WorldWideScience

Sample records for markov clustering algorithm

  1. Ant Colony Clustering Algorithm and Improved Markov Random Fusion Algorithm in Image Segmentation of Brain Images

    Directory of Open Access Journals (Sweden)

    Guohua Zou

    2016-12-01

    Full Text Available New medical imaging technology, such as Computed Tomography and Magnetic Resonance Imaging (MRI, has been widely used in all aspects of medical diagnosis. The purpose of these imaging techniques is to obtain various qualitative and quantitative data of the patient comprehensively and accurately, and provide correct digital information for diagnosis, treatment planning and evaluation after surgery. MR has a good imaging diagnostic advantage for brain diseases. However, as the requirements of the brain image definition and quantitative analysis are always increasing, it is necessary to have better segmentation of MR brain images. The FCM (Fuzzy C-means algorithm is widely applied in image segmentation, but it has some shortcomings, such as long computation time and poor anti-noise capability. In this paper, firstly, the Ant Colony algorithm is used to determine the cluster centers and the number of FCM algorithm so as to improve its running speed. Then an improved Markov random field model is used to improve the algorithm, so that its antinoise ability can be improved. Experimental results show that the algorithm put forward in this paper has obvious advantages in image segmentation speed and segmentation effect.

  2. Performance criteria for graph clustering and Markov cluster experiments

    NARCIS (Netherlands)

    S. van Dongen

    2000-01-01

    textabstractIn~[1] a cluster algorithm for graphs was introduced called the Markov cluster algorithm or MCL~algorithm. The algorithm is based on simulation of (stochastic) flow in graphs by means of alternation of two operators, expansion and inflation. The results in~[2] establish an intrinsic

  3. A cluster algorithm for graphs

    NARCIS (Netherlands)

    S. van Dongen

    2000-01-01

    textabstractA cluster algorithm for graphs called the emph{Markov Cluster algorithm (MCL~algorithm) is introduced. The algorithm provides basically an interface to an algebraic process defined on stochastic matrices, called the MCL~process. The graphs may be both weighted (with nonnegative weight)

  4. K­MEANS CLUSTERING FOR HIDDEN MARKOV MODEL

    NARCIS (Netherlands)

    Perrone, M.P.; Connell, S.D.

    2004-01-01

    An unsupervised k­means clustering algorithm for hidden Markov models is described and applied to the task of generating subclass models for individual handwritten character classes. The algorithm is compared to a related clustering method and shown to give a relative change in the error rate of as

  5. A new cluster algorithm for graphs

    NARCIS (Netherlands)

    S. van Dongen

    1998-01-01

    textabstractA new cluster algorithm for graphs called the emph{Markov Cluster algorithm ($MCL$ algorithm) is introduced. The graphs may be both weighted (with nonnegative weight) and directed. Let~$G$~be such a graph. The $MCL$ algorithm simulates flow in $G$ by first identifying $G$ in a

  6. Markov chains models, algorithms and applications

    CERN Document Server

    Ching, Wai-Ki; Ng, Michael K; Siu, Tak-Kuen

    2013-01-01

    This new edition of Markov Chains: Models, Algorithms and Applications has been completely reformatted as a text, complete with end-of-chapter exercises, a new focus on management science, new applications of the models, and new examples with applications in financial risk management and modeling of financial data.This book consists of eight chapters.  Chapter 1 gives a brief introduction to the classical theory on both discrete and continuous time Markov chains. The relationship between Markov chains of finite states and matrix theory will also be highlighted. Some classical iterative methods

  7. Genetic Algorithms Principles Towards Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Nabil M. Hewahi

    2011-10-01

    Full Text Available In this paper we propose a general approach based on Genetic Algorithms (GAs to evolve Hidden Markov Models (HMM. The problem appears when experts assign probability values for HMM, they use only some limited inputs. The assigned probability values might not be accurate to serve in other cases related to the same domain. We introduce an approach based on GAs to find
    out the suitable probability values for the HMM to be mostly correct in more cases than what have been used to assign the probability values.

  8. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  9. Application of clustering methods: Regularized Markov clustering (R-MCL) for analyzing dengue virus similarity

    Science.gov (United States)

    Lestari, D.; Raharjo, D.; Bustamam, A.; Abdillah, B.; Widhianto, W.

    2017-07-01

    Dengue virus consists of 10 different constituent proteins and are classified into 4 major serotypes (DEN 1 - DEN 4). This study was designed to perform clustering against 30 protein sequences of dengue virus taken from Virus Pathogen Database and Analysis Resource (VIPR) using Regularized Markov Clustering (R-MCL) algorithm and then we analyze the result. By using Python program 3.4, R-MCL algorithm produces 8 clusters with more than one centroid in several clusters. The number of centroid shows the density level of interaction. Protein interactions that are connected in a tissue, form a complex protein that serves as a specific biological process unit. The analysis of result shows the R-MCL clustering produces clusters of dengue virus family based on the similarity role of their constituent protein, regardless of serotypes.

  10. Fermion cluster algorithms

    International Nuclear Information System (INIS)

    Chandrasekharan, Shailesh

    2000-01-01

    Cluster algorithms have been recently used to eliminate sign problems that plague Monte-Carlo methods in a variety of systems. In particular such algorithms can also be used to solve sign problems associated with the permutation of fermion world lines. This solution leads to the possibility of designing fermion cluster algorithms in certain cases. Using the example of free non-relativistic fermions we discuss the ideas underlying the algorithm

  11. rEMM: Extensible Markov Model for Data Stream Clustering in R

    Directory of Open Access Journals (Sweden)

    Michael Hahsler

    2010-10-01

    Full Text Available Clustering streams of continuously arriving data has become an important application of data mining in recent years and efficient algorithms have been proposed by several researchers. However, clustering alone neglects the fact that data in a data stream is not only characterized by the proximity of data points which is used by clustering, but also by a temporal component. The extensible Markov model (EMM adds the temporal component to data stream clustering by superimposing a dynamically adapting Markov chain. In this paper we introduce the implementation of the R extension package rEMM which implements EMM and we discuss some examples and applications.

  12. Protein sequences clustering of herpes virus by using Tribe Markov clustering (Tribe-MCL)

    Science.gov (United States)

    Bustamam, A.; Siswantining, T.; Febriyani, N. L.; Novitasari, I. D.; Cahyaningrum, R. D.

    2017-07-01

    The herpes virus can be found anywhere and one of the important characteristics is its ability to cause acute and chronic infection at certain times so as a result of the infection allows severe complications occurred. The herpes virus is composed of DNA containing protein and wrapped by glycoproteins. In this work, the Herpes viruses family is classified and analyzed by clustering their protein-sequence using Tribe Markov Clustering (Tribe-MCL) algorithm. Tribe-MCL is an efficient clustering method based on the theory of Markov chains, to classify protein families from protein sequences using pre-computed sequence similarity information. We implement the Tribe-MCL algorithm using an open source program of R. We select 24 protein sequences of Herpes virus obtained from NCBI database. The dataset consists of three types of glycoprotein B, F, and H. Each type has eight herpes virus that infected humans. Based on our simulation using different inflation factor r=1.5, 2, 3 we find a various number of the clusters results. The greater the inflation factor the greater the number of their clusters. Each protein will grouped together in the same type of protein.

  13. Uncovering and testing the fuzzy clusters based on lumped Markov chain in complex network.

    Science.gov (United States)

    Jing, Fan; Jianbin, Xie; Jinlong, Wang; Jinshuai, Qu

    2013-01-01

    Identifying clusters, namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. By means of a lumped Markov chain model of a random walker, we propose two novel ways of inferring the lumped markov transition matrix. Furthermore, some useful results are proposed based on the analysis of the properties of the lumped Markov process. To find the best partition of complex networks, a novel framework including two algorithms for network partition based on the optimal lumped Markovian dynamics is derived to solve this problem. The algorithms are constructed to minimize the objective function under this framework. It is demonstrated by the simulation experiments that our algorithms can efficiently determine the probabilities with which a node belongs to different clusters during the learning process and naturally supports the fuzzy partition. Moreover, they are successfully applied to real-world network, including the social interactions between members of a karate club.

  14. Clustering Multivariate Time Series Using Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Shima Ghassempour

    2014-03-01

    Full Text Available In this paper we describe an algorithm for clustering multivariate time series with variables taking both categorical and continuous values. Time series of this type are frequent in health care, where they represent the health trajectories of individuals. The problem is challenging because categorical variables make it difficult to define a meaningful distance between trajectories. We propose an approach based on Hidden Markov Models (HMMs, where we first map each trajectory into an HMM, then define a suitable distance between HMMs and finally proceed to cluster the HMMs with a method based on a distance matrix. We test our approach on a simulated, but realistic, data set of 1,255 trajectories of individuals of age 45 and over, on a synthetic validation set with known clustering structure, and on a smaller set of 268 trajectories extracted from the longitudinal Health and Retirement Survey. The proposed method can be implemented quite simply using standard packages in R and Matlab and may be a good candidate for solving the difficult problem of clustering multivariate time series with categorical variables using tools that do not require advanced statistic knowledge, and therefore are accessible to a wide range of researchers.

  15. Markov's theorem and algorithmically non-recognizable combinatorial manifolds

    International Nuclear Information System (INIS)

    Shtan'ko, M A

    2004-01-01

    We prove the theorem of Markov on the existence of an algorithmically non-recognizable combinatorial n-dimensional manifold for every n≥4. We construct for the first time a concrete manifold which is algorithmically non-recognizable. A strengthened form of Markov's theorem is proved using the combinatorial methods of regular neighbourhoods and handle theory. The proofs coincide for all n≥4. We use Borisov's group with insoluble word problem. It has two generators and twelve relations. The use of this group forms the base for proving the strengthened form of Markov's theorem

  16. Detection of protein complex from protein-protein interaction network using Markov clustering

    International Nuclear Information System (INIS)

    Ochieng, P J; Kusuma, W A; Haryanto, T

    2017-01-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks. (paper)

  17. Optimisation of Hidden Markov Model using Baum–Welch algorithm

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 1. Optimisation of Hidden Markov Model using Baum–Welch algorithm for prediction of maximum and minimum temperature over Indian Himalaya. J C Joshi Tankeshwar Kumar Sunita Srivastava Divya Sachdeva. Volume 126 Issue 1 February 2017 ...

  18. A Coupled Hidden Markov Random Field Model for Simultaneous Face Clustering and Tracking in Videos

    KAUST Repository

    Wu, Baoyuan

    2016-10-25

    Face clustering and face tracking are two areas of active research in automatic facial video processing. They, however, have long been studied separately, despite the inherent link between them. In this paper, we propose to perform simultaneous face clustering and face tracking from real world videos. The motivation for the proposed research is that face clustering and face tracking can provide useful information and constraints to each other, thus can bootstrap and improve the performances of each other. To this end, we introduce a Coupled Hidden Markov Random Field (CHMRF) to simultaneously model face clustering, face tracking, and their interactions. We provide an effective algorithm based on constrained clustering and optimal tracking for the joint optimization of cluster labels and face tracking. We demonstrate significant improvements over state-of-the-art results in face clustering and tracking on several videos.

  19. Engineering of Algorithms for Hidden Markov models and Tree Distances

    DEFF Research Database (Denmark)

    Sand, Andreas

    Bioinformatics is an interdisciplinary scientific field that combines biology with mathematics, statistics and computer science in an effort to develop computational methods for handling, analyzing and learning from biological data. In the recent decades, the amount of available biological data has...... speed up all the classical algorithms for analyses and training of hidden Markov models. And I show how two particularly important algorithms, the forward algorithm and the Viterbi algorithm, can be accelerated through a reformulation of the algorithms and a somewhat more complicated parallelization...... contribution to the theoretically fastest set of algorithms presently available to compute two closely related measures of tree distance, the triplet distance and the quartet distance. And I further demonstrate that they are also the fastest algorithms in almost all cases when tested in practice....

  20. ''adding'' algorithm for the Markov chain formalism for radiation transfer

    International Nuclear Information System (INIS)

    Esposito, L.W.

    1979-01-01

    The Markov chain radiative transfer method of Esposito and House has been shown to be both efficient and accurate for calculation of the diffuse reflection from a homogeneous scattering planetary atmosphere. The use of a new algorithm similar to the ''adding'' formula of Hansen and Travis extends the application of this formalism to an arbitrarily deep atmosphere. The basic idea for this algorithm is to consider a preceding calculation as a single state of a new Markov chain. Successive application of this procedure makes calculation possible for any optical depth without increasing the size of the linear system used. The time required for the algorithm is comparable to that for a doubling calculation for a homogeneous atmosphere, but for a non-homogeneous atmosphere the new method is considerably faster than the standard ''adding'' routine. As with he standard ''adding'' method, the information on the internal radiation field is lost during the calculation. This method retains the advantage of the earlier Markov chain method that the time required is relatively insensitive to the number of illumination angles or observation angles for which the diffuse reflection is calculated. A technical write-up giving fuller details of the algorithm and a sample code are available from the author

  1. Bayesian clustering of DNA sequences using Markov chains and a stochastic partition model.

    Science.gov (United States)

    Jääskinen, Väinö; Parkkinen, Ville; Cheng, Lu; Corander, Jukka

    2014-02-01

    In many biological applications it is necessary to cluster DNA sequences into groups that represent underlying organismal units, such as named species or genera. In metagenomics this grouping needs typically to be achieved on the basis of relatively short sequences which contain different types of errors, making the use of a statistical modeling approach desirable. Here we introduce a novel method for this purpose by developing a stochastic partition model that clusters Markov chains of a given order. The model is based on a Dirichlet process prior and we use conjugate priors for the Markov chain parameters which enables an analytical expression for comparing the marginal likelihoods of any two partitions. To find a good candidate for the posterior mode in the partition space, we use a hybrid computational approach which combines the EM-algorithm with a greedy search. This is demonstrated to be faster and yield highly accurate results compared to earlier suggested clustering methods for the metagenomics application. Our model is fairly generic and could also be used for clustering of other types of sequence data for which Markov chains provide a reasonable way to compress information, as illustrated by experiments on shotgun sequence type data from an Escherichia coli strain.

  2. Data clustering algorithms and applications

    CERN Document Server

    Aggarwal, Charu C

    2013-01-01

    Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains.The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as fea

  3. Monte Carlo algorithms with absorbing Markov chains: Fast local algorithms for slow dynamics

    International Nuclear Information System (INIS)

    Novotny, M.A.

    1995-01-01

    A class of Monte Carlo algorithms which incorporate absorbing Markov chains is presented. In a particular limit, the lowest order of these algorithms reduces to the n-fold way algorithm. These algorithms are applied to study the escape from the metastable state in the two-dimensional square-lattice nearest-neighbor Ising ferromagnet in an unfavorable applied field, and the agreement with theoretical predictions is very good. It is demonstrated that the higher-order algorithms can be many orders of magnitude faster than either the traditional Monte Carlo or n-fold way algorithms

  4. Algorithms for a parallel implementation of Hidden Markov Models with a small state space

    DEFF Research Database (Denmark)

    Nielsen, Jesper; Sand, Andreas

    2011-01-01

    Two of the most important algorithms for Hidden Markov Models are the forward and the Viterbi algorithms. We show how formulating these using linear algebra naturally lends itself to parallelization. Although the obtained algorithms are slow for Hidden Markov Models with large state spaces...

  5. On the multi-level solution algorithm for Markov chains

    Energy Technology Data Exchange (ETDEWEB)

    Horton, G. [Univ. of Erlangen, Nuernberg (Germany)

    1996-12-31

    We discuss the recently introduced multi-level algorithm for the steady-state solution of Markov chains. The method is based on the aggregation principle, which is well established in the literature. Recursive application of the aggregation yields a multi-level method which has been shown experimentally to give results significantly faster than the methods currently in use. The algorithm can be reformulated as an algebraic multigrid scheme of Galerkin-full approximation type. The uniqueness of the scheme stems from its solution-dependent prolongation operator which permits significant computational savings in the evaluation of certain terms. This paper describes the modeling of computer systems to derive information on performance, measured typically as job throughput or component utilization, and availability, defined as the proportion of time a system is able to perform a certain function in the presence of component failures and possibly also repairs.

  6. Simulation-based algorithms for Markov decision processes

    CERN Document Server

    Chang, Hyeong Soo; Fu, Michael C; Marcus, Steven I

    2013-01-01

    Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences.  Many real-world problems modeled by MDPs have huge state and/or action spaces, giving an opening to the curse of dimensionality and so making practical solution of the resulting models intractable.  In other cases, the system of interest is too complex to allow explicit specification of some of the MDP model parameters, but simulation samples are readily available (e.g., for random transitions and costs). For these settings, various sampling and population-based algorithms have been developed to overcome the difficulties of computing an optimal solution in terms of a policy and/or value function.  Specific approaches include adaptive sampling, evolutionary policy iteration, evolutionary random policy search, and model reference adaptive search. This substantially enlarged new edition reflects the latest developments in novel ...

  7. K-means Clustering: Lloyd's algorithm

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. K-means Clustering: Lloyd's algorithm. Refines clusters iteratively. Cluster points using Voronoi partitioning of the centers; Centroids of the clusters determine the new centers. Bad example k = 3, n =4.

  8. Normalization based K means Clustering Algorithm

    OpenAIRE

    Virmani, Deepali; Taneja, Shweta; Malhotra, Geetika

    2015-01-01

    K-means is an effective clustering technique used to separate similar data into groups based on initial centroids of clusters. In this paper, Normalization based K-means clustering algorithm(N-K means) is proposed. Proposed N-K means clustering algorithm applies normalization prior to clustering on the available data as well as the proposed approach calculates initial centroids based on weights. Experimental results prove the betterment of proposed N-K means clustering algorithm over existing...

  9. Parallel algorithms and cluster computing

    CERN Document Server

    Hoffmann, Karl Heinz

    2007-01-01

    This book presents major advances in high performance computing as well as major advances due to high performance computing. It contains a collection of papers in which results achieved in the collaboration of scientists from computer science, mathematics, physics, and mechanical engineering are presented. From the science problems to the mathematical algorithms and on to the effective implementation of these algorithms on massively parallel and cluster computers we present state-of-the-art methods and technology as well as exemplary results in these fields. This book shows that problems which seem superficially distinct become intimately connected on a computational level.

  10. Determination of atomic cluster structure with cluster fusion algorithm

    DEFF Research Database (Denmark)

    Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2005-01-01

    We report an efficient scheme of global optimization, called cluster fusion algorithm, which has proved its reliability and high efficiency in determination of the structure of various atomic clusters.......We report an efficient scheme of global optimization, called cluster fusion algorithm, which has proved its reliability and high efficiency in determination of the structure of various atomic clusters....

  11. Optimisation of Hidden Markov Model using Baum–Welch algorithm ...

    Indian Academy of Sciences (India)

    The present work is a part of development of Hidden Markov Model. (HMM) based ... the Himalaya. In this work, HMMs have been developed for forecasting of maximum and minimum ..... data collection teams of Snow and Avalanche Study.

  12. Spatial Region Estimation for Autonomous CoT Clustering Using Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Joon‐young Jung

    2018-02-01

    Full Text Available This paper proposes a hierarchical dual filtering (HDF algorithm to estimate the spatial region between a Cloud of Things (CoT gateway and an Internet of Things (IoT device. The accuracy of the spatial region estimation is important for autonomous CoT clustering. We conduct spatial region estimation using a hidden Markov model (HMM with a raw Bluetooth received signal strength indicator (RSSI. However, the accuracy of the region estimation using the validation data is only 53.8%. To increase the accuracy of the spatial region estimation, the HDF algorithm removes the high‐frequency signals hierarchically, and alters the parameters according to whether the IoT device moves. The accuracy of spatial region estimation using a raw RSSI, Kalman filter, and HDF are compared to evaluate the effectiveness of the HDF algorithm. The success rate and root mean square error (RMSE of all regions are 0.538, 0.622, and 0.75, and 0.997, 0.812, and 0.5 when raw RSSI, a Kalman filter, and HDF are used, respectively. The HDF algorithm attains the best results in terms of the success rate and RMSE of spatial region estimation using HMM.

  13. Text Clustering Algorithm Based on Random Cluster Core

    Directory of Open Access Journals (Sweden)

    Huang Long-Jun

    2016-01-01

    Full Text Available Nowadays clustering has become a popular text mining algorithm, but the huge data can put forward higher requirements for the accuracy and performance of text mining. In view of the performance bottleneck of traditional text clustering algorithm, this paper proposes a text clustering algorithm with random features. This is a kind of clustering algorithm based on text density, at the same time using the neighboring heuristic rules, the concept of random cluster is introduced, which effectively reduces the complexity of the distance calculation.

  14. Frequent Pattern Mining Algorithms for Data Clustering

    DEFF Research Database (Denmark)

    Zimek, Arthur; Assent, Ira; Vreeken, Jilles

    2014-01-01

    that frequent pattern mining was at the cradle of subspace clustering—yet, it quickly developed into an independent research field. In this chapter, we discuss how frequent pattern mining algorithms have been extended and generalized towards the discovery of local clusters in high-dimensional data......Discovering clusters in subspaces, or subspace clustering and related clustering paradigms, is a research field where we find many frequent pattern mining related influences. In fact, as the first algorithms for subspace clustering were based on frequent pattern mining algorithms, it is fair to say....... In particular, we discuss several example algorithms for subspace clustering or projected clustering as well as point out recent research questions and open topics in this area relevant to researchers in either clustering or pattern mining...

  15. Parallel algorithms for simulating continuous time Markov chains

    Science.gov (United States)

    Nicol, David M.; Heidelberger, Philip

    1992-01-01

    We have previously shown that the mathematical technique of uniformization can serve as the basis of synchronization for the parallel simulation of continuous-time Markov chains. This paper reviews the basic method and compares five different methods based on uniformization, evaluating their strengths and weaknesses as a function of problem characteristics. The methods vary in their use of optimism, logical aggregation, communication management, and adaptivity. Performance evaluation is conducted on the Intel Touchstone Delta multiprocessor, using up to 256 processors.

  16. A Graph-Algorithmic Approach for the Study of Metastability in Markov Chains

    Science.gov (United States)

    Gan, Tingyue; Cameron, Maria

    2017-06-01

    Large continuous-time Markov chains with exponentially small transition rates arise in modeling complex systems in physics, chemistry, and biology. We propose a constructive graph-algorithmic approach to determine the sequence of critical timescales at which the qualitative behavior of a given Markov chain changes, and give an effective description of the dynamics on each of them. This approach is valid for both time-reversible and time-irreversible Markov processes, with or without symmetry. Central to this approach are two graph algorithms, Algorithm 1 and Algorithm 2, for obtaining the sequences of the critical timescales and the hierarchies of Typical Transition Graphs or T-graphs indicating the most likely transitions in the system without and with symmetry, respectively. The sequence of critical timescales includes the subsequence of the reciprocals of the real parts of eigenvalues. Under a certain assumption, we prove sharp asymptotic estimates for eigenvalues (including pre-factors) and show how one can extract them from the output of Algorithm 1. We discuss the relationship between Algorithms 1 and 2 and explain how one needs to interpret the output of Algorithm 1 if it is applied in the case with symmetry instead of Algorithm 2. Finally, we analyze an example motivated by R. D. Astumian's model of the dynamics of kinesin, a molecular motor, by means of Algorithm 2.

  17. Algorithm for Spatial Clustering with Obstacles

    OpenAIRE

    El-Sharkawi, Mohamed E.; El-Zawawy, Mohamed A.

    2009-01-01

    In this paper, we propose an efficient clustering technique to solve the problem of clustering in the presence of obstacles. The proposed algorithm divides the spatial area into rectangular cells. Each cell is associated with statistical information that enables us to label the cell as dense or non-dense. We also label each cell as obstructed (i.e. intersects any obstacle) or non-obstructed. Then the algorithm finds the regions (clusters) of connected, dense, non-obstructed cells. Finally, th...

  18. An Expectation Maximization Algorithm to Model Failure Times by Continuous-Time Markov Chains

    Directory of Open Access Journals (Sweden)

    Qihong Duan

    2010-01-01

    Full Text Available In many applications, the failure rate function may present a bathtub shape curve. In this paper, an expectation maximization algorithm is proposed to construct a suitable continuous-time Markov chain which models the failure time data by the first time reaching the absorbing state. Assume that a system is described by methods of supplementary variables, the device of stage, and so on. Given a data set, the maximum likelihood estimators of the initial distribution and the infinitesimal transition rates of the Markov chain can be obtained by our novel algorithm. Suppose that there are m transient states in the system and that there are n failure time data. The devised algorithm only needs to compute the exponential of m×m upper triangular matrices for O(nm2 times in each iteration. Finally, the algorithm is applied to two real data sets, which indicates the practicality and efficiency of our algorithm.

  19. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    International Nuclear Information System (INIS)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-01-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space

  20. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    Energy Technology Data Exchange (ETDEWEB)

    Nedialkova, Lilia V.; Amat, Miguel A. [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de [Department of Chemical and Biological Engineering and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544 (United States); Hummer, Gerhard, E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de [Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main (Germany)

    2014-09-21

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  1. Data clustering theory, algorithms, and applications

    CERN Document Server

    Gan, Guojun; Wu, Jianhong

    2007-01-01

    Cluster analysis is an unsupervised process that divides a set of objects into homogeneous groups. This book starts with basic information on cluster analysis, including the classification of data and the corresponding similarity measures, followed by the presentation of over 50 clustering algorithms in groups according to some specific baseline methodologies such as hierarchical, center-based, and search-based methods. As a result, readers and users can easily identify an appropriate algorithm for their applications and compare novel ideas with existing results. The book also provides examples of clustering applications to illustrate the advantages and shortcomings of different clustering architectures and algorithms. Application areas include pattern recognition, artificial intelligence, information technology, image processing, biology, psychology, and marketing. Readers also learn how to perform cluster analysis with the C/C++ and MATLAB® programming languages.

  2. Automatic categorization of web pages and user clustering with mixtures of hidden Markov models

    NARCIS (Netherlands)

    Ypma, A.; Heskes, T.M.; Zaiane, O.R.; Srivastav, J.

    2003-01-01

    We propose mixtures of hidden Markov models for modelling clickstreams of web surfers. Hence, the page categorization is learned from the data without the need for a (possibly cumbersome) manual categorization. We provide an EM algorithm for training a mixture of HMMs and show that additional static

  3. Semantic based cluster content discovery in description first clustering algorithm

    International Nuclear Information System (INIS)

    Khan, M.W.; Asif, H.M.S.

    2017-01-01

    In the field of data analytics grouping of like documents in textual data is a serious problem. A lot of work has been done in this field and many algorithms have purposed. One of them is a category of algorithms which firstly group the documents on the basis of similarity and then assign the meaningful labels to those groups. Description first clustering algorithm belong to the category in which the meaningful description is deduced first and then relevant documents are assigned to that description. LINGO (Label Induction Grouping Algorithm) is the algorithm of description first clustering category which is used for the automatic grouping of documents obtained from search results. It uses LSI (Latent Semantic Indexing); an IR (Information Retrieval) technique for induction of meaningful labels for clusters and VSM (Vector Space Model) for cluster content discovery. In this paper we present the LINGO while it is using LSI during cluster label induction and cluster content discovery phase. Finally, we compare results obtained from the said algorithm while it uses VSM and Latent semantic analysis during cluster content discovery phase. (author)

  4. Teaching Markov Chain Monte Carlo: Revealing the Basic Ideas behind the Algorithm

    Science.gov (United States)

    Stewart, Wayne; Stewart, Sepideh

    2014-01-01

    For many scientists, researchers and students Markov chain Monte Carlo (MCMC) simulation is an important and necessary tool to perform Bayesian analyses. The simulation is often presented as a mathematical algorithm and then translated into an appropriate computer program. However, this can result in overlooking the fundamental and deeper…

  5. Belief Bisimulation for Hidden Markov Models Logical Characterisation and Decision Algorithm

    DEFF Research Database (Denmark)

    Jansen, David N.; Nielson, Flemming; Zhang, Lijun

    2012-01-01

    This paper establishes connections between logical equivalences and bisimulation relations for hidden Markov models (HMM). Both standard and belief state bisimulations are considered. We also present decision algorithms for the bisimilarities. For standard bisimilarity, an extension of the usual...... partition refinement algorithm is enough. Belief bisimilarity, being a relation on the continuous space of belief states, cannot be described directly. Instead, we show how to generate a linear equation system in time cubic in the number of states....

  6. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.

    Science.gov (United States)

    Theofilatos, Konstantinos; Pavlopoulou, Niki; Papasavvas, Christoforos; Likothanassis, Spiros; Dimitrakopoulos, Christos; Georgopoulos, Efstratios; Moschopoulos, Charalampos; Mavroudi, Seferina

    2015-03-01

    Proteins are considered to be the most important individual components of biological systems and they combine to form physical protein complexes which are responsible for certain molecular functions. Despite the large availability of protein-protein interaction (PPI) information, not much information is available about protein complexes. Experimental methods are limited in terms of time, efficiency, cost and performance constraints. Existing computational methods have provided encouraging preliminary results, but they phase certain disadvantages as they require parameter tuning, some of them cannot handle weighted PPI data and others do not allow a protein to participate in more than one protein complex. In the present paper, we propose a new fully unsupervised methodology for predicting protein complexes from weighted PPI graphs. The proposed methodology is called evolutionary enhanced Markov clustering (EE-MC) and it is a hybrid combination of an adaptive evolutionary algorithm and a state-of-the-art clustering algorithm named enhanced Markov clustering. EE-MC was compared with state-of-the-art methodologies when applied to datasets from the human and the yeast Saccharomyces cerevisiae organisms. Using public available datasets, EE-MC outperformed existing methodologies (in some datasets the separation metric was increased by 10-20%). Moreover, when applied to new human datasets its performance was encouraging in the prediction of protein complexes which consist of proteins with high functional similarity. In specific, 5737 protein complexes were predicted and 72.58% of them are enriched for at least one gene ontology (GO) function term. EE-MC is by design able to overcome intrinsic limitations of existing methodologies such as their inability to handle weighted PPI networks, their constraint to assign every protein in exactly one cluster and the difficulties they face concerning the parameter tuning. This fact was experimentally validated and moreover, new

  7. Non-convex polygons clustering algorithm

    Directory of Open Access Journals (Sweden)

    Kruglikov Alexey

    2016-01-01

    Full Text Available A clustering algorithm is proposed, to be used as a preliminary step in motion planning. It is tightly coupled to the applied problem statement, i.e. uses parameters meaningful only with respect to it. Use of geometrical properties for polygons clustering allows for a better calculation time as opposed to general-purpose algorithms. A special form of map optimized for quick motion planning is constructed as a result.

  8. Evaluation of clustering algorithms for protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    van Helden Jacques

    2006-11-01

    Full Text Available Abstract Background Protein interactions are crucial components of all cellular processes. Recently, high-throughput methods have been developed to obtain a global description of the interactome (the whole network of protein interactions for a given organism. In 2002, the yeast interactome was estimated to contain up to 80,000 potential interactions. This estimate is based on the integration of data sets obtained by various methods (mass spectrometry, two-hybrid methods, genetic studies. High-throughput methods are known, however, to yield a non-negligible rate of false positives, and to miss a fraction of existing interactions. The interactome can be represented as a graph where nodes correspond with proteins and edges with pairwise interactions. In recent years clustering methods have been developed and applied in order to extract relevant modules from such graphs. These algorithms require the specification of parameters that may drastically affect the results. In this paper we present a comparative assessment of four algorithms: Markov Clustering (MCL, Restricted Neighborhood Search Clustering (RNSC, Super Paramagnetic Clustering (SPC, and Molecular Complex Detection (MCODE. Results A test graph was built on the basis of 220 complexes annotated in the MIPS database. To evaluate the robustness to false positives and false negatives, we derived 41 altered graphs by randomly removing edges from or adding edges to the test graph in various proportions. Each clustering algorithm was applied to these graphs with various parameter settings, and the clusters were compared with the annotated complexes. We analyzed the sensitivity of the algorithms to the parameters and determined their optimal parameter values. We also evaluated their robustness to alterations of the test graph. We then applied the four algorithms to six graphs obtained from high-throughput experiments and compared the resulting clusters with the annotated complexes. Conclusion This

  9. Robust MST-Based Clustering Algorithm.

    Science.gov (United States)

    Liu, Qidong; Zhang, Ruisheng; Zhao, Zhili; Wang, Zhenghai; Jiao, Mengyao; Wang, Guangjing

    2018-06-01

    Minimax similarity stresses the connectedness of points via mediating elements rather than favoring high mutual similarity. The grouping principle yields superior clustering results when mining arbitrarily-shaped clusters in data. However, it is not robust against noises and outliers in the data. There are two main problems with the grouping principle: first, a single object that is far away from all other objects defines a separate cluster, and second, two connected clusters would be regarded as two parts of one cluster. In order to solve such problems, we propose robust minimum spanning tree (MST)-based clustering algorithm in this letter. First, we separate the connected objects by applying a density-based coarsening phase, resulting in a low-rank matrix in which the element denotes the supernode by combining a set of nodes. Then a greedy method is presented to partition those supernodes through working on the low-rank matrix. Instead of removing the longest edges from MST, our algorithm groups the data set based on the minimax similarity. Finally, the assignment of all data points can be achieved through their corresponding supernodes. Experimental results on many synthetic and real-world data sets show that our algorithm consistently outperforms compared clustering algorithms.

  10. Markov chain algorithms: a template for building future robust low-power systems

    Science.gov (United States)

    Deka, Biplab; Birklykke, Alex A.; Duwe, Henry; Mansinghka, Vikash K.; Kumar, Rakesh

    2014-01-01

    Although computational systems are looking towards post CMOS devices in the pursuit of lower power, the expected inherent unreliability of such devices makes it difficult to design robust systems without additional power overheads for guaranteeing robustness. As such, algorithmic structures with inherent ability to tolerate computational errors are of significant interest. We propose to cast applications as stochastic algorithms based on Markov chains (MCs) as such algorithms are both sufficiently general and tolerant to transition errors. We show with four example applications—Boolean satisfiability, sorting, low-density parity-check decoding and clustering—how applications can be cast as MC algorithms. Using algorithmic fault injection techniques, we demonstrate the robustness of these implementations to transition errors with high error rates. Based on these results, we make a case for using MCs as an algorithmic template for future robust low-power systems. PMID:24842030

  11. Maximum-entropy clustering algorithm and its global convergence analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Constructing a batch of differentiable entropy functions touniformly approximate an objective function by means of the maximum-entropy principle, a new clustering algorithm, called maximum-entropy clustering algorithm, is proposed based on optimization theory. This algorithm is a soft generalization of the hard C-means algorithm and possesses global convergence. Its relations with other clustering algorithms are discussed.

  12. Choice of the parameters of the cusum algorithms for parameter estimation in the markov modulated poisson process

    OpenAIRE

    Burkatovskaya, Yuliya Borisovna; Kabanova, T.; Khaustov, Pavel Aleksandrovich

    2016-01-01

    CUSUM algorithm for controlling chain state switching in the Markov modulated Poissonprocess was investigated via simulation. Recommendations concerning the parameter choice were givensubject to characteristics of the process. Procedure of the process parameter estimation was described.

  13. A novel image encryption algorithm based on chaos maps with Markov properties

    Science.gov (United States)

    Liu, Quan; Li, Pei-yue; Zhang, Ming-chao; Sui, Yong-xin; Yang, Huai-jiang

    2015-02-01

    In order to construct high complexity, secure and low cost image encryption algorithm, a class of chaos with Markov properties was researched and such algorithm was also proposed. The kind of chaos has higher complexity than the Logistic map and Tent map, which keeps the uniformity and low autocorrelation. An improved couple map lattice based on the chaos with Markov properties is also employed to cover the phase space of the chaos and enlarge the key space, which has better performance than the original one. A novel image encryption algorithm is constructed on the new couple map lattice, which is used as a key stream generator. A true random number is used to disturb the key which can dynamically change the permutation matrix and the key stream. From the experiments, it is known that the key stream can pass SP800-22 test. The novel image encryption can resist CPA and CCA attack and differential attack. The algorithm is sensitive to the initial key and can change the distribution the pixel values of the image. The correlation of the adjacent pixels can also be eliminated. When compared with the algorithm based on Logistic map, it has higher complexity and better uniformity, which is nearer to the true random number. It is also efficient to realize which showed its value in common use.

  14. Estimating the ratios of the stationary distribution values for Markov chains modeling evolutionary algorithms.

    Science.gov (United States)

    Mitavskiy, Boris; Cannings, Chris

    2009-01-01

    The evolutionary algorithm stochastic process is well-known to be Markovian. These have been under investigation in much of the theoretical evolutionary computing research. When the mutation rate is positive, the Markov chain modeling of an evolutionary algorithm is irreducible and, therefore, has a unique stationary distribution. Rather little is known about the stationary distribution. In fact, the only quantitative facts established so far tell us that the stationary distributions of Markov chains modeling evolutionary algorithms concentrate on uniform populations (i.e., those populations consisting of a repeated copy of the same individual). At the same time, knowing the stationary distribution may provide some information about the expected time it takes for the algorithm to reach a certain solution, assessment of the biases due to recombination and selection, and is of importance in population genetics to assess what is called a "genetic load" (see the introduction for more details). In the recent joint works of the first author, some bounds have been established on the rates at which the stationary distribution concentrates on the uniform populations. The primary tool used in these papers is the "quotient construction" method. It turns out that the quotient construction method can be exploited to derive much more informative bounds on ratios of the stationary distribution values of various subsets of the state space. In fact, some of the bounds obtained in the current work are expressed in terms of the parameters involved in all the three main stages of an evolutionary algorithm: namely, selection, recombination, and mutation.

  15. Poisson-Box Sampling algorithms for three-dimensional Markov binary mixtures

    Science.gov (United States)

    Larmier, Coline; Zoia, Andrea; Malvagi, Fausto; Dumonteil, Eric; Mazzolo, Alain

    2018-02-01

    Particle transport in Markov mixtures can be addressed by the so-called Chord Length Sampling (CLS) methods, a family of Monte Carlo algorithms taking into account the effects of stochastic media on particle propagation by generating on-the-fly the material interfaces crossed by the random walkers during their trajectories. Such methods enable a significant reduction of computational resources as opposed to reference solutions obtained by solving the Boltzmann equation for a large number of realizations of random media. CLS solutions, which neglect correlations induced by the spatial disorder, are faster albeit approximate, and might thus show discrepancies with respect to reference solutions. In this work we propose a new family of algorithms (called 'Poisson Box Sampling', PBS) aimed at improving the accuracy of the CLS approach for transport in d-dimensional binary Markov mixtures. In order to probe the features of PBS methods, we will focus on three-dimensional Markov media and revisit the benchmark problem originally proposed by Adams, Larsen and Pomraning [1] and extended by Brantley [2]: for these configurations we will compare reference solutions, standard CLS solutions and the new PBS solutions for scalar particle flux, transmission and reflection coefficients. PBS will be shown to perform better than CLS at the expense of a reasonable increase in computational time.

  16. Computing Fault-Containment Times of Self-Stabilizing Algorithms Using Lumped Markov Chains

    Directory of Open Access Journals (Sweden)

    Volker Turau

    2018-05-01

    Full Text Available The analysis of self-stabilizing algorithms is often limited to the worst case stabilization time starting from an arbitrary state, i.e., a state resulting from a sequence of faults. Considering the fact that these algorithms are intended to provide fault tolerance in the long run, this is not the most relevant metric. A common situation is that a running system is an a legitimate state when hit by a single fault. This event has a much higher probability than multiple concurrent faults. Therefore, the worst case time to recover from a single fault is more relevant than the recovery time from a large number of faults. This paper presents techniques to derive upper bounds for the mean time to recover from a single fault for self-stabilizing algorithms based on Markov chains in combination with lumping. To illustrate the applicability of the techniques they are applied to a new self-stabilizing coloring algorithm.

  17. Markov Chain Model-Based Optimal Cluster Heads Selection for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Gulnaz Ahmed

    2017-02-01

    Full Text Available The longer network lifetime of Wireless Sensor Networks (WSNs is a goal which is directly related to energy consumption. This energy consumption issue becomes more challenging when the energy load is not properly distributed in the sensing area. The hierarchal clustering architecture is the best choice for these kind of issues. In this paper, we introduce a novel clustering protocol called Markov chain model-based optimal cluster heads (MOCHs selection for WSNs. In our proposed model, we introduce a simple strategy for the optimal number of cluster heads selection to overcome the problem of uneven energy distribution in the network. The attractiveness of our model is that the BS controls the number of cluster heads while the cluster heads control the cluster members in each cluster in such a restricted manner that a uniform and even load is ensured in each cluster. We perform an extensive range of simulation using five quality measures, namely: the lifetime of the network, stable and unstable region in the lifetime of the network, throughput of the network, the number of cluster heads in the network, and the transmission time of the network to analyze the proposed model. We compare MOCHs against Sleep-awake Energy Efficient Distributed (SEED clustering, Artificial Bee Colony (ABC, Zone Based Routing (ZBR, and Centralized Energy Efficient Clustering (CEEC using the above-discussed quality metrics and found that the lifetime of the proposed model is almost 1095, 2630, 3599, and 2045 rounds (time steps greater than SEED, ABC, ZBR, and CEEC, respectively. The obtained results demonstrate that the MOCHs is better than SEED, ABC, ZBR, and CEEC in terms of energy efficiency and the network throughput.

  18. Fuzzy Rules for Ant Based Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Amira Hamdi

    2016-01-01

    Full Text Available This paper provides a new intelligent technique for semisupervised data clustering problem that combines the Ant System (AS algorithm with the fuzzy c-means (FCM clustering algorithm. Our proposed approach, called F-ASClass algorithm, is a distributed algorithm inspired by foraging behavior observed in ant colonyT. The ability of ants to find the shortest path forms the basis of our proposed approach. In the first step, several colonies of cooperating entities, called artificial ants, are used to find shortest paths in a complete graph that we called graph-data. The number of colonies used in F-ASClass is equal to the number of clusters in dataset. Hence, the partition matrix of dataset founded by artificial ants is given in the second step, to the fuzzy c-means technique in order to assign unclassified objects generated in the first step. The proposed approach is tested on artificial and real datasets, and its performance is compared with those of K-means, K-medoid, and FCM algorithms. Experimental section shows that F-ASClass performs better according to the error rate classification, accuracy, and separation index.

  19. Genetic algorithm optimization of atomic clusters

    International Nuclear Information System (INIS)

    Morris, J.R.; Deaven, D.M.; Ho, K.M.; Wang, C.Z.; Pan, B.C.; Wacker, J.G.; Turner, D.E.; Iowa State Univ., Ames, IA

    1996-01-01

    The authors have been using genetic algorithms to study the structures of atomic clusters and related problems. This is a problem where local minima are easy to locate, but barriers between the many minima are large, and the number of minima prohibit a systematic search. They use a novel mating algorithm that preserves some of the geometrical relationship between atoms, in order to ensure that the resultant structures are likely to inherit the best features of the parent clusters. Using this approach, they have been able to find lower energy structures than had been previously obtained. Most recently, they have been able to turn around the building block idea, using optimized structures from the GA to learn about systematic structural trends. They believe that an effective GA can help provide such heuristic information, and (conversely) that such information can be introduced back into the algorithm to assist in the search process

  20. Enhanced Map-Matching Algorithm with a Hidden Markov Model for Mobile Phone Positioning

    Directory of Open Access Journals (Sweden)

    An Luo

    2017-10-01

    Full Text Available Numerous map-matching techniques have been developed to improve positioning, using Global Positioning System (GPS data and other sensors. However, most existing map-matching algorithms process GPS data with high sampling rates, to achieve a higher correct rate and strong universality. This paper introduces a novel map-matching algorithm based on a hidden Markov model (HMM for GPS positioning and mobile phone positioning with a low sampling rate. The HMM is a statistical model well known for providing solutions to temporal recognition applications such as text and speech recognition. In this work, the hidden Markov chain model was built to establish a map-matching process, using the geometric data, the topologies matrix of road links in road network and refined quad-tree data structure. HMM-based map-matching exploits the Viterbi algorithm to find the optimized road link sequence. The sequence consists of hidden states in the HMM model. The HMM-based map-matching algorithm is validated on a vehicle trajectory using GPS and mobile phone data. The results show a significant improvement in mobile phone positioning and high and low sampling of GPS data.

  1. Application for Suggesting Restaurants Using Clustering Algorithms

    Directory of Open Access Journals (Sweden)

    Iulia Alexandra IANCU

    2014-10-01

    Full Text Available The aim of this article is to present an application whose purpose is to make suggestions of restaurants to users. The application uses as input the descriptions of restaurants, reviews, user reviews available on the specialized Internet sites and blogs. In the application there are used processing techniques of natural language implemented using parsers, clustering algorithms and techniques for data collection from the Internet through web crawlers.

  2. Automated detection of microcalcification clusters in digital mammograms based on wavelet domain hidden Markov tree modeling

    International Nuclear Information System (INIS)

    Regentova, E.; Zhang, L.; Veni, G.; Zheng, J.

    2007-01-01

    A system is designed for detecting microcalcification clusters (MCC) in digital mammograms. The system is intended for computer-aided diagnostic prompting. Further discrimination of MCC as benign or malignant is assumed to be performed by radiologists. Processing of mammograms is based on the statistical modeling by means of wavelet domain hidden markov trees (WHMT). Segmentation is performed by the weighted likelihood evaluation followed by the classification based on spatial filters for a single microcalcification (MC) and a cluster of MC detection. The analysis is carried out on FROC curves for 40 mammograms from the mini-MIAS database and for 100 mammograms with 50 cancerous and 50 benign cases from DDSM database. The designed system is capable to detect 100% of true positive cases in these sets. The rate of false positives is 2.9 per case for mini-MIAS dataset; and 0.01 for the DDSM images. (orig.)

  3. Time series segmentation: a new approach based on Genetic Algorithm and Hidden Markov Model

    Science.gov (United States)

    Toreti, A.; Kuglitsch, F. G.; Xoplaki, E.; Luterbacher, J.

    2009-04-01

    The subdivision of a time series into homogeneous segments has been performed using various methods applied to different disciplines. In climatology, for example, it is accompanied by the well-known homogenization problem and the detection of artificial change points. In this context, we present a new method (GAMM) based on Hidden Markov Model (HMM) and Genetic Algorithm (GA), applicable to series of independent observations (and easily adaptable to autoregressive processes). A left-to-right hidden Markov model, estimating the parameters and the best-state sequence, respectively, with the Baum-Welch and Viterbi algorithms, was applied. In order to avoid the well-known dependence of the Baum-Welch algorithm on the initial condition, a Genetic Algorithm was developed. This algorithm is characterized by mutation, elitism and a crossover procedure implemented with some restrictive rules. Moreover the function to be minimized was derived following the approach of Kehagias (2004), i.e. it is the so-called complete log-likelihood. The number of states was determined applying a two-fold cross-validation procedure (Celeux and Durand, 2008). Being aware that the last issue is complex, and it influences all the analysis, a Multi Response Permutation Procedure (MRPP; Mielke et al., 1981) was inserted. It tests the model with K+1 states (where K is the state number of the best model) if its likelihood is close to K-state model. Finally, an evaluation of the GAMM performances, applied as a break detection method in the field of climate time series homogenization, is shown. 1. G. Celeux and J.B. Durand, Comput Stat 2008. 2. A. Kehagias, Stoch Envir Res 2004. 3. P.W. Mielke, K.J. Berry, G.W. Brier, Monthly Wea Rev 1981.

  4. Cluster-based adaptive power control protocol using Hidden Markov Model for Wireless Sensor Networks

    Science.gov (United States)

    Vinutha, C. B.; Nalini, N.; Nagaraja, M.

    2017-06-01

    This paper presents strategies for an efficient and dynamic transmission power control technique, in order to reduce packet drop and hence energy consumption of power-hungry sensor nodes operated in highly non-linear channel conditions of Wireless Sensor Networks. Besides, we also focus to prolong network lifetime and scalability by designing cluster-based network structure. Specifically we consider weight-based clustering approach wherein, minimum significant node is chosen as Cluster Head (CH) which is computed stemmed from the factors distance, remaining residual battery power and received signal strength (RSS). Further, transmission power control schemes to fit into dynamic channel conditions are meticulously implemented using Hidden Markov Model (HMM) where probability transition matrix is formulated based on the observed RSS measurements. Typically, CH estimates initial transmission power of its cluster members (CMs) from RSS using HMM and broadcast this value to its CMs for initialising their power value. Further, if CH finds that there are variations in link quality and RSS of the CMs, it again re-computes and optimises the transmission power level of the nodes using HMM to avoid packet loss due noise interference. We have demonstrated our simulation results to prove that our technique efficiently controls the power levels of sensing nodes to save significant quantity of energy for different sized network.

  5. A cluster algorithm for jet studies

    International Nuclear Information System (INIS)

    Daum, H.J.; Meyer, H.; Buerger, J.

    1980-10-01

    A procedure is described which determines the number of jets in hadronic final states by means of a cluster algorithm. In addition it yields a measurement of the energy and the direction of each jet. The properties of this method are studied using Monte Carlo simulations of different types of e + e - -annihilation final states. It is shown that in case of 3-jet events direct comparison with the underlying parton structure can be made. Possible further applications of this method are discussed. (orig.)

  6. Improved Ant Colony Clustering Algorithm and Its Performance Study

    Science.gov (United States)

    Gao, Wei

    2016-01-01

    Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering. PMID:26839533

  7. The cluster index of regularly varying sequences with applications to limit theory for functions of multivariate Markov chains

    DEFF Research Database (Denmark)

    Mikosch, Thomas Valentin; Wintenberger, Olivier

    2014-01-01

    We introduce the cluster index of a multivariate stationary sequence and characterize the index in terms of the spectral tail process. This index plays a major role in limit theory for partial sums of sequences. We illustrate the use of the cluster index by characterizing infinite variance stable...... limit distributions and precise large deviation results for sums of multivariate functions acting on a stationary Markov chain under a drift condition....

  8. Multi-level flow-based Markov clustering for design structure matrices

    NARCIS (Netherlands)

    Wilschut, T.; Etman, P.L.F.; Rooda, J.E.; Adan, I.J.B.F.

    2016-01-01

    For decomposition and integration of systems one requires extensive knowledge on system structure. A Design Structure Matrix (DSM) can provide a simple, compact and visual representation of dependencies between system elements. By permuting the rows and columns of a DSM using a clustering algorithm,

  9. Potential-Decomposition Strategy in Markov Chain Monte Carlo Sampling Algorithms

    International Nuclear Information System (INIS)

    Shangguan Danhua; Bao Jingdong

    2010-01-01

    We introduce the potential-decomposition strategy (PDS), which can he used in Markov chain Monte Carlo sampling algorithms. PDS can be designed to make particles move in a modified potential that favors diffusion in phase space, then, by rejecting some trial samples, the target distributions can be sampled in an unbiased manner. Furthermore, if the accepted trial samples are insufficient, they can be recycled as initial states to form more unbiased samples. This strategy can greatly improve efficiency when the original potential has multiple metastable states separated by large barriers. We apply PDS to the 2d Ising model and a double-well potential model with a large barrier, demonstrating in these two representative examples that convergence is accelerated by orders of magnitude.

