WorldWideScience

Sample records for marker linkage map

  1. A genetic linkage map of hexaploid naked oat constructed with SSR markers

    Directory of Open Access Journals (Sweden)

    Gaoyuan Song

    2015-08-01

    Full Text Available Naked oat is a unique health food crop in China. Using 202 F2 individuals derived from a hybrid between the variety 578 and the landrace Sanfensan, we constructed a genetic linkage map consisting of 22 linkage groups covering 2070.50 cM and including 208 simple sequence repeat (SSR markers. The minimum distance between adjacent markers was 0.01 cM and the average was 9.95 cM. Each linkage group contained 2–22 markers. The largest linkage group covered 174.40 cM and the shortest one covered 36.80 cM, with an average of 94.11 cM. Thirty-six markers (17.3% showing distorted segregation were distributed across linkage groups LG5 to LG22. This map complements published oat genetic maps and is applicable for quantitative trait locus analysis, gene cloning and molecular marker-assisted selection.

  2. Genotyping by Sequencing in Almond: SNP Discovery, Linkage Mapping, and Marker Design

    Directory of Open Access Journals (Sweden)

    Shashi N. Goonetilleke

    2018-01-01

    Full Text Available In crop plant genetics, linkage maps provide the basis for the mapping of loci that affect important traits and for the selection of markers to be applied in crop improvement. In outcrossing species such as almond (Prunus dulcis Mill. D. A. Webb, application of a double pseudotestcross mapping approach to the F1 progeny of a biparental cross leads to the construction of a linkage map for each parent. Here, we report on the application of genotyping by sequencing to discover and map single nucleotide polymorphisms in the almond cultivars “Nonpareil” and “Lauranne.” Allele-specific marker assays were developed for 309 tag pairs. Application of these assays to 231 Nonpareil × Lauranne F1 progeny provided robust linkage maps for each parent. Analysis of phenotypic data for shell hardness demonstrated the utility of these maps for quantitative trait locus mapping. Comparison of these maps to the peach genome assembly confirmed high synteny and collinearity between the peach and almond genomes. The marker assays were applied to progeny from several other Nonpareil crosses, providing the basis for a composite linkage map of Nonpareil. Applications of the assays to a panel of almond clones and a panel of rootstocks used for almond production demonstrated the broad applicability of the markers and provide subsets of markers that could be used to discriminate among accessions. The sequence-based linkage maps and single nucleotide polymorphism assays presented here could be useful resources for the genetic analysis and genetic improvement of almond.

  3. High-density Integrated Linkage Map Based on SSR Markers in Soybean

    Science.gov (United States)

    Hwang, Tae-Young; Sayama, Takashi; Takahashi, Masakazu; Takada, Yoshitake; Nakamoto, Yumi; Funatsuki, Hideyuki; Hisano, Hiroshi; Sasamoto, Shigemi; Sato, Shusei; Tabata, Satoshi; Kono, Izumi; Hoshi, Masako; Hanawa, Masayoshi; Yano, Chizuru; Xia, Zhengjun; Harada, Kyuya; Kitamura, Keisuke; Ishimoto, Masao

    2009-01-01

    A well-saturated molecular linkage map is a prerequisite for modern plant breeding. Several genetic maps have been developed for soybean with various types of molecular markers. Simple sequence repeats (SSRs) are single-locus markers with high allelic variation and are widely applicable to different genotypes. We have now mapped 1810 SSR or sequence-tagged site markers in one or more of three recombinant inbred populations of soybean (the US cultivar ‘Jack’ × the Japanese cultivar ‘Fukuyutaka’, the Chinese cultivar ‘Peking’ × the Japanese cultivar ‘Akita’, and the Japanese cultivar ‘Misuzudaizu’ × the Chinese breeding line ‘Moshidou Gong 503’) and have aligned these markers with the 20 consensus linkage groups (LGs). The total length of the integrated linkage map was 2442.9 cM, and the average number of molecular markers was 90.5 (range of 70–114) for the 20 LGs. We examined allelic diversity for 1238 of the SSR markers among 23 soybean cultivars or lines and a wild accession. The number of alleles per locus ranged from 2 to 7, with an average of 2.8. Our high-density linkage map should facilitate ongoing and future genomic research such as analysis of quantitative trait loci and positional cloning in addition to marker-assisted selection in soybean breeding. PMID:19531560

  4. Construction of a genetic linkage map in Lilium using a RIL mapping population based on SRAP marker

    Directory of Open Access Journals (Sweden)

    Chen Li-Jing

    2015-01-01

    Full Text Available A genetic linkage map of lily was constructed using RILs (recombinant inbred lines population of 180 individuals. This mapping population was developed by crossing Raizan No.1 (Formolongo and Gelria (Longiflomm cultivars through single-seed descent (SSD. SRAPs were generated by using restriction enzymes EcoRI in combination with either MseI. The resulting products were separated by electrophoresis on 6% denaturing polyacrylamide gel and visualized by silver staining. The segregation of each marker and linkage analysis was done using the program Mapmaker3.0. With 50 primer pairs, a total of 189 parental polymorphic bands were detected and 78 were used for mapping. The total map length was 2,135.5 cM consisted of 16 linkage groups. The number of markers in the linkage groups varied from 1 to 12. The length of linkage groups was range from 11.2 cM to 425.9 cM and mean marker interval distance range from 9.4 cM to 345.4 cM individually. The mean marker interval distance between markers was 27.4 cM. The map developed in the present study was the first sequence-related amplified polymorphism markers map of lily constructed with recombinant inbred lines, it could be used for genetic mapping and molecular marker assisted breeding and quantitative trait locus mapping of Lilium.

  5. A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers

    NARCIS (Netherlands)

    Syed, H.; Sorensen, A.P.; Antonise, R.; van de Wiel, C.; van der Linden, C.G.; van 't Westende, W.; Hooftman, D.A.P.; den Nijs, J.C.M.; Flavell, A.J.

    2006-01-01

    Abstract Molecular markers based upon a novel lettuce LTR retrotransposon and the nucleotide binding site-leucine-rich repeat (NBS-LRR) family of disease resistance-associated genes have been combined with AFLP markers to generate a 458 locus genetic linkage map for lettuce. A total of 187

  6. Short Communication: Genetic linkage map of Cucurbita maxima with molecular and morphological markers.

    Science.gov (United States)

    Ge, Y; Li, X; Yang, X X; Cui, C S; Qu, S P

    2015-05-22

    Cucurbita maxima is one of the most widely cultivated vegetables in China and exhibits distinct morphological characteristics. In this study, genetic linkage analysis with 57 simple-sequence repeats, 21 amplified fragment length polymorphisms, 3 random-amplified polymorphic DNA, and one morphological marker revealed 20 genetic linkage groups of C. maxima covering a genetic distance of 991.5 cM with an average of 12.1 cM between adjacent markers. Genetic linkage analysis identified the simple-sequence repeat marker 'PU078072' 5.9 cM away from the locus 'Rc', which controls rind color. The genetic map in the present study will be useful for better mapping, tagging, and cloning of quantitative trait loci/gene(s) affecting economically important traits and for breeding new varieties of C. maxima through marker-assisted selection.

  7. A novel linkage map of sugarcane with evidence for clustering of retrotransposon-based markers

    Directory of Open Access Journals (Sweden)

    Palhares Alessandra C

    2012-06-01

    Full Text Available Abstract Background The development of sugarcane as a sustainable crop has unlimited applications. The crop is one of the most economically viable for renewable energy production, and CO2 balance. Linkage maps are valuable tools for understanding genetic and genomic organization, particularly in sugarcane due to its complex polyploid genome of multispecific origins. The overall objective of our study was to construct a novel sugarcane linkage map, compiling AFLP and EST-SSR markers, and to generate data on the distribution of markers anchored to sequences of scIvana_1, a complete sugarcane transposable element, and member of the Copia superfamily. Results The mapping population parents (‘IAC66-6’ and ‘TUC71-7’ contributed equally to polymorphisms, independent of marker type, and generated markers that were distributed into nearly the same number of co-segregation groups (or CGs. Bi-parentally inherited alleles provided the integration of 19 CGs. The marker number per CG ranged from two to 39. The total map length was 4,843.19 cM, with a marker density of 8.87 cM. Markers were assembled into 92 CGs that ranged in length from 1.14 to 404.72 cM, with an estimated average length of 52.64 cM. The greatest distance between two adjacent markers was 48.25 cM. The scIvana_1-based markers (56 were positioned on 21 CGs, but were not regularly distributed. Interestingly, the distance between adjacent scIvana_1-based markers was less than 5 cM, and was observed on five CGs, suggesting a clustered organization. Conclusions Results indicated the use of a NBS-profiling technique was efficient to develop retrotransposon-based markers in sugarcane. The simultaneous maximum-likelihood estimates of linkage and linkage phase based strategies confirmed the suitability of its approach to estimate linkage, and construct the linkage map. Interestingly, using our genetic data it was possible to calculate the number of retrotransposon scIvana_1 (~60

  8. Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers

    NARCIS (Netherlands)

    Atienza, S.G.; Satovic, Z.; Petersen, K.K.; Dolstra, O.; Martin, A.

    2002-01-01

    We have used an "offspring cross" mapping strategy in combination with the random amplified polymorphic DNA (RAPD) assay to construct the first genetic map of the species Miscanthus sinensis (2n = 2x = 38). This map is based on an outbred population of 89 individuals resulting from the cross between

  9. Genetic linkage mapping in an F2 perennial ryegrass population using DArT markers

    DEFF Research Database (Denmark)

    Tomaszewski, Céline; Byrne, Stephen; Foito, Alexandra

    2012-01-01

    Perennial ryegrass is the principal forage grass species used in temperate agriculture. In recent years, significant efforts have been made to develop molecular marker strategies to allow cost-effective characterization of a large number of loci simultaneously. One such strategy involves using DAr......T markers, and a DArT array has recently been developed for the Lolium-Festuca complex. In this study, we report the first use of the DArTFest array to generate a genetic linkage map based on 326 markers in a Lolium perenne F2 population, consisting of 325 genotypes. For proof of concept, the map was used...

  10. Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers.

    Science.gov (United States)

    de Miguel, Marina; de Maria, Nuria; Guevara, M Angeles; Diaz, Luis; Sáez-Laguna, Enrique; Sánchez-Gómez, David; Chancerel, Emilie; Aranda, Ismael; Collada, Carmen; Plomion, Christophe; Cabezas, José-Antonio; Cervera, María-Teresa

    2012-10-04

    Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS) through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15) belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest.

  11. Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers

    Directory of Open Access Journals (Sweden)

    de Miguel Marina

    2012-10-01

    Full Text Available Abstract Background Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15 belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. Results We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. Conclusions This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest.

  12. A consensus linkage map of lentil based on DArT markers from three RIL mapping populations.

    Directory of Open Access Journals (Sweden)

    Duygu Ates

    Full Text Available Lentil (Lens culinaris ssp. culinaris Medikus is a diploid (2n = 2x = 14, self-pollinating grain legume with a haploid genome size of about 4 Gbp and is grown throughout the world with current annual production of 4.9 million tonnes.A consensus map of lentil (Lens culinaris ssp. culinaris Medikus was constructed using three different lentils recombinant inbred line (RIL populations, including "CDC Redberry" x "ILL7502" (LR8, "ILL8006" x "CDC Milestone" (LR11 and "PI320937" x "Eston" (LR39.The lentil consensus map was composed of 9,793 DArT markers, covered a total of 977.47 cM with an average distance of 0.10 cM between adjacent markers and constructed 7 linkage groups representing 7 chromosomes of the lentil genome. The consensus map had no gap larger than 12.67 cM and only 5 gaps were found to be between 12.67 cM and 6.0 cM (on LG3 and LG4. The localization of the SNP markers on the lentil consensus map were in general consistent with their localization on the three individual genetic linkage maps and the lentil consensus map has longer map length, higher marker density and shorter average distance between the adjacent markers compared to the component linkage maps.This high-density consensus map could provide insight into the lentil genome. The consensus map could also help to construct a physical map using a Bacterial Artificial Chromosome library and map based cloning studies. Sequence information of DArT may help localization of orientation scaffolds from Next Generation Sequencing data.

  13. A consensus linkage map of lentil based on DArT markers from three RIL mapping populations.

    Science.gov (United States)

    Ates, Duygu; Aldemir, Secil; Alsaleh, Ahmad; Erdogmus, Semih; Nemli, Seda; Kahriman, Abdullah; Ozkan, Hakan; Vandenberg, Albert; Tanyolac, Bahattin

    2018-01-01

    Lentil (Lens culinaris ssp. culinaris Medikus) is a diploid (2n = 2x = 14), self-pollinating grain legume with a haploid genome size of about 4 Gbp and is grown throughout the world with current annual production of 4.9 million tonnes. A consensus map of lentil (Lens culinaris ssp. culinaris Medikus) was constructed using three different lentils recombinant inbred line (RIL) populations, including "CDC Redberry" x "ILL7502" (LR8), "ILL8006" x "CDC Milestone" (LR11) and "PI320937" x "Eston" (LR39). The lentil consensus map was composed of 9,793 DArT markers, covered a total of 977.47 cM with an average distance of 0.10 cM between adjacent markers and constructed 7 linkage groups representing 7 chromosomes of the lentil genome. The consensus map had no gap larger than 12.67 cM and only 5 gaps were found to be between 12.67 cM and 6.0 cM (on LG3 and LG4). The localization of the SNP markers on the lentil consensus map were in general consistent with their localization on the three individual genetic linkage maps and the lentil consensus map has longer map length, higher marker density and shorter average distance between the adjacent markers compared to the component linkage maps. This high-density consensus map could provide insight into the lentil genome. The consensus map could also help to construct a physical map using a Bacterial Artificial Chromosome library and map based cloning studies. Sequence information of DArT may help localization of orientation scaffolds from Next Generation Sequencing data.

  14. Construction of an SSR and RAD-Marker Based Molecular Linkage Map of Vigna vexillata (L.) A. Rich.

    Science.gov (United States)

    Marubodee, Rusama; Ogiso-Tanaka, Eri; Isemura, Takehisa; Chankaew, Sompong; Kaga, Akito; Naito, Ken; Ehara, Hiroshi; Tomooka, Norihiko

    2015-01-01

    Vigna vexillata (L.) A. Rich. (tuber cowpea) is an underutilized crop for consuming its tuber and mature seeds. Wild form of V. vexillata is a pan-tropical perennial herbaceous plant which has been used by local people as a food. Wild V. vexillata has also been considered as useful gene(s) source for V. unguiculata (cowpea), since it was reported to have various resistance gene(s) for insects and diseases of cowpea. To exploit the potential of V. vexillata, an SSR-based linkage map of V. vexillata was developed. A total of 874 SSR markers successfully amplified single DNA fragment in V. vexillata among 1,336 SSR markers developed from Vigna angularis (azuki bean), V. unguiculata and Phaseolus vulgaris (common bean). An F2 population of 300 plants derived from a cross between salt resistant (V1) and susceptible (V5) accessions was used for mapping. A genetic linkage map was constructed using 82 polymorphic SSR markers loci, which could be assigned to 11 linkage groups spanning 511.5 cM in length with a mean distance of 7.2 cM between adjacent markers. To develop higher density molecular linkage map and to confirm SSR markers position in a linkage map, RAD markers were developed and a combined SSR and RAD markers linkage map of V. vexillata was constructed. A total of 559 (84 SSR and 475 RAD) markers loci could be assigned to 11 linkage groups spanning 973.9 cM in length with a mean distance of 1.8 cM between adjacent markers. Linkage and genetic position of all SSR markers in an SSR linkage map were confirmed. When an SSR genetic linkage map of V. vexillata was compared with those of V. radiata and V. unguiculata, it was suggested that the structure of V. vexillata chromosome was considerably differentiated. This map is the first SSR and RAD marker-based V. vexillata linkage map which can be used for the mapping of useful traits.

  15. EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.)

    DEFF Research Database (Denmark)

    Studer, Bruno; Kölliker, Roland; Muylle, Hilde

    2010-01-01

    Background Genetic markers and linkage mapping are basic prerequisites for marker-assisted selection and map-based cloning. In the case of the key grassland species Lolium spp., numerous mapping populations have been developed and characterised for various traits. Although some genetic linkage maps...

  16. EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.)

    NARCIS (Netherlands)

    Studer, B.; Kolliker, R.; Muylle, H.; Asp, T.; Frei, U.; Roldan-Ruiz, I.; Barre, P.; Tomaszewski, C.; Meally, H.; Barth, S.; Skot, L.; Armstead, I.P.; Dolstra, O.; Lubberstedt, T.

    2010-01-01

    Background: Genetic markers and linkage mapping are basic prerequisites for marker-assisted selection and map-based cloning. In the case of the key grassland species Lolium spp., numerous mapping populations have been developed and characterised for various traits. Although some genetic linkage maps

  17. Allele-specific marker generation and linkage mapping on the Xiphophorus sex chromosomes.

    Science.gov (United States)

    Woolcock, B; Kazianis, S; Lucito, R; Walter, R B; Kallman, K D; Morizot, D C; Vielkind, J R

    2006-01-01

    There is great interest in the sex chromosomes of Xiphophorus fishes because both WY/YY and XX/XY sex-determining mechanisms function in these species, with at least one taxon possessing all three types of sex chromosomes, and because in certain interspecific hybrids melanoma arises as a consequence of inheritance of the sex-linked macromelanophore determining locus (MDL). Representational difference analysis (RDA) has been used to clone two sequences from the sex-determining region of X. maculatus, including a cholinergic receptor, nicotinic, delta polypeptide (CHRND) orthologue. Allele-specific assays for these sequences, as well as for the sex-linked XMRK1 and XMRK2 genes, were developed to distinguish W, X, and Y chromosomes derived from a X. maculatus (XX/XY) strain and a X. helleri (WY/YY) strain. Linkage mapping localized these markers to linkage group (LG) 24. No recombinants were observed between XMRK2 and MDL, confirming a role for XMRK2 in macromelanophore development. Although the master sex-determining (SD) locus certainly resides on Xiphophorus LG 24, autosomal loci are probably involved in sex determination as well, as indicated by the abnormal sex ratios in the backcross hybrids that contrast theoretical predictions based on LG 24 genotyping. Marker development and allelic discrimination on the Xiphophorus sex chromosomes should prove highly useful for studies that utilize this genus as an animal model.

  18. Identification of QTLs Associated with Callogenesis and Embryogenesis in Oil Palm Using Genetic Linkage Maps Improved with SSR Markers

    Science.gov (United States)

    Ting, Ngoot-Chin; Jansen, Johannes; Nagappan, Jayanthi; Ishak, Zamzuri; Chin, Cheuk-Weng; Tan, Soon-Guan; Cheah, Suan-Choo; Singh, Rajinder

    2013-01-01

    Clonal reproduction of oil palm by means of tissue culture is a very inefficient process. Tissue culturability is known to be genotype dependent with some genotypes being more amenable to tissue culture than others. In this study, genetic linkage maps enriched with simple sequence repeat (SSR) markers were developed for dura (ENL48) and pisifera (ML161), the two fruit forms of oil palm, Elaeis guineensis. The SSR markers were mapped onto earlier reported parental maps based on amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers. The new linkage map of ENL48 contains 148 markers (33 AFLPs, 38 RFLPs and 77 SSRs) in 23 linkage groups (LGs), covering a total map length of 798.0 cM. The ML161 map contains 240 markers (50 AFLPs, 71 RFLPs and 119 SSRs) in 24 LGs covering a total of 1,328.1 cM. Using the improved maps, two quantitative trait loci (QTLs) associated with tissue culturability were identified each for callusing rate and embryogenesis rate. A QTL for callogenesis was identified in LGD4b of ENL48 and explained 17.5% of the phenotypic variation. For embryogenesis rate, a QTL was detected on LGP16b in ML161 and explained 20.1% of the variation. This study is the first attempt to identify QTL associated with tissue culture amenity in oil palm which is an important step towards understanding the molecular processes underlying clonal regeneration of oil palm. PMID:23382832

  19. Identification of QTLs associated with callogenesis and embryogenesis in oil palm using genetic linkage maps improved with SSR markers.

    Directory of Open Access Journals (Sweden)

    Ngoot-Chin Ting

    Full Text Available Clonal reproduction of oil palm by means of tissue culture is a very inefficient process. Tissue culturability is known to be genotype dependent with some genotypes being more amenable to tissue culture than others. In this study, genetic linkage maps enriched with simple sequence repeat (SSR markers were developed for dura (ENL48 and pisifera (ML161, the two fruit forms of oil palm, Elaeis guineensis. The SSR markers were mapped onto earlier reported parental maps based on amplified fragment length polymorphism (AFLP and restriction fragment length polymorphism (RFLP markers. The new linkage map of ENL48 contains 148 markers (33 AFLPs, 38 RFLPs and 77 SSRs in 23 linkage groups (LGs, covering a total map length of 798.0 cM. The ML161 map contains 240 markers (50 AFLPs, 71 RFLPs and 119 SSRs in 24 LGs covering a total of 1,328.1 cM. Using the improved maps, two quantitative trait loci (QTLs associated with tissue culturability were identified each for callusing rate and embryogenesis rate. A QTL for callogenesis was identified in LGD4b of ENL48 and explained 17.5% of the phenotypic variation. For embryogenesis rate, a QTL was detected on LGP16b in ML161 and explained 20.1% of the variation. This study is the first attempt to identify QTL associated with tissue culture amenity in oil palm which is an important step towards understanding the molecular processes underlying clonal regeneration of oil palm.

  20. First genetic linkage map of Taraxacum koksaghyz Rodin based on AFLP, SSR, COS and EST-SSR markers.

    Science.gov (United States)

    Arias, Marina; Hernandez, Monica; Remondegui, Naroa; Huvenaars, Koen; van Dijk, Peter; Ritter, Enrique

    2016-08-04

    Taraxacum koksaghyz Rodin (TKS) has been studied in many occasions as a possible alternative source for natural rubber production of good quality and for inulin production. Some tire companies are already testing TKS tire prototypes. There are also many investigations on the production of bio-fuels from inulin and inulin applications for health improvement and in the food industry. A limited amount of genomic resources exist for TKS and particularly no genetic linkage map is available in this species. We have constructed the first TKS genetic linkage map based on AFLP, COS, SSR and EST-SSR markers. The integrated linkage map with eight linkage groups (LG), representing the eight chromosomes of Russian dandelion, has 185 individual AFLP markers from parent 1, 188 individual AFLP markers from parent 2, 75 common AFLP markers and 6 COS, 1 SSR and 63 EST-SSR loci. Blasting the EST-SSR sequences against known sequences from lettuce allowed a partial alignment of our TKS map with a lettuce map. Blast searches against plant gene databases revealed some homologies with useful genes for downstream applications in the future.

  1. Linkage study of nonsyndromic cleft lip with or without cleft palate using candidate genes and mapped polymorphic markers

    Energy Technology Data Exchange (ETDEWEB)

    Stein, J.D.; Nelson, L.D.; Conner, B.J. [Univ. of Texas, Houston (United States)] [and others

    1994-09-01

    Nonsyndromic cleft lip with or without cleft palate (CL(P)) involves fusion or growth failure of facial primordia during development. Complex segregation analysis of clefting populations suggest that an autosomal dominant gene may play a role in this common craniofacial disorder. We have ascertained 16 multigenerational families with CL(P) and tested linkage to 29 candidate genes and 139 mapped short tandem repeat markers. The candidate genes were selected based on their expression in craniofacial development or were identified through murine models. These include: TGF{alpha}, TGF{beta}1, TGF{beta}2, TGF{beta}3, EGF, EGFR, GRAS, cMyc, FGFR, Jun, JunB, PDFG{alpha}, PDGF{beta}, IGF2R, GCR Hox7, Hox8, Hox2B, twirler, 5 collagen and 3 extracellular matrix genes. Linkage was tested assuming an autosomal dominant model with sex-specific decreased penetrance. Linkage to all of the candidate loci was excluded in 11 families. RARA was tested and was not informative. However, haplotype analysis of markers flanking RARA on 17q allowed exclusion of this candidate locus. We have previously excluded linkage to 61 STR markers in 11 families. Seventy-eight mapped short tandem repeat markers have recently been tested in 16 families and 30 have been excluded. The remaining are being analyzed and an exclusion map is being developed based on the entire study results.

  2. EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.

    Directory of Open Access Journals (Sweden)

    Studer Bruno

    2010-08-01

    Full Text Available Abstract Background Genetic markers and linkage mapping are basic prerequisites for marker-assisted selection and map-based cloning. In the case of the key grassland species Lolium spp., numerous mapping populations have been developed and characterised for various traits. Although some genetic linkage maps of these populations have been aligned with each other using publicly available DNA markers, the number of common markers among genetic maps is still low, limiting the ability to compare candidate gene and QTL locations across germplasm. Results A set of 204 expressed sequence tag (EST-derived simple sequence repeat (SSR markers has been assigned to map positions using eight different ryegrass mapping populations. Marker properties of a subset of 64 EST-SSRs were assessed in six to eight individuals of each mapping population and revealed 83% of the markers to be polymorphic in at least one population and an average number of alleles of 4.88. EST-SSR markers polymorphic in multiple populations served as anchor markers and allowed the construction of the first comprehensive consensus map for ryegrass. The integrated map was complemented with 97 SSRs from previously published linkage maps and finally contained 284 EST-derived and genomic SSR markers. The total map length was 742 centiMorgan (cM, ranging for individual chromosomes from 70 cM of linkage group (LG 6 to 171 cM of LG 2. Conclusions The consensus linkage map for ryegrass based on eight mapping populations and constructed using a large set of publicly available Lolium EST-SSRs mapped for the first time together with previously mapped SSR markers will allow for consolidating existing mapping and QTL information in ryegrass. Map and markers presented here will prove to be an asset in the development for both molecular breeding of ryegrass as well as comparative genetics and genomics within grass species.

  3. A Genetic Linkage Map of Mycosphaerella Fijiensis, using SSR and DArT Markers

    Science.gov (United States)

    Mycosphaerella fijiensis is the causal agent of black leaf streak or Black Sigatoka disease in bananas. This pathogen threatens global banana production as the main export Cavendish cultivars are highly susceptible. Previously a genetic linkage map was generated predominantly using anonymous AFLP ma...

  4. Large-scale development of SSR markers in tobacco and construction of a linkage map in flue-cured tobacco.

    Science.gov (United States)

    Tong, Zhijun; Xiao, Bingguang; Jiao, Fangchan; Fang, Dunhuang; Zeng, Jianmin; Wu, Xingfu; Chen, Xuejun; Yang, Jiankang; Li, Yongping

    2016-06-01

    Tobacco (Nicotiana tabacum L.), particularly flue-cured tobacco, is one of the most economically important nonfood crops and is also an important model system in plant biotechnology. Despite its importance, only limited molecular marker resources are available for genome analysis, genetic mapping, and breeding. Simple sequence repeats (SSR) are one of the most widely-used molecular markers, having significant advantages including that they are generally co-dominant, easy to use, abundant in eukaryotic organisms, and produce highly reproducible results. In this study, based on the genome sequence data of flue-cured tobacco (K326), we developed a total of 13,645 mostly novel SSR markers, which were working in a set of eighteen tobacco varieties of four different types. A mapping population of 213 backcross (BC1) individuals, which were derived from an intra-type cross between two flue-cured tobacco varieties, Y3 and K326, was selected for mapping. Based on the newly developed SSR markers as well as published SSR markers, we constructed a genetic map consisting of 626 SSR loci distributed across 24 linkage groups and covering a total length of 1120.45 cM with an average distance of 1.79 cM between adjacent markers, which is the highest density map of flue-cured tobacco till date.

  5. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut

    Directory of Open Access Journals (Sweden)

    Shirasawa Kenta

    2012-06-01

    Full Text Available Abstract Background Peanut (Arachis hypogaea is an autogamous allotetraploid legume (2n = 4x = 40 that is widely cultivated as a food and oil crop. More than 6,000 DNA markers have been developed in Arachis spp., but high-density linkage maps useful for genetics, genomics, and breeding have not been constructed due to extremely low genetic diversity. Polymorphic marker loci are useful for the construction of such high-density linkage maps. The present study used in silico analysis to develop simple sequence repeat-based and transposon-based markers. Results The use of in silico analysis increased the efficiency of polymorphic marker development by more than 3-fold. In total, 926 (34.2% of 2,702 markers showed polymorphisms between parental lines of the mapping population. Linkage analysis of the 926 markers along with 253 polymorphic markers selected from 4,449 published markers generated 21 linkage groups covering 2,166.4 cM with 1,114 loci. Based on the map thus produced, 23 quantitative trait loci (QTLs for 15 agronomical traits were detected. Another linkage map with 326 loci was also constructed and revealed a relationship between the genotypes of the FAD2 genes and the ratio of oleic/linoleic acid in peanut seed. Conclusions In silico analysis of polymorphisms increased the efficiency of polymorphic marker development, and contributed to the construction of high-density linkage maps in cultivated peanut. The resultant maps were applicable to QTL analysis. Marker subsets and linkage maps developed in this study should be useful for genetics, genomics, and breeding in Arachis. The data are available at the Kazusa DNA Marker Database (http://marker.kazusa.or.jp.

  6. Diversity arrays technology (DArT) markers in apple for genetic linkage maps

    OpenAIRE

    Schouten, H.J.; Weg, van de, W.E.; Carling, J.; Khan, S.A.; McKay, S.J.; Kaauwen, van, M.P.W.

    2012-01-01

    Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural trees. Genetic mapping of DArT markers in two mapping populations and their integration with other marker types showed that DArT is a powerf...

  7. Diversity arrays technology (DArT) markers in apple for genetic linkage maps

    OpenAIRE

    Schouten, Henk J.; van de Weg, W. Eric; Carling, Jason; Khan, Sabaz Ali; McKay, Steven J.; van Kaauwen, Martijn P. W.; Wittenberg, Alexander H. J.; Koehorst-van Putten, Herma J. J.; Noordijk, Yolanda; Gao, Zhongshan; Rees, D. Jasper G.; Van Dyk, Maria M.; Jaccoud, Damian; Considine, Michael J.; Kilian, Andrzej

    2011-01-01

    Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural trees. Genetic mapping of DArT markers in two mapping populations and their integration with other marker types showed that DArT is a powerf...

  8. Diversity arrays technology (DArT) markers in apple for genetic linkage maps.

    Science.gov (United States)

    Schouten, Henk J; van de Weg, W Eric; Carling, Jason; Khan, Sabaz Ali; McKay, Steven J; van Kaauwen, Martijn P W; Wittenberg, Alexander H J; Koehorst-van Putten, Herma J J; Noordijk, Yolanda; Gao, Zhongshan; Rees, D Jasper G; Van Dyk, Maria M; Jaccoud, Damian; Considine, Michael J; Kilian, Andrzej

    2012-03-01

    Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural trees. Genetic mapping of DArT markers in two mapping populations and their integration with other marker types showed that DArT is a powerful high-throughput method for obtaining accurate and reproducible marker data, despite the low cost per data point. This method appears to be suitable for aligning the genetic maps of different segregating populations. The standard complexity reduction method, based on the methylation-sensitive PstI restriction enzyme, resulted in a high frequency of markers, although there was 52-54% redundancy due to the repeated sampling of highly similar sequences. Sequencing of the marker clones showed that they are significantly enriched for low-copy, genic regions. The genome coverage using the standard method was 55-76%. For improved genome coverage, an alternative complexity reduction method was examined, which resulted in less redundancy and additional segregating markers. The DArT markers proved to be of high quality and were very suitable for genetic mapping at low cost for the apple, providing moderate genome coverage. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9579-5) contains supplementary material, which is available to authorized users.

  9. Linkage Map Construction and QTL Analysis of Fruit Traits in Melon (Cucumis melo L.) Based on CAPS Markers

    International Nuclear Information System (INIS)

    Baloch, A. M.; Liu, S.; Wang, X.; Luan, F.; Baloch, A. W.; Baloch, M. J.

    2016-01-01

    In the current experiment, the quantitative trait loci (QTL) analysis was done by composite interval mapping method to detect QTLs in edge, central parts and fruit shape of melon. In this context, 235 F/sub 2/ populations along with their parents were evaluated for fruit size, shape and color under replicated trail at Horticulture Experimental Station of Northeast Agricultural University, Harbin, China, during the growing year 2014. Moreover, 96 pairs of CAPS markers were used to construct a linkage map using F/sub 2/ population that was derived from the cross between two contrasting parents (MR-1 and Topmark). The total length of linkage map was found to be 4984.1cM with an average of 51.9177 cM between the markers. In a total, we detected ten QTLs, in which one was major, while others were minor. Five QTLs were detected in the edge part of melon fruit and three QTLs were detected in central parts of melon and all were considered as Brix content. Two QTLs were related with fruit shape. Our present genetic and QTLs mapping would be proved useful in plant breeding programs for the improvement of economically important horticultural traits. (author)

  10. Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa

    Directory of Open Access Journals (Sweden)

    King Graham J

    2010-10-01

    Full Text Available Abstract Background The Multinational Brassica rapa Genome Sequencing Project (BrGSP has developed valuable genomic resources, including BAC libraries, BAC-end sequences, genetic and physical maps, and seed BAC sequences for Brassica rapa. An integrated linkage map between the amphidiploid B. napus and diploid B. rapa will facilitate the rapid transfer of these valuable resources from B. rapa to B. napus (Oilseed rape, Canola. Results In this study, we identified over 23,000 simple sequence repeats (SSRs from 536 sequenced BACs. 890 SSR markers (designated as BrGMS were developed and used for the construction of an integrated linkage map for the A genome in B. rapa and B. napus. Two hundred and nineteen BrGMS markers were integrated to an existing B. napus linkage map (BnaNZDH. Among these mapped BrGMS markers, 168 were only distributed on the A genome linkage groups (LGs, 18 distrubuted both on the A and C genome LGs, and 33 only distributed on the C genome LGs. Most of the A genome LGs in B. napus were collinear with the homoeologous LGs in B. rapa, although minor inversions or rearrangements occurred on A2 and A9. The mapping of these BAC-specific SSR markers enabled assignment of 161 sequenced B. rapa BACs, as well as the associated BAC contigs to the A genome LGs of B. napus. Conclusion The genetic mapping of SSR markers derived from sequenced BACs in B. rapa enabled direct links to be established between the B. napus linkage map and a B. rapa physical map, and thus the assignment of B. rapa BACs and the associated BAC contigs to the B. napus linkage map. This integrated genetic linkage map will facilitate exploitation of the B. rapa annotated genomic resources for gene tagging and map-based cloning in B. napus, and for comparative analysis of the A genome within Brassica species.

