malin Space Science Systems (MSSS) facility 9:15 AM and the raw image immediately transferred to the Jet Propulsion Laboratory (JPL) for release to the Internet. The images shown here were subsequently processed at MSSS.The picture was acquired 375 seconds after the spacecraft's 220th close approach to Mars. At that time, the 'Face', located at approximately 40.8o N, 9.6o W, was 275 miles (444 km) from the spacecraft. The 'morning' sun was 25o above the horizon. The picture has a resolution of 14.1 feet (4.3 meters) per pixel, making it ten times higher resolution than the best previous image of the feature, which was taken by the Viking Mission in the mid-1970's. The full image covers an area 2.7 miles (4.4 km) wide and 25.7 miles (41.5 km) long.This Viking Orbiter image is one of the best Viking pictures of the area Cydonia where the 'Face' is located. Marked on the image are the 'footprint' of the high resolution (narrow angle) Mars Orbiter Camera image and the area seen in enlarged views (dashed box). See PIA01440-1442 for these images in raw and processed form.Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  18. Exploring Regolith Depth and Cycling on Mars

    Science.gov (United States)

    Fassett, C.; Needham, D. H.; Watters, W. A.; Hundal, C.

    2017-12-01

    Regolith or loose sediment is ubiquitous on the surface of Mars, but our understanding of how this fragmental layer forms and evolves with time is limited. In particular, how regolith thickness varies spatially on Mars is not well known. A common perspective is to start from the canonical model for lunar regolith, which is not unreasonable, given that both Mars and the Moon are heavily cratered surfaces. However, this lunar-like paradigm is not supported by observations of Mars from recent missions. On Mars, bedrock exposures are more common and bedrock is generally closer to the surface than on the Moon, and the processes modifying the regolith differ substantially on the two bodies. Moreover, boulders on the Moon have much shorter lifetimes than on Mars, so boulders are much less common on the lunar surface. The sediment transport processes infilling craters differs dramatically on these two bodies as well. On Mars, fine-grained sediment is efficiently transported (advectively) by wind and trapped in craters rapidly after they form. Lateral transport of lunar regolith is comparatively inefficient and dominated by slow impact-driven (diffusive) transport of regolith. The goal of this contribution is to discuss observational constraints on Mars' regolith depth, and to place observations into a model for Mars landform evolution and regolith cycle. Our operating hypothesis is that the inter-crater surface on Mars is comparatively starved of fine-grained sediment (compared to the Moon), because transport and trapping of fines in craters out-competes physical weathering. Moreover, thick sedimentary bodies on Mars often get (weakly) cemented and lithified due to interactions with fluids, even in the most recent, Amazonian epoch. This is consistent with what is observed at the MER and MSL landing sites and what is known from the SNC meteorites.

  19. Optimizing Mars Sphere of Influence Maneuvers for NASA's Evolvable Mars Campaign

    Science.gov (United States)

    Merrill, Raymond G.; Komar, D. R.; Chai, Patrick; Qu, Min

    2016-01-01

    NASA's Human Spaceflight Architecture Team is refining human exploration architectures that will extend human presence to the Martian surface. For both Mars orbital and surface missions, NASA's Evolvable Mars Campaign assumes that cargo and crew can be delivered repeatedly to the same destination. Up to this point, interplanetary trajectories have been optimized to minimize the total propulsive requirements of the in-space transportation systems, while the pre-deployed assets and surface systems are optimized to minimize their respective propulsive requirements separate from the in-space transportation system. There is a need to investigate the coupled problem of optimizing the interplanetary trajectory and optimizing the maneuvers within Mars's sphere of influence. This paper provides a description of the ongoing method development, analysis and initial results of the effort to resolve the discontinuity between the interplanetary trajectory and the Mars sphere of influence trajectories. Assessment of Phobos and Deimos orbital missions shows the in-space transportation and crew taxi allocations are adequate for missions in the 2030s. Because the surface site has yet to be selected, the transportation elements must be sized to provide enough capability to provide surface access to all landing sites under consideration. Analysis shows access to sites from elliptical parking orbits with a lander that is designed for sub-periapsis landing location is either infeasible or requires expensive orbital maneuvers for many latitude ranges. In this case the locus of potential arrival perigee vectors identifies the potential maximum north or south latitudes accessible. Higher arrival velocities can decrease reorientation costs and increase landing site availability. Utilizing hyperbolic arrival and departure vectors in the optimization scheme will increase transportation site accessibility and provide more optimal solutions.

  20. Launching to the Moon, Mars, and Beyond

    Science.gov (United States)

    Dumbacher, Daniel L.

    2006-01-01

    The U.S. Vision for Space Exploration, announced in 2004, calls on NASA to finish constructing the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return to the Moon and go on the Mars. By exploring space, America continues the tradition of great nations who mastered the Earth, air, and sea, and who then enjoyed the benefits of increased commerce and technological advances. The progress being made today is part of the next chapter in America's history of leadership in space. In order to reach the Moon and Mars within the planned timeline and also within the allowable budget, NASA is building upon the best of proven space transportation systems. Journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, the Ares V Cargo Launch Vehicle, the Orion Crew Exploration Vehicle, and the Lunar Surface Access Module. What America learns in reaching for the Moon will teach astronauts how to prepare for the first human footprints on Mars. While robotic science may reveal information about the nature of hydrogen on the Moon, it will most likely tale a human being with a rock hammer to find the real truth about the presence of water, a precious natural resource that opens many possibilities for explorers. In this way, the combination of astronauts using a variety of tools and machines provides a special synergy that will vastly improve our understanding of Earth's cosmic neighborhood.

  1. Low Cost Mars Sample Return Utilizing Dragon Lander Project

    Science.gov (United States)

    Stoker, Carol R.

    2014-01-01

    We studied a Mars sample return (MSR) mission that lands a SpaceX Dragon Capsule on Mars carrying sample collection hardware (an arm, drill, or small rover) and a spacecraft stack consisting of a Mars Ascent Vehicle (MAV) and Earth Return Vehicle (ERV) that collectively carry the sample container from Mars back to Earth orbit.

  2. All-sky-imaging capabilities for ionospheric space weather research using geomagnetic conjugate point observing sites

    Science.gov (United States)

    Martinis, C.; Baumgardner, J.; Wroten, J.; Mendillo, M.

    2018-04-01

    Optical signatures of ionospheric disturbances exist at all latitudes on Earth-the most well known case being visible aurora at high latitudes. Sub-visual emissions occur equatorward of the auroral zones that also indicate periods and locations of severe Space Weather effects. These fall into three magnetic latitude domains in each hemisphere: (1) sub-auroral latitudes ∼40-60°, (2) mid-latitudes (20-40°) and (3) equatorial-to-low latitudes (0-20°). Boston University has established a network of all-sky-imagers (ASIs) with sites at opposite ends of the same geomagnetic field lines in each hemisphere-called geomagnetic conjugate points. Our ASIs are autonomous instruments that operate in mini-observatories situated at four conjugate pairs in North and South America, plus one pair linking Europe and South Africa. In this paper, we describe instrument design, data-taking protocols, data transfer and archiving issues, image processing, science objectives and early results for each latitude domain. This unique capability addresses how a single source of disturbance is transformed into similar or different effects based on the unique "receptor" conditions (seasonal effects) found in each hemisphere. Applying optical conjugate point observations to Space Weather problems offers a new diagnostic approach for understanding the global system response functions operating in the Earth's upper atmosphere.

  3. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars

    NARCIS (Netherlands)

    McLennan, S.M.; Anderson, R.B.; Bell III, J.F.; Bridges, J.C.; Calef III, F.; Campbell, J.L.; Clark, B.C.; Clegg, S.; Conrad, P.; Cousin, A.; Des Marais, D.J.; Dromart, G.; Dyar, M.D.; Edgar, L.A.; Ehlmann, B.L.; Fabre, C.; Forni, O.; Gasnault, O.; Gellert, R.; Gordon, S.; Grant, J.A.; Grotzinger, J.P.; Gupta, S.; Herkenhoff, K.E.; Hurowitz, J.A.; King, P.L.; Mouélic, S.L.; Leshin, L.A.; Léveillé, R.; Lewis, K.W.; Mangold, N.; Maurice, S.; Ming, D.W.; Morris, R.V.; Nachon, M.; Newsom, H.E.; Ollila, A.M.; Perrett, G.M.; Rice, M.S.; Schmidt, M.E.; Schwenzer, S.P.; Stack, K.; Stolper, E.M.; Sumner, D.Y.; Treiman, A.H.; VanBommel, S.; Vaniman, D.T.; Vasavada, A.; Wiens, R.C.; Yingst, R.A.; ten Kate, Inge Loes|info:eu-repo/dai/nl/292012217

    2014-01-01

    Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold,

  4. Space qualification of an automotive microcontroller for the DREAMS-P/H pressure and humidity instrument on board the ExoMars 2016 Schiaparelli lander

    Science.gov (United States)

    Nikkanen, T.; Schmidt, W.; Harri, A.-M.; Genzer, M.; Hieta, M.; Haukka, H.; Kemppinen, O.

    2015-10-01

    Finnish Meteorological Institute (FMI) has developed a novel kind of pressure and humidity instrument for the Schiaparelli Mars lander, which is a part of the ExoMars 2016 mission of the European Space Agency (ESA) [1]. The DREAMS-P pressure instrument and DREAMS-H humidity instrument are part of the DREAMS science package on board the lander. DREAMS-P (seen in Fig. 1 and DREAMS-H were evolved from earlier planetary pressure and humidity instrument designs by FMI with a completely redesigned control and data unit. Instead of using the conventional approach of utilizing a space grade processor component, a commercial off the shelf microcontroller was selected for handling the pressure and humidity measurements. The new controller is based on the Freescale MC9S12XEP100 16-bit automotive microcontroller. Coordinated by FMI, a batch of these microcontroller units (MCUs) went through a custom qualification process in order to accept the component for spaceflight on board a Mars lander.

  5. Mars Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA’s Mars Exploration Program (MEP) calls for a series of highly ambitious missions over the next decade and beyond. The overall goals of the MEP must be...

  6. Carrington-L5: The UK/US Operational Space Weather Monitoring Mission

    Science.gov (United States)

    Trichas, Markos; Gibbs, Mark; Harrison, Richard; Green, Lucie; Eastwood, Jonathan; Bentley, Bob; Bisi, Mario; Bogdanova, Yulia; Davies, Jackie; D'Arrigo, Paolo; Eyles, Chris; Fazakerley, Andrew; Hapgood, Mike; Jackson, David; Kataria, Dhiren; Monchieri, Emanuele; Windred, Phil

    2015-06-01

    Airbus Defence and Space (UK) has carried out a study to investigate the possibilities for an operational space weather mission, in collaboration with the Met Office, RAL, MSSL and Imperial College London. The study looked at the user requirements for an operational mission, a model instrument payload, and a mission/spacecraft concept. A particular focus is cost effectiveness and timelineness of the data, suitable for 24/7 operational forecasting needs. We have focussed on a mission at L5 assuming that a mission to L1 will already occur, on the basis that L5 (Earth trailing) offers the greatest benefit for the earliest possible warning on hazardous SWE events and the most accurate SWE predictions. The baseline payload has been selected to cover all UK Met Office/NOAA's users priorities for L5 using instruments with extensive UK/US heritage, consisting of: heliospheric imager, coronograph, magnetograph, magnetometer, solar wind analyser and radiation monitor. The platform and subsystems are based on extensive re-use from past Airbus Defence and Space spacecraft to minimize the development cost and a Falcon-9 launcher has been selected on the same basis. A schedule analysis shows that the earliest launch could be achieved by 2020, assuming Phase A kick-off in 2015-2016. The study team have selected the name "Carrington" for the mission, reflecting the UK's proud history in this domain.

  7. Transportation-Driven Mars Surface Operations Supporting an Evolvable Mars Campaign

    Science.gov (United States)

    Toups, Larry; Brown, Kendall; Hoffman, Stephen J.

    2015-01-01

    This paper describes the results of a study evaluating options for supporting a series of human missions to a single Mars surface destination. In this scenario the infrastructure emplaced during previous visits to this site is leveraged in following missions. The goal of this single site approach to Mars surface infrastructure is to enable "Steady State" operations by at least 4 crew for up to 500 sols at this site. These characteristics, along with the transportation system used to deliver crew and equipment to and from Mars, are collectively known as the Evolvable Mars Campaign (EMC). Information in this paper is presented in the sequence in which it was accomplished. First, a logical buildup sequence of surface infrastructure was developed to achieve the desired "Steady State" operations on the Mars surface. This was based on a concept of operations that met objectives of the EMC. Second, infrastructure capabilities were identified to carry out this concept of operations. Third, systems (in the form of conceptual elements) were identified to provide these capabilities. This included top-level mass, power and volume estimates for these elements. Fourth, the results were then used in analyses to evaluate three options (18t, 27t, and 40t landed mass) of Mars Lander delivery capability to the surface. Finally, Mars arrival mass estimates were generated based upon the entry, descent, and landing requirements for inclusion in separate assessments of in-space transportation capabilities for the EMC.

  8. Suited versus unsuited analog astronaut performance using the Aouda.X space suit simulator: the DELTA experiment of MARS2013.