  10. A reversible-jump Markov chain Monte Carlo algorithm for 1D inversion of magnetotelluric data

    Science.gov (United States)

    Mandolesi, Eric; Ogaya, Xenia; Campanyà, Joan; Piana Agostinetti, Nicola

    2018-04-01

    This paper presents a new computer code developed to solve the 1D magnetotelluric (MT) inverse problem using a Bayesian trans-dimensional Markov chain Monte Carlo algorithm. MT data are sensitive to the depth-distribution of rock electric conductivity (or its reciprocal, resistivity). The solution provided is a probability distribution - the so-called posterior probability distribution (PPD) for the conductivity at depth, together with the PPD of the interface depths. The PPD is sampled via a reversible-jump Markov Chain Monte Carlo (rjMcMC) algorithm, using a modified Metropolis-Hastings (MH) rule to accept or discard candidate models along the chains. As the optimal parameterization for the inversion process is generally unknown a trans-dimensional approach is used to allow the dataset itself to indicate the most probable number of parameters needed to sample the PPD. The algorithm is tested against two simulated datasets and a set of MT data acquired in the Clare Basin (County Clare, Ireland). For the simulated datasets the correct number of conductive layers at depth and the associated electrical conductivity values is retrieved, together with reasonable estimates of the uncertainties on the investigated parameters. Results from the inversion of field measurements are compared with results obtained using a deterministic method and with well-log data from a nearby borehole. The PPD is in good agreement with the well-log data, showing as a main structure a high conductive layer associated with the Clare Shale formation. In this study, we demonstrate that our new code go beyond algorithms developend using a linear inversion scheme, as it can be used: (1) to by-pass the subjective choices in the 1D parameterizations, i.e. the number of horizontal layers in the 1D parameterization, and (2) to estimate realistic uncertainties on the retrieved parameters. The algorithm is implemented using a simple MPI approach, where independent chains run on isolated CPU, to take

  11. Availability Allocation of Networked Systems Using Markov Model and Heuristics Algorithm

    Directory of Open Access Journals (Sweden)

    Ruiying Li

    2014-01-01

    Full Text Available It is a common practice to allocate the system availability goal to reliability and maintainability goals of components in the early design phase. However, the networked system availability is difficult to be allocated due to its complex topology and multiple down states. To solve these problems, a practical availability allocation method is proposed. Network reliability algebraic methods are used to derive the availability expression of the networked topology on the system level, and Markov model is introduced to determine that on the component level. A heuristic algorithm is proposed to obtain the reliability and maintainability allocation values of components. The principles applied in the AGREE reliability allocation method, proposed by the Advisory Group on Reliability of Electronic Equipment, and failure rate-based maintainability allocation method persist in our allocation method. A series system is used to verify the new algorithm, and the result shows that the allocation based on the heuristic algorithm is quite accurate compared to the traditional one. Moreover, our case study of a signaling system number 7 shows that the proposed allocation method is quite efficient for networked systems.

  12. A Joint Land Cover Mapping and Image Registration Algorithm Based on a Markov Random Field Model

    Directory of Open Access Journals (Sweden)

    Apisit Eiumnoh

    2013-10-01

    Full Text Available Traditionally, image registration of multi-modal and multi-temporal images is performed satisfactorily before land cover mapping. However, since multi-modal and multi-temporal images are likely to be obtained from different satellite platforms and/or acquired at different times, perfect alignment is very difficult to achieve. As a result, a proper land cover mapping algorithm must be able to correct registration errors as well as perform an accurate classification. In this paper, we propose a joint classification and registration technique based on a Markov random field (MRF model to simultaneously align two or more images and obtain a land cover map (LCM of the scene. The expectation maximization (EM algorithm is employed to solve the joint image classification and registration problem by iteratively estimating the map parameters and approximate posterior probabilities. Then, the maximum a posteriori (MAP criterion is used to produce an optimum land cover map. We conducted experiments on a set of four simulated images and one pair of remotely sensed images to investigate the effectiveness and robustness of the proposed algorithm. Our results show that, with proper selection of a critical MRF parameter, the resulting LCMs derived from an unregistered image pair can achieve an accuracy that is as high as when images are perfectly aligned. Furthermore, the registration error can be greatly reduced.

  13. Energy Aware Clustering Algorithms for Wireless Sensor Networks

    Science.gov (United States)

    Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian

    2011-09-01

    The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.

  14. A Novel Clustering Algorithm Inspired by Membrane Computing

    Directory of Open Access Journals (Sweden)

    Hong Peng

    2015-01-01

    Full Text Available P systems are a class of distributed parallel computing models; this paper presents a novel clustering algorithm, which is inspired from mechanism of a tissue-like P system with a loop structure of cells, called membrane clustering algorithm. The objects of the cells express the candidate centers of clusters and are evolved by the evolution rules. Based on the loop membrane structure, the communication rules realize a local neighborhood topology, which helps the coevolution of the objects and improves the diversity of objects in the system. The tissue-like P system can effectively search for the optimal partitioning with the help of its parallel computing advantage. The proposed clustering algorithm is evaluated on four artificial data sets and six real-life data sets. Experimental results show that the proposed clustering algorithm is superior or competitive to k-means algorithm and several evolutionary clustering algorithms recently reported in the literature.

  15. Evaluation of Hierarchical Clustering Algorithms for Document Datasets

    National Research Council Canada - National Science Library

    Zhao, Ying; Karypis, George

    2002-01-01

    Fast and high-quality document clustering algorithms play an important role in providing intuitive navigation and browsing mechanisms by organizing large amounts of information into a small number of meaningful clusters...

  16. Algorithms of maximum likelihood data clustering with applications

    Science.gov (United States)

    Giada, Lorenzo; Marsili, Matteo

    2002-12-01

    We address the problem of data clustering by introducing an unsupervised, parameter-free approach based on maximum likelihood principle. Starting from the observation that data sets belonging to the same cluster share a common information, we construct an expression for the likelihood of any possible cluster structure. The likelihood in turn depends only on the Pearson's coefficient of the data. We discuss clustering algorithms that provide a fast and reliable approximation to maximum likelihood configurations. Compared to standard clustering methods, our approach has the advantages that (i) it is parameter free, (ii) the number of clusters need not be fixed in advance and (iii) the interpretation of the results is transparent. In order to test our approach and compare it with standard clustering algorithms, we analyze two very different data sets: time series of financial market returns and gene expression data. We find that different maximization algorithms produce similar cluster structures whereas the outcome of standard algorithms has a much wider variability.

  17. URL Mining Using Agglomerative Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Chinmay R. Deshmukh

    2015-02-01

    Full Text Available Abstract The tremendous growth of the web world incorporates application of data mining techniques to the web logs. Data Mining and World Wide Web encompasses an important and active area of research. Web log mining is analysis of web log files with web pages sequences. Web mining is broadly classified as web content mining web usage mining and web structure mining. Web usage mining is a technique to discover usage patterns from Web data in order to understand and better serve the needs of Web-based applications. URL mining refers to a subclass of Web mining that helps us to investigate the details of a Uniform Resource Locator. URL mining can be advantageous in the fields of security and protection. The paper introduces a technique for mining a collection of user transactions with an Internet search engine to discover clusters of similar queries and similar URLs. The information we exploit is a clickthrough data each record consist of a users query to a search engine along with the URL which the user selected from among the candidates offered by search engine. By viewing this dataset as a bipartite graph with the vertices on one side corresponding to queries and on the other side to URLs one can apply an agglomerative clustering algorithm to the graphs vertices to identify related queries and URLs.

  18. A Dynamic Fuzzy Cluster Algorithm for Time Series

    Directory of Open Access Journals (Sweden)

    Min Ji

    2013-01-01

    clustering time series by introducing the definition of key point and improving FCM algorithm. The proposed algorithm works by determining those time series whose class labels are vague and further partitions them into different clusters over time. The main advantage of this approach compared with other existing algorithms is that the property of some time series belonging to different clusters over time can be partially revealed. Results from simulation-based experiments on geographical data demonstrate the excellent performance and the desired results have been obtained. The proposed algorithm can be applied to solve other clustering problems in data mining.

  19. Robustness of Multiple Clustering Algorithms on Hyperspectral Images

    National Research Council Canada - National Science Library

    Williams, Jason P

    2007-01-01

    .... Various clustering algorithms were employed, including a hierarchical method, ISODATA, K-means, and X-means, and were used on a simple two dimensional dataset in order to discover potential problems with the algorithms...

  20. Solving inverse problem for Markov chain model of customer lifetime value using flower pollination algorithm

    Science.gov (United States)

    Al-Ma'shumah, Fathimah; Permana, Dony; Sidarto, Kuntjoro Adji

    2015-12-01

    Customer Lifetime Value is an important and useful concept in marketing. One of its benefits is to help a company for budgeting marketing expenditure for customer acquisition and customer retention. Many mathematical models have been introduced to calculate CLV considering the customer retention/migration classification scheme. A fairly new class of these models which will be described in this paper uses Markov Chain Models (MCM). This class of models has the major advantage for its flexibility to be modified to several different cases/classification schemes. In this model, the probabilities of customer retention and acquisition play an important role. From Pfeifer and Carraway, 2000, the final formula of CLV obtained from MCM usually contains nonlinear form of the transition probability matrix. This nonlinearity makes the inverse problem of CLV difficult to solve. This paper aims to solve this inverse problem, yielding the approximate transition probabilities for the customers, by applying metaheuristic optimization algorithm developed by Yang, 2013, Flower Pollination Algorithm. The major interpretation of obtaining the transition probabilities are to set goals for marketing teams in keeping the relative frequencies of customer acquisition and customer retention.

  1. Performance Evaluation of Spectral Clustering Algorithm using Various Clustering Validity Indices

    OpenAIRE

    M. T. Somashekara; D. Manjunatha

    2014-01-01

    In spite of the popularity of spectral clustering algorithm, the evaluation procedures are still in developmental stage. In this article, we have taken benchmarking IRIS dataset for performing comparative study of twelve indices for evaluating spectral clustering algorithm. The results of the spectral clustering technique were also compared with k-mean algorithm. The validity of the indices was also verified with accuracy and (Normalized Mutual Information) NMI score. Spectral clustering algo...

  2. Local Community Detection Algorithm Based on Minimal Cluster

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2016-01-01

    Full Text Available In order to discover the structure of local community more effectively, this paper puts forward a new local community detection algorithm based on minimal cluster. Most of the local community detection algorithms begin from one node. The agglomeration ability of a single node must be less than multiple nodes, so the beginning of the community extension of the algorithm in this paper is no longer from the initial node only but from a node cluster containing this initial node and nodes in the cluster are relatively densely connected with each other. The algorithm mainly includes two phases. First it detects the minimal cluster and then finds the local community extended from the minimal cluster. Experimental results show that the quality of the local community detected by our algorithm is much better than other algorithms no matter in real networks or in simulated networks.

  3. Cluster fusion algorithm: application to Lennard-Jones clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2006-01-01

    paths up to the cluster size of 150 atoms. We demonstrate that in this way all known global minima structures of the Lennard-Jones clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence......We present a new general theoretical framework for modelling the cluster structure and apply it to description of the Lennard-Jones clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing...... for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence of the second derivative of the binding energy per atom on cluster size calculated for the chain of the Lennard-Jones clusters based on the icosahedral symmetry...

  4. Cluster fusion algorithm: application to Lennard-Jones clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2008-01-01

    paths up to the cluster size of 150 atoms. We demonstrate that in this way all known global minima structures of the Lennard-Jones clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence......We present a new general theoretical framework for modelling the cluster structure and apply it to description of the Lennard-Jones clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing...... for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence of the second derivative of the binding energy per atom on cluster size calculated for the chain of the Lennard-Jones clusters based on the icosahedral symmetry...

  5. A Clustering Approach Using Cooperative Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Wenping Zou

    2010-01-01

    Full Text Available Artificial Bee Colony (ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. This paper presents an extended ABC algorithm, namely, the Cooperative Article Bee Colony (CABC, which significantly improves the original ABC in solving complex optimization problems. Clustering is a popular data analysis and data mining technique; therefore, the CABC could be used for solving clustering problems. In this work, first the CABC algorithm is used for optimizing six widely used benchmark functions and the comparative results produced by ABC, Particle Swarm Optimization (PSO, and its cooperative version (CPSO are studied. Second, the CABC algorithm is used for data clustering on several benchmark data sets. The performance of CABC algorithm is compared with PSO, CPSO, and ABC algorithms on clustering problems. The simulation results show that the proposed CABC outperforms the other three algorithms in terms of accuracy, robustness, and convergence speed.

  6. A Flocking Based algorithm for Document Clustering Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Gao, Jinzhu [ORNL; Potok, Thomas E [ORNL

    2006-01-01

    Social animals or insects in nature often exhibit a form of emergent collective behavior known as flocking. In this paper, we present a novel Flocking based approach for document clustering analysis. Our Flocking clustering algorithm uses stochastic and heuristic principles discovered from observing bird flocks or fish schools. Unlike other partition clustering algorithm such as K-means, the Flocking based algorithm does not require initial partitional seeds. The algorithm generates a clustering of a given set of data through the embedding of the high-dimensional data items on a two-dimensional grid for easy clustering result retrieval and visualization. Inspired by the self-organized behavior of bird flocks, we represent each document object with a flock boid. The simple local rules followed by each flock boid result in the entire document flock generating complex global behaviors, which eventually result in a clustering of the documents. We evaluate the efficiency of our algorithm with both a synthetic dataset and a real document collection that includes 100 news articles collected from the Internet. Our results show that the Flocking clustering algorithm achieves better performance compared to the K- means and the Ant clustering algorithm for real document clustering.

  7. Mining the National Career Assessment Examination Result Using Clustering Algorithm

    Science.gov (United States)

    Pagudpud, M. V.; Palaoag, T. T.; Padirayon, L. M.

    2018-03-01

    Education is an essential process today which elicits authorities to discover and establish innovative strategies for educational improvement. This study applied data mining using clustering technique for knowledge extraction from the National Career Assessment Examination (NCAE) result in the Division of Quirino. The NCAE is an examination given to all grade 9 students in the Philippines to assess their aptitudes in the different domains. Clustering the students is helpful in identifying students’ learning considerations. With the use of the RapidMiner tool, clustering algorithms such as Density-Based Spatial Clustering of Applications with Noise (DBSCAN), k-means, k-medoid, expectation maximization clustering, and support vector clustering algorithms were analyzed. The silhouette indexes of the said clustering algorithms were compared, and the result showed that the k-means algorithm with k = 3 and silhouette index equal to 0.196 is the most appropriate clustering algorithm to group the students. Three groups were formed having 477 students in the determined group (cluster 0), 310 proficient students (cluster 1) and 396 developing students (cluster 2). The data mining technique used in this study is essential in extracting useful information from the NCAE result to better understand the abilities of students which in turn is a good basis for adopting teaching strategies.

  8. Android Malware Classification Using K-Means Clustering Algorithm

    Science.gov (United States)

    Hamid, Isredza Rahmi A.; Syafiqah Khalid, Nur; Azma Abdullah, Nurul; Rahman, Nurul Hidayah Ab; Chai Wen, Chuah

    2017-08-01

    Malware was designed to gain access or damage a computer system without user notice. Besides, attacker exploits malware to commit crime or fraud. This paper proposed Android malware classification approach based on K-Means clustering algorithm. We evaluate the proposed model in terms of accuracy using machine learning algorithms. Two datasets were selected to demonstrate the practicing of K-Means clustering algorithms that are Virus Total and Malgenome dataset. We classify the Android malware into three clusters which are ransomware, scareware and goodware. Nine features were considered for each types of dataset such as Lock Detected, Text Detected, Text Score, Encryption Detected, Threat, Porn, Law, Copyright and Moneypak. We used IBM SPSS Statistic software for data classification and WEKA tools to evaluate the built cluster. The proposed K-Means clustering algorithm shows promising result with high accuracy when tested using Random Forest algorithm.

  9. QEFSM model and Markov Algorithm for translating Quran reciting rules into Braille code

    Directory of Open Access Journals (Sweden)

    Abdallah M. Abualkishik

    2015-07-01

    Full Text Available The Holy Quran is the central religious verbal text of Islam. Muslims are expected to read, understand, and apply the teachings of the Holy Quran. The Holy Quran was translated to Braille code as a normal Arabic text without having its reciting rules included. It is obvious that the users of this transliteration will not be able to recite the Quran the right way. Through this work, Quran Braille Translator (QBT presents a specific translator to translate Quran verses and their reciting rules into the Braille code. Quran Extended Finite State Machine (QEFSM model is proposed through this study as it is able to detect the Quran reciting rules (QRR from the Quran text. Basis path testing was used to evaluate the inner work for the model by checking all the test cases for the model. Markov Algorithm (MA was used for translating the detected QRR and Quran text into the matched Braille code. The data entries for QBT are Arabic letters and diacritics. The outputs of this study are seen in the double lines of Braille symbols; the first line is the proposed Quran reciting rules and the second line is for the Quran scripts.

  10. Estimating stepwise debromination pathways of polybrominated diphenyl ethers with an analogue Markov Chain Monte Carlo algorithm.

    Science.gov (United States)

    Zou, Yonghong; Christensen, Erik R; Zheng, Wei; Wei, Hua; Li, An

    2014-11-01

    A stochastic process was developed to simulate the stepwise debromination pathways for polybrominated diphenyl ethers (PBDEs). The stochastic process uses an analogue Markov Chain Monte Carlo (AMCMC) algorithm to generate PBDE debromination profiles. The acceptance or rejection of the randomly drawn stepwise debromination reactions was determined by a maximum likelihood function. The experimental observations at certain time points were used as target profiles; therefore, the stochastic processes are capable of presenting the effects of reaction conditions on the selection of debromination pathways. The application of the model is illustrated by adopting the experimental results of decabromodiphenyl ether (BDE209) in hexane exposed to sunlight. Inferences that were not obvious from experimental data were suggested by model simulations. For example, BDE206 has much higher accumulation at the first 30 min of sunlight exposure. By contrast, model simulation suggests that, BDE206 and BDE207 had comparable yields from BDE209. The reason for the higher BDE206 level is that BDE207 has the highest depletion in producing octa products. Compared to a previous version of the stochastic model based on stochastic reaction sequences (SRS), the AMCMC approach was determined to be more efficient and robust. Due to the feature of only requiring experimental observations as input, the AMCMC model is expected to be applicable to a wide range of PBDE debromination processes, e.g. microbial, photolytic, or joint effects in natural environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. An event driven algorithm for fractal cluster formation

    NARCIS (Netherlands)

    González, S.; Thornton, Anthony Richard; Luding, Stefan

    2010-01-01

    A new cluster based event-driven algorithm is developed to simulate the formation of clusters in a two dimensional gas: particles move freely until they collide and "stick" together irreversibly. These clusters aggregate into bigger structures in an isotompic way, forming fractal structures whose

  12. An event driven algorithm for fractal cluster formation

    NARCIS (Netherlands)

    González, S.; Gonzalez Briones, Sebastián; Thornton, Anthony Richard; Luding, Stefan

    2011-01-01

    A new cluster based event-driven algorithm is developed to simulate the formation of clusters in a two dimensional gas: particles move freely until they collide and "stick" together irreversibly. These clusters aggregate into bigger structures in an isotompic way, forming fractal structures whose

  13. Clustering algorithms for Stokes space modulation format recognition

    DEFF Research Database (Denmark)

    Boada, Ricard; Borkowski, Robert; Tafur Monroy, Idelfonso

    2015-01-01

    influences the performance of the detection process, particularly at low signal-to-noise ratios. This paper reports on an extensive study of six different clustering algorithms: k-means, expectation maximization, density-based DBSCAN and OPTICS, spectral clustering and maximum likelihood clustering, used...

  14. Performance Evaluation of Incremental K-means Clustering Algorithm

    OpenAIRE

    Chakraborty, Sanjay; Nagwani, N. K.

    2014-01-01

    The incremental K-means clustering algorithm has already been proposed and analysed in paper [Chakraborty and Nagwani, 2011]. It is a very innovative approach which is applicable in periodically incremental environment and dealing with a bulk of updates. In this paper the performance evaluation is done for this incremental K-means clustering algorithm using air pollution database. This paper also describes the comparison on the performance evaluations between existing K-means clustering and i...

  15. An Auxiliary Variable Method for Markov Chain Monte Carlo Algorithms in High Dimension

    Directory of Open Access Journals (Sweden)

    Yosra Marnissi

    2018-02-01

    Full Text Available In this paper, we are interested in Bayesian inverse problems where either the data fidelity term or the prior distribution is Gaussian or driven from a hierarchical Gaussian model. Generally, Markov chain Monte Carlo (MCMC algorithms allow us to generate sets of samples that are employed to infer some relevant parameters of the underlying distributions. However, when the parameter space is high-dimensional, the performance of stochastic sampling algorithms is very sensitive to existing dependencies between parameters. In particular, this problem arises when one aims to sample from a high-dimensional Gaussian distribution whose covariance matrix does not present a simple structure. Another challenge is the design of Metropolis–Hastings proposals that make use of information about the local geometry of the target density in order to speed up the convergence and improve mixing properties in the parameter space, while not being too computationally expensive. These two contexts are mainly related to the presence of two heterogeneous sources of dependencies stemming either from the prior or the likelihood in the sense that the related covariance matrices cannot be diagonalized in the same basis. In this work, we address these two issues. Our contribution consists of adding auxiliary variables to the model in order to dissociate the two sources of dependencies. In the new augmented space, only one source of correlation remains directly related to the target parameters, the other sources of correlations being captured by the auxiliary variables. Experiments are conducted on two practical image restoration problems—namely the recovery of multichannel blurred images embedded in Gaussian noise and the recovery of signal corrupted by a mixed Gaussian noise. Experimental results indicate that adding the proposed auxiliary variables makes the sampling problem simpler since the new conditional distribution no longer contains highly heterogeneous

  16. A novel seizure detection algorithm informed by hidden Markov model event states

    Science.gov (United States)

    Baldassano, Steven; Wulsin, Drausin; Ung, Hoameng; Blevins, Tyler; Brown, Mesha-Gay; Fox, Emily; Litt, Brian

    2016-06-01

    Objective. Recently the FDA approved the first responsive, closed-loop intracranial device to treat epilepsy. Because these devices must respond within seconds of seizure onset and not miss events, they are tuned to have high sensitivity, leading to frequent false positive stimulations and decreased battery life. In this work, we propose a more robust seizure detection model. Approach. We use a Bayesian nonparametric Markov switching process to parse intracranial EEG (iEEG) data into distinct dynamic event states. Each event state is then modeled as a multidimensional Gaussian distribution to allow for predictive state assignment. By detecting event states highly specific for seizure onset zones, the method can identify precise regions of iEEG data associated with the transition to seizure activity, reducing false positive detections associated with interictal bursts. The seizure detection algorithm was translated to a real-time application and validated in a small pilot study using 391 days of continuous iEEG data from two dogs with naturally occurring, multifocal epilepsy. A feature-based seizure detector modeled after the NeuroPace RNS System was developed as a control. Main results. Our novel seizure detection method demonstrated an improvement in false negative rate (0/55 seizures missed versus 2/55 seizures missed) as well as a significantly reduced false positive rate (0.0012 h versus 0.058 h-1). All seizures were detected an average of 12.1 ± 6.9 s before the onset of unequivocal epileptic activity (unequivocal epileptic onset (UEO)). Significance. This algorithm represents a computationally inexpensive, individualized, real-time detection method suitable for implantable antiepileptic devices that may considerably reduce false positive rate relative to current industry standards.

  17. Co-clustering models, algorithms and applications

    CERN Document Server

    Govaert, Gérard

    2013-01-01

    Cluster or co-cluster analyses are important tools in a variety of scientific areas. The introduction of this book presents a state of the art of already well-established, as well as more recent methods of co-clustering. The authors mainly deal with the two-mode partitioning under different approaches, but pay particular attention to a probabilistic approach. Chapter 1 concerns clustering in general and the model-based clustering in particular. The authors briefly review the classical clustering methods and focus on the mixture model. They present and discuss the use of different mixture

  18. Characterization results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes

    DEFF Research Database (Denmark)

    Häggström, Olle; Lieshout, Marie-Colette van; Møller, Jesper

    1999-01-01

    The area-interaction process and the continuum random-cluster model are characterized in terms of certain functional forms of their respective conditional intensities. In certain cases, these two point process models can be derived from a bivariate point process model which in many respects...... is simpler to analyse and simulate. Using this correspondence we devise a two-component Gibbs sampler, which can be used for fast and exact simulation by extending the recent ideas of Propp and Wilson. We further introduce a Swendsen-Wang type algorithm. The relevance of the results within spatial statistics...

  19. A novel clustering algorithm based on quantum games

    International Nuclear Information System (INIS)

    Li Qiang; He Yan; Jiang Jingping

    2009-01-01

    Enormous successes have been made by quantum algorithms during the last decade. In this paper, we combine the quantum game with the problem of data clustering, and then develop a quantum-game-based clustering algorithm, in which data points in a dataset are considered as players who can make decisions and implement quantum strategies in quantum games. After each round of a quantum game, each player's expected payoff is calculated. Later, he uses a link-removing-and-rewiring (LRR) function to change his neighbors and adjust the strength of links connecting to them in order to maximize his payoff. Further, algorithms are discussed and analyzed in two cases of strategies, two payoff matrixes and two LRR functions. Consequently, the simulation results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the clustering algorithms have fast rates of convergence. Moreover, the comparison with other algorithms also provides an indication of the effectiveness of the proposed approach.

  20. An Efficient Algorithm for Modelling Duration in Hidden Markov Models, with a Dramatic Application

    DEFF Research Database (Denmark)

    Hauberg, Søren; Sloth, Jakob

    2008-01-01

    For many years, the hidden Markov model (HMM) has been one of the most popular tools for analysing sequential data. One frequently used special case is the left-right model, in which the order of the hidden states is known. If knowledge of the duration of a state is available it is not possible...... to represent it explicitly with an HMM. Methods for modelling duration with HMM's do exist (Rabiner in Proc. IEEE 77(2):257---286, [1989]), but they come at the price of increased computational complexity. Here we present an efficient and robust algorithm for modelling duration in HMM's, and this algorithm...

  1. Modification of MSDR algorithm and ITS implementation on graph clustering

    Science.gov (United States)

    Prastiwi, D.; Sugeng, K. A.; Siswantining, T.

    2017-07-01

    Maximum Standard Deviation Reduction (MSDR) is a graph clustering algorithm to minimize the distance variation within a cluster. In this paper we propose a modified MSDR by replacing one technical step in MSDR which uses polynomial regression, with a new and simpler step. This leads to our new algorithm called Modified MSDR (MMSDR). We implement the new algorithm to separate a domestic flight network of an Indonesian airline into two large clusters. Further analysis allows us to discover a weak link in the network, which should be improved by adding more flights.

  2. APPECT: An Approximate Backbone-Based Clustering Algorithm for Tags

    DEFF Research Database (Denmark)

    Zong, Yu; Xu, Guandong; Jin, Pin

    2011-01-01

    algorithm for Tags (APPECT). The main steps of APPECT are: (1) we execute the K-means algorithm on a tag similarity matrix for M times and collect a set of tag clustering results Z={C1,C2,…,Cm}; (2) we form the approximate backbone of Z by executing a greedy search; (3) we fix the approximate backbone...... as the initial tag clustering result and then assign the rest tags into the corresponding clusters based on the similarity. Experimental results on three real world datasets namely MedWorm, MovieLens and Dmoz demonstrate the effectiveness and the superiority of the proposed method against the traditional...... Agglomerative Clustering on tagging data, which possess the inherent drawbacks, such as the sensitivity of initialization. In this paper, we instead make use of the approximate backbone of tag clustering results to find out better tag clusters. In particular, we propose an APProximate backbonE-based Clustering...

  3. Improved multi-objective clustering algorithm using particle swarm optimization.

    Directory of Open Access Journals (Sweden)

    Congcong Gong

    Full Text Available Multi-objective clustering has received widespread attention recently, as it can obtain more accurate and reasonable solution. In this paper, an improved multi-objective clustering framework using particle swarm optimization (IMCPSO is proposed. Firstly, a novel particle representation for clustering problem is designed to help PSO search clustering solutions in continuous space. Secondly, the distribution of Pareto set is analyzed. The analysis results are applied to the leader selection strategy, and make algorithm avoid trapping in local optimum. Moreover, a clustering solution-improved method is proposed, which can increase the efficiency in searching clustering solution greatly. In the experiments, 28 datasets are used and nine state-of-the-art clustering algorithms are compared, the proposed method is superior to other approaches in the evaluation index ARI.

  4. Improved multi-objective clustering algorithm using particle swarm optimization.

    Science.gov (United States)

    Gong, Congcong; Chen, Haisong; He, Weixiong; Zhang, Zhanliang

    2017-01-01

    Multi-objective clustering has received widespread attention recently, as it can obtain more accurate and reasonable solution. In this paper, an improved multi-objective clustering framework using particle swarm optimization (IMCPSO) is proposed. Firstly, a novel particle representation for clustering problem is designed to help PSO search clustering solutions in continuous space. Secondly, the distribution of Pareto set is analyzed. The analysis results are applied to the leader selection strategy, and make algorithm avoid trapping in local optimum. Moreover, a clustering solution-improved method is proposed, which can increase the efficiency in searching clustering solution greatly. In the experiments, 28 datasets are used and nine state-of-the-art clustering algorithms are compared, the proposed method is superior to other approaches in the evaluation index ARI.

  5. A High-Order CFS Algorithm for Clustering Big Data

    Directory of Open Access Journals (Sweden)

    Fanyu Bu

    2016-01-01

    Full Text Available With the development of Internet of Everything such as Internet of Things, Internet of People, and Industrial Internet, big data is being generated. Clustering is a widely used technique for big data analytics and mining. However, most of current algorithms are not effective to cluster heterogeneous data which is prevalent in big data. In this paper, we propose a high-order CFS algorithm (HOCFS to cluster heterogeneous data by combining the CFS clustering algorithm and the dropout deep learning model, whose functionality rests on three pillars: (i an adaptive dropout deep learning model to learn features from each type of data, (ii a feature tensor model to capture the correlations of heterogeneous data, and (iii a tensor distance-based high-order CFS algorithm to cluster heterogeneous data. Furthermore, we verify our proposed algorithm on different datasets, by comparison with other two clustering schemes, that is, HOPCM and CFS. Results confirm the effectiveness of the proposed algorithm in clustering heterogeneous data.

  6. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal

    2015-08-13

    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.

  7. Parallel clustering algorithm for large-scale biological data sets.

    Science.gov (United States)

    Wang, Minchao; Zhang, Wu; Ding, Wang; Dai, Dongbo; Zhang, Huiran; Xie, Hao; Chen, Luonan; Guo, Yike; Xie, Jiang

    2014-01-01

    Recent explosion of biological data brings a great challenge for the traditional clustering algorithms. With increasing scale of data sets, much larger memory and longer runtime are required for the cluster identification problems. The affinity propagation algorithm outperforms many other classical clustering algorithms and is widely applied into the biological researches. However, the time and space complexity become a great bottleneck when handling the large-scale data sets. Moreover, the similarity matrix, whose constructing procedure takes long runtime, is required before running the affinity propagation algorithm, since the algorithm clusters data sets based on the similarities between data pairs. Two types of parallel architectures are proposed in this paper to accelerate the similarity matrix constructing procedure and the affinity propagation algorithm. The memory-shared architecture is used to construct the similarity matrix, and the distributed system is taken for the affinity propagation algorithm, because of its large memory size and great computing capacity. An appropriate way of data partition and reduction is designed in our method, in order to minimize the global communication cost among processes. A speedup of 100 is gained with 128 cores. The runtime is reduced from serval hours to a few seconds, which indicates that parallel algorithm is capable of handling large-scale data sets effectively. The parallel affinity propagation also achieves a good performance when clustering large-scale gene data (microarray) and detecting families in large protein superfamilies.

  8. A new hybrid imperialist competitive algorithm on data clustering

    Indian Academy of Sciences (India)

    Modified imperialist competitive algorithm; simulated annealing; ... Clustering is one of the unsupervised learning branches where a set of patterns, usually vectors ..... machine classification is based on design, operation, and/or purpose.

  9. An AK-LDMeans algorithm based on image clustering

    Science.gov (United States)

    Chen, Huimin; Li, Xingwei; Zhang, Yongbin; Chen, Nan

    2018-03-01

    Clustering is an effective analytical technique for handling unmarked data for value mining. Its ultimate goal is to mark unclassified data quickly and correctly. We use the roadmap for the current image processing as the experimental background. In this paper, we propose an AK-LDMeans algorithm to automatically lock the K value by designing the Kcost fold line, and then use the long-distance high-density method to select the clustering centers to further replace the traditional initial clustering center selection method, which further improves the efficiency and accuracy of the traditional K-Means Algorithm. And the experimental results are compared with the current clustering algorithm and the results are obtained. The algorithm can provide effective reference value in the fields of image processing, machine vision and data mining.

  10. MODIS 250m burned area mapping based on an algorithm using change point detection and Markov random fields.

    Science.gov (United States)

    Mota, Bernardo; Pereira, Jose; Campagnolo, Manuel; Killick, Rebeca

    2013-04-01

    Area burned in tropical savannas of Brazil was mapped using MODIS-AQUA daily 250m resolution imagery by adapting one of the European Space Agency fire_CCI project burned area algorithms, based on change point detection and Markov random fields. The study area covers 1,44 Mkm2 and was performed with data from 2005. The daily 1000 m image quality layer was used for cloud and cloud shadow screening. The algorithm addresses each pixel as a time series and detects changes in the statistical properties of NIR reflectance values, to identify potential burning dates. The first step of the algorithm is robust filtering, to exclude outlier observations, followed by application of the Pruned Exact Linear Time (PELT) change point detection technique. Near-infrared (NIR) spectral reflectance changes between time segments, and post change NIR reflectance values are combined into a fire likelihood score. Change points corresponding to an increase in reflectance are dismissed as potential burn events, as are those occurring outside of a pre-defined fire season. In the last step of the algorithm, monthly burned area probability maps and detection date maps are converted to dichotomous (burned-unburned maps) using Markov random fields, which take into account both spatial and temporal relations in the potential burned area maps. A preliminary assessment of our results is performed by comparison with data from the MODIS 1km active fires and the 500m burned area products, taking into account differences in spatial resolution between the two sensors.

  11. Flowbca : A flow-based cluster algorithm in Stata

    NARCIS (Netherlands)

    Meekes, J.; Hassink, W.H.J.

    In this article, we introduce the Stata implementation of a flow-based cluster algorithm written in Mata. The main purpose of the flowbca command is to identify clusters based on relational data of flows. We illustrate the command by providing multiple applications, from the research fields of

  12. Efficient Record Linkage Algorithms Using Complete Linkage Clustering.

    Science.gov (United States)

    Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar

    2016-01-01

    Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times.

  13. Collaborative filtering recommendation model based on fuzzy clustering algorithm

    Science.gov (United States)

    Yang, Ye; Zhang, Yunhua

    2018-05-01

    As one of the most widely used algorithms in recommender systems, collaborative filtering algorithm faces two serious problems, which are the sparsity of data and poor recommendation effect in big data environment. In traditional clustering analysis, the object is strictly divided into several classes and the boundary of this division is very clear. However, for most objects in real life, there is no strict definition of their forms and attributes of their class. Concerning the problems above, this paper proposes to improve the traditional collaborative filtering model through the hybrid optimization of implicit semantic algorithm and fuzzy clustering algorithm, meanwhile, cooperating with collaborative filtering algorithm. In this paper, the fuzzy clustering algorithm is introduced to fuzzy clustering the information of project attribute, which makes the project belong to different project categories with different membership degrees, and increases the density of data, effectively reduces the sparsity of data, and solves the problem of low accuracy which is resulted from the inaccuracy of similarity calculation. Finally, this paper carries out empirical analysis on the MovieLens dataset, and compares it with the traditional user-based collaborative filtering algorithm. The proposed algorithm has greatly improved the recommendation accuracy.

  14. Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis

    Science.gov (United States)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-01-01

    To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.

  15. A Novel Entropy-Based Decoding Algorithm for a Generalized High-Order Discrete Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Jason Chin-Tiong Chan

    2018-01-01

    Full Text Available The optimal state sequence of a generalized High-Order Hidden Markov Model (HHMM is tracked from a given observational sequence using the classical Viterbi algorithm. This classical algorithm is based on maximum likelihood criterion. We introduce an entropy-based Viterbi algorithm for tracking the optimal state sequence of a HHMM. The entropy of a state sequence is a useful quantity, providing a measure of the uncertainty of a HHMM. There will be no uncertainty if there is only one possible optimal state sequence for HHMM. This entropy-based decoding algorithm can be formulated in an extended or a reduction approach. We extend the entropy-based algorithm for computing the optimal state sequence that was developed from a first-order to a generalized HHMM with a single observational sequence. This extended algorithm performs the computation exponentially with respect to the order of HMM. The computational complexity of this extended algorithm is due to the growth of the model parameters. We introduce an efficient entropy-based decoding algorithm that used reduction approach, namely, entropy-based order-transformation forward algorithm (EOTFA to compute the optimal state sequence of any generalized HHMM. This EOTFA algorithm involves a transformation of a generalized high-order HMM into an equivalent first-order HMM and an entropy-based decoding algorithm is developed based on the equivalent first-order HMM. This algorithm performs the computation based on the observational sequence and it requires OTN~2 calculations, where N~ is the number of states in an equivalent first-order model and T is the length of observational sequence.

  16. Development of reversible jump Markov Chain Monte Carlo algorithm in the Bayesian mixture modeling for microarray data in Indonesia

    Science.gov (United States)

    Astuti, Ani Budi; Iriawan, Nur; Irhamah, Kuswanto, Heri

    2017-12-01

    In the Bayesian mixture modeling requires stages the identification number of the most appropriate mixture components thus obtained mixture models fit the data through data driven concept. Reversible Jump Markov Chain Monte Carlo (RJMCMC) is a combination of the reversible jump (RJ) concept and the Markov Chain Monte Carlo (MCMC) concept used by some researchers to solve the problem of identifying the number of mixture components which are not known with certainty number. In its application, RJMCMC using the concept of the birth/death and the split-merge with six types of movement, that are w updating, θ updating, z updating, hyperparameter β updating, split-merge for components and birth/death from blank components. The development of the RJMCMC algorithm needs to be done according to the observed case. The purpose of this study is to know the performance of RJMCMC algorithm development in identifying the number of mixture components which are not known with certainty number in the Bayesian mixture modeling for microarray data in Indonesia. The results of this study represent that the concept RJMCMC algorithm development able to properly identify the number of mixture components in the Bayesian normal mixture model wherein the component mixture in the case of microarray data in Indonesia is not known for certain number.

  17. Research on retailer data clustering algorithm based on Spark

    Science.gov (United States)

    Huang, Qiuman; Zhou, Feng

    2017-03-01

    Big data analysis is a hot topic in the IT field now. Spark is a high-reliability and high-performance distributed parallel computing framework for big data sets. K-means algorithm is one of the classical partition methods in clustering algorithm. In this paper, we study the k-means clustering algorithm on Spark. Firstly, the principle of the algorithm is analyzed, and then the clustering analysis is carried out on the supermarket customers through the experiment to find out the different shopping patterns. At the same time, this paper proposes the parallelization of k-means algorithm and the distributed computing framework of Spark, and gives the concrete design scheme and implementation scheme. This paper uses the two-year sales data of a supermarket to validate the proposed clustering algorithm and achieve the goal of subdividing customers, and then analyze the clustering results to help enterprises to take different marketing strategies for different customer groups to improve sales performance.

  18. Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.

    Science.gov (United States)

    He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej

    2011-12-01

    Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.

  19. CSL Model Checking Algorithms for Infinite-state Structured Markov chains

    NARCIS (Netherlands)

    Remke, Anne Katharina Ingrid; Haverkort, Boudewijn R.H.M.; Raskin, J.-F.; Thiagarajan, P.S.

    2007-01-01

    Jackson queueing networks (JQNs) are a very general class of queueing networks that find their application in a variety of settings. The state space of the continuous-time Markov chain (CTMC) that underlies such a JQN, is highly structured, however, of infinite size in as many dimensions as there

  20. A Markov chain Monte Carlo Expectation Maximization Algorithm for Statistical Analysis of DNA Sequence Evolution with Neighbor-Dependent Substitution Rates

    DEFF Research Database (Denmark)

    Hobolth, Asger

    2008-01-01

    -dimensional integrals required in the EM algorithm are estimated using MCMC sampling. The MCMC sampler requires simulation of sample paths from a continuous time Markov process, conditional on the beginning and ending states and the paths of the neighboring sites. An exact path sampling algorithm is developed......The evolution of DNA sequences can be described by discrete state continuous time Markov processes on a phylogenetic tree. We consider neighbor-dependent evolutionary models where the instantaneous rate of substitution at a site depends on the states of the neighboring sites. Neighbor......-dependent substitution models are analytically intractable and must be analyzed using either approximate or simulation-based methods. We describe statistical inference of neighbor-dependent models using a Markov chain Monte Carlo expectation maximization (MCMC-EM) algorithm. In the MCMC-EM algorithm, the high...

  1. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407780; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. In the ATLAS track reconstruction algorithm, an artificial neural network is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The robustness of the neural network algorithm is presented, probing its sensitivity to uncertainties in the detector conditions. The robustness is studied by evaluating the stability of the algorithm's performance under a range of variations in the inputs to the neural networks. Within reasonable variation magnitudes, the neural networks prove to be robust to most variation types.

  2. Cluster algorithms with empahsis on quantum spin systems

    International Nuclear Information System (INIS)

    Gubernatis, J.E.; Kawashima, Naoki

    1995-01-01

    The purpose of this lecture is to discuss in detail the generalized approach of Kawashima and Gubernatis for the construction of cluster algorithms. We first present a brief refresher on the Monte Carlo method, describe the Swendsen-Wang algorithm, show how this algorithm follows from the Fortuin-Kastelyn transformation, and re=interpret this transformation in a form which is the basis of the generalized approach. We then derive the essential equations of the generalized approach. This derivation is remarkably simple if done from the viewpoint of probability theory, and the essential assumptions will be clearly stated. These assumptions are implicit in all useful cluster algorithms of which we are aware. They lead to a quite different perspective on cluster algorithms than found in the seminal works and in Ising model applications. Next, we illustrate how the generalized approach leads to a cluster algorithm for world-line quantum Monte Carlo simulations of Heisenberg models with S = 1/2. More succinctly, we also discuss the generalization of the Fortuin- Kasetelyn transformation to higher spin models and illustrate the essential steps for a S = 1 Heisenberg model. Finally, we summarize how to go beyond S = 1 to a general spin, XYZ model

  3. A Genetic Algorithm That Exchanges Neighboring Centers for Fuzzy c-Means Clustering

    Science.gov (United States)

    Chahine, Firas Safwan

    2012-01-01

    Clustering algorithms are widely used in pattern recognition and data mining applications. Due to their computational efficiency, partitional clustering algorithms are better suited for applications with large datasets than hierarchical clustering algorithms. K-means is among the most popular partitional clustering algorithm, but has a major…

  4. Personalized PageRank Clustering: A graph clustering algorithm based on random walks

    Science.gov (United States)

    A. Tabrizi, Shayan; Shakery, Azadeh; Asadpour, Masoud; Abbasi, Maziar; Tavallaie, Mohammad Ali

    2013-11-01

    Graph clustering has been an essential part in many methods and thus its accuracy has a significant effect on many applications. In addition, exponential growth of real-world graphs such as social networks, biological networks and electrical circuits demands clustering algorithms with nearly-linear time and space complexity. In this paper we propose Personalized PageRank Clustering (PPC) that employs the inherent cluster exploratory property of random walks to reveal the clusters of a given graph. We combine random walks and modularity to precisely and efficiently reveal the clusters of a graph. PPC is a top-down algorithm so it can reveal inherent clusters of a graph more accurately than other nearly-linear approaches that are mainly bottom-up. It also gives a hierarchy of clusters that is useful in many applications. PPC has a linear time and space complexity and has been superior to most of the available clustering algorithms on many datasets. Furthermore, its top-down approach makes it a flexible solution for clustering problems with different requirements.

  5. Availability Allocation of Networked Systems Using Markov Model and Heuristics Algorithm

    OpenAIRE

    Li, Ruiying; Liu, Xiaoxi; Huang, Ning

    2014-01-01

    It is a common practice to allocate the system availability goal to reliability and maintainability goals of components in the early design phase. However, the networked system availability is difficult to be allocated due to its complex topology and multiple down states. To solve these problems, a practical availability allocation method is proposed. Network reliability algebraic methods are used to derive the availability expression of the networked topology on the system level, and Markov ...

  6. AN IMPROVED FUZZY CLUSTERING ALGORITHM FOR MICROARRAY IMAGE SPOTS SEGMENTATION

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-11-01

    Full Text Available An automatic cDNA microarray image processing using an improved fuzzy clustering algorithm is presented in this paper. The spot segmentation algorithm proposed uses the gridding technique developed by the authors earlier, for finding the co-ordinates of each spot in an image. Automatic cropping of spots from microarray image is done using these co-ordinates. The present paper proposes an improved fuzzy clustering algorithm Possibility fuzzy local information c means (PFLICM to segment the spot foreground (FG from background (BG. The PFLICM improves fuzzy local information c means (FLICM algorithm by incorporating typicality of a pixel along with gray level information and local spatial information. The performance of the algorithm is validated using a set of simulated cDNA microarray images added with different levels of AWGN noise. The strength of the algorithm is tested by computing the parameters such as the Segmentation matching factor (SMF, Probability of error (pe, Discrepancy distance (D and Normal mean square error (NMSE. SMF value obtained for PFLICM algorithm shows an improvement of 0.9 % and 0.7 % for high noise and low noise microarray images respectively compared to FLICM algorithm. The PFLICM algorithm is also applied on real microarray images and gene expression values are computed.

  7. Spin chain simulations with a meron cluster algorithm

    International Nuclear Information System (INIS)

    Boyer, T.; Bietenholz, W.; Deutsches Elektronen-Synchrotron; Wuilloud, J.; Geneve Univ.

    2007-01-01

    We apply a meron cluster algorithm to the XY spin chain, which describes a quantum rotor. This is a multi-cluster simulation supplemented by an improved estimator, which deals with objects of half-integer topological charge. This method is powerful enough to provide precise results for the model with a θ-term - it is therefore one of the rare examples, where a system with a complex action can be solved numerically. In particular we measure the correlation length, as well as the topological and magnetic susceptibility. We discuss the algorithmic efficiency in view of the critical slowing down. Due to the excellent performance that we observe, it is strongly motivated to work on new applications of meron cluster algorithms in higher dimensions. (orig.)

  8. A Novel Divisive Hierarchical Clustering Algorithm for Geospatial Analysis

    Directory of Open Access Journals (Sweden)

    Shaoning Li

    2017-01-01

    Full Text Available In the fields of geographic information systems (GIS and remote sensing (RS, the clustering algorithm has been widely used for image segmentation, pattern recognition, and cartographic generalization. Although clustering analysis plays a key role in geospatial modelling, traditional clustering methods are limited due to computational complexity, noise resistant ability and robustness. Furthermore, traditional methods are more focused on the adjacent spatial context, which makes it hard for the clustering methods to be applied to multi-density discrete objects. In this paper, a new method, cell-dividing hierarchical clustering (CDHC, is proposed based on convex hull retraction. The main steps are as follows. First, a convex hull structure is constructed to describe the global spatial context of geospatial objects. Then, the retracting structure of each borderline is established in sequence by setting the initial parameter. The objects are split into two clusters (i.e., “sub-clusters” if the retracting structure intersects with the borderlines. Finally, clusters are repeatedly split and the initial parameter is updated until the terminate condition is satisfied. The experimental results show that CDHC separates the multi-density objects from noise sufficiently and also reduces complexity compared to the traditional agglomerative hierarchical clustering algorithm.

  9. Core Business Selection Based on Ant Colony Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Yu Lan

    2014-01-01

    Full Text Available Core business is the most important business to the enterprise in diversified business. In this paper, we first introduce the definition and characteristics of the core business and then descript the ant colony clustering algorithm. In order to test the effectiveness of the proposed method, Tianjin Port Logistics Development Co., Ltd. is selected as the research object. Based on the current situation of the development of the company, the core business of the company can be acquired by ant colony clustering algorithm. Thus, the results indicate that the proposed method is an effective way to determine the core business for company.

  10. Using Hierarchical Time Series Clustering Algorithm and Wavelet Classifier for Biometric Voice Classification

    Directory of Open Access Journals (Sweden)

    Simon Fong

    2012-01-01

    Full Text Available Voice biometrics has a long history in biosecurity applications such as verification and identification based on characteristics of the human voice. The other application called voice classification which has its important role in grouping unlabelled voice samples, however, has not been widely studied in research. Lately voice classification is found useful in phone monitoring, classifying speakers’ gender, ethnicity and emotion states, and so forth. In this paper, a collection of computational algorithms are proposed to support voice classification; the algorithms are a combination of hierarchical clustering, dynamic time wrap transform, discrete wavelet transform, and decision tree. The proposed algorithms are relatively more transparent and interpretable than the existing ones, though many techniques such as Artificial Neural Networks, Support Vector Machine, and Hidden Markov Model (which inherently function like a black box have been applied for voice verification and voice identification. Two datasets, one that is generated synthetically and the other one empirically collected from past voice recognition experiment, are used to verify and demonstrate the effectiveness of our proposed voice classification algorithm.

  11. Identifying multiple influential spreaders by a heuristic clustering algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Zhong-Kui [School of Mathematical Science, Anhui University, Hefei 230601 (China); Liu, Jian-Guo [Data Science and Cloud Service Research Center, Shanghai University of Finance and Economics, Shanghai, 200133 (China); Zhang, Hai-Feng, E-mail: haifengzhang1978@gmail.com [School of Mathematical Science, Anhui University, Hefei 230601 (China); Department of Communication Engineering, North University of China, Taiyuan, Shan' xi 030051 (China)

    2017-03-18

    The problem of influence maximization in social networks has attracted much attention. However, traditional centrality indices are suitable for the case where a single spreader is chosen as the spreading source. Many times, spreading process is initiated by simultaneously choosing multiple nodes as the spreading sources. In this situation, choosing the top ranked nodes as multiple spreaders is not an optimal strategy, since the chosen nodes are not sufficiently scattered in networks. Therefore, one ideal situation for multiple spreaders case is that the spreaders themselves are not only influential but also they are dispersively distributed in networks, but it is difficult to meet the two conditions together. In this paper, we propose a heuristic clustering (HC) algorithm based on the similarity index to classify nodes into different clusters, and finally the center nodes in clusters are chosen as the multiple spreaders. HC algorithm not only ensures that the multiple spreaders are dispersively distributed in networks but also avoids the selected nodes to be very “negligible”. Compared with the traditional methods, our experimental results on synthetic and real networks indicate that the performance of HC method on influence maximization is more significant. - Highlights: • A heuristic clustering algorithm is proposed to identify the multiple influential spreaders in complex networks. • The algorithm can not only guarantee the selected spreaders are sufficiently scattered but also avoid to be “insignificant”. • The performance of our algorithm is generally better than other methods, regardless of real networks or synthetic networks.