  11. Development and Integration of Genome-Wide Polymorphic Microsatellite Markers onto a Reference Linkage Map for Constructing a High-Density Genetic Map of Chickpea.

    Directory of Open Access Journals (Sweden)

    Yash Paul Khajuria

    Full Text Available The identification of informative in silico polymorphic genomic and genic microsatellite markers by comparing the genome and transcriptome sequences of crop genotypes is a rapid, cost-effective and non-laborious approach for large-scale marker validation and genotyping applications, including construction of high-density genetic maps. We designed 1494 markers, including 1016 genomic and 478 transcript-derived microsatellite markers showing in-silico fragment length polymorphism between two parental genotypes (Cicer arietinum ICC4958 and C. reticulatum PI489777 of an inter-specific reference mapping population. High amplification efficiency (87%, experimental validation success rate (81% and polymorphic potential (55% of these microsatellite markers suggest their effective use in various applications of chickpea genetics and breeding. Intra-specific polymorphic potential (48% detected by microsatellite markers in 22 desi and kabuli chickpea genotypes was lower than inter-specific polymorphic potential (59%. An advanced, high-density, integrated and inter-specific chickpea genetic map (ICC4958 x PI489777 having 1697 map positions spanning 1061.16 cM with an average inter-marker distance of 0.625 cM was constructed by assigning 634 novel informative transcript-derived and genomic microsatellite markers on eight linkage groups (LGs of our prior documented, 1063 marker-based genetic map. The constructed genome map identified 88, including four major (7-23 cM longest high-resolution genomic regions on LGs 3, 5 and 8, where the maximum number of novel genomic and genic microsatellite markers were specifically clustered within 1 cM genetic distance. It was for the first time in chickpea that in silico FLP analysis at genome-wide level was carried out and such a large number of microsatellite markers were identified, experimentally validated and further used in genetic mapping. To best of our knowledge, in the presently constructed genetic map, we mapped

  12. Examination of X chromosome markers in Rett syndrome: Exclusion mapping with a novel variation on multilocus linkage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, K.A.; Fill, C.P. (Baylor College of Medicine, Houston, TX (United States)); Terwililger, J.; Percy, A.K.; Zobhbi, H. (Columbia University, NY (United States)); DeGennaro, L.J.; Ott, J. (University of Massachusetts Medical School, Worcester (United States)); Anvret, M.; Martin-Gallardo, A. (National Institutes of Health, Bethesda, MD (United States))

    1992-02-01

    Rett syndrome is a neurologic disorder characterized by early normal development followed by regression, acquired deceleration of head growth, autism, ataxia, and sterotypic hand movements. The exclusive occurrence of the syndrome in females and the occurrence of a few familial cases with inheritance through maternal lines suggest that this disorder is most likely secondary to a mutation on the X chromosome. To address this hypothesis and to identify candidate regions for the Rett syndrome gene locus, genotypic analysis was performed in two families with maternally related affected half-sisters by using 63 DNA markers from the X chromosome. Nineteen of the loci studied were chosen for multipoint linkage analysis because they have been previously genetically mapped using a large number of meioses from reference families. Using the exclusion criterion of a lod score less than [minus]2, the authors were able to exclude the region between the Duchenne muscular dystrophy locus and the DXS456 locus. This region extends from Xp21.2 to Xq21-q23. The use of the multipoint linkage analysis approach outlined in this study should allow the exclusion of additional regions of the X chromosome as new markers are analyzed.

  13. Novel fluorescent sequence-related amplified polymorphism(FSRAP markers for the construction of a genetic linkage map of wheat(Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Zhao Lingbo

    2017-01-01

    Full Text Available Novel fluorescent sequence-related amplified polymorphism (FSRAP markers were developed based on the SRAP molecular marker. Then, the FSRAP markers were used to construct the genetic map of a wheat (Triticum aestivumL. recombinant inbred line population derived from a Chuanmai 42×Chuannong 16 cross. Reproducibility and polymorphism tests indicated that the FSRAP markers have repeatability and better reflect the polymorphism of wheat varieties compared with SRAP markers. A total of 430 polymorphic loci between Chuanmai 42 and Chuannong 16 were detected with 189 FSRAP primer combinations. A total of 281 FSARP markers and 39 SSR markers re classified into 20 linkage groups. The maps spanned a total length of 2499.3cM with an average distance of 7.81cM between markers. A total of 201 markers were mapped on the B genome and covered a distance of 1013cM. On the A genome, 84 markers were mapped and covered a distance of 849.6cM. On the D genome, however, only 35 markers were mapped and covered a distance of 636.7cM. No FSRAP markers were distributed on the 7D chromosome. The results of the present study revealed that the novel FSRAP markers can be used to generate dense, uniform genetic maps of wheat.

  14. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.)

    Science.gov (United States)

    2011-01-01

    Background A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). Results Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in

  15. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.

    Directory of Open Access Journals (Sweden)

    Schaffer Arthur

    2011-07-01

    Full Text Available Abstract Background A number of molecular marker linkage maps have been developed for melon (Cucumis melo L. over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS. Results Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org, an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability

  16. Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers.

    Science.gov (United States)

    Cervera, M T; Storme, V; Ivens, B; Gusmão, J; Liu, B H; Hostyn, V; Van Slycken, J; Van Montagu, M; Boerjan, W

    2001-06-01

    Populus deltoides, P. nigra, and P. trichocarpa are the most important species for poplar breeding programs worldwide. In addition, Populus has become a model for fundamental research on trees. Linkage maps were constructed for these three species by analyzing progeny of two controlled crosses sharing the same female parent, Populus deltoides cv. S9-2 x P. nigra cv. Ghoy and P. deltoides cv. S9-2 x P. trichocarpa cv. V24. The two-way pseudotestcross mapping strategy was used to construct the maps. Amplified fragment length polymorphism (AFLP) markers that segregated 1:1 were used to form the four parental maps. Microsatellites and sequence-tagged sites were used to align homoeologous groups between the maps and to merge linkage groups within the individual maps. Linkage analysis and alignment of the homoeologous groups resulted in 566 markers distributed over 19 groups for P. deltoides covering 86% of the genome, 339 markers distributed over 19 groups for P. trichocarpa covering 73%, and 369 markers distributed over 28 groups for P. nigra covering 61%. Several tests for randomness showed that the AFLP markers were randomly distributed over the genome.

  17. Construction of High Density Sweet Cherry (Prunus avium L. Linkage Maps Using Microsatellite Markers and SNPs Detected by Genotyping-by-Sequencing (GBS.

    Directory of Open Access Journals (Sweden)

    Verónica Guajardo

    Full Text Available Linkage maps are valuable tools in genetic and genomic studies. For sweet cherry, linkage maps have been constructed using mainly microsatellite markers (SSRs and, recently, using single nucleotide polymorphism markers (SNPs from a cherry 6K SNP array. Genotyping-by-sequencing (GBS, a new methodology based on high-throughput sequencing, holds great promise for identification of high number of SNPs and construction of high density linkage maps. In this study, GBS was used to identify SNPs from an intra-specific sweet cherry cross. A total of 8,476 high quality SNPs were selected for mapping. The physical position for each SNP was determined using the peach genome, Peach v1.0, as reference, and a homogeneous distribution of markers along the eight peach scaffolds was obtained. On average, 65.6% of the SNPs were present in genic regions and 49.8% were located in exonic regions. In addition to the SNPs, a group of SSRs was also used for construction of linkage maps. Parental and consensus high density maps were constructed by genotyping 166 siblings from a 'Rainier' x 'Rivedel' (Ra x Ri cross. Using Ra x Ri population, 462, 489 and 985 markers were mapped into eight linkage groups in 'Rainier', 'Rivedel' and the Ra x Ri map, respectively, with 80% of mapped SNPs located in genic regions. Obtained maps spanned 549.5, 582.6 and 731.3 cM for 'Rainier', 'Rivedel' and consensus maps, respectively, with an average distance of 1.2 cM between adjacent markers for both 'Rainier' and 'Rivedel' maps and of 0.7 cM for Ra x Ri map. High synteny and co-linearity was observed between obtained maps and with Peach v1.0. These new high density linkage maps provide valuable information on the sweet cherry genome, and serve as the basis for identification of QTLs and genes relevant for the breeding of the species.

  18. A first linkage map of globe artichoke (Cynara cardunculus var. scolymus L.) based on AFLP, S-SAP, M-AFLP and microsatellite markers.

    Science.gov (United States)

    Lanteri, S; Acquadro, A; Comino, C; Mauro, R; Mauromicale, G; Portis, E

    2006-05-01

    We present the first genetic maps of globe artichoke (Cynara cardunculus var. scolymus L. 2n=2x=34), constructed with a two-way pseudo-testcross strategy. A F1 mapping population of 94 individuals was generated between a late-maturing, non-spiny type and an early-maturing spiny type. The 30 AFLP, 13 M-AFLP and 9 S-SAP primer combinations chosen identified, respectively, 352, 38 and 41 polymorphic markers. Of 32 microsatellite primer pairs tested, 12 identified heterozygous loci in one or other parent, and 7 were fully informative as they segregated in both parents. The female parent map comprised 204 loci, spread over 18 linkage groups and spanned 1330.5 cM with a mean marker density of 6.5 cM. The equivalent figures for the male parent map were 180 loci, 17 linkage groups, 1239.4 and 6.9 cM. About 3% of the AFLP and AFLP-derived markers displayed segregation distortion with a P value below 0.01, and were not used for map construction. All the SSR loci were included in the linkage analysis, although one locus did show some segregation distortion. The presence of 78 markers in common to both maps allowed the alignment of 16 linkage groups. The maps generated provide a firm basis for the mapping of agriculturally relevant traits, which will then open the way for the application of a marker-assisted selection breeding strategy in this species.

  19. A genetic linkage map with 178 SSR and 1 901 SNP markers constructed using a RIL population in wheat (Triticum aestivum L.)

    Institute of Scientific and Technical Information of China (English)

    ZHAI Hui-jie; FENG Zhi-yu; LIU Xin-ye; CHENG Xue-jiao; PENG Hui-ru; YAO Ying-yin; SUN Qi-xin; NI Zhong-fu

    2015-01-01

    The construction of high density genetic linkage map provides a powerful tool to detect and map quantitative trait loci (QTLs) controlling agronomically important traits. In this study, simple sequence repeat (SSR) markers and Illumina 9K iSelect single nucleotide polymorphism (SNP) genechip were employed to construct one genetic linkage map of common wheat (Triticum aestivum L.) using 191 recombinant inbred lines (RILs) derived from cross Yu 8679xJing 411. This map included 1 901 SNP loci and 178 SSR loci, covering 1 659.9 cM and 1 000 marker bins, with an average interval distance of 1.66 cM. A, B and D genomes covered 719.1,703.5 and 237.3 cM, with an average interval distance of 1.66, 1.45 and 2.9 cM, respectively. Notably, the genetic linkage map covered 20 chromosomes, with the exception of chromosome 5D. Bioinformatics analysis revealed that 1 754 (92.27%) of 1 901 mapped SNP loci could be aligned to 1 215 distinct wheat unigenes, among which 1 184 (97.4%) were located on one single chromosome, and the rest 31 (2.6%) were located on 2 to 3 chromosomes. By performing in silico comparison, 214 chromosome deletion bin-mapped expressed sequence tags (ESTs), 1 043 Brachypodium genes and 1 033 rice genes were further added onto the genetic linkage map. This map not only integrated genetic and physical maps, SSR and SNP loci, respectively, but also provided the information of Brachypodium and rice genes corresponding to 1 754 SNP loci. Therefore, it will be a useful tool for comparative genomics analysis, fine mapping of QTL/gene controlling agronomically important traits and marker-assisted selection breeding in wheat.

  20. A genetic linkage map of willow (Salix viminalis) based on AFLP and microsatelite markers

    NARCIS (Netherlands)

    Hanley, S.; Barker, J.H.A.; Ooijen, van J.W.; Aldam, C.; Harris, S.L.; Ahman, I.; Larsson, S.; Karp, A.

    2002-01-01

    The genus Salix (willow) contains a number of species of great value as biomass crops. Efforts to breed varieties with improved biomass yields and resistances to pests and diseases are limited by the lack of knowledge on the genetic basis of the traits. We have used AFLP and microsatellite markers

  1. Development of SSR markers and construction of a linkage map in jute

    Indian Academy of Sciences (India)

    We recently initiated a programme to develop simple sequence repeat markers and reported a set of 2469 SSR that were developed using four SSR-enriched libraries (Mir et al. 2009). In this communication, we report an additional set of 607 novel SSR in 393 SSR containing sequences. However, primers could be ...

  2. Genetic linkage mapping in an F2 perennial ryegrass population using DArT markers

    Czech Academy of Sciences Publication Activity Database

    Tomaszewski, C.; Byrne, S. L.; Foito, A.; Kildea, S.; Kopecký, David; Doležel, Jaroslav; Heslop-Harrison, J. S.; Stewart, D.; Barth, S.

    2012-01-01

    Roč. 131, č. 2 (2012), s. 345-349 ISSN 0179-9541 Institutional research plan: CEZ:AV0Z50380511 Keywords : Lolium perenne * perennial ryegrass * genetic map Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.175, year: 2012

  3. A high-density SNP genetic linkage map for the silver-lipped pearl oyster, Pinctada maxima: a valuable resource for gene localisation and marker-assisted selection.

    Science.gov (United States)

    Jones, David B; Jerry, Dean R; Khatkar, Mehar S; Raadsma, Herman W; Zenger, Kyall R

    2013-11-20

    The silver-lipped pearl oyster, Pinctada maxima, is an important tropical aquaculture species extensively farmed for the highly sought "South Sea" pearls. Traditional breeding programs have been initiated for this species in order to select for improved pearl quality, but many economic traits under selection are complex, polygenic and confounded with environmental factors, limiting the accuracy of selection. The incorporation of a marker-assisted selection (MAS) breeding approach would greatly benefit pearl breeding programs by allowing the direct selection of genes responsible for pearl quality. However, before MAS can be incorporated, substantial genomic resources such as genetic linkage maps need to be generated. The construction of a high-density genetic linkage map for P. maxima is not only essential for unravelling the genomic architecture of complex pearl quality traits, but also provides indispensable information on the genome structure of pearl oysters. A total of 1,189 informative genome-wide single nucleotide polymorphisms (SNPs) were incorporated into linkage map construction. The final linkage map consisted of 887 SNPs in 14 linkage groups, spans a total genetic distance of 831.7 centimorgans (cM), and covers an estimated 96% of the P. maxima genome. Assessment of sex-specific recombination across all linkage groups revealed limited overall heterochiasmy between the sexes (i.e. 1.15:1 F/M map length ratio). However, there were pronounced localised differences throughout the linkage groups, whereby male recombination was suppressed near the centromeres compared to female recombination, but inflated towards telomeric regions. Mean values of LD for adjacent SNP pairs suggest that a higher density of markers will be required for powerful genome-wide association studies. Finally, numerous nacre biomineralization genes were localised providing novel positional information for these genes. This high-density SNP genetic map is the first comprehensive linkage

  4. Identification of QTLs Associated with Callogenesis and Embryogenesis in Oil Palm Using Genetic Linkage Maps Improved with SSR Markers.

    NARCIS (Netherlands)

    Ting, N.C.; Jansen, J.; Nagappan, J.; Ishak, Z.; Chin, C.W.; Tan, S.G.; Cheah, S.C.; Singh, R.

    2013-01-01

    Clonal reproduction of oil palm by means of tissue culture is a very inefficient process. Tissue culturability is known to be genotype dependent with some genotypes being more amenable to tissue culture than others. In this study, genetic linkage maps enriched with simple sequence repeat (SSR)

  5. Genomic Characterization of DArT Markers Based on High-Density Linkage Analysis and Physical Mapping to the Eucalyptus Genome

    Science.gov (United States)

    Petroli, César D.; Sansaloni, Carolina P.; Carling, Jason; Steane, Dorothy A.; Vaillancourt, René E.; Myburg, Alexander A.; da Silva, Orzenil Bonfim; Pappas, Georgios Joannis; Kilian, Andrzej; Grattapaglia, Dario

    2012-01-01

    Diversity Arrays Technology (DArT) provides a robust, high throughput, cost-effective method to query thousands of sequence polymorphisms in a single assay. Despite the extensive use of this genotyping platform for numerous plant species, little is known regarding the sequence attributes and genome-wide distribution of DArT markers. We investigated the genomic properties of the 7,680 DArT marker probes of a Eucalyptus array, by sequencing them, constructing a high density linkage map and carrying out detailed physical mapping analyses to the Eucalyptus grandis reference genome. A consensus linkage map with 2,274 DArT markers anchored to 210 microsatellites and a framework map, with improved support for ordering, displayed extensive collinearity with the genome sequence. Only 1.4 Mbp of the 75 Mbp of still unplaced scaffold sequence was captured by 45 linkage mapped but physically unaligned markers to the 11 main Eucalyptus pseudochromosomes, providing compelling evidence for the quality and completeness of the current Eucalyptus genome assembly. A highly significant correspondence was found between the locations of DArT markers and predicted gene models, while most of the 89 DArT probes unaligned to the genome correspond to sequences likely absent in E. grandis, consistent with the pan-genomic feature of this multi-Eucalyptus species DArT array. These comprehensive linkage-to-physical mapping analyses provide novel data regarding the genomic attributes of DArT markers in plant genomes in general and for Eucalyptus in particular. DArT markers preferentially target the gene space and display a largely homogeneous distribution across the genome, thereby providing superb coverage for mapping and genome-wide applications in breeding and diversity studies. Data reported on these ubiquitous properties of DArT markers will be particularly valuable to researchers working on less-studied crop species who already count on DArT genotyping arrays but for which no reference

  6. Genomic characterization of DArT markers based on high-density linkage analysis and physical mapping to the Eucalyptus genome.

    Directory of Open Access Journals (Sweden)

    César D Petroli

    Full Text Available Diversity Arrays Technology (DArT provides a robust, high throughput, cost-effective method to query thousands of sequence polymorphisms in a single assay. Despite the extensive use of this genotyping platform for numerous plant species, little is known regarding the sequence attributes and genome-wide distribution of DArT markers. We investigated the genomic properties of the 7,680 DArT marker probes of a Eucalyptus array, by sequencing them, constructing a high density linkage map and carrying out detailed physical mapping analyses to the Eucalyptus grandis reference genome. A consensus linkage map with 2,274 DArT markers anchored to 210 microsatellites and a framework map, with improved support for ordering, displayed extensive collinearity with the genome sequence. Only 1.4 Mbp of the 75 Mbp of still unplaced scaffold sequence was captured by 45 linkage mapped but physically unaligned markers to the 11 main Eucalyptus pseudochromosomes, providing compelling evidence for the quality and completeness of the current Eucalyptus genome assembly. A highly significant correspondence was found between the locations of DArT markers and predicted gene models, while most of the 89 DArT probes unaligned to the genome correspond to sequences likely absent in E. grandis, consistent with the pan-genomic feature of this multi-Eucalyptus species DArT array. These comprehensive linkage-to-physical mapping analyses provide novel data regarding the genomic attributes of DArT markers in plant genomes in general and for Eucalyptus in particular. DArT markers preferentially target the gene space and display a largely homogeneous distribution across the genome, thereby providing superb coverage for mapping and genome-wide applications in breeding and diversity studies. Data reported on these ubiquitous properties of DArT markers will be particularly valuable to researchers working on less-studied crop species who already count on DArT genotyping arrays but for

  7. An Improved Consensus Linkage Map of Barley Based on Flow-Sorted Chromosomes and Single Nucleotide Polymorphism Markers

    Directory of Open Access Journals (Sweden)

    María Muñoz-Amatriaín

    2011-11-01

    Full Text Available Recent advances in high-throughput genotyping have made it easier to combine information from different mapping populations into consensus genetic maps, which provide increased marker density and genome coverage compared to individual maps. Previously, a single nucleotide polymorphism (SNP-based genotyping platform was developed and used to genotype 373 individuals in four barley ( L. mapping populations. This led to a 2943 SNP consensus genetic map with 975 unique positions. In this work, we add data from six additional populations and more individuals from one of the original populations to develop an improved consensus map from 1133 individuals. A stringent and systematic analysis of each of the 10 populations was performed to achieve uniformity. This involved reexamination of the four populations included in the previous map. As a consequence, we present a robust consensus genetic map that contains 2994 SNP loci mapped to 1163 unique positions. The map spans 1137.3 cM with an average density of one marker bin per 0.99 cM. A novel application of the genotyping platform for gene detection allowed the assignment of 2930 genes to flow-sorted chromosomes or arms, confirmed the position of 2545 SNP-mapped loci, added chromosome or arm allocations to an additional 370 SNP loci, and delineated pericentromeric regions for chromosomes 2H to 7H. Marker order has been improved and map resolution has been increased by almost 20%. These increased precision outcomes enable more optimized SNP selection for marker-assisted breeding and support association genetic analysis and map-based cloning. It will also improve the anchoring of DNA sequence scaffolds and the barley physical map to the genetic map.

  8. Linkage Map of a Gene Controlling Zero Tannins (zt-1 in Faba Bean (Vicia faba L. with SSR and ISSR Markers

    Directory of Open Access Journals (Sweden)

    Wanwei Hou

    2018-05-01

    Full Text Available Faba bean (Vicia faba L., a partially allogamous species, is rich in protein. Condensed tannins limit the use of faba beans as food and feed. Two recessive genes, zt-1 and zt-2, control the zero tannin content in faba bean and promote a white flower phenotype. To determine the inheritance and develop a linkage map for the zt-1 gene in the faba bean germplasm M3290, F2 and F3 progenies were derived from the purple flower and high tannin content genotypes Qinghai12 and zt-1 line M3290, respectively. Genetic analysis verified a single recessive gene for zero tannin content and flower colour. In total, 596 SSR markers and 100 ISSR markers were used to test the polymorphisms between the parents and bulks for the contrasting flower colour via Bulked Segregant Analysis (BSA. Subsequently, six SSR markers and seven ISSR markers were used to genotype the entire 413 F2 population. Linkage analysis showed that the zt-1 gene was closely linked to the SSR markers SSR84 and M78, with genetic distances of 2.9 and 5.8 cM, respectively. The two flanked SSR markers were used to test 34 faba bean genotypes with different flower colours. The closely linked SSR marker SSR84 predicted the zt-1 genotypes with absolute accuracy. The results from the marker-assisted selection (MAS from this study could provide a solid foundation for further faba bean breeding programmes.

  9. The Barley Chromosome 5 Linkage Map

    DEFF Research Database (Denmark)

    Jensen, J.; Jørgensen, Jørgen Helms

    1975-01-01

    The distances between nine loci on barley chromosome 5 have been studied in five two-point tests, three three-point tests, and one four-point test. Our previous chromosome 5 linkage map, which contained eleven loci mapped from literature data (Jensen and Jørgensen 1975), is extended with four loci......-position is fixed on the map by a locus (necl), which has a good marker gene located centrally in the linkage group. The positions of the other loci are their distances in centimorgans from the 0-position; loci in the direction of the short chromosome arm are assigned positive values and those...

  10. Mapping recessive ophthalmic diseases: linkage of the locus for Usher syndrome type II to a DNA marker on chromosome 1q.

    Science.gov (United States)

    Lewis, R A; Otterud, B; Stauffer, D; Lalouel, J M; Leppert, M

    1990-06-01

    Usher syndrome is a heterogeneous group of autosomal recessive disorders that combines variably severe congenital neurosensory hearing impairment with progressive night-blindness and visual loss similar to that in retinitis pigmentosa. Usher syndrome type I is distinguished by profound congenital (preverbal) deafness and retinal disease with onset in the first decade of life. Usher syndrome type II is characterized by partial hearing impairment and retinal dystrophy that occurs in late adolescence or early adulthood. The chromosomal assignment and the regional localization of the genetic mutation(s) causing the Usher syndromes are unknown. We analyzed a panel of polymorphic genomic markers for linkage to the disease gene among six families with Usher syndrome type I and 22 families with Usher syndrome type II. Significant linkage was established between Usher syndrome type II and the DNA marker locus THH33 (D1S81), which maps to chromosome 1q. The most likely location of the disease gene is at a map distance of 9 cM from THH33 (lod score 6.5). The same marker failed to show linkage in families segregating an allele for Usher syndrome type I. These data confirm the provisional assignment of the locus for Usher syndrome type II to the distal end of chromosome 1q and demonstrate that the clinical heterogeneity between Usher types I and II is caused by mutational events at different genetic loci. Regional localization has the potential to improve carrier detection and to provide antenatal diagnosis in families at risk for the disease.

  11. Preliminary genetic linkage map of the abalone Haliotis diversicolor Reeve

    Science.gov (United States)

    Shi, Yaohua; Guo, Ximing; Gu, Zhifeng; Wang, Aimin; Wang, Yan

    2010-05-01

    Haliotis diversicolor Reeve is one of the most important mollusks cultured in South China. Preliminary genetic linkage maps were constructed with amplified fragment length polymorphism (AFLP) markers. A total of 2 596 AFLP markers were obtained from 28 primer combinations in two parents and 78 offsprings. Among them, 412 markers (15.9%) were polymorphic and segregated in the mapping family. Chi-square tests showed that 151 (84.4%) markers segregated according to the expected 1:1 Mendelian ratio ( P<0.05) in the female parent, and 200 (85.8%) in the male parent. For the female map, 179 markers were used for linkage analysis and 90 markers were assigned to 17 linkage groups with an average interval length of 25.7 cm. For the male map, 233 markers were used and 94 were mapped into 18 linkage groups, with an average interval of 25.0 cm. The estimated genome length was 2 773.0 cm for the female and 2 817.1 cm for the male map. The observed length of the linkage map was 1 875.2 cm and 1 896.5 cm for the female and male maps, respectively. When doublets were considered, the map length increased to 2 152.8 cm for the female and 2 032.7 cm for the male map, corresponding to genome coverage of 77.6% and 72.2%, respectively.

  12. Mapping of yield, yield stability, yield adaptability and other traits in barley using linkage disequilibrium mapping and linkage analysis

    NARCIS (Netherlands)

    Kraakman, A.T.W.

    2005-01-01

    Plants is mostly done through linkage analysis. A segregating mapping population Identification and mappping of Quantitative Trait Loci (QTLs) in is created from a bi-parental cross and linkages between trait values and mapped markers reveal the positions ofQTLs. In

  13. Mapping of yield, yield stability, yield adaptability and other traits in barley using linkage disequilibrium mapping and linkage analysis

    OpenAIRE

    Kraakman, A.T.W.

    2005-01-01

    Plants is mostly done through linkage analysis. A segregating mapping population Identification and mappping of Quantitative Trait Loci (QTLs) in is created from a bi-parental cross and linkages between trait values and mapped markers reveal the positions ofQTLs. Inthisstudyweexploredlinkagedisequilibrium(LD)mappingof traits in a set of modernbarleycultivars. LDbetweenmolecularmarkerswasfoundup to a distance of 10 centimorgan,whichislargecomparedtootherspecies.Thelarge distancemightbeinducedb...

  14. Development of cleaved amplified polymorphic sequence markers and a CAPS-based genetic linkage map in watermelon (Citrullus lanatus [Thunb.] Matsum. and Nakai) constructed using whole-genome re-sequencing data.

    Science.gov (United States)

    Liu, Shi; Gao, Peng; Zhu, Qianglong; Luan, Feishi; Davis, Angela R; Wang, Xiaolu

    2016-03-01

    Cleaved amplified polymorphic sequence (CAPS) markers are useful tools for detecting single nucleotide polymorphisms (SNPs). This study detected and converted SNP sites into CAPS markers based on high-throughput re-sequencing data in watermelon, for linkage map construction and quantitative trait locus (QTL) analysis. Two inbred lines, Cream of Saskatchewan (COS) and LSW-177 had been re-sequenced and analyzed by Perl self-compiled script for CAPS marker development. 88.7% and 78.5% of the assembled sequences of the two parental materials could map to the reference watermelon genome, respectively. Comparative assembled genome data analysis provided 225,693 and 19,268 SNPs and indels between the two materials. 532 pairs of CAPS markers were designed with 16 restriction enzymes, among which 271 pairs of primers gave distinct bands of the expected length and polymorphic bands, via PCR and enzyme digestion, with a polymorphic rate of 50.94%. Using the new CAPS markers, an initial CAPS-based genetic linkage map was constructed with the F2 population, spanning 1836.51 cM with 11 linkage groups and 301 markers. 12 QTLs were detected related to fruit flesh color, length, width, shape index, and brix content. These newly CAPS markers will be a valuable resource for breeding programs and genetic studies of watermelon.

  15. Saturation of an intra-gene pool linkage map: towards a unified consensus linkage map for fine mapping and synteny analysis in common bean.

    Science.gov (United States)

    Galeano, Carlos H; Fernandez, Andrea C; Franco-Herrera, Natalia; Cichy, Karen A; McClean, Phillip E; Vanderleyden, Jos; Blair, Matthew W

    2011-01-01

    Map-based cloning and fine mapping to find genes of interest and marker assisted selection (MAS) requires good genetic maps with reproducible markers. In this study, we saturated the linkage map of the intra-gene pool population of common bean DOR364 × BAT477 (DB) by evaluating 2,706 molecular markers including SSR, SNP, and gene-based markers. On average the polymorphism rate was 7.7% due to the narrow genetic base between the parents. The DB linkage map consisted of 291 markers with a total map length of 1,788 cM. A consensus map was built using the core mapping populations derived from inter-gene pool crosses: DOR364 × G19833 (DG) and BAT93 × JALO EEP558 (BJ). The consensus map consisted of a total of 1,010 markers mapped, with a total map length of 2,041 cM across 11 linkage groups. On average, each linkage group on the consensus map contained 91 markers of which 83% were single copy markers. Finally, a synteny analysis was carried out using our highly saturated consensus maps compared with the soybean pseudo-chromosome assembly. A total of 772 marker sequences were compared with the soybean genome. A total of 44 syntenic blocks were identified. The linkage group Pv6 presented the most diverse pattern of synteny with seven syntenic blocks, and Pv9 showed the most consistent relations with soybean with just two syntenic blocks. Additionally, a co-linear analysis using common bean transcript map information against soybean coding sequences (CDS) revealed the relationship with 787 soybean genes. The common bean consensus map has allowed us to map a larger number of markers, to obtain a more complete coverage of the common bean genome. Our results, combined with synteny relationships provide tools to increase marker density in selected genomic regions to identify closely linked polymorphic markers for indirect selection, fine mapping or for positional cloning.

  16. Linkage disequilibrium and association mapping.

    Science.gov (United States)

    Weir, B S

    2008-01-01

    Linkage disequilibrium refers to the association between alleles at different loci. The standard definition applies to two alleles in the same gamete, and it can be regarded as the covariance of indicator variables for the states of those two alleles. The corresponding correlation coefficient rho is the parameter that arises naturally in discussions of tests of association between markers and genetic diseases. A general treatment of association tests makes use of the additive and nonadditive components of variance for the disease gene. In almost all expressions that describe the behavior of association tests, additive variance components are modified by the squared correlation coefficient rho2 and the nonadditive variance components by rho4, suggesting that nonadditive components have less influence than additive components on association tests.

  17. Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers.

    Science.gov (United States)

    Li, Faji; Wen, Weie; He, Zhonghu; Liu, Jindong; Jin, Hui; Cao, Shuanghe; Geng, Hongwei; Yan, Jun; Zhang, Pingzhi; Wan, Yingxiu; Xia, Xianchun

    2018-06-01

    We identified 21 new and stable QTL, and 11 QTL clusters for yield-related traits in three bread wheat populations using the wheat 90 K SNP assay. Identification of quantitative trait loci (QTL) for yield-related traits and closely linked molecular markers is important in order to identify gene/QTL for marker-assisted selection (MAS) in wheat breeding. The objectives of the present study were to identify QTL for yield-related traits and dissect the relationships among different traits in three wheat recombinant inbred line (RIL) populations derived from crosses Doumai × Shi 4185 (D × S), Gaocheng 8901 × Zhoumai 16 (G × Z) and Linmai 2 × Zhong 892 (L × Z). Using the available high-density linkage maps previously constructed with the wheat 90 K iSelect single nucleotide polymorphism (SNP) array, 65, 46 and 53 QTL for 12 traits were identified in the three RIL populations, respectively. Among them, 34, 23 and 27 were likely to be new QTL. Eighteen common QTL were detected across two or three populations. Eleven QTL clusters harboring multiple QTL were detected in different populations, and the interval 15.5-32.3 cM around the Rht-B1 locus on chromosome 4BS harboring 20 QTL is an important region determining grain yield (GY). Thousand-kernel weight (TKW) is significantly affected by kernel width and plant height (PH), whereas flag leaf width can be used to select lines with large kernel number per spike. Eleven candidate genes were identified, including eight cloned genes for kernel, heading date (HD) and PH-related traits as well as predicted genes for TKW, spike length and HD. The closest SNP markers of stable QTL or QTL clusters can be used for MAS in wheat breeding using kompetitive allele-specific PCR or semi-thermal asymmetric reverse PCR assays for improvement of GY.