    Science.gov (United States)

    Soucek, Alexander; Ostkamp, Lutz; Paternesi, Roberta

    2015-04-01

    Space suit simulators are used for extravehicular activities (EVAs) during Mars analog missions. Flight planning and EVA productivity require accurate time estimates of activities to be performed with such simulators, such as experiment execution or traverse walking. We present a benchmarking methodology for the Aouda.X space suit simulator of the Austrian Space Forum. By measuring and comparing the times needed to perform a set of 10 test activities with and without Aouda.X, an average time delay was derived in the form of a multiplicative factor. This statistical value (a second-over-second time ratio) is 1.30 and shows that operations in Aouda.X take on average a third longer than the same operations without the suit. We also show that activities predominantly requiring fine motor skills are associated with larger time delays (between 1.17 and 1.59) than those requiring short-distance locomotion or short-term muscle strain (between 1.10 and 1.16). The results of the DELTA experiment performed during the MARS2013 field mission increase analog mission planning reliability and thus EVA efficiency and productivity when using Aouda.X.

  9. Recent Progress of Solar Weather Forecasting at Naoc

    Science.gov (United States)

    He, Han; Wang, Huaning; Du, Zhanle; Zhang, Liyun; Huang, Xin; Yan, Yan; Fan, Yuliang; Zhu, Xiaoshuai; Guo, Xiaobo; Dai, Xinghua

    The history of solar weather forecasting services at National Astronomical Observatories, Chinese Academy of Sciences (NAOC) can be traced back to 1960s. Nowadays, NAOC is the headquarters of the Regional Warning Center of China (RWC-China), which is one of the members of the International Space Environment Service (ISES). NAOC is responsible for exchanging data, information and space weather forecasts of RWC-China with other RWCs. The solar weather forecasting services at NAOC cover short-term prediction (within two or three days), medium-term prediction (within several weeks), and long-term prediction (in time scale of solar cycle) of solar activities. Most efforts of the short-term prediction research are concentrated on the solar eruptive phenomena, such as flares, coronal mass ejections (CMEs) and solar proton events, which are the key driving sources of strong space weather disturbances. Based on the high quality observation data of the latest space-based and ground-based solar telescopes and with the help of artificial intelligence techniques, new numerical models with quantitative analyses and physical consideration are being developed for the predictions of solar eruptive events. The 3-D computer simulation technology is being introduced for the operational solar weather service platform to visualize the monitoring of solar activities, the running of the prediction models, as well as the presenting of the forecasting results. A new generation operational solar weather monitoring and forecasting system is expected to be constructed in the near future at NAOC.

  10. Ionosphere Waves Service (IWS) - a problem-oriented tool in ionosphere and Space Weather research produced by POPDAT project

    Science.gov (United States)

    Ferencz, Csaba; Lizunov, Georgii; Crespon, François; Price, Ivan; Bankov, Ludmil; Przepiórka, Dorota; Brieß, Klaus; Dudkin, Denis; Girenko, Andrey; Korepanov, Valery; Kuzmych, Andrii; Skorokhod, Tetiana; Marinov, Pencho; Piankova, Olena; Rothkaehl, Hanna; Shtus, Tetyana; Steinbach, Péter; Lichtenberger, János; Sterenharz, Arnold; Vassileva, Any

    2014-05-01

    In the frame of the FP7 POPDAT project the Ionosphere Waves Service (IWS) has been developed and opened for public access by ionosphere experts. IWS is forming a database, derived from archived ionospheric wave records to assist the ionosphere and Space Weather research, and to answer the following questions: How can the data of earlier ionospheric missions be reprocessed with current algorithms to gain more profitable results? How could the scientific community be provided with a new insight on wave processes that take place in the ionosphere? The answer is a specific and unique data mining service accessing a collection of topical catalogs that characterize a huge number of recorded occurrences of Whistler-like Electromagnetic Wave Phenomena, Atmosphere Gravity Waves, and Traveling Ionosphere Disturbances. IWS online service (http://popdat.cbk.waw.pl) offers end users to query optional set of predefined wave phenomena, their detailed characteristics. These were collected by target specific event detection algorithms in selected satellite records during database buildup phase. Result of performed wave processing thus represents useful information on statistical or comparative investigations of wave types, listed in a detailed catalog of ionospheric wave phenomena. The IWS provides wave event characteristics, extracted by specific software systems from data records of the selected satellite missions. The end-user can access targets by making specific searches and use statistical modules within the service in their field of interest. Therefore the IWS opens a new way in ionosphere and Space Weather research. The scientific applications covered by IWS concern beyond Space Weather also other fields like earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations.

  11. Space Weather Research in the Equatorial Region: A Philosophical Reinforcement

    Science.gov (United States)

    Chukwuma, Victor; Odunaike, Rasaki; Laoye, John

    Investigations using radio waves reflected from the ionosphere, at high-and mid-latitudes indicate that ionospheric absorption can strongly increase following geomagnetic storms; which appears to suggest some definite relationship between ionospheric radio wave absorption and geomagnetic storms at these latitudes. However, corresponding earlier studies in the equatorial region did not appear to show any explicit relationship between ionospheric radio wave absorption and geomagnetic storm activity. This position appeared acceptable to the existing scientific paradigm, until in an act of paradigm shift, by a change of storm selection criteria, some more recent space weather investigations in the low latitudes showed that ionospheric radio wave absorption in the equatorial region clearly increases after intense storms. Given that these results in the equatorial region stood against the earlier results, this paper presently attempts to highlight their philosophical underpinning and posit that they constitute a scientific statement.

  12. Europe goes to Mars - preparations are well under way

    Science.gov (United States)

    2001-04-01

    carefully selected site on Isidis Planitia, a plain just north of the equator near where the ancient, cratered southern highlands meet the younger, smooth northern lowlands. Beagle 2 will complete its mission in about six months. The Mars Express orbiter instruments will: * Image the entire surface at high resolution (10m/pixel) and selected areas at super resolution (2m/pixel) (HRSC instrument) * Produce a map of the mineral composition of the surface at 100m resolution (OMEGA instrument) * Map the composition of the atmosphere and determine its global circulation (PFS instrument) * Determine the structure of the sub-surface to a depth of a few kilometres (MARSIS instrument) * Determine the water vapour and ozone in the atmosphere (SPICAM instrument) * Determine the interaction of the atmosphere with the solar wind (ASPERA instrument and MaRS experiment) (see below for list of full instrument names, acronyms and Principal Investigators) The Beagle 2 lander will: * Determine the geology and the mineral and chemical composition of the landing site * Search for life signatures (exobiology) * Study the weather and climate Mars Express will provide unique investigations that will contribute to an understanding of many of the unknowns about Mars. Here are a few: * If Mars really was warm and wet during its early history, where did the water go? Some may have been lost to space and some may be buried underground. ASPERA will measure water loss to space and MARSIS is the only instrument planned for any mission with the capability of looking for water or ice down to a depth of a few kilometres. The presence of underground water would have a considerable impact on the prospects for future manned missions to the planet. * If there was water could there have been, or still be, life? Beagle 2 will scoop up soil and rock samples and analyse them there and then for some of the key chemical signatures of life. The results will be far more telling than anything yet found in Martian

  13. 'Endurance' Courtesy of Mars Express

    Science.gov (United States)

    2004-01-01

    NASA's Mars Exploration Rover Opportunity used its panoramic camera to capture this false-color image of the interior of 'Endurance Crater' on the rover's 188th martian day (Aug. 4, 2004). The image data were relayed to Earth by the European Space Agency's Mars Express orbiter. The image was generated from separate frames using the cameras 750-, 530- and 480-nanometer filters.

  14. Mars 2024/2026 Pathfinder Mission: Mars Architectures, Systems, & Technologies for Exploration and Resources

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate In Situ Resource Utilization (ISRU) sub-systems and examine advanced capabilities and technologies to verify Mars 2024 Forward architecture precursor...

  15. How severe space weather can disrupt global supply chains

    Science.gov (United States)

    Schulte in den Bäumen, H.; Moran, D.; Lenzen, M.; Cairns, I.; Steenge, A.

    2014-10-01

    Coronal mass ejections (CMEs) strong enough to create electromagnetic effects at latitudes below the auroral oval are frequent events that could soon have substantial impacts on electrical grids. Modern society's heavy reliance on these domestic and international networks increases our susceptibility to such a severe space-weather event. Using a new high-resolution model of the global economy, we simulate the economic impact of strong CMEs for three different planetary orientations. We account for the economic impacts within the countries directly affected, as well as the post-disaster economic shock in partner economies linked by international trade. For a 1989 Quebec-like event, the global economic impacts would range from USD 2.4 to 3.4 trillion over a year. Of this total economic shock, about 50% would be felt in countries outside the zone of direct impact, leading to a loss in global Gross Domestic Product (GDP) of 3.9 to 5.6%. The global economic damage is of the same order as wars, extreme financial crisis and estimated for future climate change.

  16. Mars Earth Return Vehicle (MERV) Propulsion Options

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.; Burke, Laura; Fincannon, James; Warner, Joe; Williams, Glenn; Parkey, Thomas; Colozza, Tony; Fittje, Jim; Martini, Mike; hide

    2010-01-01

    The COMPASS Team was tasked with the design of a Mars Sample Return Vehicle. The current Mars sample return mission is a joint National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) mission, with ESA contributing the launch vehicle for the Mars Sample Return Vehicle. The COMPASS Team ran a series of design trades for this Mars sample return vehicle. Four design options were investigated: Chemical Return /solar electric propulsion (SEP) stage outbound, all-SEP, all chemical and chemical with aerobraking. The all-SEP and Chemical with aerobraking were deemed the best choices for comparison. SEP can eliminate both the Earth flyby and the aerobraking maneuver (both considered high risk by the Mars Sample Return Project) required by the chemical propulsion option but also require long low thrust spiral times. However this is offset somewhat by the chemical/aerobrake missions use of an Earth flyby and aerobraking which also take many months. Cost and risk analyses are used to further differentiate the all-SEP and Chemical/Aerobrake options.

  17. Don Quixote Pond: A Small Scale Model of Weathering and Salt Accumulation

    Science.gov (United States)

    Englert, P.; Bishop, J. L.; Patel, S. N.; Gibson, E. K.; Koeberl, C.

    2015-01-01

    The formation of Don Quixote Pond in the North Fork of Wright Valley, Antarctica, is a model for unique terrestrial calcium, chlorine, and sulfate weathering, accumulation, and distribution processes. The formation of Don Quixote Pond by simple shallow and deep groundwater contrasts more complex models for Don Juan Pond in the South Fork of Wright Valley. Our study intends to understand the formation of Don Quixote Pond as unique terrestrial processes and as a model for Ca, C1, and S weathering and distribution on Mars.

  18. Monitoring jonosfere i svemirskog vremena u Bosni i Hercegovini : Monitoring of ionosphere and space weather in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Džana Horozović

    2015-12-01

    Full Text Available Zbog svoje disperzivne prirode, jonosfera uzrokuje kašnjenje koda, odnosno ubrzanje faze signala Globalnih navigacijskih satelitskih sistema - GNSS. Usprkos napretku metoda GNSS pozicioniranja, jonosferska refrakcija je još uvijek jedan od najvećih izvora pogrešaka geodetskog pozicioniranja i navigacije. Različiti fenomeni svemirskog vremena, kao: solarni vjetar, geomagnetna oluja, solarna radijacija, može oštetiti GNSS satelite, dalekovode i elektrodistributivnu mrežu, itd. Zato je važno ustanoviti metode istraživanja i monitoringa svemirskog vremena. Istraživanje jonosfere i svemirskog vremena je predmet ovog rada. Opisan je postupak konstruiranja SID (engl. sudden ionospheric disturbances – iznenadne jonosferske smetnje monitora. Analiza je pokazala da je jonosferska monitoring stanica u Sarajevu SRJV_ION 0436 sposobna otkriti pojačano zračenje. : Due to its dispersive nature, ionosphere causes a group delay or phase acceleration of the signals from Global navigation satellite systems - GNSS. Despite the progress of GNSS positioning methods, the ionospheric refraction is still one of the greatest source of the errors in the geodetic positioning and navigation. Different phenomenons oft he space weather: solar wind, geomagnetic storm, solar radiation, can damage GNSS, and electric power distribution networks but That is why it's important to establish research and monitoring methods of the space weather. The subject of this paper is the investigation of ionosphere and space weather. Procedure of constructing a SID (engl. Sudden ionospheric disturbances monitor station are described. The analysis showed that ionosphere monitoring station in Sarajevo, SRJV_ION 0436, was able to detect increased solar radiation.

  19. A small mission concept to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science

    Czech Academy of Sciences Publication Activity Database

    Lavraud, B.; Liu, Y.; Segura, K.; He, J.; Qin, G.; Temmer, M.; Vial, J. C.; Xiong, M.; Davies, J. A.; Rouillard, A. P.; Pinto, R.; Auchere, F.; Harrison, R. A.; Eyles, C.; Gan, W.; Lamy, P.; Xia, L.; Eastwood, J. P.; Kong, L.; Wang, J.; Wimmer-Schweingruber, R. F.; Zhang, S.; Zong, Q.; Souček, Jan; An, J.; Přech, J.; Zhang, A.; Rochus, P.; Bothmer, V.; Janvier, M.; Maksimovic, M.; Escoubet, C. P.; Kilpua, E. K. J.; Tappin, J.; Vainio, R.; Poedts, S.; Dunlop, M. W.; Savani, N.; Gopalswamy, N.; Bale, S. D.; Howard, T.; DeForest, C.; Webb, D.; Lugaz, N.; Fuselier, S. A.; Dalmasse, K.; Tallineau, J.; Vranken, D.; Fernández, J. G.