  12. Identifying multiple influential spreaders by a heuristic clustering algorithm

    International Nuclear Information System (INIS)

    Bao, Zhong-Kui; Liu, Jian-Guo; Zhang, Hai-Feng

    2017-01-01

    The problem of influence maximization in social networks has attracted much attention. However, traditional centrality indices are suitable for the case where a single spreader is chosen as the spreading source. Many times, spreading process is initiated by simultaneously choosing multiple nodes as the spreading sources. In this situation, choosing the top ranked nodes as multiple spreaders is not an optimal strategy, since the chosen nodes are not sufficiently scattered in networks. Therefore, one ideal situation for multiple spreaders case is that the spreaders themselves are not only influential but also they are dispersively distributed in networks, but it is difficult to meet the two conditions together. In this paper, we propose a heuristic clustering (HC) algorithm based on the similarity index to classify nodes into different clusters, and finally the center nodes in clusters are chosen as the multiple spreaders. HC algorithm not only ensures that the multiple spreaders are dispersively distributed in networks but also avoids the selected nodes to be very “negligible”. Compared with the traditional methods, our experimental results on synthetic and real networks indicate that the performance of HC method on influence maximization is more significant. - Highlights: • A heuristic clustering algorithm is proposed to identify the multiple influential spreaders in complex networks. • The algorithm can not only guarantee the selected spreaders are sufficiently scattered but also avoid to be “insignificant”. • The performance of our algorithm is generally better than other methods, regardless of real networks or synthetic networks.

  13. A Novel Cluster Head Selection Algorithm Based on Fuzzy Clustering and Particle Swarm Optimization.

    Science.gov (United States)

    Ni, Qingjian; Pan, Qianqian; Du, Huimin; Cao, Cen; Zhai, Yuqing

    2017-01-01

    An important objective of wireless sensor network is to prolong the network life cycle, and topology control is of great significance for extending the network life cycle. Based on previous work, for cluster head selection in hierarchical topology control, we propose a solution based on fuzzy clustering preprocessing and particle swarm optimization. More specifically, first, fuzzy clustering algorithm is used to initial clustering for sensor nodes according to geographical locations, where a sensor node belongs to a cluster with a determined probability, and the number of initial clusters is analyzed and discussed. Furthermore, the fitness function is designed considering both the energy consumption and distance factors of wireless sensor network. Finally, the cluster head nodes in hierarchical topology are determined based on the improved particle swarm optimization. Experimental results show that, compared with traditional methods, the proposed method achieved the purpose of reducing the mortality rate of nodes and extending the network life cycle.

  14. A similarity based agglomerative clustering algorithm in networks

    Science.gov (United States)

    Liu, Zhiyuan; Wang, Xiujuan; Ma, Yinghong

    2018-04-01

    The detection of clusters is benefit for understanding the organizations and functions of networks. Clusters, or communities, are usually groups of nodes densely interconnected but sparsely linked with any other clusters. To identify communities, an efficient and effective community agglomerative algorithm based on node similarity is proposed. The proposed method initially calculates similarities between each pair of nodes, and form pre-partitions according to the principle that each node is in the same community as its most similar neighbor. After that, check each partition whether it satisfies community criterion. For the pre-partitions who do not satisfy, incorporate them with others that having the biggest attraction until there are no changes. To measure the attraction ability of a partition, we propose an attraction index that based on the linked node's importance in networks. Therefore, our proposed method can better exploit the nodes' properties and network's structure. To test the performance of our algorithm, both synthetic and empirical networks ranging in different scales are tested. Simulation results show that the proposed algorithm can obtain superior clustering results compared with six other widely used community detection algorithms.

  15. Fuzzy cluster means algorithm for the diagnosis of confusable disease

    African Journals Online (AJOL)

    ... end platform while Microsoft Access was used as the database application. The system gives a measure of each disease within a set of confusable disease. The proposed system had a classification accuracy of 60%. Keywords: Artificial Intelligence, expert system Fuzzy cluster – means Algorithm, physician, Diagnosis ...

  16. Modified genetic algorithms to model cluster structures in medium-size silicon clusters

    International Nuclear Information System (INIS)

    Bazterra, Victor E.; Ona, Ofelia; Caputo, Maria C.; Ferraro, Marta B.; Fuentealba, Patricio; Facelli, Julio C.

    2004-01-01

    This paper presents the results obtained using a genetic algorithm (GA) to search for stable structures of medium size silicon clusters. In this work the GA uses a semiempirical energy function to find the best cluster structures, which are further optimized using density-functional theory. For small clusters our results agree well with previously reported structures, but for larger ones different structures appear. This is the case of Si 36 where we report a different structure, with significant lower energy than those previously found using limited search approaches on common structural motifs. This demonstrates the need for global optimization schemes when searching for stable structures of medium-size silicon clusters

  17. The C4 clustering algorithm: Clusters of galaxies in the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Christopher J.; Nichol, Robert; Reichart, Dan; Wechsler, Risa H.; Evrard, August; Annis, James; McKay, Timothy; Bahcall, Neta; Bernardi, Mariangela; Boehringer,; Connolly, Andrew; Goto, Tomo; Kniazev, Alexie; Lamb, Donald; Postman, Marc; Schneider, Donald; Sheth, Ravi; Voges, Wolfgang; /Cerro-Tololo InterAmerican Obs. /Portsmouth U.,

    2005-03-01

    We present the ''C4 Cluster Catalog'', a new sample of 748 clusters of galaxies identified in the spectroscopic sample of the Second Data Release (DR2) of the Sloan Digital Sky Survey (SDSS). The C4 cluster-finding algorithm identifies clusters as overdensities in a seven-dimensional position and color space, thus minimizing projection effects that have plagued previous optical cluster selection. The present C4 catalog covers {approx}2600 square degrees of sky and ranges in redshift from z = 0.02 to z = 0.17. The mean cluster membership is 36 galaxies (with redshifts) brighter than r = 17.7, but the catalog includes a range of systems, from groups containing 10 members to massive clusters with over 200 cluster members with redshifts. The catalog provides a large number of measured cluster properties including sky location, mean redshift, galaxy membership, summed r-band optical luminosity (L{sub r}), velocity dispersion, as well as quantitative measures of substructure and the surrounding large-scale environment. We use new, multi-color mock SDSS galaxy catalogs, empirically constructed from the {Lambda}CDM Hubble Volume (HV) Sky Survey output, to investigate the sensitivity of the C4 catalog to the various algorithm parameters (detection threshold, choice of passbands and search aperture), as well as to quantify the purity and completeness of the C4 cluster catalog. These mock catalogs indicate that the C4 catalog is {approx_equal}90% complete and 95% pure above M{sub 200} = 1 x 10{sup 14} h{sup -1}M{sub {circle_dot}} and within 0.03 {le} z {le} 0.12. Using the SDSS DR2 data, we show that the C4 algorithm finds 98% of X-ray identified clusters and 90% of Abell clusters within 0.03 {le} z {le} 0.12. Using the mock galaxy catalogs and the full HV dark matter simulations, we show that the L{sub r} of a cluster is a more robust estimator of the halo mass (M{sub 200}) than the galaxy line-of-sight velocity dispersion or the richness of the cluster

  18. Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale.

    Science.gov (United States)

    Emmons, Scott; Kobourov, Stephen; Gallant, Mike; Börner, Katy

    2016-01-01

    Notions of community quality underlie the clustering of networks. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms-Louvain, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 on modularity but score 0 out of 1 on information recovery. We find conductance, though imperfect, to be the stand-alone quality metric that best indicates performance on the information recovery metrics. Additionally, our study shows that the variant of normalized mutual information used in previous work cannot be assumed to differ only slightly from traditional normalized mutual information. Smart local moving is the overall best performing algorithm in our study, but discrepancies between cluster evaluation metrics prevent us from declaring it an absolutely superior algorithm. Interestingly, Louvain performed better than Infomap in nearly all the tests in our study, contradicting the results of previous work in which Infomap was superior to Louvain. We find that although label propagation performs poorly when clusters are less clearly defined, it scales efficiently and accurately to large graphs with well-defined clusters.

  19. High-dimensional cluster analysis with the Masked EM Algorithm

    Science.gov (United States)

    Kadir, Shabnam N.; Goodman, Dan F. M.; Harris, Kenneth D.

    2014-01-01

    Cluster analysis faces two problems in high dimensions: first, the “curse of dimensionality” that can lead to overfitting and poor generalization performance; and second, the sheer time taken for conventional algorithms to process large amounts of high-dimensional data. We describe a solution to these problems, designed for the application of “spike sorting” for next-generation high channel-count neural probes. In this problem, only a small subset of features provide information about the cluster member-ship of any one data vector, but this informative feature subset is not the same for all data points, rendering classical feature selection ineffective. We introduce a “Masked EM” algorithm that allows accurate and time-efficient clustering of up to millions of points in thousands of dimensions. We demonstrate its applicability to synthetic data, and to real-world high-channel-count spike sorting data. PMID:25149694

  20. A HYBRID HEURISTIC ALGORITHM FOR THE CLUSTERED TRAVELING SALESMAN PROBLEM

    Directory of Open Access Journals (Sweden)

    Mário Mestria

    2016-04-01

    Full Text Available ABSTRACT This paper proposes a hybrid heuristic algorithm, based on the metaheuristics Greedy Randomized Adaptive Search Procedure, Iterated Local Search and Variable Neighborhood Descent, to solve the Clustered Traveling Salesman Problem (CTSP. Hybrid Heuristic algorithm uses several variable neighborhood structures combining the intensification (using local search operators and diversification (constructive heuristic and perturbation routine. In the CTSP, the vertices are partitioned into clusters and all vertices of each cluster have to be visited contiguously. The CTSP is -hard since it includes the well-known Traveling Salesman Problem (TSP as a special case. Our hybrid heuristic is compared with three heuristics from the literature and an exact method. Computational experiments are reported for different classes of instances. Experimental results show that the proposed hybrid heuristic obtains competitive results within reasonable computational time.

  1. Clustering Using Boosted Constrained k-Means Algorithm

    Directory of Open Access Journals (Sweden)

    Masayuki Okabe

    2018-03-01

    Full Text Available This article proposes a constrained clustering algorithm with competitive performance and less computation time to the state-of-the-art methods, which consists of a constrained k-means algorithm enhanced by the boosting principle. Constrained k-means clustering using constraints as background knowledge, although easy to implement and quick, has insufficient performance compared with metric learning-based methods. Since it simply adds a function into the data assignment process of the k-means algorithm to check for constraint violations, it often exploits only a small number of constraints. Metric learning-based methods, which exploit constraints to create a new metric for data similarity, have shown promising results although the methods proposed so far are often slow depending on the amount of data or number of feature dimensions. We present a method that exploits the advantages of the constrained k-means and metric learning approaches. It incorporates a mechanism for accepting constraint priorities and a metric learning framework based on the boosting principle into a constrained k-means algorithm. In the framework, a metric is learned in the form of a kernel matrix that integrates weak cluster hypotheses produced by the constrained k-means algorithm, which works as a weak learner under the boosting principle. Experimental results for 12 data sets from 3 data sources demonstrated that our method has performance competitive to those of state-of-the-art constrained clustering methods for most data sets and that it takes much less computation time. Experimental evaluation demonstrated the effectiveness of controlling the constraint priorities by using the boosting principle and that our constrained k-means algorithm functions correctly as a weak learner of boosting.

  2. Which clustering algorithm is better for predicting protein complexes?

    Directory of Open Access Journals (Sweden)

    Moschopoulos Charalampos N

    2011-12-01

    Full Text Available Abstract Background Protein-Protein interactions (PPI play a key role in determining the outcome of most cellular processes. The correct identification and characterization of protein interactions and the networks, which they comprise, is critical for understanding the molecular mechanisms within the cell. Large-scale techniques such as pull down assays and tandem affinity purification are used in order to detect protein interactions in an organism. Today, relatively new high-throughput methods like yeast two hybrid, mass spectrometry, microarrays, and phage display are also used to reveal protein interaction networks. Results In this paper we evaluated four different clustering algorithms using six different interaction datasets. We parameterized the MCL, Spectral, RNSC and Affinity Propagation algorithms and applied them to six PPI datasets produced experimentally by Yeast 2 Hybrid (Y2H and Tandem Affinity Purification (TAP methods. The predicted clusters, so called protein complexes, were then compared and benchmarked with already known complexes stored in published databases. Conclusions While results may differ upon parameterization, the MCL and RNSC algorithms seem to be more promising and more accurate at predicting PPI complexes. Moreover, they predict more complexes than other reviewed algorithms in absolute numbers. On the other hand the spectral clustering algorithm achieves the highest valid prediction rate in our experiments. However, it is nearly always outperformed by both RNSC and MCL in terms of the geometrical accuracy while it generates the fewest valid clusters than any other reviewed algorithm. This article demonstrates various metrics to evaluate the accuracy of such predictions as they are presented in the text below. Supplementary material can be found at: http://www.bioacademy.gr/bioinformatics/projects/ppireview.htm

  3. A heuristic approach to possibilistic clustering algorithms and applications

    CERN Document Server

    Viattchenin, Dmitri A

    2013-01-01

    The present book outlines a new approach to possibilistic clustering in which the sought clustering structure of the set of objects is based directly on the formal definition of fuzzy cluster and the possibilistic memberships are determined directly from the values of the pairwise similarity of objects.   The proposed approach can be used for solving different classification problems. Here, some techniques that might be useful at this purpose are outlined, including a methodology for constructing a set of labeled objects for a semi-supervised clustering algorithm, a methodology for reducing analyzed attribute space dimensionality and a methods for asymmetric data processing. Moreover,  a technique for constructing a subset of the most appropriate alternatives for a set of weak fuzzy preference relations, which are defined on a universe of alternatives, is described in detail, and a method for rapidly prototyping the Mamdani’s fuzzy inference systems is introduced. This book addresses engineers, scientist...

  4. Multi-site Stochastic Simulation of Daily Streamflow with Markov Chain and KNN Algorithm

    Science.gov (United States)

    Mathai, J.; Mujumdar, P.

    2017-12-01

    A key focus of this study is to develop a method which is physically consistent with the hydrologic processes that can capture short-term characteristics of daily hydrograph as well as the correlation of streamflow in temporal and spatial domains. In complex water resource systems, flow fluctuations at small time intervals require that discretisation be done at small time scales such as daily scales. Also, simultaneous generation of synthetic flows at different sites in the same basin are required. We propose a method to equip water managers with a streamflow generator within a stochastic streamflow simulation framework. The motivation for the proposed method is to generate sequences that extend beyond the variability represented in the historical record of streamflow time series. The method has two steps: In step 1, daily flow is generated independently at each station by a two-state Markov chain, with rising limb increments randomly sampled from a Gamma distribution and the falling limb modelled as exponential recession and in step 2, the streamflow generated in step 1 is input to a nonparametric K-nearest neighbor (KNN) time series bootstrap resampler. The KNN model, being data driven, does not require assumptions on the dependence structure of the time series. A major limitation of KNN based streamflow generators is that they do not produce new values, but merely reshuffle the historical data to generate realistic streamflow sequences. However, daily flow generated using the Markov chain approach is capable of generating a rich variety of streamflow sequences. Furthermore, the rising and falling limbs of daily hydrograph represent different physical processes, and hence they need to be modelled individually. Thus, our method combines the strengths of the two approaches. We show the utility of the method and improvement over the traditional KNN by simulating daily streamflow sequences at 7 locations in the Godavari River basin in India.

  5. Improved Gravitation Field Algorithm and Its Application in Hierarchical Clustering

    Science.gov (United States)

    Zheng, Ming; Sun, Ying; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang

    2012-01-01

    Background Gravitation field algorithm (GFA) is a new optimization algorithm which is based on an imitation of natural phenomena. GFA can do well both for searching global minimum and multi-minima in computational biology. But GFA needs to be improved for increasing efficiency, and modified for applying to some discrete data problems in system biology. Method An improved GFA called IGFA was proposed in this paper. Two parts were improved in IGFA. The first one is the rule of random division, which is a reasonable strategy and makes running time shorter. The other one is rotation factor, which can improve the accuracy of IGFA. And to apply IGFA to the hierarchical clustering, the initial part and the movement operator were modified. Results Two kinds of experiments were used to test IGFA. And IGFA was applied to hierarchical clustering. The global minimum experiment was used with IGFA, GFA, GA (genetic algorithm) and SA (simulated annealing). Multi-minima experiment was used with IGFA and GFA. The two experiments results were compared with each other and proved the efficiency of IGFA. IGFA is better than GFA both in accuracy and running time. For the hierarchical clustering, IGFA is used to optimize the smallest distance of genes pairs, and the results were compared with GA and SA, singular-linkage clustering, UPGMA. The efficiency of IGFA is proved. PMID:23173043

  6. A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using frequency-domain electromagnetic data

    Science.gov (United States)

    Minsley, Burke J.

    2011-01-01

    A meaningful interpretation of geophysical measurements requires an assessment of the space of models that are consistent with the data, rather than just a single, ‘best’ model which does not convey information about parameter uncertainty. For this purpose, a trans-dimensional Bayesian Markov chain Monte Carlo (MCMC) algorithm is developed for assessing frequencydomain electromagnetic (FDEM) data acquired from airborne or ground-based systems. By sampling the distribution of models that are consistent with measured data and any prior knowledge, valuable inferences can be made about parameter values such as the likely depth to an interface, the distribution of possible resistivity values as a function of depth and non-unique relationships between parameters. The trans-dimensional aspect of the algorithm allows the number of layers to be a free parameter that is controlled by the data, where models with fewer layers are inherently favoured, which provides a natural measure of parsimony and a significant degree of flexibility in parametrization. The MCMC algorithm is used with synthetic examples to illustrate how the distribution of acceptable models is affected by the choice of prior information, the system geometry and configuration and the uncertainty in the measured system elevation. An airborne FDEM data set that was acquired for the purpose of hydrogeological characterization is also studied. The results compare favorably with traditional least-squares analysis, borehole resistivity and lithology logs from the site, and also provide new information about parameter uncertainty necessary for model assessment.

  7. ABCluster: the artificial bee colony algorithm for cluster global optimization.

    Science.gov (United States)

    Zhang, Jun; Dolg, Michael

    2015-10-07

    Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.

  8. A Coupled Hidden Markov Random Field Model for Simultaneous Face Clustering and Tracking in Videos

    KAUST Repository

    Wu, Baoyuan; Hu, Bao-Gang; Ji, Qiang

    2016-01-01

    Face clustering and face tracking are two areas of active research in automatic facial video processing. They, however, have long been studied separately, despite the inherent link between them. In this paper, we propose to perform simultaneous face

  9. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407780; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. The algorithms depend heavily on accurate estimation of the position of particles as they traverse the inner detector elements. An artificial neural network algorithm is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The method recovers otherwise lost tracks in dense environments where particles are separated by distances comparable to the size of the detector read-out elements. Such environments are highly relevant for LHC run 2, e.g. in searches for heavy resonances. Within the scope of run 2 track reconstruction performance and upgrades, the robustness of the neural network algorithm will be presented. The robustness has been studied by evaluating the stability of the algorithm’s performance under a range of variations in the pixel detector conditions.

  10. Stochastic cluster algorithms for discrete Gaussian (SOS) models

    International Nuclear Information System (INIS)

    Evertz, H.G.; Hamburg Univ.; Hasenbusch, M.; Marcu, M.; Tel Aviv Univ.; Pinn, K.; Muenster Univ.; Solomon, S.

    1990-10-01

    We present new Monte Carlo cluster algorithms which eliminate critical slowing down in the simulation of solid-on-solid models. In this letter we focus on the two-dimensional discrete Gaussian model. The algorithms are based on reflecting the integer valued spin variables with respect to appropriately chosen reflection planes. The proper choice of the reflection plane turns out to be crucial in order to obtain a small dynamical exponent z. Actually, the successful versions of our algorithm are a mixture of two different procedures for choosing the reflection plane, one of them ergodic but slow, the other one non-ergodic and also slow when combined with a Metropolis algorithm. (orig.)

  11. clusterMaker: a multi-algorithm clustering plugin for Cytoscape

    Directory of Open Access Journals (Sweden)

    Morris John H

    2011-11-01

    Full Text Available Abstract Background In the post-genomic era, the rapid increase in high-throughput data calls for computational tools capable of integrating data of diverse types and facilitating recognition of biologically meaningful patterns within them. For example, protein-protein interaction data sets have been clustered to identify stable complexes, but scientists lack easily accessible tools to facilitate combined analyses of multiple data sets from different types of experiments. Here we present clusterMaker, a Cytoscape plugin that implements several clustering algorithms and provides network, dendrogram, and heat map views of the results. The Cytoscape network is linked to all of the other views, so that a selection in one is immediately reflected in the others. clusterMaker is the first Cytoscape plugin to implement such a wide variety of clustering algorithms and visualizations, including the only implementations of hierarchical clustering, dendrogram plus heat map visualization (tree view, k-means, k-medoid, SCPS, AutoSOME, and native (Java MCL. Results Results are presented in the form of three scenarios of use: analysis of protein expression data using a recently published mouse interactome and a mouse microarray data set of nearly one hundred diverse cell/tissue types; the identification of protein complexes in the yeast Saccharomyces cerevisiae; and the cluster analysis of the vicinal oxygen chelate (VOC enzyme superfamily. For scenario one, we explore functionally enriched mouse interactomes specific to particular cellular phenotypes and apply fuzzy clustering. For scenario two, we explore the prefoldin complex in detail using both physical and genetic interaction clusters. For scenario three, we explore the possible annotation of a protein as a methylmalonyl-CoA epimerase within the VOC superfamily. Cytoscape session files for all three scenarios are provided in the Additional Files section. Conclusions The Cytoscape plugin cluster

  12. Exploring New Clustering Algorithms for the CMS Tracker FED

    CERN Document Server

    Gamboa Alvarado, Jose Leandro

    2013-01-01

    In the current Front End (FE) firmware clusters of hits within the APV frames are found using a simple threshold comparison (which is made between the data and a 3 or 5 sigma strip noise cut) on reordered pedestal and Common Mode (CM) noise subtracted data. In addition the CM noise subtraction requires the baseline of each APV frame to be approximately uniform. Therefore, the current algorithm will fail if the APV baseline exhibits large-scale non-uniform behavior. Under very high luminosity conditions the assumption of a uniform APV baseline breaks down and the FED is unable to maintain a high efficiency of cluster finding. \

  13. FCM Clustering Algorithms for Segmentation of Brain MR Images

    Directory of Open Access Journals (Sweden)

    Yogita K. Dubey

    2016-01-01

    Full Text Available The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF, Gray Matter (GM, and White Matter (WM, has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed.

  14. Synchronous Firefly Algorithm for Cluster Head Selection in WSN

    Directory of Open Access Journals (Sweden)

    Madhusudhanan Baskaran

    2015-01-01

    Full Text Available Wireless Sensor Network (WSN consists of small low-cost, low-power multifunctional nodes interconnected to efficiently aggregate and transmit data to sink. Cluster-based approaches use some nodes as Cluster Heads (CHs and organize WSNs efficiently for aggregation of data and energy saving. A CH conveys information gathered by cluster nodes and aggregates/compresses data before transmitting it to a sink. However, this additional responsibility of the node results in a higher energy drain leading to uneven network degradation. Low Energy Adaptive Clustering Hierarchy (LEACH offsets this by probabilistically rotating cluster heads role among nodes with energy above a set threshold. CH selection in WSN is NP-Hard as optimal data aggregation with efficient energy savings cannot be solved in polynomial time. In this work, a modified firefly heuristic, synchronous firefly algorithm, is proposed to improve the network performance. Extensive simulation shows the proposed technique to perform well compared to LEACH and energy-efficient hierarchical clustering. Simulations show the effectiveness of the proposed method in decreasing the packet loss ratio by an average of 9.63% and improving the energy efficiency of the network when compared to LEACH and EEHC.

  15. Nonuniform Sparse Data Clustering Cascade Algorithm Based on Dynamic Cumulative Entropy

    Directory of Open Access Journals (Sweden)

    Ning Li

    2016-01-01

    Full Text Available A small amount of prior knowledge and randomly chosen initial cluster centers have a direct impact on the accuracy of the performance of iterative clustering algorithm. In this paper we propose a new algorithm to compute initial cluster centers for k-means clustering and the best number of the clusters with little prior knowledge and optimize clustering result. It constructs the Euclidean distance control factor based on aggregation density sparse degree to select the initial cluster center of nonuniform sparse data and obtains initial data clusters by multidimensional diffusion density distribution. Multiobjective clustering approach based on dynamic cumulative entropy is adopted to optimize the initial data clusters and the best number of the clusters. The experimental results show that the newly proposed algorithm has good performance to obtain the initial cluster centers for the k-means algorithm and it effectively improves the clustering accuracy of nonuniform sparse data by about 5%.

  16. Advanced defect detection algorithm using clustering in ultrasonic NDE

    Science.gov (United States)

    Gongzhang, Rui; Gachagan, Anthony

    2016-02-01

    A range of materials used in industry exhibit scattering properties which limits ultrasonic NDE. Many algorithms have been proposed to enhance defect detection ability, such as the well-known Split Spectrum Processing (SSP) technique. Scattering noise usually cannot be fully removed and the remaining noise can be easily confused with real feature signals, hence becoming artefacts during the image interpretation stage. This paper presents an advanced algorithm to further reduce the influence of artefacts remaining in A-scan data after processing using a conventional defect detection algorithm. The raw A-scan data can be acquired from either traditional single transducer or phased array configurations. The proposed algorithm uses the concept of unsupervised machine learning to cluster segmental defect signals from pre-processed A-scans into different classes. The distinction and similarity between each class and the ensemble of randomly selected noise segments can be observed by applying a classification algorithm. Each class will then be labelled as `legitimate reflector' or `artefacts' based on this observation and the expected probability of defection (PoD) and probability of false alarm (PFA) determined. To facilitate data collection and validate the proposed algorithm, a 5MHz linear array transducer is used to collect A-scans from both austenitic steel and Inconel samples. Each pulse-echo A-scan is pre-processed using SSP and the subsequent application of the proposed clustering algorithm has provided an additional reduction to PFA while maintaining PoD for both samples compared with SSP results alone.

  17. Аdaptive clustering algorithm for recommender systems

    OpenAIRE

    Stekh, Yu.; Artsibasov, V.

    2012-01-01

    In this article adaptive clustering algorithm for recommender systems is developed. Розроблено адаптивний алгоритм кластеризації для рекомендаційних систем.

  18. A Two-Channel Training Algorithm for Hidden Markov Model and Its Application to Lip Reading

    Directory of Open Access Journals (Sweden)

    Foo Say Wei

    2005-01-01

    Full Text Available Hidden Markov model (HMM has been a popular mathematical approach for sequence classification such as speech recognition since 1980s. In this paper, a novel two-channel training strategy is proposed for discriminative training of HMM. For the proposed training strategy, a novel separable-distance function that measures the difference between a pair of training samples is adopted as the criterion function. The symbol emission matrix of an HMM is split into two channels: a static channel to maintain the validity of the HMM and a dynamic channel that is modified to maximize the separable distance. The parameters of the two-channel HMM are estimated by iterative application of expectation-maximization (EM operations. As an example of the application of the novel approach, a hierarchical speaker-dependent visual speech recognition system is trained using the two-channel HMMs. Results of experiments on identifying a group of confusable visemes indicate that the proposed approach is able to increase the recognition accuracy by an average of 20% compared with the conventional HMMs that are trained with the Baum-Welch estimation.

  19. A cluster analysis on road traffic accidents using genetic algorithms

    Science.gov (United States)

    Saharan, Sabariah; Baragona, Roberto

    2017-04-01

    The analysis of traffic road accidents is increasingly important because of the accidents cost and public road safety. The availability or large data sets makes the study of factors that affect the frequency and severity accidents are viable. However, the data are often highly unbalanced and overlapped. We deal with the data set of the road traffic accidents recorded in Christchurch, New Zealand, from 2000-2009 with a total of 26440 accidents. The data is in a binary set and there are 50 factors road traffic accidents with four level of severity. We used genetic algorithm for the analysis because we are in the presence of a large unbalanced data set and standard clustering like k-means algorithm may not be suitable for the task. The genetic algorithm based on clustering for unknown K, (GCUK) has been used to identify the factors associated with accidents of different levels of severity. The results provided us with an interesting insight into the relationship between factors and accidents severity level and suggest that the two main factors that contributes to fatal accidents are "Speed greater than 60 km h" and "Did not see other people until it was too late". A comparison with the k-means algorithm and the independent component analysis is performed to validate the results.

  20. Community Clustering Algorithm in Complex Networks Based on Microcommunity Fusion

    Directory of Open Access Journals (Sweden)

    Jin Qi

    2015-01-01

    Full Text Available With the further research on physical meaning and digital features of the community structure in complex networks in recent years, the improvement of effectiveness and efficiency of the community mining algorithms in complex networks has become an important subject in this area. This paper puts forward a concept of the microcommunity and gets final mining results of communities through fusing different microcommunities. This paper starts with the basic definition of the network community and applies Expansion to the microcommunity clustering which provides prerequisites for the microcommunity fusion. The proposed algorithm is more efficient and has higher solution quality compared with other similar algorithms through the analysis of test results based on network data set.

  1. An improved clustering algorithm based on reverse learning in intelligent transportation

    Science.gov (United States)

    Qiu, Guoqing; Kou, Qianqian; Niu, Ting

    2017-05-01

    With the development of artificial intelligence and data mining technology, big data has gradually entered people's field of vision. In the process of dealing with large data, clustering is an important processing method. By introducing the reverse learning method in the clustering process of PAM clustering algorithm, to further improve the limitations of one-time clustering in unsupervised clustering learning, and increase the diversity of clustering clusters, so as to improve the quality of clustering. The algorithm analysis and experimental results show that the algorithm is feasible.

  2. Finding reproducible cluster partitions for the k-means algorithm.

    Science.gov (United States)

    Lisboa, Paulo J G; Etchells, Terence A; Jarman, Ian H; Chambers, Simon J

    2013-01-01

    K-means clustering is widely used for exploratory data analysis. While its dependence on initialisation is well-known, it is common practice to assume that the partition with lowest sum-of-squares (SSQ) total i.e. within cluster variance, is both reproducible under repeated initialisations and also the closest that k-means can provide to true structure, when applied to synthetic data. We show that this is generally the case for small numbers of clusters, but for values of k that are still of theoretical and practical interest, similar values of SSQ can correspond to markedly different cluster partitions. This paper extends stability measures previously presented in the context of finding optimal values of cluster number, into a component of a 2-d map of the local minima found by the k-means algorithm, from which not only can values of k be identified for further analysis but, more importantly, it is made clear whether the best SSQ is a suitable solution or whether obtaining a consistently good partition requires further application of the stability index. The proposed method is illustrated by application to five synthetic datasets replicating a real world breast cancer dataset with varying data density, and a large bioinformatics dataset.

  3. Markov Chain Monte Carlo Methods

    Indian Academy of Sciences (India)

    Keywords. Markov chain; state space; stationary transition probability; stationary distribution; irreducibility; aperiodicity; stationarity; M-H algorithm; proposal distribution; acceptance probability; image processing; Gibbs sampler.

  4. Depth data research of GIS based on clustering analysis algorithm

    Science.gov (United States)

    Xiong, Yan; Xu, Wenli

    2018-03-01

    The data of GIS have spatial distribution. Geographic data has both spatial characteristics and attribute characteristics, and also changes with time. Therefore, the amount of data is very large. Nowadays, many industries and departments in the society are using GIS. However, without proper data analysis and mining scheme, GIS will not exert its maximum effectiveness and will waste a lot of data. In this paper, we use the geographic information demand of a national security department as the experimental object, combining the characteristics of GIS data, taking into account the characteristics of time, space, attributes and so on, and using cluster analysis algorithm. We further study the mining scheme for depth data, and get the algorithm model. This algorithm can automatically classify sample data, and then carry out exploratory analysis. The research shows that the algorithm model and the information mining scheme can quickly find hidden depth information from the surface data of GIS, thus improving the efficiency of the security department. This algorithm can also be extended to other fields.

  5. Gravitation field algorithm and its application in gene cluster

    Directory of Open Access Journals (Sweden)

    Zheng Ming

    2010-09-01

    Full Text Available Abstract Background Searching optima is one of the most challenging tasks in clustering genes from available experimental data or given functions. SA, GA, PSO and other similar efficient global optimization methods are used by biotechnologists. All these algorithms are based on the imitation of natural phenomena. Results This paper proposes a novel searching optimization algorithm called Gravitation Field Algorithm (GFA which is derived from the famous astronomy theory Solar Nebular Disk Model (SNDM of planetary formation. GFA simulates the Gravitation field and outperforms GA and SA in some multimodal functions optimization problem. And GFA also can be used in the forms of unimodal functions. GFA clusters the dataset well from the Gene Expression Omnibus. Conclusions The mathematical proof demonstrates that GFA could be convergent in the global optimum by probability 1 in three conditions for one independent variable mass functions. In addition to these results, the fundamental optimization concept in this paper is used to analyze how SA and GA affect the global search and the inherent defects in SA and GA. Some results and source code (in Matlab are publicly available at http://ccst.jlu.edu.cn/CSBG/GFA.

  6. Development of Automatic Cluster Algorithm for Microcalcification in Digital Mammography

    International Nuclear Information System (INIS)

    Choi, Seok Yoon; Kim, Chang Soo

    2009-01-01

    Digital Mammography is an efficient imaging technique for the detection and diagnosis of breast pathological disorders. Six mammographic criteria such as number of cluster, number, size, extent and morphologic shape of microcalcification, and presence of mass, were reviewed and correlation with pathologic diagnosis were evaluated. It is very important to find breast cancer early when treatment can reduce deaths from breast cancer and breast incision. In screening breast cancer, mammography is typically used to view the internal organization. Clusterig microcalcifications on mammography represent an important feature of breast mass, especially that of intraductal carcinoma. Because microcalcification has high correlation with breast cancer, a cluster of a microcalcification can be very helpful for the clinical doctor to predict breast cancer. For this study, three steps of quantitative evaluation are proposed : DoG filter, adaptive thresholding, Expectation maximization. Through the proposed algorithm, each cluster in the distribution of microcalcification was able to measure the number calcification and length of cluster also can be used to automatically diagnose breast cancer as indicators of the primary diagnosis.

  7. A New Algorithm for Identifying Cis-Regulatory Modules Based on Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Haitao Guo

    2017-01-01

    Full Text Available The discovery of cis-regulatory modules (CRMs is the key to understanding mechanisms of transcription regulation. Since CRMs have specific regulatory structures that are the basis for the regulation of gene expression, how to model the regulatory structure of CRMs has a considerable impact on the performance of CRM identification. The paper proposes a CRM discovery algorithm called ComSPS. ComSPS builds a regulatory structure model of CRMs based on HMM by exploring the rules of CRM transcriptional grammar that governs the internal motif site arrangement of CRMs. We test ComSPS on three benchmark datasets and compare it with five existing methods. Experimental results show that ComSPS performs better than them.

  8. A New Algorithm for Identifying Cis-Regulatory Modules Based on Hidden Markov Model

    Science.gov (United States)

    2017-01-01

    The discovery of cis-regulatory modules (CRMs) is the key to understanding mechanisms of transcription regulation. Since CRMs have specific regulatory structures that are the basis for the regulation of gene expression, how to model the regulatory structure of CRMs has a considerable impact on the performance of CRM identification. The paper proposes a CRM discovery algorithm called ComSPS. ComSPS builds a regulatory structure model of CRMs based on HMM by exploring the rules of CRM transcriptional grammar that governs the internal motif site arrangement of CRMs. We test ComSPS on three benchmark datasets and compare it with five existing methods. Experimental results show that ComSPS performs better than them. PMID:28497059

  9. Study on distributed re-clustering algorithm for moblie wireless sensor networks

    Directory of Open Access Journals (Sweden)

    XU Chaojie

    2016-04-01

    Full Text Available In mobile wireless sensor networks,node mobility influences the topology of the hierarchically clustered network,thus affects packet delivery ratio and energy consumption of communications in clusters.To reduce the influence of node mobility,a distributed re-clustering algorithm is proposed in this paper.In this algorithm,basing on the clustered network,nodes estimate their current locations with particle algorithm and predict the most possible locations of next time basing on the mobility model.Each boundary node of a cluster periodically estimates the need for re-clustering and re-cluster itself to the optimal cluster through communicating with the cluster headers when needed.The simulation results indicate that,with small re-clustering periods,the proposed algorithm can be effective to keep appropriate communication distance and outperforms existing schemes on packet delivery ratio and energy consumption.

  10. A Heuristic Task Scheduling Algorithm for Heterogeneous Virtual Clusters

    Directory of Open Access Journals (Sweden)

    Weiwei Lin

    2016-01-01

    Full Text Available Cloud computing provides on-demand computing and storage services with high performance and high scalability. However, the rising energy consumption of cloud data centers has become a prominent problem. In this paper, we first introduce an energy-aware framework for task scheduling in virtual clusters. The framework consists of a task resource requirements prediction module, an energy estimate module, and a scheduler with a task buffer. Secondly, based on this framework, we propose a virtual machine power efficiency-aware greedy scheduling algorithm (VPEGS. As a heuristic algorithm, VPEGS estimates task energy by considering factors including task resource demands, VM power efficiency, and server workload before scheduling tasks in a greedy manner. We simulated a heterogeneous VM cluster and conducted experiment to evaluate the effectiveness of VPEGS. Simulation results show that VPEGS effectively reduced total energy consumption by more than 20% without producing large scheduling overheads. With the similar heuristic ideology, it outperformed Min-Min and RASA with respect to energy saving by about 29% and 28%, respectively.

  11. Ternary alloy material prediction using genetic algorithm and cluster expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chong [Iowa State Univ., Ames, IA (United States)

    2015-12-01

    This thesis summarizes our study on the crystal structures prediction of Fe-V-Si system using genetic algorithm and cluster expansion. Our goal is to explore and look for new stable compounds. We started from the current ten known experimental phases, and calculated formation energies of those compounds using density functional theory (DFT) package, namely, VASP. The convex hull was generated based on the DFT calculations of the experimental known phases. Then we did random search on some metal rich (Fe and V) compositions and found that the lowest energy structures were body centered cube (bcc) underlying lattice, under which we did our computational systematic searches using genetic algorithm and cluster expansion. Among hundreds of the searched compositions, thirteen were selected and DFT formation energies were obtained by VASP. The stability checking of those thirteen compounds was done in reference to the experimental convex hull. We found that the composition, 24-8-16, i.e., Fe3VSi2 is a new stable phase and it can be very inspiring to the future experiments.

  12. jClustering, an open framework for the development of 4D clustering algorithms.

    Directory of Open Access Journals (Sweden)

    José María Mateos-Pérez

    Full Text Available We present jClustering, an open framework for the design of clustering algorithms in dynamic medical imaging. We developed this tool because of the difficulty involved in manually segmenting dynamic PET images and the lack of availability of source code for published segmentation algorithms. Providing an easily extensible open tool encourages publication of source code to facilitate the process of comparing algorithms and provide interested third parties with the opportunity to review code. The internal structure of the framework allows an external developer to implement new algorithms easily and quickly, focusing only on the particulars of the method being implemented and not on image data handling and preprocessing. This tool has been coded in Java and is presented as an ImageJ plugin in order to take advantage of all the functionalities offered by this imaging analysis platform. Both binary packages and source code have been published, the latter under a free software license (GNU General Public License to allow modification if necessary.

  13. Active Semisupervised Clustering Algorithm with Label Propagation for Imbalanced and Multidensity Datasets

    Directory of Open Access Journals (Sweden)

    Mingwei Leng

    2013-01-01

    Full Text Available The accuracy of most of the existing semisupervised clustering algorithms based on small size of labeled dataset is low when dealing with multidensity and imbalanced datasets, and labeling data is quite expensive and time consuming in many real-world applications. This paper focuses on active data selection and semisupervised clustering algorithm in multidensity and imbalanced datasets and proposes an active semisupervised clustering algorithm. The proposed algorithm uses an active mechanism for data selection to minimize the amount of labeled data, and it utilizes multithreshold to expand labeled datasets on multidensity and imbalanced datasets. Three standard datasets and one synthetic dataset are used to demonstrate the proposed algorithm, and the experimental results show that the proposed semisupervised clustering algorithm has a higher accuracy and a more stable performance in comparison to other clustering and semisupervised clustering algorithms, especially when the datasets are multidensity and imbalanced.

  14. A roadmap of clustering algorithms: finding a match for a biomedical application.

    Science.gov (United States)

    Andreopoulos, Bill; An, Aijun; Wang, Xiaogang; Schroeder, Michael

    2009-05-01

    Clustering is ubiquitously applied in bioinformatics with hierarchical clustering and k-means partitioning being the most popular methods. Numerous improvements of these two clustering methods have been introduced, as well as completely different approaches such as grid-based, density-based and model-based clustering. For improved bioinformatics analysis of data, it is important to match clusterings to the requirements of a biomedical application. In this article, we present a set of desirable clustering features that are used as evaluation criteria for clustering algorithms. We review 40 different clustering algorithms of all approaches and datatypes. We compare algorithms on the basis of desirable clustering features, and outline algorithms' benefits and drawbacks as a basis for matching them to biomedical applications.

  15. KM-FCM: A fuzzy clustering optimization algorithm based on Mahalanobis distance

    Directory of Open Access Journals (Sweden)

    Zhiwen ZU

    2018-04-01

    Full Text Available The traditional fuzzy clustering algorithm uses Euclidean distance as the similarity criterion, which is disadvantageous to the multidimensional data processing. In order to solve this situation, Mahalanobis distance is used instead of the traditional Euclidean distance, and the optimization of fuzzy clustering algorithm based on Mahalanobis distance is studied to enhance the clustering effect and ability. With making the initialization means by Heuristic search algorithm combined with k-means algorithm, and in terms of the validity function which could automatically adjust the optimal clustering number, an optimization algorithm KM-FCM is proposed. The new algorithm is compared with FCM algorithm, FCM-M algorithm and M-FCM algorithm in three standard data sets. The experimental results show that the KM-FCM algorithm is effective. It has higher clustering accuracy than FCM, FCM-M and M-FCM, recognizing high-dimensional data clustering well. It has global optimization effect, and the clustering number has no need for setting in advance. The new algorithm provides a reference for the optimization of fuzzy clustering algorithm based on Mahalanobis distance.

  16. Using internal evaluation measures to validate the quality of diverse stream clustering algorithms

    NARCIS (Netherlands)

    Hassani, M.; Seidl, T.

    2017-01-01

    Measuring the quality of a clustering algorithm has shown to be as important as the algorithm itself. It is a crucial part of choosing the clustering algorithm that performs best for an input data. Streaming input data have many features that make them much more challenging than static ones. They

  17. The Logic of Adaptive Behavior - Knowledge Representation and Algorithms for the Markov Decision Process Framework in First-Order Domains

    NARCIS (Netherlands)

    van Otterlo, M.

    2008-01-01

    Learning and reasoning in large, structured, probabilistic worlds is at the heart of artificial intelligence. Markov decision processes have become the de facto standard in modeling and solving sequential decision making problems under uncertainty. Many efficient reinforcement learning and dynamic

  18. The application of mixed recommendation algorithm with user clustering in the microblog advertisements promotion

    Science.gov (United States)

    Gong, Lina; Xu, Tao; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2017-03-01

    The traditional microblog recommendation algorithm has the problems of low efficiency and modest effect in the era of big data. In the aim of solving these issues, this paper proposed a mixed recommendation algorithm with user clustering. This paper first introduced the situation of microblog marketing industry. Then, this paper elaborates the user interest modeling process and detailed advertisement recommendation methods. Finally, this paper compared the mixed recommendation algorithm with the traditional classification algorithm and mixed recommendation algorithm without user clustering. The results show that the mixed recommendation algorithm with user clustering has good accuracy and recall rate in the microblog advertisements promotion.

  19. An Affinity Propagation Clustering Algorithm for Mixed Numeric and Categorical Datasets

    Directory of Open Access Journals (Sweden)

    Kang Zhang

    2014-01-01

    Full Text Available Clustering has been widely used in different fields of science, technology, social science, and so forth. In real world, numeric as well as categorical features are usually used to describe the data objects. Accordingly, many clustering methods can process datasets that are either numeric or categorical. Recently, algorithms that can handle the mixed data clustering problems have been developed. Affinity propagation (AP algorithm is an exemplar-based clustering method which has demonstrated good performance on a wide variety of datasets. However, it has limitations on processing mixed datasets. In this paper, we propose a novel similarity measure for mixed type datasets and an adaptive AP clustering algorithm is proposed to cluster the mixed datasets. Several real world datasets are studied to evaluate the performance of the proposed algorithm. Comparisons with other clustering algorithms demonstrate that the proposed method works well not only on mixed datasets but also on pure numeric and categorical datasets.

  20. Clustering for Binary Data Sets by Using Genetic Algorithm-Incremental K-means

    Science.gov (United States)

    Saharan, S.; Baragona, R.; Nor, M. E.; Salleh, R. M.; Asrah, N. M.

    2018-04-01

    This research was initially driven by the lack of clustering algorithms that specifically focus in binary data. To overcome this gap in knowledge, a promising technique for analysing this type of data became the main subject in this research, namely Genetic Algorithms (GA). For the purpose of this research, GA was combined with the Incremental K-means (IKM) algorithm to cluster the binary data streams. In GAIKM, the objective function was based on a few sufficient statistics that may be easily and quickly calculated on binary numbers. The implementation of IKM will give an advantage in terms of fast convergence. The results show that GAIKM is an efficient and effective new clustering algorithm compared to the clustering algorithms and to the IKM itself. In conclusion, the GAIKM outperformed other clustering algorithms such as GCUK, IKM, Scalable K-means (SKM) and K-means clustering and paves the way for future research involving missing data and outliers.

  1. Robust K-Median and K-Means Clustering Algorithms for Incomplete Data

    Directory of Open Access Journals (Sweden)

    Jinhua Li

    2016-01-01

    Full Text Available Incomplete data with missing feature values are prevalent in clustering problems. Traditional clustering methods first estimate the missing values by imputation and then apply the classical clustering algorithms for complete data, such as K-median and K-means. However, in practice, it is often hard to obtain accurate estimation of the missing values, which deteriorates the performance of clustering. To enhance the robustness of clustering algorithms, this paper represents the missing values by interval data and introduces the concept of robust cluster objective function. A minimax robust optimization (RO formulation is presented to provide clustering results, which are insensitive to estimation errors. To solve the proposed RO problem, we propose robust K-median and K-means clustering algorithms with low time and space complexity. Comparisons and analysis of experimental results on both artificially generated and real-world incomplete data sets validate the robustness and effectiveness of the proposed algorithms.

  2. Optimal reactive power planning for distribution systems considering intermittent wind power using Markov model and genetic algorithm

    Science.gov (United States)

    Li, Cheng

    Wind farms, photovoltaic arrays, fuel cells, and micro-turbines are all considered to be Distributed Generation (DG). DG is defined as the generation of power which is dispersed throughout a utility's service territory and either connected to the utility's distribution system or isolated in a small grid. This thesis addresses modeling and economic issues pertaining to the optimal reactive power planning for distribution system with wind power generation (WPG) units. Wind farms are inclined to cause reverse power flows and voltage variations due to the random-like outputs of wind turbines. To deal with this kind of problem caused by wide spread usage of wind power generation, this thesis investigates voltage and reactive power controls in such a distribution system. Consequently static capacitors (SC) and transformer taps are introduced into the system and treated as controllers. For the purpose of getting optimum voltage and realizing reactive power control, the research proposes a proper coordination among the controllers like on-load tap changer (OLTC), feeder-switched capacitors. What's more, in order to simulate its uncertainty, the wind power generation is modeled by the Markov model. In that way, calculating the probabilities for all the scenarios is possible. Some outputs with consecutive and discrete values have been used for transition between successive time states and within state wind speeds. The thesis will describe the method to generate the wind speed time series from the transition probability matrix. After that, utilizing genetic algorithm, the optimal locations of SCs, the sizes of SCs and transformer taps are determined so as to minimize the cost or minimize the power loss, and more importantly improve voltage profiles. The applicability of the proposed method is verified through simulation on a 9-bus system and a 30-bus system respectively. At last, the simulation results indicate that as long as the available capacitors are able to sufficiently

  3. Higher-spin cluster algorithms: the Heisenberg spin and U(1) quantum link models

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, V

    2000-03-01

    I discuss here how the highly-efficient spin-1/2 cluster algorithm for the Heisenberg antiferromagnet may be extended to higher-dimensional representations; some numerical results are provided. The same extensions can be used for the U(1) flux cluster algorithm, but have not yielded signals of the desired Coulomb phase of the system.

  4. Higher-spin cluster algorithms: the Heisenberg spin and U(1) quantum link models

    International Nuclear Information System (INIS)

    Chudnovsky, V.

    2000-01-01

    I discuss here how the highly-efficient spin-1/2 cluster algorithm for the Heisenberg antiferromagnet may be extended to higher-dimensional representations; some numerical results are provided. The same extensions can be used for the U(1) flux cluster algorithm, but have not yielded signals of the desired Coulomb phase of the system

  5. Study of parameters of the nearest neighbour shared algorithm on clustering documents

    Science.gov (United States)

    Mustika Rukmi, Alvida; Budi Utomo, Daryono; Imro’atus Sholikhah, Neni

    2018-03-01

    Document clustering is one way of automatically managing documents, extracting of document topics and fastly filtering information. Preprocess of clustering documents processed by textmining consists of: keyword extraction using Rapid Automatic Keyphrase Extraction (RAKE) and making the document as concept vector using Latent Semantic Analysis (LSA). Furthermore, the clustering process is done so that the documents with the similarity of the topic are in the same cluster, based on the preprocesing by textmining performed. Shared Nearest Neighbour (SNN) algorithm is a clustering method based on the number of "nearest neighbors" shared. The parameters in the SNN Algorithm consist of: k nearest neighbor documents, ɛ shared nearest neighbor documents and MinT minimum number of similar documents, which can form a cluster. Characteristics The SNN algorithm is based on shared ‘neighbor’ properties. Each cluster is formed by keywords that are shared by the documents. SNN algorithm allows a cluster can be built more than one keyword, if the value of the frequency of appearing keywords in document is also high. Determination of parameter values on SNN algorithm affects document clustering results. The higher parameter value k, will increase the number of neighbor documents from each document, cause similarity of neighboring documents are lower. The accuracy of each cluster is also low. The higher parameter value ε, caused each document catch only neighbor documents that have a high similarity to build a cluster. It also causes more unclassified documents (noise). The higher the MinT parameter value cause the number of clusters will decrease, since the number of similar documents can not form clusters if less than MinT. Parameter in the SNN Algorithm determine performance of clustering result and the amount of noise (unclustered documents ). The Silhouette coeffisient shows almost the same result in many experiments, above 0.9, which means that SNN algorithm works well

  6. A heart disease recognition embedded system with fuzzy cluster algorithm.

    Science.gov (United States)

    de Carvalho, Helton Hugo; Moreno, Robson Luiz; Pimenta, Tales Cleber; Crepaldi, Paulo C; Cintra, Evaldo

    2013-06-01

    This article presents the viability analysis and the development of heart disease identification embedded system. It offers a time reduction on electrocardiogram - ECG signal processing by reducing the amount of data samples, without any significant loss. The goal of the developed system is the analysis of heart signals. The ECG signals are applied into the system that performs an initial filtering, and then uses a Gustafson-Kessel fuzzy clustering algorithm for the signal classification and correlation. The classification indicated common heart diseases such as angina, myocardial infarction and coronary artery diseases. The system uses the European electrocardiogram ST-T Database (EDB) as a reference for tests and evaluation. The results prove the system can perform the heart disease detection on a data set reduced from 213 to just 20 samples, thus providing a reduction to just 9.4% of the original set, while maintaining the same effectiveness. This system is validated in a Xilinx Spartan(®)-3A FPGA. The field programmable gate array (FPGA) implemented a Xilinx Microblaze(®) Soft-Core Processor running at a 50MHz clock rate. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Combinatorial Clustering Algorithm of Quantum-Behaved Particle Swarm Optimization and Cloud Model

    Directory of Open Access Journals (Sweden)

    Mi-Yuan Shan

    2013-01-01

    Full Text Available We propose a combinatorial clustering algorithm of cloud model and quantum-behaved particle swarm optimization (COCQPSO to solve the stochastic problem. The algorithm employs a novel probability model as well as a permutation-based local search method. We are setting the parameters of COCQPSO based on the design of experiment. In the comprehensive computational study, we scrutinize the performance of COCQPSO on a set of widely used benchmark instances. By benchmarking combinatorial clustering algorithm with state-of-the-art algorithms, we can show that its performance compares very favorably. The fuzzy combinatorial optimization algorithm of cloud model and quantum-behaved particle swarm optimization (FCOCQPSO in vague sets (IVSs is more expressive than the other fuzzy sets. Finally, numerical examples show the clustering effectiveness of COCQPSO and FCOCQPSO clustering algorithms which are extremely remarkable.