  18. Genetic linkage map of cowpea ( Vigna unguiculata (L.) Walp) using ...

    African Journals Online (AJOL)

    Genetic linkage maps provide a genomic framework for quantitative trait loci identification applied in marker assisted selection breeding in crops with limited resources. It serves as a powerful tool to breeders for analysing the mode of inheritance of genes of interest and monitoring of the transmission of target genes from ...

  19. The first genetic linkage map of Primulina eburnea (Gesneriaceae)

    Indian Academy of Sciences (India)

    Primulina eburneais a promising candidate for domestication and floriculture, since it is easy to culture and has beautiful flow-ers. An F2population of 189 individuals was established for the construction of first-generation linkage maps based onexpressed sequence tags-derived single-nucleotide polymorphism markers ...

  20. A genetic linkage map for the saltwater crocodile (Crocodylus porosus

    Directory of Open Access Journals (Sweden)

    Lance Stacey L

    2009-07-01

    Full Text Available Abstract Background Genome elucidation is now in high gear for many organisms, and whilst genetic maps have been developed for a broad array of species, surprisingly, no such maps exist for a crocodilian, or indeed any other non-avian member of the Class Reptilia. Genetic linkage maps are essential tools for the mapping and dissection of complex quantitative trait loci (QTL, and in order to permit systematic genome scans for the identification of genes affecting economically important traits in farmed crocodilians, a comprehensive genetic linage map will be necessary. Results A first-generation genetic linkage map for the saltwater crocodile (Crocodylus porosus was constructed using 203 microsatellite markers amplified across a two-generation pedigree comprising ten full-sib families from a commercial population at Darwin Crocodile Farm, Northern Territory, Australia. Linkage analyses identified fourteen linkage groups comprising a total of 180 loci, with 23 loci remaining unlinked. Markers were ordered within linkage groups employing a heuristic approach using CRIMAP v3.0 software. The estimated female and male recombination map lengths were 1824.1 and 319.0 centimorgans (cM respectively, revealing an uncommonly large disparity in recombination map lengths between sexes (ratio of 5.7:1. Conclusion We have generated the first genetic linkage map for a crocodilian, or indeed any other non-avian reptile. The uncommonly large disparity in recombination map lengths confirms previous preliminary evidence of major differences in sex-specific recombination rates in a species that exhibits temperature-dependent sex determination (TSD. However, at this point the reason for this disparity in saltwater crocodiles remains unclear. This map will be a valuable resource for crocodilian researchers, facilitating the systematic genome scans necessary for identifying genes affecting complex traits of economic importance in the crocodile industry. In addition

  1. A microsatellite linkage map of Drosophila mojavensis

    Directory of Open Access Journals (Sweden)

    Schully Sheri

    2004-05-01

    Full Text Available Abstract Background Drosophila mojavensis has been a model system for genetic studies of ecological adaptation and speciation. However, despite its use for over half a century, no linkage map has been produced for this species or its close relatives. Results We have developed and mapped 90 microsatellites in D. mojavensis, and we present a detailed recombinational linkage map of 34 of these microsatellites. A slight excess of repetitive sequence was observed on the X-chromosome relative to the autosomes, and the linkage groups have a greater recombinational length than the homologous D. melanogaster chromosome arms. We also confirmed the conservation of Muller's elements in 23 sequences between D. melanogaster and D. mojavensis. Conclusions The microsatellite primer sequences and localizations are presented here and made available to the public. This map will facilitate future quantitative trait locus mapping studies of phenotypes involved in adaptation or reproductive isolation using this species.

  2. Linear models for joint association and linkage QTL mapping

    Directory of Open Access Journals (Sweden)

    Fernando Rohan L

    2009-09-01

    Full Text Available Abstract Background Populational linkage disequilibrium and within-family linkage are commonly used for QTL mapping and marker assisted selection. The combination of both results in more robust and accurate locations of the QTL, but models proposed so far have been either single marker, complex in practice or well fit to a particular family structure. Results We herein present linear model theory to come up with additive effects of the QTL alleles in any member of a general pedigree, conditional to observed markers and pedigree, accounting for possible linkage disequilibrium among QTLs and markers. The model is based on association analysis in the founders; further, the additive effect of the QTLs transmitted to the descendants is a weighted (by the probabilities of transmission average of the substitution effects of founders' haplotypes. The model allows for non-complete linkage disequilibrium QTL-markers in the founders. Two submodels are presented: a simple and easy to implement Haley-Knott type regression for half-sib families, and a general mixed (variance component model for general pedigrees. The model can use information from all markers. The performance of the regression method is compared by simulation with a more complex IBD method by Meuwissen and Goddard. Numerical examples are provided. Conclusion The linear model theory provides a useful framework for QTL mapping with dense marker maps. Results show similar accuracies but a bias of the IBD method towards the center of the region. Computations for the linear regression model are extremely simple, in contrast with IBD methods. Extensions of the model to genomic selection and multi-QTL mapping are straightforward.

  3. Genetic linkage maps of Japanese and European pears aligned to the apple consensus map

    NARCIS (Netherlands)

    Yamamoto, T.; Kimura, T.; Saito, T.; Kotobuki, K.; Matsuta, N.; Liebhard, R.; Gessler, C.; Weg, van de W.E.; Hayashi, T.

    2004-01-01

    Genetic linkage maps of the Japanese pear (Pyrus pyrifolia Nakai) cultivar `Housui¿ and the European pear (Pyrus communis L.) cultivar `Bartlett¿ were constructed based on Amplified Fragment Length Polymorphism markers (AFLPs), Simple Sequence Repeat markers (SSRs) (from pear, apple and Prunus),

  4. Linkage disequilibrium and association mapping of drought ...

    African Journals Online (AJOL)

    Drought stress is a major abiotic stress that limits crop production. Molecular association mapping techniques through linkage disequilibrium (LD) can be effectively used to tag genomic regions involved in drought stress tolerance. With the association mapping approach, 90 genotypes of cotton Gossypium hirsutum, from ...

  5. Single Nucleotide Polymorphism Identification, Characterization, and Linkage Mapping in Quinoa

    Directory of Open Access Journals (Sweden)

    P. J. Maughan

    2012-11-01

    Full Text Available Quinoa ( Willd. is an important seed crop throughout the Andean region of South America. It is important as a regional food security crop for millions of impoverished rural inhabitants of the Andean Altiplano (high plains. Efforts to improve the crop have led to an increased focus on genetic research. We report the identification of 14,178 putative single nucleotide polymorphisms (SNPs using a genomic reduction protocol as well as the development of 511 functional SNP assays. The SNP assays are based on KASPar genotyping chemistry and were detected using the Fluidigm dynamic array platform. A diversity screen of 113 quinoa accessions showed that the minor allele frequency (MAF of the SNPs ranged from 0.02 to 0.50, with an average MAF of 0.28. Structure analysis of the quinoa diversity panel uncovered the two major subgroups corresponding to the Andean and coastal quinoa ecotypes. Linkage mapping of the SNPs in two recombinant inbred line populations produced an integrated linkage map consisting of 29 linkage groups with 20 large linkage groups, spanning 1404 cM with a marker density of 3.1 cM per SNP marker. The SNPs identified here represent important genomic tools needed in emerging plant breeding programs for advanced genetic analysis of agronomic traits in quinoa.

  6. Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.).

    Science.gov (United States)

    Yagi, Masafumi; Yamamoto, Toshiya; Isobe, Sachiko; Hirakawa, Hideki; Tabata, Satoshi; Tanase, Koji; Yamaguchi, Hiroyasu; Onozaki, Takashi

    2013-10-26

    Genetic linkage maps are important tools for many genetic applications including mapping of quantitative trait loci (QTLs), identifying DNA markers for fingerprinting, and map-based gene cloning. Carnation (Dianthus caryophyllus L.) is an important ornamental flower worldwide. We previously reported a random amplified polymorphic DNA (RAPD)-based genetic linkage map derived from Dianthus capitatus ssp. andrezejowskianus and a simple sequence repeat (SSR)-based genetic linkage map constructed using data from intraspecific F2 populations; however, the number of markers was insufficient, and so the number of linkage groups (LGs) did not coincide with the number of chromosomes (x = 15). Therefore, we aimed to produce a high-density genetic map to improve its usefulness for breeding purposes and genetic research. We improved the SSR-based genetic linkage map using SSR markers derived from a genomic library, expression sequence tags, and RNA-seq data. Linkage analysis revealed that 412 SSR loci (including 234 newly developed SSR loci) could be mapped to 17 linkage groups (LGs) covering 969.6 cM. Comparison of five minor LGs covering less than 50 cM with LGs in our previous RAPD-based genetic map suggested that four LGs could be integrated into two LGs by anchoring common SSR loci. Consequently, the number of LGs corresponded to the number of chromosomes (x = 15). We added 192 new SSRs, eight RAPD, and two sequence-tagged site loci to refine the RAPD-based genetic linkage map, which comprised 15 LGs consisting of 348 loci covering 978.3 cM. The two maps had 125 SSR loci in common, and most of the positions of markers were conserved between them. We identified 635 loci in carnation using the two linkage maps. We also mapped QTLs for two traits (bacterial wilt resistance and anthocyanin pigmentation in the flower) and a phenotypic locus for flower-type by analyzing previously reported genotype and phenotype data. The improved genetic linkage maps and SSR markers developed

  7. Using Linkage Maps as a Tool To Determine Patterns of Chromosome Synteny in the Genus Salvelinus

    Directory of Open Access Journals (Sweden)

    Matthew C. Hale

    2017-11-01

    Full Text Available Next generation sequencing techniques have revolutionized the collection of genome and transcriptome data from nonmodel organisms. This manuscript details the application of restriction site-associated DNA sequencing (RADseq to generate a marker-dense genetic map for Brook Trout (Salvelinus fontinalis. The consensus map was constructed from three full-sib families totaling 176 F1 individuals. The map consisted of 42 linkage groups with a total female map size of 2502.5 cM, and a total male map size of 1863.8 cM. Synteny was confirmed with Atlantic Salmon for 38 linkage groups, with Rainbow Trout for 37 linkage groups, Arctic Char for 36 linkage groups, and with a previously published Brook Trout linkage map for 39 linkage groups. Comparative mapping confirmed the presence of 8 metacentric and 34 acrocentric chromosomes in Brook Trout. Six metacentric chromosomes seem to be conserved with Arctic Char suggesting there have been at least two species-specific fusion and fission events within the genus Salvelinus. In addition, the sex marker (sdY; sexually dimorphic on the Y chromosome was mapped to Brook Trout BC35, which is homologous with Atlantic Salmon Ssa09qa, Rainbow Trout Omy25, and Arctic Char AC04q. Ultimately, this linkage map will be a useful resource for studies on the genome organization of Salvelinus, and facilitates comparisons of the Salvelinus genome with Salmo and Oncorhynchus.

  8. Microsatellite markers of water buffalo, Bubalus bubalis - development, characterisation and linkage disequilibrium studies

    Directory of Open Access Journals (Sweden)

    Vaidhegi R

    2009-10-01

    Full Text Available Abstract Background Microsatellite markers are highly polymorphic and widely used in genome mapping and population genetic studies in livestock species. River buffalo, Bubalus bubalis is an economically important livestock species, though only a limited number of microsatellite markers have been reported thus far in this species. Results In the present study, using two different approaches 571 microsatellite markers have been characterized for water buffalo. Of the 571 microsatellite markers, 498 were polymorphic with average heterozygosity of 0.51 on a panel of 24 unrelated buffalo. Fisher exact test was used to detect LD between the marker pairs. Among the 137550 pairs of marker combination, 14.58% pairs showed significant LD (P Conclusion The high conservation of cattle microsatellite loci in water buffalo promises the usefulness of the cattle microsatellites markers on buffalo. The polymorphic markers characterised in this study will contribute to genetic linkage and radiation hybrid mapping of water buffalo and population genetic studies.

  9. A consensus linkage map of the grass carp (Ctenopharyngodon idella based on microsatellites and SNPs

    Directory of Open Access Journals (Sweden)

    Li Jiale

    2010-02-01

    Full Text Available Abstract Background Grass carp (Ctenopharyngodon idella belongs to the family Cyprinidae which includes more than 2000 fish species. It is one of the most important freshwater food fish species in world aquaculture. A linkage map is an essential framework for mapping traits of interest and is often the first step towards understanding genome evolution. The aim of this study is to construct a first generation genetic map of grass carp using microsatellites and SNPs to generate a new resource for mapping QTL for economically important traits and to conduct a comparative mapping analysis to shed new insights into the evolution of fish genomes. Results We constructed a first generation linkage map of grass carp with a mapping panel containing two F1 families including 192 progenies. Sixteen SNPs in genes and 263 microsatellite markers were mapped to twenty-four linkage groups (LGs. The number of LGs was corresponding to the haploid chromosome number of grass carp. The sex-specific map was 1149.4 and 888.8 cM long in females and males respectively whereas the sex-averaged map spanned 1176.1 cM. The average resolution of the map was 4.2 cM/locus. BLAST searches of sequences of mapped markers of grass carp against the whole genome sequence of zebrafish revealed substantial macrosynteny relationship and extensive colinearity of markers between grass carp and zebrafish. Conclusions The linkage map of grass carp presented here is the first linkage map of a food fish species based on co-dominant markers in the family Cyprinidae. This map provides a valuable resource for mapping phenotypic variations and serves as a reference to approach comparative genomics and understand the evolution of fish genomes and could be complementary to grass carp genome sequencing project.

  10. Construction of a reference molecular linkage map of globe artichoke (Cynara cardunculus var. scolymus).

    Science.gov (United States)

    Portis, E; Mauromicale, G; Mauro, R; Acquadro, A; Scaglione, D; Lanteri, S

    2009-12-01

    The genome organization of globe artichoke (Cynara cardunculus var. scolymus), unlike other species belonging to Asteraceae (=Compositae) family (i.e. sunflower, lettuce and chicory), remains largely unexplored. The species is highly heterozygous and suffers marked inbreeding depression when forced to self-fertilize. Thus a two-way pseudo-testcross represents the optimal strategy for linkage analysis. Here, we report linkage maps based on the progeny of a cross between globe artichoke (C. cardunculus var. scolymus) and cultivated cardoon (C. cardunculus var. altilis). The population was genotyped using a variety of PCR-based marker platforms, resulting in the identification of 708 testcross markers suitable for map construction. The male map consisted of 177 loci arranged in 17 major linkage groups, spanning 1,015.5 cM, while female map was built with 326 loci arranged into 20 major linkage groups, spanning 1,486.8 cM. The presence of 84 loci shared between these maps and those previously developed from a cross within globe artichoke allowed for map alignment and the definition of 17 homologous linkage groups, corresponding to the haploid number of the species. This will provide a favourable property for QTL scanning; furthermore, as 25 mapped markers (8%) correspond to coding regions, it has an additional value as functional map and might represent an important genetic tool for candidate gene studies in globe artichoke.

  11. Salmonid Chromosome Evolution as Revealed by a Novel Method for Comparing RADseq Linkage Maps

    Science.gov (United States)

    Gosselin, Thierry; Normandeau, Eric; Lamothe, Manuel; Isabel, Nathalie; Audet, Céline; Bernatchez, Louis

    2016-01-01

    Whole genome duplication (WGD) can provide material for evolutionary innovation. Family Salmonidae is ideal for studying the effects of WGD as the ancestral salmonid underwent WGD relatively recently, ∼65 Ma, then rediploidized and diversified. Extensive synteny between homologous chromosome arms occurs in extant salmonids, but each species has both conserved and unique chromosome arm fusions and fissions. Assembly of large, outbred eukaryotic genomes can be difficult, but structural rearrangements within such taxa can be investigated using linkage maps. RAD sequencing provides unprecedented ability to generate high-density linkage maps for nonmodel species, but can result in low numbers of homologous markers between species due to phylogenetic distance or differences in library preparation. Here, we generate a high-density linkage map (3,826 markers) for the Salvelinus genera (Brook Charr S. fontinalis), and then identify corresponding chromosome arms among the other available salmonid high-density linkage maps, including six species of Oncorhynchus, and one species for each of Salmo, Coregonus, and the nonduplicated sister group for the salmonids, Northern Pike Esox lucius for identifying post-duplicated homeologs. To facilitate this process, we developed MapComp to identify identical and proximate (i.e. nearby) markers between linkage maps using a reference genome of a related species as an intermediate, increasing the number of comparable markers between linkage maps by 5-fold. This enabled a characterization of the most likely history of retained chromosomal rearrangements post-WGD, and several conserved chromosomal inversions. Analyses of RADseq-based linkage maps from other taxa will also benefit from MapComp, available at: https://github.com/enormandeau/mapcomp/ PMID:28173098

  12. Construction of the first genetic linkage map of Japanese gentian (Gentianaceae

    Directory of Open Access Journals (Sweden)

    Nakatsuka Takashi

    2012-11-01

    Full Text Available Abstract Background Japanese gentians (Gentiana triflora and Gentiana scabra are amongst the most popular floricultural plants in Japan. However, genomic resources for Japanese gentians have not yet been developed, mainly because of the heterozygous genome structure conserved by outcrossing, the long juvenile period, and limited knowledge about the inheritance of important traits. In this study, we developed a genetic linkage map to improve breeding programs of Japanese gentians. Results Enriched simple sequence repeat (SSR libraries from a G. triflora double haploid line yielded almost 20,000 clones using 454 pyrosequencing technology, 6.7% of which could be used to design SSR markers. To increase the number of molecular markers, we identified three putative long terminal repeat (LTR sequences using the recently developed inter-primer binding site (iPBS method. We also developed retrotransposon microsatellite amplified polymorphism (REMAP markers combining retrotransposon and inter-simple sequence repeat (ISSR markers. In addition to SSR and REMAP markers, modified amplified fragment length polymorphism (AFLP and random amplification polymorphic DNA (RAPD markers were developed. Using 93 BC1 progeny from G. scabra backcrossed with a G. triflora double haploid line, 19 linkage groups were constructed with a total of 263 markers (97 SSR, 97 AFLP, 39 RAPD, and 30 REMAP markers. One phenotypic trait (stem color and 10 functional markers related to genes controlling flower color, flowering time and cold tolerance were assigned to the linkage map, confirming its utility. Conclusions This is the first reported genetic linkage map for Japanese gentians and for any species belonging to the family Gentianaceae. As demonstrated by mapping of functional markers and the stem color trait, our results will help to explain the genetic basis of agronomic important traits, and will be useful for marker-assisted selection in gentian breeding programs. Our map

  13. A SNP based high-density linkage map of Apis cerana reveals a high recombination rate similar to Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Yuan Yuan Shi

    Full Text Available BACKGROUND: The Eastern honey bee, Apis cerana Fabricius, is distributed in southern and eastern Asia, from India and China to Korea and Japan and southeast to the Moluccas. This species is also widely kept for honey production besides Apis mellifera. Apis cerana is also a model organism for studying social behavior, caste determination, mating biology, sexual selection, and host-parasite interactions. Few resources are available for molecular research in this species, and a linkage map was never constructed. A linkage map is a prerequisite for quantitative trait loci mapping and for analyzing genome structure. We used the Chinese honey bee, Apis cerana cerana to construct the first linkage map in the Eastern honey bee. RESULTS: F2 workers (N = 103 were genotyped for 126,990 single nucleotide polymorphisms (SNPs. After filtering low quality and those not passing the Mendel test, we obtained 3,000 SNPs, 1,535 of these were informative and used to construct a linkage map. The preliminary map contains 19 linkage groups, we then mapped the 19 linkage groups to 16 chromosomes by comparing the markers to the genome of A. mellfiera. The final map contains 16 linkage groups with a total of 1,535 markers. The total genetic distance is 3,942.7 centimorgans (cM with the largest linkage group (180 loci measuring 574.5 cM. Average marker interval for all markers across the 16 linkage groups is 2.6 cM. CONCLUSION: We constructed a high density linkage map for A. c. cerana with 1,535 markers. Because the map is based on SNP markers, it will enable easier and faster genotyping assays than randomly amplified polymorphic DNA or microsatellite based maps used in A. mellifera.

  14. Construction of a SNP and SSR linkage map in autotetraploid blueberry using genotyping by sequencing

    Science.gov (United States)

    A mapping population developed from a cross between two key highbush blueberry cultivars, Draper × Jewel (Vaccinium corymbosum), segregating for a number of important phenotypic traits, has been utilized to produce a genetic linkage map. Data on 233 single sequence repeat (SSR) markers and 1794 sing...

  15. A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas

    Directory of Open Access Journals (Sweden)

    Matsumoto Takashi

    2010-04-01

    Full Text Available Abstract Background The genus Musa is a large species complex which includes cultivars at diploid and triploid levels. These sterile and vegetatively propagated cultivars are based on the A genome from Musa acuminata, exclusively for sweet bananas such as Cavendish, or associated with the B genome (Musa balbisiana in cooking bananas such as Plantain varieties. In M. acuminata cultivars, structural heterozygosity is thought to be one of the main causes of sterility, which is essential for obtaining seedless fruits but hampers breeding. Only partial genetic maps are presently available due to chromosomal rearrangements within the parents of the mapping populations. This causes large segregation distortions inducing pseudo-linkages and difficulties in ordering markers in the linkage groups. The present study aims at producing a saturated linkage map of M. acuminata, taking into account hypotheses on the structural heterozygosity of the parents. Results An F1 progeny of 180 individuals was obtained from a cross between two genetically distant accessions of M. acuminata, 'Borneo' and 'Pisang Lilin' (P. Lilin. Based on the gametic recombination of each parent, two parental maps composed of SSR and DArT markers were established. A significant proportion of the markers (21.7% deviated (p Conclusions We propose a synthetic map with 11 linkage groups containing 489 markers (167 SSRs and 322 DArTs covering 1197 cM. This first saturated map is proposed as a "reference Musa map" for further analyses. We also propose two complete parental maps with interpretations of structural rearrangements localized on the linkage groups. The structural heterozygosity in P. Lilin is hypothesized to result from a duplication likely accompanied by an inversion on another chromosome. This paper also illustrates a methodological approach, transferable to other species, to investigate the mapping of structural rearrangements and determine their consequences on marker

  16. A genetic linkage map of the chromosome 4 short arm

    Energy Technology Data Exchange (ETDEWEB)

    Locke, P.A.; MacDonald, M.E.; Srinidhi, J.; Tanzi, R.E.; Haines, J.L. (Massachusetts General Hospital, Boston (United States)); Gilliam, T.C. (Columbia Univ., New York, NY (United States)); Conneally, P.M. (Indiana Univ. Medical Center, Indianapolis (United States)); Wexler, N.S. (Columbia Univ., New York, NY (United States) Hereditary Disease Foundation, Santa Monica, CA (United States)); Gusella, J.F. (Massachusetts General Hospital, Boston (United States) Harvard Univ., Boston, MA (United States))

    1993-01-01

    The authors have generated an 18-interval contiguous genetic linkage map of human chromosome 4 spanning the entire short arm and proximal long arm. Fifty-seven polymorphisms, representing 42 loci, were analyzed in the Venezuelan reference pedigree. The markers included seven genes (ADRA2C, ALB, GABRB1, GC, HOX7, IDUA, QDPR), one pseudogene (RAF1P1), and 34 anonymous DNA loci. Four loci were represented by microsatellite polymorphisms and one (GC) was expressed as a protein polymorphism. The remainder were genotyped based on restriction fragment length polymorphism. The sex-averaged map covered 123 cM. Significant differences in sex-specific rates of recombination were observed only in the pericentromeric and proximal long arm regions, but these contributed to different overall map lengths of 115 cM in males and 138 cM in females. This map provides 19 reference points along chromosome 4 that will be particularly useful in anchoring and seeding physical mapping studies and in aiding in disease studies. 26 refs., 1 fig., 1 tab.

  17. A gene-based SNP resource and linkage map for the copepod Tigriopus californicus

    Directory of Open Access Journals (Sweden)

    Foley Brad R

    2011-11-01

    Full Text Available Abstract Background As yet, few genomic resources have been developed in crustaceans. This lack is particularly evident in Copepoda, given the extraordinary numerical abundance, and taxonomic and ecological diversity of this group. Tigriopus californicus is ideally suited to serve as a genetic model copepod and has been the subject of extensive work in environmental stress and reproductive isolation. Accordingly, we set out to develop a broadly-useful panel of genetic markers and to construct a linkage map dense enough for quantitative trait locus detection in an interval mapping framework for T. californicus--a first for copepods. Results One hundred and ninety Single Nucleotide Polymorphisms (SNPs were used to genotype our mapping population of 250 F2 larvae. We were able to construct a linkage map with an average intermarker distance of 1.8 cM, and a maximum intermarker distance of 10.3 cM. All markers were assembled into linkage groups, and the 12 linkage groups corresponded to the 12 known chromosomes of T. californicus. We estimate a total genome size of 401.0 cM, and a total coverage of 73.7%. Seventy five percent of the mapped markers were detected in 9 additional populations of T. californicus. Of available model arthropod genomes, we were able to show more colocalized pairs of homologues between T. californicus and the honeybee Apis mellifera, than expected by chance, suggesting preserved macrosynteny between Hymenoptera and Copepoda. Conclusions Our study provides an abundance of linked markers spanning all chromosomes. Many of these markers are also found in multiple populations of T. californicus, and in two other species in the genus. The genomic resource we have developed will enable mapping throughout the geographical range of this species and in closely related species. This linkage map will facilitate genome sequencing, mapping and assembly in an ecologically and taxonomically interesting group for which genomic resources are

  18. A gene-based SNP resource and linkage map for the copepod Tigriopus californicus

    Science.gov (United States)

    2011-01-01

    Background As yet, few genomic resources have been developed in crustaceans. This lack is particularly evident in Copepoda, given the extraordinary numerical abundance, and taxonomic and ecological diversity of this group. Tigriopus californicus is ideally suited to serve as a genetic model copepod and has been the subject of extensive work in environmental stress and reproductive isolation. Accordingly, we set out to develop a broadly-useful panel of genetic markers and to construct a linkage map dense enough for quantitative trait locus detection in an interval mapping framework for T. californicus--a first for copepods. Results One hundred and ninety Single Nucleotide Polymorphisms (SNPs) were used to genotype our mapping population of 250 F2 larvae. We were able to construct a linkage map with an average intermarker distance of 1.8 cM, and a maximum intermarker distance of 10.3 cM. All markers were assembled into linkage groups, and the 12 linkage groups corresponded to the 12 known chromosomes of T. californicus. We estimate a total genome size of 401.0 cM, and a total coverage of 73.7%. Seventy five percent of the mapped markers were detected in 9 additional populations of T. californicus. Of available model arthropod genomes, we were able to show more colocalized pairs of homologues between T. californicus and the honeybee Apis mellifera, than expected by chance, suggesting preserved macrosynteny between Hymenoptera and Copepoda. Conclusions Our study provides an abundance of linked markers spanning all chromosomes. Many of these markers are also found in multiple populations of T. californicus, and in two other species in the genus. The genomic resource we have developed will enable mapping throughout the geographical range of this species and in closely related species. This linkage map will facilitate genome sequencing, mapping and assembly in an ecologically and taxonomically interesting group for which genomic resources are currently under development

  19. [MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data].

    Science.gov (United States)

    Liu, Ren-Hu; Meng, Jin-Ling

    2003-05-01

    MAPMAKER is one of the most widely used computer software package for constructing genetic linkage maps.However, the PC version, MAPMAKER 3.0 for PC, could not draw the genetic linkage maps that its Macintosh version, MAPMAKER 3.0 for Macintosh,was able to do. Especially in recent years, Macintosh computer is much less popular than PC. Most of the geneticists use PC to analyze their genetic linkage data. So a new computer software to draw the same genetic linkage maps on PC as the MAPMAKER for Macintosh to do on Macintosh has been crying for. Microsoft Excel,one component of Microsoft Office package, is one of the most popular software in laboratory data processing. Microsoft Visual Basic for Applications (VBA) is one of the most powerful functions of Microsoft Excel. Using this program language, we can take creative control of Excel, including genetic linkage map construction, automatic data processing and more. In this paper, a Microsoft Excel macro called MapDraw is constructed to draw genetic linkage maps on PC computer based on given genetic linkage data. Use this software,you can freely construct beautiful genetic linkage map in Excel and freely edit and copy it to Word or other application. This software is just an Excel format file. You can freely copy it from ftp://211.69.140.177 or ftp://brassica.hzau.edu.cn and the source code can be found in Excel's Visual Basic Editor.

  20. Evaluation of algorithms used to order markers on genetic maps.

    Science.gov (United States)

    Mollinari, M; Margarido, G R A; Vencovsky, R; Garcia, A A F

    2009-12-01

    When building genetic maps, it is necessary to choose from several marker ordering algorithms and criteria, and the choice is not always simple. In this study, we evaluate the efficiency of algorithms try (TRY), seriation (SER), rapid chain delineation (RCD), recombination counting and ordering (RECORD) and unidirectional growth (UG), as well as the criteria PARF (product of adjacent recombination fractions), SARF (sum of adjacent recombination fractions), SALOD (sum of adjacent LOD scores) and LHMC (likelihood through hidden Markov chains), used with the RIPPLE algorithm for error verification, in the construction of genetic linkage maps. A linkage map of a hypothetical diploid and monoecious plant species was simulated containing one linkage group and 21 markers with fixed distance of 3 cM between them. In all, 700 F(2) populations were randomly simulated with 100 and 400 individuals with different combinations of dominant and co-dominant markers, as well as 10 and 20% of missing data. The simulations showed that, in the presence of co-dominant markers only, any combination of algorithm and criteria may be used, even for a reduced population size. In the case of a smaller proportion of dominant markers, any of the algorithms and criteria (except SALOD) investigated may be used. In the presence of high proportions of dominant markers and smaller samples (around 100), the probability of repulsion linkage increases between them and, in this case, use of the algorithms TRY and SER associated to RIPPLE with criterion LHMC would provide better results.

  1. A second-generation anchored genetic linkage map of the tammar wallaby (Macropus eugenii

    Directory of Open Access Journals (Sweden)

    Patel Hardip R

    2011-08-01

    Full Text Available Abstract Background The tammar wallaby, Macropus eugenii, a small kangaroo used for decades for studies of reproduction and metabolism, is the model Australian marsupial for genome sequencing and genetic investigations. The production of a more comprehensive cytogenetically-anchored genetic linkage map will significantly contribute to the deciphering of the tammar wallaby genome. It has great value as a resource to identify novel genes and for comparative studies, and is vital for the ongoing genome sequence assembly and gene ordering in this species. Results A second-generation anchored tammar wallaby genetic linkage map has been constructed based on a total of 148 loci. The linkage map contains the original 64 loci included in the first-generation map, plus an additional 84 microsatellite loci that were chosen specifically to increase coverage and assist with the anchoring and orientation of linkage groups to chromosomes. These additional loci were derived from (a sequenced BAC clones that had been previously mapped to tammar wallaby chromosomes by fluorescence in situ hybridization (FISH, (b End sequence from BACs subsequently FISH-mapped to tammar wallaby chromosomes, and (c tammar wallaby genes orthologous to opossum genes predicted to fill gaps in the tammar wallaby linkage map as well as three X-linked markers from a published study. Based on these 148 loci, eight linkage groups were formed. These linkage groups were assigned (via FISH-mapped markers to all seven autosomes and the X chromosome. The sex-pooled map size is 1402.4 cM, which is estimated to provide 82.6% total coverage of the genome, with an average interval distance of 10.9 cM between adjacent markers. The overall ratio of female/male map length is 0.84, which is comparable to the ratio of 0.78 obtained for the first-generation map. Conclusions Construction of this second-generation genetic linkage map is a significant step towards complete coverage of the tammar wallaby

  2. A second-generation anchored genetic linkage map of the tammar wallaby (Macropus eugenii).

    Science.gov (United States)

    Wang, Chenwei; Webley, Lee; Wei, Ke-jun; Wakefield, Matthew J; Patel, Hardip R; Deakin, Janine E; Alsop, Amber; Marshall Graves, Jennifer A; Cooper, Desmond W; Nicholas, Frank W; Zenger, Kyall R

    2011-08-19

    The tammar wallaby, Macropus eugenii, a small kangaroo used for decades for studies of reproduction and metabolism, is the model Australian marsupial for genome sequencing and genetic investigations. The production of a more comprehensive cytogenetically-anchored genetic linkage map will significantly contribute to the deciphering of the tammar wallaby genome. It has great value as a resource to identify novel genes and for comparative studies, and is vital for the ongoing genome sequence assembly and gene ordering in this species. A second-generation anchored tammar wallaby genetic linkage map has been constructed based on a total of 148 loci. The linkage map contains the original 64 loci included in the first-generation map, plus an additional 84 microsatellite loci that were chosen specifically to increase coverage and assist with the anchoring and orientation of linkage groups to chromosomes. These additional loci were derived from (a) sequenced BAC clones that had been previously mapped to tammar wallaby chromosomes by fluorescence in situ hybridization (FISH), (b) End sequence from BACs subsequently FISH-mapped to tammar wallaby chromosomes, and (c) tammar wallaby genes orthologous to opossum genes predicted to fill gaps in the tammar wallaby linkage map as well as three X-linked markers from a published study. Based on these 148 loci, eight linkage groups were formed. These linkage groups were assigned (via FISH-mapped markers) to all seven autosomes and the X chromosome. The sex-pooled map size is 1402.4 cM, which is estimated to provide 82.6% total coverage of the genome, with an average interval distance of 10.9 cM between adjacent markers. The overall ratio of female/male map length is 0.84, which is comparable to the ratio of 0.78 obtained for the first-generation map. Construction of this second-generation genetic linkage map is a significant step towards complete coverage of the tammar wallaby genome and considerably extends that of the first

  3. A RAD-based linkage map and comparative genomics in the gudgeons (genus Gnathopogon, Cyprinidae

    Directory of Open Access Journals (Sweden)

    Kakioka Ryo

    2013-01-01

    Full Text Available Abstract Background The construction of linkage maps is a first step in exploring the genetic basis for adaptive phenotypic divergence in closely related species by quantitative trait locus (QTL analysis. Linkage maps are also useful for comparative genomics in non-model organisms. Advances in genomics technologies make it more feasible than ever to study the genetics of adaptation in natural populations. Restriction-site associated DNA (RAD sequencing in next-generation sequencers facilitates the development of many genetic markers and genotyping. We aimed to construct a linkage map of the gudgeons of the genus Gnathopogon (Cyprinidae for comparative genomics with the zebrafish Danio rerio (a member of the same family as gudgeons and for the future QTL analysis of the genetic architecture underlying adaptive phenotypic evolution of Gnathopogon. Results We constructed the first genetic linkage map of Gnathopogon using a 198 F2 interspecific cross between two closely related species in Japan: river-dwelling Gnathopogon elongatus and lake-dwelling Gnathopogon caerulescens. Based on 1,622 RAD-tag markers, a linkage map spanning 1,390.9 cM with 25 linkage groups and an average marker interval of 0.87 cM was constructed. We also identified a region involving female-specific transmission ratio distortion (TRD. Synteny and collinearity were extensively conserved between Gnathopogon and zebrafish. Conclusions The dense SNP-based linkage map presented here provides a basis for future QTL analysis. It will also be useful for transferring genomic information from a “traditional” model fish species, zebrafish, to screen candidate genes underlying ecologically important traits of the gudgeons.