    2016-01-01

    Roč. 146, August (2016), s. 171-185 ISSN 1364-6826 R&D Projects: GA ČR(CZ) GA14-31899S; GA MŠk(CZ) LH15304 Institutional support: RVO:68378289 Keywords : space mission * coronal mass ejections * instrumentation * space weather Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.326, year: 2016 http://www.sciencedirect.com/science/article/pii/S1364682616301456

  20. First MARS Outpost: Development Considerations and Concepts

    Science.gov (United States)

    Bell, L.

    2002-01-01

    The Sasakawa International Center for Space Architecture (SICSA) is undertaking a multi-year research and design study that is exploring near and long-term commercial space development opportunities. The central goal of this activity is to conceptualize a scenario of sequential, integrated private enterprise initiatives that can carry humankind forward to Mars. This presentation highlights planning considerations and design concepts for establishing a first settlement on Mars. The outpost would support surface missions lasting up to about 500 days and would serve as the initial stage of a larger and continuously operational development which would utilize Mars resources to be less reliant on materials from Earth. Key elements of this first stage mission development sequence include a new heavy-lift Earth-to-orbit launch vehicle; a plasma- drive Mars transit vehicle; habitat modules for crews in transit to and from Mars; "hard" and "inflatable" surface habitats and laboratories; a mobile power unit; a spacecraft to assist orbital assembly; and vehicles to lift crews off the Mars surface and land them safely back on Earth from LEO. SICSA's space development approach differs in fundamental ways from conventional NASA-sponsored initiatives. First, virtually all baseline planning assumptions are influenced by the private sector-driven nature of an approach that aims to avoid all possible reliance upon government financing, agendas and schedules. In this regard, any involvements with NASA or the space agencies of other countries would be premised upon mutual public-corporate partnership benefits rather than upon federal contract awards, management and control. Another potential difference relates to program philosophy. Unlike Apollo Program "sprint" missions which culminated with footprints and flagpoles on the Moon, the aim is to realize sustainable and continuing planetary exploration and development progress. This goal can be advanced through approaches that

  1. The Role of the Photogeologic Mapping in the Morocco 2013 Mars Analog Field Simulation (Austrian Space Forum)

    Science.gov (United States)

    Losiak, Anna; Orgel, Csilla; Moser, Linda; MacArthur, Jane; Gołębiowska, Izabela; Wittek, Steffen; Boyd, Andrea; Achorner, Isabella; Rampey, Mike; Bartenstein, Thomas; Jones, Natalie; Luger, Ulrich; Sans, Alejandra; Hettrich, Sebastian

    2013-04-01

    The MARS2013 mission: The Austrian Space Forum together with multiple scientific partners will conduct a Mars analog field simulation. The project takes place between 1st and 28th of February 2013 in the northern Sahara near Erfoud. During the simulation a field crew (consisting of suited analog astronauts and a support team) will conduct several experiments while being managed by the Mission Support Center (MSC) located in Innsbruck, Austria. The aim of the project is to advance preparation of the future human Mars missions by testing: 1) the mission design with regard to operational and engineering challenges (e.g., how to work efficiently with introduced time delay in communication between field team and MSC), 2) scientific instruments (e.g., rovers) and 3) human performance in conditions analogous to those that will be encountered on Mars. The Role of Geological Mapping: Remote Science Support team (RSS) is responsible for processing science data obtained in the field. The RSS is also in charge of preparing a set of maps to enable planning activities of the mission (including the development of traverses) [1, 2]. The usage of those maps will increase the time-cost efficiency of the entire mission. The RSS team members do not have any prior knowledge about the area where the simulation is taking place and the analysis is fully based on remote sensing satellite data (Landsat, GoogleEarth) and a digital elevation model (ASTER GDEM)from the orbital data. The maps design: The set of maps (covering area 5 km X 5 km centered on the Mission Base Camp) was designed to simplify the process of site selection for the daily traverse planning. Additionally, the maps will help to accommodate the need of the field crew for the increased autonomy in the decision making process, forced by the induced time delay between MSC and "Mars". The set of provided maps should allow the field team to orientate and navigate in the explored areas as well as make informed decisions about

  2. Frost on Mars

    Science.gov (United States)

    2008-01-01

    This image shows bluish-white frost seen on the Martian surface near NASA's Phoenix Mars Lander. The image was taken by the lander's Surface Stereo Imager on the 131st Martian day, or sol, of the mission (Oct. 7, 2008). Frost is expected to continue to appear in images as fall, then winter approach Mars' northern plains. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Current status and future of space development; Uchu kaihatsu no genjo to shorai

    Energy Technology Data Exchange (ETDEWEB)

    Matokawa, Y. [Institute of the Space and Astronautical Science, Tokyo (Japan)

    1998-05-01

    Space development has an aspect of contributing to livelihoods. Various types of satellites, such as those for weather forecasting, TV broadcasting, international communication (telephone and internet systems), and GPS-aided car navigation, have been already launched. Space science of the 20th century roughly tells the history of some 15 billion years from the big bang to birth of mankind as a spectacular story. The international space station, construction of which is to be started in 1998, should drastically enlarge man`s experiences in the universe. The space activity plans for the future draw various dreams, such as spaceplane, lunar base, solar generator satellite, Mars base, space colony, skyhook, and so on. Dreams of mankind have been eventually realized in the past history. It is time to deliberately assess what are meant by the space development of the 20th century, and to review ideal directions of the space development for the next 100 or 1000 years. 6 figs.

  4. AIAA Educator Academy - Mars Rover Curriculum: A 6 week multidisciplinary space science based curriculum

    Science.gov (United States)

    Henriquez, E.; Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.

    2013-12-01

    The Curiosity mission has captured the imagination of children, as NASA missions have done for decades. The AIAA and the University of Houston have developed a flexible curriculum program that offers children in-depth science and language arts learning culminating in the design and construction of their own model rover. The program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students learn to research Mars in order to pick a science question about Mars that is of interest to them. They learn principles of spacecraft design in order to build a model of a Mars rover to carry out their mission on the surface of Mars. The model is a mock-up, constructed at a minimal cost from art supplies. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the structure and organization of the 6 week curriculum. A set of 30 new 5E lesson plans have been written to support this project as a classroom activity. The challenge of developing interactive

  5. Weird Weather Tales of Astronomical and Atmospheric Anomalies

    CERN Document Server

    Seargent, David A J

    2012-01-01

    Have you ever heard the story of the tornado that lifted a man’s wallet right from his pants pocket? What about the myth of the Min-Min light in Australia?  Do you have a story about seeing the “Green Flash” or want an explanation of the mysterious Sun Dogs? Weird Weather: Tales of Astronomical and Atmospheric Anomalies is about the strange, unusual, and inexplicable events that take place in the air and sky. These include meteors that appear inside a darkened house, ghost lights that follow lone travelers, lightning emerging from patches of fog, and much more. Many of these climatic brainteasers occur within Earth’s skies, but there are parallel curiosities on other worlds, including: lightning on Venus, methane spouts on Titan, thunderstorms twice the size of Earth on Saturn, whirlwinds and dust storms on Mars , and auroras on Jupiter! Just as atmosphere and outer space are not separated by a sharp boundary, so the subject of this book is not confined to the skies. Earth is the way it is because of...

  6. The Small Mars System

    Science.gov (United States)

    Fantino, E.; Grassi, M.; Pasolini, P.; Causa, F.; Molfese, C.; Aurigemma, R.; Cimminiello, N.; de la Torre, D.; Dell'Aversana, P.; Esposito, F.; Gramiccia, L.; Paudice, F.; Punzo, F.; Roma, I.; Savino, R.; Zuppardi, G.

    2017-08-01

    The Small Mars System is a proposed mission to Mars. Funded by the European Space Agency, the project has successfully completed Phase 0. The contractor is ALI S.c.a.r.l., and the study team includes the University of Naples ;Federico II;, the Astronomical Observatory of Capodimonte and the Space Studies Institute of Catalonia. The objectives of the mission are both technological and scientific, and will be achieved by delivering a small Mars lander carrying a dust particle analyser and an aerial drone. The former shall perform in situ measurements of the size distribution and abundance of dust particles suspended in the Martian atmosphere, whereas the latter shall demonstrate low-altitude flight in the rarefied planetary environment. The mission-enabling technology is an innovative umbrella-like heat shield, known as IRENE, developed and patented by ALI. The mission is also a technological demonstration of the shield in the upper atmosphere of Mars. The core characteristics of SMS are the low cost (120 M€) and the small size (320 kg of wet mass at launch, 110 kg at landing), features which stand out with respect to previous Mars landers. To comply with them is extremely challenging at all levels, and sets strict requirements on the choice of the materials, the sizing of payloads and subsystems, their arrangement inside the spacecraft and the launcher's selection. In this contribution, the mission and system concept and design are illustrated and discussed. Special emphasis is given to the innovative features and to the challenges faced in the development of the work.

  7. Nuclear interactions of cosmic rays with the Mars atmosphere and rocks according to data of the Mars-5 space vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Surkov, Yu A; Moskaleva, L P; Kharyukova, V P; Borodin, A M [AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii

    1976-03-01

    Gamma-spectra of Mars have been analyzed measured by the ''Mars-5'' interplanetary station at the altitude of approximately 200 km over the planet. A model spectrum of the Mars atmosphere gamma-radiation obtained earlier has been employed for obtaining cosmo-chemical information of the Mars rocks. In the energy range of gamma radiation Esub(..gamma..)(>=)2.6 MeV, in which no contribution of gamma radiation of natural radioisotopes is present, the best agreement has been obtained for the spectrum of gamma-radiation induced by cosmic rays in rocks of the type of earthly basalts.

  8. Seasonal and Static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science

    Science.gov (United States)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-01-01

    We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k 2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k 2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k 2 of 0.1697 +/-0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C 30 and, for the first time, C 50 . Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C 30 for approx.1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 60–80) than previous solutions.

  9. Effect of solar wind plasma parameters on space weather

    International Nuclear Information System (INIS)

    Rathore, Balveer S.; Gupta, Dinesh C.; Kaushik, Subhash C.

    2015-01-01

    Today's challenge for space weather research is to quantitatively predict the dynamics of the magnetosphere from measured solar wind and interplanetary magnetic field (IMF) conditions. Correlative studies between geomagnetic storms (GMSs) and the various interplanetary (IP) field/plasma parameters have been performed to search for the causes of geomagnetic activity and develop models for predicting the occurrence of GMSs, which are important for space weather predictions. We find a possible relation between GMSs and solar wind and IMF parameters in three different situations and also derived the linear relation for all parameters in three situations. On the basis of the present statistical study, we develop an empirical model. With the help of this model, we can predict all categories of GMSs. This model is based on the following fact: the total IMF B total can be used to trigger an alarm for GMSs, when sudden changes in total magnetic field B total occur. This is the first alarm condition for a storm's arrival. It is observed in the present study that the southward B z component of the IMF is an important factor for describing GMSs. A result of the paper is that the magnitude of B z is maximum neither during the initial phase (at the instant of the IP shock) nor during the main phase (at the instant of Disturbance storm time (Dst) minimum). It is seen in this study that there is a time delay between the maximum value of southward B z and the Dst minimum, and this time delay can be used in the prediction of the intensity of a magnetic storm two-three hours before the main phase of a GMS. A linear relation has been derived between the maximum value of the southward component of B z and the Dst, which is Dst = (−0.06) + (7.65) B z +t. Some auxiliary conditions should be fulfilled with this, for example the speed of the solar wind should, on average, be 350 km s −1 to 750 km s −1 , plasma β should be low and, most importantly, plasma temperature

  10. Jesús and María in the jungle: an essay on possibility and constraint in the third-shift third space

    Science.gov (United States)

    Richardson Bruna, Katherine

    2009-03-01

    One hundred years ago, Upton Sinclair, in The Jungle, exposed the deplorable working conditions of eastern European immigrants in the meatpacking houses of Chicago. The backdrop of this article is the new Jungle of the 21st century—the hog plants of the rural Midwest. Here I speak to the lives of the Mexican workers they employ, and, more specifically, the science-learning experiences and aspirations of third-shifters, Jesús and María. I use these students' stories as an opportunity to examine the take-up, in education, of the concept of hybridity, and, more particularly, to interrogate what I have come to regard as the "third space fetish." My principle argument is that Bhabha's understanding of liberatory Third Space has been distorted, in education, through teacher-centered and power-neutral multicultural discourse. I call for a more robust approach to hybridity in science education research, guided by the lessons of possibility and constraint contained in Jesús' and María's third-shift third space lives.

  11. Anthropogenic Space Weather

    Science.gov (United States)

    Gombosi, T. I.; Baker, D. N.; Balogh, A.; Erickson, P. J.; Huba, J. D.; Lanzerotti, L. J.

    2017-11-01

    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release experiments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.

  12. Assessing Group Dynamics in a Mars Simulation

    Science.gov (United States)

    Bishop, S. L.