  8. A Self-Adaptive Fuzzy c-Means Algorithm for Determining the Optimal Number of Clusters

    Science.gov (United States)

    Wang, Zhihao; Yi, Jing

    2016-01-01

    For the shortcoming of fuzzy c-means algorithm (FCM) needing to know the number of clusters in advance, this paper proposed a new self-adaptive method to determine the optimal number of clusters. Firstly, a density-based algorithm was put forward. The algorithm, according to the characteristics of the dataset, automatically determined the possible maximum number of clusters instead of using the empirical rule n and obtained the optimal initial cluster centroids, improving the limitation of FCM that randomly selected cluster centroids lead the convergence result to the local minimum. Secondly, this paper, by introducing a penalty function, proposed a new fuzzy clustering validity index based on fuzzy compactness and separation, which ensured that when the number of clusters verged on that of objects in the dataset, the value of clustering validity index did not monotonically decrease and was close to zero, so that the optimal number of clusters lost robustness and decision function. Then, based on these studies, a self-adaptive FCM algorithm was put forward to estimate the optimal number of clusters by the iterative trial-and-error process. At last, experiments were done on the UCI, KDD Cup 1999, and synthetic datasets, which showed that the method not only effectively determined the optimal number of clusters, but also reduced the iteration of FCM with the stable clustering result. PMID:28042291

  9. The global kernel k-means algorithm for clustering in feature space.

    Science.gov (United States)

    Tzortzis, Grigorios F; Likas, Aristidis C

    2009-07-01

    Kernel k-means is an extension of the standard k -means clustering algorithm that identifies nonlinearly separable clusters. In order to overcome the cluster initialization problem associated with this method, we propose the global kernel k-means algorithm, a deterministic and incremental approach to kernel-based clustering. Our method adds one cluster at each stage, through a global search procedure consisting of several executions of kernel k-means from suitable initializations. This algorithm does not depend on cluster initialization, identifies nonlinearly separable clusters, and, due to its incremental nature and search procedure, locates near-optimal solutions avoiding poor local minima. Furthermore, two modifications are developed to reduce the computational cost that do not significantly affect the solution quality. The proposed methods are extended to handle weighted data points, which enables their application to graph partitioning. We experiment with several data sets and the proposed approach compares favorably to kernel k -means with random restarts.

  10. A fast readout algorithm for Cluster Counting/Timing drift chambers on a FPGA board

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, L. [Università di Cassino e del Lazio Meridionale (Italy); Creti, P.; Grancagnolo, F. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Pepino, A., E-mail: Aurora.Pepino@le.infn.it [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Tassielli, G. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Fermilab, Batavia, IL (United States); Università Marconi, Roma (Italy)

    2013-08-01

    A fast readout algorithm for Cluster Counting and Timing purposes has been implemented and tested on a Virtex 6 core FPGA board. The algorithm analyses and stores data coming from a Helium based drift tube instrumented by 1 GSPS fADC and represents the outcome of balancing between cluster identification efficiency and high speed performance. The algorithm can be implemented in electronics boards serving multiple fADC channels as an online preprocessing stage for drift chamber signals.

  11. Markov processes

    CERN Document Server

    Kirkwood, James R

    2015-01-01

    Review of ProbabilityShort HistoryReview of Basic Probability DefinitionsSome Common Probability DistributionsProperties of a Probability DistributionProperties of the Expected ValueExpected Value of a Random Variable with Common DistributionsGenerating FunctionsMoment Generating FunctionsExercisesDiscrete-Time, Finite-State Markov ChainsIntroductionNotationTransition MatricesDirected Graphs: Examples of Markov ChainsRandom Walk with Reflecting BoundariesGambler’s RuinEhrenfest ModelCentral Problem of Markov ChainsCondition to Ensure a Unique Equilibrium StateFinding the Equilibrium StateTransient and Recurrent StatesIndicator FunctionsPerron-Frobenius TheoremAbsorbing Markov ChainsMean First Passage TimeMean Recurrence Time and the Equilibrium StateFundamental Matrix for Regular Markov ChainsDividing a Markov Chain into Equivalence ClassesPeriodic Markov ChainsReducible Markov ChainsSummaryExercisesDiscrete-Time, Infinite-State Markov ChainsRenewal ProcessesDelayed Renewal ProcessesEquilibrium State f...

  12. Hybrid Tracking Algorithm Improvements and Cluster Analysis Methods.

    Science.gov (United States)

    1982-02-26

    UPGMA ), and Ward’s method. Ling’s papers describe a (k,r) clustering method. Each of these methods have individual characteristics which make them...Reference 7), UPGMA is probably the most frequently used clustering strategy. UPGMA tries to group new points into an existing cluster by using an

  13. Genetic algorithm based two-mode clustering of metabolomics data

    NARCIS (Netherlands)

    Hageman, J.A.; van den Berg, R.A.; Westerhuis, J.A.; van der Werf, M.J.; Smilde, A.K.

    2008-01-01

    Metabolomics and other omics tools are generally characterized by large data sets with many variables obtained under different environmental conditions. Clustering methods and more specifically two-mode clustering methods are excellent tools for analyzing this type of data. Two-mode clustering

  14. A Tabu Search Algorithm for application placement in computer clustering

    NARCIS (Netherlands)

    van der Gaast, Jelmer; Rietveld, Cornelieus A.; Gabor, Adriana; Zhang, Yingqian

    2014-01-01

    This paper presents and analyzes a model for the problem of placing applications on computer clusters (APP). In this problem, organizations requesting a set of software applications have to be assigned to computer clusters such that the costs of opening clusters and installing the necessary

  15. A Hybrid Fuzzy Multi-hop Unequal Clustering Algorithm for Dense Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shawkat K. Guirguis

    2017-01-01

    Full Text Available Clustering is carried out to explore and solve power dissipation problem in wireless sensor network (WSN. Hierarchical network architecture, based on clustering, can reduce energy consumption, balance traffic load, improve scalability, and prolong network lifetime. However, clustering faces two main challenges: hotspot problem and searching for effective techniques to perform clustering. This paper introduces a fuzzy unequal clustering technique for heterogeneous dense WSNs to determine both final cluster heads and their radii. Proposed fuzzy system blends three effective parameters together which are: the distance to the base station, the density of the cluster, and the deviation of the noders residual energy from the average network energy. Our objectives are achieving gain for network lifetime, energy distribution, and energy consumption. To evaluate the proposed algorithm, WSN clustering based routing algorithms are analyzed, simulated, and compared with obtained results. These protocols are LEACH, SEP, HEED, EEUC, and MOFCA.

  16. Markov Chains and Markov Processes

    OpenAIRE

    Ogunbayo, Segun

    2016-01-01

    Markov chain, which was named after Andrew Markov is a mathematical system that transfers a state to another state. Many real world systems contain uncertainty. This study helps us to understand the basic idea of a Markov chain and how is been useful in our daily lives. For some times there had been suspense on distinct predictions and future existences. Also in different games there had been different expectations or results involved. That is the reason why we need Markov chains to predict o...

  17. Clustering performance comparison using K-means and expectation maximization algorithms.

    Science.gov (United States)

    Jung, Yong Gyu; Kang, Min Soo; Heo, Jun

    2014-11-14

    Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K -means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K -means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results.

  18. A Trajectory Regression Clustering Technique Combining a Novel Fuzzy C-Means Clustering Algorithm with the Least Squares Method

    Directory of Open Access Journals (Sweden)

    Xiangbing Zhou

    2018-04-01

    Full Text Available Rapidly growing GPS (Global Positioning System trajectories hide much valuable information, such as city road planning, urban travel demand, and population migration. In order to mine the hidden information and to capture better clustering results, a trajectory regression clustering method (an unsupervised trajectory clustering method is proposed to reduce local information loss of the trajectory and to avoid getting stuck in the local optimum. Using this method, we first define our new concept of trajectory clustering and construct a novel partitioning (angle-based partitioning method of line segments; second, the Lagrange-based method and Hausdorff-based K-means++ are integrated in fuzzy C-means (FCM clustering, which are used to maintain the stability and the robustness of the clustering process; finally, least squares regression model is employed to achieve regression clustering of the trajectory. In our experiment, the performance and effectiveness of our method is validated against real-world taxi GPS data. When comparing our clustering algorithm with the partition-based clustering algorithms (K-means, K-median, and FCM, our experimental results demonstrate that the presented method is more effective and generates a more reasonable trajectory.

  19. A novel artificial immune algorithm for spatial clustering with obstacle constraint and its applications.

    Science.gov (United States)

    Sun, Liping; Luo, Yonglong; Ding, Xintao; Zhang, Ji

    2014-01-01

    An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune clustering with obstacle entity (AICOE) algorithm for clustering spatial point data in the presence of obstacles and facilitators. Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clustering model based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies, the AICOE algorithm is able to achieve the global optimum and better clustering effect.

  20. A Novel Artificial Immune Algorithm for Spatial Clustering with Obstacle Constraint and Its Applications

    Directory of Open Access Journals (Sweden)

    Liping Sun

    2014-01-01

    Full Text Available An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune clustering with obstacle entity (AICOE algorithm for clustering spatial point data in the presence of obstacles and facilitators. Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clustering model based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies, the AICOE algorithm is able to achieve the global optimum and better clustering effect.

  1. A Scheduling Algorithm for Minimizing the Packet Error Probability in Clusterized TDMA Networks

    Directory of Open Access Journals (Sweden)

    Arash T. Toyserkani

    2009-01-01

    Full Text Available We consider clustered wireless networks, where transceivers in a cluster use a time-slotted mechanism (TDMA to access a wireless channel that is shared among several clusters. An approximate expression for the packet-loss probability is derived for networks with one or more mutually interfering clusters in Rayleigh fading environments, and the approximation is shown to be good for relevant scenarios. We then present a scheduling algorithm, based on Lagrangian duality, that exploits the derived packet-loss model in an attempt to minimize the average packet-loss probability in the network. Computer simulations of the proposed scheduling algorithm show that a significant increase in network throughput can be achieved compared to uncoordinated scheduling. Empirical trials also indicate that the proposed optimization algorithm almost always converges to an optimal schedule with a reasonable number of iterations. Thus, the proposed algorithm can also be used for bench-marking suboptimal scheduling algorithms.

  2. An improved initialization center k-means clustering algorithm based on distance and density

    Science.gov (United States)

    Duan, Yanling; Liu, Qun; Xia, Shuyin

    2018-04-01

    Aiming at the problem of the random initial clustering center of k means algorithm that the clustering results are influenced by outlier data sample and are unstable in multiple clustering, a method of central point initialization method based on larger distance and higher density is proposed. The reciprocal of the weighted average of distance is used to represent the sample density, and the data sample with the larger distance and the higher density are selected as the initial clustering centers to optimize the clustering results. Then, a clustering evaluation method based on distance and density is designed to verify the feasibility of the algorithm and the practicality, the experimental results on UCI data sets show that the algorithm has a certain stability and practicality.

  3. A highly efficient multi-core algorithm for clustering extremely large datasets

    Directory of Open Access Journals (Sweden)

    Kraus Johann M

    2010-04-01

    Full Text Available Abstract Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer.

  4. An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data.

    Science.gov (United States)

    Nidheesh, N; Abdul Nazeer, K A; Ameer, P M

    2017-12-01

    Clustering algorithms with steps involving randomness usually give different results on different executions for the same dataset. This non-deterministic nature of algorithms such as the K-Means clustering algorithm limits their applicability in areas such as cancer subtype prediction using gene expression data. It is hard to sensibly compare the results of such algorithms with those of other algorithms. The non-deterministic nature of K-Means is due to its random selection of data points as initial centroids. We propose an improved, density based version of K-Means, which involves a novel and systematic method for selecting initial centroids. The key idea of the algorithm is to select data points which belong to dense regions and which are adequately separated in feature space as the initial centroids. We compared the proposed algorithm to a set of eleven widely used single clustering algorithms and a prominent ensemble clustering algorithm which is being used for cancer data classification, based on the performances on a set of datasets comprising ten cancer gene expression datasets. The proposed algorithm has shown better overall performance than the others. There is a pressing need in the Biomedical domain for simple, easy-to-use and more accurate Machine Learning tools for cancer subtype prediction. The proposed algorithm is simple, easy-to-use and gives stable results. Moreover, it provides comparatively better predictions of cancer subtypes from gene expression data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Towards Enhancement of Performance of K-Means Clustering Using Nature-Inspired Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Simon Fong

    2014-01-01

    Full Text Available Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.

  6. Towards enhancement of performance of K-means clustering using nature-inspired optimization algorithms.

    Science.gov (United States)

    Fong, Simon; Deb, Suash; Yang, Xin-She; Zhuang, Yan

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.

  7. Towards Enhancement of Performance of K-Means Clustering Using Nature-Inspired Optimization Algorithms

    Science.gov (United States)

    Deb, Suash; Yang, Xin-She

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730

  8. K-Nearest Neighbor Intervals Based AP Clustering Algorithm for Large Incomplete Data

    Directory of Open Access Journals (Sweden)

    Cheng Lu

    2015-01-01

    Full Text Available The Affinity Propagation (AP algorithm is an effective algorithm for clustering analysis, but it can not be directly applicable to the case of incomplete data. In view of the prevalence of missing data and the uncertainty of missing attributes, we put forward a modified AP clustering algorithm based on K-nearest neighbor intervals (KNNI for incomplete data. Based on an Improved Partial Data Strategy, the proposed algorithm estimates the KNNI representation of missing attributes by using the attribute distribution information of the available data. The similarity function can be changed by dealing with the interval data. Then the improved AP algorithm can be applicable to the case of incomplete data. Experiments on several UCI datasets show that the proposed algorithm achieves impressive clustering results.

  9. A new clustering algorithm for scanning electron microscope images

    Science.gov (United States)

    Yousef, Amr; Duraisamy, Prakash; Karim, Mohammad

    2016-04-01

    A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning it with a focused beam of electrons. The electrons interact with the sample atoms, producing various signals that are collected by detectors. The gathered signals contain information about the sample's surface topography and composition. The electron beam is generally scanned in a raster scan pattern, and the beam's position is combined with the detected signal to produce an image. The most common configuration for an SEM produces a single value per pixel, with the results usually rendered as grayscale images. The captured images may be produced with insufficient brightness, anomalous contrast, jagged edges, and poor quality due to low signal-to-noise ratio, grained topography and poor surface details. The segmentation of the SEM images is a tackling problems in the presence of the previously mentioned distortions. In this paper, we are stressing on the clustering of these type of images. In that sense, we evaluate the performance of the well-known unsupervised clustering and classification techniques such as connectivity based clustering (hierarchical clustering), centroid-based clustering, distribution-based clustering and density-based clustering. Furthermore, we propose a new spatial fuzzy clustering technique that works efficiently on this type of images and compare its results against these regular techniques in terms of clustering validation metrics.

  10. Novel density-based and hierarchical density-based clustering algorithms for uncertain data.

    Science.gov (United States)

    Zhang, Xianchao; Liu, Han; Zhang, Xiaotong

    2017-09-01

    Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing

  11. A scalable and practical one-pass clustering algorithm for recommender system

    Science.gov (United States)

    Khalid, Asra; Ghazanfar, Mustansar Ali; Azam, Awais; Alahmari, Saad Ali

    2015-12-01

    KMeans clustering-based recommendation algorithms have been proposed claiming to increase the scalability of recommender systems. One potential drawback of these algorithms is that they perform training offline and hence cannot accommodate the incremental updates with the arrival of new data, making them unsuitable for the dynamic environments. From this line of research, a new clustering algorithm called One-Pass is proposed, which is a simple, fast, and accurate. We show empirically that the proposed algorithm outperforms K-Means in terms of recommendation and training time while maintaining a good level of accuracy.

  12. Constructing a graph of connections in clustering algorithm of complex objects

    Directory of Open Access Journals (Sweden)

    Татьяна Шатовская

    2015-05-01

    Full Text Available The article describes the results of modifying the algorithm Chameleon. Hierarchical multi-level algorithm consists of several phases: the construction of the count, coarsening, the separation and recovery. Each phase can be used various approaches and algorithms. The main aim of the work is to study the quality of the clustering of different sets of data using a set of algorithms combinations at different stages of the algorithm and improve the stage of construction by the optimization algorithm of k choice in the graph construction of k of nearest neighbors

  13. Medical Image Retrieval Based On the Parallelization of the Cluster Sampling Algorithm

    OpenAIRE

    Ali, Hesham Arafat; Attiya, Salah; El-henawy, Ibrahim

    2017-01-01

    In this paper we develop parallel cluster sampling algorithms and show that a multi-chain version is embarrassingly parallel and can be used efficiently for medical image retrieval among other applications.

  14. A novel artificial bee colony based clustering algorithm for categorical data.

    Science.gov (United States)

    Ji, Jinchao; Pang, Wei; Zheng, Yanlin; Wang, Zhe; Ma, Zhiqiang

    2015-01-01

    Data with categorical attributes are ubiquitous in the real world. However, existing partitional clustering algorithms for categorical data are prone to fall into local optima. To address this issue, in this paper we propose a novel clustering algorithm, ABC-K-Modes (Artificial Bee Colony clustering based on K-Modes), based on the traditional k-modes clustering algorithm and the artificial bee colony approach. In our approach, we first introduce a one-step k-modes procedure, and then integrate this procedure with the artificial bee colony approach to deal with categorical data. In the search process performed by scout bees, we adopt the multi-source search inspired by the idea of batch processing to accelerate the convergence of ABC-K-Modes. The performance of ABC-K-Modes is evaluated by a series of experiments in comparison with that of the other popular algorithms for categorical data.

  15. A Novel Automatic Detection System for ECG Arrhythmias Using Maximum Margin Clustering with Immune Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Bohui Zhu

    2013-01-01

    Full Text Available This paper presents a novel maximum margin clustering method with immune evolution (IEMMC for automatic diagnosis of electrocardiogram (ECG arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of arrhythmias by the IEMMC algorithm. Three types of performance evaluation indicators are used to assess the effect of the IEMMC method for ECG arrhythmias, such as sensitivity, specificity, and accuracy. Compared with K-means and iterSVR algorithms, the IEMMC algorithm reflects better performance not only in clustering result but also in terms of global search ability and convergence ability, which proves its effectiveness for the detection of ECG arrhythmias.

  16. Kernel Clustering with a Differential Harmony Search Algorithm for Scheme Classification

    Directory of Open Access Journals (Sweden)

    Yu Feng

    2017-01-01

    Full Text Available This paper presents a kernel fuzzy clustering with a novel differential harmony search algorithm to coordinate with the diversion scheduling scheme classification. First, we employed a self-adaptive solution generation strategy and differential evolution-based population update strategy to improve the classical harmony search. Second, we applied the differential harmony search algorithm to the kernel fuzzy clustering to help the clustering method obtain better solutions. Finally, the combination of the kernel fuzzy clustering and the differential harmony search is applied for water diversion scheduling in East Lake. A comparison of the proposed method with other methods has been carried out. The results show that the kernel clustering with the differential harmony search algorithm has good performance to cooperate with the water diversion scheduling problems.

  17. An Adaptive Sweep-Circle Spatial Clustering Algorithm Based on Gestalt

    Directory of Open Access Journals (Sweden)

    Qingming Zhan

    2017-08-01

    Full Text Available An adaptive spatial clustering (ASC algorithm is proposed in this present study, which employs sweep-circle techniques and a dynamic threshold setting based on the Gestalt theory to detect spatial clusters. The proposed algorithm can automatically discover clusters in one pass, rather than through the modification of the initial model (for example, a minimal spanning tree, Delaunay triangulation, or Voronoi diagram. It can quickly identify arbitrarily-shaped clusters while adapting efficiently to non-homogeneous density characteristics of spatial data, without the need for prior knowledge or parameters. The proposed algorithm is also ideal for use in data streaming technology with dynamic characteristics flowing in the form of spatial clustering in large data sets.

  18. PARTIAL TRAINING METHOD FOR HEURISTIC ALGORITHM OF POSSIBLE CLUSTERIZATION UNDER UNKNOWN NUMBER OF CLASSES

    Directory of Open Access Journals (Sweden)

    D. A. Viattchenin

    2009-01-01

    Full Text Available A method for constructing a subset of labeled objects which is used in a heuristic algorithm of possible  clusterization with partial  training is proposed in the  paper.  The  method  is  based  on  data preprocessing by the heuristic algorithm of possible clusterization using a transitive closure of a fuzzy tolerance. Method efficiency is demonstrated by way of an illustrative example.

  19. Efficient algorithms for accurate hierarchical clustering of huge datasets: tackling the entire protein space

    OpenAIRE

    Loewenstein, Yaniv; Portugaly, Elon; Fromer, Menachem; Linial, Michal

    2008-01-01

    Motivation: UPGMA (average linking) is probably the most popular algorithm for hierarchical data clustering, especially in computational biology. However, UPGMA requires the entire dissimilarity matrix in memory. Due to this prohibitive requirement, UPGMA is not scalable to very large datasets. Application: We present a novel class of memory-constrained UPGMA (MC-UPGMA) algorithms. Given any practical memory size constraint, this framework guarantees the correct clustering solution without ex...

  20. Ant colony algorithm for clustering in portfolio optimization

    Science.gov (United States)

    Subekti, R.; Sari, E. R.; Kusumawati, R.

    2018-03-01

    This research aims to describe portfolio optimization using clustering methods with ant colony approach. Two stock portfolios of LQ45 Indonesia is proposed based on the cluster results obtained from ant colony optimization (ACO). The first portfolio consists of assets with ant colony displacement opportunities beyond the defined probability limits of the researcher, where the weight of each asset is determined by mean-variance method. The second portfolio consists of two assets with the assumption that each asset is a cluster formed from ACO. The first portfolio has a better performance compared to the second portfolio seen from the Sharpe index.

  1. Clustered K nearest neighbor algorithm for daily inflow forecasting

    NARCIS (Netherlands)

    Akbari, M.; Van Overloop, P.J.A.T.M.; Afshar, A.

    2010-01-01

    Instance based learning (IBL) algorithms are a common choice among data driven algorithms for inflow forecasting. They are based on the similarity principle and prediction is made by the finite number of similar neighbors. In this sense, the similarity of a query instance is estimated according to

  2. A Coupled User Clustering Algorithm Based on Mixed Data for Web-Based Learning Systems

    Directory of Open Access Journals (Sweden)

    Ke Niu

    2015-01-01

    Full Text Available In traditional Web-based learning systems, due to insufficient learning behaviors analysis and personalized study guides, a few user clustering algorithms are introduced. While analyzing the behaviors with these algorithms, researchers generally focus on continuous data but easily neglect discrete data, each of which is generated from online learning actions. Moreover, there are implicit coupled interactions among the data but are frequently ignored in the introduced algorithms. Therefore, a mass of significant information which can positively affect clustering accuracy is neglected. To solve the above issues, we proposed a coupled user clustering algorithm for Wed-based learning systems by taking into account both discrete and continuous data, as well as intracoupled and intercoupled interactions of the data. The experiment result in this paper demonstrates the outperformance of the proposed algorithm.

  3. Clustering Algorithm As A Planning Support Tool For Rural Electrification Optimization

    Directory of Open Access Journals (Sweden)

    Ronaldo Pornillosa Parreno Jr

    2015-08-01

    Full Text Available Abstract In this study clustering algorithm was developed to optimize electrification plans by screening and grouping potential customers to be supplied with electricity. The algorithm provided adifferent approach in clustering problem which combines conceptual and distance-based clustering algorithmsto analyze potential clusters using spanning tree with the shortest possible edge weight and creating final cluster trees based on the test of inconsistency for the edges. The clustering criteria consists of commonly used distance measure with the addition of household information as basis for the ability to pay ATP value. The combination of these two parameters resulted to a more significant and realistic clusters since distance measure alone could not take the effect of the household characteristics in screening the most sensible groupings of households. In addition the implications of varying geographical features were incorporated in the algorithm by using routing index across the locations of the households. This new approach of connecting the households in an area was applied in an actual case study of one village or barangay that was not yet energized. The results of clustering algorithm generated cluster trees which could becomethetheoretical basis for power utilities to plan the initial network arrangement of electrification. Scenario analysis conducted on the two strategies of clustering the households provideddifferent alternatives for the optimization of the cost of electrification. Futhermorethe benefits associated with the two strategies formulated from the two scenarios was evaluated using benefit cost ratio BC to determine which is more economically advantageous. The results of the study showed that clustering algorithm proved to be effective in solving electrification optimization problem and serves its purpose as a planning support tool which can facilitate electrification in rural areas and achieve cost-effectiveness.

  4. Study on text mining algorithm for ultrasound examination of chronic liver diseases based on spectral clustering

    Science.gov (United States)

    Chang, Bingguo; Chen, Xiaofei

    2018-05-01

    Ultrasonography is an important examination for the diagnosis of chronic liver disease. The doctor gives the liver indicators and suggests the patient's condition according to the description of ultrasound report. With the rapid increase in the amount of data of ultrasound report, the workload of professional physician to manually distinguish ultrasound results significantly increases. In this paper, we use the spectral clustering method to cluster analysis of the description of the ultrasound report, and automatically generate the ultrasonic diagnostic diagnosis by machine learning. 110 groups ultrasound examination report of chronic liver disease were selected as test samples in this experiment, and the results were validated by spectral clustering and compared with k-means clustering algorithm. The results show that the accuracy of spectral clustering is 92.73%, which is higher than that of k-means clustering algorithm, which provides a powerful ultrasound-assisted diagnosis for patients with chronic liver disease.

  5. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm.

    Science.gov (United States)

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis.

  6. A scaling analysis of a cat and mouse Markov chain

    NARCIS (Netherlands)

    Litvak, Nelli; Robert, Philippe

    Motivated by an original on-line page-ranking algorithm, starting from an arbitrary Markov chain $(C_n)$ on a discrete state space ${\\cal S}$, a Markov chain $(C_n,M_n)$ on the product space ${\\cal S}^2$, the cat and mouse Markov chain, is constructed. The first coordinate of this Markov chain

  7. An adaptive immune optimization algorithm with dynamic lattice searching operation for fast optimization of atomic clusters

    International Nuclear Information System (INIS)

    Wu, Xia; Wu, Genhua

    2014-01-01

    Highlights: • A high efficient method for optimization of atomic clusters is developed. • Its performance is studied by optimizing Lennard-Jones clusters and Ag clusters. • The method is proved to be quite efficient. • A new Ag 61 cluster with stacking-fault face-centered cubic motif is found. - Abstract: Geometrical optimization of atomic clusters is performed by a development of adaptive immune optimization algorithm (AIOA) with dynamic lattice searching (DLS) operation (AIOA-DLS method). By a cycle of construction and searching of the dynamic lattice (DL), DLS algorithm rapidly makes the clusters more regular and greatly reduces the potential energy. DLS can thus be used as an operation acting on the new individuals after mutation operation in AIOA to improve the performance of the AIOA. The AIOA-DLS method combines the merit of evolutionary algorithm and idea of dynamic lattice. The performance of the proposed method is investigated in the optimization of Lennard-Jones clusters within 250 atoms and silver clusters described by many-body Gupta potential within 150 atoms. Results reported in the literature are reproduced, and the motif of Ag 61 cluster is found to be stacking-fault face-centered cubic, whose energy is lower than that of previously obtained icosahedron

  8. Clinical assessment using an algorithm based on clustering Fuzzy c-means

    NARCIS (Netherlands)

    Guijarro-Rodriguez, A.; Cevallos-Torres, L.; Yepez-Holguin, J.; Botto-Tobar, M.; Valencia-García, R.; Lagos-Ortiz, K.; Alcaraz-Mármol, G.; Del Cioppo, J.; Vera-Lucio, N.; Bucaram-Leverone, M.

    2017-01-01

    The Fuzzy c-means (FCM) algorithms dene a grouping criterion from a function, which seeks to minimize iteratively the function up to an optimal fuzzy partition is obtained. In the execution of this algorithm relates each element to the clusters that were determined in the same n-dimensional space,

  9. A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2011-01-01

    comparative studies on the advantages and disadvantages of the different algorithms exist. Part of the underlying problem is the lack of available open source implementations that could be used by researchers to understand, compare, and extend subspace and projected clustering algorithms. In this work, we...

  10. Optimization Route of Food Logistics Distribution Based on Genetic and Graph Cluster Scheme Algorithm

    OpenAIRE

    Jing Chen

    2015-01-01

    This study takes the concept of food logistics distribution as the breakthrough point, by means of the aim of optimization of food logistics distribution routes and analysis of the optimization model of food logistics route, as well as the interpretation of the genetic algorithm, it discusses the optimization of food logistics distribution route based on genetic and cluster scheme algorithm.

  11. GenClust: A genetic algorithm for clustering gene expression data

    Directory of Open Access Journals (Sweden)

    Raimondi Alessandra

    2005-12-01

    Full Text Available Abstract Background Clustering is a key step in the analysis of gene expression data, and in fact, many classical clustering algorithms are used, or more innovative ones have been designed and validated for the task. Despite the widespread use of artificial intelligence techniques in bioinformatics and, more generally, data analysis, there are very few clustering algorithms based on the genetic paradigm, yet that paradigm has great potential in finding good heuristic solutions to a difficult optimization problem such as clustering. Results GenClust is a new genetic algorithm for clustering gene expression data. It has two key features: (a a novel coding of the search space that is simple, compact and easy to update; (b it can be used naturally in conjunction with data driven internal validation methods. We have experimented with the FOM methodology, specifically conceived for validating clusters of gene expression data. The validity of GenClust has been assessed experimentally on real data sets, both with the use of validation measures and in comparison with other algorithms, i.e., Average Link, Cast, Click and K-means. Conclusion Experiments show that none of the algorithms we have used is markedly superior to the others across data sets and validation measures; i.e., in many cases the observed differences between the worst and best performing algorithm may be statistically insignificant and they could be considered equivalent. However, there are cases in which an algorithm may be better than others and therefore worthwhile. In particular, experiments for GenClust show that, although simple in its data representation, it converges very rapidly to a local optimum and that its ability to identify meaningful clusters is comparable, and sometimes superior, to that of more sophisticated algorithms. In addition, it is well suited for use in conjunction with data driven internal validation measures and, in particular, the FOM methodology.

  12. Soil data clustering by using K-means and fuzzy K-means algorithm

    Directory of Open Access Journals (Sweden)

    E. Hot

    2016-06-01

    Full Text Available A problem of soil clustering based on the chemical characteristics of soil, and proper visual representation of the obtained results, is analysed in the paper. To that aim, K-means and fuzzy K-means algorithms are adapted for soil data clustering. A database of soil characteristics sampled in Montenegro is used for a comparative analysis of implemented algorithms. The procedure of setting proper values for control parameters of fuzzy K-means is illustrated on the used database. In addition, validation of clustering is made through visualisation. Classified soil data are presented on the static Google map and dynamic Open Street Map.

  13. Improved Density Based Spatial Clustering of Applications of Noise Clustering Algorithm for Knowledge Discovery in Spatial Data

    Directory of Open Access Journals (Sweden)

    Arvind Sharma

    2016-01-01

    Full Text Available There are many techniques available in the field of data mining and its subfield spatial data mining is to understand relationships between data objects. Data objects related with spatial features are called spatial databases. These relationships can be used for prediction and trend detection between spatial and nonspatial objects for social and scientific reasons. A huge data set may be collected from different sources as satellite images, X-rays, medical images, traffic cameras, and GIS system. To handle this large amount of data and set relationship between them in a certain manner with certain results is our primary purpose of this paper. This paper gives a complete process to understand how spatial data is different from other kinds of data sets and how it is refined to apply to get useful results and set trends to predict geographic information system and spatial data mining process. In this paper a new improved algorithm for clustering is designed because role of clustering is very indispensable in spatial data mining process. Clustering methods are useful in various fields of human life such as GIS (Geographic Information System, GPS (Global Positioning System, weather forecasting, air traffic controller, water treatment, area selection, cost estimation, planning of rural and urban areas, remote sensing, and VLSI designing. This paper presents study of various clustering methods and algorithms and an improved algorithm of DBSCAN as IDBSCAN (Improved Density Based Spatial Clustering of Application of Noise. The algorithm is designed by addition of some important attributes which are responsible for generation of better clusters from existing data sets in comparison of other methods.

  14. Reconstruction of a digital core containing clay minerals based on a clustering algorithm

    Science.gov (United States)

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K -means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  15. Reconstruction of a digital core containing clay minerals based on a clustering algorithm.

    Science.gov (United States)

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  16. Graph-based clustering and data visualization algorithms

    CERN Document Server

    Vathy-Fogarassy, Ágnes

    2013-01-01

    This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on

  17. An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.

    Science.gov (United States)

    Vimalarani, C; Subramanian, R; Sivanandam, S N

    2016-01-01

    Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.

  18. An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    C. Vimalarani

    2016-01-01

    Full Text Available Wireless Sensor Network (WSN is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.

  19. A new collaborative recommendation approach based on users clustering using artificial bee colony algorithm.

    Science.gov (United States)

    Ju, Chunhua; Xu, Chonghuan

    2013-01-01

    Although there are many good collaborative recommendation methods, it is still a challenge to increase the accuracy and diversity of these methods to fulfill users' preferences. In this paper, we propose a novel collaborative filtering recommendation approach based on K-means clustering algorithm. In the process of clustering, we use artificial bee colony (ABC) algorithm to overcome the local optimal problem caused by K-means. After that we adopt the modified cosine similarity to compute the similarity between users in the same clusters. Finally, we generate recommendation results for the corresponding target users. Detailed numerical analysis on a benchmark dataset MovieLens and a real-world dataset indicates that our new collaborative filtering approach based on users clustering algorithm outperforms many other recommendation methods.

  20. A New Collaborative Recommendation Approach Based on Users Clustering Using Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Chunhua Ju

    2013-01-01

    Full Text Available Although there are many good collaborative recommendation methods, it is still a challenge to increase the accuracy and diversity of these methods to fulfill users’ preferences. In this paper, we propose a novel collaborative filtering recommendation approach based on K-means clustering algorithm. In the process of clustering, we use artificial bee colony (ABC algorithm to overcome the local optimal problem caused by K-means. After that we adopt the modified cosine similarity to compute the similarity between users in the same clusters. Finally, we generate recommendation results for the corresponding target users. Detailed numerical analysis on a benchmark dataset MovieLens and a real-world dataset indicates that our new collaborative filtering approach based on users clustering algorithm outperforms many other recommendation methods.

  1. Data Clustering on Breast Cancer Data Using Firefly Algorithm with Golden Ratio Method

    Directory of Open Access Journals (Sweden)

    DEMIR, M.

    2015-05-01

    Full Text Available Heuristic methods are problem solving methods. In general, they obtain near-optimal solutions, and they do not take the care of provability of this case. The heuristic methods do not guarantee to obtain the optimal results; however, they guarantee to obtain near-optimal solutions in considerable time. In this paper, an application was performed by using firefly algorithm - one of the heuristic methods. The golden ratio was applied to different steps of firefly algorithm and different parameters of firefly algorithm to develop a new algorithm - called Firefly Algorithm with Golden Ratio (FAGR. It was shown that the golden ratio made firefly algorithm be superior to the firefly algorithm without golden ratio. At this aim, the developed algorithm was applied to WBCD database (breast cancer database to cluster data obtained from breast cancer patients. The highest obtained success rate among all executions is 96% and the highest obtained average success rate in all executions is 94.5%.

  2. Fuzzy Weight Cluster-Based Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Teng Gao

    2015-01-01

    Full Text Available Cluster-based protocol is a kind of important routing in wireless sensor networks. However, due to the uneven distribution of cluster heads in classical clustering algorithm, some nodes may run out of energy too early, which is not suitable for large-scale wireless sensor networks. In this paper, a distributed clustering algorithm based on fuzzy weighted attributes is put forward to ensure both energy efficiency and extensibility. On the premise of a comprehensive consideration of all attributes, the corresponding weight of each parameter is assigned by using the direct method of fuzzy engineering theory. Then, each node works out property value. These property values will be mapped to the time axis and be triggered by a timer to broadcast cluster headers. At the same time, the radio coverage method is adopted, in order to avoid collisions and to ensure the symmetrical distribution of cluster heads. The aggregated data are forwarded to the sink node in the form of multihop. The simulation results demonstrate that clustering algorithm based on fuzzy weighted attributes has a longer life expectancy and better extensibility than LEACH-like algorithms.

  3. Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis

    Science.gov (United States)

    Lin, Nan; Jiang, Junhai; Guo, Shicheng; Xiong, Momiao

    2015-01-01

    Due to the advancement in sensor technology, the growing large medical image data have the ability to visualize the anatomical changes in biological tissues. As a consequence, the medical images have the potential to enhance the diagnosis of disease, the prediction of clinical outcomes and the characterization of disease progression. But in the meantime, the growing data dimensions pose great methodological and computational challenges for the representation and selection of features in image cluster analysis. To address these challenges, we first extend the functional principal component analysis (FPCA) from one dimension to two dimensions to fully capture the space variation of image the signals. The image signals contain a large number of redundant features which provide no additional information for clustering analysis. The widely used methods for removing the irrelevant features are sparse clustering algorithms using a lasso-type penalty to select the features. However, the accuracy of clustering using a lasso-type penalty depends on the selection of the penalty parameters and the threshold value. In practice, they are difficult to determine. Recently, randomized algorithms have received a great deal of attentions in big data analysis. This paper presents a randomized algorithm for accurate feature selection in image clustering analysis. The proposed method is applied to both the liver and kidney cancer histology image data from the TCGA database. The results demonstrate that the randomized feature selection method coupled with functional principal component analysis substantially outperforms the current sparse clustering algorithms in image cluster analysis. PMID:26196383

  4. A Fast General-Purpose Clustering Algorithm Based on FPGAs for High-Throughput Data Processing

    CERN Document Server

    Annovi, A; The ATLAS collaboration; Castegnaro, A; Gatta, M

    2012-01-01

    We present a fast general-purpose algorithm for high-throughput clustering of data ”with a two dimensional organization”. The algorithm is designed to be implemented with FPGAs or custom electronics. The key feature is a processing time that scales linearly with the amount of data to be processed. This means that clustering can be performed in pipeline with the readout, without suffering from combinatorial delays due to looping multiple times through all the data. This feature makes this algorithm especially well suited for problems where the data has high density, e.g. in the case of tracking devices working under high-luminosity condition such as those of LHC or Super-LHC. The algorithm is organized in two steps: the first step (core) clusters the data; the second step analyzes each cluster of data to extract the desired information. The current algorithm is developed as a clustering device for modern high-energy physics pixel detectors. However, the algorithm has much broader field of applications. In ...

  5. Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves

    Directory of Open Access Journals (Sweden)

    André Salles Cunha Peres

    Full Text Available Abstract Introduction Functional magnetic resonance imaging (fMRI is a non-invasive technique that allows the detection of specific cerebral functions in humans based on hemodynamic changes. The contrast changes are about 5%, making visual inspection impossible. Thus, statistic strategies are applied to infer which brain region is engaged in a task. However, the traditional methods like general linear model and cross-correlation utilize voxel-wise calculation, introducing a lot of false-positive data. So, in this work we tested post-processing cluster algorithms to diminish the false-positives. Methods In this study, three clustering algorithms (the hierarchical cluster, k-means and self-organizing maps were tested and compared for false-positive removal in the post-processing of cross-correlation analyses. Results Our results showed that the hierarchical cluster presented the best performance to remove the false positives in fMRI, being 2.3 times more accurate than k-means, and 1.9 times more accurate than self-organizing maps. Conclusion The hierarchical cluster presented the best performance in false-positive removal because it uses the inconsistency coefficient threshold, while k-means and self-organizing maps utilize a priori cluster number (centroids and neurons number; thus, the hierarchical cluster avoids clustering scattered voxels, as the inconsistency coefficient threshold allows only the voxels to be clustered that are at a minimum distance to some cluster.

  6. Comparison of Clustering Algorithms for the Identification of Topics on Twitter

    Directory of Open Access Journals (Sweden)

    Marjori N. M. Klinczak

    2016-05-01

    Full Text Available Topic Identification in Social Networks has become an important task when dealing with event detection, particularly when global communities are affected. In order to attack this problem, text processing techniques and machine learning algorithms have been extensively used. In this paper we compare four clustering algorithms – k-means, k-medoids, DBSCAN and NMF (Non-negative Matrix Factorization – in order to detect topics related to textual messages obtained from Twitter. The algorithms were applied to a database initially composed by tweets having hashtags related to the recent Nepal earthquake as initial context. Obtained results suggest that the NMF clustering algorithm presents superior results, providing simpler clusters that are also easier to interpret.

  7. Online cluster-finding algorithms for the PANDA electromagnetic calorimeter

    NARCIS (Netherlands)

    Tiemens, Marcel

    2017-01-01

    Om zeldzame processen zoals de vorming van exotische deeltjes te kunnen bestuderen, is het PANDA experiment opgezet. Om de grote hoeveelheden data te kunnen verwerken, verwerken de subsystemen de data voor. Een voorbeeld is het algoritme om online naar clusters te zoeken in de data van de

  8. A Class of Manifold Regularized Multiplicative Update Algorithms for Image Clustering.

    Science.gov (United States)

    Yang, Shangming; Yi, Zhang; He, Xiaofei; Li, Xuelong

    2015-12-01

    Multiplicative update algorithms are important tools for information retrieval, image processing, and pattern recognition. However, when the graph regularization is added to the cost function, different classes of sample data may be mapped to the same subspace, which leads to the increase of data clustering error rate. In this paper, an improved nonnegative matrix factorization (NMF) cost function is introduced. Based on the cost function, a class of novel graph regularized NMF algorithms is developed, which results in a class of extended multiplicative update algorithms with manifold structure regularization. Analysis shows that in the learning, the proposed algorithms can efficiently minimize the rank of the data representation matrix. Theoretical results presented in this paper are confirmed by simulations. For different initializations and data sets, variation curves of cost functions and decomposition data are presented to show the convergence features of the proposed update rules. Basis images, reconstructed images, and clustering results are utilized to present the efficiency of the new algorithms. Last, the clustering accuracies of different algorithms are also investigated, which shows that the proposed algorithms can achieve state-of-the-art performance in applications of image clustering.

  9. A Fast Density-Based Clustering Algorithm for Real-Time Internet of Things Stream

    Science.gov (United States)

    Ying Wah, Teh

    2014-01-01

    Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets. PMID:25110753

  10. A fast density-based clustering algorithm for real-time Internet of Things stream.

    Science.gov (United States)

    Amini, Amineh; Saboohi, Hadi; Wah, Teh Ying; Herawan, Tutut

    2014-01-01

    Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets.

  11. MINING ON CAR DATABASE EMPLOYING LEARNING AND CLUSTERING ALGORITHMS

    OpenAIRE

    Muhammad Rukunuddin Ghalib; Shivam Vohra; Sunish Vohra; Akash Juneja

    2013-01-01

    In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the known learning algorithms used are Naïve Bayesian (NB) and SMO (Self-Minimal-Optimisation) .Thus the following two learning algorithms are used on a Car review database and thus a model is hence created which predicts the characteristic of a review comment after getting trained. It was found that model successfully predicted correctly about the review comm...

  12. A Heuristic Task Scheduling Algorithm for Heterogeneous Virtual Clusters

    OpenAIRE

    Weiwei Lin; Wentai Wu; James Z. Wang

    2016-01-01

    Cloud computing provides on-demand computing and storage services with high performance and high scalability. However, the rising energy consumption of cloud data centers has become a prominent problem. In this paper, we first introduce an energy-aware framework for task scheduling in virtual clusters. The framework consists of a task resource requirements prediction module, an energy estimate module, and a scheduler with a task buffer. Secondly, based on this framework, we propose a virtual ...

  13. Clustering Batik Images using Fuzzy C-Means Algorithm Based on Log-Average Luminance

    Directory of Open Access Journals (Sweden)

    Ahmad Sanmorino

    2012-06-01

    Full Text Available Batik is a fabric or clothes that are made ​​with a special staining technique called wax-resist dyeing and is one of the cultural heritage which has high artistic value. In order to improve the efficiency and give better semantic to the image, some researchers apply clustering algorithm for managing images before they can be retrieved. Image clustering is a process of grouping images based on their similarity. In this paper we attempt to provide an alternative method of grouping batik image using fuzzy c-means (FCM algorithm based on log-average luminance of the batik. FCM clustering algorithm is an algorithm that works using fuzzy models that allow all data from all cluster members are formed with different degrees of membership between 0 and 1. Log-average luminance (LAL is the average value of the lighting in an image. We can compare different image lighting from one image to another using LAL. From the experiments that have been made, it can be concluded that fuzzy c-means algorithm can be used for batik image clustering based on log-average luminance of each image possessed.

  14. CAMPAIGN: an open-source library of GPU-accelerated data clustering algorithms.

    Science.gov (United States)

    Kohlhoff, Kai J; Sosnick, Marc H; Hsu, William T; Pande, Vijay S; Altman, Russ B

    2011-08-15

    Data clustering techniques are an essential component of a good data analysis toolbox. Many current bioinformatics applications are inherently compute-intense and work with very large datasets. Sequential algorithms are inadequate for providing the necessary performance. For this reason, we have created Clustering Algorithms for Massively Parallel Architectures, Including GPU Nodes (CAMPAIGN), a central resource for data clustering algorithms and tools that are implemented specifically for execution on massively parallel processing architectures. CAMPAIGN is a library of data clustering algorithms and tools, written in 'C for CUDA' for Nvidia GPUs. The library provides up to two orders of magnitude speed-up over respective CPU-based clustering algorithms and is intended as an open-source resource. New modules from the community will be accepted into the library and the layout of it is such that it can easily be extended to promising future platforms such as OpenCL. Releases of the CAMPAIGN library are freely available for download under the LGPL from https://simtk.org/home/campaign. Source code can also be obtained through anonymous subversion access as described on https://simtk.org/scm/?group_id=453. kjk33@cantab.net.

  15. Markov chains theory and applications

    CERN Document Server

    Sericola, Bruno

    2013-01-01

    Markov chains are a fundamental class of stochastic processes. They are widely used to solve problems in a large number of domains such as operational research, computer science, communication networks and manufacturing systems. The success of Markov chains is mainly due to their simplicity of use, the large number of available theoretical results and the quality of algorithms developed for the numerical evaluation of many metrics of interest.The author presents the theory of both discrete-time and continuous-time homogeneous Markov chains. He carefully examines the explosion phenomenon, the

  16. Channel Parameter Estimation for Scatter Cluster Model Using Modified MUSIC Algorithm

    Directory of Open Access Journals (Sweden)

    Jinsheng Yang

    2012-01-01

    Full Text Available Recently, the scatter cluster models which precisely evaluate the performance of the wireless communication system have been proposed in the literature. However, the conventional SAGE algorithm does not work for these scatter cluster-based models because it performs poorly when the transmit signals are highly correlated. In this paper, we estimate the time of arrival (TOA, the direction of arrival (DOA, and Doppler frequency for scatter cluster model by the modified multiple signal classification (MUSIC algorithm. Using the space-time characteristics of the multiray channel, the proposed algorithm combines the temporal filtering techniques and the spatial smoothing techniques to isolate and estimate the incoming rays. The simulation results indicated that the proposed algorithm has lower complexity and is less time-consuming in the dense multipath environment than SAGE algorithm. Furthermore, the estimations’ performance increases with elements of receive array and samples length. Thus, the problem of the channel parameter estimation of the scatter cluster model can be effectively addressed with the proposed modified MUSIC algorithm.

  17. Proposed Fuzzy-NN Algorithm with LoRaCommunication Protocol for Clustered Irrigation Systems

    Directory of Open Access Journals (Sweden)

    Sotirios Kontogiannis

    2017-11-01

    Full Text Available Modern irrigation systems utilize sensors and actuators, interconnected together as a single entity. In such entities, A.I. algorithms are implemented, which are responsible for the irrigation process. In this paper, the authors present an irrigation Open Watering System (OWS architecture that spatially clusters the irrigation process into autonomous irrigation sections. Authors’ OWS implementation includes a Neuro-Fuzzy decision algorithm called FITRA, which originates from the Greek word for seed. In this paper, the FITRA algorithm is described in detail, as are experimentation results that indicate significant water conservations from the use of the FITRA algorithm. Furthermore, the authors propose a new communication protocol over LoRa radio as an alternative low-energy and long-range OWS clusters communication mechanism. The experimental scenarios confirm that the FITRA algorithm provides more efficient irrigation on clustered areas than existing non-clustered, time scheduled or threshold adaptive algorithms. This is due to the FITRA algorithm’s frequent monitoring of environmental conditions, fuzzy and neural network adaptation as well as adherence to past irrigation preferences.