  4. Linkage Map of Lissotriton Newts Provides Insight into the Genetic Basis of Reproductive Isolation

    Directory of Open Access Journals (Sweden)

    Marta Niedzicka

    2017-07-01

    Full Text Available Linkage maps are widely used to investigate structure, function, and evolution of genomes. In speciation research, maps facilitate the study of the genetic architecture of reproductive isolation by allowing identification of genomic regions underlying reduced fitness of hybrids. Here we present a linkage map for European newts of the Lissotriton vulgaris species complex, constructed using two families of F2 L. montandoni × L. vulgaris hybrids. The map consists of 1146 protein-coding genes on 12 linkage groups, equal to the haploid chromosome number, with a total length of 1484 cM (1.29 cM per marker. It is notably shorter than two other maps available for salamanders, but the differences in map length are consistent with cytogenetic estimates of the number of chiasmata per chromosomal arm. Thus, large salamander genomes do not necessarily translate into long linkage maps, as previously suggested. Consequently, salamanders are an excellent model to study evolutionary consequences of recombination rate variation in taxa with large genomes and a similar number of chromosomes. A complex pattern of transmission ratio distortion (TRD was detected: TRD occurred mostly in one family, in one breeding season, and was clustered in two genomic segments. This is consistent with environment-dependent mortality of individuals carrying L. montandoni alleles in these two segments and suggests a role of TRD blocks in reproductive isolation. The reported linkage map will empower studies on the genomic architecture of divergence and interactions between the genomes of hybridizing newts.

  5. Identifying and Mapping Linkages between Actors in the Climate ...

    African Journals Online (AJOL)

    Promoting innovations in climate change requires innovation partnerships and linkages and also creating an enabling environment for actors. The paper reviewed available information on the identification and mapping of linkages between actors in the climate change innovation system. The findings showed different ...

  6. Linkage mapping in a watermelon population segregating for fusarium wilt resistance

    Science.gov (United States)

    Leigh K. Hawkins; Fenny Dane; Thomas L. Kubisiak; Billy B. Rhodes; Robert L. Jarret

    2001-01-01

    Isozyme, randomly amplified polymorphic DNA (RAPD), and simple sequence repeats (SSR) markers were used to generate a linkage map in an F2 and F3 watermelon (Citrullus lanatus (Thumb.) Matsum. & Nakai) population derived from a cross between the fusarium wilt (Fusarium oxysporum f....

  7. High resolution linkage maps of the model organism Petunia reveal substantial synteny decay with the related genome of tomato

    OpenAIRE

    Bossolini, Eligio; Klahre, Ulrich; Brandenburg, Anna; Reinhardt, Didier; Kuhlemeier, Cris

    2011-01-01

    Two linkage maps were constructed for the model plant Petunia. Mapping populations were obtained by crossing the wild species Petunia axillaris subsp. axillaris with Petunia inflata, and Petunia axillaris subsp. parodii with Petunia exserta. Both maps cover the seven chromosomes of Petunia, and span 970 centimorgans (cM) and 700 cM of the genomes, respectively. In total, 207 markers were mapped. Of these, 28 are multilocus amplified fragment length polymorphism (AFLP) markers and 179 are gene...

  8. Simple sequence repeat marker development and genetic mapping ...

    Indian Academy of Sciences (India)

    polymorphic SSR (simple sequence repeats) markers from libraries enriched for GA, CAA and AAT repeats, as well as 6 ... ers for quinoa was the development of a genetic linkage map ...... Weber J. L. 1990 Informativeness of human (dC-dA)n.

  9. Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation

    Directory of Open Access Journals (Sweden)

    Ward Judson A

    2013-01-01

    Full Text Available Abstract Background Rapid development of highly saturated genetic maps aids molecular breeding, which can accelerate gain per breeding cycle in woody perennial plants such as Rubus idaeus (red raspberry. Recently, robust genotyping methods based on high-throughput sequencing were developed, which provide high marker density, but result in some genotype errors and a large number of missing genotype values. Imputation can reduce the number of missing values and can correct genotyping errors, but current methods of imputation require a reference genome and thus are not an option for most species. Results Genotyping by Sequencing (GBS was used to produce highly saturated maps for a R. idaeus pseudo-testcross progeny. While low coverage and high variance in sequencing resulted in a large number of missing values for some individuals, a novel method of imputation based on maximum likelihood marker ordering from initial marker segregation overcame the challenge of missing values, and made map construction computationally tractable. The two resulting parental maps contained 4521 and 2391 molecular markers spanning 462.7 and 376.6 cM respectively over seven linkage groups. Detection of precise genomic regions with segregation distortion was possible because of map saturation. Microsatellites (SSRs linked these results to published maps for cross-validation and map comparison. Conclusions GBS together with genome-independent imputation provides a rapid method for genetic map construction in any pseudo-testcross progeny. Our method of imputation estimates the correct genotype call of missing values and corrects genotyping errors that lead to inflated map size and reduced precision in marker placement. Comparison of SSRs to published R. idaeus maps showed that the linkage maps constructed with GBS and our method of imputation were robust, and marker positioning reliable. The high marker density allowed identification of genomic regions with segregation

  10. A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas.

    Science.gov (United States)

    Hippolyte, Isabelle; Bakry, Frederic; Seguin, Marc; Gardes, Laetitia; Rivallan, Ronan; Risterucci, Ange-Marie; Jenny, Christophe; Perrier, Xavier; Carreel, Françoise; Argout, Xavier; Piffanelli, Pietro; Khan, Imtiaz A; Miller, Robert N G; Pappas, Georgios J; Mbéguié-A-Mbéguié, Didier; Matsumoto, Takashi; De Bernardinis, Veronique; Huttner, Eric; Kilian, Andrzej; Baurens, Franc-Christophe; D'Hont, Angélique; Cote, François; Courtois, Brigitte; Glaszmann, Jean-Christophe

    2010-04-13

    The genus Musa is a large species complex which includes cultivars at diploid and triploid levels. These sterile and vegetatively propagated cultivars are based on the A genome from Musa acuminata, exclusively for sweet bananas such as Cavendish, or associated with the B genome (Musa balbisiana) in cooking bananas such as Plantain varieties. In M. acuminata cultivars, structural heterozygosity is thought to be one of the main causes of sterility, which is essential for obtaining seedless fruits but hampers breeding. Only partial genetic maps are presently available due to chromosomal rearrangements within the parents of the mapping populations. This causes large segregation distortions inducing pseudo-linkages and difficulties in ordering markers in the linkage groups. The present study aims at producing a saturated linkage map of M. acuminata, taking into account hypotheses on the structural heterozygosity of the parents. An F1 progeny of 180 individuals was obtained from a cross between two genetically distant accessions of M. acuminata, 'Borneo' and 'Pisang Lilin' (P. Lilin). Based on the gametic recombination of each parent, two parental maps composed of SSR and DArT markers were established. A significant proportion of the markers (21.7%) deviated (p DArTs) covering 1197 cM. This first saturated map is proposed as a "reference Musa map" for further analyses. We also propose two complete parental maps with interpretations of structural rearrangements localized on the linkage groups. The structural heterozygosity in P. Lilin is hypothesized to result from a duplication likely accompanied by an inversion on another chromosome. This paper also illustrates a methodological approach, transferable to other species, to investigate the mapping of structural rearrangements and determine their consequences on marker segregation.

  11. Integrated genetic linkage map of cultivated peanut by three RIL populations

    Institute of Scientific and Technical Information of China (English)

    Yanbin Song; Huifang Jiang; Huaiyong Luo; Li Huang; Yuning Chen; Weigang Chen; Nian Liu; Xiaoping Ren; Bolun Yu; Jianbin Guo

    2017-01-01

    High-density and precise genetic linkage map is fundamental to detect quanti-tative trait locus (QTL) of agronomic and quality related traits in cultivated peanut (Arachis hypogaea L.). In this study, three linkage maps from three RIL (recombinant inbred line) populations were used to construct an integrated map. A total of 2,069 SSR and transposon markers were anchored on the high-density integrated map which covered 2,231.53 cM with 20 linkage groups. Totally, 92 QTLs correlating with pod length (PL), pod width (PW), hun-dred pods weight (HPW) and plant height (PH) from above RIL populations were mapped on it. Seven intervals were found to harbor QTLs controlling the same traits in different pop-ulations, including one for PL, three for PW, two for HPW, and one for PH. Besides, QTLs controlling different traits in different populations were found to be overlapped in four inter-vals. Interval on A05 contains 17 QTLs for different traits from two RIL populations. New markers were added to these intervals to detect QTLs with narrow confidential intervals. Results obtained in this study may facilitate future genomic researches such as QTL study, fine mapping, positional cloning and marker-assisted selection (MAS) in peanut.

  12. Construction and analysis of a high-density genetic linkage map in cabbage (Brassica oleracea L. var. capitata

    Directory of Open Access Journals (Sweden)

    Wang Wanxing

    2012-10-01

    Full Text Available Abstract Background Brassica oleracea encompass a family of vegetables and cabbage that are among the most widely cultivated crops. In 2009, the B. oleracea Genome Sequencing Project was launched using next generation sequencing technology. None of the available maps were detailed enough to anchor the sequence scaffolds for the Genome Sequencing Project. This report describes the development of a large number of SSR and SNP markers from the whole genome shotgun sequence data of B. oleracea, and the construction of a high-density genetic linkage map using a double haploid mapping population. Results The B. oleracea high-density genetic linkage map that was constructed includes 1,227 markers in nine linkage groups spanning a total of 1197.9 cM with an average of 0.98 cM between adjacent loci. There were 602 SSR markers and 625 SNP markers on the map. The chromosome with the highest number of markers (186 was C03, and the chromosome with smallest number of markers (99 was C09. Conclusions This first high-density map allowed the assembled scaffolds to be anchored to pseudochromosomes. The map also provides useful information for positional cloning, molecular breeding, and integration of information of genes and traits in B. oleracea. All the markers on the map will be transferable and could be used for the construction of other genetic maps.

  13. Preliminary genetic linkage map of Indian major carp, Labeo rohita ...

    Indian Academy of Sciences (India)

    2015-06-10

    Jun 10, 2015 ... (i) the development of microsatellite markers; (ii) the use of these markers ... libraries were subjected to sequencing using 454 GS FLX. Keywords. ..... 1996 A comprehensive genetic map of the human genome based on 5,264 ...

  14. A molecular marker map for roses

    NARCIS (Netherlands)

    Debener, T.; Mattiesch, L.; Vosman, B.

    2001-01-01

    n addition to an existing core map for diploid roses which comprised 305 molecular markers 60 additional markers were mapped to extend the map. As a first application of the information contained in the map, the map position of a resistance gene from roses, Rdr1, was determined by identifying

  15. A meiotic linkage map of the silver fox, aligned and compared to the canine genome.

    Science.gov (United States)

    Kukekova, Anna V; Trut, Lyudmila N; Oskina, Irina N; Johnson, Jennifer L; Temnykh, Svetlana V; Kharlamova, Anastasiya V; Shepeleva, Darya V; Gulievich, Rimma G; Shikhevich, Svetlana G; Graphodatsky, Alexander S; Aguirre, Gustavo D; Acland, Gregory M

    2007-03-01

    A meiotic linkage map is essential for mapping traits of interest and is often the first step toward understanding a cryptic genome. Specific strains of silver fox (a variant of the red fox, Vulpes vulpes), which segregate behavioral and morphological phenotypes, create a need for such a map. One such strain, selected for docility, exhibits friendly dog-like responses to humans, in contrast to another strain selected for aggression. Development of a fox map is facilitated by the known cytogenetic homologies between the dog and fox, and by the availability of high resolution canine genome maps and sequence data. Furthermore, the high genomic sequence identity between dog and fox allows adaptation of canine microsatellites for genotyping and meiotic mapping in foxes. Using 320 such markers, we have constructed the first meiotic linkage map of the fox genome. The resulting sex-averaged map covers 16 fox autosomes and the X chromosome with an average inter-marker distance of 7.5 cM. The total map length corresponds to 1480.2 cM. From comparison of sex-averaged meiotic linkage maps of the fox and dog genomes, suppression of recombination in pericentromeric regions of the metacentric fox chromosomes was apparent, relative to the corresponding segments of acrocentric dog chromosomes. Alignment of the fox meiotic map against the 7.6x canine genome sequence revealed high conservation of marker order between homologous regions of the two species. The fox meiotic map provides a critical tool for genetic studies in foxes and identification of genetic loci and genes implicated in fox domestication.

  16. A consensus linkage map of the chicken genome

    NARCIS (Netherlands)

    Groenen, M.A.M.; Cheng, H.H.; Bumstead, N.; Benkel, B.; Briles, E.; Burt, D.W.; Burke, T.; Dodgson, J.; Hillel, J.; Lamont, S.; Ponce, de F.A.; Soller, M.

    2000-01-01

    A consensus linkage map has been developed in the chicken that combines all of the genotyping data from the three available chicken mapping populations. Genotyping data were contributed by the laboratories that have been using the East Lansing and Compton reference populations and from the Animal

  17. An extended anchored linkage map and virtual mapping for the american mink genome based on homology to human and dog

    DEFF Research Database (Denmark)

    Anistoroaei, Razvan Marian; Ansari, S.; Farid, A.

    2009-01-01

    hybridization (FISH) and/or by means of human/dog/mink comparative homology. The average interval between markers is 8.5 cM and the linkage groups collectively span 1340 cM. In addition, 217 and 275 mink microsatellites have been placed on human and dog genomes, respectively. In conjunction with the existing...... comparative human/dog/mink data, these assignments represent useful virtual maps for the American mink genome. Comparison of the current human/dog assembled sequential map with the existing Zoo-FISH-based human/dog/mink maps helped to refine the human/dog/mink comparative map. Furthermore, comparison...... of the human and dog genome assemblies revealed a number of large synteny blocks, some of which are corroborated by data from the mink linkage map....

  18. An Integrated Resource for Barley Linkage Map and Malting Quality QTL Alignment

    Directory of Open Access Journals (Sweden)

    Péter Szűcs

    2009-07-01

    Full Text Available Barley ( L. is an economically important model plant for genetics research. Barley is currently served by an increasingly comprehensive set of tools for genetic analysis that have recently been augmented by high-density genetic linkage maps built with gene-based single nucleotide polymorphisms (SNPs. These SNP-based maps need to be aligned with earlier generation maps, which were used for quantitative trait locus (QTL detection, by integrating multiple types of markers into a single map. A 2383 locus linkage map was developed using the Oregon Wolfe Barley (OWB Mapping Population to allow such alignments. The map is based on 1472 SNP, 722 DArT, and 189 prior markers which include morphological, simple sequence repeat (SSR, Restriction Fragment Length Polymorphism (RFLP, and sequence tagged site (STS loci. This new OWB map forms, therefore, a useful bridge between high-density SNP-only maps and prior QTL reports. The application of this bridge concept is shown using malting-quality QTLs from multiple mapping populations, as reported in the literature. This is the first step toward developing a Barley QTL Community Curation workbook for all types of QTLs and maps, on the GrainGenes website. The OWB-related resources are available at OWB Data and GrainGenes Tools (OWB-DGGT (.

  19. A Targeted Capture Linkage Map Anchors the Genome of the Schistosomiasis Vector Snail, Biomphalaria glabrata.

    Science.gov (United States)

    Tennessen, Jacob A; Bollmann, Stephanie R; Blouin, Michael S

    2017-07-05

    The aquatic planorbid snail Biomphalaria glabrata is one of the most intensively-studied mollusks due to its role in the transmission of schistosomiasis. Its 916 Mb genome has recently been sequenced and annotated, but it remains poorly assembled. Here, we used targeted capture markers to map over 10,000 B. glabrata scaffolds in a linkage cross of 94 F1 offspring, generating 24 linkage groups (LGs). We added additional scaffolds to these LGs based on linkage disequilibrium (LD) analysis of targeted capture and whole-genome sequences of 96 unrelated snails. Our final linkage map consists of 18,613 scaffolds comprising 515 Mb, representing 56% of the genome and 75% of genic and nonrepetitive regions. There are 18 large (> 10 Mb) LGs, likely representing the expected 18 haploid chromosomes, and > 50% of the genome has been assigned to LGs of at least 17 Mb. Comparisons with other gastropod genomes reveal patterns of synteny and chromosomal rearrangements. Linkage relationships of key immune-relevant genes may help clarify snail-schistosome interactions. By focusing on linkage among genic and nonrepetitive regions, we have generated a useful resource for associating snail phenotypes with causal genes, even in the absence of a complete genome assembly. A similar approach could potentially improve numerous poorly-assembled genomes in other taxa. This map will facilitate future work on this host of a serious human parasite. Copyright © 2017 Tennessen et al.

  20. A new genetic linkage map of the zygomycete fungus Phycomyces blakesleeanus.

    Directory of Open Access Journals (Sweden)

    Suman Chaudhary

    Full Text Available Phycomyces blakesleeanus is a member of the subphylum Mucoromycotina. A genetic map was constructed from 121 progeny of a cross between two wild type isolates of P. blakesleeanus with 134 markers. The markers were mostly PCR-RFLPs. Markers were located on 46 scaffolds of the genome sequence, covering more than 97% of the genome. Analysis of the alleles in the progeny revealed nine or 12 linkage groups, depending on the log of the odds (LOD score, across 1583.4 cM at LOD 5. The linkage groups were overlaid on previous mapping data from crosses between mutants, aided by new identification of the mutations in primary metabolism mutant strains. The molecular marker map, the phenotype map and the genome sequence are overall congruent, with some exceptions. The new genetic map provides a genome-wide estimate for recombination, with the average of 33.2 kb per cM. This frequency is one piece of evidence for meiosis during zygospore development in Mucoromycotina species. At the same time as meiosis, transmission of non-recombinant chromosomes is also evident in the mating process in Phycomyces. The new map provides scaffold ordering for the genome sequence and a platform upon which to identify the genes in mutants that are affected in traits of interest, such as carotene biosynthesis, phototropism or gravitropism, using positional cloning.

  1. Impact of population structure, effective bottleneck time, and allele frequency on linkage disequilibrium maps.

    Science.gov (United States)

    Zhang, Weihua; Collins, Andrew; Gibson, Jane; Tapper, William J; Hunt, Sarah; Deloukas, Panos; Bentley, David R; Morton, Newton E

    2004-12-28

    Genetic maps in linkage disequilibrium (LD) units play the same role for association mapping as maps in centimorgans provide at much lower resolution for linkage mapping. Association mapping of genes determining disease susceptibility and other phenotypes is based on the theory of LD, here applied to relations with three phenomena. To test the theory, markers at high density along a 10-Mb continuous segment of chromosome 20q were studied in African-American, Asian, and Caucasian samples. Population structure, whether created by pooling samples from divergent populations or by the mating pattern in a mixed population, is accurately bioassayed from genotype frequencies. The effective bottleneck time for Eurasians is substantially less than for migration out of Africa, reflecting later bottlenecks. The classical dependence of allele frequency on mutation age does not hold for the generally shorter time span of inbreeding and LD. Limitation of the classical theory to mutation age justifies the assumption of constant time in a LD map, except for alleles that were rare at the effective bottleneck time or have arisen since. This assumption is derived from the Malecot model and verified in all samples. Tested measures of relative efficiency, support intervals, and localization error determine the operating characteristics of LD maps that are applicable to every sexually reproducing species, with implications for association mapping, high-resolution linkage maps, evolutionary inference, and identification of recombinogenic sequences.

  2. Cytogenetical anchoring of sheep linkage map and syntenic groups using a sheep BAC library

    Directory of Open Access Journals (Sweden)

    Cribiu Edmond-Paul

    2000-07-01

    Full Text Available Abstract In order to simultaneously integrate linkage and syntenic groups to the ovine chromosomal map, a sheep bacterial artificial chromosome (BAC library was screened with previously assigned microsatellites using a sheep-hamster hybrid panel and genetic linkage. Thirty-three BACs were obtained, fluorescently labelled and hybridised on sheep-goat hybrid metaphases (2n = 57. This study allowed us, (i, to anchor all linkage groups on sheep chromosomes, (ii, to give information on the probable position of the centromere on the linkage map for the centromeric chromosomes, (iii, to contradict the previous orientation of the ovine × linkage group by the mapping of BMS1008 on OARXq38. Concerning our somatic cell hybrid panel, this study resulted in the assignment of all the previously unassigned groups to ovine chromosomes and a complete characterisation of the hybrid panel. In addition, since hybridisations were performed on a sheep-goat hybrid, new marker/anchoring points were added to the caprine cytogenetic map.

  3. Fine mapping quantitative trait loci under selective phenotyping strategies based on linkage and linkage disequilibrium criteria

    DEFF Research Database (Denmark)

    Ansari-Mahyari, S; Berg, P; Lund, M S

    2009-01-01

    disequilibrium-based sampling criteria (LDC) for selecting individuals to phenotype are compared to random phenotyping in a quantitative trait loci (QTL) verification experiment using stochastic simulation. Several strategies based on LAC and LDC for selecting the most informative 30%, 40% or 50% of individuals...... for phenotyping to extract maximum power and precision in a QTL fine mapping experiment were developed and assessed. Linkage analyses for the mapping was performed for individuals sampled on LAC within families and combined linkage disequilibrium and linkage analyses was performed for individuals sampled across...... the whole population based on LDC. The results showed that selecting individuals with similar haplotypes to the paternal haplotypes (minimum recombination criterion) using LAC compared to random phenotyping gave at least the same power to detect a QTL but decreased the accuracy of the QTL position. However...

  4. Construction of an almond linkage map in an Australian population Nonpareil × Lauranne

    Science.gov (United States)

    2010-01-01

    Background Despite a high genetic similarity to peach, almonds (Prunus dulcis) have a fleshless fruit and edible kernel, produced as a crop for human consumption. While the release of peach genome v1.0 provides an excellent opportunity for almond genetic and genomic studies, well-assessed segregating populations and the respective saturated genetic linkage maps lay the foundation for such studies to be completed in almond. Results Using an almond intraspecific cross between 'Nonpareil' and 'Lauranne' (N × L), we constructed a moderately saturated map with SSRs, SNPs, ISSRs and RAPDs. The N × L map covered 591.4 cM of the genome with 157 loci. The average marker distance of the map was 4.0 cM. The map displayed high synteny and colinearity with the Prunus T × E reference map in all eight linkage groups (G1-G8). The positions of 14 mapped gene-anchored SNPs corresponded approximately with the positions of homologous sequences in the peach genome v1.0. Analysis of Mendelian segregation ratios showed that 17.9% of markers had significantly skewed genotype ratios at the level of P almond map, which is highly syntenic and collinear with the Prunus reference map and peach genome V1.0. Therefore, the well-assessed almond population reported here can be used to investigate the traits of interest under Australian growing conditions, and provides more information on the almond genome for the international community. PMID:20932335

  5. Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa

    Directory of Open Access Journals (Sweden)

    Delourme Régine

    2011-02-01

    Full Text Available Abstract Background The large number of genetic linkage maps representing Brassica chromosomes constitute a potential platform for studying crop traits and genome evolution within Brassicaceae. However, the alignment of existing maps remains a major challenge. The integration of these genetic maps will enhance genetic resolution, and provide a means to navigate between sequence-tagged loci, and with contiguous genome sequences as these become available. Results We report the first genome-wide integration of Brassica maps based on an automated pipeline which involved collation of genome-wide genotype data for sequence-tagged markers scored on three extensively used amphidiploid Brassica napus (2n = 38 populations. Representative markers were selected from consolidated maps for each population, and skeleton bin maps were generated. The skeleton maps for the three populations were then combined to generate an integrated map for each LG, comparing two different approaches, one encapsulated in JoinMap and the other in MergeMap. The BnaWAIT_01_2010a integrated genetic map was generated using JoinMap, and includes 5,162 genetic markers mapped onto 2,196 loci, with a total genetic length of 1,792 cM. The map density of one locus every 0.82 cM, corresponding to 515 Kbp, increases by at least three-fold the locus and marker density within the original maps. Within the B. napus integrated map we identified 103 conserved collinearity blocks relative to Arabidopsis, including five previously unreported blocks. The BnaWAIT_01_2010a map was used to investigate the integrity and conservation of order proposed for genome sequence scaffolds generated from the constituent A genome of Brassica rapa. Conclusions Our results provide a comprehensive genetic integration of the B. napus genome from a range of sources, which we anticipate will provide valuable information for rapeseed and Canola research.

  6. Linkage disequilibrium and association mapping of drought ...

    African Journals Online (AJOL)

    sunny t

    2016-11-16

    Nov 16, 2016 ... related to drought tolerance (YongSheng et al., 2009). Among the variety of ... (Li et al., 2013), yield (LiFang et al., 2010) and fibre traits. (Islam et al., 2014). ..... such molecular markers as SSRs (Bertini et al., 2006;. Zhang et al.

  7. Advancing the STMS genomic resources for defining new locations on the intraspecific genetic linkage map of chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Shokeen Bhumika

    2011-02-01

    Full Text Available Abstract Background Chickpea (Cicer arietinum L. is an economically important cool season grain legume crop that is valued for its nutritive seeds having high protein content. However, several biotic and abiotic stresses and the low genetic variability in the chickpea genome have continuously hindered the chickpea molecular breeding programs. STMS (Sequence Tagged Microsatellite Sites markers which are preferred for the construction of saturated linkage maps in several crop species, have also emerged as the most efficient and reliable source for detecting allelic diversity in chickpea. However, the number of STMS markers reported in chickpea is still limited and moreover exhibit low rates of both inter and intraspecific polymorphism, thereby limiting the positions of the SSR markers especially on the intraspecific linkage maps of chickpea. Hence, this study was undertaken with the aim of developing additional STMS markers and utilizing them for advancing the genetic linkage map of chickpea which would have applications in QTL identification, MAS and for de novo assembly of high throughput whole genome sequence data. Results A microsatellite enriched library of chickpea (enriched for (GT/CAn and (GA/CTn repeats was constructed from which 387 putative microsatellite containing clones were identified. From these, 254 STMS primers were designed of which 181 were developed as functional markers. An intraspecific mapping population of chickpea, [ICCV-2 (single podded × JG-62 (double podded] and comprising of 126 RILs, was genotyped for mapping. Of the 522 chickpea STMS markers (including the double-podding trait, screened for parental polymorphism, 226 (43.3% were polymorphic in the parents and were used to genotype the RILs. At a LOD score of 3.5, eight linkage groups defining the position of 138 markers were obtained that spanned 630.9 cM with an average marker density of 4.57 cM. Further, based on the common loci present between the current map

  8. Advancing the STMS genomic resources for defining new locations on the intraspecific genetic linkage map of chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Gaur, Rashmi; Sethy, Niroj K; Choudhary, Shalu; Shokeen, Bhumika; Gupta, Varsha; Bhatia, Sabhyata

    2011-02-17

    Chickpea (Cicer arietinum L.) is an economically important cool season grain legume crop that is valued for its nutritive seeds having high protein content. However, several biotic and abiotic stresses and the low genetic variability in the chickpea genome have continuously hindered the chickpea molecular breeding programs. STMS (Sequence Tagged Microsatellite Sites) markers which are preferred for the construction of saturated linkage maps in several crop species, have also emerged as the most efficient and reliable source for detecting allelic diversity in chickpea. However, the number of STMS markers reported in chickpea is still limited and moreover exhibit low rates of both inter and intraspecific polymorphism, thereby limiting the positions of the SSR markers especially on the intraspecific linkage maps of chickpea. Hence, this study was undertaken with the aim of developing additional STMS markers and utilizing them for advancing the genetic linkage map of chickpea which would have applications in QTL identification, MAS and for de novo assembly of high throughput whole genome sequence data. A microsatellite enriched library of chickpea (enriched for (GT/CA)n and (GA/CT)n repeats) was constructed from which 387 putative microsatellite containing clones were identified. From these, 254 STMS primers were designed of which 181 were developed as functional markers. An intraspecific mapping population of chickpea, [ICCV-2 (single podded) × JG-62 (double podded)] and comprising of 126 RILs, was genotyped for mapping. Of the 522 chickpea STMS markers (including the double-podding trait, screened for parental polymorphism, 226 (43.3%) were polymorphic in the parents and were used to genotype the RILs. At a LOD score of 3.5, eight linkage groups defining the position of 138 markers were obtained that spanned 630.9 cM with an average marker density of 4.57 cM. Further, based on the common loci present between the current map and the previously published chickpea

  9. Construction of an ultrahigh-density genetic linkage map for Jatropha curcas L. and identification of QTL for fruit yield.

    Science.gov (United States)

    Xia, Zhiqiang; Zhang, Shengkui; Wen, Mingfu; Lu, Cheng; Sun, Yufang; Zou, Meiling; Wang, Wenquan

    2018-01-01

    As an important biofuel plant, the demand for higher yield Jatropha curcas L. is rapidly increasing. However, genetic analysis of Jatropha and molecular breeding for higher yield have been hampered by the limited number of molecular markers available. An ultrahigh-density linkage map for a Jatropha mapping population of 153 individuals was constructed and covered 1380.58 cM of the Jatropha genome, with average marker density of 0.403 cM. The genetic linkage map consisted of 3422 SNP and indel markers, which clustered into 11 linkage groups. With this map, 13 repeatable QTLs (reQTLs) for fruit yield traits were identified. Ten reQTLs, qNF - 1 , qNF - 2a , qNF - 2b , qNF - 2c , qNF - 3 , qNF - 4 , qNF - 6 , qNF - 7a , qNF - 7b and qNF - 8, that control the number of fruits (NF) mapped to LGs 1, 2, 3, 4, 6, 7 and 8, whereas three reQTLs, qTWF - 1 , qTWF - 2 and qTWF - 3, that control the total weight of fruits (TWF) mapped to LGs 1, 2 and 3, respectively. It is interesting that there are two candidate critical genes, which may regulate Jatropha fruit yield. We also identified three pleiotropic reQTL pairs associated with both the NF and TWF traits. This study is the first to report an ultrahigh-density Jatropha genetic linkage map construction, and the markers used in this study showed great potential for QTL mapping. Thirteen fruit-yield reQTLs and two important candidate genes were identified based on this linkage map. This genetic linkage map will be a useful tool for the localization of other economically important QTLs and candidate genes for Jatropha .

  10. A comparison of genetic map distance and linkage disequilibrium between 15 polymorphic dinucleotide repeat loci in two populations

    Energy Technology Data Exchange (ETDEWEB)

    Urbanek, M.; Goldman, D.; Long, J.C. [Lab. of Neurogenetics, Rockville, MD (United States)

    1994-09-01

    Linkage disequilibrium has recently been used to map the diastrophic dysplasia gene in a Finnish sample. One advantage of this method is that the large pedigrees required by some other methods are unnecessary. Another advantage is that linkage disequilibrium mapping capitalizes on the cumulative history of recombination events, rather than those occurring within the sampled individuals. A potential limitation of linkage disequilibrium mapping is that linkage equilibrium is likely to prevail in all but the most isolated populations, e.g., those which have recently experienced founder effects or severe population bottlenecks. In order to test the method`s generality, we examined patterns of linkage disequilibrium between pairs of loci within a known genetic map. Two populations were analyzed. The first population, Navajo Indians (N=45), is an isolate that experienced a severe bottleneck in the 1860`s. The second population, Maryland Caucasians (N=45), is cosmopolitan. We expected the Navajo sample to display more linkage disequilibrium than the Caucasian sample, and possibly that the Navajo disequilibrium pattern would reflect the genetic map. Linkage disequilibrium coefficients were estimated between pairs of alleles at different loci using maximum likelihood. The genetic isolate structure of Navajo Indians is confirmed by the DNA typings. Heterozygosity is lower than in the Caucasians, and fewer different alleles are observed. However, a relationship between genetic map distance and linkage disequilibrium could be discerned in neither the Navajo nor the Maryland samples. Slightly more linkage disequilibrium was observed in the Navajos, but both data sets were characterized by very low disequilibrium levels. We tentatively conclude that linkage disequilibrium mapping with dinucleotide repeats will only be useful with close linkage between markers and diseases, even in very isolated populations.