    2007-10-01

    International interest in psychosocial functioning generally and issues of group and inter-group function for space crews has increased as focus has shifted towards longer duration spaceflight and, particularly, the issues involved in sending a human crew to Mars (Kanas, et al., 2001; Dawson, 2002). Planning documents for a human mission to Mars such as the NASA Design Reference Mission (DRM 1.0) emphasize the need for adaptability of crewmembers and autonomy in the crew as a whole (Hoffman and Kaplan, 1997). Similarly a major study by the International Space University (ISU, 1991) emphasized the need for autonomy and initiative for a Mars crew given that many of the scenarios that will be encountered on Mars cannot be rehearsed on earth and given the lack of any realistic possibility for rescue of the crew. This research project was only one subset of data collected during the larger AustroMars Expedition at the Mars Desert Research Facility (MDRS) in 2006. The participating crew comprises part of a multi-year investigation on teams utilizing the MDRS facility. The program of research has included numerous researchers since 2002 with a progressive evolution of key foci addressing stress, personality, coping, adaptation, cognitive functioning, and group identity assessed across the duration period of the individual missions.

  13. "The Moon Village and Journey to Mars enable each other"

    Science.gov (United States)

    Beldavs, Vidvuds

    2016-07-01

    NASA has proposed the Journey to Mars, a multi-decade collaborative international effort to establish permanent manned operations on the Martian surface as well as in orbit, most likely on the Martian moons. NASA's proposed the Journey to Mars has come under politically motivated attack as illusory, as beyond NASA's capabilities and anticipated NASA budgets in the foreseeable future. [1]. Other concerns come from various communities of researchers concerned about securing sustaining funding for their largely robotic research missions. ESA's Director General Dietrich Woerner's proposed Moon Village faces challenges ESA member states concerned about sustaining funding for projects already underway or in planning. Both the Journey to Mars and Moon Village raise the question - who will or who can pay for it? The 2013 US Research Council study suggested potential benefits to a mission to Mars from activities on the Moon [2]. The NASA funded Flexible Lunar Architecture study came to similar conclusions using a different methodology [3]. A logistics analysis by an MIT team suggested the possibility of cost savings through use of lunar water for propellant to reach Mars [4]. The highly promising private-public financing approach has been examined for potential application to funding the costs of reaching Mars [5]. Insofar as the feasibility of utilization of lunar water has not been determined these conclusions are speculative. This study will examine the following alternative scenarios for establishing sustainable, manned operations on Mars and permanent manned operations on the Moon: A. NASA-led Journey to Mars without an ESA-led Moon Village B. ESA-led Moon Village without NASA-led Journey to Mars C. NASA-led Journey to Mars with an ESA-led Moon Village D. Shared Infrastructure scenario - NASA-led Journey to Mars with ESA-led Moon Village and with a potential JAXA-led space-based-solar power initiative E. Space Industrialization scenario - Shared Infrastructure scenario

  14. Possible links between extreme levels of space weather changes and human health state in middle latitudes: direct and indirect indicators

    Science.gov (United States)

    Safaraly-Oghlu Babayev, Elchin

    The Sun is the main driver of space weather. The possibility that solar activity variations and related changes in the Earth's magnetosphere can affect human life and health has been debated for many decades. This problem is being studied extensively in the late 20th and early 21st centuries and it is still being contradictory in some cases. The relations between space weather changes and the human health have global implications, but they are especially significant for habitants living at high geomagnetic latitudes where the geomagnetic disturbances have larger amplitudes. Nevertheless, the relevant researches are also important for humans living at any geomagnetic latitudes with different levels of geomagnetic activity; recent researches show that weak geomagnetic disturbances can also have adverse effects. Unfortunately, limited comparison of results of investigations on possible effects to humans from geomagnetic activity exists between studies conducted in high, middle and low latitudes. Knowledge about the relationship between solar and geomagnetic activity and the human health would allow to get better prepared beforehand for any future geomagnetic event and its impacts anywhere. For these purposes there are conducted collaborative (jointly with scientists from Israel, Bulgaria, Russia and Belgium) and cross-disciplinary space weather studies in the Azerbaijan National Academy of Sciences for revealing possible effects of solar, geomagnetic and cosmic ray variability on certain technological, biological and ecological systems in different phases of solar cycle 23. This paper describes some recently obtained results of the complex (theoretical, experimental and statistical) studies of influence of the periodical and aperiodical changes of solar, geomagnetic and cosmic ray activities upon human cardio-health state as well as human physiological and psycho-emotional state. It also covers the conclusions of studies on influence of violent solar events and severe

  15. New Technologies for Weather Accident Prevention

    Science.gov (United States)

    Stough, H. Paul, III; Watson, James F., Jr.; Daniels, Taumi S.; Martzaklis, Konstantinos S.; Jarrell, Michael A.; Bogue, Rodney K.

    2005-01-01

    Weather is a causal factor in thirty percent of all aviation accidents. Many of these accidents are due to a lack of weather situation awareness by pilots in flight. Improving the strategic and tactical weather information available and its presentation to pilots in flight can enhance weather situation awareness and enable avoidance of adverse conditions. This paper presents technologies for airborne detection, dissemination and display of weather information developed by the National Aeronautics and Space Administration (NASA) in partnership with the Federal Aviation Administration (FAA), National Oceanic and Atmospheric Administration (NOAA), industry and the research community. These technologies, currently in the initial stages of implementation by industry, will provide more precise and timely knowledge of the weather and enable pilots in flight to make decisions that result in safer and more efficient operations.

  16. Planet Mars story of another world

    CERN Document Server

    Forget, François; Lognonné, Philippe

    2008-01-01

    Give an insight of Mars by adopting an outline based on history rather than on subtopic (atmosphere, surface, interior). This work looks at its evolution, and incorporates the results from the space missions of Mars Express, Spirit and Opportunity. It also examines its formation from the ashes of dead stars, more than 4 5 billion years ago.

  17. Acid Sulfate Alteration on Mars

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    aqueous formation of sulfate-bearing phases under acidic conditions on the surface of Mars including (1) sulfuric acid weathering of basaltic materials; (2) oxidative weathering of ultramafic igneous rocks containing sulfides; (3) acid fog weathering of basaltic materials, and (4) near-neutral pH subsurface solutions rich in Fe2(+) that were rapidly oxidized to Fe3(+), which produced excess acidity as iron was oxidized on exposure to O2 or photo-oxidized by ultraviolet radiation at the martian surface. Next, we briefly describe evidence for these hypothesis.

  18. Silica Retention and Enrichment in Open-System Chemical Weathering on Mars

    Science.gov (United States)

    Yen, A. S.; Ming, D. W.; Gellert, R.; Clark, B. C.; Mittlefehldt, D. W.; Morris, R. V.; Thompson, L. M.; Berger, J.

    2015-01-01

    Chemical signatures of weathering are evident in the Alpha Particle X-ray Spectrometer (APXS) datasets from Gusev Crater, Meridiani Planum, and Gale Crater. Comparisons across the landing sites show consistent patterns indicating silica retention and/or enrichment in open-system aqueous alteration.

  19. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  20. Microbiological cleanliness of the Mars Exploration Rover spacecraft

    Science.gov (United States)

    Newlin, L.; Barengoltz, J.; Chung, S.; Kirschner, L.; Koukol, R.; Morales, F.

    2002-01-01

    Planetary protection for Mars missions is described, and the approach being taken by the Mars Exploration Rover Project is discussed. Specific topics include alcohol wiping, dry heat microbial reduction, microbiological assays, and the Kennedy Space center's PHSF clean room.

  1. The Future of Ground Magnetometer Arrays in Support of Space Weather Monitoring and Research

    Science.gov (United States)

    Engebretson, Mark; Zesta, Eftyhia

    2017-11-01

    A community workshop was held in Greenbelt, Maryland, on 5-6 May 2016 to discuss recommendations for the future of ground magnetometer array research in space physics. The community reviewed findings contained in the 2016 Geospace Portfolio Review of the Geospace Section of the Division of Atmospheric and Geospace Science of the National Science Foundation and discussed the present state of ground magnetometer arrays and possible pathways for a more optimal, robust, and effective organization and scientific use of these ground arrays. This paper summarizes the report of that workshop to the National Science Foundation (Engebretson & Zesta, as well as conclusions from two follow-up meetings. It describes the current state of U.S.-funded ground magnetometer arrays and summarizes community recommendations for changes in both organizational and funding structures. It also outlines a variety of new and/or augmented regional and global data products and visualizations that can be facilitated by increased collaboration among arrays. Such products will enhance the value of ground-based magnetometer data to the community's effort for understanding of Earth's space environment and space weather effects.

  2. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    Science.gov (United States)

    Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

    food production for human thus rely on local Martian resources. A tree growing subsystem will also give an interesting feature to Martian agriculture. In addition to producing excess oxygen, trees’ rigid body will provide structural material, which can be used for habitat construction. The combination of hyper-thermophilic aerobic composting, plant cultivation, and tree growing with utilizing in-situ natural local resources available on Mars can provide important elements which can enable space agriculture on Mars.

  3. Ionosphere Waves Service (IWS – a problem-oriented tool in ionosphere and Space Weather research produced by POPDAT project

    Directory of Open Access Journals (Sweden)

    Ferencz Csaba

    2014-05-01

    Full Text Available In the frame of the FP7 POPDAT project the Ionosphere Waves Service (IWS has been developed and opened for public access by ionosphere experts. IWS is forming a database, derived from archived ionospheric wave records to assist the ionosphere and Space Weather research, and to answer the following questions: How can the data of earlier ionospheric missions be reprocessed with current algorithms to gain more profitable results? How could the scientific community be provided with a new insight on wave processes that take place in the ionosphere? The answer is a specific and unique data mining service accessing a collection of topical catalogs that characterize a huge number of recorded occurrences of Whistler-like Electromagnetic Wave Phenomena, Atmosphere Gravity Waves, and Traveling Ionosphere Disturbances. IWS online service (http://popdat.cbk.waw.pl offers end users to query optional set of predefined wave phenomena, their detailed characteristics. These were collected by target specific event detection algorithms in selected satellite records during database buildup phase. Result of performed wave processing thus represents useful information on statistical or comparative investigations of wave types, listed in a detailed catalog of ionospheric wave phenomena. The IWS provides wave event characteristics, extracted by specific software systems from data records of the selected satellite missions. The end-user can access targets by making specific searches and use statistical modules within the service in their field of interest. Therefore the IWS opens a new way in ionosphere and Space Weather research. The scientific applications covered by IWS concern beyond Space Weather also other fields like earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations.

  4. Automation, robotics, and inflight training for manned Mars missions

    Science.gov (United States)

    Holt, Alan C.

    1986-01-01

    The automation, robotics, and inflight training requirements of manned Mars missions will be supported by similar capabilities developed for the space station program. Evolutionary space station onboard training facilities will allow the crewmembers to minimize the amount of training received on the ground by providing extensive onboard access to system and experiment malfunction procedures, maintenance procedures, repair procedures, and associated video sequences. Considerable on-the-job training will also be conducted for space station management, mobile remote manipulator operations, proximity operations with the Orbital Maneuvering Vehicle (and later the Orbit Transfer Vehicle), and telerobotics and mobile robots. A similar approach could be used for manned Mars mission training with significant additions such as high fidelity image generation and simulation systems such as holographic projection systems for Mars landing, ascent, and rendezvous training. In addition, a substantial increase in the use of automation and robotics for hazardous and tedious tasks would be expected for Mars mission. Mobile robots may be used to assist in the assembly, test and checkout of the Mars spacecraft, in the handling of nuclear components and hazardous chemical propellent transfer operations, in major spacecraft repair tasks which might be needed (repair of a micrometeroid penetration, for example), in the construction of a Mars base, and for routine maintenance of the base when unmanned.

  5. A Vision for the Exploration of Mars: Robotic Precursors Followed by Humans to Mars Orbit in 2033

    Science.gov (United States)

    Sellers, Piers J.; Garvin, James B.; Kinney, Anne L.; Amato, Michael J.; White, Nicholas E.

    2012-01-01

    The reformulation of the Mars program gives NASA a rare opportunity to deliver a credible vision in which humans, robots, and advancements in information technology combine to open the deep space frontier to Mars. There is a broad challenge in the reformulation of the Mars exploration program that truly sets the stage for: 'a strategic collaboration between the Science Mission Directorate (SMD), the Human Exploration and Operations Mission Directorate (HEOMD) and the Office of the Chief Technologist, for the next several decades of exploring Mars'.Any strategy that links all three challenge areas listed into a true long term strategic program necessitates discussion. NASA's SMD and HEOMD should accept the President's challenge and vision by developing an integrated program that will enable a human expedition to Mars orbit in 2033 with the goal of returning samples suitable for addressing the question of whether life exists or ever existed on Mars

  6. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  7. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  8. Mars MetNet Mission Payload Overview

    Science.gov (United States)

    Harri, A.-M.; Haukka, H.; Alexashkin, S.; Guerrero, H.; Schmidt, W.; Genzer, M.; Vazquez, L.

    2012-09-01

    A new kind of planetary exploration mission for Mars is being developed in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission [1] is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide crucial scientific data about the Martian atmospheric phenomena.