  18. A hybrid clustering approach to recognition of protein families in 114 microbial genomes

    Directory of Open Access Journals (Sweden)

    Gogarten J Peter

    2004-04-01

    Full Text Available Abstract Background Grouping proteins into sequence-based clusters is a fundamental step in many bioinformatic analyses (e.g., homology-based prediction of structure or function. Standard clustering methods such as single-linkage clustering capture a history of cluster topologies as a function of threshold, but in practice their usefulness is limited because unrelated sequences join clusters before biologically meaningful families are fully constituted, e.g. as the result of matches to so-called promiscuous domains. Use of the Markov Cluster algorithm avoids this non-specificity, but does not preserve topological or threshold information about protein families. Results We describe a hybrid approach to sequence-based clustering of proteins that combines the advantages of standard and Markov clustering. We have implemented this hybrid approach over a relational database environment, and describe its application to clustering a large subset of PDB, and to 328577 proteins from 114 fully sequenced microbial genomes. To demonstrate utility with difficult problems, we show that hybrid clustering allows us to constitute the paralogous family of ATP synthase F1 rotary motor subunits into a single, biologically interpretable hierarchical grouping that was not accessible using either single-linkage or Markov clustering alone. We describe validation of this method by hybrid clustering of PDB and mapping SCOP families and domains onto the resulting clusters. Conclusion Hybrid (Markov followed by single-linkage clustering combines the advantages of the Markov Cluster algorithm (avoidance of non-specific clusters resulting from matches to promiscuous domains and single-linkage clustering (preservation of topological information as a function of threshold. Within the individual Markov clusters, single-linkage clustering is a more-precise instrument, discerning sub-clusters of biological relevance. Our hybrid approach thus provides a computationally efficient

  19. Distinguishing Hidden Markov Chains

    OpenAIRE

    Kiefer, Stefan; Sistla, A. Prasad

    2015-01-01

    Hidden Markov Chains (HMCs) are commonly used mathematical models of probabilistic systems. They are employed in various fields such as speech recognition, signal processing, and biological sequence analysis. We consider the problem of distinguishing two given HMCs based on an observation sequence that one of the HMCs generates. More precisely, given two HMCs and an observation sequence, a distinguishing algorithm is expected to identify the HMC that generates the observation sequence. Two HM...

  20. A Cluster-Based Fuzzy Fusion Algorithm for Event Detection in Heterogeneous Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    ZiQi Hao

    2015-01-01

    Full Text Available As limited energy is one of the tough challenges in wireless sensor networks (WSN, energy saving becomes important in increasing the lifecycle of the network. Data fusion enables combining information from several sources thus to provide a unified scenario, which can significantly save sensor energy and enhance sensing data accuracy. In this paper, we propose a cluster-based data fusion algorithm for event detection. We use k-means algorithm to form the nodes into clusters, which can significantly reduce the energy consumption of intracluster communication. Distances between cluster heads and event and energy of clusters are fuzzified, thus to use a fuzzy logic to select the clusters that will participate in data uploading and fusion. Fuzzy logic method is also used by cluster heads for local decision, and then the local decision results are sent to the base station. Decision-level fusion for final decision of event is performed by base station according to the uploaded local decisions and fusion support degree of clusters calculated by fuzzy logic method. The effectiveness of this algorithm is demonstrated by simulation results.

  1. Hybrid Swarm Intelligence Energy Efficient Clustered Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-01-01

    Full Text Available Currently, wireless sensor networks (WSNs are used in many applications, namely, environment monitoring, disaster management, industrial automation, and medical electronics. Sensor nodes carry many limitations like low battery life, small memory space, and limited computing capability. To create a wireless sensor network more energy efficient, swarm intelligence technique has been applied to resolve many optimization issues in WSNs. In many existing clustering techniques an artificial bee colony (ABC algorithm is utilized to collect information from the field periodically. Nevertheless, in the event based applications, an ant colony optimization (ACO is a good solution to enhance the network lifespan. In this paper, we combine both algorithms (i.e., ABC and ACO and propose a new hybrid ABCACO algorithm to solve a Nondeterministic Polynomial (NP hard and finite problem of WSNs. ABCACO algorithm is divided into three main parts: (i selection of optimal number of subregions and further subregion parts, (ii cluster head selection using ABC algorithm, and (iii efficient data transmission using ACO algorithm. We use a hierarchical clustering technique for data transmission; the data is transmitted from member nodes to the subcluster heads and then from subcluster heads to the elected cluster heads based on some threshold value. Cluster heads use an ACO algorithm to discover the best route for data transmission to the base station (BS. The proposed approach is very useful in designing the framework for forest fire detection and monitoring. The simulation results show that the ABCACO algorithm enhances the stability period by 60% and also improves the goodput by 31% against LEACH and WSNCABC, respectively.

  2. A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces

    NARCIS (Netherlands)

    Braak, ter C.J.F.

    2006-01-01

    Differential Evolution (DE) is a simple genetic algorithm for numerical optimization in real parameter spaces. In a statistical context one would not just want the optimum but also its uncertainty. The uncertainty distribution can be obtained by a Bayesian analysis (after specifying prior and

  3. High-speed detection of emergent market clustering via an unsupervised parallel genetic algorithm

    Directory of Open Access Journals (Sweden)

    Dieter Hendricks

    2016-02-01

    Full Text Available We implement a master-slave parallel genetic algorithm with a bespoke log-likelihood fitness function to identify emergent clusters within price evolutions. We use graphics processing units (GPUs to implement a parallel genetic algorithm and visualise the results using disjoint minimal spanning trees. We demonstrate that our GPU parallel genetic algorithm, implemented on a commercially available general purpose GPU, is able to recover stock clusters in sub-second speed, based on a subset of stocks in the South African market. This approach represents a pragmatic choice for low-cost, scalable parallel computing and is significantly faster than a prototype serial implementation in an optimised C-based fourth-generation programming language, although the results are not directly comparable because of compiler differences. Combined with fast online intraday correlation matrix estimation from high frequency data for cluster identification, the proposed implementation offers cost-effective, near-real-time risk assessment for financial practitioners.

  4. Risk Assessment for Bridges Safety Management during Operation Based on Fuzzy Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Xia Hanyu

    2016-01-01

    Full Text Available In recent years, large span and large sea-crossing bridges are built, bridges accidents caused by improper operational management occur frequently. In order to explore the better methods for risk assessment of the bridges operation departments, the method based on fuzzy clustering algorithm is selected. Then, the implementation steps of fuzzy clustering algorithm are described, the risk evaluation system is built, and Taizhou Bridge is selected as an example, the quantitation of risk factors is described. After that, the clustering algorithm based on fuzzy equivalence is calculated on MATLAB 2010a. In the last, Taizhou Bridge operation management departments are classified and sorted according to the degree of risk, and the safety situation of operation departments is analyzed.

  5. Study on Data Clustering and Intelligent Decision Algorithm of Indoor Localization

    Science.gov (United States)

    Liu, Zexi

    2018-01-01

    Indoor positioning technology enables the human beings to have the ability of positional perception in architectural space, and there is a shortage of single network coverage and the problem of location data redundancy. So this article puts forward the indoor positioning data clustering algorithm and intelligent decision-making research, design the basic ideas of multi-source indoor positioning technology, analyzes the fingerprint localization algorithm based on distance measurement, position and orientation of inertial device integration. By optimizing the clustering processing of massive indoor location data, the data normalization pretreatment, multi-dimensional controllable clustering center and multi-factor clustering are realized, and the redundancy of locating data is reduced. In addition, the path is proposed based on neural network inference and decision, design the sparse data input layer, the dynamic feedback hidden layer and output layer, low dimensional results improve the intelligent navigation path planning.

  6. A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network.

    Science.gov (United States)

    Chen, Yuzhong; Weng, Shining; Guo, Wenzhong; Xiong, Naixue

    2016-02-19

    Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency.

  7. A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network

    Directory of Open Access Journals (Sweden)

    Yuzhong Chen

    2016-02-01

    Full Text Available Vehicular ad hoc networks (VANETs have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency.

  8. A harmony search algorithm for clustering with feature selection

    Directory of Open Access Journals (Sweden)

    Carlos Cobos

    2010-01-01

    Full Text Available En este artículo se presenta un nuevo algoritmo de clustering denominado IHSK, con la capacidad de seleccionar características en un orden de complejidad lineal. El algoritmo es inspirado en la combinación de los algoritmos de búsqueda armónica y K-means. Para la selección de las características se usó el concepto de variabilidad y un método heurístico que penaliza la presencia de dimensiones con baja probabilidad de aportar en la solución actual. El algoritmo fue probado con conjuntos de datos sintéticos y reales, obteniendo resultados prometedores.

  9. Segmentation of Mushroom and Cap width Measurement using Modified K-Means Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Eser Sert

    2014-01-01

    Full Text Available Mushroom is one of the commonly consumed foods. Image processing is one of the effective way for examination of visual features and detecting the size of a mushroom. We developed software for segmentation of a mushroom in a picture and also to measure the cap width of the mushroom. K-Means clustering method is used for the process. K-Means is one of the most successful clustering methods. In our study we customized the algorithm to get the best result and tested the algorithm. In the system, at first mushroom picture is filtered, histograms are balanced and after that segmentation is performed. Results provided that customized algorithm performed better segmentation than classical K-Means algorithm. Tests performed on the designed software showed that segmentation on complex background pictures is performed with high accuracy, and 20 mushrooms caps are measured with 2.281 % relative error.

  10. Optimal Selection of Clustering Algorithm via Multi-Criteria Decision Analysis (MCDA for Load Profiling Applications

    Directory of Open Access Journals (Sweden)

    Ioannis P. Panapakidis

    2018-02-01

    Full Text Available Due to high implementation rates of smart meter systems, considerable amount of research is placed in machine learning tools for data handling and information retrieval. A key tool in load data processing is clustering. In recent years, a number of researches have proposed different clustering algorithms in the load profiling field. The present paper provides a methodology for addressing the aforementioned problem through Multi-Criteria Decision Analysis (MCDA and namely, using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS. A comparison of the algorithms is employed. Next, a single test case on the selection of an algorithm is examined. User specific weights are applied and based on these weight values, the optimal algorithm is drawn.

  11. An adaptive clustering algorithm for image matching based on corner feature

    Science.gov (United States)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-04-01

    The traditional image matching algorithm always can not balance the real-time and accuracy better, to solve the problem, an adaptive clustering algorithm for image matching based on corner feature is proposed in this paper. The method is based on the similarity of the matching pairs of vector pairs, and the adaptive clustering is performed on the matching point pairs. Harris corner detection is carried out first, the feature points of the reference image and the perceived image are extracted, and the feature points of the two images are first matched by Normalized Cross Correlation (NCC) function. Then, using the improved algorithm proposed in this paper, the matching results are clustered to reduce the ineffective operation and improve the matching speed and robustness. Finally, the Random Sample Consensus (RANSAC) algorithm is used to match the matching points after clustering. The experimental results show that the proposed algorithm can effectively eliminate the most wrong matching points while the correct matching points are retained, and improve the accuracy of RANSAC matching, reduce the computation load of whole matching process at the same time.

  12. Unit commitment solution using agglomerative and divisive cluster algorithm : an effective new methodology

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, N.M.; Reddy, K.R. [G. Narayanamma Inst. of Technology and Science, Hyderabad (India). Dept. of Electrical Engineering; Ramana, N.V. [JNTU College of Engineering, Jagityala (India). Dept. of Electrical Engineering

    2008-07-01

    Thermal power plants consist of several generating units with different generating capacities, fuel cost per MWH generated, minimum up/down times, and start-up or shut-down costs. The Unit Commitment (UC) problem in power systems involves determining the start-up and shut-down schedules of thermal generating units to meet forecasted load over a future short term for a period of one to seven days. This paper presented a new approach for the most complex UC problem using agglomerative and divisive hierarchical clustering. Euclidean costs, which are a measure of differences in fuel cost and start-up costs of any two units, were first calculated. Then, depending on the value of Euclidean costs, similar type of units were placed in a cluster. The proposed methodology has 2 individual algorithms. An agglomerative cluster algorithm is used while the load is increasing, and a divisive cluster algorithm is used when the load is decreasing. A search was conducted for an optimal solution for a minimal number of clusters and cluster data points. A standard ten-unit thermal unit power system was used to test and evaluate the performance of the method for a period of 24 hours. The new approach proved to be quite effective and satisfactory. 15 refs., 9 tabs., 5 figs.

  13. An improved K-means clustering algorithm in agricultural image segmentation

    Science.gov (United States)

    Cheng, Huifeng; Peng, Hui; Liu, Shanmei

    Image segmentation is the first important step to image analysis and image processing. In this paper, according to color crops image characteristics, we firstly transform the color space of image from RGB to HIS, and then select proper initial clustering center and cluster number in application of mean-variance approach and rough set theory followed by clustering calculation in such a way as to automatically segment color component rapidly and extract target objects from background accurately, which provides a reliable basis for identification, analysis, follow-up calculation and process of crops images. Experimental results demonstrate that improved k-means clustering algorithm is able to reduce the computation amounts and enhance precision and accuracy of clustering.

  14. Clustering and Candidate Motif Detection in Exosomal miRNAs by Application of Machine Learning Algorithms.

    Science.gov (United States)

    Gaur, Pallavi; Chaturvedi, Anoop

    2017-07-22

    The clustering pattern and motifs give immense information about any biological data. An application of machine learning algorithms for clustering and candidate motif detection in miRNAs derived from exosomes is depicted in this paper. Recent progress in the field of exosome research and more particularly regarding exosomal miRNAs has led much bioinformatic-based research to come into existence. The information on clustering pattern and candidate motifs in miRNAs of exosomal origin would help in analyzing existing, as well as newly discovered miRNAs within exosomes. Along with obtaining clustering pattern and candidate motifs in exosomal miRNAs, this work also elaborates the usefulness of the machine learning algorithms that can be efficiently used and executed on various programming languages/platforms. Data were clustered and sequence candidate motifs were detected successfully. The results were compared and validated with some available web tools such as 'BLASTN' and 'MEME suite'. The machine learning algorithms for aforementioned objectives were applied successfully. This work elaborated utility of machine learning algorithms and language platforms to achieve the tasks of clustering and candidate motif detection in exosomal miRNAs. With the information on mentioned objectives, deeper insight would be gained for analyses of newly discovered miRNAs in exosomes which are considered to be circulating biomarkers. In addition, the execution of machine learning algorithms on various language platforms gives more flexibility to users to try multiple iterations according to their requirements. This approach can be applied to other biological data-mining tasks as well.

  15. Efficient algorithms for accurate hierarchical clustering of huge datasets: tackling the entire protein space.

    Science.gov (United States)

    Loewenstein, Yaniv; Portugaly, Elon; Fromer, Menachem; Linial, Michal

    2008-07-01

    UPGMA (average linking) is probably the most popular algorithm for hierarchical data clustering, especially in computational biology. However, UPGMA requires the entire dissimilarity matrix in memory. Due to this prohibitive requirement, UPGMA is not scalable to very large datasets. We present a novel class of memory-constrained UPGMA (MC-UPGMA) algorithms. Given any practical memory size constraint, this framework guarantees the correct clustering solution without explicitly requiring all dissimilarities in memory. The algorithms are general and are applicable to any dataset. We present a data-dependent characterization of hardness and clustering efficiency. The presented concepts are applicable to any agglomerative clustering formulation. We apply our algorithm to the entire collection of protein sequences, to automatically build a comprehensive evolutionary-driven hierarchy of proteins from sequence alone. The newly created tree captures protein families better than state-of-the-art large-scale methods such as CluSTr, ProtoNet4 or single-linkage clustering. We demonstrate that leveraging the entire mass embodied in all sequence similarities allows to significantly improve on current protein family clusterings which are unable to directly tackle the sheer mass of this data. Furthermore, we argue that non-metric constraints are an inherent complexity of the sequence space and should not be overlooked. The robustness of UPGMA allows significant improvement, especially for multidomain proteins, and for large or divergent families. A comprehensive tree built from all UniProt sequence similarities, together with navigation and classification tools will be made available as part of the ProtoNet service. A C++ implementation of the algorithm is available on request.

  16. An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation Information

    Directory of Open Access Journals (Sweden)

    Ao Li

    2009-04-01

    Full Text Available Motivation: Bi-clustering algorithms aim to identify sets of genes sharing similar expression patterns across a subset of conditions. However direct interpretation or prediction of gene regulatory mechanisms may be difficult as only gene expression data is used. Information about gene regulators may also be available, most commonly about which transcription factors may bind to the promoter region and thus control the expression level of a gene. Thus a method to integrate gene expression and gene regulation information is desirable for clustering and analyzing. Methods: By incorporating gene regulatory information with gene expression data, we define regulated expression values (REV as indicators of how a gene is regulated by a specific factor. Existing bi-clustering methods are extended to a three dimensional data space by developing a heuristic TRI-Clustering algorithm. An additional approach named Automatic Boundary Searching algorithm (ABS is introduced to automatically determine the boundary threshold. Results: Results based on incorporating ChIP-chip data representing transcription factor-gene interactions show that the algorithms are efficient and robust for detecting tri-clusters. Detailed analysis of the tri-cluster extracted from yeast sporulation REV data shows genes in this cluster exhibited significant differences during the middle and late stages. The implicated regulatory network was then reconstructed for further study of defined regulatory mechanisms. Topological and statistical analysis of this network demonstrated evidence of significant changes of TF activities during the different stages of yeast sporulation, and suggests this approach might be a general way to study regulatory networks undergoing transformations.

  17. Chaos control of ferroresonance system based on RBF-maximum entropy clustering algorithm

    International Nuclear Information System (INIS)

    Liu Fan; Sun Caixin; Sima Wenxia; Liao Ruijin; Guo Fei

    2006-01-01

    With regards to the ferroresonance overvoltage of neutral grounded power system, a maximum-entropy learning algorithm based on radial basis function neural networks is used to control the chaotic system. The algorithm optimizes the object function to derive learning rule of central vectors, and uses the clustering function of network hidden layers. It improves the regression and learning ability of neural networks. The numerical experiment of ferroresonance system testifies the effectiveness and feasibility of using the algorithm to control chaos in neutral grounded system

  18. Verification of Open Interactive Markov Chains

    OpenAIRE

    Brazdil, Tomas; Hermanns, Holger; Krcal, Jan; Kretinsky, Jan; Rehak, Vojtech

    2012-01-01

    Interactive Markov chains (IMC) are compositional behavioral models extending both labeled transition systems and continuous-time Markov chains. IMC pair modeling convenience - owed to compositionality properties - with effective verification algorithms and tools - owed to Markov properties. Thus far however, IMC verification did not consider compositionality properties, but considered closed systems. This paper discusses the evaluation of IMC in an open and thus compositional interpretation....

  19. A Multilevel Gamma-Clustering Layout Algorithm for Visualization of Biological Networks

    Science.gov (United States)

    Hruz, Tomas; Lucas, Christoph; Laule, Oliver; Zimmermann, Philip

    2013-01-01

    Visualization of large complex networks has become an indispensable part of systems biology, where organisms need to be considered as one complex system. The visualization of the corresponding network is challenging due to the size and density of edges. In many cases, the use of standard visualization algorithms can lead to high running times and poorly readable visualizations due to many edge crossings. We suggest an approach that analyzes the structure of the graph first and then generates a new graph which contains specific semantic symbols for regular substructures like dense clusters. We propose a multilevel gamma-clustering layout visualization algorithm (MLGA) which proceeds in three subsequent steps: (i) a multilevel γ-clustering is used to identify the structure of the underlying network, (ii) the network is transformed to a tree, and (iii) finally, the resulting tree which shows the network structure is drawn using a variation of a force-directed algorithm. The algorithm has a potential to visualize very large networks because it uses modern clustering heuristics which are optimized for large graphs. Moreover, most of the edges are removed from the visual representation which allows keeping the overview over complex graphs with dense subgraphs. PMID:23864855

  20. An effective trust-based recommendation method using a novel graph clustering algorithm

    Science.gov (United States)

    Moradi, Parham; Ahmadian, Sajad; Akhlaghian, Fardin

    2015-10-01

    Recommender systems are programs that aim to provide personalized recommendations to users for specific items (e.g. music, books) in online sharing communities or on e-commerce sites. Collaborative filtering methods are important and widely accepted types of recommender systems that generate recommendations based on the ratings of like-minded users. On the other hand, these systems confront several inherent issues such as data sparsity and cold start problems, caused by fewer ratings against the unknowns that need to be predicted. Incorporating trust information into the collaborative filtering systems is an attractive approach to resolve these problems. In this paper, we present a model-based collaborative filtering method by applying a novel graph clustering algorithm and also considering trust statements. In the proposed method first of all, the problem space is represented as a graph and then a sparsest subgraph finding algorithm is applied on the graph to find the initial cluster centers. Then, the proposed graph clustering algorithm is performed to obtain the appropriate users/items clusters. Finally, the identified clusters are used as a set of neighbors to recommend unseen items to the current active user. Experimental results based on three real-world datasets demonstrate that the proposed method outperforms several state-of-the-art recommender system methods.

  1. Performance of a Real-time Multipurpose 2-Dimensional Clustering Algorithm Developed for the ATLAS Experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00372074; The ATLAS collaboration; Sotiropoulou, Calliope Louisa; Annovi, Alberto; Kordas, Kostantinos

    2016-01-01

    In this paper the performance of the 2D pixel clustering algorithm developed for the Input Mezzanine card of the ATLAS Fast TracKer system is presented. Fast TracKer is an approved ATLAS upgrade that has the goal to provide a complete list of tracks to the ATLAS High Level Trigger for each level-1 accepted event, at up to 100 kHz event rate with a very small latency, in the order of 100µs. The Input Mezzanine card is the input stage of the Fast TracKer system. Its role is to receive data from the silicon detector and perform real time clustering, thus to reduce the amount of data propagated to the subsequent processing levels with minimal information loss. We focus on the most challenging component on the Input Mezzanine card, the 2D clustering algorithm executed on the pixel data. We compare two different implementations of the algorithm. The first is one called the ideal one which searches clusters of pixels in the whole silicon module at once and calculates the cluster centroids exploiting the whole avail...

  2. Performance of a Real-time Multipurpose 2-Dimensional Clustering Algorithm Developed for the ATLAS Experiment

    CERN Document Server

    Gkaitatzis, Stamatios; The ATLAS collaboration

    2016-01-01

    In this paper the performance of the 2D pixel clustering algorithm developed for the Input Mezzanine card of the ATLAS Fast TracKer system is presented. Fast TracKer is an approved ATLAS upgrade that has the goal to provide a complete list of tracks to the ATLAS High Level Trigger for each level-1 accepted event, at up to 100 kHz event rate with a very small latency, in the order of 100 µs. The Input Mezzanine card is the input stage of the Fast TracKer system. Its role is to receive data from the silicon detector and perform real time clustering, thus to reduce the amount of data propagated to the subsequent processing levels with minimal information loss. We focus on the most challenging component on the Input Mezzanine card, the 2D clustering algorithm executed on the pixel data. We compare two different implementations of the algorithm. The first is one called the ideal one which searches clusters of pixels in the whole silicon module at once and calculates the cluster centroids exploiting the whole avai...

  3. An Initial Seed Selection Algorithm for K-means Clustering of Georeferenced Data to Improve Replicability of Cluster Assignments for Mapping Application

    OpenAIRE

    Khan, Fouad

    2016-01-01

    K-means is one of the most widely used clustering algorithms in various disciplines, especially for large datasets. However the method is known to be highly sensitive to initial seed selection of cluster centers. K-means++ has been proposed to overcome this problem and has been shown to have better accuracy and computational efficiency than k-means. In many clustering problems though -such as when classifying georeferenced data for mapping applications- standardization of clustering methodolo...

  4. FRCA: A Fuzzy Relevance-Based Cluster Head Selection Algorithm for Wireless Mobile Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Taegwon Jeong

    2011-05-01

    Full Text Available Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP, the Weighted-based Adaptive Clustering Algorithm (WACA, and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM. The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms.

  5. FRCA: a fuzzy relevance-based cluster head selection algorithm for wireless mobile ad-hoc sensor networks.

    Science.gov (United States)

    Lee, Chongdeuk; Jeong, Taegwon

    2011-01-01

    Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA) to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP), the Weighted-based Adaptive Clustering Algorithm (WACA), and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM). The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms.

  6. MixSim : An R Package for Simulating Data to Study Performance of Clustering Algorithms

    Directory of Open Access Journals (Sweden)

    Volodymyr Melnykov

    2012-11-01

    Full Text Available The R package MixSim is a new tool that allows simulating mixtures of Gaussian distributions with different levels of overlap between mixture components. Pairwise overlap, defined as a sum of two misclassification probabilities, measures the degree of interaction between components and can be readily employed to control the clustering complexity of datasets simulated from mixtures. These datasets can then be used for systematic performance investigation of clustering and finite mixture modeling algorithms. Among other capabilities of MixSim, there are computing the exact overlap for Gaussian mixtures, simulating Gaussian and non-Gaussian data, simulating outliers and noise variables, calculating various measures of agreement between two partitionings, and constructing parallel distribution plots for the graphical display of finite mixture models. All features of the package are illustrated in great detail. The utility of the package is highlighted through a small comparison study of several popular clustering algorithms.

  7. An improved optimum-path forest clustering algorithm for remote sensing image segmentation

    Science.gov (United States)

    Chen, Siya; Sun, Tieli; Yang, Fengqin; Sun, Hongguang; Guan, Yu

    2018-03-01

    Remote sensing image segmentation is a key technology for processing remote sensing images. The image segmentation results can be used for feature extraction, target identification and object description. Thus, image segmentation directly affects the subsequent processing results. This paper proposes a novel Optimum-Path Forest (OPF) clustering algorithm that can be used for remote sensing segmentation. The method utilizes the principle that the cluster centres are characterized based on their densities and the distances between the centres and samples with higher densities. A new OPF clustering algorithm probability density function is defined based on this principle and applied to remote sensing image segmentation. Experiments are conducted using five remote sensing land cover images. The experimental results illustrate that the proposed method can outperform the original OPF approach.

  8. Timed Comparisons of Semi-Markov Processes

    DEFF Research Database (Denmark)

    Pedersen, Mathias Ruggaard; Larsen, Kim Guldstrand; Bacci, Giorgio

    2018-01-01

    -Markov processes, and investigate the question of how to compare two semi-Markov processes with respect to their time-dependent behaviour. To this end, we introduce the relation of being “faster than” between processes and study its algorithmic complexity. Through a connection to probabilistic automata we obtain...

  9. The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure

    KAUST Repository

    Euán, Carolina

    2018-04-12

    We present a new method for time series clustering which we call the Hierarchical Spectral Merger (HSM) method. This procedure is based on the spectral theory of time series and identifies series that share similar oscillations or waveforms. The extent of similarity between a pair of time series is measured using the total variation distance between their estimated spectral densities. At each step of the algorithm, every time two clusters merge, a new spectral density is estimated using the whole information present in both clusters, which is representative of all the series in the new cluster. The method is implemented in an R package HSMClust. We present two applications of the HSM method, one to data coming from wave-height measurements in oceanography and the other to electroencefalogram (EEG) data.

  10. The experimental results on the quality of clustering diverse set of data using a modified algorithm chameleon

    Directory of Open Access Journals (Sweden)

    Татьяна Борисовна Шатовская

    2015-03-01

    Full Text Available In this work results of modified Chameleon algorithm are discussed. Hierarchical multilevel algorithms consist of several stages: building the graph, coarsening, partitioning, recovering. Exploring of clustering quality for different data sets with different combinations of algorithms on different stages of the algorithm is the main aim of the article. And also aim is improving the construction phase through the optimization algorithm of choice k in the building the graph k-nearest neighbors

  11. A priori data-driven multi-clustered reservoir generation algorithm for echo state network.

    Directory of Open Access Journals (Sweden)

    Xiumin Li

    Full Text Available Echo state networks (ESNs with multi-clustered reservoir topology perform better in reservoir computing and robustness than those with random reservoir topology. However, these ESNs have a complex reservoir topology, which leads to difficulties in reservoir generation. This study focuses on the reservoir generation problem when ESN is used in environments with sufficient priori data available. Accordingly, a priori data-driven multi-cluster reservoir generation algorithm is proposed. The priori data in the proposed algorithm are used to evaluate reservoirs by calculating the precision and standard deviation of ESNs. The reservoirs are produced using the clustering method; only the reservoir with a better evaluation performance takes the place of a previous one. The final reservoir is obtained when its evaluation score reaches the preset requirement. The prediction experiment results obtained using the Mackey-Glass chaotic time series show that the proposed reservoir generation algorithm provides ESNs with extra prediction precision and increases the structure complexity of the network. Further experiments also reveal the appropriate values of the number of clusters and time window size to obtain optimal performance. The information entropy of the reservoir reaches the maximum when ESN gains the greatest precision.

  12. Fuzzy-Logic Based Distributed Energy-Efficient Clustering Algorithm for Wireless Sensor Networks.

    Science.gov (United States)

    Zhang, Ying; Wang, Jun; Han, Dezhi; Wu, Huafeng; Zhou, Rundong

    2017-07-03

    Due to the high-energy efficiency and scalability, the clustering routing algorithm has been widely used in wireless sensor networks (WSNs). In order to gather information more efficiently, each sensor node transmits data to its Cluster Head (CH) to which it belongs, by multi-hop communication. However, the multi-hop communication in the cluster brings the problem of excessive energy consumption of the relay nodes which are closer to the CH. These nodes' energy will be consumed more quickly than the farther nodes, which brings the negative influence on load balance for the whole networks. Therefore, we propose an energy-efficient distributed clustering algorithm based on fuzzy approach with non-uniform distribution (EEDCF). During CHs' election, we take nodes' energies, nodes' degree and neighbor nodes' residual energies into consideration as the input parameters. In addition, we take advantage of Takagi, Sugeno and Kang (TSK) fuzzy model instead of traditional method as our inference system to guarantee the quantitative analysis more reasonable. In our scheme, each sensor node calculates the probability of being as CH with the help of fuzzy inference system in a distributed way. The experimental results indicate EEDCF algorithm is better than some current representative methods in aspects of data transmission, energy consumption and lifetime of networks.

  13. Artificial Bee Colony Algorithm Based on K-Means Clustering for Multiobjective Optimal Power Flow Problem

    Directory of Open Access Journals (Sweden)

    Liling Sun

    2015-01-01

    Full Text Available An improved multiobjective ABC algorithm based on K-means clustering, called CMOABC, is proposed. To fasten the convergence rate of the canonical MOABC, the way of information communication in the employed bees’ phase is modified. For keeping the population diversity, the multiswarm technology based on K-means clustering is employed to decompose the population into many clusters. Due to each subcomponent evolving separately, after every specific iteration, the population will be reclustered to facilitate information exchange among different clusters. Application of the new CMOABC on several multiobjective benchmark functions shows a marked improvement in performance over the fast nondominated sorting genetic algorithm (NSGA-II, the multiobjective particle swarm optimizer (MOPSO, and the multiobjective ABC (MOABC. Finally, the CMOABC is applied to solve the real-world optimal power flow (OPF problem that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results demonstrate that, compared to NSGA-II, MOPSO, and MOABC, the proposed CMOABC is superior for solving OPF problem, in terms of optimization accuracy.

  14. A clustering algorithm for sample data based on environmental pollution characteristics

    Science.gov (United States)

    Chen, Mei; Wang, Pengfei; Chen, Qiang; Wu, Jiadong; Chen, Xiaoyun

    2015-04-01

    Environmental pollution has become an issue of serious international concern in recent years. Among the receptor-oriented pollution models, CMB, PMF, UNMIX, and PCA are widely used as source apportionment models. To improve the accuracy of source apportionment and classify the sample data for these models, this study proposes an easy-to-use, high-dimensional EPC algorithm that not only organizes all of the sample data into different groups according to the similarities in pollution characteristics such as pollution sources and concentrations but also simultaneously detects outliers. The main clustering process consists of selecting the first unlabelled point as the cluster centre, then assigning each data point in the sample dataset to its most similar cluster centre according to both the user-defined threshold and the value of similarity function in each iteration, and finally modifying the clusters using a method similar to k-Means. The validity and accuracy of the algorithm are tested using both real and synthetic datasets, which makes the EPC algorithm practical and effective for appropriately classifying sample data for source apportionment models and helpful for better understanding and interpreting the sources of pollution.

  15. Markov Networks in Evolutionary Computation

    CERN Document Server

    Shakya, Siddhartha

    2012-01-01

    Markov networks and other probabilistic graphical modes have recently received an upsurge in attention from Evolutionary computation community, particularly in the area of Estimation of distribution algorithms (EDAs).  EDAs have arisen as one of the most successful experiences in the application of machine learning methods in optimization, mainly due to their efficiency to solve complex real-world optimization problems and their suitability for theoretical analysis. This book focuses on the different steps involved in the conception, implementation and application of EDAs that use Markov networks, and undirected models in general. It can serve as a general introduction to EDAs but covers also an important current void in the study of these algorithms by explaining the specificities and benefits of modeling optimization problems by means of undirected probabilistic models. All major developments to date in the progressive introduction of Markov networks based EDAs are reviewed in the book. Hot current researc...

  16. Cluster-Based Multipolling Sequencing Algorithm for Collecting RFID Data in Wireless LANs

    Science.gov (United States)

    Choi, Woo-Yong; Chatterjee, Mainak

    2015-03-01

    With the growing use of RFID (Radio Frequency Identification), it is becoming important to devise ways to read RFID tags in real time. Access points (APs) of IEEE 802.11-based wireless Local Area Networks (LANs) are being integrated with RFID networks that can efficiently collect real-time RFID data. Several schemes, such as multipolling methods based on the dynamic search algorithm and random sequencing, have been proposed. However, as the number of RFID readers associated with an AP increases, it becomes difficult for the dynamic search algorithm to derive the multipolling sequence in real time. Though multipolling methods can eliminate the polling overhead, we still need to enhance the performance of the multipolling methods based on random sequencing. To that extent, we propose a real-time cluster-based multipolling sequencing algorithm that drastically eliminates more than 90% of the polling overhead, particularly so when the dynamic search algorithm fails to derive the multipolling sequence in real time.

  17. Channel processor in 2D cluster finding algorithm for high energy physics application

    International Nuclear Information System (INIS)

    Paul, Rourab; Chakrabarti, Amlan; Mitra, Jubin; Khan, Shuaib A.; Nayak, Tapan; Mukherjee, Sanjoy

    2016-01-01

    In a Large Ion Collider Experiment (ALICE) at CERN 1 TB/s (approximately) data comes from front end electronics. Previously, we had 1 GBT link operated with a cluster clock frequencies of 133 MHz and 320 MHz in Run 1 and Run 2 respectively. The cluster algorithm proposed in Run 1 and 2 could not work in Run 3 as the data speed increased almost 20 times. Older version cluster algorithm receives data sequentially as a stream. It has 2 main sub processes - Channel Processor, Merging process. The initial step of channel processor finds a peak Q max and sums up pads (sensors) data from -2 time bin to +2 time bin in the time direction. The computed value stores in a register named cluster fragment data (cfd o ). The merging process merges cfd o in pad direction. The data streams in Run 2 comes sequentially, which processed by the channel processor and merging block in a sequential manner with very less resource over head. In Run 3 data comes parallely, 1600 data from 1600 pads of a single time instant comes at each 200 ns interval (5 MHz) which is very challenging to process in the budgeted resource platform of Arria 10 FPGA hardware with 250 to 320 MHz cluster clock

  18. Energy Efficient and Safe Weighted Clustering Algorithm for Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Amine Dahane

    2015-01-01

    Full Text Available The main concern of clustering approaches for mobile wireless sensor networks (WSNs is to prolong the battery life of the individual sensors and the network lifetime. For a successful clustering approach the need of a powerful mechanism to safely elect a cluster head remains a challenging task in many research works that take into account the mobility of the network. The approach based on the computing of the weight of each node in the network is one of the proposed techniques to deal with this problem. In this paper, we propose an energy efficient and safe weighted clustering algorithm (ES-WCA for mobile WSNs using a combination of five metrics. Among these metrics lies the behavioral level metric which promotes a safe choice of a cluster head in the sense where this last one will never be a malicious node. Moreover, the highlight of our work is summarized in a comprehensive strategy for monitoring the network, in order to detect and remove the malicious nodes. We use simulation study to demonstrate the performance of the proposed algorithm.

  19. An algorithm of discovering signatures from DNA databases on a computer cluster.

    Science.gov (United States)

    Lee, Hsiao Ping; Sheu, Tzu-Fang

    2014-10-05

    Signatures are short sequences that are unique and not similar to any other sequence in a database that can be used as the basis to identify different species. Even though several signature discovery algorithms have been proposed in the past, these algorithms require the entirety of databases to be loaded in the memory, thus restricting the amount of data that they can process. It makes those algorithms unable to process databases with large amounts of data. Also, those algorithms use sequential models and have slower discovery speeds, meaning that the efficiency can be improved. In this research, we are debuting the utilization of a divide-and-conquer strategy in signature discovery and have proposed a parallel signature discovery algorithm on a computer cluster. The algorithm applies the divide-and-conquer strategy to solve the problem posed to the existing algorithms where they are unable to process large databases and uses a parallel computing mechanism to effectively improve the efficiency of signature discovery. Even when run with just the memory of regular personal computers, the algorithm can still process large databases such as the human whole-genome EST database which were previously unable to be processed by the existing algorithms. The algorithm proposed in this research is not limited by the amount of usable memory and can rapidly find signatures in large databases, making it useful in applications such as Next Generation Sequencing and other large database analysis and processing. The implementation of the proposed algorithm is available at http://www.cs.pu.edu.tw/~fang/DDCSDPrograms/DDCSD.htm.

  20. Clustering methods and visualization algorithms to aid nuclear reactor operative diagnostics

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Dzwinel, W.

    1990-01-01

    The software system developed plays the role of the aid to an operator for nuclear reactor diagnostics. The noise analysis of the reactor parameters such as power, temperature and coolant flow rate constitutes the basis of the system. Combination of data acquisition, data preprocessing, clustering and cluster visualization algorithms with heuristic techniques of results analysis, determine the way of its implementation. Two regimes are available. The first one - extended - is recommended for a long term investigations and the second - suppressed for the aid to the reactor operation monitoring. The system has been tested and developed at the JINR IBR-2 pulsed reactor. 13 refs.; 4 figs.; 2 tabs

  1. K-mean clustering algorithm for processing signals from compound semiconductor detectors

    International Nuclear Information System (INIS)

    Tada, Tsutomu; Hitomi, Keitaro; Wu, Yan; Kim, Seong-Yun; Yamazaki, Hiromichi; Ishii, Keizo

    2011-01-01

    The K-mean clustering algorithm was employed for processing signal waveforms from TlBr detectors. The signal waveforms were classified based on its shape reflecting the charge collection process in the detector. The classified signal waveforms were processed individually to suppress the pulse height variation of signals due to the charge collection loss. The obtained energy resolution of a 137 Cs spectrum measured with a 0.5 mm thick TlBr detector was 1.3% FWHM by employing 500 clusters.

  2. What to Do When K-Means Clustering Fails: A Simple yet Principled Alternative Algorithm.

    Science.gov (United States)

    Raykov, Yordan P; Boukouvalas, Alexis; Baig, Fahd; Little, Max A

    The K-means algorithm is one of the most popular clustering algorithms in current use as it is relatively fast yet simple to understand and deploy in practice. Nevertheless, its use entails certain restrictive assumptions about the data, the negative consequences of which are not always immediately apparent, as we demonstrate. While more flexible algorithms have been developed, their widespread use has been hindered by their computational and technical complexity. Motivated by these considerations, we present a flexible alternative to K-means that relaxes most of the assumptions, whilst remaining almost as fast and simple. This novel algorithm which we call MAP-DP (maximum a-posteriori Dirichlet process mixtures), is statistically rigorous as it is based on nonparametric Bayesian Dirichlet process mixture modeling. This approach allows us to overcome most of the limitations imposed by K-means. The number of clusters K is estimated from the data instead of being fixed a-priori as in K-means. In addition, while K-means is restricted to continuous data, the MAP-DP framework can be applied to many kinds of data, for example, binary, count or ordinal data. Also, it can efficiently separate outliers from the data. This additional flexibility does not incur a significant computational overhead compared to K-means with MAP-DP convergence typically achieved in the order of seconds for many practical problems. Finally, in contrast to K-means, since the algorithm is based on an underlying statistical model, the MAP-DP framework can deal with missing data and enables model testing such as cross validation in a principled way. We demonstrate the simplicity and effectiveness of this algorithm on the health informatics problem of clinical sub-typing in a cluster of diseases known as parkinsonism.

  3. Enhancement of RWSN Lifetime via Firework Clustering Algorithm Validated by ANN

    Directory of Open Access Journals (Sweden)

    Ahmad Ali

    2018-03-01

    Full Text Available Nowadays, wireless power transfer is ubiquitously used in wireless rechargeable sensor networks (WSNs. Currently, the energy limitation is a grave concern issue for WSNs. However, lifetime enhancement of sensor networks is a challenging task need to be resolved. For addressing this issue, a wireless charging vehicle is an emerging technology to expand the overall network efficiency. The present study focuses on the enhancement of overall network lifetime of the rechargeable wireless sensor network. To resolve the issues mentioned above, we propose swarm intelligence based hard clustering approach using fireworks algorithm with the adaptive transfer function (FWA-ATF. In this work, the virtual clustering method has been applied in the routing process which utilizes the firework optimization algorithm. Still now, an FWA-ATF algorithm yet not applied by any researcher for RWSN. Furthermore, the validation study of the proposed method using the artificial neural network (ANN backpropagation algorithm incorporated in the present study. Different algorithms are applied to evaluate the performance of proposed technique that gives the best results in this mechanism. Numerical results indicate that our method outperforms existing methods and yield performance up to 80% regarding energy consumption and vacation time of wireless charging vehicle.

  4. Hopfield-K-Means clustering algorithm: A proposal for the segmentation of electricity customers

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Jose J.; Aguado, Jose A.; Martin, F.; Munoz, F.; Rodriguez, A.; Ruiz, Jose E. [Department of Electrical Engineering, University of Malaga, C/ Dr. Ortiz Ramos, sn., Escuela de Ingenierias, 29071 Malaga (Spain)

    2011-02-15

    Customer classification aims at providing electric utilities with a volume of information to enable them to establish different types of tariffs. Several methods have been used to segment electricity customers, including, among others, the hierarchical clustering, Modified Follow the Leader and K-Means methods. These, however, entail problems with the pre-allocation of the number of clusters (Follow the Leader), randomness of the solution (K-Means) and improvement of the solution obtained (hierarchical algorithm). Another segmentation method used is Hopfield's autonomous recurrent neural network, although the solution obtained only guarantees that it is a local minimum. In this paper, we present the Hopfield-K-Means algorithm in order to overcome these limitations. This approach eliminates the randomness of the initial solution provided by K-Means based algorithms and it moves closer to the global optimun. The proposed algorithm is also compared against other customer segmentation and characterization techniques, on the basis of relative validation indexes. Finally, the results obtained by this algorithm with a set of 230 electricity customers (residential, industrial and administrative) are presented. (author)

  5. [Automatic Sleep Stage Classification Based on an Improved K-means Clustering Algorithm].

    Science.gov (United States)

    Xiao, Shuyuan; Wang, Bei; Zhang, Jian; Zhang, Qunfeng; Zou, Junzhong

    2016-10-01

    Sleep stage scoring is a hotspot in the field of medicine and neuroscience.Visual inspection of sleep is laborious and the results may be subjective to different clinicians.Automatic sleep stage classification algorithm can be used to reduce the manual workload.However,there are still limitations when it encounters complicated and changeable clinical cases.The purpose of this paper is to develop an automatic sleep staging algorithm based on the characteristics of actual sleep data.In the proposed improved K-means clustering algorithm,points were selected as the initial centers by using a concept of density to avoid the randomness of the original K-means algorithm.Meanwhile,the cluster centers were updated according to the‘Three-Sigma Rule’during the iteration to abate the influence of the outliers.The proposed method was tested and analyzed on the overnight sleep data of the healthy persons and patients with sleep disorders after continuous positive airway pressure(CPAP)treatment.The automatic sleep stage classification results were compared with the visual inspection by qualified clinicians and the averaged accuracy reached 76%.With the analysis of morphological diversity of sleep data,it was proved that the proposed improved K-means algorithm was feasible and valid for clinical practice.

  6. Hopfield-K-Means clustering algorithm: A proposal for the segmentation of electricity customers

    International Nuclear Information System (INIS)

    Lopez, Jose J.; Aguado, Jose A.; Martin, F.; Munoz, F.; Rodriguez, A.; Ruiz, Jose E.

    2011-01-01

    Customer classification aims at providing electric utilities with a volume of information to enable them to establish different types of tariffs. Several methods have been used to segment electricity customers, including, among others, the hierarchical clustering, Modified Follow the Leader and K-Means methods. These, however, entail problems with the pre-allocation of the number of clusters (Follow the Leader), randomness of the solution (K-Means) and improvement of the solution obtained (hierarchical algorithm). Another segmentation method used is Hopfield's autonomous recurrent neural network, although the solution obtained only guarantees that it is a local minimum. In this paper, we present the Hopfield-K-Means algorithm in order to overcome these limitations. This approach eliminates the randomness of the initial solution provided by K-Means based algorithms and it moves closer to the global optimun. The proposed algorithm is also compared against other customer segmentation and characterization techniques, on the basis of relative validation indexes. Finally, the results obtained by this algorithm with a set of 230 electricity customers (residential, industrial and administrative) are presented. (author)

  7. Forecasting Jakarta composite index (IHSG) based on chen fuzzy time series and firefly clustering algorithm

    Science.gov (United States)

    Ningrum, R. W.; Surarso, B.; Farikhin; Safarudin, Y. M.

    2018-03-01

    This paper proposes the combination of Firefly Algorithm (FA) and Chen Fuzzy Time Series Forecasting. Most of the existing fuzzy forecasting methods based on fuzzy time series use the static length of intervals. Therefore, we apply an artificial intelligence, i.e., Firefly Algorithm (FA) to set non-stationary length of intervals for each cluster on Chen Method. The method is evaluated by applying on the Jakarta Composite Index (IHSG) and compare with classical Chen Fuzzy Time Series Forecasting. Its performance verified through simulation using Matlab.

  8. An Automatic K-Means Clustering Algorithm of GPS Data Combining a Novel Niche Genetic Algorithm with Noise and Density

    Directory of Open Access Journals (Sweden)

    Xiangbing Zhou

    2017-12-01

    Full Text Available Rapidly growing Global Positioning System (GPS data plays an important role in trajectory and their applications (e.g., GPS-enabled smart devices. In order to employ K-means to mine the better origins and destinations (OD behind the GPS data and overcome its shortcomings including slowness of convergence, sensitivity to initial seeds selection, and getting stuck in a local optimum, this paper proposes and focuses on a novel niche genetic algorithm (NGA with density and noise for K-means clustering (NoiseClust. In NoiseClust, an improved noise method and K-means++ are proposed to produce the initial population and capture higher quality seeds that can automatically determine the proper number of clusters, and also handle the different sizes and shapes of genes. A density-based method is presented to divide the number of niches, with its aim to maintain population diversity. Adaptive probabilities of crossover and mutation are also employed to prevent the convergence to a local optimum. Finally, the centers (the best chromosome are obtained and then fed into the K-means as initial seeds to generate even higher quality clustering results by allowing the initial seeds to readjust as needed. Experimental results based on taxi GPS data sets demonstrate that NoiseClust has high performance and effectiveness, and easily mine the city’s situations in four taxi GPS data sets.

  9. Dynamic connectivity algorithms for Monte Carlo simulations of the random-cluster model

    International Nuclear Information System (INIS)

    Elçi, Eren Metin; Weigel, Martin

    2014-01-01

    We review Sweeny's algorithm for Monte Carlo simulations of the random cluster model. Straightforward implementations suffer from the problem of computational critical slowing down, where the computational effort per edge operation scales with a power of the system size. By using a tailored dynamic connectivity algorithm we are able to perform all operations with a poly-logarithmic computational effort. This approach is shown to be efficient in keeping online connectivity information and is of use for a number of applications also beyond cluster-update simulations, for instance in monitoring droplet shape transitions. As the handling of the relevant data structures is non-trivial, we provide a Python module with a full implementation for future reference.

  10. Application of a clustering-based peak alignment algorithm to analyze various DNA fingerprinting data.

    Science.gov (United States)

    Ishii, Satoshi; Kadota, Koji; Senoo, Keishi

    2009-09-01

    DNA fingerprinting analysis such as amplified ribosomal DNA restriction analysis (ARDRA), repetitive extragenic palindromic PCR (rep-PCR), ribosomal intergenic spacer analysis (RISA), and denaturing gradient gel electrophoresis (DGGE) are frequently used in various fields of microbiology. The major difficulty in DNA fingerprinting data analysis is the alignment of multiple peak sets. We report here an R program for a clustering-based peak alignment algorithm, and its application to analyze various DNA fingerprinting data, such as ARDRA, rep-PCR, RISA, and DGGE data. The results obtained by our clustering algorithm and by BioNumerics software showed high similarity. Since several R packages have been established to statistically analyze various biological data, the distance matrix obtained by our R program can be used for subsequent statistical analyses, some of which were not previously performed but are useful in DNA fingerprinting studies.

  11. A New Waveform Signal Processing Method Based on Adaptive Clustering-Genetic Algorithms

    International Nuclear Information System (INIS)

    Noha Shaaban; Fukuzo Masuda; Hidetsugu Morota

    2006-01-01

    We present a fast digital signal processing method for numerical analysis of individual pulses from CdZnTe compound semiconductor detectors. Using Maxi-Mini Distance Algorithm and Genetic Algorithms based discrimination technique. A parametric approach has been used for classifying the discriminated waveforms into a set of clusters each has a similar signal shape with a corresponding pulse height spectrum. A corrected total pulse height spectrum was obtained by applying a normalization factor for the full energy peak for each cluster with a highly improvements in the energy spectrum characteristics. This method applied successfully for both simulated and real measured data, it can be applied to any detector suffers from signal shape variation. (authors)

  12. Classification Using Markov Blanket for Feature Selection

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Luo, Jian

    2009-01-01

    Selecting relevant features is in demand when a large data set is of interest in a classification task. It produces a tractable number of features that are sufficient and possibly improve the classification performance. This paper studies a statistical method of Markov blanket induction algorithm...... for filtering features and then applies a classifier using the Markov blanket predictors. The Markov blanket contains a minimal subset of relevant features that yields optimal classification performance. We experimentally demonstrate the improved performance of several classifiers using a Markov blanket...... induction as a feature selection method. In addition, we point out an important assumption behind the Markov blanket induction algorithm and show its effect on the classification performance....

  13. Clustering for Different Scales of Measurement - the Gap-Ratio Weighted K-means Algorithm

    OpenAIRE

    Guérin, Joris; Gibaru, Olivier; Thiery, Stéphane; Nyiri, Eric

    2017-01-01

    This paper describes a method for clustering data that are spread out over large regions and which dimensions are on different scales of measurement. Such an algorithm was developed to implement a robotics application consisting in sorting and storing objects in an unsupervised way. The toy dataset used to validate such application consists of Lego bricks of different shapes and colors. The uncontrolled lighting conditions together with the use of RGB color features, respectively involve data...

  14. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.

    Science.gov (United States)

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-05-21

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  15. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm

    Directory of Open Access Journals (Sweden)

    Serge Thomas Mickala Bourobou

    2015-05-01

    Full Text Available This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  16. Segmentation of dermatoscopic images by frequency domain filtering and k-means clustering algorithms.