  11. A general model for likelihood computations of genetic marker data accounting for linkage, linkage disequilibrium, and mutations.

    Science.gov (United States)

    Kling, Daniel; Tillmar, Andreas; Egeland, Thore; Mostad, Petter

    2015-09-01

    Several applications necessitate an unbiased determination of relatedness, be it in linkage or association studies or in a forensic setting. An appropriate model to compute the joint probability of some genetic data for a set of persons given some hypothesis about the pedigree structure is then required. The increasing number of markers available through high-density SNP microarray typing and NGS technologies intensifies the demand, where using a large number of markers may lead to biased results due to strong dependencies between closely located loci, both within pedigrees (linkage) and in the population (allelic association or linkage disequilibrium (LD)). We present a new general model, based on a Markov chain for inheritance patterns and another Markov chain for founder allele patterns, the latter allowing us to account for LD. We also demonstrate a specific implementation for X chromosomal markers that allows for computation of likelihoods based on hypotheses of alleged relationships and genetic marker data. The algorithm can simultaneously account for linkage, LD, and mutations. We demonstrate its feasibility using simulated examples. The algorithm is implemented in the software FamLinkX, providing a user-friendly GUI for Windows systems (FamLinkX, as well as further usage instructions, is freely available at www.famlink.se ). Our software provides the necessary means to solve cases where no previous implementation exists. In addition, the software has the possibility to perform simulations in order to further study the impact of linkage and LD on computed likelihoods for an arbitrary set of markers.

  12. A high-density linkage map and QTL mapping of fruit-related traits in pumpkin (Cucurbita moschata Duch.).

    Science.gov (United States)

    Zhong, Yu-Juan; Zhou, Yang-Yang; Li, Jun-Xing; Yu, Ting; Wu, Ting-Quan; Luo, Jian-Ning; Luo, Shao-Bo; Huang, He-Xun

    2017-10-06

    Pumpkin (Cucurbita moschata) is an economically worldwide crop. Few quantitative trait loci (QTLs) were reported previously due to the lack of genomic and genetic resources. In this study, a high-density linkage map of C. moschata was structured by double-digest restriction site-associated DNA sequencing, using 200 F2 individuals of CMO-1 × CMO-97. By filtering 74,899 SNPs, a total of 3,470 high quality SNP markers were assigned to the map spanning a total genetic distance of 3087.03 cM on 20 linkage groups (LGs) with an average genetic distance of 0.89 cM. Based on this map, both pericarp color and strip were fined mapped to a novel single locus on LG8 in the same region of 0.31 cM with phenotypic variance explained (PVE) of 93.6% and 90.2%, respectively. QTL analysis was also performed on carotenoids, sugars, tuberculate fruit, fruit diameter, thickness and chamber width with a total of 12 traits. 29 QTLs distributed in 9 LGs were detected with PVE from 9.6% to 28.6%. It was the first high-density linkage SNP map for C. moschata which was proved to be a valuable tool for gene or QTL mapping. This information will serve as significant basis for map-based gene cloning, draft genome assembling and molecular breeding.

  13. An autotetraploid linkage map of rose (Rosa hybrida) validated using the strawberry (Fragaria vesca) genome sequence.

    Science.gov (United States)

    Gar, Oron; Sargent, Daniel J; Tsai, Ching-Jung; Pleban, Tzili; Shalev, Gil; Byrne, David H; Zamir, Dani

    2011-01-01

    Polyploidy is a pivotal process in plant evolution as it increase gene redundancy and morphological intricacy but due to the complexity of polysomic inheritance we have only few genetic maps of autopolyploid organisms. A robust mapping framework is particularly important in polyploid crop species, rose included (2n = 4x = 28), where the objective is to study multiallelic interactions that control traits of value for plant breeding. From a cross between the garden, peach red and fragrant cultivar Fragrant Cloud (FC) and a cut-rose yellow cultivar Golden Gate (GG), we generated an autotetraploid GGFC mapping population consisting of 132 individuals. For the map we used 128 sequence-based markers, 141 AFLP, 86 SSR and three morphological markers. Seven linkage groups were resolved for FC (Total 632 cM) and GG (616 cM) which were validated by markers that segregated in both parents as well as the diploid integrated consensus map.The release of the Fragaria vesca genome, which also belongs to the Rosoideae, allowed us to place 70 rose sequenced markers on the seven strawberry pseudo-chromosomes. Synteny between Rosa and Fragaria was high with an estimated four major translocations and six inversions required to place the 17 non-collinear markers in the same order. Based on a verified linear order of the rose markers, we could further partition each of the parents into its four homologous groups, thus providing an essential framework to aid the sequencing of an autotetraploid genome.

  14. Construction of microsatellite-based linkage map and mapping of nectarilessness and hairiness genes in Gossypium tomentosum.

    Science.gov (United States)

    Hou, Meiying; Cai, Caiping; Zhang, Shuwen; Guo, Wangzhen; Zhang, Tianzhen; Zhou, Baoliang

    2013-12-01

    Gossypium tomentosum, a wild tetraploid cotton species with AD genomes, possesses genes conferring strong fibers and high heat tolerance. To effectively transfer these genes into Gossypium hirsutum, an entire microsatellite (simple sequence repeat, SSR)-based genetic map was constructed using the interspecific cross of G. hirsutum x G. tomentosum (HT). We detected 1800 loci from 1347 pairs of polymorphic primers. Of these, 1204 loci were grouped into 35 linkage groups at LOD ≥ 4. The map covers 3320.8 cM, with a mean density of 2.76 cM per locus. We detected 420 common loci (186 in the At subgenome and 234 in Dt) between the HT map and the map of TM-1 (G. hirsutum) and Hai 7124 (G. barbadense; HB map). The linkage groups were assigned chromosome numbers based on location of common loci and the HB map as reference. A comparison of common markers revealed that no significant chromosomal rearrangement exist between G. tomentosum and G. barbadense. Interestingly, however, we detected numerous (33.7%) segregation loci deviating from 3:1 ratio (P constructed in this study will be useful for further genetic studies on cotton breeding, including mapping loci controlling quantitative traits associated with fiber quality, stress tolerance and developing chromosome segment specific introgression lines from G. tomentosum into G. hirsutum using marker-assisted selection.

  15. SNP-based linkage mapping for validation of QTLs for resistance to ascochyta blight in lentil

    Directory of Open Access Journals (Sweden)

    Shimna Sudheesh

    2016-11-01

    Full Text Available Lentil (Lens culinaris Medik. is a self-pollinating, diploid, annual, cool-season, food legume crop that is cultivated throughout the world. Ascochyta blight (AB, caused by Ascochyta lentis Vassilievsky, is an economically important and widespread disease of lentil. Development of cultivars with high levels of durable resistance provides an environmentally acceptable and economically feasible method for AB control. A detailed understanding of the genetic basis of AB resistance is hence highly desirable, in order to obtain insight into the number and influence of resistance genes. Genetic linkage maps based on single nucleotide polymorphisms (SNP and simple sequence repeat (SSR markers have been developed from three recombinant inbred line (RIL populations. The IH x NF map contained 460 loci across 1461.6 cM, while the IH x DIG map contained 329 loci across 1302.5 cM and the third map, NF x DIG contained 330 loci across 1914.1 cM. Data from these maps were combined with a map from a previously published study through use of bridging markers to generate a consensus linkage map containing 689 loci distributed across 7 linkage groups (LGs, with a cumulative length of 2429.61 cM at an average density of one marker per 3.5 cM. Trait dissection of AB resistance was performed for the RIL populations, identifying totals of two and three quantitative trait loci (QTLs explaining 52% and 69% of phenotypic variation for resistance to infection in the IH x DIG and IH x NF populations, respectively. Presence of common markers in the vicinity of the AB_IH1- and AB_IH2.1/AB_IH2.2-containing regions on both maps supports the inference that a common genomic region is responsible for conferring resistance and is associated with the resistant parent, Indianhead. The third QTL was derived from Northfield. Evaluation of markers associated with AB resistance across a diverse lentil germplasm panel revealed that the identity of alleles associated with AB_IH1 predicted

  16. Nonsyndromic cleft lip and palate: Evidence of linkage to a microsatellite marker on 6p23

    Energy Technology Data Exchange (ETDEWEB)

    Carinci, F.; Pezzetti, F.; Scapoli, L.; Padula, E.; Baciliero, U.; Curioni, C.; Tognon, M.

    1995-01-01

    Nonsydromic cleft lip with or without secondary clefting of the palate (CL+/{minus}P) is one of the most common birth defects. A previous linkage study concerning CL+/{minus}P and cleft palate (CP) families indicated chromosome 6p, near F13A locus, as a possible region for the presence of a clefting gene. More recently, another linkage study performed on a sample of 12 families with nonsyndromic CL+/{minus}P seemed to exclude this association. To test the hypothesis on the possible presence of a major gene on chromosome 6p, we carried out a study on a large sample (21) of CL+/{minus}P families from northeastern Italy. In conclusion, our investigation can be summarized as follows: (i) CL+/{minus}P disease appears to be heterogeneous; (ii) {approximately}66% of the pedigrees showed an autosomal dominant inheritance with incomplete penetrance; and (iii) CL+/{minus}P locus maps on 6p23 very close to or at the microsatellite marker D6S89. To verify whether the D6S89 is the closest marker to the CL+/{minus}P locus, additional examinations with new markers are underway. 19 refs., 1 fig., 1 tab.

  17. Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling

    Directory of Open Access Journals (Sweden)

    Wobus Ulrich

    2009-01-01

    Full Text Available Abstract Background Barley (Hordeum vulgare L. seed development is a highly regulated process with fine-tuned interaction of various tissues controlling distinct physiological events during prestorage, storage and dessication phase. As potential regulators involved within this process we studied 172 transcription factors and 204 kinases for their expression behaviour and anchored a subset of them to the barley linkage map to promote marker-assisted studies on barley grains. Results By a hierachical clustering of the expression profiles of 376 potential regulatory genes expressed in 37 different tissues, we found 50 regulators preferentially expressed in one of the three grain tissue fractions pericarp, endosperm and embryo during seed development. In addition, 27 regulators found to be expressed during both seed development and germination and 32 additional regulators are characteristically expressed in multiple tissues undergoing cell differentiation events during barley plant ontogeny. Another 96 regulators were, beside in the developing seed, ubiquitously expressed among all tissues of germinating seedlings as well as in reproductive tissues. SNP-marker development for those regulators resulted in anchoring 61 markers on the genetic linkage map of barley and the chromosomal assignment of another 12 loci by using wheat-barley addition lines. The SNP frequency ranged from 0.5 to 1.0 SNP/kb in the parents of the various mapping populations and was 2.3 SNP/kb over all eight lines tested. Exploration of macrosynteny to rice revealed that the chromosomal orders of the mapped putative regulatory factors were predominantly conserved during evolution. Conclusion We identified expression patterns of major transcription factors and signaling related genes expressed during barley ontogeny and further assigned possible functions based on likely orthologs functionally well characterized in model plant species. The combined linkage map and reference

  18. Genetic linkage map and QTL identification for adventitious rooting traits in red gum eucalypts.

    Science.gov (United States)

    Sumathi, Murugan; Bachpai, Vijaya Kumar Waman; Mayavel, A; Dasgupta, Modhumita Ghosh; Nagarajan, Binai; Rajasugunasekar, D; Sivakumar, Veerasamy; Yasodha, Ramasamy

    2018-05-01

    The eucalypt species, Eucalyptus tereticornis and Eucalyptus camaldulensis , show tolerance to drought and salinity conditions, respectively, and are widely cultivated in arid and semiarid regions of tropical countries. In this study, genetic linkage map was developed for interspecific cross E. tereticornis  ×  E. camaldulensis using pseudo-testcross strategy with simple sequence repeats (SSRs), intersimple sequence repeats (ISSRs), and sequence-related amplified polymorphism (SRAP) markers. The consensus genetic map comprised totally 283 markers with 84 SSRs, 94 ISSRs, and 105 SRAP markers on 11 linkage groups spanning 1163.4 cM genetic distance. Blasting the SSR sequences against E. grandis sequences allowed an alignment of 64% and the average ratio of genetic-to-physical distance was 1.7 Mbp/cM, which strengths the evidence that high amount of synteny and colinearity exists among eucalypts genome. Blast searches also revealed that 37% of SSRs had homologies with genes, which could potentially be used in the variety of downstream applications including candidate gene polymorphism. Quantitative trait loci (QTL) analysis for adventitious rooting traits revealed six QTL for rooting percent and root length on five chromosomes with interval and composite interval mapping. All the QTL explained 12.0-14.7% of the phenotypic variance, showing the involvement of major effect QTL on adventitious rooting traits. Increasing the density of markers would facilitate the detection of more number of small-effect QTL and also underpinning the genes involved in rooting process.

  19. Construction of an almond linkage map in an Australian population Nonpareil × Lauranne

    Directory of Open Access Journals (Sweden)

    Gibson John P

    2010-10-01

    Full Text Available Abstract Background Despite a high genetic similarity to peach, almonds (Prunus dulcis have a fleshless fruit and edible kernel, produced as a crop for human consumption. While the release of peach genome v1.0 provides an excellent opportunity for almond genetic and genomic studies, well-assessed segregating populations and the respective saturated genetic linkage maps lay the foundation for such studies to be completed in almond. Results Using an almond intraspecific cross between 'Nonpareil' and 'Lauranne' (N × L, we constructed a moderately saturated map with SSRs, SNPs, ISSRs and RAPDs. The N × L map covered 591.4 cM of the genome with 157 loci. The average marker distance of the map was 4.0 cM. The map displayed high synteny and colinearity with the Prunus T × E reference map in all eight linkage groups (G1-G8. The positions of 14 mapped gene-anchored SNPs corresponded approximately with the positions of homologous sequences in the peach genome v1.0. Analysis of Mendelian segregation ratios showed that 17.9% of markers had significantly skewed genotype ratios at the level of P ® 3 were compared, and their high degree of similarity was evident despite the positional inconsistency of a few markers. Conclusions We presented a moderately saturated Australian almond map, which is highly syntenic and collinear with the Prunus reference map and peach genome V1.0. Therefore, the well-assessed almond population reported here can be used to investigate the traits of interest under Australian growing conditions, and provides more information on the almond genome for the international community.

  20. Evidence of Allopolyploidy in Urochloa humidicola Based on Cytological Analysis and Genetic Linkage Mapping.

    Directory of Open Access Journals (Sweden)

    Bianca B Z Vigna

    Full Text Available The African species Urochloa humidicola (Rendle Morrone & Zuloaga (syn. Brachiaria humidicola (Rendle Schweick. is an important perennial forage grass found throughout the tropics. This species is polyploid, ranging from tetra to nonaploid, and apomictic, which makes genetic studies challenging; therefore, the number of currently available genetic resources is limited. The genomic architecture and evolution of U. humidicola and the molecular markers linked to apomixis were investigated in a full-sib F1 population obtained by crossing the sexual accession H031 and the apomictic cultivar U. humidicola cv. BRS Tupi, both of which are hexaploid. A simple sequence repeat (SSR-based linkage map was constructed for the species from 102 polymorphic and specific SSR markers based on simplex and double-simplex markers. The map consisted of 49 linkage groups (LGs and had a total length of 1702.82 cM, with 89 microsatellite loci and an average map density of 10.6 cM. Eight homology groups (HGs were formed, comprising 22 LGs, and the other LGs remained ungrouped. The locus that controls apospory (apo-locus was mapped in LG02 and was located 19.4 cM from the locus Bh027.c.D2. In the cytological analyses of some hybrids, bi- to hexavalents at diakinesis were observed, as well as two nucleoli in some meiocytes, smaller chromosomes with preferential allocation within the first metaphase plate and asynchronous chromosome migration to the poles during anaphase. The linkage map and the meiocyte analyses confirm previous reports of hybridization and suggest an allopolyploid origin of the hexaploid U. humidicola. This is the first linkage map of an Urochloa species, and it will be useful for future quantitative trait locus (QTL analysis after saturation of the map and for genome assembly and evolutionary studies in Urochloa spp. Moreover, the results of the apomixis mapping are consistent with previous reports and confirm the need for additional studies to search for

  1. Rapid genotyping with DNA micro-arrays for high-density linkage mapping and QTL mapping in common buckwheat (Fagopyrum esculentum Moench)

    Science.gov (United States)

    Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi

    2014-01-01

    For genetic studies and genomics-assisted breeding, particularly of minor crops, a genotyping system that does not require a priori genomic information is preferable. Here, we demonstrated the potential of a novel array-based genotyping system for the rapid construction of high-density linkage map and quantitative trait loci (QTL) mapping. By using the system, we successfully constructed an accurate, high-density linkage map for common buckwheat (Fagopyrum esculentum Moench); the map was composed of 756 loci and included 8,884 markers. The number of linkage groups converged to eight, which is the basic number of chromosomes in common buckwheat. The sizes of the linkage groups of the P1 and P2 maps were 773.8 and 800.4 cM, respectively. The average interval between adjacent loci was 2.13 cM. The linkage map constructed here will be useful for the analysis of other common buckwheat populations. We also performed QTL mapping for main stem length and detected four QTL. It took 37 days to process 178 samples from DNA extraction to genotyping, indicating the system enables genotyping of genome-wide markers for a few hundred buckwheat plants before the plants mature. The novel system will be useful for genomics-assisted breeding in minor crops without a priori genomic information. PMID:25914583

  2. Genetic mapping of the gene for Usher syndrome: Linkage analysis in a large Samaritan kindred

    Energy Technology Data Exchange (ETDEWEB)

    Bonne-Tamir, B.; Korostishevsky, M.; Kalinsky, H.; Seroussi, E.; Beker, R.; Weiss, S. (Sackler Faculty of Medicine, Ramat-Aviv (Israel)); Godel, V. (Ichilov Hospital, Tel-Aviv (Israel))

    1994-03-01

    Usher syndrome is a group of autosomal recessive disorders associated with congenital sensorineural deafness and progressive visual loss due to retinitis pigmentosa. Sixteen members of the small inbred Samaritan isolate with autosomal recessive deafness from 59 individuals including parents and affected and nonaffected sibs were typed for markers on chromosomes 1q and 11q for which linkage has recently been established for Usher syndrome types II and I. Statistically significant linkage was observed with four markers on 11q (D11S533, D11S527, OMP, and INT2) with a maximum six-point location score of 11.61 at the D11S533 locus. Analysis of haplotypes supports the notion that the mutation arose only once in an ancestral chromosome carrying a specific haplotype. The availability of markers closely linked to the disease locus allows indirect genotype analysis and identifies all carriers of the gene within the community. Furthermore, the detection of complete linkage disequilibrium between the D11S533 marker and the Usher gene suggests that these loci are either identical or adjacent and narrows the critical region to which physical mapping efforts are currently directed. 35 refs., 2 figs., 6 tabs.

  3. Genetic mapping of the gene for Usher syndrome: linkage analysis in a large Samaritan kindred.

    Science.gov (United States)

    Bonné-Tamir, B; Korostishevsky, M; Kalinsky, H; Seroussi, E; Beker, R; Weiss, S; Godel, V

    1994-03-01

    Usher syndrome is a group of autosomal recessive disorders associated with congenital sensorineural deafness and progressive visual loss due to retinitis pigmentosa. Sixteen members of the small inbred Samaritan isolate with autosomal recessive deafness were studied in 10 related sibships. DNA samples from 59 individuals including parents and affected and nonaffected sibs were typed for markers on chromosomes 1q and 11q for which linkage has recently been established for Usher syndrome types II and I. Statistically significant linkage was observed with four markers on 11q (D11S533, D11S527, OMP, and INT2) with a maximum six-point location score of 11.61 at the D11S533 locus. Analysis of haplotypes supports the notion that the mutation arose only once in an ancestral chromosome carrying a specific haplotype. The availability of markers closely linked to the disease locus allows indirect genotype analysis and identifies all carriers of the gene within the community. Furthermore, the detection of complete linkage disequilibrium between the D11S533 marker and the Usher gene suggests that these loci are either identical or adjacent and narrows the critical region to which physical mapping efforts are currently directed.

  4. Genetic Linkage Map Construction and QTL Analysis of Two Interspecific Reproductive Isolation Traits in Sponge Gourd.

    Science.gov (United States)

    Wu, Haibin; He, Xiaoli; Gong, Hao; Luo, Shaobo; Li, Mingzhu; Chen, Junqiu; Zhang, Changyuan; Yu, Ting; Huang, Wangping; Luo, Jianning

    2016-01-01

    The hybrids between Luffa acutangula (L.) Roxb. and L.cylindrica (L.) Roem. have strong heterosis effects. However, some reproductive isolation traits hindered their normal hybridization and fructification, which was mainly caused by the flowering time and hybrid pollen sterility. In order to study the genetic basis of two interspecific reproductive isolation traits, we constructed a genetic linkage map using an F2 population derived from a cross between S1174 [L. acutangula (L.) Roxb.] and 93075 [L. cylindrica (L.) Roem.]. The map spans 1436.12 CentiMorgans (cM), with an average of 8.11 cM among markers, and consists of 177 EST-SSR markers distributed in 14 linkage groups (LG) with an average of 102.58 cM per LG. Meanwhile, we conducted colinearity analysis between the sequences of EST-SSR markers and the genomic sequences of cucumber, melon and watermelon. On the basis of genetic linkage map, we conducted QTL mapping of two reproductive isolation traits in sponge gourd, which were the flowering time and hybrid male sterility. Two putative QTLs associated with flowering time (FT) were both detected on LG 1. The accumulated contribution of these two QTLs explained 38.07% of the total phenotypic variance (PV), and each QTL explained 15.36 and 22.71% of the PV respectively. Four QTLs for pollen fertility (PF) were identified on LG 1 (qPF1.1 and qPF1.2), LG 3 (qPF3) and LG 7 (qPF7), respectively. The percentage of PF explained by these QTLs varied from 2.91 to 16.79%, and all together the four QTLs accounted for 39.98% of the total PV. Our newly developed EST-SSR markers and linkage map are very useful for gene mapping, comparative genomics and molecular marker-assisted breeding. These QTLs for interspecific reproductive isolation will also contribute to the cloning of genes relating to interspecific reproductive isolation and the utilization of interspecific heterosis in sponge gourd in further studies.

  5. Fine mapping of multiple QTL using combined linkage and linkage disequilibrium mapping – A comparison of single QTL and multi QTL methods

    Directory of Open Access Journals (Sweden)

    Meuwissen Theo HE

    2007-04-01

    Full Text Available Abstract Two previously described QTL mapping methods, which combine linkage analysis (LA and linkage disequilibrium analysis (LD, were compared for their ability to detect and map multiple QTL. The methods were tested on five different simulated data sets in which the exact QTL positions were known. Every simulated data set contained two QTL, but the distances between these QTL were varied from 15 to 150 cM. The results show that the single QTL mapping method (LDLA gave good results as long as the distance between the QTL was large (> 90 cM. When the distance between the QTL was reduced, the single QTL method had problems positioning the two QTL and tended to position only one QTL, i.e. a "ghost" QTL, in between the two real QTL positions. The multi QTL mapping method (MP-LDLA gave good results for all evaluated distances between the QTL. For the large distances between the QTL (> 90 cM the single QTL method more often positioned the QTL in the correct marker bracket, but considering the broader likelihood peaks of the single point method it could be argued that the multi QTL method was more precise. Since the distances were reduced the multi QTL method was clearly more accurate than the single QTL method. The two methods combine well, and together provide a good tool to position single or multiple QTL in practical situations, where the number of QTL and their positions are unknown.

  6. A genetic linkage map for the apicomplexan protozoan parasite Eimeria maxima and comparison with Eimeria tenella.

    Science.gov (United States)

    Blake, Damer P; Oakes, Richard; Smith, Adrian L

    2011-02-01

    Eimeria maxima is one of the seven Eimeria spp. that infect the chicken and cause the disease coccidiosis. The well characterised immunogenicity and genetic diversity associated with E. maxima promote its use in genetics-led studies on avian coccidiosis. The development of a genetic map for E. maxima, presented here based upon 647 amplified fragment length polymorphism markers typed from 22 clonal hybrid lines and assembled into 13 major linkage groups, is a major new resource for work with this parasite. Comparison with genetic maps produced for other coccidial parasites indicates relatively high levels of genetic recombination. Conversion of ∼14% of the markers representing the major linkage groups to sequence characterised amplified region markers can provide a scaffold for the assembly of future genomic sequences as well as providing a foundation for more detailed genetic maps. Comparison with the Eimeria tenella genetic map produced 10years ago has revealed a less biased marker distribution, with no more than nine markers mapped within any unresolved heritable unit. Nonetheless, preliminary bioinformatic characterisation of the three largest publicly available genomic E. maxima sequences suggest that the feature-poor/feature-rich structure which has previously been found to define the first sequenced E. tenella chromosome also defines the E. maxima genome. The significance of such a segmented genome and the apparent potential for variation in genetic recombination will be relevant to haplotype stability and the longevity of future anticoccidial strategies based upon multiple loci targeted by novel chemotherapeutic drugs or recombinant subunit vaccines. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  7. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01

    Science.gov (United States)

    A landmark in soybean research, Glyma1.01, the first whole genome sequence of variety Williams 82 (Glycine max L. Merr.) was completed in 2010 and is widely used. However, because the assembly was primarily built based on the linkage maps constructed with a limited number of markers and recombinant...

  8. Genetic Linkage Mapping of Economically Important Traits in Cultivated Tetraploid Potato (Solanum tuberosum L.).

    Science.gov (United States)

    Massa, Alicia N; Manrique-Carpintero, Norma C; Coombs, Joseph J; Zarka, Daniel G; Boone, Anne E; Kirk, William W; Hackett, Christine A; Bryan, Glenn J; Douches, David S

    2015-09-14

    The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F1 progeny and parents of a cross (MSL603) between "Jacqueline Lee" and "MSG227-2" were genotyped using the Infinium 8303 Potato Array. Furthermore, the progeny and parents were evaluated for foliar late blight reaction to isolates of the US-8 genotype of Phytophthora infestans (Mont.) de Bary and vine maturity. Linkage analyses and QTL mapping were performed using a novel approach that incorporates allele dosage information. The resulting genetic maps contained 1972 SNP markers with an average density of 1.36 marker per cM. QTL mapping identified the major source of late blight resistance in "Jacqueline Lee." The best SNP marker mapped ~0.54 Mb from a resistance hotspot on the long arm of chromosome 9. For vine maturity, the major-effect QTL was located on chromosome 5 with allelic effects from both parents. A candidate SNP marker for this trait mapped ~0.25 Mb from the StCDF1 gene, which is a candidate gene for the maturity trait. The identification of markers for P. infestans resistance will enable the introgression of multiple sources of resistance through marker-assisted selection. Moreover, the discovery of a QTL for late blight resistance not linked to the QTL for vine maturity provides the opportunity to use marker-assisted selection for resistance independent of the selection for vine maturity classifications. Copyright © 2015 Massa et al.

  9. Combining information from linkage and association mapping for next-generation sequencing longitudinal family data.

    Science.gov (United States)

    Balliu, Brunilda; Uh, Hae-Won; Tsonaka, Roula; Boehringer, Stefan; Helmer, Quinta; Houwing-Duistermaat, Jeanine J

    2014-01-01

    In this analysis, we investigate the contributions that linkage-based methods, such as identical-by-descent mapping, can make to association mapping to identify rare variants in next-generation sequencing data. First, we identify regions in which cases share more segments identical-by-descent around a putative causal variant than do controls. Second, we use a two-stage mixed-effect model approach to summarize the single-nucleotide polymorphism data within each region and include them as covariates in the model for the phenotype. We assess the impact of linkage disequilibrium in determining identical-by-descent states between individuals by using markers with and without linkage disequilibrium for the first part and the impact of imputation in testing for association by using imputed genome-wide association studies or raw sequence markers for the second part. We apply the method to next-generation sequencing longitudinal family data from Genetic Association Workshop 18 and identify a significant region at chromosome 3: 40249244-41025167 (p-value = 2.3 × 10(-3)).

  10. Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array.

    Science.gov (United States)

    Antanaviciute, Laima; Fernández-Fernández, Felicidad; Jansen, Johannes; Banchi, Elisa; Evans, Katherine M; Viola, Roberto; Velasco, Riccardo; Dunwell, Jim M; Troggio, Michela; Sargent, Daniel J

    2012-05-25

    A whole-genome genotyping array has previously been developed for Malus using SNP data from 28 Malus genotypes. This array offers the prospect of high throughput genotyping and linkage map development for any given Malus progeny. To test the applicability of the array for mapping in diverse Malus genotypes, we applied the array to the construction of a SNP-based linkage map of an apple rootstock progeny. Of the 7,867 Malus SNP markers on the array, 1,823 (23.2%) were heterozygous in one of the two parents of the progeny, 1,007 (12.8%) were heterozygous in both parental genotypes, whilst just 2.8% of the 921 Pyrus SNPs were heterozygous. A linkage map spanning 1,282.2 cM was produced comprising 2,272 SNP markers, 306 SSR markers and the S-locus. The length of the M432 linkage map was increased by 52.7 cM with the addition of the SNP markers, whilst marker density increased from 3.8 cM/marker to 0.5 cM/marker. Just three regions in excess of 10 cM remain where no markers were mapped. We compared the positions of the mapped SNP markers on the M432 map with their predicted positions on the 'Golden Delicious' genome sequence. A total of 311 markers (13.7% of all mapped markers) mapped to positions that conflicted with their predicted positions on the 'Golden Delicious' pseudo-chromosomes, indicating the presence of paralogous genomic regions or mis-assignments of genome sequence contigs during the assembly and anchoring of the genome sequence. We incorporated data for the 2,272 SNP markers onto the map of the M432 progeny and have presented the most complete and saturated map of the full 17 linkage groups of M. pumila to date. The data were generated rapidly in a high-throughput semi-automated pipeline, permitting significant savings in time and cost over linkage map construction using microsatellites. The application of the array will permit linkage maps to be developed for QTL analyses in a cost-effective manner, and the identification of SNPs that have been

  11. Linkage analysis by genotyping of sibling populations: a genetic map for the potato cyst nematode constructed using a "pseudo-F2" mapping strategy.

    Science.gov (United States)

    Rouppe van der Voort, J N; van Eck, H J; van Zandvoort, P M; Overmars, H; Helder, J; Bakker, J

    1999-07-01

    A mapping strategy is described for the construction of a linkage map of a non-inbred species in which individual offspring genotypes are not amenable to marker analysis. After one extra generation of random mating, the segregating progeny was propagated, and bulked populations of offspring were analyzed. Although the resulting population structure is different from that of commonly used mapping populations, we show that the maximum likelihood formula for a normal F2 is applicable for the estimation of recombination. This "pseudo-F2" mapping strategy, in combination with the development of an AFLP assay for single cysts, facilitated the construction of a linkage map for the potato cyst nematode Globodera rostochiensis. Using 12 pre-selected AFLP primer combinations, a total of 66 segregating markers were identified, 62 of which were mapped to nine linkage groups. These 62 AFLP markers are randomly distributed and cover about 65% of the genome. An estimate of the physical size of the Globodera genome was obtained from comparisons of the number of AFLP fragments obtained with the values for Caenorhabditis elegans. The methodology presented here resulted in the first genomic map for a cyst nematode. The low value of the kilobase/centimorgan (kb/cM) ratio for the Globodera genome will facilitate map-based cloning of genes that mediate the interaction between the nematode and its host plant.

  12. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    Science.gov (United States)

    Craig S. Echt; Surya Saha; Konstantin V. Krutovsky; Kokulapalan Wimalanathan; John E. Erpelding; Chun Liang; C Dana Nelson

    2011-01-01

    Previous loblolly pine (Pinus taeda L.) genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats), also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective of this study was to integrate a large set of SSR markers from a variety...

  13. Linkage of morbid obesity with polymorphic microsatellite markers on chromosome 1q31 in a three-generation Canadian kindred

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J.D.; Bulman, D.E.; Ebers, G.C. [University Hospital, London (Canada)]|[INSERM, Paris (France)] [and others

    1994-09-01

    Obesity is the most common nutritional disorder affecting Western societies. An estimated 3.7 million Canadians are considered to be overweight, a condition associated with hypertension, accelerated atherosclerosis, diabetes and a host of other medical problems. We have identified a 3 generation kindred in which morbid obesity appears to segregate in an autosomal dominant manner. All individuals were examined. Mass (kg) and heights (m) were measured in order to determine a body mass index (BMI) for each individual. Those individuals with BMI of greater than or equal to 30.0 were designated as affected. In the pedigree studied 25 individuals met this criteria and 12 of these were morbidly obese (BMI greater or equal to 40.0). A search of candidate genes proved unfruitful. A linkage study was initiated. All individuals in the pedigree were genotyped for microsatellite markers which were spaced every 20 centimorgans (cM). Positive evidence of linkage was detected with markers which map to 1q31-32 (lod score of 3.6 at {theta} = 0.05). Notably, strong effects for fatness in pigs have been found on pig chromosome 4 which has synteny with human chromosome 1q21-32. We are currently attempting to refine the position of this gene using linkage analysis with other microsatellite markers from this region of the genome. In addition we are screening other families in which obesity segregates for linkage to 1q31.

  14. A DArT marker genetic map of perennial ryegrass (Lolium perenne L.) integrated with detailed comparative mapping information; comparison with existing DArT marker genetic maps of Lolium perenne, L. multiflorum and Festuca pratensis.