  9. Mass and Reliability System (MaRS)

    Science.gov (United States)

    Barnes, Sarah

    2016-01-01

    The Safety and Mission Assurance (S&MA) Directorate is responsible for mitigating risk, providing system safety, and lowering risk for space programs from ground to space. The S&MA is divided into 4 divisions: The Space Exploration Division (NC), the International Space Station Division (NE), the Safety & Test Operations Division (NS), and the Quality and Flight Equipment Division (NT). The interns, myself and Arun Aruljothi, will be working with the Risk & Reliability Analysis Branch under the NC Division's. The mission of this division is to identify, characterize, diminish, and communicate risk by implementing an efficient and effective assurance model. The team utilizes Reliability and Maintainability (R&M) and Probabilistic Risk Assessment (PRA) to ensure decisions concerning risks are informed, vehicles are safe and reliable, and program/project requirements are realistic and realized. This project pertains to the Orion mission, so it is geared toward a long duration Human Space Flight Program(s). For space missions, payload is a critical concept; balancing what hardware can be replaced by components verse by Orbital Replacement Units (ORU) or subassemblies is key. For this effort a database was created that combines mass and reliability data, called Mass and Reliability System or MaRS. The U.S. International Space Station (ISS) components are used as reference parts in the MaRS database. Using ISS components as a platform is beneficial because of the historical context and the environment similarities to a space flight mission. MaRS uses a combination of systems: International Space Station PART for failure data, Vehicle Master Database (VMDB) for ORU & components, Maintenance & Analysis Data Set (MADS) for operation hours and other pertinent data, & Hardware History Retrieval System (HHRS) for unit weights. MaRS is populated using a Visual Basic Application. Once populated, the excel spreadsheet is comprised of information on ISS components including

  10. The role of MEXART in the National Space Weather Laboratory of Mexico: Detection of solar wind, CMEs, ionosphere, active regions and flares.

    Science.gov (United States)

    Mejia-Ambriz, J.; Gonzalez-Esparza, A.; De la Luz, V.; Villanueva-Hernandez, P.; Andrade, E.; Aguilar-Rodriguez, E.; Chang, O.; Romero Hernandez, E.; Sergeeva, M. A.; Perez Alanis, C. A.; Reyes-Marin, P. A.

    2017-12-01

    The National Space Weather Laboratory - Laboratorio Nacional de Clima Espacial (LANCE) - of Mexico has different ground based instruments to study and monitor the space weather. One of these instruments is the Mexican Array Radio Telescope (MEXART) which is principally dedicated to remote sensing the solar wind and coronal mass ejections (CMEs) at 140 MHz, the instrument can detect solar wind densities and speeds from about 0.4 to 1 AU by modeling observations of interplanetary scintillation (IPS). MEXART is also able to detect ionospheric disturbances associated with transient space weather events by the analysis of ionospheric scintillation (IONS) . Additionally, MEXART has followed the Sun since the beginning of the current Solar Cycle 24 with records of 8 minutes per day, and occasionally, has partially detected the process of strong solar flares. Here we show the contributions of MEXART to the LANCE by reporting recent detections of CMEs by IPS, the arrive of transient events at Earth by IONS, the influence of active regions in the flux of the Sun at 140 MHz and the detection of a M6.5 class flare. Furthermore we report the status of a near real time analysis of IPS data for forecast purposes and the potential contribution to the Worldwide IPS Stations network (WIPSS), which is an effort to achieve a better coverage of the solar wind observations in the inner heliosphere.

  11. NASA SDO - Solar & Space Weather Education via Social Media

    Science.gov (United States)

    Durscher, Romeo; Wawro, Martha

    2012-03-01

    NASA has embraced social media as a valuable tool to communicate the activities of the agency in fulfillment of its mission. Team SDO continues to be on the forefront of using social media in a very engaging and interactive way and share mission information, solar images and space weather updates via a variety of social media platforms and outlets. We will present the impact SDO's social media strategy has made, including follower, friends and fan statistics from Twitter, Facebook, YouTube, Google+ and other outlets. We will discuss the various social media outlets and the techniques we use for reaching and engaging our audience. Effectiveness is measured through the use of various automatically-gathered statistics and level of public engagement. Of key importance to effective social media use is having access to scientists who can quickly respond to questions and express their answers in meaningful ways to the public. Our presentation will highlight the importance of scientist involvement and suggest ways for encouraging more scientists to support these efforts. We will present some of the social media plans for 2012 and discuss how we can continue to educate, inform, engage and inspire.

  12. The MARS2013 Mars analog mission.

    Science.gov (United States)

    Groemer, Gernot; Soucek, Alexander; Frischauf, Norbert; Stumptner, Willibald; Ragonig, Christoph; Sams, Sebastian; Bartenstein, Thomas; Häuplik-Meusburger, Sandra; Petrova, Polina; Evetts, Simon; Sivenesan, Chan; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Stadler, Andrea; Stummer, Florian; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    We report on the MARS2013 mission, a 4-week Mars analog field test in the northern Sahara. Nineteen experiments were conducted by a field crew in Morocco under simulated martian surface exploration conditions, supervised by a Mission Support Center in Innsbruck, Austria. A Remote Science Support team analyzed field data in near real time, providing planning input for the management of a complex system of field assets; two advanced space suit simulators, four robotic vehicles, an emergency shelter, and a stationary sensor platform in a realistic work flow were coordinated by a Flight Control Team. A dedicated flight planning group, external control centers for rover tele-operations, and a biomedical monitoring team supported the field operations. A 10 min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. The fields of research for the experiments were geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, in particular the communication infrastructure emulating the signal travel time between Earth and Mars. We report on the operational work flows and the experiments conducted, including a deployable shelter prototype for multiple-day extravehicular activities and contingency situations.

  13. 14 CFR 25.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 25.961...

  14. Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars

    Science.gov (United States)

    Lewandowski, Beth E.; Myers, Jerry G.; Nelson, Emily S.; Griffin, Devon

    2008-01-01

    The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space.

  15. Salt Attack on Rocks and Expansion of Soils on Mars

    Science.gov (United States)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Carey, J. W.

    2004-12-01

    Salt-rich sediments observed by the MER rover Opportunity at Meridiani Planum show that brines have been present on Mars in the past, but a role for groundwater in widespread rock weathering and soil formation is uncertain. Experiments by several groups suggest instead the action of acid fog over long time spans, with episodic input of volcanic gases, as a more significant agent of Mars weathering. Salt minerals formed in these acid weathering experiments consistently include gypsum and alunogen, with epsomite or hexahydrite forming where olivine provides a source of Mg. Analogous to the martian acid fog scenario are terrestrial acid rain or acid fog attacks on building and monument stone by chemical action and mechanical wedging through growth of gypsum, anhydrite, epsomite, hexahydrite, kieserite, and other sulfate minerals. Physical effects can be aggressive, operating by both primary salt growth and hydration of anhydrous or less-hydrous primary salts. In contrast, soils evolve to states where chemical attack is lessened and salt mineral growth leads to expansion with cementation; in this situation the process becomes constructive rather than destructive. We have made synthetic salt-cemented soils (duricrusts) from clays, zeolites, palagonites and other media mixed with ultrapure Mg-sulfate solutions. Although near-neutral in pH, these solutions still exchange or leach Ca from the solids to form cements containing gypsum as well as hexahydrite. At low total P (1 torr) and low RH (duricrust expands by formation of a complex mixture of Mg-sulfate phases with various hydration states. The expanded form is retained even if the duricrust is again dehydrated, suggesting that soil porosity thus formed is difficult to destroy. These processes can be considered in the context of Viking, Pathfinder, and MER evidence for differing salt components in the weathered surfaces of rocks versus duricrust-like materials in soils. The divergent chemical trends indicate that soil

  16. Lunar and Planetary Science XXXV: Mars: Remote Sensing and Terrestrial Analogs

    Science.gov (United States)

    2004-01-01

    The session "Mars: Remote Sensing and Terrestrial Analogs" included the following:Physical Meaning of the Hapke Parameter for Macroscopic Roughness: Experimental Determination for Planetary Regolith Surface Analogs and Numerical Approach; Near-Infrared Spectra of Martian Pyroxene Separates: First Results from Mars Spectroscopy Consortium; Anomalous Spectra of High-Ca Pyroxenes: Correlation Between Ir and M ssbauer Patterns; THEMIS-IR Emissivity Spectrum of a Large Dark Streak near Olympus Mons; Geomorphologic/Thermophysical Mapping of the Athabasca Region, Mars, Using THEMIS Infrared Imaging; Mars Thermal Inertia from THEMIS Data; Multispectral Analysis Methods for Mapping Aqueous Mineral Depostis in Proposed Paleolake Basins on Mars Using THEMIS Data; Joint Analysis of Mars Odyssey THEMIS Visible and Infrared Images: A Magic Airbrush for Qualitative and Quantitative Morphology; Analysis of Mars Thermal Emission Spectrometer Data Using Large Mineral Reference Libraries ; Negative Abundance : A Problem in Compositional Modeling of Hyperspectral Images; Mars-LAB: First Remote Sensing Data of Mineralogy Exposed at Small Mars-Analog Craters, Nevada Test Site; A Tool for the 2003 Rover Mini-TES: Downwelling Radiance Compensation Using Integrated Line-Sight Sky Measurements; Learning About Mars Geology Using Thermal Infrared Spectral Imaging: Orbiter and Rover Perspectives; Classifying Terrestrial Volcanic Alteration Processes and Defining Alteration Processes they Represent on Mars; Cemented Volcanic Soils, Martian Spectra and Implications for the Martian Climate; Palagonitic Mars: A Basalt Centric View of Surface Composition and Aqueous Alteration; Combining a Non Linear Unmixing Model and the Tetracorder Algorithm: Application to the ISM Dataset; Spectral Reflectance Properties of Some Basaltic Weathering Products; Morphometric LIDAR Analysis of Amboy Crater, California: Application to MOLA Analysis of Analog Features on Mars; Airborne Radar Study of Soil Moisture at

  17. Mars Electric Reusable Flyer

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the main issues with a Mars flight vehicle concept that can be reused and cover long distances for maximum surface data gathering is its ability to take off,...

  18. The ISS as a platform for a fully simulated mars voyage

    Science.gov (United States)

    Narici, Livio; Reitz, Guenther

    2016-07-01

    The ISS can mimic the impact of microgravity, radiation, living and psychological conditions that astronauts will face during a deep space cruise, for example to Mars. This suggests the ISS as the most valuable "analogue" for deep space exploration. NASA has indeed suggested a 'full-up deep space simulation on last available ISS Mission: 6/7 crew for one year duration; full simulation of time delays & autonomous operations'. This idea should be pushed further. It is indeed conceivable to use the ISS as the final "analogue", performing a real 'dry-run' of a deep space mission (such as a mission to Mars), as close as reasonably possible to what will be the real voyage. This Mars ISS dry run (ISS4Mars) would last 500-800 days, mimicking most of the challenges which will be undertaken such as length, isolation, food provision, decision making, time delays, health monitoring diagnostic and therapeutic actions and more: not a collection of "single experiments", but a complete exploration simulation were all the pieces will come together for the first in space simulated Mars voyage. Most of these challenges are the same that those that will be encountered during a Moon voyage, with the most evident exceptions being the duration and the communication delay. At the time of the Mars ISS dry run all the science and technological challenges will have to be mostly solved by dedicated works. These solutions will be synergistically deployed in the dry run which will simulate all the different aspects of the voyage, the trip to Mars, the permanence on the planet and the return to Earth. During the dry run i) There will be no arrivals/departure of spacecrafts; 2) Proper communications delay with ground will be simulated; 3) Decision processes will migrate from Ground to ISS; 4) Permanence on Mars will be simulated. Mars ISS dry run will use just a portion of the ISS which will be totally isolated from the rest of the ISS, leaving to the other ISS portions the task to provide the

  19. NCU-SWIP Space Weather Instrumentation Payload - Intelligent Sensors On Efficient Real-Time Distributed LUTOS

    Science.gov (United States)

    Yeh, Tse-Liang; Dmitriev, Alexei; Chu, Yen-Hsyang; Jiang, Shyh-Biau; Chen, Li-Wu

    The NCU-SWIP - Space Weather Instrumentation Payload is developed for simultaneous in-situ and remote measurement of space weather parameters for cross verifications. The measurements include in-situ electron density, electron temperature, magnetic field, the deceleration of satellite due to neutral wind, and remotely the linear cumulative intensities of oxygen ion air-glows at 135.6nm and 630.0nm along the flight path in forward, nader, and backward directions for tomographic reconstruction of the electron density distribution underneath. This instrument package is suitable for micro satellite constellation to establish nominal space weather profiles and, thus, to detect abnormal variations as the signs of ionospheric disturbances induced by severe atmospheric weather, or earth quake - mantle movement through their Lithosphere-Atmosphere-Ionosphere Coupling Mechanism. NCU-SWIP is constructed with intelligent sensor modules connected by common bus with their functionalities managed by an efficient distributed real-time system LUTOS. The same hierarchy can be applied to the level of satellite constellation. For example SWIP's in a constellation in coordination with the GNSS Occultation Experiment TriG planned for the Formosa-7 constellation, data can be cross correlated for verification and refinement for real-time, stable and reliable measurements. A SWIP will be contributed to the construction of a MAI Micro Satellite for verification. The SWIP consists of two separate modules: the SWIP main control module and the SWIP-PMTomo sensor module. They are respectively a 1.5kg W120xL120xH100 (in mm) box with forward facing 120mmPhi circular disk probe on a boom top edged at 470mm height and a 7.2kg W126xL590x372H (in mm) slab containing 3 legs looking downwards along the flight path, while consuming the maximum electricity of 10W and 12W. The sensors are 1) ETPEDP measuring 16bits floating potentials for electron temperature range of 1000K to 3000K and 24bits electron

  20. Planetary protection implementation on future Mars lander missions

    Science.gov (United States)

    Howell, Robert; Devincenzi, Donald L.