    Science.gov (United States)

    Rajab, Maher I

    2011-11-01

    Since the introduction of epiluminescence microscopy (ELM), image analysis tools have been extended to the field of dermatology, in an attempt to algorithmically reproduce clinical evaluation. Accurate image segmentation of skin lesions is one of the key steps for useful, early and non-invasive diagnosis of coetaneous melanomas. This paper proposes two image segmentation algorithms based on frequency domain processing and k-means clustering/fuzzy k-means clustering. The two methods are capable of segmenting and extracting the true border that reveals the global structure irregularity (indentations and protrusions), which may suggest excessive cell growth or regression of a melanoma. As a pre-processing step, Fourier low-pass filtering is applied to reduce the surrounding noise in a skin lesion image. A quantitative comparison of the techniques is enabled by the use of synthetic skin lesion images that model lesions covered with hair to which Gaussian noise is added. The proposed techniques are also compared with an established optimal-based thresholding skin-segmentation method. It is demonstrated that for lesions with a range of different border irregularity properties, the k-means clustering and fuzzy k-means clustering segmentation methods provide the best performance over a range of signal to noise ratios. The proposed segmentation techniques are also demonstrated to have similar performance when tested on real skin lesions representing high-resolution ELM images. This study suggests that the segmentation results obtained using a combination of low-pass frequency filtering and k-means or fuzzy k-means clustering are superior to the result that would be obtained by using k-means or fuzzy k-means clustering segmentation methods alone. © 2011 John Wiley & Sons A/S.

  17. Big Data GPU-Driven Parallel Processing Spatial and Spatio-Temporal Clustering Algorithms

    Science.gov (United States)

    Konstantaras, Antonios; Skounakis, Emmanouil; Kilty, James-Alexander; Frantzeskakis, Theofanis; Maravelakis, Emmanuel

    2016-04-01

    Advances in graphics processing units' technology towards encompassing parallel architectures [1], comprised of thousands of cores and multiples of parallel threads, provide the foundation in terms of hardware for the rapid processing of various parallel applications regarding seismic big data analysis. Seismic data are normally stored as collections of vectors in massive matrices, growing rapidly in size as wider areas are covered, denser recording networks are being established and decades of data are being compiled together [2]. Yet, many processes regarding seismic data analysis are performed on each seismic event independently or as distinct tiles [3] of specific grouped seismic events within a much larger data set. Such processes, independent of one another can be performed in parallel narrowing down processing times drastically [1,3]. This research work presents the development and implementation of three parallel processing algorithms using Cuda C [4] for the investigation of potentially distinct seismic regions [5,6] present in the vicinity of the southern Hellenic seismic arc. The algorithms, programmed and executed in parallel comparatively, are the: fuzzy k-means clustering with expert knowledge [7] in assigning overall clusters' number; density-based clustering [8]; and a selves-developed spatio-temporal clustering algorithm encompassing expert [9] and empirical knowledge [10] for the specific area under investigation. Indexing terms: GPU parallel programming, Cuda C, heterogeneous processing, distinct seismic regions, parallel clustering algorithms, spatio-temporal clustering References [1] Kirk, D. and Hwu, W.: 'Programming massively parallel processors - A hands-on approach', 2nd Edition, Morgan Kaufman Publisher, 2013 [2] Konstantaras, A., Valianatos, F., Varley, M.R. and Makris, J.P.: 'Soft-Computing Modelling of Seismicity in the Southern Hellenic Arc', Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [3] Papadakis, S. and

  18. A Spectrum Sensing Method Based on Signal Feature and Clustering Algorithm in Cognitive Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yongwei Zhang

    2017-01-01

    Full Text Available In order to solve the problem of difficulty in determining the threshold in spectrum sensing technologies based on the random matrix theory, a spectrum sensing method based on clustering algorithm and signal feature is proposed for Cognitive Wireless Multimedia Sensor Networks. Firstly, the wireless communication signal features are obtained according to the sampling signal covariance matrix. Then, the clustering algorithm is used to classify and test the signal features. Different signal features and clustering algorithms are compared in this paper. The experimental results show that the proposed method has better sensing performance.

  19. The efficiency of average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling in identifying homogeneous precipitation catchments

    Science.gov (United States)

    Chuan, Zun Liang; Ismail, Noriszura; Shinyie, Wendy Ling; Lit Ken, Tan; Fam, Soo-Fen; Senawi, Azlyna; Yusoff, Wan Nur Syahidah Wan

    2018-04-01

    Due to the limited of historical precipitation records, agglomerative hierarchical clustering algorithms widely used to extrapolate information from gauged to ungauged precipitation catchments in yielding a more reliable projection of extreme hydro-meteorological events such as extreme precipitation events. However, identifying the optimum number of homogeneous precipitation catchments accurately based on the dendrogram resulted using agglomerative hierarchical algorithms are very subjective. The main objective of this study is to propose an efficient regionalized algorithm to identify the homogeneous precipitation catchments for non-stationary precipitation time series. The homogeneous precipitation catchments are identified using average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling, while uncentered correlation coefficient as the similarity measure. The regionalized homogeneous precipitation is consolidated using K-sample Anderson Darling non-parametric test. The analysis result shows the proposed regionalized algorithm performed more better compared to the proposed agglomerative hierarchical clustering algorithm in previous studies.

  20. A Smartphone Indoor Localization Algorithm Based on WLAN Location Fingerprinting with Feature Extraction and Clustering.

    Science.gov (United States)

    Luo, Junhai; Fu, Liang

    2017-06-09

    With the development of communication technology, the demand for location-based services is growing rapidly. This paper presents an algorithm for indoor localization based on Received Signal Strength (RSS), which is collected from Access Points (APs). The proposed localization algorithm contains the offline information acquisition phase and online positioning phase. Firstly, the AP selection algorithm is reviewed and improved based on the stability of signals to remove useless AP; secondly, Kernel Principal Component Analysis (KPCA) is analyzed and used to remove the data redundancy and maintain useful characteristics for nonlinear feature extraction; thirdly, the Affinity Propagation Clustering (APC) algorithm utilizes RSS values to classify data samples and narrow the positioning range. In the online positioning phase, the classified data will be matched with the testing data to determine the position area, and the Maximum Likelihood (ML) estimate will be employed for precise positioning. Eventually, the proposed algorithm is implemented in a real-world environment for performance evaluation. Experimental results demonstrate that the proposed algorithm improves the accuracy and computational complexity.

  1. A Smartphone Indoor Localization Algorithm Based on WLAN Location Fingerprinting with Feature Extraction and Clustering

    Directory of Open Access Journals (Sweden)

    Junhai Luo

    2017-06-01

    Full Text Available With the development of communication technology, the demand for location-based services is growing rapidly. This paper presents an algorithm for indoor localization based on Received Signal Strength (RSS, which is collected from Access Points (APs. The proposed localization algorithm contains the offline information acquisition phase and online positioning phase. Firstly, the AP selection algorithm is reviewed and improved based on the stability of signals to remove useless AP; secondly, Kernel Principal Component Analysis (KPCA is analyzed and used to remove the data redundancy and maintain useful characteristics for nonlinear feature extraction; thirdly, the Affinity Propagation Clustering (APC algorithm utilizes RSS values to classify data samples and narrow the positioning range. In the online positioning phase, the classified data will be matched with the testing data to determine the position area, and the Maximum Likelihood (ML estimate will be employed for precise positioning. Eventually, the proposed algorithm is implemented in a real-world environment for performance evaluation. Experimental results demonstrate that the proposed algorithm improves the accuracy and computational complexity.

  2. An image segmentation method based on fuzzy C-means clustering and Cuckoo search algorithm

    Science.gov (United States)

    Wang, Mingwei; Wan, Youchuan; Gao, Xianjun; Ye, Zhiwei; Chen, Maolin

    2018-04-01

    Image segmentation is a significant step in image analysis and machine vision. Many approaches have been presented in this topic; among them, fuzzy C-means (FCM) clustering is one of the most widely used methods for its high efficiency and ambiguity of images. However, the success of FCM could not be guaranteed because it easily traps into local optimal solution. Cuckoo search (CS) is a novel evolutionary algorithm, which has been tested on some optimization problems and proved to be high-efficiency. Therefore, a new segmentation technique using FCM and blending of CS algorithm is put forward in the paper. Further, the proposed method has been measured on several images and compared with other existing FCM techniques such as genetic algorithm (GA) based FCM and particle swarm optimization (PSO) based FCM in terms of fitness value. Experimental results indicate that the proposed method is robust, adaptive and exhibits the better performance than other methods involved in the paper.

  3. Markov processes and controlled Markov chains

    CERN Document Server

    Filar, Jerzy; Chen, Anyue

    2002-01-01

    The general theory of stochastic processes and the more specialized theory of Markov processes evolved enormously in the second half of the last century. In parallel, the theory of controlled Markov chains (or Markov decision processes) was being pioneered by control engineers and operations researchers. Researchers in Markov processes and controlled Markov chains have been, for a long time, aware of the synergies between these two subject areas. However, this may be the first volume dedicated to highlighting these synergies and, almost certainly, it is the first volume that emphasizes the contributions of the vibrant and growing Chinese school of probability. The chapters that appear in this book reflect both the maturity and the vitality of modern day Markov processes and controlled Markov chains. They also will provide an opportunity to trace the connections that have emerged between the work done by members of the Chinese school of probability and the work done by the European, US, Central and South Ameri...

  4. Maximizing Entropy over Markov Processes

    DEFF Research Database (Denmark)

    Biondi, Fabrizio; Legay, Axel; Nielsen, Bo Friis

    2013-01-01

    The channel capacity of a deterministic system with confidential data is an upper bound on the amount of bits of data an attacker can learn from the system. We encode all possible attacks to a system using a probabilistic specification, an Interval Markov Chain. Then the channel capacity...... as a reward function, a polynomial algorithm to verify the existence of an system maximizing entropy among those respecting a specification, a procedure for the maximization of reward functions over Interval Markov Chains and its application to synthesize an implementation maximizing entropy. We show how...... to use Interval Markov Chains to model abstractions of deterministic systems with confidential data, and use the above results to compute their channel capacity. These results are a foundation for ongoing work on computing channel capacity for abstractions of programs derived from code....

  5. Maximizing entropy over Markov processes

    DEFF Research Database (Denmark)

    Biondi, Fabrizio; Legay, Axel; Nielsen, Bo Friis

    2014-01-01

    The channel capacity of a deterministic system with confidential data is an upper bound on the amount of bits of data an attacker can learn from the system. We encode all possible attacks to a system using a probabilistic specification, an Interval Markov Chain. Then the channel capacity...... as a reward function, a polynomial algorithm to verify the existence of a system maximizing entropy among those respecting a specification, a procedure for the maximization of reward functions over Interval Markov Chains and its application to synthesize an implementation maximizing entropy. We show how...... to use Interval Markov Chains to model abstractions of deterministic systems with confidential data, and use the above results to compute their channel capacity. These results are a foundation for ongoing work on computing channel capacity for abstractions of programs derived from code. © 2014 Elsevier...

  6. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    Science.gov (United States)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  7. An Efficient MapReduce-Based Parallel Clustering Algorithm for Distributed Traffic Subarea Division

    Directory of Open Access Journals (Sweden)

    Dawen Xia

    2015-01-01

    Full Text Available Traffic subarea division is vital for traffic system management and traffic network analysis in intelligent transportation systems (ITSs. Since existing methods may not be suitable for big traffic data processing, this paper presents a MapReduce-based Parallel Three-Phase K-Means (Par3PKM algorithm for solving traffic subarea division problem on a widely adopted Hadoop distributed computing platform. Specifically, we first modify the distance metric and initialization strategy of K-Means and then employ a MapReduce paradigm to redesign the optimized K-Means algorithm for parallel clustering of large-scale taxi trajectories. Moreover, we propose a boundary identifying method to connect the borders of clustering results for each cluster. Finally, we divide traffic subarea of Beijing based on real-world trajectory data sets generated by 12,000 taxis in a period of one month using the proposed approach. Experimental evaluation results indicate that when compared with K-Means, Par2PK-Means, and ParCLARA, Par3PKM achieves higher efficiency, more accuracy, and better scalability and can effectively divide traffic subarea with big taxi trajectory data.

  8. A Network-Based Algorithm for Clustering Multivariate Repeated Measures Data

    Science.gov (United States)

    Koslovsky, Matthew; Arellano, John; Schaefer, Caroline; Feiveson, Alan; Young, Millennia; Lee, Stuart

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Astronaut Corps is a unique occupational cohort for which vast amounts of measures data have been collected repeatedly in research or operational studies pre-, in-, and post-flight, as well as during multiple clinical care visits. In exploratory analyses aimed at generating hypotheses regarding physiological changes associated with spaceflight exposure, such as impaired vision, it is of interest to identify anomalies and trends across these expansive datasets. Multivariate clustering algorithms for repeated measures data may help parse the data to identify homogeneous groups of astronauts that have higher risks for a particular physiological change. However, available clustering methods may not be able to accommodate the complex data structures found in NASA data, since the methods often rely on strict model assumptions, require equally-spaced and balanced assessment times, cannot accommodate missing data or differing time scales across variables, and cannot process continuous and discrete data simultaneously. To fill this gap, we propose a network-based, multivariate clustering algorithm for repeated measures data that can be tailored to fit various research settings. Using simulated data, we demonstrate how our method can be used to identify patterns in complex data structures found in practice.

  9. A Markov chain Monte Carlo Expectation Maximization Algorithm for Statistical Analysis of DNA Sequence Evolution with Neighbor-Dependent Substitution Rates

    DEFF Research Database (Denmark)

    Hobolth, Asger

    2008-01-01

    The evolution of DNA sequences can be described by discrete state continuous time Markov processes on a phylogenetic tree. We consider neighbor-dependent evolutionary models where the instantaneous rate of substitution at a site depends on the states of the neighboring sites. Neighbor...

  10. Clustering and Genetic Algorithm Based Hybrid Flowshop Scheduling with Multiple Operations

    Directory of Open Access Journals (Sweden)

    Yingfeng Zhang

    2014-01-01

    Full Text Available This research is motivated by a flowshop scheduling problem of our collaborative manufacturing company for aeronautic products. The heat-treatment stage (HTS and precision forging stage (PFS of the case are selected as a two-stage hybrid flowshop system. In HTS, there are four parallel machines and each machine can process a batch of jobs simultaneously. In PFS, there are two machines. Each machine can install any module of the four modules for processing the workpeices with different sizes. The problem is characterized by many constraints, such as batching operation, blocking environment, and setup time and working time limitations of modules, and so forth. In order to deal with the above special characteristics, the clustering and genetic algorithm is used to calculate the good solution for the two-stage hybrid flowshop problem. The clustering is used to group the jobs according to the processing ranges of the different modules of PFS. The genetic algorithm is used to schedule the optimal sequence of the grouped jobs for the HTS and PFS. Finally, a case study is used to demonstrate the efficiency and effectiveness of the designed genetic algorithm.

  11. Clustering Educational Digital Library Usage Data: A Comparison of Latent Class Analysis and K-Means Algorithms

    Science.gov (United States)

    Xu, Beijie; Recker, Mimi; Qi, Xiaojun; Flann, Nicholas; Ye, Lei

    2013-01-01

    This article examines clustering as an educational data mining method. In particular, two clustering algorithms, the widely used K-means and the model-based Latent Class Analysis, are compared, using usage data from an educational digital library service, the Instructional Architect (IA.usu.edu). Using a multi-faceted approach and multiple data…

  12. A Distributed Algorithm for the Cluster-Based Outlier Detection Using Unsupervised Extreme Learning Machines

    Directory of Open Access Journals (Sweden)

    Xite Wang

    2017-01-01

    Full Text Available Outlier detection is an important data mining task, whose target is to find the abnormal or atypical objects from a given dataset. The techniques for detecting outliers have a lot of applications, such as credit card fraud detection and environment monitoring. Our previous work proposed the Cluster-Based (CB outlier and gave a centralized method using unsupervised extreme learning machines to compute CB outliers. In this paper, we propose a new distributed algorithm for the CB outlier detection (DACB. On the master node, we collect a small number of points from the slave nodes to obtain a threshold. On each slave node, we design a new filtering method that can use the threshold to efficiently speed up the computation. Furthermore, we also propose a ranking method to optimize the order of cluster scanning. At last, the effectiveness and efficiency of the proposed approaches are verified through a plenty of simulation experiments.

  13. Development of a Genetic Algorithm to Automate Clustering of a Dependency Structure Matrix

    Science.gov (United States)

    Rogers, James L.; Korte, John J.; Bilardo, Vincent J.

    2006-01-01

    Much technology assessment and organization design data exists in Microsoft Excel spreadsheets. Tools are needed to put this data into a form that can be used by design managers to make design decisions. One need is to cluster data that is highly coupled. Tools such as the Dependency Structure Matrix (DSM) and a Genetic Algorithm (GA) can be of great benefit. However, no tool currently combines the DSM and a GA to solve the clustering problem. This paper describes a new software tool that interfaces a GA written as an Excel macro with a DSM in spreadsheet format. The results of several test cases are included to demonstrate how well this new tool works.

  14. Implementation of the ALICE HLT hardware cluster finder algorithm in Vivado HLS

    Energy Technology Data Exchange (ETDEWEB)

    Gruell, Frederik; Engel, Heiko; Kebschull, Udo [Infrastructure and Computer Systems in Data Processing, Goethe University Frankfurt (Germany); Collaboration: ALICE-Collaboration

    2016-07-01

    The FastClusterFinder algorithm running in the ALICE High-Level Trigger (HLT) read-out boards extracts clusters from raw data from the Time Projection Chamber (TPC) detector and forwards them to the HLT data processing framework for tracking, event reconstruction and compression. It serves as an early stage of feature extraction in the FPGA of the board. Past and current implementations are written in VHDL on reconfigurable hardware for high throughput and low latency. We examine Vivado HLS, a high-level language that promises an increased developer productivity, as an alternative. The implementation of the application is compared to descriptions in VHDL and MaxJ in terms of productivity, resource usage and maximum clock frequency.

  15. Implementation of Automatic Clustering Algorithm and Fuzzy Time Series in Motorcycle Sales Forecasting

    Science.gov (United States)

    Rasim; Junaeti, E.; Wirantika, R.

    2018-01-01

    Accurate forecasting for the sale of a product depends on the forecasting method used. The purpose of this research is to build motorcycle sales forecasting application using Fuzzy Time Series method combined with interval determination using automatic clustering algorithm. Forecasting is done using the sales data of motorcycle sales in the last ten years. Then the error rate of forecasting is measured using Means Percentage Error (MPE) and Means Absolute Percentage Error (MAPE). The results of forecasting in the one-year period obtained in this study are included in good accuracy.

  16. Clustering Multiple Sclerosis Subgroups with Multifractal Methods and Self-Organizing Map Algorithm

    Science.gov (United States)

    Karaca, Yeliz; Cattani, Carlo

    Magnetic resonance imaging (MRI) is the most sensitive method to detect chronic nervous system diseases such as multiple sclerosis (MS). In this paper, Brownian motion Hölder regularity functions (polynomial, periodic (sine), exponential) for 2D image, such as multifractal methods were applied to MR brain images, aiming to easily identify distressed regions, in MS patients. With these regions, we have proposed an MS classification based on the multifractal method by using the Self-Organizing Map (SOM) algorithm. Thus, we obtained a cluster analysis by identifying pixels from distressed regions in MR images through multifractal methods and by diagnosing subgroups of MS patients through artificial neural networks.

  17. Mobility-Aware and Load Balancing Based Clustering Algorithm for Energy Conservation in MANET

    Institute of Scientific and Technical Information of China (English)

    XU Li; ZHENG Bao-yu; GUO Gong-de

    2005-01-01

    Mobile ad hoc network (MANET) is one of wireless communication network architecture that has received a lot of attention. MANET is characterized by dynamic network topology and limited energy. With mobility-aware and load balancing based clustering algorithm (MLCA), this paper proposes a new topology management strategy to conserve energy. Performance simulation results show that the proposed MLCA strategy can balances the traffic load inside the whole network, so as to prolong the network lifetime, meanly, at the same time, achieve higher throughput ratio and network stability.

  18. Parallel implementation of D-Phylo algorithm for maximum likelihood clusters.

    Science.gov (United States)

    Malik, Shamita; Sharma, Dolly; Khatri, Sunil Kumar

    2017-03-01

    This study explains a newly developed parallel algorithm for phylogenetic analysis of DNA sequences. The newly designed D-Phylo is a more advanced algorithm for phylogenetic analysis using maximum likelihood approach. The D-Phylo while misusing the seeking capacity of k -means keeps away from its real constraint of getting stuck at privately conserved motifs. The authors have tested the behaviour of D-Phylo on Amazon Linux Amazon Machine Image(Hardware Virtual Machine)i2.4xlarge, six central processing unit, 122 GiB memory, 8  ×  800 Solid-state drive Elastic Block Store volume, high network performance up to 15 processors for several real-life datasets. Distributing the clusters evenly on all the processors provides us the capacity to accomplish a near direct speed if there should arise an occurrence of huge number of processors.

  19. [A cloud detection algorithm for MODIS images combining Kmeans clustering and multi-spectral threshold method].

    Science.gov (United States)

    Wang, Wei; Song, Wei-Guo; Liu, Shi-Xing; Zhang, Yong-Ming; Zheng, Hong-Yang; Tian, Wei

    2011-04-01

    An improved method for detecting cloud combining Kmeans clustering and the multi-spectral threshold approach is described. On the basis of landmark spectrum analysis, MODIS data is categorized into two major types initially by Kmeans method. The first class includes clouds, smoke and snow, and the second class includes vegetation, water and land. Then a multi-spectral threshold detection is applied to eliminate interference such as smoke and snow for the first class. The method is tested with MODIS data at different time under different underlying surface conditions. By visual method to test the performance of the algorithm, it was found that the algorithm can effectively detect smaller area of cloud pixels and exclude the interference of underlying surface, which provides a good foundation for the next fire detection approach.

  20. Genetic algorithm with fuzzy clustering for optimization of nuclear reactor problems

    International Nuclear Information System (INIS)

    Machado, Marcelo Dornellas; Sacco, Wagner Figueiredo; Schirru, Roberto

    2000-01-01

    Genetic Algorithms (GAs) are biologically motivated adaptive systems which have been used, with good results, in function optimization. However, traditional GAs rapidly push an artificial population toward convergence. That is, all individuals in the population soon become nearly identical. Niching Methods allow genetic algorithms to maintain a population of diverse individuals. GAs that incorporate these methods are capable of locating multiple, optimal solutions within a single population. The purpose of this study is to introduce a new niching technique based on the fuzzy clustering method FCM, bearing in mind its eventual application in nuclear reactor related problems, specially the nuclear reactor core reload one, which has multiple solutions. tests are performed using widely known test functions and their results show that the new method is quite promising, specially to a future application in real world problems like the nuclear reactor core reload. (author)

  1. Performance Analysis of Combined Methods of Genetic Algorithm and K-Means Clustering in Determining the Value of Centroid

    Science.gov (United States)

    Adya Zizwan, Putra; Zarlis, Muhammad; Budhiarti Nababan, Erna

    2017-12-01

    The determination of Centroid on K-Means Algorithm directly affects the quality of the clustering results. Determination of centroid by using random numbers has many weaknesses. The GenClust algorithm that combines the use of Genetic Algorithms and K-Means uses a genetic algorithm to determine the centroid of each cluster. The use of the GenClust algorithm uses 50% chromosomes obtained through deterministic calculations and 50% is obtained from the generation of random numbers. This study will modify the use of the GenClust algorithm in which the chromosomes used are 100% obtained through deterministic calculations. The results of this study resulted in performance comparisons expressed in Mean Square Error influenced by centroid determination on K-Means method by using GenClust method, modified GenClust method and also classic K-Means.

  2. Automated segmentation of white matter fiber bundles using diffusion tensor imaging data and a new density based clustering algorithm.

    Science.gov (United States)

    Kamali, Tahereh; Stashuk, Daniel

    2016-10-01

    Robust and accurate segmentation of brain white matter (WM) fiber bundles assists in diagnosing and assessing progression or remission of neuropsychiatric diseases such as schizophrenia, autism and depression. Supervised segmentation methods are infeasible in most applications since generating gold standards is too costly. Hence, there is a growing interest in designing unsupervised methods. However, most conventional unsupervised methods require the number of clusters be known in advance which is not possible in most applications. The purpose of this study is to design an unsupervised segmentation algorithm for brain white matter fiber bundles which can automatically segment fiber bundles using intrinsic diffusion tensor imaging data information without considering any prior information or assumption about data distributions. Here, a new density based clustering algorithm called neighborhood distance entropy consistency (NDEC), is proposed which discovers natural clusters within data by simultaneously utilizing both local and global density information. The performance of NDEC is compared with other state of the art clustering algorithms including chameleon, spectral clustering, DBSCAN and k-means using Johns Hopkins University publicly available diffusion tensor imaging data. The performance of NDEC and other employed clustering algorithms were evaluated using dice ratio as an external evaluation criteria and density based clustering validation (DBCV) index as an internal evaluation metric. Across all employed clustering algorithms, NDEC obtained the highest average dice ratio (0.94) and DBCV value (0.71). NDEC can find clusters with arbitrary shapes and densities and consequently can be used for WM fiber bundle segmentation where there is no distinct boundary between various bundles. NDEC may also be used as an effective tool in other pattern recognition and medical diagnostic systems in which discovering natural clusters within data is a necessity. Copyright

  3. Automated spike sorting algorithm based on Laplacian eigenmaps and k-means clustering.

    Science.gov (United States)

    Chah, E; Hok, V; Della-Chiesa, A; Miller, J J H; O'Mara, S M; Reilly, R B

    2011-02-01

    This study presents a new automatic spike sorting method based on feature extraction by Laplacian eigenmaps combined with k-means clustering. The performance of the proposed method was compared against previously reported algorithms such as principal component analysis (PCA) and amplitude-based feature extraction. Two types of classifier (namely k-means and classification expectation-maximization) were incorporated within the spike sorting algorithms, in order to find a suitable classifier for the feature sets. Simulated data sets and in-vivo tetrode multichannel recordings were employed to assess the performance of the spike sorting algorithms. The results show that the proposed algorithm yields significantly improved performance with mean sorting accuracy of 73% and sorting error of 10% compared to PCA which combined with k-means had a sorting accuracy of 58% and sorting error of 10%.A correction was made to this article on 22 February 2011. The spacing of the title was amended on the abstract page. No changes were made to the article PDF and the print version was unaffected.

  4. A Novel Energy-Aware Distributed Clustering Algorithm for Heterogeneous Wireless Sensor Networks in the Mobile Environment.

    Science.gov (United States)

    Gao, Ying; Wkram, Chris Hadri; Duan, Jiajie; Chou, Jarong

    2015-12-10

    In order to prolong the network lifetime, energy-efficient protocols adapted to the features of wireless sensor networks should be used. This paper explores in depth the nature of heterogeneous wireless sensor networks, and finally proposes an algorithm to address the problem of finding an effective pathway for heterogeneous clustering energy. The proposed algorithm implements cluster head selection according to the degree of energy attenuation during the network's running and the degree of candidate nodes' effective coverage on the whole network, so as to obtain an even energy consumption over the whole network for the situation with high degree of coverage. Simulation results show that the proposed clustering protocol has better adaptability to heterogeneous environments than existing clustering algorithms in prolonging the network lifetime.

  5. Accelerating Information Retrieval from Profile Hidden Markov Model Databases.

    Science.gov (United States)

    Tamimi, Ahmad; Ashhab, Yaqoub; Tamimi, Hashem

    2016-01-01

    Profile Hidden Markov Model (Profile-HMM) is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.

  6. Accelerating Information Retrieval from Profile Hidden Markov Model Databases.

    Directory of Open Access Journals (Sweden)

    Ahmad Tamimi

    Full Text Available Profile Hidden Markov Model (Profile-HMM is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.

  7. Optimizing Energy Consumption in Vehicular Sensor Networks by Clustering Using Fuzzy C-Means and Fuzzy Subtractive Algorithms

    Science.gov (United States)

    Ebrahimi, A.; Pahlavani, P.; Masoumi, Z.

    2017-09-01

    Traffic monitoring and managing in urban intelligent transportation systems (ITS) can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC) for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs); moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH), and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM) and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  8. OPTIMIZING ENERGY CONSUMPTION IN VEHICULAR SENSOR NETWORKS BY CLUSTERING USING FUZZY C-MEANS AND FUZZY SUBTRACTIVE ALGORITHMS

    Directory of Open Access Journals (Sweden)

    A. Ebrahimi

    2017-09-01

    Full Text Available Traffic monitoring and managing in urban intelligent transportation systems (ITS can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs; moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH, and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  9. A DISTRIBUTED ENERGY EFFICIENT CLUSTERING ALGORITHM FOR DATA AGGREGATION IN WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Bagher Musavi Shirazi

    2018-06-01

    Full Text Available Wireless sensor networks (WSNs are a new generation of networks typically consisting of a large number of inexpensive nodes with wireless communications. The main purpose of these networks is to collect information from the environment for further processing. Nodes in the network have been equipped with limited battery lifetime, so energy saving is one of the major issues in WSNs. If we balance the load among cluster heads and prevent having an extra load on just a few nodes in the network, we can reach longer network lifetime. One solution to control energy consumption and balance the load among nodes is to use clustering techniques. In this paper, we propose a new distributed energy-efficient clustering algorithm for data aggregation in wireless sensor networks, called Distributed Clustering for Data Aggregation (DCDA. In our new approach, an optimal transmission tree is constructed among sensor nodes with a new greedy method. Base station (BS is the root, cluster heads (CHs and relay nodes are intermediate nodes, and other nodes (cluster member nodes are the leaves of this transmission tree. DCDA balances load among CHs in intra-cluster and inter-cluster data communications using different cluster sizes. For efficient inter-cluster communications, some relay nodes will transfer data between CHs. Energy consumption, distance to the base station, and cluster heads’ centric metric are three main adjustment parameters for the cluster heads election. Simulation results show that the proposed protocol leads to the reduction of individual sensor nodes’ energy consumption and prolongs network lifetime, in comparison with other known methods. ABSTRAK: Rangkaian sensor wayarles (WSN adalah rangkaian generasi baru yang terdiri daripada nod-nod murah komunikasi wayarles. Tujuan rangkaian-rangkaian ini adalah bagi mengumpul maklumat sekeliling untuk proses seterusnya. Nod dalam rangkaian ini dilengkapi bateri kurang jangka hayat, jadi simpanan tenaga

  10. A Novel Method for Decoding Any High-Order Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Fei Ye

    2014-01-01

    Full Text Available This paper proposes a novel method for decoding any high-order hidden Markov model. First, the high-order hidden Markov model is transformed into an equivalent first-order hidden Markov model by Hadar’s transformation. Next, the optimal state sequence of the equivalent first-order hidden Markov model is recognized by the existing Viterbi algorithm of the first-order hidden Markov model. Finally, the optimal state sequence of the high-order hidden Markov model is inferred from the optimal state sequence of the equivalent first-order hidden Markov model. This method provides a unified algorithm framework for decoding hidden Markov models including the first-order hidden Markov model and any high-order hidden Markov model.

  11. KANTS: a stigmergic ant algorithm for cluster analysis and swarm art.

    Science.gov (United States)

    Fernandes, Carlos M; Mora, Antonio M; Merelo, Juan J; Rosa, Agostinho C

    2014-06-01

    KANTS is a swarm intelligence clustering algorithm inspired by the behavior of social insects. It uses stigmergy as a strategy for clustering large datasets and, as a result, displays a typical behavior of complex systems: self-organization and global patterns emerging from the local interaction of simple units. This paper introduces a simplified version of KANTS and describes recent experiments with the algorithm in the context of a contemporary artistic and scientific trend called swarm art, a type of generative art in which swarm intelligence systems are used to create artwork or ornamental objects. KANTS is used here for generating color drawings from the input data that represent real-world phenomena, such as electroencephalogram sleep data. However, the main proposal of this paper is an art project based on well-known abstract paintings, from which the chromatic values are extracted and used as input. Colors and shapes are therefore reorganized by KANTS, which generates its own interpretation of the original artworks. The project won the 2012 Evolutionary Art, Design, and Creativity Competition.

  12. A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm.

    Directory of Open Access Journals (Sweden)

    Daniel M de Brito

    Full Text Available Genomic Islands (GIs are regions of bacterial genomes that are acquired from other organisms by the phenomenon of horizontal transfer. These regions are often responsible for many important acquired adaptations of the bacteria, with great impact on their evolution and behavior. Nevertheless, these adaptations are usually associated with pathogenicity, antibiotic resistance, degradation and metabolism. Identification of such regions is of medical and industrial interest. For this reason, different approaches for genomic islands prediction have been proposed. However, none of them are capable of predicting precisely the complete repertory of GIs in a genome. The difficulties arise due to the changes in performance of different algorithms in the face of the variety of nucleotide distribution in different species. In this paper, we present a novel method to predict GIs that is built upon mean shift clustering algorithm. It does not require any information regarding the number of clusters, and the bandwidth parameter is automatically calculated based on a heuristic approach. The method was implemented in a new user-friendly tool named MSGIP--Mean Shift Genomic Island Predictor. Genomes of bacteria with GIs discussed in other papers were used to evaluate the proposed method. The application of this tool revealed the same GIs predicted by other methods and also different novel unpredicted islands. A detailed investigation of the different features related to typical GI elements inserted in these new regions confirmed its effectiveness. Stand-alone and user-friendly versions for this new methodology are available at http://msgip.integrativebioinformatics.me.

  13. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks.

    Science.gov (United States)

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-10-13

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.

  14. Are judgments a form of data clustering? Reexamining contrast effects with the k-means algorithm.

    Science.gov (United States)

    Boillaud, Eric; Molina, Guylaine

    2015-04-01

    A number of theories have been proposed to explain in precise mathematical terms how statistical parameters and sequential properties of stimulus distributions affect category ratings. Various contextual factors such as the mean, the midrange, and the median of the stimuli; the stimulus range; the percentile rank of each stimulus; and the order of appearance have been assumed to influence judgmental contrast. A data clustering reinterpretation of judgmental relativity is offered wherein the influence of the initial choice of centroids on judgmental contrast involves 2 combined frequency and consistency tendencies. Accounts of the k-means algorithm are provided, showing good agreement with effects observed on multiple distribution shapes and with a variety of interaction effects relating to the number of stimuli, the number of response categories, and the method of skewing. Experiment 1 demonstrates that centroid initialization accounts for contrast effects obtained with stretched distributions. Experiment 2 demonstrates that the iterative convergence inherent to the k-means algorithm accounts for the contrast reduction observed across repeated blocks of trials. The concept of within-cluster variance minimization is discussed, as is the applicability of a backward k-means calculation method for inferring, from empirical data, the values of the centroids that would serve as a representation of the judgmental context. (c) 2015 APA, all rights reserved.

  15. Consumers' Kansei Needs Clustering Method for Product Emotional Design Based on Numerical Design Structure Matrix and Genetic Algorithms.

    Science.gov (United States)

    Yang, Yan-Pu; Chen, Deng-Kai; Gu, Rong; Gu, Yu-Feng; Yu, Sui-Huai

    2016-01-01

    Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design.

  16. A Correlated Random Effects Model for Non-homogeneous Markov Processes with Nonignorable Missingness.

    Science.gov (United States)

    Chen, Baojiang; Zhou, Xiao-Hua

    2013-05-01

    Life history data arising in clusters with prespecified assessment time points for patients often feature incomplete data since patients may choose to visit the clinic based on their needs. Markov process models provide a useful tool describing disease progression for life history data. The literature mainly focuses on time homogeneous process. In this paper we develop methods to deal with non-homogeneous Markov process with incomplete clustered life history data. A correlated random effects model is developed to deal with the nonignorable missingness, and a time transformation is employed to address the non-homogeneity in the transition model. Maximum likelihood estimate based on the Monte-Carlo EM algorithm is advocated for parameter estimation. Simulation studies demonstrate that the proposed method works well in many situations. We also apply this method to an Alzheimer's disease study.

  17. Bayesian analysis of Markov point processes

    DEFF Research Database (Denmark)

    Berthelsen, Kasper Klitgaard; Møller, Jesper

    2006-01-01

    Recently Møller, Pettitt, Berthelsen and Reeves introduced a new MCMC methodology for drawing samples from a posterior distribution when the likelihood function is only specified up to a normalising constant. We illustrate the method in the setting of Bayesian inference for Markov point processes...... a partially ordered Markov point process as the auxiliary variable. As the method requires simulation from the "unknown" likelihood, perfect simulation algorithms for spatial point processes become useful....

  18. 2D evaluation of spectral LIBS data derived from heterogeneous materials using cluster algorithm

    Science.gov (United States)

    Gottlieb, C.; Millar, S.; Grothe, S.; Wilsch, G.

    2017-08-01

    Laser-induced Breakdown Spectroscopy (LIBS) is capable of providing spatially resolved element maps in regard to the chemical composition of the sample. The evaluation of heterogeneous materials is often a challenging task, especially in the case of phase boundaries. In order to determine information about a certain phase of a material, the need for a method that offers an objective evaluation is necessary. This paper will introduce a cluster algorithm in the case of heterogeneous building materials (concrete) to separate the spectral information of non-relevant aggregates and cement matrix. In civil engineering, the information about the quantitative ingress of harmful species like Cl-, Na+ and SO42- is of great interest in the evaluation of the remaining lifetime of structures (Millar et al., 2015; Wilsch et al., 2005). These species trigger different damage processes such as the alkali-silica reaction (ASR) or the chloride-induced corrosion of the reinforcement. Therefore, a discrimination between the different phases, mainly cement matrix and aggregates, is highly important (Weritz et al., 2006). For the 2D evaluation, the expectation-maximization-algorithm (EM algorithm; Ester and Sander, 2000) has been tested for the application presented in this work. The method has been introduced and different figures of merit have been presented according to recommendations given in Haddad et al. (2014). Advantages of this method will be highlighted. After phase separation, non-relevant information can be excluded and only the wanted phase displayed. Using a set of samples with known and unknown composition, the EM-clustering method has been validated regarding to Gustavo González and Ángeles Herrador (2007).

  19. Developing the fuzzy c-means clustering algorithm based on maximum entropy for multitarget tracking in a cluttered environment

    Science.gov (United States)

    Chen, Xiao; Li, Yaan; Yu, Jing; Li, Yuxing

    2018-01-01

    For fast and more effective implementation of tracking multiple targets in a cluttered environment, we propose a multiple targets tracking (MTT) algorithm called maximum entropy fuzzy c-means clustering joint probabilistic data association that combines fuzzy c-means clustering and the joint probabilistic data association (PDA) algorithm. The algorithm uses the membership value to express the probability of the target originating from measurement. The membership value is obtained through fuzzy c-means clustering objective function optimized by the maximum entropy principle. When considering the effect of the public measurement, we use a correction factor to adjust the association probability matrix to estimate the state of the target. As this algorithm avoids confirmation matrix splitting, it can solve the high computational load problem of the joint PDA algorithm. The results of simulations and analysis conducted for tracking neighbor parallel targets and cross targets in a different density cluttered environment show that the proposed algorithm can realize MTT quickly and efficiently in a cluttered environment. Further, the performance of the proposed algorithm remains constant with increasing process noise variance. The proposed algorithm has the advantages of efficiency and low computational load, which can ensure optimum performance when tracking multiple targets in a dense cluttered environment.

  20. Extended Traffic Crash Modelling through Precision and Response Time Using Fuzzy Clustering Algorithms Compared with Multi-layer Perceptron

    Directory of Open Access Journals (Sweden)

    Iman Aghayan

    2012-11-01

    Full Text Available This paper compares two fuzzy clustering algorithms – fuzzy subtractive clustering and fuzzy C-means clustering – to a multi-layer perceptron neural network for their ability to predict the severity of crash injuries and to estimate the response time on the traffic crash data. Four clustering algorithms – hierarchical, K-means, subtractive clustering, and fuzzy C-means clustering – were used to obtain the optimum number of clusters based on the mean silhouette coefficient and R-value before applying the fuzzy clustering algorithms. The best-fit algorithms were selected according to two criteria: precision (root mean square, R-value, mean absolute errors, and sum of square error and response time (t. The highest R-value was obtained for the multi-layer perceptron (0.89, demonstrating that the multi-layer perceptron had a high precision in traffic crash prediction among the prediction models, and that it was stable even in the presence of outliers and overlapping data. Meanwhile, in comparison with other prediction models, fuzzy subtractive clustering provided the lowest value for response time (0.284 second, 9.28 times faster than the time of multi-layer perceptron, meaning that it could lead to developing an on-line system for processing data from detectors and/or a real-time traffic database. The model can be extended through improvements based on additional data through induction procedure.

  1. Markov stochasticity coordinates

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2017-01-01

    Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method–termed Markov Stochasticity Coordinates–is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.

  2. Decisive Markov Chains

    OpenAIRE

    Abdulla, Parosh Aziz; Henda, Noomene Ben; Mayr, Richard

    2007-01-01

    We consider qualitative and quantitative verification problems for infinite-state Markov chains. We call a Markov chain decisive w.r.t. a given set of target states F if it almost certainly eventually reaches either F or a state from which F can no longer be reached. While all finite Markov chains are trivially decisive (for every set F), this also holds for many classes of infinite Markov chains. Infinite Markov chains which contain a finite attractor are decisive w.r.t. every set F. In part...

  3. Markov stochasticity coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo, E-mail: iddo.eliazar@intel.com

    2017-01-15

    Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method–termed Markov Stochasticity Coordinates–is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.

  4. Informational and linguistic analysis of large genomic sequence collections via efficient Hadoop cluster algorithms.

    Science.gov (United States)

    Ferraro Petrillo, Umberto; Roscigno, Gianluca; Cattaneo, Giuseppe; Giancarlo, Raffaele

    2018-06-01

    Information theoretic and compositional/linguistic analysis of genomes have a central role in bioinformatics, even more so since the associated methodologies are becoming very valuable also for epigenomic and meta-genomic studies. The kernel of those methods is based on the collection of k-mer statistics, i.e. how many times each k-mer in {A,C,G,T}k occurs in a DNA sequence. Although this problem is computationally very simple and efficiently solvable on a conventional computer, the sheer amount of data available now in applications demands to resort to parallel and distributed computing. Indeed, those type of algorithms have been developed to collect k-mer statistics in the realm of genome assembly. However, they are so specialized to this domain that they do not extend easily to the computation of informational and linguistic indices, concurrently on sets of genomes. Following the well-established approach in many disciplines, and with a growing success also in bioinformatics, to resort to MapReduce and Hadoop to deal with 'Big Data' problems, we present KCH, the first set of MapReduce algorithms able to perform concurrently informational and linguistic analysis of large collections of genomic sequences on a Hadoop cluster. The benchmarking of KCH that we provide indicates that it is quite effective and versatile. It is also competitive with respect to the parallel and distributed algorithms highly specialized to k-mer statistics collection for genome assembly problems. In conclusion, KCH is a much needed addition to the growing number of algorithms and tools that use MapReduce for bioinformatics core applications. The software, including instructions for running it over Amazon AWS, as well as the datasets are available at http://www.di-srv.unisa.it/KCH. umberto.ferraro@uniroma1.it. Supplementary data are available at Bioinformatics online.

  5. A Monte-Carlo method which is not based on Markov chain algorithm, used to study electrostatic screening of ion potential

    Science.gov (United States)

    Šantić, Branko; Gracin, Davor

    2017-12-01

    A new simple Monte Carlo method is introduced for the study of electrostatic screening by surrounding ions. The proposed method is not based on the generally used Markov chain method for sample generation. Each sample is pristine and there is no correlation with other samples. As the main novelty, the pairs of ions are gradually added to a sample provided that the energy of each ion is within the boundaries determined by the temperature and the size of ions. The proposed method provides reliable results, as demonstrated by the screening of ion in plasma and in water.

  6. Semi-supervised spectral algorithms for community detection in complex networks based on equivalence of clustering methods

    Science.gov (United States)

    Ma, Xiaoke; Wang, Bingbo; Yu, Liang

    2018-01-01

    Community detection is fundamental for revealing the structure-functionality relationship in complex networks, which involves two issues-the quantitative function for community as well as algorithms to discover communities. Despite significant research on either of them, few attempt has been made to establish the connection between the two issues. To attack this problem, a generalized quantification function is proposed for community in weighted networks, which provides a framework that unifies several well-known measures. Then, we prove that the trace optimization of the proposed measure is equivalent with the objective functions of algorithms such as nonnegative matrix factorization, kernel K-means as well as spectral clustering. It serves as the theoretical foundation for designing algorithms for community detection. On the second issue, a semi-supervised spectral clustering algorithm is developed by exploring the equivalence relation via combining the nonnegative matrix factorization and spectral clustering. Different from the traditional semi-supervised algorithms, the partial supervision is integrated into the objective of the spectral algorithm. Finally, through extensive experiments on both artificial and real world networks, we demonstrate that the proposed method improves the accuracy of the traditional spectral algorithms in community detection.

  7. Evaluation of the application of BIM technology based on PCA - Q Clustering Algorithm and Choquet Integral

    Directory of Open Access Journals (Sweden)

    Wei Xiaozhao

    2016-03-01

    Full Text Available For the development of the construction industry, the construction of data era is approaching, BIM (building information model with the actual needs of the construction industry has been widely used as a building information clan system software, different software for the practical application of different maturity, through the expert scoring method for the application of BIM technology maturity index mark, establish the evaluation index system, using PCA - Q clustering algorithm for the evaluation index system of classification, comprehensive evaluation in combination with the Choquet integral on the classification of evaluation index system, to achieve a reasonable assessment of the application of BIM technology maturity index. To lay a foundation for the future development of BIM Technology in various fields of construction, at the same time provides direction for the comprehensive application of BIM technology.

  8. Evaluation of Modified Categorical Data Fuzzy Clustering Algorithm on the Wisconsin Breast Cancer Dataset

    Directory of Open Access Journals (Sweden)

    Amir Ahmad

    2016-01-01

    Full Text Available The early diagnosis of breast cancer is an important step in a fight against the disease. Machine learning techniques have shown promise in improving our understanding of the disease. As medical datasets consist of data points which cannot be precisely assigned to a class, fuzzy methods have been useful for studying of these datasets. Sometimes breast cancer datasets are described by categorical features. Many fuzzy clustering algorithms have been developed for categorical datasets. However, in most of these methods Hamming distance is used to define the distance between the two categorical feature values. In this paper, we use a probabilistic distance measure for the distance computation among a pair of categorical feature values. Experiments demonstrate that the distance measure performs better than Hamming distance for Wisconsin breast cancer data.

  9. An Alignment-Free Algorithm in Comparing the Similarity of Protein Sequences Based on Pseudo-Markov Transition Probabilities among Amino Acids.

    Science.gov (United States)

    Li, Yushuang; Song, Tian; Yang, Jiasheng; Zhang, Yi; Yang, Jialiang

    2016-01-01

    In this paper, we have proposed a novel alignment-free method for comparing the similarity of protein sequences. We first encode a protein sequence into a 440 dimensional feature vector consisting of a 400 dimensional Pseudo-Markov transition probability vector among the 20 amino acids, a 20 dimensional content ratio vector, and a 20 dimensional position ratio vector of the amino acids in the sequence. By evaluating the Euclidean distances among the representing vectors, we compare the similarity of protein sequences. We then apply this method into the ND5 dataset consisting of the ND5 protein sequences of 9 species, and the F10 and G11 datasets representing two of the xylanases containing glycoside hydrolase families, i.e., families 10 and 11. As a result, our method achieves a correlation coefficient of 0.962 with the canonical protein sequence aligner ClustalW in the ND5 dataset, much higher than those of other 5 popular alignment-free methods. In addition, we successfully separate the xylanases sequences in the F10 family and the G11 family and illustrate that the F10 family is more heat stable than the G11 family, consistent with a few previous studies. Moreover, we prove mathematically an identity equation involving the Pseudo-Markov transition probability vector and the amino acids content ratio vector.

  10. Observation uncertainty in reversible Markov chains.

    Science.gov (United States)

    Metzner, Philipp; Weber, Marcus; Schütte, Christof

    2010-09-01

    In many applications one is interested in finding a simplified model which captures the essential dynamical behavior of a real life process. If the essential dynamics can be assumed to be (approximately) memoryless then a reasonable choice for a model is a Markov model whose parameters are estimated by means of Bayesian inference from an observed time series. We propose an efficient Monte Carlo Markov chain framework to assess the uncertainty of the Markov model and related observables. The derived Gibbs sampler allows for sampling distributions of transition matrices subject to reversibility and/or sparsity constraints. The performance of the suggested sampling scheme is demonstrated and discussed for a variety of model examples. The uncertainty analysis of functions of the Markov model under investigation is discussed in application to the identification of conformations of the trialanine molecule via Robust Perron Cluster Analysis (PCCA+) .

  11. Relationship between clustering and algorithmic phase transitions in the random k-XORSAT model and its NP-complete extensions

    International Nuclear Information System (INIS)

    Altarelli, F; Monasson, R; Zamponi, F

    2008-01-01

    We study the performances of stochastic heuristic search algorithms on Uniquely Extendible Constraint Satisfaction Problems with random inputs. We show that, for any heuristic preserving the Poissonian nature of the underlying instance, the (heuristic-dependent) largest ratio α a of constraints per variables for which a search algorithm is likely to find solutions is smaller than the critical ratio α d above which solutions are clustered and highly correlated. In addition we show that the clustering ratio can be reached when the number k of variables per constraints goes to infinity by the so-called Generalized Unit Clause heuristic

  12. Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.

    Science.gov (United States)

    Lan, Haidong; Chan, Yuandong; Xu, Kai; Schmidt, Bertil; Peng, Shaoliang; Liu, Weiguo

    2016-07-19

    Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data parallelism, thread-level coarse-grained parallelism, and vector-level fine-grained parallelism. Furthermore, we re-organize the sequence datasets and use Xeon Phi shuffle operations to improve I/O efficiency. Evaluations show that our method achieves a peak overall performance up to 220 GCUPS for scanning real protein sequence databanks on a single node consisting of two Intel E5-2620 CPUs and two Intel Xeon Phi 7110P cards. It also exhibits good scalability in terms of sequence length and size, and number of compute nodes for both database scanning and multiple sequence alignment. Furthermore, the achieved performance is highly competitive in comparison to optimized Xeon Phi and GPU implementations. Our implementation is available at https://github.com/turbo0628/LSDBS-mpi .

  13. a Novel 3d Intelligent Fuzzy Algorithm Based on Minkowski-Clustering

    Science.gov (United States)

    Toori, S.; Esmaeily, A.

    2017-09-01

    Assessing and monitoring the state of the earth surface is a key requirement for global change research. In this paper, we propose a new consensus fuzzy clustering algorithm that is based on the Minkowski distance. This research concentrates on Tehran's vegetation mass and its changes during 29 years using remote sensing technology. The main purpose of this research is to evaluate the changes in vegetation mass using a new process by combination of intelligent NDVI fuzzy clustering and Minkowski distance operation. The dataset includes the images of Landsat8 and Landsat TM, from 1989 to 2016. For each year three images of three continuous days were used to identify vegetation impact and recovery. The result was a 3D NDVI image, with one dimension for each day NDVI. The next step was the classification procedure which is a complicated process of categorizing pixels into a finite number of separate classes, based on their data values. If a pixel satisfies a certain set of standards, the pixel is allocated to the class that corresponds to those criteria. This method is less sensitive to noise and can integrate solutions from multiple samples of data or attributes for processing data in the processing industry. The result was a fuzzy one dimensional image. This image was also computed for the next 28 years. The classification was done in both specified urban and natural park areas of Tehran. Experiments showed that our method worked better in classifying image pixels in comparison with the standard classification methods.