    Science.gov (United States)

    King, Julie; Thomas, Ann; James, Caron; King, Ian; Armstead, Ian

    2013-07-03

    Ryegrasses and fescues (genera, Lolium and Festuca) are species of forage and turf grasses which are used widely in agricultural and amenity situations. They are classified within the sub-family Pooideae and so are closely related to Brachypodium distachyon, wheat, barley, rye and oats. Recently, a DArT array has been developed which can be used in generating marker and mapping information for ryegrasses and fescues. This represents a potential common marker set for ryegrass and fescue researchers which can be linked through to comparative genomic information for the grasses. A F2 perennial ryegrass genetic map was developed consisting of 7 linkage groups defined by 1316 markers and deriving a total map length of 683 cM. The marker set included 866 DArT and 315 gene sequence-based markers. Comparison with previous DArT mapping studies in perennial and Italian ryegrass (L. multiflorum) identified 87 and 105 DArT markers in common, respectively, of which 94% and 87% mapped to homoeologous linkage groups. A similar comparison with meadow fescue (F. pratensis) identified only 28 DArT markers in common, of which c. 50% mapped to non-homoelogous linkage groups. In L. perenne, the genetic distance spanned by the DArT markers encompassed the majority of the regions that could be described in terms of comparative genomic relationships with rice, Brachypodium distachyon, and Sorghum bicolor. DArT markers are likely to be a useful common marker resource for ryegrasses and fescues, though the success in aligning different populations through the mapping of common markers will be influenced by degrees of population interrelatedness. The detailed mapping of DArT and gene-based markers in this study potentially allows comparative relationships to be derived in future mapping populations characterised using solely DArT markers.

  15. [Construction of genetic linkage map and localization of NBS-LRR like resistance gene analogues in cauliflower (Brassica oleracea var. botrytis)].

    Science.gov (United States)

    Gu, Yu; Zhao, Qian-Cheng; Sun, De-Ling; Song, Wen-Qin

    2007-06-01

    Nucleotide binding site (NBS) profiling, a new method was used to map resistance gene analogues (RGAs) in cauliflower (Brassica oleracea var. botrytis). This method allows amplification and the mapping of genetic markers anchored in the conserved NBS encoding domain of plant disease resistance genes. AFLP was also performed to construct the cauliflower intervarietal genetic map. The aim of constructing genetic map was to identify potential molecular markers linked to important agronomic traits that would be particularly useful for development and improving the species. Using 17 AFLP primer combinations and two degeneration primer/enzyme combinations, a total of 234 AFLP markers and 21 NBS markers were mapped in the F2 population derived from self-pollinating a single F1 plant of the cross AD White Flower x C-8. The markers were mapped in 9 of major linkage groups spanning 668.4 cM, with an average distance of 2.9 cM between adjacent mapped markers. The AFLP markers were well distributed throughout the linkage groups. The linkage groups contained from 12 to 47 loci each and the distance between two consecutive loci ranged from 0 to 14.9 cM. NBS markers were mapped on 8 of the 9 linkage groups of the genetic map. Most of these markers were organized in clusters. This result demonstrates the feasibility of the NBS-profiling method for generating NBS markers for resistance loci in cauliflower. The clustering of the markers mapped in this study adds to the evidence that most of them could be real RGAs.

  16. Reference Genome-Directed Resolution of Homologous and Homeologous Relationships within and between Different Oat Linkage Maps

    Directory of Open Access Journals (Sweden)

    Juan J. Gutierrez-Gonzalez

    2011-11-01

    Full Text Available Genome research on oat ( L. has received less attention than wheat ( L. and barley ( L. because it is a less prominent component of the human food system. To assess the potential of the model grass (L P. Beauv. as a surrogate for oat genome research, the whole genome sequence (WGS of was employed for comparative analysis with oat genetic linkage maps. Sequences of mapped molecular markers from one diploid spp. and two hexaploid oat maps were aligned to the WGS to infer syntenic relationships. Diploid and exhibit a high degree of synteny with 18 syntenic blocks covering 87% of the oat genome, which permitted postulation of an ancestral spp. chromosome structure. Synteny between oat and was also prevalent, with 50 syntenic blocks covering 76.6% of the ‘Kanota’ × ‘Ogle’ linkage map. Coalignment of diploid and hexaploid maps to helped resolve homeologous relationships between different oat linkage groups but also revealed many major rearrangements in oat subgenomes. Extending the analysis to a second oat linkage map (Ogle × ‘TAM O-301’ allowed identification of several putative homologous linkage groups across the two oat populations. These results indicate that the genome sequence will be a useful resource to assist genetics and genomics research in oat. The analytical strategy employed here should be applicable for genome research in other temperate grass crops with modest amounts of genomic data.

  17. A genetic linkage map of sole (Solea solea: a tool for evolutionary and comparative analyses of exploited (flatfishes.

    Directory of Open Access Journals (Sweden)

    Eveline Diopere

    Full Text Available Linkage maps based on markers derived from genes are essential evolutionary tools for commercial marine fish to help identify genomic regions associated with complex traits and subject to selective forces at play during exploitation or selective breeding. Additionally, they allow the use of genomic information from other related species for which more detailed information is available. Sole (solea solea L. is a commercially important flatfish species in the North Sea, subject to overexploitation and showing evidence of fisheries-induced evolutionary changes in growth- and maturation-related traits. Sole would definitely benefit from a linkage map to better understand how evolution has shaped its genome structure. This study presents a linkage map of sole based on 423 single nucleotide polymorphisms derived from expressed sequence tags and 8 neutral microsatellite markers. The total map length is 1233.8 cM and consists of 38 linkage groups with a size varying between 0 to 92.1 cM. Being derived from expressed sequence tags allowed us to align the map with the genome of four model fish species, namely medaka (Oryzias latipes, Nile tilapia (Oreochromis niloticus, three-spined stickleback (Gasterosteus aculeatus and green spotted pufferfish (Tetraodon nigroviridis. This comparison revealed multiple conserved syntenic regions with all four species, and suggested that the linkage groups represent 21 putative sole chromosomes. The map was also compared to the linkage map of turbot (Scophthalmus maximus, another commercially important flatfish species and closely related to sole. For all putative sole chromosomes (except one a turbot homolog was detected, confirming the even higher degree of synteny between these two flatfish species.

  18. Genomewide Linkage Disequilibrium Mapping of Severe Bipolar Disorder in a Population Isolate

    Science.gov (United States)

    Ophoff, Roel A.; Escamilla, Michael A.; Service, Susan K.; Spesny, Mitzi; Meshi, Dar B.; Poon, Wingman; Molina, Julio; Fournier, Eduardo; Gallegos, Alvaro; Mathews, Carol; Neylan, Thomas; Batki, Steven L.; Roche, Erin; Ramirez, Margarita; Silva, Sandra; De Mille, Melissa C.; Dong, Penny; Leon, Pedro E.; Reus, Victor I.; Sandkuijl, Lodewijk A.; Freimer, Nelson B.

    2002-01-01

    Genomewide association studies may offer the best promise for genetic mapping of complex traits. Such studies in outbred populations require very densely spaced single-nucleotide polymorphisms. In recently founded population isolates, however, extensive linkage disequilibrium (LD) may make these studies feasible with currently available sets of short tandem repeat markers, spaced at intervals as large as a few centimorgans. We report the results of a genomewide association study of severe bipolar disorder (BP-I), using patients from the isolated population of the central valley of Costa Rica. We observed LD with BP-I on several chromosomes; the most striking results were in proximal 8p, a region that has previously shown linkage to schizophrenia. This region could be important for severe psychiatric disorders, rather than for a specific phenotype. PMID:12119601

  19. polymapR - linkage analysis and genetic map construction from F1 populations of outcrossing polyploids.

    Science.gov (United States)

    Bourke, Peter M; van Geest, Geert; Voorrips, Roeland E; Jansen, Johannes; Kranenburg, Twan; Shahin, Arwa; Visser, Richard G F; Arens, Paul; Smulders, Marinus J M; Maliepaard, Chris

    2018-05-02

    Polyploid species carry more than two copies of each chromosome, a condition found in many of the world's most important crops. Genetic mapping in polyploids is more complex than in diploid species, resulting in a lack of available software tools. These are needed if we are to realise all the opportunities offered by modern genotyping platforms for genetic research and breeding in polyploid crops. polymapR is an R package for genetic linkage analysis and integrated genetic map construction from bi-parental populations of outcrossing autopolyploids. It can currently analyse triploid, tetraploid and hexaploid marker datasets and is applicable to various crops including potato, leek, alfalfa, blueberry, chrysanthemum, sweet potato or kiwifruit. It can detect, estimate and correct for preferential chromosome pairing, and has been tested on high-density marker datasets from potato, rose and chrysanthemum, generating high-density integrated linkage maps in all of these crops. polymapR is freely available under the general public license from the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/package=polymapR. Chris Maliepaard chris.maliepaard@wur.nl or Roeland E. Voorrips roeland.voorrips@wur.nl. Supplementary data are available at Bioinformatics online.

  20. Linkage Map Construction and Quantitative Trait Locus Analysis of Agronomic and Fiber Quality Traits in Cotton

    Directory of Open Access Journals (Sweden)

    Michael A. Gore

    2014-03-01

    Full Text Available The superior fiber properties of L. serve as a source of novel variation for improving fiber quality in Upland cotton ( L., but introgression from has been largely unsuccessful due to hybrid breakdown and a lack of genetic and genomic resources. In an effort to overcome these limitations, we constructed a linkage map and conducted a quantitative trait locus (QTL analysis of 10 agronomic and fiber quality traits in a recombinant inbred mapping population derived from a cross between TM-1, an Upland cotton line, and NM24016, an elite line with stabilized introgression from . The linkage map consisted of 429 simple-sequence repeat (SSR and 412 genotyping-by-sequencing (GBS-based single-nucleotide polymorphism (SNP marker loci that covered half of the tetraploid cotton genome. Notably, the 841 marker loci were unevenly distributed among the 26 chromosomes of tetraploid cotton. The 10 traits evaluated on the TM-1 × NM24016 population in a multienvironment trial were highly heritable, and most of the fiber traits showed considerable transgressive variation. Through the QTL analysis, we identified a total of 28 QTLs associated with the 10 traits. Our study provides a novel resource that can be used by breeders and geneticists for the genetic improvement of agronomic and fiber quality traits in Upland cotton.

  1. A saturated genetic linkage map of autotetraploid alfalfa (Medicago sativa L.) developed using genotyping-by-sequencing is highly syntenous with the Medicago truncatula genome.

    Science.gov (United States)

    Li, Xuehui; Wei, Yanling; Acharya, Ananta; Jiang, Qingzhen; Kang, Junmei; Brummer, E Charles

    2014-08-21

    A genetic linkage map is a valuable tool for quantitative trait locus mapping, map-based gene cloning, comparative mapping, and whole-genome assembly. Alfalfa, one of the most important forage crops in the world, is autotetraploid, allogamous, and highly heterozygous, characteristics that have impeded the construction of a high-density linkage map using traditional genetic marker systems. Using genotyping-by-sequencing (GBS), we constructed low-cost, reasonably high-density linkage maps for both maternal and paternal parental genomes of an autotetraploid alfalfa F1 population. The resulting maps contain 3591 single-nucleotide polymorphism markers on 64 linkage groups across both parents, with an average density of one marker per 1.5 and 1.0 cM for the maternal and paternal haplotype maps, respectively. Chromosome assignments were made based on homology of markers to the M. truncatula genome. Four linkage groups representing the four haplotypes of each alfalfa chromosome were assigned to each of the eight Medicago chromosomes in both the maternal and paternal parents. The alfalfa linkage groups were highly syntenous with M. truncatula, and clearly identified the known translocation between Chromosomes 4 and 8. In addition, a small inversion on Chromosome 1 was identified between M. truncatula and M. sativa. GBS enabled us to develop a saturated linkage map for alfalfa that greatly improved genome coverage relative to previous maps and that will facilitate investigation of genome structure. GBS could be used in breeding populations to accelerate molecular breeding in alfalfa. Copyright © 2014 Li et al.

  2. Development of a quantitative pachytene chromosome map and its unification with somatic chromosome and linkage maps of rice (Oryza sativa L.).

    Science.gov (United States)

    Ohmido, Nobuko; Iwata, Aiko; Kato, Seiji; Wako, Toshiyuki; Fukui, Kiichi

    2018-01-01

    A quantitative pachytene chromosome map of rice (Oryza sativa L.) was developed using imaging methods. The map depicts not only distribution patterns of chromomeres specific to pachytene chromosomes, but also the higher order information of chromosomal structures, such as heterochromatin (condensed regions), euchromatin (decondensed regions), the primary constrictions (centromeres), and the secondary constriction (nucleolar organizing regions, NOR). These features were image analyzed and quantitatively mapped onto the map by Chromosome Image Analyzing System ver. 4.0 (CHIAS IV). Correlation between H3K9me2, an epigenetic marker and formation and/or maintenance of heterochromatin, thus was, clearly visualized. Then the pachytene chromosome map was unified with the existing somatic chromosome and linkage maps by physically mapping common DNA markers among them, such as a rice A genome specific tandem repeat sequence (TrsA), 5S and 45S ribosomal RNA genes, five bacterial artificial chromosome (BAC) clones, four P1 bacteriophage artificial chromosome (PAC) clones using multicolor fluorescence in situ hybridization (FISH). Detailed comparison between the locations of the DNA probes on the pachytene chromosomes using multicolor FISH, and the linkage map enabled determination of the chromosome number and short/long arms of individual pachytene chromosomes using the chromosome number and arm assignment designated for the linkage map. As a result, the quantitative pachytene chromosome map was unified with two other major rice chromosome maps representing somatic prometaphase chromosomes and genetic linkages. In conclusion, the unification of the three rice maps serves as an indispensable basic information, not only for an in-depth comparison between genetic and chromosomal data, but also for practical breeding programs.

  3. Population structure and linkage disequilibrium in Lupinus albus L. germplasm and its implication for association mapping.

    Science.gov (United States)

    Iqbal, Muhammad Javed; Mamidi, Sujan; Ahsan, Rubina; Kianian, Shahryar F; Coyne, Clarice J; Hamama, Anwar A; Narina, Satya S; Bhardwaj, Harbans L

    2012-08-01

    White lupin (Lupinus albus L.) has been around since 300 B.C. and is recognized for its ability to grow on poor soils and application as green manure in addition to seed harvest. The seed has very high levels of protein (33-47 %) and oil (6-13 %). It also has many secondary metabolites that are potentially of nutraceutical value to animals and humans. Despite such a great potential, lupins role in modern agriculture began only in the twentieth century. Although a large collection of Lupinus germplasm accessions is available worldwide, rarely have they been genetically characterized. Additionally, scarce genomic resources in terms of recombinant populations and genome information have been generated for L. albus. With the advancement in association mapping methods, the natural populations have the potential to replace the recombinant populations in gene mapping and marker-trait associations. Therefore, we studied the genetic similarity, population structure and marker-trait association in a USDA germplasm collection for their current and future application in this crop improvement. A total of 122 PI (Plant Inventory) lines were screened with 18 AFLP primer pairs that generated 2,277 fragments. A subset of 892 polymorphic markers with MAF >0.05 (minor allele frequency) were used for association mapping. The cluster analysis failed to group accessions on the basis of their passport information, and a weak structure and low linkage disequilibrium (LD) were observed indicating the usefulness of the collection for association mapping. Moreover, we were also able to identify two markers (a p value of 1.53 × 10(-4) and 2.3 × 10(-4)) that explained 22.69 and 20.5 % of seed weight variation determined using R (LR) (2) . The implications of lack of geographic clustering, population structure, low LD and the ability of AFLP to map seed weight trait using association mapping and the usefulness of the PI collections in breeding programs are discussed.

  4. Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant.

    Science.gov (United States)

    Wu, Pingzhi; Zhou, Changpin; Cheng, Shifeng; Wu, Zhenying; Lu, Wenjia; Han, Jinli; Chen, Yanbo; Chen, Yan; Ni, Peixiang; Wang, Ying; Xu, Xun; Huang, Ying; Song, Chi; Wang, Zhiwen; Shi, Nan; Zhang, Xudong; Fang, Xiaohua; Yang, Qing; Jiang, Huawu; Chen, Yaping; Li, Meiru; Wang, Ying; Chen, Fan; Wang, Jun; Wu, Guojiang

    2015-03-01

    The family Euphorbiaceae includes some of the most efficient biomass accumulators. Whole genome sequencing and the development of genetic maps of these species are important components in molecular breeding and genetic improvement. Here we report the draft genome of physic nut (Jatropha curcas L.), a biodiesel plant. The assembled genome has a total length of 320.5 Mbp and contains 27,172 putative protein-coding genes. We established a linkage map containing 1208 markers and anchored the genome assembly (81.7%) to this map to produce 11 pseudochromosomes. After gene family clustering, 15,268 families were identified, of which 13,887 existed in the castor bean genome. Analysis of the genome highlighted specific expansion and contraction of a number of gene families during the evolution of this species, including the ribosome-inactivating proteins and oil biosynthesis pathway enzymes. The genomic sequence and linkage map provide a valuable resource not only for fundamental and applied research on physic nut but also for evolutionary and comparative genomics analysis, particularly in the Euphorbiaceae. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  5. A high-resolution genetic linkage map and QTL fine mapping for growth-related traits and sex in the Yangtze River common carp (Cyprinus carpio haematopterus).

    Science.gov (United States)

    Feng, Xiu; Yu, Xiaomu; Fu, Beide; Wang, Xinhua; Liu, Haiyang; Pang, Meixia; Tong, Jingou

    2018-04-02

    A high-density genetic linkage map is essential for QTL fine mapping, comparative genome analysis, identification of candidate genes and marker-assisted selection for economic traits in aquaculture species. The Yangtze River common carp (Cyprinus carpio haematopterus) is one of the most important aquacultured strains in China. However, quite limited genetics and genomics resources have been developed for genetic improvement of economic traits in such strain. A high-resolution genetic linkage map was constructed by using 7820 2b-RAD (2b-restriction site-associated DNA) and 295 microsatellite markers in a F2 family of the Yangtze River common carp (C. c. haematopterus). The length of the map was 4586.56 cM with an average marker interval of 0.57 cM. Comparative genome mapping revealed that a high proportion (70%) of markers with disagreed chromosome location was observed between C. c. haematopterus and another common carp strain (subspecies) C. c. carpio. A clear 2:1 relationship was observed between C. c. haematopterus linkage groups (LGs) and zebrafish (Danio rerio) chromosomes. Based on the genetic map, 21 QTLs for growth-related traits were detected on 12 LGs, and contributed values of phenotypic variance explained (PVE) ranging from 16.3 to 38.6%, with LOD scores ranging from 4.02 to 11.13. A genome-wide significant QTL (LOD = 10.83) and three chromosome-wide significant QTLs (mean LOD = 4.84) for sex were mapped on LG50 and LG24, respectively. A 1.4 cM confidence interval of QTL for all growth-related traits showed conserved synteny with a 2.06 M segment on chromosome 14 of D. rerio. Five potential candidate genes were identified by blast search in this genomic region, including a well-studied multi-functional growth related gene, Apelin. We mapped a set of suggestive and significant QTLs for growth-related traits and sex based on a high-density genetic linkage map using SNP and microsatellite markers for Yangtze River common carp. Several

  6. Genetic linkage map and comparative genome analysis for the estuarine Atlantic killifish (Fundulus heteroclitus)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Genetic linkage maps are valuable tools in evolutionary biology; however, their availability for wild populations is extremely limited. Fundulus heteroclitus...

  7. A microsatellite linkage map for Drosophila montana shows large variation in recombination rates, and a courtship song trait maps to an area of low recombination.

    Science.gov (United States)

    Schäfer, M A; Mazzi, D; Klappert, K; Kauranen, H; Vieira, J; Hoikkala, A; Ritchie, M G; Schlötterer, C

    2010-03-01

    Current advances in genetic analysis are opening up our knowledge of the genetics of species differences, but challenges remain, particularly for out-bred natural populations. We constructed a microsatellite-based linkage map for two out-bred lines of Drosophila montana derived from divergent populations by taking advantage of the Drosophila virilis genome and available cytological maps of both species. Although the placement of markers was quite consistent with cytological predictions, the map indicated large heterogeneity in recombination rates along chromosomes. We also performed a quantitative trait locus (QTL) analysis on a courtship song character (carrier frequency), which differs between populations and is subject to strong sexual selection. Linkage mapping yielded two significant QTLs, which explained 3% and 14% of the variation in carrier frequency, respectively. Interestingly, as in other recent studies of traits which can influence speciation, the strongest QTL mapped to a genomic region partly covered by an inversion polymorphism.

  8. High resolution linkage maps of the model organism Petunia reveal substantial synteny decay with the related genome of tomato.

    Science.gov (United States)

    Bossolini, Eligio; Klahre, Ulrich; Brandenburg, Anna; Reinhardt, Didier; Kuhlemeier, Cris

    2011-04-01

    Two linkage maps were constructed for the model plant Petunia. Mapping populations were obtained by crossing the wild species Petunia axillaris subsp. axillaris with Petunia inflata, and Petunia axillaris subsp. parodii with Petunia exserta. Both maps cover the seven chromosomes of Petunia, and span 970 centimorgans (cM) and 700 cM of the genomes, respectively. In total, 207 markers were mapped. Of these, 28 are multilocus amplified fragment length polymorphism (AFLP) markers and 179 are gene-derived markers. For the first time we report on the development and mapping of 83 Petunia microsatellites. The two maps retain the same marker order, but display significant differences of recombination frequencies at orthologous mapping intervals. A complex pattern of genomic rearrangements was detected with the related genome of tomato (Solanum lycopersicum), indicating that synteny between Petunia and other Solanaceae crops has been considerably disrupted. The newly developed markers will facilitate the genetic characterization of mutants and ecological studies on genetic diversity and speciation within the genus Petunia. The maps will provide a powerful tool to link genetic and genomic information and will be useful to support sequence assembly of the Petunia genome.

  9. First High-Density Linkage Map and Single Nucleotide Polymorphisms Significantly Associated With Traits of Economic Importance in Yellowtail Kingfish Seriola lalandi

    Directory of Open Access Journals (Sweden)

    Nguyen H. Nguyen

    2018-04-01

    Full Text Available The genetic resources available for the commercially important fish species Yellowtail kingfish (YTK (Seriola lalandi are relative sparse. To overcome this, we aimed (1 to develop a linkage map for this species, and (2 to identify markers/variants associated with economically important traits in kingfish (with an emphasis on body weight. Genetic and genomic analyses were conducted using 13,898 single nucleotide polymorphisms (SNPs generated from a new high-throughput genotyping by sequencing platform, Diversity Arrays Technology (DArTseqTM in a pedigreed population comprising 752 animals. The linkage analysis enabled to map about 4,000 markers to 24 linkage groups (LGs, with an average density of 3.4 SNPs per cM. The linkage map was integrated into a genome-wide association study (GWAS and identified six variants/SNPs associated with body weight (P < 5e-8 when a multi-locus mixed model was used. Two out of the six significant markers were mapped to LGs 17 and 23, and collectively they explained 5.8% of the total genetic variance. It is concluded that the newly developed linkage map and the significantly associated markers with body weight provide fundamental information to characterize genetic architecture of growth-related traits in this population of YTK S. lalandi.

  10. First High-Density Linkage Map and Single Nucleotide Polymorphisms Significantly Associated With Traits of Economic Importance in Yellowtail Kingfish Seriola lalandi.

    Science.gov (United States)

    Nguyen, Nguyen H; Rastas, Pasi M A; Premachandra, H K A; Knibb, Wayne

    2018-01-01

    The genetic resources available for the commercially important fish species Yellowtail kingfish (YTK) ( Seriola lalandi) are relative sparse. To overcome this, we aimed (1) to develop a linkage map for this species, and (2) to identify markers/variants associated with economically important traits in kingfish (with an emphasis on body weight). Genetic and genomic analyses were conducted using 13,898 single nucleotide polymorphisms (SNPs) generated from a new high-throughput genotyping by sequencing platform, Diversity Arrays Technology (DArTseq TM ) in a pedigreed population comprising 752 animals. The linkage analysis enabled to map about 4,000 markers to 24 linkage groups (LGs), with an average density of 3.4 SNPs per cM. The linkage map was integrated into a genome-wide association study (GWAS) and identified six variants/SNPs associated with body weight ( P 5e -8 ) when a multi-locus mixed model was used. Two out of the six significant markers were mapped to LGs 17 and 23, and collectively they explained 5.8% of the total genetic variance. It is concluded that the newly developed linkage map and the significantly associated markers with body weight provide fundamental information to characterize genetic architecture of growth-related traits in this population of YTK S. lalandi .

  11. A High-Density Genetic Linkage Map and QTL Fine Mapping for Body Weight in Crucian Carp (Carassius auratus Using 2b-RAD Sequencing

    Directory of Open Access Journals (Sweden)

    Haiyang Liu

    2017-08-01

    Full Text Available A high-resolution genetic linkage map is essential for a wide range of genetics and genomics studies such as comparative genomics analysis and QTL fine mapping. Crucian carp (Carassius auratus is widely distributed in Eurasia, and is an important aquaculture fish worldwide. In this study, a high-density genetic linkage map was constructed for crucian carp using 2b-RAD technology. The consensus map contains 8487 SNP markers, assigning to 50 linkage groups (LGs and spanning 3762.88 cM, with an average marker interval of 0.44 cM and genome coverage of 98.8%. The female map had 4410 SNPs, and spanned 3500.42 cM (0.79 cM/marker, while the male map had 4625 SNPs and spanned 3346.33 cM (0.72 cM/marker. The average recombination ratio of female to male was 2.13:1, and significant male-biased recombination suppressions were observed in LG47 and LG49. Comparative genomics analysis revealed a clear 2:1 syntenic relationship between crucian carp LGs and chromosomes of zebrafish and grass carp, and a 1:1 correspondence, but extensive chromosomal rearrangement, between crucian carp and common carp, providing evidence that crucian carp has experienced a fourth round of whole genome duplication (4R-WGD. Eight chromosome-wide QTL for body weight at 2 months after hatch were detected on five LGs, explaining 10.1–13.2% of the phenotypic variations. Potential candidate growth-related genes, such as an EGF-like domain and TGF-β, were identified within the QTL intervals. This high-density genetic map and QTL analysis supplies a basis for genome evolutionary studies in cyprinid fishes, genome assembly, and QTL fine mapping for complex traits in crucian carp.

  12. SNP identification from RNA sequencing and linkage map construction of rubber tree for anchoring the draft genome.

    Science.gov (United States)

    Shearman, Jeremy R; Sangsrakru, Duangjai; Jomchai, Nukoon; Ruang-Areerate, Panthita; Sonthirod, Chutima; Naktang, Chaiwat; Theerawattanasuk, Kanikar; Tragoonrung, Somvong; Tangphatsornruang, Sithichoke

    2015-01-01

    Hevea brasiliensis, or rubber tree, is an important crop species that accounts for the majority of natural latex production. The rubber tree nuclear genome consists of 18 chromosomes and is roughly 2.15 Gb. The current rubber tree reference genome assembly consists of 1,150,326 scaffolds ranging from 200 to 531,465 bp and totalling 1.1 Gb. Only 143 scaffolds, totalling 7.6 Mb, have been placed into linkage groups. We have performed RNA-seq on 6 varieties of rubber tree to identify SNPs and InDels and used this information to perform target sequence enrichment and high throughput sequencing to genotype a set of SNPs in 149 rubber tree offspring from a cross between RRIM 600 and RRII 105 rubber tree varieties. We used this information to generate a linkage map allowing for the anchoring of 24,424 contigs from 3,009 scaffolds, totalling 115 Mb or 10.4% of the published sequence, into 18 linkage groups. Each linkage group contains between 319 and 1367 SNPs, or 60 to 194 non-redundant marker positions, and ranges from 156 to 336 cM in length. This linkage map includes 20,143 of the 69,300 predicted genes from rubber tree and will be useful for mapping studies and improving the reference genome assembly.

  13. Construction and comparative analyses of highly dense linkage maps of two sweet cherry intra-specific progenies of commercial cultivars.

    Directory of Open Access Journals (Sweden)

    Carolina Klagges

    Full Text Available Despite the agronomical importance and high synteny with other Prunus species, breeding improvements for cherry have been slow compared to other temperate fruits, such as apple or peach. However, the recent release of the peach genome v1.0 by the International Peach Genome Initiative and the sequencing of cherry accessions to identify Single Nucleotide Polymorphisms (SNPs provide an excellent basis for the advancement of cherry genetic and genomic studies. The availability of dense genetic linkage maps in phenotyped segregating progenies would be a valuable tool for breeders and geneticists. Using two sweet cherry (Prunus avium L. intra-specific progenies derived from crosses between 'Black Tartarian' × 'Kordia' (BT×K and 'Regina' × 'Lapins'(R×L, high-density genetic maps of the four parental lines and the two segregating populations were constructed. For BT×K and R×L, 89 and 121 F(1 plants were used for linkage mapping, respectively. A total of 5,696 SNP markers were tested in each progeny. As a result of these analyses, 723 and 687 markers were mapped into eight linkage groups (LGs in BT×K and R×L, respectively. The resulting maps spanned 752.9 and 639.9 cM with an average distance of 1.1 and 0.9 cM between adjacent markers in BT×K and R×L, respectively. The maps displayed high synteny and co-linearity between each other, with the Prunus bin map, and with the peach genome v1.0 for all eight LGs (LG1-LG8. These maps provide a useful tool for investigating traits of interest in sweet cherry and represent a qualitative advance in the understanding of the cherry genome and its synteny with other members of the Rosaceae family.

  14. Cytogenetic characterization and AFLP-based genetic linkage mapping for the butterfly Bicyclus anynana, covering all 28 karyotyped chromosomes.

    Directory of Open Access Journals (Sweden)

    Arjen E Van't Hof

    Full Text Available BACKGROUND: The chromosome characteristics of the butterfly Bicyclus anynana, have received little attention, despite the scientific importance of this species. This study presents the characterization of chromosomes in this species by means of cytogenetic analysis and linkage mapping. METHODOLOGY/PRINCIPAL FINDINGS: Physical genomic features in the butterfly B. anynana were examined by karyotype analysis and construction of a linkage map. Lepidoptera possess a female heterogametic W-Z sex chromosome system. The WZ-bivalent in pachytene oocytes of B. anynana consists of an abnormally small, heterochromatic W-chromosome with the Z-chromosome wrapped around it. Accordingly, the W-body in interphase nuclei is much smaller than usual in Lepidoptera. This suggests an intermediate stage in the process of secondary loss of the W-chromosome to a ZZ/Z sex determination system. Two nucleoli are present in the pachytene stage associated with an autosome and the WZ-bivalent respectively. Chromosome counts confirmed a haploid number of n = 28. Linkage mapping had to take account of absence of crossing-over in females, and of our use of a full-sib crossing design. We developed a new method to determine and exclude the non-recombinant uninformative female inherited component in offspring. The linkage map was constructed using a novel approach that uses exclusively JOINMAP-software for Lepidoptera linkage mapping. This approach simplifies the mapping procedure, avoids over-estimation of mapping distance and increases the reliability of relative marker positions. A total of 347 AFLP markers, 9 microsatellites and one single-copy nuclear gene covered all 28 chromosomes, with a mapping distance of 1354 cM. Conserved synteny of Tpi on the Z-chromosome in Lepidoptera was confirmed for B. anynana. The results are discussed in relation to other mapping studies in Lepidoptera. CONCLUSIONS/SIGNIFICANCE: This study adds to the knowledge of chromosome structure and

  15. An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis

    NARCIS (Netherlands)

    Geest, van Geert; Bourke, Peter M.; Voorrips, Roeland E.; Marasek-Ciolakowska, Agnieszka; Liao, Yanlin; Post, Aike; Meeteren, van Uulke; Visser, Richard G.F.; Maliepaard, Chris; Arens, Paul

    2017-01-01

    Key message: We constructed the first integrated genetic linkage map in a polysomic hexaploid. This enabled us to estimate inheritance of parental haplotypes in the offspring and detect multi-allelic QTL.Abstract: Construction and use of linkage maps are challenging in hexaploids with polysomic

  16. Constructing linkage maps in the genomics era with MapDisto 2.0.

    Science.gov (United States)

    Heffelfinger, Christopher; Fragoso, Christopher A; Lorieux, Mathias

    2017-07-15

    Genotyping by sequencing (GBS) generates datasets that are challenging to handle by current genetic mapping software with graphical interface. Geneticists need new user-friendly computer programs that can analyze GBS data on desktop computers. This requires improvements in computation efficiency, both in terms of speed and use of random-access memory (RAM). MapDisto v.2.0 is a user-friendly computer program for construction of genetic linkage maps. It includes several new major features: (i) handling of very large genotyping datasets like the ones generated by GBS; (ii) direct importation and conversion of Variant Call Format (VCF) files; (iii) detection of linkage, i.e. construction of linkage groups in case of segregation distortion; (iv) data imputation on VCF files using a new approach, called LB-Impute. Features i to iv operate through inclusion of new Java modules that are used transparently by MapDisto; (v) QTL detection via a new R/qtl graphical interface. The program is available free of charge at mapdisto.free.fr. mapdisto@gmail.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Linkage Maps of a Mediterranean × Continental Tall Fescue Population and their Comparative Analysis with Other Poaceae Species

    Directory of Open Access Journals (Sweden)

    Ryan Dierking

    2015-03-01

    Full Text Available Temperate grasses belonging to the complex are important throughout the world in pasture and grassland agriculture. Tall fescue ( Schreb. is the predominant species in the United States, covering approximately 15 million ha. Tall fescue has distinctive morphotypes, two of which are Continental (summer active and Mediterranean (summer semidormant. This is the first report of a linkage map created for Mediterranean tall fescue, while updating the Continental map with additional simple sequence repeat and sequence-tagged site markers. Additionally, this is the first time that diversity arrays technology (DArT markers were used in the construction of a tall fescue map. The male parent (Continental, R43-64, map consisted of 594 markers arranged in 22 linkage groups (LGs and covered a total of 1577 cM. The female parent (Mediterranean, 103-2, map was shorter (1258 cM and consisted of only 208 markers arranged in 29 LGs. Marker densities for R43-64 and 103-2 were 2.65 and 6.08 cM per marker, respectively. When compared with the other Poaceae species, meadow fescue ( Huds., annual ryegrass ( Lam., perennial ryegrass ( L., (L. Beauv., and barley ( L., a total of 171 and 98 orthologous or homologous sequences, identified by DArT analysis, were identified in R43-64 and 103-2, respectively. By using genomic in situ hybridization, we aimed to identify potential progenitors of both morphotypes. However, no clear conclusion on genomic constitution was reached. These maps will aid in the search for quantitative trait loci of various traits as well as help define and distinguish genetic differences between the two morphotypes.