    1993-01-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  1. Planetary protection implementation on future Mars lander missions

    Science.gov (United States)

    Howell, Robert; Devincenzi, Donald L.

    1993-06-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  2. Solar weather monitoring

    Directory of Open Access Journals (Sweden)

    J.-F. Hochedez

    2005-11-01

    Full Text Available Space Weather nowcasting and forecasting require solar observations because geoeffective disturbances can arise from three types of solar phenomena: coronal mass ejections (CMEs, flares and coronal holes. For each, we discuss their definition and review their precursors in terms of remote sensing and in-situ observations. The objectives of Space Weather require some specific instrumental features, which we list using the experience gained from the daily operations of the Solar Influences Data analysis Centre (SIDC at the Royal Observatory of Belgium. Nowcasting requires real-time monitoring to assess quickly and reliably the severity of any potentially geoeffective solar event. Both research and forecasting could incorporate more observations in order to feed case studies and data assimilation respectively. Numerical models will result in better predictions of geomagnetic storms and solar energetic particle (SEP events. We review the data types available to monitor solar activity and interplanetary conditions. They come from space missions and ground observatories and range from sequences of dopplergrams, magnetograms, white-light, chromospheric, coronal, coronagraphic and radio images, to irradiance and in-situ time-series. Their role is summarized together with indications about current and future solar monitoring instruments.

  3. Comparison of Propulsion Options for Human Exploration of Mars

    Science.gov (United States)

    Drake, Bret G.; McGuire, Melissa L.; McCarty, Steven L.

    2018-01-01

    NASA continues to advance plans to extend human presence beyond low-Earth orbit leading to human exploration of Mars. The plans being laid out follow an incremental path, beginning with initial flight tests followed by deployment of a Deep Space Gateway (DSG) in cislunar space. This Gateway, will serve as the initial transportation node for departing and returning Mars spacecraft. Human exploration of Mars represents the next leap for humankind because it will require leaving Earth on a long mission with very limited return, rescue, or resupply capabilities. Although Mars missions are long, approaches and technologies are desired which can reduce the time that the crew is away from Earth. This paper builds off past analyses of NASA's exploration strategy by providing more detail on the performance of alternative in-space transportation options with an emphasis on reducing total mission duration. Key options discussed include advanced chemical, nuclear thermal, nuclear electric, solar electric, as well as an emerging hybrid propulsion system which utilizes a combination of both solar electric and chemical propulsion.

  4. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    Science.gov (United States)

    Kanazawa, S.; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.; Space Agriculture Task Force, J.

    Manned Mars exploration requires recycle of materials to support human life A conceptual design is developed for space agriculture which is driven by the biologically regenerative function Hyper-thermophilic aerobic composting bacterial ecology is the core of materials recycling system to process human metabolic waste and inedible biomass and convert them to fertilizer for plants cultivation A photosynthetic reaction of plants will be driven by solar energy Water will be recycled by cultivation of plants and passing it through plant bodies Sub-surface water and atmospheric carbon dioxide are the natural resource available on Mars and these resources will be converted to oxygen and foods We envision that the agricultural system will be scaled up by importing materials from Martian environment Excess oxygen will be obtained from growing trees for structural and other components Minor elements including N P K and other traces will be introduced as fertilizers or nutrients into the agricultural materials circulation Nitrogen will be collected from Martian atmosphere We will assess biological fixation of nitrogen using micro-organisms responsible in Earth biosphere Hyper-thermophilic aerobic bacterial ecology is effective to convert waste materials into useful forms to plants This microbial technology has been well established on ground for processing sewage and waste materials For instance the hyper-thermophilic bacterial system is applied to a composting machine in a size of a trash box in home kitchen Since such a home electronics

  5. Unique Spectroscopy and Imaging of Mars with the James Webb Space Telescope

    Science.gov (United States)

    Villanueva, Geronimo L.; Altieri, Francesca; Clancy, R. Todd; Encrenaz, Therese; Fouchet, Thierry; Hartogh, Paul; Lellouch, Emmanuel; Lopez-Valverde, Miguel A.; Mumma, Michael J.; Novak, Robert E.; hide

    2016-01-01

    In this paper, we summarize the main capabilities of the James Webb Space Telescope (JWST) for performing observations of Mars. The distinctive vantage point of JWST at the Sun-Earth Lagrange point (L2) will allow sampling the full observable disk, permitting the study of short-term phenomena, diurnal processes (across the east-west axis), and latitudinal processes between the hemispheres (including seasonal effects) with excellent spatial resolutions (0.''07 at 2 micron). Spectroscopic observations will be achievable in the 0.7-5 micron spectral region with NIRSpec at a maximum resolving power of 2700 and with 8000 in the 1-1.25 micron range. Imaging will be attainable with the Near-Infrared Camera at 4.3 micrometers and with two narrow filters near 2 micron, while the nightside will be accessible with several filters in 0.5 to 2 micron. Such a powerful suite of instruments will be a major asset for the exploration and characterization of Mars. Some science cases include the mapping of the water D/H ratio, investigations of the Martian mesosphere via the characterization of the non-local thermodynamic equilibrium CO2 emission at 4.3 micron, studies of chemical transport via observations of the O2 nightglow at 1.27 micron, high-cadence mapping of the variability dust and water-ice clouds, and sensitive searches for trace species and hydrated features on the Martian surface. In-flight characterization of the instruments may allow for additional science opportunities.

  6. Evacuated Airship for Mars Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to overcome some of the limitations of current technologies for Mars exploration and even extend current operational capabilities by introducing the...

  7. Solar activity during the space weather incident of Nov 4., 2015 - Complex data and lessons learned

    Science.gov (United States)

    Opgenoorth, Hermann; Pulkkinen, Antti; Buchert, Stephan; Monstein, Christian; Klein, Karl Ludwig; Marqué, Christophe; Krucker, Säm

    2016-04-01

    During the afternoon of November 4, 2015 most southern Swedish aviation radar systems experienced heavy disturbances, which eventually forced an outing of the majority of the radars. In consequence the entire southern Swedish aerospace had to be closed for incoming and leaving air traffic for about 2 hours. Immediately after the incident space weather anomalies were made responsible for the radar disturbances, but it took a very thorough investigation to differentiate disturbances from an ongoing magnetic storm caused by earlier solar activity, which had no disturbing effects on the flight radars, from a new and, indeed, extreme radio-burst on the Sun, which caused the Swedish radar anomalies. Other systems in various European countries also experienced major radio-disturbances during this extreme event, but they were not of the gravity as experienced in Sweden, or at least not causing a similar damage. One of the problems in reaching the right conclusions about the incident was that the extreme radio-burst around 1400 UT on Nov 4 (more than 50000 SFU at GHz frequencies), emerged from a medium size M3.7 Flare on the Sun, which did not trigger any immediate warnings. We will report about the analysis leading to the improved understanding of this extreme space weather event, evaluate the importance of solar radio observations, and discuss possible mitigation strategies for future events of similar nature.

  8. Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars

    CERN Document Server

    Rapp, Donald

    2013-01-01

    This book carries out approximate estimates of the costs of implementing ISRU on the Moon and Mars. It is found that no ISRU process on the Moon has much merit. ISRU on Mars can save a great deal of mass, but there is a significant cost in prospecting for resources and validating ISRU concepts. Mars ISRU might have merit, but not enough data are available to be certain. In addition, this book provides a detailed review of various ISRU technologies. This includes three approaches for Mars ISRU based on processing only the atmosphere: solid oxide electrolysis, reverse water gas shift reaction (RWGS), and absorbing water vapor directly from the atmosphere. It is not clear that any of these technologies are viable although the RWGS seems to have the best chance. An approach for combining hydrogen with the atmospheric resource is chemically very viable, but hydrogen is needed on Mars. This can be approached by bringing hydrogen from Earth or obtaining water from near-surface water deposits in the soil. Bringing hy...

  9. A Blur track on Mars: how do you top that?

    CERN Multimedia

    Cooke, Rachel

    2003-01-01

    "On the eve of the landing of the Beagle 2 space probe on Mars, one of its instigators, Blur bassist Alex James, talks exclusively about his new-found passion for space 'Talking with scientists makes me feel giddy with excitement. Life on Mars, I mean, come on! How dead do you have to be not to find that interesting?' (1 page).

  10. The nanophase iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    for, the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxides and silicate phase surfaces. The reflectance spectrum of the clay-iron preparations in the visible range is generally similar to the reflectance curves of bright regions on Mars. This strengthens the evidence for the predominance of nanophase iron oxides/oxyhydroxides in Mars soil. The mode of formation of these nanophase iron oxides on Mars is still unknown. It is puzzling that despite the long period of time since aqueous weathering took place on Mars, they have not developed from their transitory stage to well-crystallized end-members. The possibility is suggested that these phases represent a continuously on-going, extremely slow weathering process.

  11. Subsurface water and clay mineral formation during the early history of Mars.

    Science.gov (United States)

    Ehlmann, Bethany L; Mustard, John F; Murchie, Scott L; Bibring, Jean-Pierre; Meunier, Alain; Fraeman, Abigail A; Langevin, Yves

    2011-11-02

    Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.

  12. Weather Information Services supporting Civilian UAS Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We build a system that supports the weather information needs of Unmanned Aircraft Systems (UAS) planning to fly in the National Airspace System (NAS). This weather...

  13. Mars Surface Environmental Issues

    Science.gov (United States)

    Charles, John

    2002-01-01

    Planetary exploration by astronauts will require extended periods of habitation on a planet's surface, under the influence of environmental factors that are different from those of Earth and the spacecraft that delivered the crew to the planet. Human exploration of Mars, a possible near-term planetary objective, can be considered a challenging scenario. Mission scenarios currently under consideration call for surface habitation periods of from 1 to 18 months on even the earliest expeditions. Methods: Environmental issues associated with Mars exploration have been investigated by NASA and the National Space Biomedical Research Institute (NSBRI) as part of the Bioastronautics Critical Path Roadmap Project (see http ://criticalpath.jsc.nasa.gov). Results: Arrival on Mars will immediately expose the crew to gravity only 38% of that at Earth's surface in possibly the first prolonged exposure to gravity other than the 1G of Earth's surface and the zero G of weightless space flight, with yet unknown effects on crew physiology. The radiation at Mars' surface is not well documented, although the planet's bulk and even its thin atmosphere may moderate the influx of galactic cosmic radiation and energetic protons from solar flares. Secondary radiation from activated components of the soil must also be considered. Ultrafine and larger respirable and nonrespirable particles in Martian dust introduced into the habitat after surface excursions may induce pulmonary inflammation exacerbated by the additive reactive and oxidizing nature of the dust. Stringent decontamination cannot eliminate mechanical and corrosive effects of the dust on pressure suits and exposed machinery. The biohazard potential of putative indigenous Martian microorganisms may be assessed by comparison with analog environments on Earth. Even in their absence, human microorganisms, if not properly controlled, can be a threat to the crew's health. Conclusions: Mars' surface offers a substantial challenge to the

  14. Mars MetNet Mission Status

    Science.gov (United States)

    Harri, A.-M.; Aleksashkin, S.; Arruego, I.; Schmidt, W.; Genzer, M.; Vazquez, L.; Haukka, H.; Palin, M.; Nikkanen, T.

    2015-10-01

    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semihard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  15. NASA's strategy for Mars exploration in the 1990s and beyond

    Science.gov (United States)

    Huntress, W. T.; Feeley, T. J.; Boyce, J. M.

    NASA's Office of Space Science is changing its approach to all its missions, both current and future. Budget realities are necessitating that we change the way we do business and the way we look at NASA's role in the U.S. Government. These challenges are being met by a new and innovative approach that focuses on achieving a balanced world-class space science program that requires less U.S. resources while providing an enhanced role for technology and education as integral components of our Research and Development (R&D) programs. Our Mars exploration plans, especially the Mars Surveyor program, are a key feature of this new NASA approach to space science. The Mars Surveyor program will be affordable, engaging to the public with global and close-up images of Mars, have high scientific value, employ a distributed risk strategy (two launches per opportunity), and will use significant advanced technologies.