  14. A Multiple-Label Guided Clustering Algorithm for Historical Document Dating and Localization.

    Science.gov (United States)

    He, Sheng; Samara, Petros; Burgers, Jan; Schomaker, Lambert

    2016-11-01

    It is of essential importance for historians to know the date and place of origin of the documents they study. It would be a huge advancement for historical scholars if it would be possible to automatically estimate the geographical and temporal provenance of a handwritten document by inferring them from the handwriting style of such a document. We propose a multiple-label guided clustering algorithm to discover the correlations between the concrete low-level visual elements in historical documents and abstract labels, such as date and location. First, a novel descriptor, called histogram of orientations of handwritten strokes, is proposed to extract and describe the visual elements, which is built on a scale-invariant polar-feature space. In addition, the multi-label self-organizing map (MLSOM) is proposed to discover the correlations between the low-level visual elements and their labels in a single framework. Our proposed MLSOM can be used to predict the labels directly. Moreover, the MLSOM can also be considered as a pre-structured clustering method to build a codebook, which contains more discriminative information on date and geography. The experimental results on the medieval paleographic scale data set demonstrate that our method achieves state-of-the-art results.

  15. A comparative analysis of clustering algorithms: O{sub 2} migration in truncated hemoglobin I from transition networks

    Energy Technology Data Exchange (ETDEWEB)

    Cazade, Pierre-André; Berezovska, Ganna; Meuwly, Markus, E-mail: m.meuwly@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Zheng, Wenwei; Clementi, Cecilia [Department of Chemistry, Rice University, 6100 Main St., Houston, Texas 77005 (United States); Prada-Gracia, Diego; Rao, Francesco [School of Soft Matter Research, Freiburg Institute for Advanced Studies, Albertstrasse 19, 79104 Freiburg im Breisgau (Germany)

    2015-01-14

    The ligand migration network for O{sub 2}–diffusion in truncated Hemoglobin N is analyzed based on three different clustering schemes. For coordinate-based clustering, the conventional k–means and the kinetics-based Markov Clustering (MCL) methods are employed, whereas the locally scaled diffusion map (LSDMap) method is a collective-variable-based approach. It is found that all three methods agree well in their geometrical definition of the most important docking site, and all experimentally known docking sites are recovered by all three methods. Also, for most of the states, their population coincides quite favourably, whereas the kinetics of and between the states differs. One of the major differences between k–means and MCL clustering on the one hand and LSDMap on the other is that the latter finds one large primary cluster containing the Xe1a, IS1, and ENT states. This is related to the fact that the motion within the state occurs on similar time scales, whereas structurally the state is found to be quite diverse. In agreement with previous explicit atomistic simulations, the Xe3 pocket is found to be a highly dynamical site which points to its potential role as a hub in the network. This is also highlighted in the fact that LSDMap cannot identify this state. First passage time distributions from MCL clusterings using a one- (ligand-position) and two-dimensional (ligand-position and protein-structure) descriptor suggest that ligand- and protein-motions are coupled. The benefits and drawbacks of the three methods are discussed in a comparative fashion and highlight that depending on the questions at hand the best-performing method for a particular data set may differ.

  16. Hybrid clustering based fuzzy structure for vibration control - Part 1: A novel algorithm for building neuro-fuzzy system

    Science.gov (United States)

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-01-01

    This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.

  17. Utility of K-Means clustering algorithm in differentiating apparent diffusion coefficient values between benign and malignant neck pathologies

    Science.gov (United States)

    Srinivasan, A.; Galbán, C.J.; Johnson, T.D.; Chenevert, T.L.; Ross, B.D.; Mukherji, S.K.

    2014-01-01

    Purpose The objective of our study was to analyze the differences between apparent diffusion coefficient (ADC) partitions (created using the K-Means algorithm) between benign and malignant neck lesions and evaluate its benefit in distinguishing these entities. Material and methods MRI studies of 10 benign and 10 malignant proven neck pathologies were post-processed on a PC using in-house software developed in MATLAB (The MathWorks, Inc., Natick, MA). Lesions were manually contoured by two neuroradiologists with the ADC values within each lesion clustered into two (low ADC-ADCL, high ADC-ADCH) and three partitions (ADCL, intermediate ADC-ADCI, ADCH) using the K-Means clustering algorithm. An unpaired two-tailed Student’s t-test was performed for all metrics to determine statistical differences in the means between the benign and malignant pathologies. Results Statistically significant difference between the mean ADCL clusters in benign and malignant pathologies was seen in the 3 cluster models of both readers (p=0.03, 0.022 respectively) and the 2 cluster model of reader 2 (p=0.04) with the other metrics (ADCH, ADCI, whole lesion mean ADC) not revealing any significant differences. Receiver operating characteristics curves demonstrated the quantitative difference in mean ADCH and ADCL in both the 2 and 3 cluster models to be predictive of malignancy (2 clusters: p=0.008, area under curve=0.850, 3 clusters: p=0.01, area under curve=0.825). Conclusion The K-Means clustering algorithm that generates partitions of large datasets may provide a better characterization of neck pathologies and may be of additional benefit in distinguishing benign and malignant neck pathologies compared to whole lesion mean ADC alone. PMID:20007723

  18. Utility of the k-means clustering algorithm in differentiating apparent diffusion coefficient values of benign and malignant neck pathologies.

    Science.gov (United States)

    Srinivasan, A; Galbán, C J; Johnson, T D; Chenevert, T L; Ross, B D; Mukherji, S K

    2010-04-01

    Does the K-means algorithm do a better job of differentiating benign and malignant neck pathologies compared to only mean ADC? The objective of our study was to analyze the differences between ADC partitions to evaluate whether the K-means technique can be of additional benefit to whole-lesion mean ADC alone in distinguishing benign and malignant neck pathologies. MR imaging studies of 10 benign and 10 malignant proved neck pathologies were postprocessed on a PC by using in-house software developed in Matlab. Two neuroradiologists manually contoured the lesions, with the ADC values within each lesion clustered into 2 (low, ADC-ADC(L); high, ADC-ADC(H)) and 3 partitions (ADC(L); intermediate, ADC-ADC(I); ADC(H)) by using the K-means clustering algorithm. An unpaired 2-tailed Student t test was performed for all metrics to determine statistical differences in the means of the benign and malignant pathologies. A statistically significant difference between the mean ADC(L) clusters in benign and malignant pathologies was seen in the 3-cluster models of both readers (P = .03 and .022, respectively) and the 2-cluster model of reader 2 (P = .04), with the other metrics (ADC(H), ADC(I); whole-lesion mean ADC) not revealing any significant differences. ROC curves demonstrated the quantitative differences in mean ADC(H) and ADC(L) in both the 2- and 3-cluster models to be predictive of malignancy (2 clusters: P = .008, area under curve = 0.850; 3 clusters: P = .01, area under curve = 0.825). The K-means clustering algorithm that generates partitions of large datasets may provide a better characterization of neck pathologies and may be of additional benefit in distinguishing benign and malignant neck pathologies compared with whole-lesion mean ADC alone.

  19. Scalable Algorithms for Clustering Large Geospatiotemporal Data Sets on Manycore Architectures

    Science.gov (United States)

    Mills, R. T.; Hoffman, F. M.; Kumar, J.; Sreepathi, S.; Sripathi, V.

    2016-12-01

    The increasing availability of high-resolution geospatiotemporal data sets from sources such as observatory networks, remote sensing platforms, and computational Earth system models has opened new possibilities for knowledge discovery using data sets fused from disparate sources. Traditional algorithms and computing platforms are impractical for the analysis and synthesis of data sets of this size; however, new algorithmic approaches that can effectively utilize the complex memory hierarchies and the extremely high levels of available parallelism in state-of-the-art high-performance computing platforms can enable such analysis. We describe a massively parallel implementation of accelerated k-means clustering and some optimizations to boost computational intensity and utilization of wide SIMD lanes on state-of-the art multi- and manycore processors, including the second-generation Intel Xeon Phi ("Knights Landing") processor based on the Intel Many Integrated Core (MIC) architecture, which includes several new features, including an on-package high-bandwidth memory. We also analyze the code in the context of a few practical applications to the analysis of climatic and remotely-sensed vegetation phenology data sets, and speculate on some of the new applications that such scalable analysis methods may enable.

  20. A New GMRES(m Method for Markov Chains

    Directory of Open Access Journals (Sweden)

    Bing-Yuan Pu

    2013-01-01

    Full Text Available This paper presents a class of new accelerated restarted GMRES method for calculating the stationary probability vector of an irreducible Markov chain. We focus on the mechanism of this new hybrid method by showing how to periodically combine the GMRES and vector extrapolation method into a much efficient one for improving the convergence rate in Markov chain problems. Numerical experiments are carried out to demonstrate the efficiency of our new algorithm on several typical Markov chain problems.

  1. Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing

    International Nuclear Information System (INIS)

    Xu, Zuwei; Zhao, Haibo; Zheng, Chuguang

    2015-01-01

    This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule provides a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are

  2. Markov chains and mixing times

    CERN Document Server

    Levin, David A

    2017-01-01

    Markov Chains and Mixing Times is a magical book, managing to be both friendly and deep. It gently introduces probabilistic techniques so that an outsider can follow. At the same time, it is the first book covering the geometric theory of Markov chains and has much that will be new to experts. It is certainly THE book that I will use to teach from. I recommend it to all comers, an amazing achievement. -Persi Diaconis, Mary V. Sunseri Professor of Statistics and Mathematics, Stanford University Mixing times are an active research topic within many fields from statistical physics to the theory of algorithms, as well as having intrinsic interest within mathematical probability and exploiting discrete analogs of important geometry concepts. The first edition became an instant classic, being accessible to advanced undergraduates and yet bringing readers close to current research frontiers. This second edition adds chapters on monotone chains, the exclusion process and hitting time parameters. Having both exercises...

  3. Markov bridges, bisection and variance reduction

    DEFF Research Database (Denmark)

    Asmussen, Søren; Hobolth, Asger

    . In this paper we firstly consider the problem of generating sample paths from a continuous-time Markov chain conditioned on the endpoints using a new algorithm based on the idea of bisection. Secondly we study the potential of the bisection algorithm for variance reduction. In particular, examples are presented......Time-continuous Markov jump processes is a popular modelling tool in disciplines ranging from computational finance and operations research to human genetics and genomics. The data is often sampled at discrete points in time, and it can be useful to simulate sample paths between the datapoints...

  4. AHIMSA - Ad hoc histogram information measure sensing algorithm for feature selection in the context of histogram inspired clustering techniques

    Science.gov (United States)

    Dasarathy, B. V.

    1976-01-01

    An algorithm is proposed for dimensionality reduction in the context of clustering techniques based on histogram analysis. The approach is based on an evaluation of the hills and valleys in the unidimensional histograms along the different features and provides an economical means of assessing the significance of the features in a nonparametric unsupervised data environment. The method has relevance to remote sensing applications.

  5. Semi-Markov processes

    CERN Document Server

    Grabski

    2014-01-01

    Semi-Markov Processes: Applications in System Reliability and Maintenance is a modern view of discrete state space and continuous time semi-Markov processes and their applications in reliability and maintenance. The book explains how to construct semi-Markov models and discusses the different reliability parameters and characteristics that can be obtained from those models. The book is a useful resource for mathematicians, engineering practitioners, and PhD and MSc students who want to understand the basic concepts and results of semi-Markov process theory. Clearly defines the properties and

  6. Model Checking Markov Reward Models with Impulse Rewards

    NARCIS (Netherlands)

    Cloth, Lucia; Katoen, Joost-Pieter; Khattri, Maneesh; Pulungan, Reza; Bondavalli, Andrea; Haverkort, Boudewijn; Tang, Dong

    This paper considers model checking of Markov reward models (MRMs), continuous-time Markov chains with state rewards as well as impulse rewards. The reward extension of the logic CSL (Continuous Stochastic Logic) is interpreted over such MRMs, and two numerical algorithms are provided to check the

  7. Recursive smoothers for hidden discrete-time Markov chains

    Directory of Open Access Journals (Sweden)

    Lakhdar Aggoun

    2005-01-01

    Full Text Available We consider a discrete-time Markov chain observed through another Markov chain. The proposed model extends models discussed by Elliott et al. (1995. We propose improved recursive formulae to update smoothed estimates of processes related to the model. These recursive estimates are used to update the parameter of the model via the expectation maximization (EM algorithm.

  8. A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search Using k-Means Clustering and Triangle Inequality.

    Science.gov (United States)

    Wang, Xueyi

    2012-02-08

    The k-nearest neighbors (k-NN) algorithm is a widely used machine learning method that finds nearest neighbors of a test object in a feature space. We present a new exact k-NN algorithm called kMkNN (k-Means for k-Nearest Neighbors) that uses the k-means clustering and the triangle inequality to accelerate the searching for nearest neighbors in a high dimensional space. The kMkNN algorithm has two stages. In the buildup stage, instead of using complex tree structures such as metric trees, kd-trees, or ball-tree, kMkNN uses a simple k-means clustering method to preprocess the training dataset. In the searching stage, given a query object, kMkNN finds nearest training objects starting from the nearest cluster to the query object and uses the triangle inequality to reduce the distance calculations. Experiments show that the performance of kMkNN is surprisingly good compared to the traditional k-NN algorithm and tree-based k-NN algorithms such as kd-trees and ball-trees. On a collection of 20 datasets with up to 10(6) records and 10(4) dimensions, kMkNN shows a 2-to 80-fold reduction of distance calculations and a 2- to 60-fold speedup over the traditional k-NN algorithm for 16 datasets. Furthermore, kMkNN performs significant better than a kd-tree based k-NN algorithm for all datasets and performs better than a ball-tree based k-NN algorithm for most datasets. The results show that kMkNN is effective for searching nearest neighbors in high dimensional spaces.

  9. A Hybrid Method for Image Segmentation Based on Artificial Fish Swarm Algorithm and Fuzzy c-Means Clustering

    Directory of Open Access Journals (Sweden)

    Li Ma

    2015-01-01

    Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM clustering is one of the popular clustering algorithms for medical image segmentation. However, FCM has the problems of depending on initial clustering centers, falling into local optimal solution easily, and sensitivity to noise disturbance. To solve these problems, this paper proposes a hybrid artificial fish swarm algorithm (HAFSA. The proposed algorithm combines artificial fish swarm algorithm (AFSA with FCM whose advantages of global optimization searching and parallel computing ability of AFSA are utilized to find a superior result. Meanwhile, Metropolis criterion and noise reduction mechanism are introduced to AFSA for enhancing the convergence rate and antinoise ability. The artificial grid graph and Magnetic Resonance Imaging (MRI are used in the experiments, and the experimental results show that the proposed algorithm has stronger antinoise ability and higher precision. A number of evaluation indicators also demonstrate that the effect of HAFSA is more excellent than FCM and suppressed FCM (SFCM.

  10. SDN‐Based Hierarchical Agglomerative Clustering Algorithm for Interference Mitigation in Ultra‐Dense Small Cell Networks

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2018-04-01

    Full Text Available Ultra‐dense small cell networks (UD‐SCNs have been identified as a promising scheme for next‐generation wireless networks capable of meeting the ever‐increasing demand for higher transmission rates and better quality of service. However, UD‐SCNs will inevitably suffer from severe interference among the small cell base stations, which will lower their spectral efficiency. In this paper, we propose a software‐defined networking (SDN‐based hierarchical agglomerative clustering (SDN‐HAC framework, which leverages SDN to centrally control all sub‐channels in the network, and decides on cluster merging using a similarity criterion based on a suitability function. We evaluate the proposed algorithm through simulation. The obtained results show that the proposed algorithm performs well and improves system payoff by 18.19% and 436.34% when compared with the traditional network architecture algorithms and non‐cooperative scenarios, respectively.

  11. The GSAM software: A global search algorithm of minima exploration for the investigation of low lying isomers of clusters

    Energy Technology Data Exchange (ETDEWEB)

    Marchal, Rémi; Carbonnière, Philippe; Pouchan, Claude [Université de Pau et des Pays de l' Adour, IPREM/ECP, UMR CNRS 5254 (France)

    2015-01-22

    The study of atomic clusters has become an increasingly active area of research in the recent years because of the fundamental interest in studying a completely new area that can bridge the gap between atomic and solid state physics. Due to their specific properties, such compounds are of great interest in the field of nanotechnology [1,2]. Here, we would present our GSAM algorithm based on a DFT exploration of the PES to find the low lying isomers of such compounds. This algorithm includes the generation of an intial set of structure from which the most relevant are selected. Moreover, an optimization process, called raking optimization, able to discard step by step all the non physically reasonnable configurations have been implemented to reduce the computational cost of this algorithm. Structural properties of Ga{sub n}Asm clusters will be presented as an illustration of the method.

  12. Explorations of the implementation of a parallel IDW interpolation algorithm in a Linux cluster-based parallel GIS

    Science.gov (United States)

    Huang, Fang; Liu, Dingsheng; Tan, Xicheng; Wang, Jian; Chen, Yunping; He, Binbin

    2011-04-01

    To design and implement an open-source parallel GIS (OP-GIS) based on a Linux cluster, the parallel inverse distance weighting (IDW) interpolation algorithm has been chosen as an example to explore the working model and the principle of algorithm parallel pattern (APP), one of the parallelization patterns for OP-GIS. Based on an analysis of the serial IDW interpolation algorithm of GRASS GIS, this paper has proposed and designed a specific parallel IDW interpolation algorithm, incorporating both single process, multiple data (SPMD) and master/slave (M/S) programming modes. The main steps of the parallel IDW interpolation algorithm are: (1) the master node packages the related information, and then broadcasts it to the slave nodes; (2) each node calculates its assigned data extent along one row using the serial algorithm; (3) the master node gathers the data from all nodes; and (4) iterations continue until all rows have been processed, after which the results are outputted. According to the experiments performed in the course of this work, the parallel IDW interpolation algorithm can attain an efficiency greater than 0.93 compared with similar algorithms, which indicates that the parallel algorithm can greatly reduce processing time and maximize speed and performance.

  13. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both...... the partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  14. Algorithms

    Indian Academy of Sciences (India)

    polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.

  15. Research on Energy-Saving Production Scheduling Based on a Clustering Algorithm for a Forging Enterprise

    Directory of Open Access Journals (Sweden)

    Yifei Tong

    2016-02-01

    Full Text Available Energy efficiency is a buzzword of the 21st century. With the ever growing need for energy efficient and low-carbon production, it is a big challenge for high energy-consumption enterprises to reduce their energy consumption. To this aim, a forging enterprise, DVR (the abbreviation of a forging enterprise, is researched. Firstly, an investigation into the production processes of DVR is given as well as an analysis of forging production. Then, the energy-saving forging scheduling is decomposed into two sub-problems. One is for cutting and machining scheduling, which is similar to traditional machining scheduling. The other one is for forging and heat treatment scheduling. Thirdly, former forging production scheduling is presented and solved based on an improved genetic algorithm. Fourthly, the latter is discussed in detail, followed by proposed dynamic clustering and stacking combination optimization. The proposed stacking optimization requires making the gross weight of forgings as close to the maximum batch capacity as possible. The above research can help reduce the heating times, and increase furnace utilization with high energy efficiency and low carbon emissions.

  16. Fields From Markov Chains

    DEFF Research Database (Denmark)

    Justesen, Jørn

    2005-01-01

    A simple construction of two-dimensional (2-D) fields is presented. Rows and columns are outcomes of the same Markov chain. The entropy can be calculated explicitly.......A simple construction of two-dimensional (2-D) fields is presented. Rows and columns are outcomes of the same Markov chain. The entropy can be calculated explicitly....

  17. A Negative Selection Algorithm Based on Hierarchical Clustering of Self Set and its Application in Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Wen Chen

    2011-08-01

    Full Text Available A negative selection algorithm based on the hierarchical clustering of self set HC-RNSA is introduced in this paper. Several strategies are applied to improve the algorithm performance. First, the self data set is replaced by the self cluster centers to compare with the detector candidates in each cluster level. As the number of self clusters is much less than the self set size, the detector generation efficiency is improved. Second, during the detector generation process, the detector candidates are restricted to the lower coverage space to reduce detector redundancy. In the article, the problem that the distances between antigens coverage to a constant value in the high dimensional space is analyzed, accordingly the Principle Component Analysis (PCA method is used to reduce the data dimension, and the fractional distance function is employed to enhance the distinctiveness between the self and non-self antigens. The detector generation procedure is terminated when the expected non-self coverage is reached. The theory analysis and experimental results demonstrate that the detection rate of HC-RNSA is higher than that of the traditional negative selection algorithms while the false alarm rate and time cost are reduced.

  18. CAF: Cluster algorithm and a-star with fuzzy approach for lifetime enhancement in wireless sensor networks

    KAUST Repository

    Yuan, Y.; Li, C.; Yang, Y.; Zhang, Xiangliang; Li, L.

    2014-01-01

    Energy is a major factor in designing wireless sensor networks (WSNs). In particular, in the real world, battery energy is limited; thus the effective improvement of the energy becomes the key of the routing protocols. Besides, the sensor nodes are always deployed far away from the base station and the transmission energy consumption is index times increasing with the increase of distance as well. This paper proposes a new routing method for WSNs to extend the network lifetime using a combination of a clustering algorithm, a fuzzy approach, and an A-star method. The proposal is divided into two steps. Firstly, WSNs are separated into clusters using the Stable Election Protocol (SEP) method. Secondly, the combined methods of fuzzy inference and A-star algorithm are adopted, taking into account the factors such as the remaining power, the minimum hops, and the traffic numbers of nodes. Simulation results demonstrate that the proposed method has significant effectiveness in terms of balancing energy consumption as well as maximizing the network lifetime by comparing the performance of the A-star and fuzzy (AF) approach, cluster and fuzzy (CF)method, cluster and A-star (CA)method, A-star method, and SEP algorithm under the same routing criteria. 2014 Yali Yuan et al.

  19. CAF: Cluster algorithm and a-star with fuzzy approach for lifetime enhancement in wireless sensor networks

    KAUST Repository

    Yuan, Y.

    2014-04-28

    Energy is a major factor in designing wireless sensor networks (WSNs). In particular, in the real world, battery energy is limited; thus the effective improvement of the energy becomes the key of the routing protocols. Besides, the sensor nodes are always deployed far away from the base station and the transmission energy consumption is index times increasing with the increase of distance as well. This paper proposes a new routing method for WSNs to extend the network lifetime using a combination of a clustering algorithm, a fuzzy approach, and an A-star method. The proposal is divided into two steps. Firstly, WSNs are separated into clusters using the Stable Election Protocol (SEP) method. Secondly, the combined methods of fuzzy inference and A-star algorithm are adopted, taking into account the factors such as the remaining power, the minimum hops, and the traffic numbers of nodes. Simulation results demonstrate that the proposed method has significant effectiveness in terms of balancing energy consumption as well as maximizing the network lifetime by comparing the performance of the A-star and fuzzy (AF) approach, cluster and fuzzy (CF)method, cluster and A-star (CA)method, A-star method, and SEP algorithm under the same routing criteria. 2014 Yali Yuan et al.

  20. Multi-dimensional quasitoeplitz Markov chains

    Directory of Open Access Journals (Sweden)

    Alexander N. Dudin

    1999-01-01

    Full Text Available This paper deals with multi-dimensional quasitoeplitz Markov chains. We establish a sufficient equilibrium condition and derive a functional matrix equation for the corresponding vector-generating function, whose solution is given algorithmically. The results are demonstrated in the form of examples and applications in queues with BMAP-input, which operate in synchronous random environment.

  1. Model Checking Infinite-State Markov Chains

    NARCIS (Netherlands)

    Remke, Anne Katharina Ingrid; Haverkort, Boudewijn R.H.M.; Cloth, L.

    2004-01-01

    In this paper algorithms for model checking CSL (continuous stochastic logic) against infinite-state continuous-time Markov chains of so-called quasi birth-death type are developed. In doing so we extend the applicability of CSL model checking beyond the recently proposed case for finite-state

  2. Model Checking Markov Chains: Techniques and Tools

    NARCIS (Netherlands)

    Zapreev, I.S.

    2008-01-01

    This dissertation deals with four important aspects of model checking Markov chains: the development of efficient model-checking tools, the improvement of model-checking algorithms, the efficiency of the state-space reduction techniques, and the development of simulation-based model-checking

  3. Model Checking Structured Infinite Markov Chains

    NARCIS (Netherlands)

    Remke, Anne Katharina Ingrid

    2008-01-01

    In the past probabilistic model checking hast mostly been restricted to finite state models. This thesis explores the possibilities of model checking with continuous stochastic logic (CSL) on infinite-state Markov chains. We present an in-depth treatment of model checking algorithms for two special

  4. Application of k-means clustering algorithm in grouping the DNA sequences of hepatitis B virus (HBV)

    Science.gov (United States)

    Bustamam, A.; Tasman, H.; Yuniarti, N.; Frisca, Mursidah, I.

    2017-07-01

    Based on WHO data, an estimated of 15 millions people worldwide who are infected with hepatitis B (HBsAg+), which is caused by HBV virus, are also infected by hepatitis D, which is caused by HDV virus. Hepatitis D infection can occur simultaneously with hepatitis B (co infection) or after a person is exposed to chronic hepatitis B (super infection). Since HDV cannot live without HBV, HDV infection is closely related to HBV infection, hence it is very realistic that every effort of prevention against hepatitis B can indirectly prevent hepatitis D. This paper presents clustering of HBV DNA sequences by using k-means clustering algorithm and R programming. Clustering processes are started with collecting HBV DNA sequences from GenBank, then performing extraction HBV DNA sequences using n-mers frequency and furthermore the extraction results are collected as a matrix and normalized using the min-max normalization with interval [0, 1] which will later be used as an input data. The number of clusters is two and the initial centroid selected of the cluster is chosen randomly. In each iteration, the distance of every object to each centroid are calculated using the Euclidean distance and the minimum distance is selected to determine the membership in a cluster until two convergent clusters are created. As the result, the HBV viruses in the first cluster is more virulent than the HBV viruses in the second cluster, so the HBV viruses in the first cluster can potentially evolve with HDV viruses that cause hepatitis D.

  5. Clustering box office movie with Partition Around Medoids (PAM) Algorithm based on Text Mining of Indonesian subtitle

    Science.gov (United States)

    Alfarizy, A. D.; Indahwati; Sartono, B.

    2017-03-01

    Indonesia is the largest Hollywood movie industry target market in Southeast Asia in 2015. Hollywood movies distributed in Indonesia targeted people in all range of ages including children. Low awareness of guiding children while watching movies make them could watch any rated films even the unsuitable ones for their ages. Even after being translated into Bahasa and passed the censorship phase, words that uncomfortable for children to watch still exist. The purpose of this research is to cluster box office Hollywood movies based on Indonesian subtitle, revenue, IMDb user rating and genres as one of the reference for adults to choose right movies for their children to watch. Text mining is used to extract words from the subtitles and count the frequency for three group of words (bad words, sexual words and terror words), while Partition Around Medoids (PAM) Algorithm with Gower similarity coefficient as proximity matrix is used as clustering method. We clustered 624 movies from 2006 until first half of 2016 from IMDb. Cluster with highest silhouette coefficient value (0.36) is the one with 5 clusters. Animation, Adventure and Comedy movies with high revenue like in cluster 5 is recommended for children to watch, while Comedy movies with high revenue like in cluster 4 should be avoided to watch.

  6. A High-Efficiency Uneven Cluster Deployment Algorithm Based on Network Layered for Event Coverage in UWSNs

    Directory of Open Access Journals (Sweden)

    Shanen Yu

    2016-12-01

    Full Text Available Most existing deployment algorithms for event coverage in underwater wireless sensor networks (UWSNs usually do not consider that network communication has non-uniform characteristics on three-dimensional underwater environments. Such deployment algorithms ignore that the nodes are distributed at different depths and have different probabilities for data acquisition, thereby leading to imbalances in the overall network energy consumption, decreasing the network performance, and resulting in poor and unreliable late network operation. Therefore, in this study, we proposed an uneven cluster deployment algorithm based network layered for event coverage. First, according to the energy consumption requirement of the communication load at different depths of the underwater network, we obtained the expected value of deployment nodes and the distribution density of each layer network after theoretical analysis and deduction. Afterward, the network is divided into multilayers based on uneven clusters, and the heterogeneous communication radius of nodes can improve the network connectivity rate. The recovery strategy is used to balance the energy consumption of nodes in the cluster and can efficiently reconstruct the network topology, which ensures that the network has a high network coverage and connectivity rate in a long period of data acquisition. Simulation results show that the proposed algorithm improves network reliability and prolongs network lifetime by significantly reducing the blind movement of overall network nodes while maintaining a high network coverage and connectivity rate.

  7. A comparison of several cluster algorithms on artificial binary data [Part 2]. Scenarios from travel market segmentation. Part 2 (Addition to Working Paper No. 7).

    OpenAIRE

    Dolnicar, Sara; Leisch, Friedrich; Steiner, Gottfried; Weingessel, Andreas

    1998-01-01

    The search for clusters in empirical data is an important and often encountered research problem. Numerous algorithms exist that are able to render groups of objects or individuals. Of course each algorithm has its strengths and weaknesses. In order to identify these crucial points artificial data was generated - based primarily on experience with structures of empirical data - and used as benchmark for evaluating the results of numerous cluster algorithms. This work is an addition to SFB Wor...

  8. Cluster-cluster clustering

    International Nuclear Information System (INIS)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references

  9. A Local Search Algorithm for Clustering in Software as a Service Networks

    NARCIS (Netherlands)

    J.P. van der Gaast (Jelmer); C.A. Rietveld (Niels); A.F. Gabor (Adriana); Y. Zhang (Yingqian)

    2011-01-01

    textabstractIn this paper we present and analyze a model for clustering in networks that offer Software as a Service (SaaS). In this problem, organizations requesting a set of applications have to be assigned to clusters such that the costs of opening clusters and installing the necessary

  10. Robust multi-scale clustering of large DNA microarray datasets with the consensus algorithm

    DEFF Research Database (Denmark)

    Grotkjær, Thomas; Winther, Ole; Regenberg, Birgitte

    2006-01-01

    Motivation: Hierarchical and relocation clustering (e.g. K-means and self-organizing maps) have been successful tools in the display and analysis of whole genome DNA microarray expression data. However, the results of hierarchical clustering are sensitive to outliers, and most relocation methods...... analysis by collecting re-occurring clustering patterns in a co-occurrence matrix. The results show that consensus clustering obtained from clustering multiple times with Variational Bayes Mixtures of Gaussians or K-means significantly reduces the classification error rate for a simulated dataset...

  11. Mitigate the impact of transmitter finite extinction ratio using K-means clustering algorithm for 16QAM signal

    Science.gov (United States)

    Yu, Miao; Li, Yan; Shu, Tong; Zhang, Yifan; Hong, Xiaobin; Qiu, Jifang; Zuo, Yong; Guo, Hongxiang; Li, Wei; Wu, Jian

    2018-02-01

    A method of recognizing 16QAM signal based on k-means clustering algorithm is proposed to mitigate the impact of transmitter finite extinction ratio. There are pilot symbols with 0.39% overhead assigned to be regarded as initial centroids of k-means clustering algorithm. Simulation result in 10 GBaud 16QAM system shows that the proposed method obtains higher precision of identification compared with traditional decision method for finite ER and IQ mismatch. Specially, the proposed method improves the required OSNR by 5.5 dB, 4.5 dB, 4 dB and 3 dB at FEC limit with ER= 12 dB, 16 dB, 20 dB and 24 dB, respectively, and the acceptable bias error and IQ mismatch range is widened by 767% and 360% with ER =16 dB, respectively.

  12. TOWARDS FINDING A NEW KERNELIZED FUZZY C-MEANS CLUSTERING ALGORITHM

    Directory of Open Access Journals (Sweden)

    Samarjit Das

    2014-04-01

    Full Text Available Kernelized Fuzzy C-Means clustering technique is an attempt to improve the performance of the conventional Fuzzy C-Means clustering technique. Recently this technique where a kernel-induced distance function is used as a similarity measure instead of a Euclidean distance which is used in the conventional Fuzzy C-Means clustering technique, has earned popularity among research community. Like the conventional Fuzzy C-Means clustering technique this technique also suffers from inconsistency in its performance due to the fact that here also the initial centroids are obtained based on the randomly initialized membership values of the objects. Our present work proposes a new method where we have applied the Subtractive clustering technique of Chiu as a preprocessor to Kernelized Fuzzy CMeans clustering technique. With this new method we have tried not only to remove the inconsistency of Kernelized Fuzzy C-Means clustering technique but also to deal with the situations where the number of clusters is not predetermined. We have also provided a comparison of our method with the Subtractive clustering technique of Chiu and Kernelized Fuzzy C-Means clustering technique using two validity measures namely Partition Coefficient and Clustering Entropy.

  13. Detecting Structural Breaks using Hidden Markov Models

    DEFF Research Database (Denmark)

    Ntantamis, Christos

    Testing for structural breaks and identifying their location is essential for econometric modeling. In this paper, a Hidden Markov Model (HMM) approach is used in order to perform these tasks. Breaks are defined as the data points where the underlying Markov Chain switches from one state to another....... The estimation of the HMM is conducted using a variant of the Iterative Conditional Expectation-Generalized Mixture (ICE-GEMI) algorithm proposed by Delignon et al. (1997), that permits analysis of the conditional distributions of economic data and allows for different functional forms across regimes...

  14. A Multi-Hop Energy Neutral Clustering Algorithm for Maximizing Network Information Gathering in Energy Harvesting Wireless Sensor Networks.

    Science.gov (United States)

    Yang, Liu; Lu, Yinzhi; Zhong, Yuanchang; Wu, Xuegang; Yang, Simon X

    2015-12-26

    Energy resource limitation is a severe problem in traditional wireless sensor networks (WSNs) because it restricts the lifetime of network. Recently, the emergence of energy harvesting techniques has brought with them the expectation to overcome this problem. In particular, it is possible for a sensor node with energy harvesting abilities to work perpetually in an Energy Neutral state. In this paper, a Multi-hop Energy Neutral Clustering (MENC) algorithm is proposed to construct the optimal multi-hop clustering architecture in energy harvesting WSNs, with the goal of achieving perpetual network operation. All cluster heads (CHs) in the network act as routers to transmit data to base station (BS) cooperatively by a multi-hop communication method. In addition, by analyzing the energy consumption of intra- and inter-cluster data transmission, we give the energy neutrality constraints. Under these constraints, every sensor node can work in an energy neutral state, which in turn provides perpetual network operation. Furthermore, the minimum network data transmission cycle is mathematically derived using convex optimization techniques while the network information gathering is maximal. Simulation results show that our protocol can achieve perpetual network operation, so that the consistent data delivery is guaranteed. In addition, substantial improvements on the performance of network throughput are also achieved as compared to the famous traditional clustering protocol LEACH and recent energy harvesting aware clustering protocols.

  15. A Multi-Hop Energy Neutral Clustering Algorithm for Maximizing Network Information Gathering in Energy Harvesting Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2015-12-01

    Full Text Available Energy resource limitation is a severe problem in traditional wireless sensor networks (WSNs because it restricts the lifetime of network. Recently, the emergence of energy harvesting techniques has brought with them the expectation to overcome this problem. In particular, it is possible for a sensor node with energy harvesting abilities to work perpetually in an Energy Neutral state. In this paper, a Multi-hop Energy Neutral Clustering (MENC algorithm is proposed to construct the optimal multi-hop clustering architecture in energy harvesting WSNs, with the goal of achieving perpetual network operation. All cluster heads (CHs in the network act as routers to transmit data to base station (BS cooperatively by a multi-hop communication method. In addition, by analyzing the energy consumption of intra- and inter-cluster data transmission, we give the energy neutrality constraints. Under these constraints, every sensor node can work in an energy neutral state, which in turn provides perpetual network operation. Furthermore, the minimum network data transmission cycle is mathematically derived using convex optimization techniques while the network information gathering is maximal. Simulation results show that our protocol can achieve perpetual network operation, so that the consistent data delivery is guaranteed. In addition, substantial improvements on the performance of network throughput are also achieved as compared to the famous traditional clustering protocol LEACH and recent energy harvesting aware clustering protocols.

  16. BiCluE - Exact and heuristic algorithms for weighted bi-cluster editing of biomedical data

    DEFF Research Database (Denmark)

    Sun, Peng; Guo, Jiong; Baumbach, Jan

    2013-01-01

    to solve the weighted bi-cluster editing problem. It implements (1) an exact algorithm based on fixed-parameter tractability and (2) a polynomial-time greedy heuristics based on solving the hardest part, edge deletions, first. We evaluated its performance on artificial graphs. Afterwards we exemplarily...... problem. BiCluE as well as the supplementary results are available online at http://biclue.mpi-inf.mpg.de webcite....

  17. An Extension of the Fuzzy Possibilistic Clustering Algorithm Using Type-2 Fuzzy Logic Techniques

    Directory of Open Access Journals (Sweden)

    Elid Rubio

    2017-01-01

    Full Text Available In this work an extension of the Fuzzy Possibilistic C-Means (FPCM algorithm using Type-2 Fuzzy Logic Techniques is presented, and this is done in order to improve the efficiency of FPCM algorithm. With the purpose of observing the performance of the proposal against the Interval Type-2 Fuzzy C-Means algorithm, several experiments were made using both algorithms with well-known datasets, such as Wine, WDBC, Iris Flower, Ionosphere, Abalone, and Cover type. In addition some experiments were performed using another set of test images to observe the behavior of both of the above-mentioned algorithms in image preprocessing. Some comparisons are performed between the proposed algorithm and the Interval Type-2 Fuzzy C-Means (IT2FCM algorithm to observe if the proposed approach has better performance than this algorithm.

  18. Application of Clustering Algorithm CLOPE to the Query Grouping Problem in the Field of Materialized View Maintenance

    Directory of Open Access Journals (Sweden)

    Kateryna Novokhatska

    2016-03-01

    Full Text Available In recent years, materialized views (MVs are widely used to enhance the database performance by storing pre-calculated results of resource-intensive queries in the physical memory. In order to identify which queries may be potentially materialized, database transaction log for a long period of time should be analyzed. The goal of analysis is to distinguish resource-intensive and frequently used queries collected from database log, and optimize these queries by implementation of MVs. In order to achieve greater efficiency of MVs, they were used not only for the optimization of single queries, but also for entire groups of queries that are similar in syntax and execution results. Thus, the problem stated in this article is the development of approach that will allow forming groups of queries with similar syntax around the most resource-intensive queries in order to identify the list of potential candidates for materialization. For solving this problem, we have applied the algorithm of categorical data clustering to the query grouping problem on the step of database log analysis and searching candidates for materialization. In the current work CLOPE algorithm was modified to cover the introduced problem. Statistical and timing indicators were taken into account in order to form the clusters around the most resource intensive queries. Application of modified algorithm CLOPE allowed to decrease calculable complexity of clustering and to enhance the quality of formed groups.

  19. Algorithms

    Indian Academy of Sciences (India)

    to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...

  20. Markov Tail Chains

    OpenAIRE

    janssen, Anja; Segers, Johan

    2013-01-01

    The extremes of a univariate Markov chain with regularly varying stationary marginal distribution and asymptotically linear behavior are known to exhibit a multiplicative random walk structure called the tail chain. In this paper we extend this fact to Markov chains with multivariate regularly varying marginal distributions in Rd. We analyze both the forward and the backward tail process and show that they mutually determine each other through a kind of adjoint relation. In ...

  1. Multilayer Spectral Graph Clustering via Convex Layer Aggregation: Theory and Algorithms

    OpenAIRE

    Chen, Pin-Yu; Hero, Alfred O.

    2017-01-01

    Multilayer graphs are commonly used for representing different relations between entities and handling heterogeneous data processing tasks. Non-standard multilayer graph clustering methods are needed for assigning clusters to a common multilayer node set and for combining information from each layer. This paper presents a multilayer spectral graph clustering (SGC) framework that performs convex layer aggregation. Under a multilayer signal plus noise model, we provide a phase transition analys...

  2. Average correlation clustering algorithm (ACCA) for grouping of co-regulated genes with similar pattern of variation in their expression values.

    Science.gov (United States)

    Bhattacharya, Anindya; De, Rajat K

    2010-08-01

    Distance based clustering algorithms can group genes that show similar expression values under multiple experimental conditions. They are unable to identify a group of genes that have similar pattern of variation in their expression values. Previously we developed an algorithm called divisive correlation clustering algorithm (DCCA) to tackle this situation, which is based on the concept of correlation clustering. But this algorithm may also fail for certain cases. In order to overcome these situations, we propose a new clustering algorithm, called average correlation clustering algorithm (ACCA), which is able to produce better clustering solution than that produced by some others. ACCA is able to find groups of genes having more common transcription factors and similar pattern of variation in their expression values. Moreover, ACCA is more efficient than DCCA with respect to the time of execution. Like DCCA, we use the concept of correlation clustering concept introduced by Bansal et al. ACCA uses the correlation matrix in such a way that all genes in a cluster have the highest average correlation values with the genes in that cluster. We have applied ACCA and some well-known conventional methods including DCCA to two artificial and nine gene expression datasets, and compared the performance of the algorithms. The clustering results of ACCA are found to be more significantly relevant to the biological annotations than those of the other methods. Analysis of the results show the superiority of ACCA over some others in determining a group of genes having more common transcription factors and with similar pattern of variation in their expression profiles. Availability of the software: The software has been developed using C and Visual Basic languages, and can be executed on the Microsoft Windows platforms. The software may be downloaded as a zip file from http://www.isical.ac.in/~rajat. Then it needs to be installed. Two word files (included in the zip file) need to

  3. A neural network clustering algorithm for the ATLAS silicon pixel detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonhardt, Kathrin; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moraes, Arthur; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-09-15

    A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.

  4. Effective Analysis of NGS Metagenomic Data with Ultra-Fast Clustering Algorithms (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weizhong

    2011-10-12

    San Diego Supercomputer Center's Weizhong Li on "Effective Analysis of NGS Metagenomic Data with Ultra-fast Clustering Algorithms" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  5. Noise can speed convergence in Markov chains.

    Science.gov (United States)

    Franzke, Brandon; Kosko, Bart

    2011-10-01

    A new theorem shows that noise can speed convergence to equilibrium in discrete finite-state Markov chains. The noise applies to the state density and helps the Markov chain explore improbable regions of the state space. The theorem ensures that a stochastic-resonance noise benefit exists for states that obey a vector-norm inequality. Such noise leads to faster convergence because the noise reduces the norm components. A corollary shows that a noise benefit still occurs if the system states obey an alternate norm inequality. This leads to a noise-benefit algorithm that requires knowledge of the steady state. An alternative blind algorithm uses only past state information to achieve a weaker noise benefit. Simulations illustrate the predicted noise benefits in three well-known Markov models. The first model is a two-parameter Ehrenfest diffusion model that shows how noise benefits can occur in the class of birth-death processes. The second model is a Wright-Fisher model of genotype drift in population genetics. The third model is a chemical reaction network of zeolite crystallization. A fourth simulation shows a convergence rate increase of 64% for states that satisfy the theorem and an increase of 53% for states that satisfy the corollary. A final simulation shows that even suboptimal noise can speed convergence if the noise applies over successive time cycles. Noise benefits tend to be sharpest in Markov models that do not converge quickly and that do not have strong absorbing states.

  6. An Algorithm for Inspecting Self Check-in Airline Luggage Based on Hierarchical Clustering and Cube-fitting

    Directory of Open Access Journals (Sweden)

    Gao Qingji

    2014-04-01

    Full Text Available Airport passengers are required to put only one baggage each time in the check-in self-service so that the baggage can be detected and identified successfully. In order to automatically get the number of baggage that had been put on the conveyor belt, dual laser rangefinders are used to scan the outer contour of luggage in this paper. The algorithm based on hierarchical clustering and cube-fitting is proposed to inspect the number and dimension of airline luggage. Firstly, the point cloud is projected to vertical direction. By the analysis of one-dimensional clustering, the number and height of luggage will be quickly computed. Secondly, the method of nearest hierarchical clustering is applied to divide the point cloud if the above cannot be distinguished. It can preferably solve the difficult issue like crossing or overlapping pieces of baggage. Finally, the point cloud is projected to the horizontal plane. By rotating point cloud based on the centre, its minimum bounding rectangle (MBR is obtained. The length and width of luggage are got form MBR. Many experiments in different cases have been done to verify the effectiveness of the algorithm.

  7. The Anonymization Protection Algorithm Based on Fuzzy Clustering for the Ego of Data in the Internet of Things

    Directory of Open Access Journals (Sweden)

    Mingshan Xie

    2017-01-01

    Full Text Available In order to enhance the enthusiasm of the data provider in the process of data interaction and improve the adequacy of data interaction, we put forward the concept of the ego of data and then analyzed the characteristics of the ego of data in the Internet of Things (IOT in this paper. We implement two steps of data clustering for the Internet of things; the first step is the spatial location of adjacent fuzzy clustering, and the second step is the sampling time fuzzy clustering. Equivalent classes can be obtained through the two steps. In this way we can make the data with layout characteristics to be classified into different equivalent classes, so that the specific location information of the data can be obscured, the layout characteristics of tags are eliminated, and ultimately anonymization protection would be achieved. The experimental results show that the proposed algorithm can greatly improve the efficiency of protection of the data in the interaction with others in the incompletely open manner, without reducing the quality of anonymization and enhancing the information loss. The anonymization data set generated by this method has better data availability, and this algorithm can effectively improve the security of data exchange.

  8. Phasic Triplet Markov Chains.

    Science.gov (United States)

    El Yazid Boudaren, Mohamed; Monfrini, Emmanuel; Pieczynski, Wojciech; Aïssani, Amar

    2014-11-01

    Hidden Markov chains have been shown to be inadequate for data modeling under some complex conditions. In this work, we address the problem of statistical modeling of phenomena involving two heterogeneous system states. Such phenomena may arise in biology or communications, among other fields. Namely, we consider that a sequence of meaningful words is to be searched within a whole observation that also contains arbitrary one-by-one symbols. Moreover, a word may be interrupted at some site to be carried on later. Applying plain hidden Markov chains to such data, while ignoring their specificity, yields unsatisfactory results. The Phasic triplet Markov chain, proposed in this paper, overcomes this difficulty by means of an auxiliary underlying process in accordance with the triplet Markov chains theory. Related Bayesian restoration techniques and parameters estimation procedures according to the new model are then described. Finally, to assess the performance of the proposed model against the conventional hidden Markov chain model, experiments are conducted on synthetic and real data.

  9. An Improved Semisupervised Outlier Detection Algorithm Based on Adaptive Feature Weighted Clustering

    Directory of Open Access Journals (Sweden)

    Tingquan Deng

    2016-01-01

    Full Text Available There exist already various approaches to outlier detection, in which semisupervised methods achieve encouraging superiority due to the introduction of prior knowledge. In this paper, an adaptive feature weighted clustering-based semisupervised outlier detection strategy is proposed. This method maximizes the membership degree of a labeled normal object to the cluster it belongs to and minimizes the membership degrees of a labeled outlier to all clusters. In consideration of distinct significance of features or components in a dataset in determining an object being an inlier or outlier, each feature is adaptively assigned different weights according to the deviation degrees between this feature of all objects and that of a certain cluster prototype. A series of experiments on a synthetic dataset and several real-world datasets are implemented to verify the effectiveness and efficiency of the proposal.

  10. Digital Signal Processing Based on a Clustering Algorithm for Ir/Au TES Microcalorimeter

    Science.gov (United States)

    Zen, N.; Kunieda, Y.; Takahashi, H.; Hiramoto, K.; Nakazawa, M.; Fukuda, D.; Ukibe, M.; Ohkubo, M.

    2006-02-01

    In recent years, cryogenic microcalorimeters using their superconducting transition edge have been under development for possible application to the research for astronomical X-ray observations. To improve the energy resolution of superconducting transition edge sensors (TES), several correction methods have been developed. Among them, a clustering method based on digital signal processing has recently been proposed. In this paper, we applied the clustering method to Ir/Au bilayer TES. This method resulted in almost a 10% improvement in the energy resolution. Conversely, from the point of view of imaging X-ray spectroscopy, we applied the clustering method to pixellated Ir/Au-TES devices. We will thus show how a clustering method which sorts signals by their shapes is also useful for position identification

  11. The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure

    KAUST Repository

    Euá n, Carolina; Ombao, Hernando; Ortega, Joaquí n

    2018-01-01

    We present a new method for time series clustering which we call the Hierarchical Spectral Merger (HSM) method. This procedure is based on the spectral theory of time series and identifies series that share similar oscillations or waveforms

  12. Learning Markov Decision Processes for Model Checking

    DEFF Research Database (Denmark)

    Mao, Hua; Chen, Yingke; Jaeger, Manfred

    2012-01-01

    . The proposed learning algorithm is adapted from algorithms for learning deterministic probabilistic finite automata, and extended to include both probabilistic and nondeterministic transitions. The algorithm is empirically analyzed and evaluated by learning system models of slot machines. The evaluation......Constructing an accurate system model for formal model verification can be both resource demanding and time-consuming. To alleviate this shortcoming, algorithms have been proposed for automatically learning system models based on observed system behaviors. In this paper we extend the algorithm...... on learning probabilistic automata to reactive systems, where the observed system behavior is in the form of alternating sequences of inputs and outputs. We propose an algorithm for automatically learning a deterministic labeled Markov decision process model from the observed behavior of a reactive system...

  13. Optimization of the test intervals of a nuclear safety system by genetic algorithms, solution clustering and fuzzy preference assignment

    International Nuclear Information System (INIS)

    Zio, E.; Bazzo, R.

    2010-01-01

    In this paper, a procedure is developed for identifying a number of representative solutions manageable for decision-making in a multiobjective optimization problem concerning the test intervals of the components of a safety system of a nuclear power plant. Pareto Front solutions are identified by a genetic algorithm and then clustered by subtractive clustering into 'families'. On the basis of the decision maker's preferences, each family is then synthetically represented by a 'head of the family' solution. This is done by introducing a scoring system that ranks the solutions with respect to the different objectives: a fuzzy preference assignment is employed to this purpose. Level Diagrams are then used to represent, analyze and interpret the Pareto Fronts reduced to the head-of-the-family solutions

  14. Fast clustering algorithm for large ECG data sets based on CS theory in combination with PCA and K-NN methods.

    Science.gov (United States)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2014-01-01

    Long-term recording of Electrocardiogram (ECG) signals plays an important role in health care systems for diagnostic and treatment purposes of heart diseases. Clustering and classification of collecting data are essential parts for detecting concealed information of P-QRS-T waves in the long-term ECG recording. Currently used algorithms do have their share of drawbacks: 1) clustering and classification cannot be done in real time; 2) they suffer from huge energy consumption and load of sampling. These drawbacks motivated us in developing novel optimized clustering algorithm which could easily scan large ECG datasets for establishing low power long-term ECG recording. In this paper, we present an advanced K-means clustering algorithm based on Compressed Sensing (CS) theory as a random sampling procedure. Then, two dimensionality reduction methods: Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) followed by sorting the data using the K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers are applied to the proposed algorithm. We show our algorithm based on PCA features in combination with K-NN classifier shows better performance than other methods. The proposed algorithm outperforms existing algorithms by increasing 11% classification accuracy. In addition, the proposed algorithm illustrates classification accuracy for K-NN and PNN classifiers, and a Receiver Operating Characteristics (ROC) area of 99.98%, 99.83%, and 99.75% respectively.