  18. Effect of Co-segregating Markers on High-Density Genetic Maps and Prediction of Map Expansion Using Machine Learning Algorithms.

    Science.gov (United States)

    N'Diaye, Amidou; Haile, Jemanesh K; Fowler, D Brian; Ammar, Karim; Pozniak, Curtis J

    2017-01-01

    Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called 'large p, small n' problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion

  19. Effect of Co-segregating Markers on High-Density Genetic Maps and Prediction of Map Expansion Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Amidou N’Diaye

    2017-08-01

    Full Text Available Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called ‘large p, small n’ problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers. While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat and Norstar × Cappelle Desprez (bread wheat. The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF, we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez. Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase

  20. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes.

    Science.gov (United States)

    Rauscher, Gilda; Simko, Ivan

    2013-01-22

    Lettuce (Lactuca sativa L.) is the major crop from the group of leafy vegetables. Several types of molecular markers were developed that are effectively used in lettuce breeding and genetic studies. However only a very limited number of microsattelite-based markers are publicly available. We have employed the method of enriched microsatellite libraries to develop 97 genomic SSR markers. Testing of newly developed markers on a set of 36 Lactuca accession (33 L. sativa, and one of each L. serriola L., L. saligna L., and L. virosa L.) revealed that both the genetic heterozygosity (UHe = 0.56) and the number of loci per SSR (Na = 5.50) are significantly higher for genomic SSR markers than for previously developed EST-based SSR markers (UHe = 0.32, Na = 3.56). Fifty-four genomic SSR markers were placed on the molecular linkage map of lettuce. Distribution of markers in the genome appeared to be random, with the exception of possible cluster on linkage group 6. Any combination of 32 genomic SSRs was able to distinguish genotypes of all 36 accessions. Fourteen of newly developed SSR markers originate from fragments with high sequence similarity to resistance gene candidates (RGCs) and RGC pseudogenes. Analysis of molecular variance (AMOVA) of L. sativa accessions showed that approximately 3% of genetic diversity was within accessions, 79% among accessions, and 18% among horticultural types. The newly developed genomic SSR markers were added to the pool of previously developed EST-SSRs markers. These two types of SSR-based markers provide useful tools for lettuce cultivar fingerprinting, development of integrated molecular linkage maps, and mapping of genes.

  1. Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map.

    Science.gov (United States)

    Tar'an, B; Warkentin, T D; Tullu, A; Vandenberg, A

    2007-01-01

    Ascochyta blight, caused by the fungus Ascochyta rabiei (Pass.) Lab., is one of the most devastating diseases of chickpea (Cicer arietinum L.) worldwide. Research was conducted to map genetic factors for resistance to ascochyta blight using a linkage map constructed with 144 simple sequence repeat markers and 1 morphological marker (fc, flower colour). Stem cutting was used to vegetatively propagate 186 F2 plants derived from a cross between Cicer arietinum L. 'ICCV96029' and 'CDC Frontier'. A total of 556 cutting-derived plants were evaluated for their reaction to ascochyta blight under controlled conditions. Disease reaction of the F1 and F2 plants demonstrated that the resistance was dominantly inherited. A Fain's test based on the means and variances of the ascochyta blight reaction of the F3 families showed that a few genes were segregating in the population. Composite interval mapping identified 3 genomic regions that were associated with the reaction to ascochyta blight. One quantitative trait locus (QTL) on each of LG3, LG4, and LG6 accounted for 13%, 29%, and 12%, respectively, of the total estimated phenotypic variation for the reaction to ascochyta blight. Together, these loci controlled 56% of the total estimated phenotypic variation. The QTL on LG4 and LG6 were in common with the previously reported QTL for ascochyta blight resistance, whereas the QTL on LG3 was unique to the current population.

  2. Development and genetic mapping of SSR markers in foxtail millet [Setaria italica (L.) P. Beauv.].

    Science.gov (United States)

    Jia, Xiaoping; Zhang, Zhongbao; Liu, Yinghui; Zhang, Chengwei; Shi, Yunsu; Song, Yanchun; Wang, Tianyu; Li, Yu

    2009-02-01

    SSR markers are desirable markers in analysis of genetic diversity, quantitative trait loci mapping and gene locating. In this study, SSR markers were developed from two genomic libraries enriched for (GA)n and (CA)n of foxtail millet [Setaria italica (L.) P. Beauv.], a crop of historical importance in China. A total of 100 SSR markers among the 193 primer pairs detected polymorphism between two mapping parents of an F(2) population, i.e. "B100" of cultivated S. italica and "A10" of wild S. viridis. Excluding 14 markers with unclear amplifications, and five markers unlinked with any linkage group, a foxtail millet SSR linkage map was constructed by integrating 81 new developed SSR markers with 20 RFLP anchored markers. The 81 SSRs covered nine chromosomes of foxtail millet. The length of the map was 1,654 cM, with an average interval distance between markers of 16.4 cM. The 81 SSR markers were not evenly distributed throughout the nine chromosomes, with Ch.8 harbouring the least (3 markers) and Ch.9 harbouring the most (18 markers). To verify the usefulness of the SSR markers developed, 37 SSR markers were randomly chosen to analyze genetic diversity of 40 foxtail millet accessions. Totally 228 alleles were detected, with an average 6.16 alleles per locus. Polymorphism information content (PIC) value for each locus ranged from 0.413 to 0.847, with an average of 0.697. A positive correlation between PIC and number of alleles and between PIC and number of repeat unit were found [0.802 and 0.429, respectively (P < 0.01)]. UPGMA analysis revealed that the 40 foxtail millet cultivars could be grouped into five clusters in which the landraces' grouping was largely consistent with ecotypes while the breeding varieties from different provinces in China tended to be grouped together.

  3. Gene-based single nucleotide polymorphism markers for genetic and association mapping in common bean.

    Science.gov (United States)

    Galeano, Carlos H; Cortés, Andrés J; Fernández, Andrea C; Soler, Álvaro; Franco-Herrera, Natalia; Makunde, Godwill; Vanderleyden, Jos; Blair, Matthew W

    2012-06-26

    In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore, development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as genetic mapping and association studies. In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions. The intronic regions were evaluated for parental polymorphisms using the single strand conformational polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on an integrated molecular map in the DOR364 × G19833 recombinant inbred line (RIL) population. The new linkage map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across 11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed linear model (MLM). Some significant associations with yield components were identified, and were consistent with previous findings. In short, this study illustrates the power of intron-based markers for linkage and association mapping in

  4. A Dense Brown Trout (Salmo trutta) Linkage Map Reveals Recent Chromosomal Rearrangements in the Salmo Genus and the Impact of Selection on Linked Neutral Diversity

    Science.gov (United States)

    Leitwein, Maeva; Guinand, Bruno; Pouzadoux, Juliette; Desmarais, Erick; Berrebi, Patrick; Gagnaire, Pierre-Alexandre

    2017-01-01

    High-density linkage maps are valuable tools for conservation and eco-evolutionary issues. In salmonids, a complex rediploidization process consecutive to an ancient whole genome duplication event makes linkage maps of prime importance for investigating the evolutionary history of chromosome rearrangements. Here, we developed a high-density consensus linkage map for the brown trout (Salmo trutta), a socioeconomically important species heavily impacted by human activities. A total of 3977 ddRAD markers were mapped and ordered in 40 linkage groups using sex- and lineage-averaged recombination distances obtained from two family crosses. Performing map comparison between S. trutta and its sister species, S. salar, revealed extensive chromosomal rearrangements. Strikingly, all of the fusion and fission events that occurred after the S. salar/S. trutta speciation happened in the Atlantic salmon branch, whereas the brown trout remained closer to the ancestral chromosome structure. Using the strongly conserved synteny within chromosome arms, we aligned the brown trout linkage map to the Atlantic salmon genome sequence to estimate the local recombination rate in S. trutta at 3721 loci. A significant positive correlation between recombination rate and within-population nucleotide diversity (π) was found, indicating that selection constrains variation at linked neutral sites in brown trout. This new high-density linkage map provides a useful genomic resource for future aquaculture, conservation, and eco-evolutionary studies in brown trout. PMID:28235829

  5. A Dense Brown Trout (Salmo trutta Linkage Map Reveals Recent Chromosomal Rearrangements in the Salmo Genus and the Impact of Selection on Linked Neutral Diversity

    Directory of Open Access Journals (Sweden)

    Maeva Leitwein

    2017-04-01

    Full Text Available High-density linkage maps are valuable tools for conservation and eco-evolutionary issues. In salmonids, a complex rediploidization process consecutive to an ancient whole genome duplication event makes linkage maps of prime importance for investigating the evolutionary history of chromosome rearrangements. Here, we developed a high-density consensus linkage map for the brown trout (Salmo trutta, a socioeconomically important species heavily impacted by human activities. A total of 3977 ddRAD markers were mapped and ordered in 40 linkage groups using sex- and lineage-averaged recombination distances obtained from two family crosses. Performing map comparison between S. trutta and its sister species, S. salar, revealed extensive chromosomal rearrangements. Strikingly, all of the fusion and fission events that occurred after the S. salar/S. trutta speciation happened in the Atlantic salmon branch, whereas the brown trout remained closer to the ancestral chromosome structure. Using the strongly conserved synteny within chromosome arms, we aligned the brown trout linkage map to the Atlantic salmon genome sequence to estimate the local recombination rate in S. trutta at 3721 loci. A significant positive correlation between recombination rate and within-population nucleotide diversity (π was found, indicating that selection constrains variation at linked neutral sites in brown trout. This new high-density linkage map provides a useful genomic resource for future aquaculture, conservation, and eco-evolutionary studies in brown trout.

  6. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    Directory of Open Access Journals (Sweden)

    Wimalanathan Kokulapalan

    2011-01-01

    Full Text Available Abstract Background Previous loblolly pine (Pinus taeda L. genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats, also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective of this study was to integrate a large set of SSR markers from a variety of sources and published cDNA markers into a composite P. taeda genetic map constructed from two reference mapping pedigrees. A dense genetic map that incorporates SSR loci will benefit complete pine genome sequencing, pine population genetics studies, and pine breeding programs. Careful marker annotation using a variety of references further enhances the utility of the integrated SSR map. Results The updated P. taeda genetic map, with an estimated genome coverage of 1,515 cM(Kosambi across 12 linkage groups, incorporated 170 new SSR markers and 290 previously reported SSR, RFLP, and ESTP markers. The average marker interval was 3.1 cM. Of 233 mapped SSR loci, 84 were from cDNA-derived sequences (EST-SSRs and 149 were from non-transcribed genomic sequences (genomic-SSRs. Of all 311 mapped cDNA-derived markers, 77% were associated with NCBI Pta UniGene clusters, 67% with RefSeq proteins, and 62% with functional Gene Ontology (GO terms. Duplicate (i.e., redundant accessory and paralogous markers were tentatively identified by evaluating marker sequences by their UniGene cluster IDs, clone IDs, and relative map positions. The average gene diversity, He, among polymorphic SSR loci, including those that were not mapped, was 0.43 for 94 EST-SSRs and 0.72 for 83 genomic-SSRs. The genetic map can be viewed and queried at http://www.conifergdb.org/pinemap. Conclusions Many polymorphic and genetically mapped SSR markers are now available for use in P. taeda population genetics, studies of adaptive traits, and various germplasm management applications. Annotating mapped

  7. The dopamine transporter protein gene (SLC6A3): Primary linage mapping and linkage studies in Tourette syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Gelernter, J.; Kruger, S.D.; Pakstis, A.J. [Yale Univ., New Haven, CT (United States)]|[West Haven Veterans Affairs Medical Center, CT (United States)] [and others

    1995-12-10

    The dopamine transporter, the molecule responsible for presynaptic reuptake of dopamine and a major site of action of psychostimulant drugs, including cocaine, is encoded by locus SLC6A3 (alias DAT1). The protein`s actions and DAT`s specific localization to dopaminergic neurons make it a candidate gene for several psychiatric illnesses. SLC6A3 has been mapped to distal chromosome 5p, using physical methods. Genetic linkage methods were used to place SLC6A3 in the genetic linkage map. Four extended pedigrees (one of which overlaps with CEPH) were typed. Linkage with Tourette syndrome (TS) was also examined. SLC6A3 showed close linkage with several markers previously mapped to distal chromosome 5p, including D5S11 (Z{sub max} = 16.0, {theta}{sub M} = {theta}{sub F} = 0.03, results from four families) and D5S678 (Z{sub max} = 7.84, {theta}{sub M} = {theta}{sub F} = 0, results from two families). Observed crossovers established that SLC6A3 is a distal marker close to D5S10 and D5S678, but these three distal markers could not be ordered. Linkage between TS and SLC6A3 could be excluded independently in two branches of a large kindred segregating TS; the lod score in a third family was also negative, but not significant. Cumulative results show a lod score of -6.2 at {theta} = 0 and of -3.9 at {theta} = 0.05 (dominant model, narrow disease definition). SLC6A3 thus maps to distal chromosome 5p by linkage analysis, in agreement with previous physical mapping data. A mutation at SLC6A3 is not causative for TS in the two large families that generated significant negative lod scores (if the parameters of our analyses were correct) and is unlikely to be causative in the family that generated a negative lod score that did not reach significance. These results do not exclude a role for the dopamine transporter in influencing risk for TS in combination with other loci. 23 refs., 1 fig., 2 tabs.

  8. A microsatellite-based linkage map of salt tolerant tilapia (Oreochromis mossambicus x Oreochromis spp.) and mapping of sex-determining loci

    Science.gov (United States)

    2013-01-01

    Background Tilapia is the common name for a group of cichlid fishes and is one of the most important aquacultured freshwater food fish. Mozambique tilapia and its hybrids, including red tilapia are main representatives of salt tolerant tilapias. A linkage map is an essential framework for mapping QTL for important traits, positional cloning of genes and understanding of genome evolution. Results We constructed a consensus linkage map of Mozambique tilapia and red tilapia using 95 individuals from two F1 families and 401 microsatellites including 282 EST-derived markers. In addition, we conducted comparative mapping and searched for sex-determining loci on the whole genome. These 401 microsatellites were assigned to 22 linkage groups. The map spanned 1067.6 cM with an average inter-marker distance of 3.3 cM. Comparative mapping between tilapia and stickleback, medaka, pufferfish and zebrafish revealed clear homologous relationships between chromosomes from different species. We found evidence for the fusion of two sets of two independent chromosomes forming two new chromosome pairs, leading to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex determination locus in Mozambique tilapia was mapped on LG1, and verified in five families containing 549 individuals. The major XY sex determination locus in red tilapia was located on LG22, and verified in two families containing 275 individuals. Conclusions A first-generation linkage map of salt tolerant tilapia was constructed using 401 microsatellites. Two separate fusions of two sets of two independent chromosomes may lead to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex-determining loci from Mozambique tilapia and red tilapia were mapped on LG1 and LG22, respectively. This map provides a useful resource for QTL mapping for important traits and comparative genome studies. The DNA markers linked to the sex-determining loci could be used in

  9. A microsatellite-based linkage map of salt tolerant tilapia (Oreochromis mossambicus x Oreochromis spp. and mapping of sex-determining loci

    Directory of Open Access Journals (Sweden)

    Liu Feng

    2013-01-01

    Full Text Available Abstract Background Tilapia is the common name for a group of cichlid fishes and is one of the most important aquacultured freshwater food fish. Mozambique tilapia and its hybrids, including red tilapia are main representatives of salt tolerant tilapias. A linkage map is an essential framework for mapping QTL for important traits, positional cloning of genes and understanding of genome evolution. Results We constructed a consensus linkage map of Mozambique tilapia and red tilapia using 95 individuals from two F1 families and 401 microsatellites including 282 EST-derived markers. In addition, we conducted comparative mapping and searched for sex-determining loci on the whole genome. These 401 microsatellites were assigned to 22 linkage groups. The map spanned 1067.6 cM with an average inter-marker distance of 3.3 cM. Comparative mapping between tilapia and stickleback, medaka, pufferfish and zebrafish revealed clear homologous relationships between chromosomes from different species. We found evidence for the fusion of two sets of two independent chromosomes forming two new chromosome pairs, leading to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex determination locus in Mozambique tilapia was mapped on LG1, and verified in five families containing 549 individuals. The major XY sex determination locus in red tilapia was located on LG22, and verified in two families containing 275 individuals. Conclusions A first-generation linkage map of salt tolerant tilapia was constructed using 401 microsatellites. Two separate fusions of two sets of two independent chromosomes may lead to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex-determining loci from Mozambique tilapia and red tilapia were mapped on LG1 and LG22, respectively. This map provides a useful resource for QTL mapping for important traits and comparative genome studies. The DNA markers linked to the sex

  10. Genomic rearrangements and signatures of breeding in the allo-octoploid strawberry as revealed through an allele dose based SSR linkage map

    NARCIS (Netherlands)

    Dijk, van T.; Pagliarani, G.; Pikunova, A.; Noordijk, Y.; Yilmaz-Temel, H.; Meulenbroek, B.; Visser, R.G.F.; Weg, van de W.E.

    2014-01-01

    Background Breeders in the allo-octoploid strawberry currently make little use of molecular marker tools. As a first step of a QTL discovery project on fruit quality traits and resistance to soil-borne pathogens such as Phytophthora cactorum and Verticillium we built a genome-wide SSR linkage map

  11. Construction of linkage maps in full-sib families of diploid outbreeding species by minimising the number of recombinations in hidden inheritance vectors

    NARCIS (Netherlands)

    Jansen, J.

    2005-01-01

    This article investigates the construction of linkage maps by means of the reconstruction of hidden inheritance vectors. An inheritance vector provides a description of the origin of marker alleles in an individual in terms of a binary code indicating the grandparental origin of the alleles. The

  12. Markers and mapping revisited: finding your gene.

    Science.gov (United States)

    Jones, Neil; Ougham, Helen; Thomas, Howard; Pasakinskiene, Izolda

    2009-01-01

    This paper is an update of our earlier review (Jones et al., 1997, Markers and mapping: we are all geneticists now. New Phytologist 137: 165-177), which dealt with the genetics of mapping, in terms of recombination as the basis of the procedure, and covered some of the first generation of markers, including restriction fragment length polymorphisms (RFLPs), random amplified polymorphic DNA (RAPDs), simple sequence repeats (SSRs) and quantitative trait loci (QTLs). In the intervening decade there have been numerous developments in marker science with many new systems becoming available, which are herein described: cleavage amplification polymorphism (CAP), sequence-specific amplification polymorphism (S-SAP), inter-simple sequence repeat (ISSR), sequence tagged site (STS), sequence characterized amplification region (SCAR), selective amplification of microsatellite polymorphic loci (SAMPL), single nucleotide polymorphism (SNP), expressed sequence tag (EST), sequence-related amplified polymorphism (SRAP), target region amplification polymorphism (TRAP), microarrays, diversity arrays technology (DArT), single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE) and methylation-sensitive PCR. In addition there has been an explosion of knowledge and databases in the area of genomics and bioinformatics. The number of flowering plant ESTs is c. 19 million and counting, with all the opportunity that this provides for gene-hunting, while the survey of bioinformatics and computer resources points to a rapid growth point for future activities in unravelling and applying the burst of new information on plant genomes. A case study is presented on tracking down a specific gene (stay-green (SGR), a post-transcriptional senescence regulator) using the full suite of mapping tools and comparative mapping resources. We end with a brief speculation on how genome analysis may progress into the future of

  13. Confirmation and Fine Mapping of a Major QTL for Aflatoxin Resistance in Maize Using a Combination of Linkage and Association Mapping

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2016-09-01

    Full Text Available Maize grain contamination with aflatoxin from Aspergillus flavus (A. flavus is a serious health hazard to animals and humans. To map the quantitative trait loci (QTLs associated with resistance to A. flavus, we employed a powerful approach that differs from previous methods in one important way: it combines the advantages of the genome-wide association analysis (GWAS and traditional linkage mapping analysis. Linkage mapping was performed using 228 recombinant inbred lines (RILs, and a highly significant QTL that affected aflatoxin accumulation, qAA8, was mapped. This QTL spanned approximately 7 centi-Morgan (cM on chromosome 8. The confidence interval was too large for positional cloning of the causal gene. To refine this QTL, GWAS was performed with 558,629 single nucleotide polymorphisms (SNPs in an association population comprising 437 maize inbred lines. Twenty-five significantly associated SNPs were identified, most of which co-localised with qAA8 and explained 6.7% to 26.8% of the phenotypic variation observed. Based on the rapid linkage disequilibrium (LD and the high density of SNPs in the association population, qAA8 was further localised to a smaller genomic region of approximately 1500 bp. A high-resolution map of the qAA8 region will be useful towards a marker-assisted selection (MAS of A. flavus resistance and a characterisation of the causal gene.

  14. Mapping organizational linkages in the agricultural innovation system of Azerbaijan

    NARCIS (Netherlands)

    Temel, T.

    2004-01-01

    This study describes the evolving context and organisational linkages in the agricultural innovation system of Azerbaijan and suggests ways to promote effective organisational ties for the development, distribution and use of new or improved information and knowledge related to agriculture.

  15. High-resolution linkage map in the proximity of the host resistance locus Cmv1

    Energy Technology Data Exchange (ETDEWEB)

    Depatie, C.; Muise, E.; Gros, P. [McGill Univ., Quebec (Canada)] [and others

    1997-01-15

    The mouse chromosome 6 locus Cmv1 controls replication of mouse Cytomegalovirus (MCMV) in the spleen of the infected host. In our effort to clone Cmv1, we have constructed a high-resolution genetic linkage map in the proximity of the gene. For this, a total of 45 DNA markers corresponding to either cloned genes or microsatellites were mapped within a 7.9-cM interval overlapping the Cmv1 region. We have followed the cosegregation of these markers with respect to Cmv1 in a total of 2248 backcross mice from a preexisting interspecific backcross panel of 281 (Mus spretus X C57BL/6J)F1 X C57BL/6J and 2 novel panels of 989 (A/J X C57BL6)F1 X A/J and 978 (BALB/c X C57BL/6J)F1 X BALB/c segregating Cmv1. Combined pedigree analysis allowed us to determine the following gene order and intergene distances (in cM) on the distal region of mouse chromosome 6: D6Mit216-(1.9)-D6Mit336-(2.2)-D6Mit218-(1.0)-D6Mit52-(0.5)-D6Mit194-(0.2)-Nkrp1/D6Mit61/135/257/289/338-(0.4)-Cmv1/Ly49A/D6Mit370-(0.3)-Prp/Kap/D6Mit13/111/219-(0.3)-Tel/D6Mit374/290/220/196/195/110-(1.1)-D6Mit25. Therefore, the minimal genetic interval for Cmv1 of 0.7 cM is defined by 13 tightly linked markers including 2 markers, Ly49A and D6Mit370, that did not show recombination with Cmv1 in 1967 meioses analyzed; the proximal limit of the Cmv1 domain was defined by 8 crossovers between Nkrp1/D6Mit61/135/257/289/338 and Cmv1/Ly49A/D6Mit370, and the distal limit was defined by 5 crossovers between Cmv1/Ly49A/D6Mit370 and Prp/Kap/D6Mit13/111/219. This work demonstrates tight linkage between Cmv1 and genes from the natural killer complex (NKC), such as Nkrp1 and Ly49A suggesting that Cmv1 may represent an NK cell recognition structure encoded in the NKC region. 54 refs., 4 figs., 2 tabs.

  16. Development of a SNP resource and a genetic linkage map for Atlantic cod (Gadus morhua

    Directory of Open Access Journals (Sweden)

    Higgins Brent

    2010-03-01

    Full Text Available Abstract Background Atlantic cod (Gadus morhua is a species with increasing economic significance for the aquaculture industry. The genetic improvement of cod will play a critical role in achieving successful large-scale aquaculture. While many microsatellite markers have been developed in cod, the number of single nucleotide polymorphisms (SNPs is currently limited. Here we report the identification of SNPs from sequence data generated by a large-scale expressed sequence tag (EST program, focusing on fish originating from Canadian waters. Results A total of 97976 ESTs were assembled to generate 13448 contigs. We detected 4753 SNPs that met our selection criteria (depth of coverage ≥ 4 reads; minor allele frequency > 25%. 3072 SNPs were selected for testing. The percentage of successful assays was 75%, with 2291 SNPs amplifying correctly. Of these, 607 (26% SNPs were monomorphic for all populations tested. In total, 64 (4% of SNPs are likely to represent duplicated genes or highly similar members of gene families, rather than alternative alleles of the same gene, since they showed a high frequency of heterozygosity. The remaining polymorphic SNPs (1620 were categorised as validated SNPs. The mean minor allele frequency of the validated loci was 0.258 (± 0.141. Of the 1514 contigs from which validated SNPs were selected, 31% have a significant blast hit. For the SNPs predicted to occur in coding regions (141, we determined that 36% (51 are non-synonymous. Many loci (1033 SNPs; 64% are polymorphic in all populations tested. However a small number of SNPs (184 that are polymorphic in the Western Atlantic were monomorphic in fish tested from three European populations. A preliminary linkage map has been constructed with 23 major linkage groups and 924 mapped SNPs. Conclusions These SNPs represent powerful tools to accelerate the genetic improvement of cod aquaculture. They have been used to build a genetic linkage map that can be applied to

  17. Linkage and mapping analyses of the no glue egg gene Ng in the ...

    African Journals Online (AJOL)

    Jane

    2011-08-24

    Aug 24, 2011 ... The Ng gene was mapped at 28.0 of the silkworm classical genetic linkage group 12. (Xiang, 1995). In recent years, molecular biology has made consider- able progress ..... project (08080703017), China agriculture research.

  18. Male-biased recombination in odonates: insights from a linkage map ...

    Indian Academy of Sciences (India)

    2013-04-05

    Apr 5, 2013 ... Male-biased recombination in odonates: insights from a linkage map of the damselfly ... particular, odonates are emerging model systems for biotic effects of .... sex with highest variance in reproductive success (Trivers. 1988).

  19. X linked neonatal centronuclear/myotubular myopathy: evidence for linkage to Xq28 DNA marker loci.

    OpenAIRE

    Thomas, N S; Williams, H; Cole, G; Roberts, K; Clarke, A; Liechti-Gallati, S; Braga, S; Gerber, A; Meier, C; Moser, H

    1990-01-01

    We have studied the inheritance of several polymorphic Xq27/28 DNA marker loci in two three generation families with the X linked neonatal lethal form of centronuclear/myotubular myopathy (XL MTM). We found complete linkage of XLMTM to all four informative Xq28 markers analysed, with GCP/RCP (Z = 3.876, theta = 0.00), with DXS15 (Z = 3.737, theta = 0.00), with DXS52 (Z = 2.709, theta = 0.00), and with F8C (Z = 1.020, theta = 0.00). In the absence of any observable recombination, we are unable...

  20. High-resolution linkage map of mouse chromosome 13 in the vicinity of the host resistance locus Lgn1

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, M.C.; Ernst, E.; Diez, E. [McGill Univ., Quebec (Canada)] [and others

    1997-02-01

    Natural resistance of inbred mouse strains to infection with Legionella pneumophila is controlled by the expression of a single dominant gene on chromosome 13, designated Lgn1. The genetic difference at Lgn1 is phenotypically expressed as the presence or absence of intracellular replication of L. pneumophila in host macrophages. In our effort to identify the Lgn1 gene by positional cloning, we have generated a high-resolution linkage map of the Lgn1 chromosomal region. For this, we have carried out extensive segregation analysis in a total of 1270 (A/J x C57BL/6J) X A/J informative backcross mice segregating the resistance allele of C57BL/6J and the susceptibility allele of A/J. Additional segregation analyses were carried out in three preexisting panels of C57BL/6J X Mus spretus interspecific backcross mice. A total of 39 DNA markers were mapped within an interval of approximately 30 cM overlapping the Lgn1 region. Combined pedigree analyses for the 5.4-cM segment overlapping Lgn1 indicated the locus order and the interlocus distances (in cM): D13Mit128-(1.4)-D13Mit194-(0.1)-D13Mit147-(0.9)-Dl3Mit36-(0.9)-D13Mit146-(0.2)-Lgn1/D 13Mit37-(1.0)-D13Mit70. Additional genetic linkage studies of markers not informative in the A/J X C57BL/6J cross positioned D13Mit30, -72, -195, and -203, D13Gor4, D13Hun35, and Mtap5 in the immediate vicinity of the Lgn1 locus. The marker density and resolution of this genetic linkage map should allow the construction of a physical map of the region and the isolation of YAC clones overlapping the gene. 60 refs., 2 figs., 2 tabs.

  1. X-linked dominant cone-rod degeneration: linkage mapping of a new locus for retinitis pigmentosa (RP 15) to Xp22.13-p22.11.

    OpenAIRE

    McGuire, R E; Sullivan, L S; Blanton, S H; Church, M W; Heckenlively, J R; Daiger, S P

    1995-01-01

    Retinitis pigmentosa is the name given to a heterogeneous group of hereditary retinal degenerations characterized by progressive visual field loss, pigmentary changes of the retina, abnormal electroretinograms, and, frequently, night blindness. In this study, we investigated a family with dominant cone-rod degeneration, a variant form of retinitis pigmentosa. We used microsatellite markers to test for linkage to the disease locus and excluded all mapped autosomal loci. However, a marker from ...

  2. The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes

    Directory of Open Access Journals (Sweden)

    Ané Jean-Michel

    2002-01-01

    Full Text Available Abstract Background The legume Medicago truncatula has emerged as a model plant for the molecular and genetic dissection of various plant processes involved in rhizobial, mycorrhizal and pathogenic plant-microbe interactions. Aiming to develop essential tools for such genetic approaches, we have established the first genetic map of this species. Two parental homozygous lines were selected from the cultivar Jemalong and from the Algerian natural population (DZA315 on the basis of their molecular and phenotypic polymorphism. Results An F2 segregating population of 124 individuals between these two lines was obtained using an efficient manual crossing technique established for M. truncatula and was used to construct a genetic map. This map spans 1225 cM (average 470 kb/cM and comprises 289 markers including RAPD, AFLP, known genes and isoenzymes arranged in 8 linkage groups (2n = 16. Markers are uniformly distributed throughout the map and segregation distortion is limited to only 3 linkage groups. By mapping a number of common markers, the eight linkage groups are shown to be homologous to those of diploid alfalfa (M. sativa, implying a good level of macrosynteny between the two genomes. Using this M. truncatula map and the derived F3 populations, we were able to map the Mtsym6 symbiotic gene on linkage group 8 and the SPC gene, responsible for the direction of pod coiling, on linkage group 7. Conclusions These results demonstrate that Medicago truncatula is amenable to diploid genetic analysis and they open the way to map-based cloning of symbiotic or other agronomically-important genes using this model plant.

  3. Linkage mapping in the oilseed crop Jatropha curcas L. reveals a locus controlling the biosynthesis of phorbol esters which cause seed toxicity.

    Science.gov (United States)

    King, Andrew J; Montes, Luis R; Clarke, Jasper G; Affleck, Julie; Li, Yi; Witsenboer, Hanneke; van der Vossen, Edwin; van der Linde, Piet; Tripathi, Yogendra; Tavares, Evanilda; Shukla, Parul; Rajasekaran, Thirunavukkarasu; van Loo, Eibertus N; Graham, Ian A

    2013-10-01

    Current efforts to grow the tropical oilseed crop Jatropha curcas L. economically are hampered by the lack of cultivars and the presence of toxic phorbol esters (PE) within the seeds of most provenances. These PE restrict the conversion of seed cake into animal feed, although naturally occurring 'nontoxic' provenances exist which produce seed lacking PE. As an important step towards the development of genetically improved varieties of J. curcas, we constructed a linkage map from four F₂ mapping populations. The consensus linkage map contains 502 codominant markers, distributed over 11 linkage groups, with a mean marker density of 1.8 cM per unique locus. Analysis of the inheritance of PE biosynthesis indicated that this is a maternally controlled dominant monogenic trait. This maternal control is due to biosynthesis of the PE occurring only within maternal tissues. The trait segregated 3 : 1 within seeds collected from F₂ plants, and QTL analysis revealed that a locus on linkage group 8 was responsible for phorbol ester biosynthesis. By taking advantage of the draft genome assemblies of J. curcas and Ricinus communis (castor), a comparative mapping approach was used to develop additional markers to fine map this mutation within 2.3 cM. The linkage map provides a framework for the dissection of agronomic traits in J. curcas, and the development of improved varieties by marker-assisted breeding. The identification of the locus responsible for PE biosynthesis means that it is now possible to rapidly breed new nontoxic varieties. © 2013 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Construction of a dense genetic linkage map and mapping quantitative trait loci for economic traits of a doubled haploid population of Pyropia haitanensis (Bangiales, Rhodophyta).