  16. Statistical Analysis of Model Data for Operational Space Launch Weather Support at Kennedy Space Center and Cape Canaveral Air Force Station

    Science.gov (United States)

    Bauman, William H., III

    2010-01-01

    The 12-km resolution North American Mesoscale (NAM) model (MesoNAM) is used by the 45th Weather Squadron (45 WS) Launch Weather Officers at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to support space launch weather operations. The 45 WS tasked the Applied Meteorology Unit to conduct an objective statistics-based analysis of MesoNAM output compared to wind tower mesonet observations and then develop a an operational tool to display the results. The National Centers for Environmental Prediction began running the current version of the MesoNAM in mid-August 2006. The period of record for the dataset was 1 September 2006 - 31 January 2010. The AMU evaluated MesoNAM hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The MesoNAM forecast winds, temperature and dew point were compared to the observed values of these parameters from the sensors in the KSC/CCAFS wind tower network. The data sets were stratified by model initialization time, month and onshore/offshore flow for each wind tower. Statistics computed included bias (mean difference), standard deviation of the bias, root mean square error (RMSE) and a hypothesis test for bias = O. Twelve wind towers located in close proximity to key launch complexes were used for the statistical analysis with the sensors on the towers positioned at varying heights to include 6 ft, 30 ft, 54 ft, 60 ft, 90 ft, 162 ft, 204 ft and 230 ft depending on the launch vehicle and associated weather launch commit criteria being evaluated. These twelve wind towers support activities for the Space Shuttle (launch and landing), Delta IV, Atlas V and Falcon 9 launch vehicles. For all twelve towers, the results indicate a diurnal signal in the bias of temperature (T) and weaker but discernable diurnal signal in the bias of dewpoint temperature (T(sub d)) in the MesoNAM forecasts. Also, the standard deviation of the bias and RMSE of T, T(sub d), wind speed and wind

  17. Low-Latency Teleoperations for Human Exploration and Evolvable Mars Campaign

    Science.gov (United States)

    Lupisella, Mark; Wright, Michael; Arney, Dale; Gershman, Bob; Stillwagen, Fred; Bobskill, Marianne; Johnson, James; Shyface, Hilary; Larman, Kevin; Lewis, Ruthan; hide

    2015-01-01

    NASA has been analyzing a number of mission concepts and activities that involve low-latency telerobotic (LLT) operations. One mission concept that will be covered in this presentation is Crew-Assisted Sample Return which involves the crew acquiring samples (1) that have already been delivered to space, and or acquiring samples via LLT from orbit to a planetary surface and then launching the samples to space to be captured in space and then returned to the earth with the crew. Both versions of have key roles for low-latency teleoperations. More broadly, the NASA Evolvable Mars Campaign is exploring a number of other activities that involve LLT, such as: (a) human asteroid missions, (b) PhobosDeimos missions, (c) Mars human landing site reconnaissance and site preparation, and (d) Mars sample handling and analysis. Many of these activities could be conducted from Mars orbit and also with the crew on the Mars surface remotely operating assets elsewhere on the surface, e.g. for exploring Mars special regions and or teleoperating a sample analysis laboratory both of which may help address planetary protection concerns. The operational and technology implications of low-latency teleoperations will be explored, including discussion of relevant items in the NASA Technology Roadmap and also how previously deployed robotic assets from any source could subsequently be used by astronauts via LLT.

  18. Telecommunications and navigation systems design for manned Mars exploration missions

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.

    1989-06-01

    This paper discusses typical manned Mars exploration needs for telecommunications, including preliminary navigation support functions. It is a brief progress report on an ongoing study program within the current NASA JPL Deep Space Network (DSN) activities. A typical Mars exploration case is defined, and support approaches comparing microwave and optical frequency performance for both local in situ and Mars-earth links are described. Optical telecommunication and navigation technology development opportunities in a Mars exploration program are also identified. A local Mars system telecommunication relay and navigation capability for service support of all Mars missions has been proposed as part of an overall solar system communications network. The effects of light-time delay and occultations on real-time mission decision-making are discussed; the availability of increased local mass data storage may be more important than increasing peak data rates to earth. The long-term frequency use plan will most likely include a mix of microwave, millimeter-wave and optical link capabilities to meet a variety of deep space mission needs.

  19. The Affording Mars Workshop: Background and Recommendations

    Science.gov (United States)

    Thronson, Harley A.; Carberry, Christopher

    2014-01-01

    A human mission to Mars is the stated "ultimate" goal for NASA and is widely believed by the public to be the most compelling destination for America's space program. However, widely cited enormous costs - perhaps as much as a trillion dollars for a many-decade campaign - seem to be an impossible hurdle, although political and budget instability over many years may be equally challenging. More recently, a handful of increasingly detailed architectures for initial Mars missions have been developed by commercial companies that have estimated costs much less than widely believed and roughly comparable with previous major human space flight programs: the Apollo Program, the International Space Station, and the space shuttle. Several of these studies are listed in the bibliography to the workshop report. As a consequence of these new scenarios, beginning in spring, 2013 a multiinstitutional planning team began developing the content and invitee list for a winter workshop that would critically assess concepts, initiatives, technology priorities, and programmatic options to reduce significantly the costs of human exploration of Mars. The output of the workshop - findings and recommendations - would be presented in a number of forums and discussed with national leaders in human space flight. It would also be made available to potential international partners. This workshop was planned from the start to be the first in a series. Subsequent meetings, conferences, and symposia will concentrate on topics not able to be covered in December. In addition, to make progress in short meeting, a handful of ground rules were adopted by the planning team and agreed to by the participants. Perhaps the two most notable such ground rules were (1) the Space Launch System (SLS) and Orion would be available during the time frame considered by the participants and (2) the International Space Station (ISS) would remain the early linchpin in preparing for Mars exploration over the coming decade

  20. Atmospheric Diabatic Heating in Different Weather States and the General Circulation

    Science.gov (United States)

    Rossow, William B.; Zhang, Yuanchong; Tselioudis, George

    2016-01-01

    Analysis of multiple global satellite products identifies distinctive weather states of the atmosphere from the mesoscale pattern of cloud properties and quantifies the associated diabatic heating/cooling by radiative flux divergence, precipitation, and surface sensible heat flux. The results show that the forcing for the atmospheric general circulation is a very dynamic process, varying strongly at weather space-time scales, comprising relatively infrequent, strong heating events by ''stormy'' weather and more nearly continuous, weak cooling by ''fair'' weather. Such behavior undercuts the value of analyses of time-averaged energy exchanges in observations or numerical models. It is proposed that an analysis of the joint time-related variations of the global weather states and the general circulation on weather space-time scales might be used to establish useful ''feedback like'' relationships between cloud processes and the large-scale circulation.

  1. Space Science Reference Guide, 2nd Edition

    Science.gov (United States)

    Dotson, Renee (Editor)

    2003-01-01

    This Edition contains the following reports: GRACE: Gravity Recovery and Climate Experiment; Impact Craters in the Solar System; 1997 Apparition of Comet Hale-Bopp Historical Comet Observations; Baby Stars in Orion Solve Solar System Mystery; The Center of the Galaxy; The First Rock in the Solar System; Fun Times with Cosmic Rays; The Gamma-Ray Burst Next Door; The Genesis Mission: An Overview; The Genesis Solar Wind Sample Return Mission; How to Build a Supermassive Black Hole; Journey to the Center of a Neutron Star; Kepler's Laws of Planetary Motion; The Kuiper Belt and Oort Cloud ; Mapping the Baby Universe; More Hidden Black Hole Dangers; A Polarized Universe; Presolar Grains of Star Dust: Astronomy Studied with Microscopes; Ring Around the Black Hole; Searching Antarctic Ice for Meteorites; The Sun; Astrobiology: The Search for Life in the Universe; Europa and Titan: Oceans in the Outer Solar System?; Rules for Identifying Ancient Life; Inspire ; Remote Sensing; What is the Electromagnetic Spectrum? What is Infrared? How was the Infrared Discovered?; Brief History of Gyroscopes ; Genesis Discovery Mission: Science Canister Processing at JSC; Genesis Solar-Wind Sample Return Mission: The Materials ; ICESat: Ice, Cloud, and Land Elevation Satellite ICESat: Ice, Cloud, and Land; Elevation Satellite ICESat: Ice, Cloud, and Land Elevation Satellite ICESat: Ice, Cloud, and Land Elevation Satellite ICESat: Ice, Cloud, and Land Elevation Satellite Measuring Temperature Reading; The Optical Telescope ; Space Instruments General Considerations; Damage by Impact: The Case at Meteor Crater, Arizona; Mercury Unveiled; New Data, New Ideas, and Lively Debate about Mercury; Origin of the Earth and Moon; Space Weather: The Invisible Foe; Uranus, Neptune, and the Mountains of the Moon; Dirty Ice on Mars; For a Cup of Water on Mars; Life on Mars?; The Martian Interior; Meteorites from Mars, Rocks from Canada; Organic Compounds in Martian Meteorites May be Terrestrial

  2. Cryogenic propulsion for lunar and Mars missions

    Science.gov (United States)

    Redd, Larry

    1988-01-01

    Future missions to the moon and Mars have been investigated with regard to propulsion system selection. The results of this analysis show that near state-of-the-art LO2/LH2 propulsion technology provides a feasible means of performing lunar missions and trans-Mars injections. In other words, existing cryogenic space engines with certain modifications and product improvements would be suitable for these missions. In addition, present day cryogenic system tankage and structural weights appear to scale reasonably when sizing for large payload and high energy missions such as sending men to Mars.

  3. MARS-OZ - A Design for a Simulated Mars Base in the Australian Outback

    Science.gov (United States)

    Willson, D.; Clarke, J. D. A.; Murphy, G.

    Mars Society Australia has developed the design of a simulated Mars base, MARS-OZ, for deployment in outback Australia. MARS-OZ will provide a platform for a diverse range of Mars analogue research in Australia. The simulated base consists of two mobile modules whose dimensions and shape approximate those of horizontally landed bent biconic spacecraft described in an earlier paper. The modules are designed to support field engineering, robotics, architectural, geological, biological and human factors research at varying levels of simulation fidelity. Non-Mars related research can also be accommodated, for example general field geology and biology, and engineering research associated with sustainable, low impact architecture. Crews of up to eight can be accommodated. In addition to its research function, the base also will serve as a centre of space education and outreach activities. The prime site for the MARS-OZ simulated base is located in the northern Flinders Ranges near Arkaroola in South Australia. This region contains many features that provide useful scientific analogues to known or possible past and present conditions on Mars from both a geological and biological perspective. The features will provide a wealth of study opportunities for crews. The very diverse terrain and regolith materials will provide ideal opportunities to field trial a range of equipment, sensors and exploration strategies. If needed, the prime site can be secured from casual visitors, allowing research into human interaction in isolation. Despite its relative isolation, the site is readily accessible by road and air from major Australian centres. This paper provides description of the configuration, design and construction of the proposed facility, its interior layout, equipment and systems fitouts, a detailed cost estimate, and its deployment. We estimate that the deployment of MARS-OZ could occur within nine months of securing funding.

  4. Radiation shielding estimates for manned Mars space flight

    International Nuclear Information System (INIS)

    Dudkin, V.E.; Kovalev, E.E.; Kolomensky, A.V.; Sakovich, V.A.; Semenov, V.F.; Demin, V.P.; Benton, E.V.

    1992-01-01

    In the analysis of the required radiation shielding for spacecraft during a Mars flight, the specific effects of solar activity (SA) on the intensity of galactic and solar cosmic rays were taken into consideration. Three spaceflight periods were considered: (1) maximum SA; (2) minimum SA; and (3) intermediate SA, when intensities of both galactic and solar cosmic rays are moderately high. Scenarios of spaceflights utilizing liquid-propellant rocket engines, low-and intermediate-thrust nuclear electrojet engines, and nuclear rocket engines, all of which have been designed in the Soviet Union, are reviewed. Calculations were performed on the basis of a set of standards for radiation protection approved by the U.S.S.R. State Committee for Standards. It was found that the lowest estimated mass of a Mars spacecraft, including the radiation shielding mass, obtained using a combination of a liquid propellant engine with low and intermediate thrust nuclear electrojet engines, would be 500-550 metric tons. (author)

  5. Monitoring Effective Doses Received By Air Crews With A Space Weather Application

    Science.gov (United States)

    Lantos, P.

    To fulfil new requirements of the European Community concerning monitoring of effective doses received by air crews, the French Aviation Authority has developed an operational system called Sievert. The SIEVERT system is analysed as an exam- ple of Space Weather application. One of its characteristics is to calculate the dose received on-board each flight on the basis of the specific and detailled flight given by companies. Operational models will be used. As input to the models, the system needs monitoring of galactic cosmic rays and of solar flare particles. The French neu- tron monitors located in Kerguelen Islands (South Indian Ocean) and Terre Adélie (Antarctica) will be used for this purpose. Particular attention will be devoted to evo- lution of the system in conjunction with new measurements available in the frame of a permanent validation process.

  6. Saving a Unique Data Set for Space Weather Research

    Science.gov (United States)

    Bilitza, D.; Benson, R. F.; Reinisch, B. W.; Huang, X. A.

    2017-12-01

    The Canadian/US International Satellites for Ionospheric Studies (ISIS) program included the four satellites Alouette 1 and 2, ISIS 1 and 2 launched in 1962, 1965, 1969, and 1971, respectively and in operation for 10, 10, 21, and 19 years, respectively. The core experiment on these satellites was a topside sounder that could determine the ionospheric electron density from the orbit altitude down to about 250-500 km near where the ionosphere reaches its point of highest density, the F-peak. The mission was long lasting and highly successful, producing a wealth of information about the topside ionosphere in the form of analog ionosphere soundings on 7-track tapes. The analysis process required a tedious manual scaling of ionogram traces that could then, with appropriate software, be converted into electron density profiles. Even with the combined effort involving ionospheric groups from many countries only a relatively small percentage of the huge volume of recorded ionograms could be converted to electron density profiles. Even with this limited number significant new insights were achieved documented by the many Alouette/ISIS-related papers published in the 1960s and 1970s. Recognizing the importance of this unique data set for space weather research a new effort was undertaken in the late Nineties to analyze more of the Alouette/ISIS ionograms. The immediate cause for action was the threat to the more than 100,000 analog telemetry tapes in storage in Canada because of space limitations and storage costs. We were able to have nearly 20,000 tapes shipped to the NASA Goddard Space Flight Center for analog-to-digital conversion and succeeded in developing software that automatically scales and converts the ionograms to electron density profiles. This rescue effort is still ongoing and has already produced a significant increase in the information available for the topside ionosphere and has resulted in numerous publications. The data have led to improvements of the

  7. Ancient aliens on mars

    CERN Document Server

    Bara, Mike

    2013-01-01

    Best-selling author and Secret Space Program researcher Bara brings us this lavishly illustrated volume on alien structures on Mars. Was there once a vast, technologically advanced civilization on Mars, and did it leave evidence of its existence behind for humans to find eons later? Did these advanced extraterrestrial visitors vanish in a solar system wide cataclysm of their own making, only to make their way to Earth and start anew? Was Mars once as lush and green as the Earth, and teeming with life? Did Mars once orbit a missing member of the solar system, a "Super Earth” that vanished in a disaster that devastated life on Earth and Venus and left us only the asteroid belt as evidence of its once grand existence? Did the survivors of this catastrophe leave monuments and temples behind, arranged in a mathematical precision designed to teach us the Secret of a new physics that could lift us back to the stars? Does the planet have an automated defense shield that swallows up robotic probes if they wander int...