  15. Irreversible Local Markov Chains with Rapid Convergence towards Equilibrium

    Science.gov (United States)

    Kapfer, Sebastian C.; Krauth, Werner

    2017-12-01

    We study the continuous one-dimensional hard-sphere model and present irreversible local Markov chains that mix on faster time scales than the reversible heat bath or Metropolis algorithms. The mixing time scales appear to fall into two distinct universality classes, both faster than for reversible local Markov chains. The event-chain algorithm, the infinitesimal limit of one of these Markov chains, belongs to the class presenting the fastest decay. For the lattice-gas limit of the hard-sphere model, reversible local Markov chains correspond to the symmetric simple exclusion process (SEP) with periodic boundary conditions. The two universality classes for irreversible Markov chains are realized by the totally asymmetric SEP (TASEP), and by a faster variant (lifted TASEP) that we propose here. We discuss how our irreversible hard-sphere Markov chains generalize to arbitrary repulsive pair interactions and carry over to higher dimensions through the concept of lifted Markov chains and the recently introduced factorized Metropolis acceptance rule.

  16. Markov set-chains

    CERN Document Server

    Hartfiel, Darald J

    1998-01-01

    In this study extending classical Markov chain theory to handle fluctuating transition matrices, the author develops a theory of Markov set-chains and provides numerous examples showing how that theory can be applied. Chapters are concluded with a discussion of related research. Readers who can benefit from this monograph are those interested in, or involved with, systems whose data is imprecise or that fluctuate with time. A background equivalent to a course in linear algebra and one in probability theory should be sufficient.

  17. MARKOV CHAIN PORTFOLIO LIQUIDITY OPTIMIZATION MODEL

    Directory of Open Access Journals (Sweden)

    Eder Oliveira Abensur

    2014-05-01

    Full Text Available The international financial crisis of September 2008 and May 2010 showed the importance of liquidity as an attribute to be considered in portfolio decisions. This study proposes an optimization model based on available public data, using Markov chain and Genetic Algorithms concepts as it considers the classic duality of risk versus return and incorporating liquidity costs. The work intends to propose a multi-criterion non-linear optimization model using liquidity based on a Markov chain. The non-linear model was tested using Genetic Algorithms with twenty five Brazilian stocks from 2007 to 2009. The results suggest that this is an innovative development methodology and useful for developing an efficient and realistic financial portfolio, as it considers many attributes such as risk, return and liquidity.

  18. Algorithms

    Indian Academy of Sciences (India)

    ticians but also forms the foundation of computer science. Two ... with methods of developing algorithms for solving a variety of problems but ... applications of computers in science and engineer- ... numerical calculus are as important. We will ...

  19. Confluence reduction for Markov automata

    NARCIS (Netherlands)

    Timmer, Mark; Katoen, Joost P.; van de Pol, Jaco; Stoelinga, Mariëlle Ida Antoinette

    2016-01-01

    Markov automata are a novel formalism for specifying systems exhibiting nondeterminism, probabilistic choices and Markovian rates. As expected, the state space explosion threatens the analysability of these models. We therefore introduce confluence reduction for Markov automata, a powerful reduction

  20. Handbook of Markov chain Monte Carlo

    CERN Document Server

    Brooks, Steve

    2011-01-01

    ""Handbook of Markov Chain Monte Carlo"" brings together the major advances that have occurred in recent years while incorporating enough introductory material for new users of MCMC. Along with thorough coverage of the theoretical foundations and algorithmic and computational methodology, this comprehensive handbook includes substantial realistic case studies from a variety of disciplines. These case studies demonstrate the application of MCMC methods and serve as a series of templates for the construction, implementation, and choice of MCMC methodology.

  1. Searching remote homology with spectral clustering with symmetry in neighborhood cluster kernels.

    Directory of Open Access Journals (Sweden)

    Ujjwal Maulik

    Full Text Available Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity for enhancing sensitivity in detecting homology independent of "recent" paralogs. The spectral clustering approach with new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance. Source code available upon request.sarkar@labri.fr.

  2. Application of cloud computing in power routing for clusters of microgrids using oblivious network routing algorithm

    DEFF Research Database (Denmark)

    Amini, M. Hadi; Broojeni, Kianoosh G.; Dragicevic, Tomislav

    2017-01-01

    of microgrid while preventing congestion as well as minimizing the power loss. Then, we present a two-layer simulation platform which considers both communication layer and physical layer of the microgrids' cluster. In order to improve the security of communication network, we perform the computations...... regarding the oblivious power routing via a cloud-based network. The proposed framework can be used for further studies that deal with the real-time simulation of the clusters of microgrids. In order to validate the effectiveness of the proposed framework, we implement our proposed oblivious routing scheme...

  3. Markov LIMID processes for representing and solving renewal problems

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Kristensen, Anders Ringgaard; Nilsson, Dennis

    2014-01-01

    to model a Markov Limid Process, where each TemLimid represents a macro action. Algorithms are presented to find optimal plans for a sequence of such macro actions. Use of algorithms is illustrated based on an extended version of an example from pig production originally used to introduce the Limid concept...

  4. clusters

    Indian Academy of Sciences (India)

    2017-09-27

    Sep 27, 2017 ... Author for correspondence (zh4403701@126.com). MS received 15 ... lic clusters using density functional theory (DFT)-GGA of the DMOL3 package. ... In the process of geometric optimization, con- vergence thresholds ..... and Postgraduate Research & Practice Innovation Program of. Jiangsu Province ...

  5. clusters

    Indian Academy of Sciences (India)

    environmental as well as technical problems during fuel gas utilization. ... adsorption on some alloys of Pd, namely PdAu, PdAg ... ried out on small neutral and charged Au24,26,27, Cu,28 ... study of Zanti et al.29 on Pdn (n = 1–9) clusters.

  6. Process Algebra and Markov Chains

    NARCIS (Netherlands)

    Brinksma, Hendrik; Hermanns, H.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.

    This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study

  7. Process algebra and Markov chains

    NARCIS (Netherlands)

    Brinksma, E.; Hermanns, H.; Brinksma, E.; Hermanns, H.; Katoen, J.P.

    2001-01-01

    This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study

  8. An approach based on genetic algorithms and DFT for studying clusters: (H2O) n (2 ≤ n ≤ 13) cluster analysis

    International Nuclear Information System (INIS)

    Sabato de Abreu e Silva, Elcio; Anderson Duarte, Helio; Belchior, Jadson Claudio

    2006-01-01

    The present work proposes the application of a genetic algorithm (GA) for determining global minima to be used as seeds for a higher level ab initio method analysis such as density function theory (DFT). Water clusters ((H 2 O) n (2 ≤ n ≤ 13)) are used as a test case and for the initial guesses four empirical potentials (TIP3P, TIP4P, TIP5P and ST2) were considered for the GA calculations. Two types of analysis were performed namely rigid (DFT R M) and non rigid (DFT N RM) molecules for the corresponding structures and energies. For the DFT analysis, the PBE exchange correlation functional and the large basis set A-PVTZ have been used. All structures and their respective energies calculated through the GA method, DFT R M and DFT N RM are compared and discussed. The proposed methodology showed to be very efficient in order to have quasi accurate global minima on the level of ab initio calculations and the data are discussed in the light of previously published results with particular attention to ((H 2 O) n (2 ≤ n ≤ 13)) clusters. The results suggest that the stabilization energy error for the empirical potentials used are additive with respect to the cluster size, roughly 0.5 kcal mol -1 per water molecule after ZPE correction. Finally, the approach of using GA/empirical potential structures as starting point for ab initio optimization methods showed to be a computationally manageable strategy to explore the potential energy surface of large systems at quantum level. In conclusion, this work proposes an alternative approach to accurately study properties of larger systems in a very efficient manner

  9. An approach based on genetic algorithms and DFT for studying clusters: (H{sub 2}O) {sub n} (2 {<=} n {<=} 13) cluster analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sabato de Abreu e Silva, Elcio [Departamento de Quimica - ICEx, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Pampulha (31.270-901) Belo Horizonte, Minas Gerias (Brazil); Anderson Duarte, Helio [Departamento de Quimica - ICEx, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Pampulha (31.270-901) Belo Horizonte, Minas Gerias (Brazil); Belchior, Jadson Claudio [Departamento de Quimica - ICEx, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Pampulha (31.270-901) Belo Horizonte, Minas Gerias (Brazil)], E-mail: jadson@ufmg.br

    2006-04-21

    The present work proposes the application of a genetic algorithm (GA) for determining global minima to be used as seeds for a higher level ab initio method analysis such as density function theory (DFT). Water clusters ((H{sub 2}O) {sub n} (2 {<=} n {<=} 13)) are used as a test case and for the initial guesses four empirical potentials (TIP3P, TIP4P, TIP5P and ST2) were considered for the GA calculations. Two types of analysis were performed namely rigid (DFT{sub R}M) and non rigid (DFT{sub N}RM) molecules for the corresponding structures and energies. For the DFT analysis, the PBE exchange correlation functional and the large basis set A-PVTZ have been used. All structures and their respective energies calculated through the GA method, DFT{sub R}M and DFT{sub N}RM are compared and discussed. The proposed methodology showed to be very efficient in order to have quasi accurate global minima on the level of ab initio calculations and the data are discussed in the light of previously published results with particular attention to ((H{sub 2}O) {sub n} (2 {<=} n {<=} 13)) clusters. The results suggest that the stabilization energy error for the empirical potentials used are additive with respect to the cluster size, roughly 0.5 kcal mol{sup -1} per water molecule after ZPE correction. Finally, the approach of using GA/empirical potential structures as starting point for ab initio optimization methods showed to be a computationally manageable strategy to explore the potential energy surface of large systems at quantum level. In conclusion, this work proposes an alternative approach to accurately study properties of larger systems in a very efficient manner.

  10. Markov Chain Monte Carlo

    Indian Academy of Sciences (India)

    be obtained as a limiting value of a sample path of a suitable ... makes a mathematical model of chance and deals with the problem by .... Is the Markov chain aperiodic? It is! Here is how you can see it. Suppose that after you do the cut, you hold the top half in your right hand, and the bottom half in your left. Then there.

  11. Composable Markov Building Blocks

    NARCIS (Netherlands)

    Evers, S.; Fokkinga, M.M.; Apers, Peter M.G.; Prade, H.; Subrahmanian, V.S.

    2007-01-01

    In situations where disjunct parts of the same process are described by their own first-order Markov models and only one model applies at a time (activity in one model coincides with non-activity in the other models), these models can be joined together into one. Under certain conditions, nearly all

  12. Composable Markov Building Blocks

    NARCIS (Netherlands)

    Evers, S.; Fokkinga, M.M.; Apers, Peter M.G.

    2007-01-01

    In situations where disjunct parts of the same process are described by their own first-order Markov models, these models can be joined together under the constraint that there can only be one activity at a time, i.e. the activities of one model coincide with non-activity in the other models. Under

  13. Perturbed Markov chains

    OpenAIRE

    Solan, Eilon; Vieille, Nicolas

    2015-01-01

    We study irreducible time-homogenous Markov chains with finite state space in discrete time. We obtain results on the sensitivity of the stationary distribution and other statistical quantities with respect to perturbations of the transition matrix. We define a new closeness relation between transition matrices, and use graph-theoretic techniques, in contrast with the matrix analysis techniques previously used.

  14. Markov Chain Monte Carlo

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. Markov Chain Monte Carlo - Examples. Arnab Chakraborty. General Article Volume 7 Issue 3 March 2002 pp 25-34. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/03/0025-0034. Keywords.

  15. Partially Hidden Markov Models

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Rissanen, Jorma

    1996-01-01

    Partially Hidden Markov Models (PHMM) are introduced. They differ from the ordinary HMM's in that both the transition probabilities of the hidden states and the output probabilities are conditioned on past observations. As an illustration they are applied to black and white image compression where...

  16. Clustering algorithm in initialization of multi-hop wireless sensor networks

    NARCIS (Netherlands)

    Guo, Peng; Tao, Jiang; Zhang, Kui; Chen, Hsiao-Hwa

    2009-01-01

    In most application scenarios of wireless sensor networks (WSN), sensor nodes are usually deployed randomly and do not have any knowledge about the network environment or even their ID's at the initial stage of their operations. In this paper, we address the clustering problems with a newly deployed

  17. A neural network clustering algorithm for the ATLAS silicon pixel detector

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Böhm, Jan; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Myška, M.; Němeček, Stanislav; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav

    2014-01-01

    Roč. 9, Sep (2014), s. 1-38 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : Monte Carlo * resolution * impact parameter * cluster * ATLAS * tracks * charged particle * CERN LHC Coll * longitudinal * transverse * splitting Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.399, year: 2014

  18. Extension of K-Means Algorithm for clustering mixed data | Onuodu ...

    African Journals Online (AJOL)

    Also proposed is a new dissimilarity measure that uses relative cumulative frequency-based method in clustering objects with mixed values. The dissimilarity model developed could serve as a predictive tool for identifying attributes of objects in mixed datasets. It has been implemented using JAVA programming language ...

  19. Determining the number of clusters for kernelized fuzzy C-means algorithms for automatic medical image segmentation

    Directory of Open Access Journals (Sweden)

    E.A. Zanaty

    2012-03-01

    Full Text Available In this paper, we determine the suitable validity criterion of kernelized fuzzy C-means and kernelized fuzzy C-means with spatial constraints for automatic segmentation of magnetic resonance imaging (MRI. For that; the original Euclidean distance in the FCM is replaced by a Gaussian radial basis function classifier (GRBF and the corresponding algorithms of FCM methods are derived. The derived algorithms are called as the kernelized fuzzy C-means (KFCM and kernelized fuzzy C-means with spatial constraints (SKFCM. These methods are implemented on eighteen indexes as validation to determine whether indexes are capable to acquire the optimal clusters number. The performance of segmentation is estimated by applying these methods independently on several datasets to prove which method can give good results and with which indexes. Our test spans various indexes covering the classical and the rather more recent indexes that have enjoyed noticeable success in that field. These indexes are evaluated and compared by applying them on various test images, including synthetic images corrupted with noise of varying levels, and simulated volumetric MRI datasets. Comparative analysis is also presented to show whether the validity index indicates the optimal clustering for our datasets.

  20. Diagnosis and management of transthyretin familial amyloid polyneuropathy in Japan: red-flag symptom clusters and treatment algorithm.

    Science.gov (United States)

    Sekijima, Yoshiki; Ueda, Mitsuharu; Koike, Haruki; Misawa, Sonoko; Ishii, Tomonori; Ando, Yukio

    2018-01-17

    Hereditary ATTR (ATTRm) amyloidosis (also called transthyretin-type familial amyloid polyneuropathy [ATTR-FAP]) is an autosomal-dominant, adult-onset, rare systemic disorder predominantly characterized by irreversible, progressive, and persistent peripheral nerve damage. TTR gene mutations (e.g. replacement of valine with methionine at position 30 [Val30Met (p.Val50Met)]) lead to destabilization and dissociation of TTR tetramers into variant TTR monomers, which form amyloid fibrils that deposit in peripheral nerves and various organs, giving rise to peripheral and autonomic neuropathy and several non-disease specific symptoms.Phenotypic and genetic variability and non-disease-specific symptoms often delay diagnosis and lead to misdiagnosis. Red-flag symptom clusters simplify diagnosis globally. However, in Japan, types of TTR variants, age of onset, penetrance, and clinical symptoms of Val30Met are more varied than in other countries. Hence, development of a Japan-specific red-flag symptom cluster is warranted. Presence of progressive peripheral sensory-motor polyneuropathy and ≥1 red-flag sign/symptom (e.g. family history, autonomic dysfunction, cardiac involvement, carpal tunnel syndrome, gastrointestinal disturbances, unexplained weight loss, and immunotherapy resistance) suggests ATTR-FAP. Outside of Japan, pharmacotherapeutic options are first-line therapy. However, because of positive outcomes (better life expectancy and higher survival rates) with living donor transplant in Japan, liver transplantation remains first-line treatment, necessitating a Japan-specific treatment algorithm.Herein, we present a consolidated review of the ATTR-FAP Val30Met landscape in Japan and summarize findings from a medical advisory board meeting held in Tokyo on 18th August 2016, at which a Japan-specific ATTR-FAP red-flag symptom cluster and treatment algorithm was developed. Beside liver transplantation, a TTR-stabilizing agent (e.g. tafamidis) is a treatment option. Early

  1. Identification of related multilingual documents using ant clustering algorithms Identificación de documentos multilingües relacionados mediante algoritmos de clustering de hormigas

    Directory of Open Access Journals (Sweden)

    Ángel Cobo

    2011-12-01

    Full Text Available This paper presents a document representation strategy and a bio-inspired algorithm to cluster multilingual collections of documents in the field of economics and business. The proposed approach allows the user to identify groups of related economics documents written in Spanish and English using techniques inspired on clustering and sorting behaviours observed in some types of ants. In order to obtain a language independent vector representation of each document two multilingual resources are used: an economic glossary and a thesaurus. Each document is represented using four feature vectors: words, proper names, economic terms in the glossary and thesaurus descriptors. The proper name identification, word extraction and lemmatization are performed using specific tools. The tf-idf scheme is used to measure the importance of each feature in the document, and a convex linear combination of angular separations between feature vectors is used as similarity measure of documents. The paper shows experimental results of the application of the proposed algorithm in a Spanish-English corpus of research papers in economics and management areas. The results demonstrate the usefulness and effectiveness of the ant clustering algorithm and the proposed representation scheme.Este artículo presenta una estrategia de representación documental y un algoritmo bioinspirado para realizar procesos de agrupamiento en colecciones multilingües de documentos en las áreas de la economía y la empresa. El enfoque propuesto permite al usuario identificar grupos de documentos económicos relacionados escritos en español o inglés usando técnicas inspiradas en comportamientos de organización y agrupamiento de objetos observados en algunos tipos de hormigas. Para conseguir una representación vectorial de cada documento independiente del idioma, se han utilizado dos recursos lingüísticos: un glosario económico y un tesauro. Cada documento es representado usando

  2. Nonlinearly perturbed semi-Markov processes

    CERN Document Server

    Silvestrov, Dmitrii

    2017-01-01

    The book presents new methods of asymptotic analysis for nonlinearly perturbed semi-Markov processes with a finite phase space. These methods are based on special time-space screening procedures for sequential phase space reduction of semi-Markov processes combined with the systematical use of operational calculus for Laurent asymptotic expansions. Effective recurrent algorithms are composed for getting asymptotic expansions, without and with explicit upper bounds for remainders, for power moments of hitting times, stationary and conditional quasi-stationary distributions for nonlinearly perturbed semi-Markov processes. These results are illustrated by asymptotic expansions for birth-death-type semi-Markov processes, which play an important role in various applications. The book will be a useful contribution to the continuing intensive studies in the area. It is an essential reference for theoretical and applied researchers in the field of stochastic processes and their applications that will cont...

  3. Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.

    Science.gov (United States)

    Chaubert-Pereira, Florence; Guédon, Yann; Lavergne, Christian; Trottier, Catherine

    2010-09-01

    Tree growth is assumed to be mainly the result of three components: (i) an endogenous component assumed to be structured as a succession of roughly stationary phases separated by marked change points that are asynchronous among individuals, (ii) a time-varying environmental component assumed to take the form of synchronous fluctuations among individuals, and (iii) an individual component corresponding mainly to the local environment of each tree. To identify and characterize these three components, we propose to use semi-Markov switching linear mixed models, i.e., models that combine linear mixed models in a semi-Markovian manner. The underlying semi-Markov chain represents the succession of growth phases and their lengths (endogenous component) whereas the linear mixed models attached to each state of the underlying semi-Markov chain represent-in the corresponding growth phase-both the influence of time-varying climatic covariates (environmental component) as fixed effects, and interindividual heterogeneity (individual component) as random effects. In this article, we address the estimation of Markov and semi-Markov switching linear mixed models in a general framework. We propose a Monte Carlo expectation-maximization like algorithm whose iterations decompose into three steps: (i) sampling of state sequences given random effects, (ii) prediction of random effects given state sequences, and (iii) maximization. The proposed statistical modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine trunks influenced by climatic covariates. © 2009, The International Biometric Society.

  4. Decoding LDPC Convolutional Codes on Markov Channels

    Directory of Open Access Journals (Sweden)

    Kashyap Manohar

    2008-01-01

    Full Text Available Abstract This paper describes a pipelined iterative technique for joint decoding and channel state estimation of LDPC convolutional codes over Markov channels. Example designs are presented for the Gilbert-Elliott discrete channel model. We also compare the performance and complexity of our algorithm against joint decoding and state estimation of conventional LDPC block codes. Complexity analysis reveals that our pipelined algorithm reduces the number of operations per time step compared to LDPC block codes, at the expense of increased memory and latency. This tradeoff is favorable for low-power applications.

  5. Decoding LDPC Convolutional Codes on Markov Channels

    Directory of Open Access Journals (Sweden)

    Chris Winstead

    2008-04-01

    Full Text Available This paper describes a pipelined iterative technique for joint decoding and channel state estimation of LDPC convolutional codes over Markov channels. Example designs are presented for the Gilbert-Elliott discrete channel model. We also compare the performance and complexity of our algorithm against joint decoding and state estimation of conventional LDPC block codes. Complexity analysis reveals that our pipelined algorithm reduces the number of operations per time step compared to LDPC block codes, at the expense of increased memory and latency. This tradeoff is favorable for low-power applications.

  6. Evolving the structure of hidden Markov Models

    DEFF Research Database (Denmark)

    won, K. J.; Prugel-Bennett, A.; Krogh, A.

    2006-01-01

    A genetic algorithm (GA) is proposed for finding the structure of hidden Markov Models (HMMs) used for biological sequence analysis. The GA is designed to preserve biologically meaningful building blocks. The search through the space of HMM structures is combined with optimization of the emission...... and transition probabilities using the classic Baum-Welch algorithm. The system is tested on the problem of finding the promoter and coding region of C. jejuni. The resulting HMM has a superior discrimination ability to a handcrafted model that has been published in the literature....

  7. Algorithms

    Indian Academy of Sciences (India)

    algorithm design technique called 'divide-and-conquer'. One of ... Turtle graphics, September. 1996. 5. ... whole list named 'PO' is a pointer to the first element of the list; ..... Program for computing matrices X and Y and placing the result in C *).

  8. Algorithms

    Indian Academy of Sciences (India)

    algorithm that it is implicitly understood that we know how to generate the next natural ..... Explicit comparisons are made in line (1) where maximum and minimum is ... It can be shown that the function T(n) = 3/2n -2 is the solution to the above ...

  9. Temperature scaling method for Markov chains.

    Science.gov (United States)

    Crosby, Lonnie D; Windus, Theresa L

    2009-01-22

    The use of ab initio potentials in Monte Carlo simulations aimed at investigating the nucleation kinetics of water clusters is complicated by the computational expense of the potential energy determinations. Furthermore, the common desire to investigate the temperature dependence of kinetic properties leads to an urgent need to reduce the expense of performing simulations at many different temperatures. A method is detailed that allows a Markov chain (obtained via Monte Carlo) at one temperature to be scaled to other temperatures of interest without the need to perform additional large simulations. This Markov chain temperature-scaling (TeS) can be generally applied to simulations geared for numerous applications. This paper shows the quality of results which can be obtained by TeS and the possible quantities which may be extracted from scaled Markov chains. Results are obtained for a 1-D analytical potential for which the exact solutions are known. Also, this method is applied to water clusters consisting of between 2 and 5 monomers, using Dynamical Nucleation Theory to determine the evaporation rate constant for monomer loss. Although ab initio potentials are not utilized in this paper, the benefit of this method is made apparent by using the Dang-Chang polarizable classical potential for water to obtain statistical properties at various temperatures.

  10. Automated generation of partial Markov chain from high level descriptions

    International Nuclear Information System (INIS)

    Brameret, P.-A.; Rauzy, A.; Roussel, J.-M.

    2015-01-01

    We propose an algorithm to generate partial Markov chains from high level implicit descriptions, namely AltaRica models. This algorithm relies on two components. First, a variation on Dijkstra's algorithm to compute shortest paths in a graph. Second, the definition of a notion of distance to select which states must be kept and which can be safely discarded. The proposed method solves two problems at once. First, it avoids a manual construction of Markov chains, which is both tedious and error prone. Second, up the price of acceptable approximations, it makes it possible to push back dramatically the exponential blow-up of the size of the resulting chains. We report experimental results that show the efficiency of the proposed approach. - Highlights: • We generate Markov chains from a higher level safety modeling language (AltaRica). • We use a variation on Dijkstra's algorithm to generate partial Markov chains. • Hence we solve two problems: the first problem is the tedious manual construction of Markov chains. • The second problem is the blow-up of the size of the chains, at the cost of decent approximations. • The experimental results highlight the efficiency of the method

  11. Algorithms

    Indian Academy of Sciences (India)

    will become clear in the next article when we discuss a simple logo like programming language. ... Rod B may be used as an auxiliary store. The problem is to find an algorithm which performs this task. ... No disks are moved from A to Busing C as auxiliary rod. • move _disk (A, C);. (No + l)th disk is moved from A to C directly ...

  12. Detection of uterine MMG contractions using a multiple change point estimator and the K-means cluster algorithm.

    Science.gov (United States)

    La Rosa, Patricio S; Nehorai, Arye; Eswaran, Hari; Lowery, Curtis L; Preissl, Hubert

    2008-02-01

    We propose a single channel two-stage time-segment discriminator of uterine magnetomyogram (MMG) contractions during pregnancy. We assume that the preprocessed signals are piecewise stationary having distribution in a common family with a fixed number of parameters. Therefore, at the first stage, we propose a model-based segmentation procedure, which detects multiple change-points in the parameters of a piecewise constant time-varying autoregressive model using a robust formulation of the Schwarz information criterion (SIC) and a binary search approach. In particular, we propose a test statistic that depends on the SIC, derive its asymptotic distribution, and obtain closed-form optimal detection thresholds in the sense of the Neyman-Pearson criterion; therefore, we control the probability of false alarm and maximize the probability of change-point detection in each stage of the binary search algorithm. We compute and evaluate the relative energy variation [root mean squares (RMS)] and the dominant frequency component [first order zero crossing (FOZC)] in discriminating between time segments with and without contractions. The former consistently detects a time segment with contractions. Thus, at the second stage, we apply a nonsupervised K-means cluster algorithm to classify the detected time segments using the RMS values. We apply our detection algorithm to real MMG records obtained from ten patients admitted to the hospital for contractions with gestational ages between 31 and 40 weeks. We evaluate the performance of our detection algorithm in computing the detection and false alarm rate, respectively, using as a reference the patients' feedback. We also analyze the fusion of the decision signals from all the sensors as in the parallel distributed detection approach.

  13. A Hidden Markov Model for Urban-Scale Traffic Estimation Using Floating Car Data.

    Science.gov (United States)

    Wang, Xiaomeng; Peng, Ling; Chi, Tianhe; Li, Mengzhu; Yao, Xiaojing; Shao, Jing

    2015-01-01

    Urban-scale traffic monitoring plays a vital role in reducing traffic congestion. Owing to its low cost and wide coverage, floating car data (FCD) serves as a novel approach to collecting traffic data. However, sparse probe data represents the vast majority of the data available on arterial roads in most urban environments. In order to overcome the problem of data sparseness, this paper proposes a hidden Markov model (HMM)-based traffic estimation model, in which the traffic condition on a road segment is considered as a hidden state that can be estimated according to the conditions of road segments having similar traffic characteristics. An algorithm based on clustering and pattern mining rather than on adjacency relationships is proposed to find clusters with road segments having similar traffic characteristics. A multi-clustering strategy is adopted to achieve a trade-off between clustering accuracy and coverage. Finally, the proposed model is designed and implemented on the basis of a real-time algorithm. Results of experiments based on real FCD confirm the applicability, accuracy, and efficiency of the model. In addition, the results indicate that the model is practicable for traffic estimation on urban arterials and works well even when more than 70% of the probe data are missing.

  14. Generalized Markov branching models

    OpenAIRE

    Li, Junping

    2005-01-01

    In this thesis, we first considered a modified Markov branching process incorporating both state-independent immigration and resurrection. After establishing the criteria for regularity and uniqueness, explicit expressions for the extinction probability and mean extinction time are presented. The criteria for recurrence and ergodicity are also established. In addition, an explicit expression for the equilibrium distribution is presented.\\ud \\ud We then moved on to investigate the basic proper...

  15. Pairwise Choice Markov Chains

    OpenAIRE

    Ragain, Stephen; Ugander, Johan

    2016-01-01

    As datasets capturing human choices grow in richness and scale---particularly in online domains---there is an increasing need for choice models that escape traditional choice-theoretic axioms such as regularity, stochastic transitivity, and Luce's choice axiom. In this work we introduce the Pairwise Choice Markov Chain (PCMC) model of discrete choice, an inferentially tractable model that does not assume any of the above axioms while still satisfying the foundational axiom of uniform expansio...

  16. Fermionic Markov Chains

    OpenAIRE

    Fannes, Mark; Wouters, Jeroen

    2012-01-01

    We study a quantum process that can be considered as a quantum analogue for the classical Markov process. We specifically construct a version of these processes for free Fermions. For such free Fermionic processes we calculate the entropy density. This can be done either directly using Szeg\\"o's theorem for asymptotic densities of functions of Toeplitz matrices, or through an extension of said theorem to rates of functions, which we present in this article.

  17. Pemodelan Markov Switching Autoregressive

    OpenAIRE

    Ariyani, Fiqria Devi; Warsito, Budi; Yasin, Hasbi

    2014-01-01

    Transition from depreciation to appreciation of exchange rate is one of regime switching that ignored by classic time series model, such as ARIMA, ARCH, or GARCH. Therefore, economic variables are modeled by Markov Switching Autoregressive (MSAR) which consider the regime switching. MLE is not applicable to parameters estimation because regime is an unobservable variable. So that filtering and smoothing process are applied to see the regime probabilities of observation. Using this model, tran...

  18. Approximate quantum Markov chains

    CERN Document Server

    Sutter, David

    2018-01-01

    This book is an introduction to quantum Markov chains and explains how this concept is connected to the question of how well a lost quantum mechanical system can be recovered from a correlated subsystem. To achieve this goal, we strengthen the data-processing inequality such that it reveals a statement about the reconstruction of lost information. The main difficulty in order to understand the behavior of quantum Markov chains arises from the fact that quantum mechanical operators do not commute in general. As a result we start by explaining two techniques of how to deal with non-commuting matrices: the spectral pinching method and complex interpolation theory. Once the reader is familiar with these techniques a novel inequality is presented that extends the celebrated Golden-Thompson inequality to arbitrarily many matrices. This inequality is the key ingredient in understanding approximate quantum Markov chains and it answers a question from matrix analysis that was open since 1973, i.e., if Lieb's triple ma...

  19. Rate estimation in partially observed Markov jump processes with measurement errors

    OpenAIRE

    Amrein, Michael; Kuensch, Hans R.

    2010-01-01

    We present a simulation methodology for Bayesian estimation of rate parameters in Markov jump processes arising for example in stochastic kinetic models. To handle the problem of missing components and measurement errors in observed data, we embed the Markov jump process into the framework of a general state space model. We do not use diffusion approximations. Markov chain Monte Carlo and particle filter type algorithms are introduced, which allow sampling from the posterior distribution of t...

  20. Phase Clustering Based Modulation Classification Algorithm for PSK Signal over Wireless Environment

    Directory of Open Access Journals (Sweden)

    Qi An

    2016-01-01

    Full Text Available Promptitude and accuracy of signals’ non-data-aided (NDA identification is one of the key technology demands in noncooperative wireless communication network, especially in information monitoring and other electronic warfare. Based on this background, this paper proposes a new signal classifier for phase shift keying (PSK signals. The periodicity of signal’s phase is utilized as the assorted character, with which a fractional function is constituted for phase clustering. Classification and the modulation order of intercepted signals can be achieved through its Fast Fourier Transform (FFT of the phase clustering function. Frequency offset is also considered for practical conditions. The accuracy of frequency offset estimation has a direct impact on its correction. Thus, a feasible solution is supplied. In this paper, an advanced estimator is proposed for estimating the frequency offset and balancing estimation accuracy and range under low signal-to-noise ratio (SNR conditions. The influence on estimation range brought by the maximum correlation interval is removed through the differential operation of the autocorrelation of the normalized baseband signal raised to the power of Q. Then, a weighted summation is adopted for an effective frequency estimation. Details of equations and relevant simulations are subsequently presented. The estimator proposed can reach an estimation accuracy of 10-4 even when the SNR is as low as -15 dB. Analytical formulas are expressed, and the corresponding simulations illustrate that the classifier proposed is more efficient than its counterparts even at low SNRs.

  1. Matrix multiplication with a hypercube algorithm on multi-core processor cluster

    Directory of Open Access Journals (Sweden)

    José Crispín Zavala-Díaz

    2015-01-01

    Full Text Available Se analiza, modifica e implementa el algoritmo de multiplicación de matrices de Dekel, Nassimi y Sahani o hipercubo en un cluster de procesadores multi-core, donde el número de procesadores utilizado es menor al requerido por el algoritmo de n3. Se utilizan 23, 43 y 83 unidades procesadoras para multiplicar matrices de orden de magnitud de 10X10, 102X102 y 103X103. Los resultados del modelo matemático del algoritmo modificado y los obtenidos de la experimentación computacional muestran que es posible alcanzar rapidez y eficiencias paralelas aceptables, en función del número de unidades procesadoras utilizadas. También se muestra que la influencia del enlace externo de comunicación entre los nodos disminuye si se utiliza una combinación de los canales de comunicación disponibles entre los núcleos en un cluster multi-core.

  2. An interlacing theorem for reversible Markov chains

    International Nuclear Information System (INIS)

    Grone, Robert; Salamon, Peter; Hoffmann, Karl Heinz

    2008-01-01

    Reversible Markov chains are an indispensable tool in the modeling of a vast class of physical, chemical, biological and statistical problems. Examples include the master equation descriptions of relaxing physical systems, stochastic optimization algorithms such as simulated annealing, chemical dynamics of protein folding and Markov chain Monte Carlo statistical estimation. Very often the large size of the state spaces requires the coarse graining or lumping of microstates into fewer mesoscopic states, and a question of utmost importance for the validity of the physical model is how the eigenvalues of the corresponding stochastic matrix change under this operation. In this paper we prove an interlacing theorem which gives explicit bounds on the eigenvalues of the lumped stochastic matrix. (fast track communication)

  3. An interlacing theorem for reversible Markov chains

    Energy Technology Data Exchange (ETDEWEB)

    Grone, Robert; Salamon, Peter [Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182-7720 (United States); Hoffmann, Karl Heinz [Institut fuer Physik, Technische Universitaet Chemnitz, D-09107 Chemnitz (Germany)

    2008-05-30

    Reversible Markov chains are an indispensable tool in the modeling of a vast class of physical, chemical, biological and statistical problems. Examples include the master equation descriptions of relaxing physical systems, stochastic optimization algorithms such as simulated annealing, chemical dynamics of protein folding and Markov chain Monte Carlo statistical estimation. Very often the large size of the state spaces requires the coarse graining or lumping of microstates into fewer mesoscopic states, and a question of utmost importance for the validity of the physical model is how the eigenvalues of the corresponding stochastic matrix change under this operation. In this paper we prove an interlacing theorem which gives explicit bounds on the eigenvalues of the lumped stochastic matrix. (fast track communication)

  4. A relation between non-Markov and Markov processes

    International Nuclear Information System (INIS)

    Hara, H.

    1980-01-01

    With the aid of a transformation technique, it is shown that some memory effects in the non-Markov processes can be eliminated. In other words, some non-Markov processes are rewritten in a form obtained by the random walk process; the Markov process. To this end, two model processes which have some memory or correlation in the random walk process are introduced. An explanation of the memory in the processes is given. (orig.)

  5. Detecting Faults By Use Of Hidden Markov Models

    Science.gov (United States)

    Smyth, Padhraic J.

    1995-01-01

    Frequency of false alarms reduced. Faults in complicated dynamic system (e.g., antenna-aiming system, telecommunication network, or human heart) detected automatically by method of automated, continuous monitoring. Obtains time-series data by sampling multiple sensor outputs at discrete intervals of t and processes data via algorithm determining whether system in normal or faulty state. Algorithm implements, among other things, hidden first-order temporal Markov model of states of system. Mathematical model of dynamics of system not needed. Present method is "prior" method mentioned in "Improved Hidden-Markov-Model Method of Detecting Faults" (NPO-18982).

  6. The combination of a histogram-based clustering algorithm and support vector machine for the diagnosis of osteoporosis

    International Nuclear Information System (INIS)

    Heo, Min Suk; Kavitha, Muthu Subash; Asano, Akira; Taguchi, Akira

    2013-01-01

    To prevent low bone mineral density (BMD), that is, osteoporosis, in postmenopausal women, it is essential to diagnose osteoporosis more precisely. This study presented an automatic approach utilizing a histogram-based automatic clustering (HAC) algorithm with a support vector machine (SVM) to analyse dental panoramic radiographs (DPRs) and thus improve diagnostic accuracy by identifying postmenopausal women with low BMD or osteoporosis. We integrated our newly-proposed histogram-based automatic clustering (HAC) algorithm with our previously-designed computer-aided diagnosis system. The extracted moment-based features (mean, variance, skewness, and kurtosis) of the mandibular cortical width for the radial basis function (RBF) SVM classifier were employed. We also compared the diagnostic efficacy of the SVM model with the back propagation (BP) neural network model. In this study, DPRs and BMD measurements of 100 postmenopausal women patients (aged >50 years), with no previous record of osteoporosis, were randomly selected for inclusion. The accuracy, sensitivity, and specificity of the BMD measurements using our HAC-SVM model to identify women with low BMD were 93.0% (88.0%-98.0%), 95.8% (91.9%-99.7%) and 86.6% (79.9%-93.3%), respectively, at the lumbar spine; and 89.0% (82.9%-95.1%), 96.0% (92.2%-99.8%) and 84.0% (76.8%-91.2%), respectively, at the femoral neck. Our experimental results predict that the proposed HAC-SVM model combination applied on DPRs could be useful to assist dentists in early diagnosis and help to reduce the morbidity and mortality associated with low BMD and osteoporosis.

  7. Evaluation of clustering algorithms at the < 1 GeV energy scale for the electromagnetic calorimeter of the PADME experiment

    Science.gov (United States)

    Leonardi, E.; Piperno, G.; Raggi, M.

    2017-10-01

    A possible solution to the Dark Matter problem postulates that it interacts with Standard Model particles through a new force mediated by a “portal”. If the new force has a U(1) gauge structure, the “portal” is a massive photon-like vector particle, called dark photon or A’. The PADME experiment at the DAΦNE Beam-Test Facility (BTF) in Frascati is designed to detect dark photons produced in positron on fixed target annihilations decaying to dark matter (e+e-→γA‧) by measuring the final state missing mass. One of the key roles of the experiment will be played by the electromagnetic calorimeter, which will be used to measure the properties of the final state recoil γ. The calorimeter will be composed by 616 21×21×230 mm3 BGO crystals oriented with the long axis parallel to the beam direction and disposed in a roughly circular shape with a central hole to avoid the pile up due to the large number of low angle Bremsstrahlung photons. The total energy and position of the electromagnetic shower generated by a photon impacting on the calorimeter can be reconstructed by collecting the energy deposits in the cluster of crystals interested by the shower. In PADME we are testing two different clustering algorithms, PADME-Radius and PADME-Island, based on two complementary strategies. In this paper we will describe the two algorithms, with the respective implementations, and report on the results obtained with them at the PADME energy scale (< 1 GeV), both with a GEANT4 based simulation and with an existing 5×5 matrix of BGO crystals tested at the DAΦNE BTF.

  8. Integrated analysis of CFD data with K-means clustering algorithm and extreme learning machine for localized HVAC control

    International Nuclear Information System (INIS)

    Zhou, Hongming; Soh, Yeng Chai; Wu, Xiaoying

    2015-01-01

    Maintaining a desired comfort level while minimizing the total energy consumed is an interesting optimization problem in Heating, ventilating and air conditioning (HVAC) system control. This paper proposes a localized control strategy that uses Computational Fluid Dynamics (CFD) simulation results and K-means clustering algorithm to optimally partition an air-conditioned room into different zones. The temperature and air velocity results from CFD simulation are combined in two ways: 1) based on the relationship indicated in predicted mean vote (PMV) formula; 2) based on the relationship extracted from ASHRAE RP-884 database using extreme learning machine (ELM). Localized control can then be effected in which each of the zones can be treated individually and an optimal control strategy can be developed based on the partitioning result. - Highlights: • The paper provides a visual guideline for thermal comfort analysis. • CFD, K-means, PMV and ELM are used to analyze thermal conditions within a room. • Localized control strategy could be developed based on our clustering results

  9. Behavioral features recognition and oestrus detection based on fast approximate clustering algorithm in dairy cows

    Science.gov (United States)

    Tian, Fuyang; Cao, Dong; Dong, Xiaoning; Zhao, Xinqiang; Li, Fade; Wang, Zhonghua

    2017-06-01

    Behavioral features recognition was an important effect to detect oestrus and sickness in dairy herds and there is a need for heat detection aid. The detection method was based on the measure of the individual behavioural activity, standing time, and temperature of dairy using vibrational sensor and temperature sensor in this paper. The data of behavioural activity index, standing time, lying time and walking time were sent to computer by lower power consumption wireless communication system. The fast approximate K-means algorithm (FAKM) was proposed to deal the data of the sensor for behavioral features recognition. As a result of technical progress in monitoring cows using computers, automatic oestrus detection has become possible.

  10. Non-stationary Markov chains

    OpenAIRE

    Mallak, Saed

    1996-01-01

    Ankara : Department of Mathematics and Institute of Engineering and Sciences of Bilkent University, 1996. Thesis (Master's) -- Bilkent University, 1996. Includes bibliographical references leaves leaf 29 In thi.s work, we studierl the Ergodicilv of Non-Stationary .Markov chains. We gave several e.xainples with different cases. We proved that given a sec[uence of Markov chains such that the limit of this sec|uence is an Ergodic Markov chain, then the limit of the combination ...

  11. Discounted semi-Markov decision processes : linear programming and policy iteration

    NARCIS (Netherlands)

    Wessels, J.; van Nunen, J.A.E.E.

    1975-01-01

    For semi-Markov decision processes with discounted rewards we derive the well known results regarding the structure of optimal strategies (nonrandomized, stationary Markov strategies) and the standard algorithms (linear programming, policy iteration). Our analysis is completely based on a primal

  12. Discounted semi-Markov decision processes : linear programming and policy iteration

    NARCIS (Netherlands)

    Wessels, J.; van Nunen, J.A.E.E.

    1974-01-01

    For semi-Markov decision processes with discounted rewards we derive the well known results regarding the structure of optimal strategies (nonrandomized, stationary Markov strategies) and the standard algorithms (linear programming, policy iteration). Our analysis is completely based on a primal

  13. Adiabatic condition and the quantum hitting time of Markov chains

    International Nuclear Information System (INIS)

    Krovi, Hari; Ozols, Maris; Roland, Jeremie

    2010-01-01

    We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) P on a graph with a set of unknown marked vertices, one can define a related absorbing walk P ' where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s) from the interpolated Markov chain P(s)=(1-s)P+sP ' and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that, for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speedup for state-transitive reversible Markov chains with a unique marked vertex.

  14. Musical Markov Chains

    Science.gov (United States)

    Volchenkov, Dima; Dawin, Jean René

    A system for using dice to compose music randomly is known as the musical dice game. The discrete time MIDI models of 804 pieces of classical music written by 29 composers have been encoded into the transition matrices and studied by Markov chains. Contrary to human languages, entropy dominates over redundancy, in the musical dice games based on the compositions of classical music. The maximum complexity is achieved on the blocks consisting of just a few notes (8 notes, for the musical dice games generated over Bach's compositions). First passage times to notes can be used to resolve tonality and feature a composer.

  15. On Weak Markov's Principle

    DEFF Research Database (Denmark)

    Kohlenbach, Ulrich Wilhelm

    2002-01-01

    We show that the so-called weak Markov's principle (WMP) which states that every pseudo-positive real number is positive is underivable in E-HA + AC. Since allows one to formalize (atl eastl arge parts of) Bishop's constructive mathematics, this makes it unlikely that WMP can be proved within...... the framework of Bishop-style mathematics (which has been open for about 20 years). The underivability even holds if the ine.ective schema of full comprehension (in all types) for negated formulas (in particular for -free formulas) is added, which allows one to derive the law of excluded middle...

  16. A Neural-Network Clustering-Based Algorithm for Privacy Preserving Data Mining

    Science.gov (United States)

    Tsiafoulis, S.; Zorkadis, V. C.; Karras, D. A.

    The increasing use of fast and efficient data mining algorithms in huge collections of personal data, facilitated through the exponential growth of technology, in particular in the field of electronic data storage media and processing power, has raised serious ethical, philosophical and legal issues related to privacy protection. To cope with these concerns, several privacy preserving methodologies have been proposed, classified in two categories, methodologies that aim at protecting the sensitive data and those that aim at protecting the mining results. In our work, we focus on sensitive data protection and compare existing techniques according to their anonymity degree achieved, the information loss suffered and their performance characteristics. The ℓ-diversity principle is combined with k-anonymity concepts, so that background information can not be exploited to successfully attack the privacy of data subjects data refer to. Based on Kohonen Self Organizing Feature Maps (SOMs), we firstly organize data sets in subspaces according to their information theoretical distance to each other, then create the most relevant classes paying special attention to rare sensitive attribute values, and finally generalize attribute values to the minimum extend required so that both the data disclosure probability and the information loss are possibly kept negligible. Furthermore, we propose information theoretical measures for assessing the anonymity degree achieved and empirical tests to demonstrate it.

  17. An evaluation of unsupervised and supervised learning algorithms for clustering landscape types in the United States

    Science.gov (United States)

    Wendel, Jochen; Buttenfield, Barbara P.; Stanislawski, Larry V.

    2016-01-01

    Knowledge of landscape type can inform cartographic generalization of hydrographic features, because landscape characteristics provide an important geographic context that affects variation in channel geometry, flow pattern, and network configuration. Landscape types are characterized by expansive spatial gradients, lacking abrupt changes between adjacent classes; and as having a limited number of outliers that might confound classification. The US Geological Survey (USGS) is exploring methods to automate generalization of features in the National Hydrography Data set (NHD), to associate specific sequences of processing operations and parameters with specific landscape characteristics, thus obviating manual selection of a unique processing strategy for every NHD watershed unit. A chronology of methods to delineate physiographic regions for the United States is described, including a recent maximum likelihood classification based on seven input variables. This research compares unsupervised and supervised algorithms applied to these seven input variables, to evaluate and possibly refine the recent classification. Evaluation metrics for unsupervised methods include the Davies–Bouldin index, the Silhouette index, and the Dunn index as well as quantization and topographic error metrics. Cross validation and misclassification rate analysis are used to evaluate supervised classification methods. The paper reports the comparative analysis and its impact on the selection of landscape regions. The compared solutions show problems in areas of high landscape diversity. There is some indication that additional input variables, additional classes, or more sophisticated methods can refine the existing classification.

  18. Computational design of RNA parts, devices, and transcripts with kinetic folding algorithms implemented on multiprocessor clusters.

    Science.gov (United States)

    Thimmaiah, Tim; Voje, William E; Carothers, James M

    2015-01-01

    With progress toward inexpensive, large-scale DNA assembly, the demand for simulation tools that allow the rapid construction of synthetic biological devices with predictable behaviors continues to increase. By combining engineered transcript components, such as ribosome binding sites, transcriptional terminators, ligand-binding aptamers, catalytic ribozymes, and aptamer-controlled ribozymes (aptazymes), gene expression in bacteria can be fine-tuned, with many corollaries and applications in yeast and mammalian cells. The successful design of genetic constructs that implement these kinds of RNA-based control mechanisms requires modeling and analyzing kinetically determined co-transcriptional folding pathways. Transcript design methods using stochastic kinetic folding simulations to search spacer sequence libraries for motifs enabling the assembly of RNA component parts into static ribozyme- and dynamic aptazyme-regulated expression devices with quantitatively predictable functions (rREDs and aREDs, respectively) have been described (Carothers et al., Science 334:1716-1719, 2011). Here, we provide a detailed practical procedure for computational transcript design by illustrating a high throughput, multiprocessor approach for evaluating spacer sequences and generating functional rREDs. This chapter is written as a tutorial, complete with pseudo-code and step-by-step instructions for setting up a computational cluster with an Amazon, Inc. web server and performing the large numbers of kinefold-based stochastic kinetic co-transcriptional folding simulations needed to design functional rREDs and aREDs. The method described here should be broadly applicable for designing and analyzing a variety of synthetic RNA parts, devices and transcripts.

  19. Modeling nonhomogeneous Markov processes via time transformation.

    Science.gov (United States)

    Hubbard, R A; Inoue, L Y T; Fann, J R

    2008-09-01

    Longitudinal studies are a powerful tool for characterizing the course of chronic disease. These studies are usually carried out with subjects observed at periodic visits giving rise to panel data. Under this observation scheme the exact times of disease state transitions and sequence of disease states visited are unknown and Markov process models are often used to describe disease progression. Most applications of Markov process models rely on the assumption of time homogeneity, that is, that the transition rates are constant over time. This assumption is not satisfied when transition rates depend on time from the process origin. However, limited statistical tools are available for dealing with nonhomogeneity. We propose models in which the time scale of a nonhomogeneous Markov process is transformed to an operational time scale on which the process is homogeneous. We develop a method for jointly estimating the time transformation and the transition intensity matrix for the time transformed homogeneous process. We assess maximum likelihood estimation using the Fisher scoring algorithm via simulation studies and compare performance of our method to homogeneous and piecewise homogeneous models. We apply our methodology to a study of delirium progression in a cohort of stem cell transplantation recipients and show that our method identifies temporal trends in delirium incidence and recovery.

  20. Adaptive Markov Chain Monte Carlo

    KAUST Repository

    Jadoon, Khan

    2016-08-08

    A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In the MCMC simulations, posterior distribution was computed using Bayes rule. The electromagnetic forward model based on the full solution of Maxwell\\'s equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD mini-Explorer. The model parameters and uncertainty for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness are not well estimated as compared to layers electrical conductivity because layer thicknesses in the model exhibits a low sensitivity to the EMI measurements, and is hence difficult to resolve. Application of the proposed MCMC based inversion to the field measurements in a drip irrigation system demonstrate that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provide useful insight about parameter uncertainty for the assessment of the model outputs.