  8. Comparing NASA and ESA Cost Estimating Methods for Human Missions to Mars

    Science.gov (United States)

    Hunt, Charles D.; vanPelt, Michel O.

    2004-01-01

    To compare working methodologies between the cost engineering functions in NASA Marshall Space Flight Center (MSFC) and ESA European Space Research and Technology Centre (ESTEC), as well as to set-up cost engineering capabilities for future manned Mars projects and other studies which involve similar subsystem technologies in MSFC and ESTEC, a demonstration cost estimate exercise was organized. This exercise was a direct way of enhancing not only cooperation between agencies but also both agencies commitment to credible cost analyses. Cost engineers in MSFC and ESTEC independently prepared life-cycle cost estimates for a reference human Mars project and subsequently compared the results and estimate methods in detail. As a non-sensitive, public domain reference case for human Mars projects, the Mars Direct concept was chosen. In this paper the results of the exercise are shown; the differences and similarities in estimate methodologies, philosophies, and databases between MSFC and ESTEC, as well as the estimate results for the Mars Direct concept. The most significant differences are explained and possible estimate improvements identified. In addition, the Mars Direct plan and the extensive cost breakdown structure jointly set-up by MSFC and ESTEC for this concept are presented. It was found that NASA applied estimate models mainly based on historic Apollo and Space Shuttle cost data, taking into account the changes in technology since then. ESA used models mostly based on European satellite and launcher cost data, taking into account the higher equipment and testing standards for human space flight. Most of NASA's and ESA s estimates for the Mars Direct case are comparable, but there are some important, consistent differences in the estimates for: 1) Large Structures and Thermal Control subsystems; 2) System Level Management, Engineering, Product Assurance and Assembly, Integration and Test/Verification activities; 3) Mission Control; 4) Space Agency Program Level

  9. Deep-Space Ka-Band Flight Experience

    Science.gov (United States)

    Morabito, D. D.

    2017-11-01

    Lower frequency bands have become more congested in allocated bandwidth as there is increased competition between flight projects and other entities. Going to higher frequency bands offers significantly more bandwidth, allowing for the use of much higher data rates. However, Ka-band is more susceptible to weather effects than lower frequency bands currently used for most standard downlink telemetry operations. Future or prospective flight projects considering deep-space Ka-band (32-GHz) telemetry data links have expressed an interest in understanding past flight experience with received Ka-band downlink performance. Especially important to these flight projects is gaining a better understanding of weather effects from the experience of current or past missions that operated Ka-band radio systems. We will discuss the historical flight experience of several Ka-band missions starting from Mars Observer in 1993 up to present-day deep-space missions such as Kepler. The study of historical Ka-band flight experience allows one to recommend margin policy for future missions. Of particular interest, we will review previously reported-on flight experience with the Cassini spacecraft Ka-band radio system that has been used for radio science investigations as well as engineering studies from 2004 to 2015, when Cassini was in orbit around the planet Saturn. In this article, we will focus primarily on the Kepler spacecraft Ka-band link, which has been used for operational telemetry downlink from an Earth trailing orbit where the spacecraft resides. We analyzed the received Ka-band signal level data in order to characterize link performance over a wide range of weather conditions and as a function of elevation angle. Based on this analysis of Kepler and Cassini flight data, we found that a 4-dB margin with respect to adverse conditions ensures that we achieve at least a 95 percent data return.

  10. Crater Lakes on Mars: Development of Quantitative Thermal and Geomorphic Models

    Science.gov (United States)

    Barnhart, C. J.; Tulaczyk, S.; Asphaug, E.; Kraal, E. R.; Moore, J.

    2005-01-01

    Impact craters on Mars have served as catchments for channel-eroding surface fluids, and hundreds of examples of candidate paleolakes are documented [1,2] (see Figure 1). Because these features show similarity to terrestrial shorelines, wave action has been hypothesized as the geomorphic agent responsible for the generation of these features [3]. Recent efforts have examined the potential for shoreline formation by wind-driven waves, in order to turn an important but controversial idea into a quantitative, falsifiable hypothesis. These studies have concluded that significant wave-action shorelines are unlikely to have formed commonly within craters on Mars, barring Earth-like weather for approx.1000 years [4,5,6].

  11. Joint US-USSR Long duration Antarctic Mars calibration Balloon (LAMB) mission

    Science.gov (United States)

    Floyd, S. R.; Trombka, J. I.; Evans, L. G.; Starr, R.; Squyres, S. W.; Surkov, Iu. A.; Moskaleva, L. P.; Shcheglov, O.; Mitugov, A. G.; Rester, A. C.

    1991-01-01

    The Long duration Antarctic Mars calibration Balloon (LAMB) project has been established at Goddard Space Flight Center for the evaluation and cross calibration of U.S. and USSR remote sensing gamma-ray and neutron detectors. These detectors are analogs of those flown on the Soviet Phobos mission around Mars and those to be flown on the upcoming U.S. Mars Observer mission. Cosmic rays, which are normally filtered out by the atmosphere, and the earth's magnetic field, will induce gamma-ray and neutron emissions from about a half ton of simulated Mars soil aboard the gondola. The cross calibration of these instruments should greatly facilitate the data analysis from both missions and play a role in U.S.-USSR cooperation in space.

  12. Why send humans to Mars?

    Science.gov (United States)

    Sagan, Carl

    1991-01-01

    The proposed Space Exploration Initiative (SDI) to launch a manned flight to Mars is examined in the current light of growing constraints in costs and other human requirements. Sharing the huge costs of such a program among a group of nations might become low enough for the project to be feasible. Robotic missions, equipped with enhanced artificial intelligence, appear to be capable of satisfying mission requirements at 10 percent or less, of the cost of a manned flight. Various additional pros and cons are discussed regarding both SDI generally and a Mars mission. It is suggested that R&D projects be pursued that can be better justified and can also contribute to human mission to Mars if eventually a decision to go is made.

  13. (abstract) Telecommunications for Mars Rovers and Robotic Missions

    Science.gov (United States)

    Cesarone, Robert J.; Hastrup, Rolf C.; Horne, William; McOmber, Robert

    1997-01-01

    Telecommunications plays a key role in all rover and robotic missions to Mars both as a conduit for command information to the mission and for scientific data from the mission. Telecommunications to the Earth may be accomplished using direct-to-Earth links via the Deep Space Network (DSN) or by relay links supported by other missions at Mars. This paper reviews current plans for missions to Mars through the 2005 launch opportunity and their capabilities in support of rover and robotic telecommunications.

  14. Mars exploration study workshop 2

    Science.gov (United States)

    Duke, Michael B.; Budden, Nancy Ann

    1993-11-01

    A year-long NASA-wide study effort has led to the development of an innovative strategy for the human exploration of Mars. The latest Mars Exploration Study Workshop 2 advanced a design reference mission (DRM) that significantly reduces the perceived high costs, complex infrastructure, and long schedules associated with previous Mars scenarios. This surface-oriented philosophy emphasizes the development of high-leveraging surface technologies in lieu of concentrating exclusively on space transportation technologies and development strategies. As a result of the DRM's balanced approach to mission and crew risk, element commonality, and technology development, human missions to Mars can be accomplished without the need for complex assembly operations in low-Earth orbit. This report, which summarizes the Mars Exploration Study Workshop held at the Ames Research Center on May 24-25, 1993, provides an overview of the status of the Mars Exploration Study, material presented at the workshop, and discussions of open items being addressed by the study team. The workshop assembled three teams of experts to discuss cost, dual-use technology, and international involvement, and to generate a working group white paper addressing these issues. The three position papers which were generated are included in section three of this publication.

  15. Launching to the Moon, Mars, and Beyond

    Science.gov (United States)

    Sumrall, John P.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission today, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. Unlike the Apollo program of the 1960s, this phase of exploration will be a journey, not a race. In 1966, the NASA's budget was 4 percent of federal spending. Today, with 6/10 of 1 percent of the budget, NASA must incrementally develop the vehicles, infrastructure, technology, and organization to accomplish this goal. Fortunately, our knowledge and experience are greater than they were 40 years ago. NASA's goal is a return to the Moon by 2020. The Moon is the first step to America's exploration of Mars. Many questions about the Moon's history and how its history is linked to that of Earth remain even after the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment. The Moon also will serve as a training ground in several respects before embarking on the longer, more perilous trip to Mars. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, the Ares V Cargo Launch Vehicle, the Orion Crew Exploration Vehicle, and the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit on the Ares I and a second launch to orbit the lunar lander and the Earth Departure Stage to send the lander and crew vehicle to the Moon. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on proven hardware and decades of experience derived from

  16. Construction of Power Receiving Rectenna Using Mars- In-Situ Materials; A Low Energy Materials Processing Approach

    Science.gov (United States)

    Curreri, Peter A.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    It is highly desirable to have a non-nuclear power rich option for the human exploration of Mars. Utilizing a Solar Electric Propulsion, SEP, / Power Beaming architecture for a non-nuclear power option for a human Mars base potentially avoids the weather and dust sensitivities of the surface photovoltaic option. Further from Mars areosynchronous orbit near year round power can be provided. Mission analysis, however, concludes that ultra high (245 GHz) frequencies or laser transmission technologies are required for Mars landed mass competitiveness with the surface photovoltaic option if the receiving rectifying antenna "rectenna" is transported from Earth. It is suggested in this paper that producing rectenna in situ on Mars surface might make a more conventional 5.8 GHz system competitive with surface PV. The premium of a competitive, robust, continuous base power might make the development of a 10 plus MWe class SEP for human Mars mission a more attractive non-nuclear option.

  17. A generalized theory of sun-climate/weather link and climatic change

    International Nuclear Information System (INIS)

    Njau, E.C.

    1988-07-01

    We generalize the theory of Sun-Climate/weather links and climatic change developed earlier by the author. On the basis of this theory, we show mathematically that key climatic/weather parameters are continuously subjected to determinable amplitude modulations and other variations which may be useful in climatic prediction work. A number of new and known terrestrial oscillations in climate and atmospheric behaviour in general, including the known quasi-biennial oscillations and many others, are deduced from the theory and accounted for in terms of their causative physical processes. Finally we briefly discuss the possibility of applying the theory to the planets Mars and Venus as well as Saturn's largest satellite, Titan. (author). 30 refs, 1 fig

  18. Mars Pathfinder Microrover- Implementing a Low Cost Planetary Mission Experiment

    Science.gov (United States)

    Matijevic, J.

    1996-01-01

    The Mars Pathfinder Microrover Flight Experiment (MFEX) is a NASA Office of Space Access and Technology (OSAT) flight experiment which has been delivered and integrated with the Mars Pathfinder (MPF) lander and spacecraft system. The total cost of the MFEX mission, including all subsystem design and development, test, integration with the MPF lander and operations on Mars has been capped at $25 M??is paper discusses the process and the implementation scheme which has resulted in the development of this first Mars rover.

  19. Mars Molniya Orbit Atmospheric Resource Mining

    Data.gov (United States)

    National Aeronautics and Space Administration — Mars planetary surface access is one of NASA's biggest technical challenges involving advanced entry, descent, and landing (EDL) technologies and methods. This NASA...

  20. Unleashing Gen Y: Marketing Mars to Millennials

    Science.gov (United States)

    Leahy, Bart D.; Hidalgo, Loretta; Kloberdanz, Cassie

    2007-01-01

    Space advocates need to engage Generation Y (born 1977-1999).This outreach is necessary to recruit the next generation of scientists and engineers to explore Mars. Space advocates in the non-profit, private, and government sectors need to use a combination of technical communication, marketing, and politics, to develop messages that resonate with Gen Y. Until now, space messages have been generated by and for college-educated white males; Gen Y is much more diverse, including as much as one third minorities. Young women, too, need to be reached. My research has shown that messages emphasizing technology, fun, humor, and opportunity are the best means of reaching the Gen Y audience of 60 million (US population is 300 million). The important things space advocates must avoid are talking down to this generation, making false promises, or expecting them to "wait their turn" before they can participate. This is the MTV generation! We need to find ways of engaging Gen Y now to build a future where human beings can live and work on the planet Mars. In addition to the messages themselves, advocates need to keep up with Gen Y' s social networking and use of iPods, cell phones, and the Internet. NASA and space advocacy groups can use these tools for "viral marketing," where young people share targeted space-related information via cell phones or the Internet because they like it. Overall, Gen Y is a socially dynamic and media-savvy group; advocates' space messages need to be sincere, creative, and placed in locations where Gen Y lives. Mars messages must be memorable!