    Science.gov (United States)

    Xu, Yan; Huang, Long; Ji, Dehua; Chen, Changsheng; Zheng, Hongkun; Xie, Chaotian

    2015-09-21

    Pyropia haitanensis is one of the most economically important mariculture crops in China. A high-density genetic map has not been published yet and quantitative trait locus (QTL) mapping has not been undertaken for P. haitanensis because of a lack of sufficient molecular markers. Specific length amplified fragment sequencing (SLAF-seq) was developed recently for large-scale, high resolution de novo marker discovery and genotyping. In this study, SLAF-seq was used to obtain mass length polymorphic markers to construct a high-density genetic map for P. haitanensis. In total, 120.33 Gb of data containing 75.21 M pair-end reads was obtained after sequencing. The average coverage for each SLAF marker was 75.50-fold in the male parent, 74.02-fold in the female parent, and 6.14-fold average in each double haploid individual. In total, 188,982 SLAFs were detected, of which 6731 were length polymorphic SLAFs that could be used to construct a genetic map. The final map included 4550 length polymorphic markers that were combined into 740 bins on five linkage groups, with a length of 874.33 cM and an average distance of 1.18 cM between adjacent bins. This map was used for QTL mapping to identify chromosomal regions associated with six economically important traits: frond length, width, thickness, fresh weight, growth rates of frond length and growth rates of fresh weight. Fifteen QTLs were identified for these traits. The value of phenotypic variance explained by an individual QTL ranged from 9.59 to 16.61 %, and the confidence interval of each QTL ranged from 0.97 cM to 16.51 cM. The first high-density genetic linkage map for P. haitanensis was constructed, and fifteen QTLs associated with six economically important traits were identified. The results of this study not only provide a platform for gene and QTL fine mapping, map-based gene isolation, and molecular breeding for P. haitanensis, but will also serve as a reference for positioning sequence scaffolds on a physical

  5. Mapping autism risk loci using genetic linkage and chromosomal rearrangements

    Science.gov (United States)

    Szatmari, Peter; Paterson, Andrew; Zwaigenbaum, Lonnie; Roberts, Wendy; Brian, Jessica; Liu, Xiao-Qing; Vincent, John; Skaug, Jennifer; Thompson, Ann; Senman, Lili; Feuk, Lars; Qian, Cheng; Bryson, Susan; Jones, Marshall; Marshall, Christian; Scherer, Stephen; Vieland, Veronica; Bartlett, Christopher; Mangin, La Vonne; Goedken, Rhinda; Segre, Alberto; Pericak-Vance, Margaret; Cuccaro, Michael; Gilbert, John; Wright, Harry; Abramson, Ruth; Betancur, Catalina; Bourgeron, Thomas; Gillberg, Christopher; Leboyer, Marion; Buxbaum, Joseph; Davis, Kenneth; Hollander, Eric; Silverman, Jeremy; Hallmayer, Joachim; Lotspeich, Linda; Sutcliffe, James; Haines, Jonathan; Folstein, Susan; Piven, Joseph; Wassink, Thomas; Sheffield, Val; Geschwind, Daniel; Bucan, Maja; Brown, Ted; Cantor, Rita; Constantino, John; Gilliam, Conrad; Herbert, Martha; Lajonchere, Clara; Ledbetter, David; Lese-Martin, Christa; Miller, Janet; Nelson, Stan; Samango-Sprouse, Carol; Spence, Sarah; State, Matthew; Tanzi, Rudolph; Coon, Hilary; Dawson, Geraldine; Devlin, Bernie; Estes, Annette; Flodman, Pamela; Klei, Lambertus; Mcmahon, William; Minshew, Nancy; Munson, Jeff; Korvatska, Elena; Rodier, Patricia; Schellenberg, Gerard; Smith, Moyra; Spence, Anne; Stodgell, Chris; Tepper, Ping Guo; Wijsman, Ellen; Yu, Chang-En; Rogé, Bernadette; Mantoulan, Carine; Wittemeyer, Kerstin; Poustka, Annemarie; Felder, Bärbel; Klauck, Sabine; Schuster, Claudia; Poustka, Fritz; Bölte, Sven; Feineis-Matthews, Sabine; Herbrecht, Evelyn; Schmötzer, Gabi; Tsiantis, John; Papanikolaou, Katerina; Maestrini, Elena; Bacchelli, Elena; Blasi, Francesca; Carone, Simona; Toma, Claudio; Van Engeland, Herman; De Jonge, Maretha; Kemner, Chantal; Koop, Frederieke; Langemeijer, Marjolein; Hijmans, Channa; Staal, Wouter; Baird, Gillian; Bolton, Patrick; Rutter, Michael; Weisblatt, Emma; Green, Jonathan; Aldred, Catherine; Wilkinson, Julie-Anne; Pickles, Andrew; Le Couteur, Ann; Berney, Tom; Mcconachie, Helen; Bailey, Anthony; Francis, Kostas; Honeyman, Gemma; Hutchinson, Aislinn; Parr, Jeremy; Wallace, Simon; Monaco, Anthony; Barnby, Gabrielle; Kobayashi, Kazuhiro; Lamb, Janine; Sousa, Ines; Sykes, Nuala; Cook, Edwin; Guter, Stephen; Leventhal, Bennett; Salt, Jeff; Lord, Catherine; Corsello, Christina; Hus, Vanessa; Weeks, Daniel; Volkmar, Fred; Tauber, Maïté; Fombonne, Eric; Shih, Andy; Meyer, Kacie

    2007-01-01

    Autism spectrum disorders (ASD) are common, heritable neurodevelopmental conditions. The genetic architecture of ASD is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASD by using Affymetrix 10K single nucleotide polymorphism (SNP) arrays and 1168 families with ≥ 2 affected individuals to perform the largest linkage scan to date, while also analyzing copy number variation (CNV) in these families. Linkage and CNV analyses implicate chromosome 11p12-p13 and neurexins, respectively, amongst other candidate loci. Neurexins team with previously-implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for ASD. PMID:17322880

  6. A SNP Based Linkage Map of the Arctic Charr (Salvelinus alpinus Genome Provides Insights into the Diploidization Process After Whole Genome Duplication

    Directory of Open Access Journals (Sweden)

    Cameron M. Nugent

    2017-02-01

    Full Text Available Diploidization, which follows whole genome duplication events, does not occur evenly across the genome. In salmonid fishes, certain pairs of homeologous chromosomes preserve tetraploid loci in higher frequencies toward the telomeres due to residual tetrasomic inheritance. Research suggests this occurs only in homeologous pairs where one chromosome arm has undergone a fusion event. We present a linkage map for Arctic charr (Salvelinus alpinus, a salmonid species with relatively fewer chromosome fusions. Genotype by sequencing identified 19,418 SNPs, and a linkage map consisting of 4508 markers was constructed from a subset of high quality SNPs and microsatellite markers that were used to anchor the new map to previous versions. Both male- and female-specific linkage maps contained the expected number of 39 linkage groups. The chromosome type associated with each linkage group was determined, and 10 stable metacentric chromosomes were identified, along with a chromosome polymorphism involving the sex chromosome AC04. Two instances of a weak form of pseudolinkage were detected in the telomeric regions of homeologous chromosome arms in both female and male linkage maps. Chromosome arm homologies within the Atlantic salmon (Salmo salar and rainbow trout (Oncorhynchus mykiss genomes were determined. Paralogous sequence variants (PSVs were identified, and their comparative BLASTn hit locations showed that duplicate markers exist in higher numbers on seven pairs of homeologous arms, previously identified as preserving tetrasomy in salmonid species. Homeologous arm pairs where neither arm has been part of a fusion event in Arctic charr had fewer PSVs, suggesting faster diploidization rates in these regions.

  7. insights from a linkage map of the damselfly Ischnura elegans

    Indian Academy of Sciences (India)

    tion of achiasmiatic meiosis. Biochem. Genet. 19, 1237–. 1245. Cooper G., Miller P. L. and Holland P. W. H. 1994 Molecular genetic analysis of sperm competition in the damselfly Ischnura elegans (Vander Linden). Proc. R. Soc. London, Ser. B 263,. 1343–1349. Huxley J. S. 1928 Sexual differences in linkage in Gammar-.

  8. Recombination patterns reveal information about centromere location on linkage maps

    DEFF Research Database (Denmark)

    Limborg, Morten T.; McKinney, Garrett J.; Seeb, Lisa W.

    2016-01-01

    . mykiss) characterized by low and unevenly distributed recombination – a general feature of male meiosis in many species. Further, a high frequency of double crossovers along chromosome arms in barley reduced resolution for locating centromeric regions on most linkage groups. Despite these limitations...

  9. Genetic linkage of mild pseudoachondroplasia (PSACH) to markers in the pericentromeric region of chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, M.D.; Rasmussen, M.; Garber, P.; Rimoin, D.L.; Cohn, D.H. (Steven Spielberg Pediatric Research Center, Los Angeles, CA (United States)); Weber, J.L. (Marshfield Medical Research Foundation, WI (United States)); Yuen, J.; Reinker, K. (Univ. of Hawaii, Honolulu, HI (United States))

    1993-12-01

    Pseudoachondroplasia (PSACH) is a dominantly inherited form of short-limb dwarfism characterized by dysplastic changes in the spine, epiphyses, and metaphyses and early onset osteoarthropathy. Chondrocytes from affected individuals accumulate an unusual appearing material in the rough endoplasmic reticulum, which has led to the hypothesis that a structural abnormality in a cartilage-specific protein produces the phenotype. The authors recently identified a large family with a mild form of pseudoachondroplasia. By genetic linkage to a dinucleotide repeat polymorphic marker (D19S199), they have localized the disease gene to chromosome 19 (maximum lod score of 7.09 at a recombination fraction of 0.03). Analysis of additional markers and recombinations between the linked markers and the phenotype suggests that the disease gene resides within a 6.3-cM interval in the immediate pericentromeric region of the chromosome. 39 refs., 2 figs., 1 tab.

  10. A meiotic linkage map of the silver fox, aligned and compared to the canine genome

    OpenAIRE

    Kukekova, Anna V.; Trut, Lyudmila N.; Oskina, Irina N.; Johnson, Jennifer L.; Temnykh, Svetlana V.; Kharlamova, Anastasiya V.; Shepeleva, Darya V.; Gulievich, Rimma G.; Shikhevich, Svetlana G.; Graphodatsky, Alexander S.; Aguirre, Gustavo D.; Acland, Gregory M.

    2007-01-01

    A meiotic linkage map is essential for mapping traits of interest and is often the first step toward understanding a cryptic genome. Specific strains of silver fox (a variant of the red fox, Vulpes vulpes), which segregate behavioral and morphological phenotypes, create a need for such a map. One such strain, selected for docility, exhibits friendly dog-like responses to humans, in contrast to another strain selected for aggression. Development of a fox map is facilitated by the known cytogen...

  11. Genome-wide SNP identification by high-throughput sequencing and selective mapping allows sequence assembly positioning using a framework genetic linkage map

    Directory of Open Access Journals (Sweden)

    Xu Xiangming

    2010-12-01

    Full Text Available Abstract Background Determining the position and order of contigs and scaffolds from a genome assembly within an organism's genome remains a technical challenge in a majority of sequencing projects. In order to exploit contemporary technologies for DNA sequencing, we developed a strategy for whole genome single nucleotide polymorphism sequencing allowing the positioning of sequence contigs onto a linkage map using the bin mapping method. Results The strategy was tested on a draft genome of the fungal pathogen Venturia inaequalis, the causal agent of apple scab, and further validated using sequence contigs derived from the diploid plant genome Fragaria vesca. Using our novel method we were able to anchor 70% and 92% of sequences assemblies for V. inaequalis and F. vesca, respectively, to genetic linkage maps. Conclusions We demonstrated the utility of this approach by accurately determining the bin map positions of the majority of the large sequence contigs from each genome sequence and validated our method by mapping single sequence repeat markers derived from sequence contigs on a full mapping population.

  12. Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.).

    Science.gov (United States)

    Ma, Yu; Coyne, Clarice J; Grusak, Michael A; Mazourek, Michael; Cheng, Peng; Main, Dorrie; McGee, Rebecca J

    2017-02-13

    Marker-assisted breeding is now routinely used in major crops to facilitate more efficient cultivar improvement. This has been significantly enabled by the use of next-generation sequencing technology to identify loci and markers associated with traits of interest. While rich in a range of nutritional components, such as protein, mineral nutrients, carbohydrates and several vitamins, pea (Pisum sativum L.), one of the oldest domesticated crops in the world, remains behind many other crops in the availability of genomic and genetic resources. To further improve mineral nutrient levels in pea seeds requires the development of genome-wide tools. The objectives of this research were to develop these tools by: identifying genome-wide single nucleotide polymorphisms (SNPs) using genotyping by sequencing (GBS); constructing a high-density linkage map and comparative maps with other legumes, and identifying quantitative trait loci (QTL) for levels of boron, calcium, iron, potassium, magnesium, manganese, molybdenum, phosphorous, sulfur, and zinc in the seed, as well as for seed weight. In this study, 1609 high quality SNPs were found to be polymorphic between 'Kiflica' and 'Aragorn', two parents of an F 6 -derived recombinant inbred line (RIL) population. Mapping 1683 markers including 75 previously published markers and 1608 SNPs developed from the present study generated a linkage map of size 1310.1 cM. Comparative mapping with other legumes demonstrated that the highest level of synteny was observed between pea and the genome of Medicago truncatula. QTL analysis of the RIL population across two locations revealed at least one QTL for each of the mineral nutrient traits. In total, 46 seed mineral concentration QTLs, 37 seed mineral content QTLs, and 6 seed weight QTLs were discovered. The QTLs explained from 2.4% to 43.3% of the phenotypic variance. The genome-wide SNPs and the genetic linkage map developed in this study permitted QTL identification for pea seed mineral

  13. Close linkage of the locus for X chromosome-linked severe combined immunodeficiency to polymorphic DNA markers in Xq11-q13

    International Nuclear Information System (INIS)

    de Saint Basile, G.; Arveiler, B.; Oberle, I.

    1987-01-01

    The gene for X chromosome-linked severe combined immunodeficiency (SCID), a disease characterized by a block in early T-cell differentiation, has been mapped to the region Xq11-q13 by linkage analysis with restriction fragment length polymorphisms. High logarithm of odds (lod) scores were obtained with the marker 19.2 (DXS3) and with the marker cpX73 (DXS159) that showed complete cosegregation with the disease locus in the informative families analyzed. Other significant linkages were obtained with several markers from Xq11 to q22. With the help of a recently developed genetic map of the region, it was possible to perform multipoint linkage analysis, and the most likely genetic order is DXS1-(SCID, DXS159)-DXYS1-DXYS12-DXS3, with a maximum multipoint logarithm of odds score of 11.0. The results demonstrate that the SCID locus (gene symbol IMD4) is not closely linked to the locus of Bruton's agammaglobulinemia (a defect in B-cell maturation). They also provide a way for a better estimation of risk for carrier and antenatal diagnosis

  14. Combined linkage and association mapping of flowering time in Sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Cadic, Elena; Coque, Marie; Vear, Felicity; Grezes-Besset, Bruno; Pauquet, Jerôme; Piquemal, Joël; Lippi, Yannick; Blanchard, Philippe; Romestant, Michel; Pouilly, Nicolas; Rengel, David; Gouzy, Jerôme; Langlade, Nicolas; Mangin, Brigitte; Vincourt, Patrick

    2013-05-01

    Association mapping and linkage mapping were used to identify quantitative trait loci (QTL) and/or causative mutations involved in the control of flowering time in cultivated sunflower Helianthus annuus. A panel of 384 inbred lines was phenotyped through testcrosses with two tester inbred lines across 15 location × year combinations. A recombinant inbred line (RIL) population comprising 273 lines was phenotyped both per se and through testcrosses with one or two testers in 16 location × year combinations. In the association mapping approach, kinship estimation using 5,923 single nucleotide polymorphisms was found to be the best covariate to correct for effects of panel structure. Linkage disequilibrium decay ranged from 0.08 to 0.26 cM for a threshold of 0.20, after correcting for structure effects, depending on the linkage group (LG) and the ancestry of inbred lines. A possible hitchhiking effect is hypothesized for LG10 and LG08. A total of 11 regions across 10 LGs were found to be associated with flowering time, and QTLs were mapped on 11 LGs in the RIL population. Whereas eight regions were demonstrated to be common between the two approaches, the linkage disequilibrium approach did not detect a documented QTL that was confirmed using the linkage mapping approach.

  15. Towards the Development of a Molecular Map in Switchgrass: I. Microsatellite Marker Development; ANNUAL

    International Nuclear Information System (INIS)

    Gunter, L.E.

    2001-01-01

    The long-term goal of the switchgrass breeding program is to improve regionally adapted varieties and increase biomass yield and feedstock quality. Although, to some extent, biomass yields are dependent on environmental constraints, increased yield can be achieved through the development of genotypes with improved seasonal adaptation, tolerance to unfavorable environmental conditions, and improved resistance to pest and disease. To date, improvement in switchgrass has relied on recurrent breeding strategies based on phenotypic or genotypic selection. Yield improvements have been modest by this method. If we expect to make significant increase in yields, we need tools that will allow us to map complex traits and uncover the genes that influence them. A genetic linkage map could be a powerful tool for accelerating switchgrass development through marker-assisted selection, breeding and recombination. This type of mapping requires the development of markers that can be associated with phenotypic traits in a population of known pedigree. The most commonly used markers for mapping include restriction fragment length polymorphisms (RFLP) and simple sequence repeats (SSR). At ORNL, we have been concentrating on the development of SSR markers, while our colleagues at the University of Georgia are developing RFLP markers in order to select parents to produce a mapping population and from there to create a framework map from(approx)100 F1 progeny

  16. Construction of an SNP-based high-density linkage map for flax (Linum usitatissimum L.) using specific length amplified fragment sequencing (SLAF-seq) technology.

    Science.gov (United States)

    Yi, Liuxi; Gao, Fengyun; Siqin, Bateer; Zhou, Yu; Li, Qiang; Zhao, Xiaoqing; Jia, Xiaoyun; Zhang, Hui

    2017-01-01

    Flax is an important crop for oil and fiber, however, no high-density genetic maps have been reported for this species. Specific length amplified fragment sequencing (SLAF-seq) is a high-resolution strategy for large scale de novo discovery and genotyping of single nucleotide polymorphisms. In this study, SLAF-seq was employed to develop SNP markers in an F2 population to construct a high-density genetic map for flax. In total, 196.29 million paired-end reads were obtained. The average sequencing depth was 25.08 in male parent, 32.17 in the female parent, and 9.64 in each F2 progeny. In total, 389,288 polymorphic SLAFs were detected, from which 260,380 polymorphic SNPs were developed. After filtering, 4,638 SNPs were found suitable for genetic map construction. The final genetic map included 4,145 SNP markers on 15 linkage groups and was 2,632.94 cM in length, with an average distance of 0.64 cM between adjacent markers. To our knowledge, this map is the densest SNP-based genetic map for flax. The SNP markers and genetic map reported in here will serve as a foundation for the fine mapping of quantitative trait loci (QTLs), map-based gene cloning and marker assisted selection (MAS) for flax.

  17. X linked neonatal centronuclear/myotubular myopathy: evidence for linkage to Xq28 DNA marker loci.

    Science.gov (United States)

    Thomas, N S; Williams, H; Cole, G; Roberts, K; Clarke, A; Liechti-Gallati, S; Braga, S; Gerber, A; Meier, C; Moser, H

    1990-05-01

    We have studied the inheritance of several polymorphic Xq27/28 DNA marker loci in two three generation families with the X linked neonatal lethal form of centronuclear/myotubular myopathy (XL MTM). We found complete linkage of XLMTM to all four informative Xq28 markers analysed, with GCP/RCP (Z = 3.876, theta = 0.00), with DXS15 (Z = 3.737, theta = 0.00), with DXS52 (Z = 2.709, theta = 0.00), and with F8C (Z = 1.020, theta = 0.00). In the absence of any observable recombination, we are unable to sublocalise the XLMTM locus further within the Xq28 region. This evidence for an Xq28 localisation may allow us to carry out useful genetic counselling within such families.

  18. Discrimination of candidate subgenome-specific loci by linkage map construction with an S1 population of octoploid strawberry (Fragaria × ananassa).

    Science.gov (United States)

    Nagano, Soichiro; Shirasawa, Kenta; Hirakawa, Hideki; Maeda, Fumi; Ishikawa, Masami; Isobe, Sachiko N

    2017-05-12

    The strawberry, Fragaria × ananassa, is an allo-octoploid (2n = 8x = 56) and outcrossing species. Although it is the most widely consumed berry crop in the world, its complex genome structure has hindered its genetic and genomic analysis, and thus discrimination of subgenome-specific loci among the homoeologous chromosomes is needed. In the present study, we identified candidate subgenome-specific single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) loci, and constructed a linkage map using an S 1 mapping population of the cultivar 'Reikou' with an IStraw90 Axiom® SNP array and previously published SSR markers. The 'Reikou' linkage map consisted of 11,574 loci (11,002 SNPs and 572 SSR loci) spanning 2816.5 cM of 31 linkage groups. The 11,574 loci were located on 4738 unique positions (bin) on the linkage map. Of the mapped loci, 8999 (8588 SNPs and 411 SSR loci) showed a 1:2:1 segregation ratio of AA:AB:BB allele, which suggested the possibility of deriving loci from candidate subgenome-specific sequences. In addition, 2575 loci (2414 SNPs and 161 SSR loci) showed a 3:1 segregation of AB:BB allele, indicating they were derived from homoeologous genomic sequences. Comparative analysis of the homoeologous linkage groups revealed differences in genome structure among the subgenomes. Our results suggest that candidate subgenome-specific loci are randomly located across the genomes, and that there are small- to large-scale structural variations among the subgenomes. The mapped SNPs and SSR loci on the linkage map are expected to be seed points for the construction of pseudomolecules in the octoploid strawberry.

  19. Construction of 2 intraspecific linkage maps and identification of resistance QTLs for Phytophthora capsici root-rot and foliar-blight diseases of pepper (Capsicum annuum L.).

    Science.gov (United States)

    Ogundiwin, Ebenezer A; Berke, Terry F; Massoudi, Mark; Black, Lowell L; Huestis, Gordon; Choi, Doil; Lee, Sanghyeob; Prince, James P

    2005-08-01

    Two linkage maps of pepper were constructed and used to identify quantitative trait loci (QTLs) conferring resistance to Phytophthora capsici. Inoculations were done with 7 isolates: 3 from Taiwan, 3 from California, and 1 from New Mexico. The first map was constructed from a set of recombinant inbred lines (RILs) of the PSP-11 (susceptible) x PI201234 (resistant) cross; and the second map was from a set of F(2) lines of the Joe E. Parker' (susceptible) x 'Criollo de Morelos 334' (resistant) cross. The RIL map covered 1466.1 cM of the pepper genome, and it consisted of 144 markers -- 91 amplified fragment length polymorphisms (AFLPs), 34 random amplified polymorphic DNA (RAPDs), 15 simple sequence repeats (SSRs), 1 sequence characterized amplified region (SCAR), and 3 morphological markers -- distributed over 17 linkage groups. The morphological markers mapped on this population were erect fruit habit (up), elongated fruit shape (fs(e)), and fasciculate fruit clusters (fa). The F(2) map consisted of 113 markers (51 AFLPs, 45 RAPDs, 14 SSRs, and 3 SCARs) distributed in 16 linkage groups, covering a total of 1089.2 cM of the pepper genome. Resistance to both root rot and foliar blight were evaluated in the RIL population using the 3 Taiwan isolates; the remaining isolates were used for the root-rot test only. Sixteen chromosomal regions of the RIL map contained single QTLs or clusters of resistance QTLs that had an effect on root rot and (or) foliar blight, revealing a complex set of genetics involved in resistance to P. capsici. Five QTLs were detected in the F(2) map that had an effect on resistance to root rot.

  20. Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars

    NARCIS (Netherlands)

    Kraakman, A.T.W.; Martinez, F.; Mussiraliev, B.; Eeuwijk, van F.A.; Niks, R.E.

    2006-01-01

    A set of 148 modern spring barley cultivars was explored for the extent of linkage disequilibrium (LD) between genes governing traits and nearby marker alleles. Associations of agronomically relevant traits (days to heading, plant height), resistance traits (leaf rust, barley yellow dwarf virus

  1. High-Throughput Sequencing and Linkage Mapping of a Clownfish Genome Provide Insights on the Distribution of Molecular Players Involved in Sex Change.

    Science.gov (United States)

    Casas, Laura; Saenz-Agudelo, Pablo; Irigoien, Xabier

    2018-03-06

    Clownfishes are an excellent model system for investigating the genetic mechanism governing hermaphroditism and socially-controlled sex change in their natural environment because they are broadly distributed and strongly site-attached. Genomic tools, such as genetic linkage maps, allow fine-mapping of loci involved in molecular pathways underlying these reproductive processes. In this study, a high-density genetic map of Amphiprion bicinctus was constructed with 3146 RAD markers in a full-sib family organized in 24 robust linkage groups which correspond to the haploid chromosome number of the species. The length of the map was 4294.71 cM, with an average marker interval of 1.38 cM. The clownfish linkage map showed various levels of conserved synteny and collinearity with the genomes of Asian and European seabass, Nile tilapia and stickleback. The map provided a platform to investigate the genomic position of genes with differential expression during sex change in A. bicinctus. This study aims to bridge the gap of genome-scale information for this iconic group of species to facilitate the study of the main gene regulatory networks governing social sex change and gonadal restructuring in protandrous hermaphrodites.

  2. High-Throughput Sequencing and Linkage Mapping of a Clownfish Genome Provide Insights on the Distribution of Molecular Players Involved in Sex Change

    KAUST Repository

    Casas, Laura

    2018-02-28

    Clownfishes are an excellent model system for investigating the genetic mechanism governing hermaphroditism and socially-controlled sex change in their natural environment because they are broadly distributed and strongly site-attached. Genomic tools, such as genetic linkage maps, allow fine-mapping of loci involved in molecular pathways underlying these reproductive processes. In this study, a high-density genetic map of Amphiprion bicinctus was constructed with 3146 RAD markers in a full-sib family organized in 24 robust linkage groups which correspond to the haploid chromosome number of the species. The length of the map was 4294.71 cM, with an average marker interval of 1.38 cM. The clownfish linkage map showed various levels of conserved synteny and collinearity with the genomes of Asian and European seabass, Nile tilapia and stickleback. The map provided a platform to investigate the genomic position of genes with differential expression during sex change in A. bicinctus. This study aims to bridge the gap of genome-scale information for this iconic group of species to facilitate the study of the main gene regulatory networks governing social sex change and gonadal restructuring in protandrous hermaphrodites.

  3. The development of a high density linkage map for black tiger shrimp (Penaeus monodon based on cSNPs.

    Directory of Open Access Journals (Sweden)

    Matthew Baranski

    Full Text Available Transcriptome sequencing using Illumina RNA-seq was performed on populations of black tiger shrimp from India. Samples were collected from (i four landing centres around the east coastline (EC of India, (ii survivors of a severe WSSV infection during pond culture (SUR and (iii the Andaman Islands (AI in the Bay of Bengal. Equal quantities of purified total RNA from homogenates of hepatopancreas, muscle, nervous tissue, intestinal tract, heart, gonad, gills, pleopod and lymphoid organs were combined to create AI, EC and SUR pools for RNA sequencing. De novo transcriptome assembly resulted in 136,223 contigs (minimum size 100 base pairs, bp with a total length 61 Mb, an average length of 446 bp and an average coverage of 163× across all pools. Approximately 16% of contigs were annotated with BLAST hit information and gene ontology annotations. A total of 473,620 putative SNPs/indels were identified. An Illumina iSelect genotyping array containing 6,000 SNPs was developed and used to genotype 1024 offspring belonging to seven full-sibling families. A total of 3959 SNPs were mapped to 44 linkage groups. The linkage groups consisted of between 16-129 and 13-130 markers, of length between 139-10.8 and 109.1-10.5 cM and with intervals averaging between 1.2 and 0.9 cM for the female and male maps respectively. The female map was 28% longer than the male map (4060 and 2917 cM respectively with a 1.6 higher recombination rate observed for female compared to male meioses. This approach has substantially increased expressed sequence and DNA marker resources for tiger shrimp and is a useful resource for QTL mapping and association studies for evolutionarily and commercially important traits.

  4. Genic Microsatellite Markers in Brassica rapa: Development, Characterization, Mapping, and Their Utility in Other Cultivated and Wild Brassica Relatives

    Science.gov (United States)

    Ramchiary, Nirala; Nguyen, Van Dan; Li, Xiaonan; Hong, Chang Pyo; Dhandapani, Vignesh; Choi, Su Ryun; Yu, Ge; Piao, Zhong Yun; Lim, Yong Pyo

    2011-01-01

    Genic microsatellite markers, also known as functional markers, are preferred over anonymous markers as they reveal the variation in transcribed genes among individuals. In this study, we developed a total of 707 expressed sequence tag-derived simple sequence repeat markers (EST-SSRs) and used for development of a high-density integrated map using four individual mapping populations of B. rapa. This map contains a total of 1426 markers, consisting of 306 EST-SSRs, 153 intron polymorphic markers, 395 bacterial artificial chromosome-derived SSRs (BAC-SSRs), and 572 public SSRs and other markers covering a total distance of 1245.9 cM of the B. rapa genome. Analysis of allelic diversity in 24 B. rapa germplasm using 234 mapped EST-SSR markers showed amplification of 2 alleles by majority of EST-SSRs, although amplification of alleles ranging from 2 to 8 was found. Transferability analysis of 167 EST-SSRs in 35 species belonging to cultivated and wild brassica relatives showed 42.51% (Sysimprium leteum) to 100% (B. carinata, B. juncea, and B. napus) amplification. Our newly developed EST-SSRs and high-density linkage map based on highly transferable genic markers would facilitate the molecular mapping of quantitative trait loci and the positional cloning of specific genes, in addition to marker-assisted selection and comparative genomic studies of B. rapa with other related species. PMID:21768136

  5. Construction of the High-Density Genetic Linkage Map and Chromosome Map of Large Yellow Croaker (Larimichthys crocea

    Directory of Open Access Journals (Sweden)

    Jingqun Ao

    2015-11-01

    Full Text Available High-density genetic maps are essential for genome assembly, comparative genomic analysis and fine mapping of complex traits. In this study, 31,191 single nucleotide polymorphisms (SNPs evenly distributed across the large yellow croaker (Larimichthys crocea genome were identified using restriction-site associated DNA sequencing (RAD-seq. Among them, 10,150 high-confidence SNPs were assigned to 24 consensus linkage groups (LGs. The total length of the genetic linkage map was 5451.3 cM with an average distance of 0.54 cM between loci. This represents the densest genetic map currently reported for large yellow croaker. Using 2889 SNPs to target specific scaffolds, we assigned 533 scaffolds, comprising 421.44 Mb (62.04% of the large yellow croaker assembled sequence, to the 24 linkage groups. The mapped assembly scaffolds in large yellow croaker were used for genome synteny analyses against the stickleback (Gasterosteus aculeatus and medaka (Oryzias latipes. Greater synteny was observed between large yellow croaker and stickleback. This supports the hypothesis that large yellow croaker is more closely related to stickleback than to medaka. Moreover, 1274 immunity-related genes and 195 hypoxia-related genes were mapped to the 24 chromosomes of large yellow croaker. The integration of the high-resolution genetic map and the assembled sequence provides a valuable resource for fine mapping and positional cloning of quantitative trait loci associated with economically important traits in large yellow croaker.

  6. The first genetic linkage map of Eucommia ulmoides

    Indian Academy of Sciences (India)

    Eucommia ulmoides Oliv., also called Du-Zhong, is the .... The polymorphic markers were analysed by a chi-square test ... ratio of a dominant locus in an F1 population (P < 0.05). ..... loss, viability per lethal genes, genetic isolation mech-.

  7. A preliminary linkage map using spotted melanic laboratory strains ...

    Indian Academy of Sciences (India)

    0.0 cMK (LG-XV) to 138 cMK (LG-VII). Three of the 22 ... performed) distributed on LG-I, II, III, VII and IX (figure 3). Estimation of ... Several important factors, particularly expedited RAPD markers production such as the use of polyacryalmide.

  8. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information

    Science.gov (United States)

    2012-01-01

    Background Cotton is the world’s most important natural textile fiber and a significant oilseed crop. Decoding cotton genomes will provide the ultimate reference and resource for research and utilization of the species. Integration of high-density genetic maps with genomic sequence information will largely accelerate the process of whole-genome assembly in cotton. Results In this paper, we update a high-density interspecific genetic linkage map of allotetraploid cultivated cotton. An additional 1,167 marker loci have been added to our previously published map of 2,247 loci. Three new marker types, InDel (insertion-deletion) and SNP (single nucleotide polymorphism) developed from gene information, and REMAP (retrotransposon-microsatellite amplified polymorphism), were used to increase map density. The updated map consists of 3,414 loci in 26 linkage groups covering 3,667.62 cM with an average inter-locus distance of 1.08 cM. Furthermore, genome-wide sequence analysis was finished using 3,324 informative sequence-based markers and publicly-available Gossypium DNA sequence information. A total of 413,113 EST and 195 BAC sequences were physically anchored and clustered by 3,324 sequence-based markers. Of these, 14,243 ESTs and 188 BACs from different species of Gossypium were clustered and specifically anchored to the high-density genetic map. A total of 2,748 candidate unigenes from 2,111 ESTs clusters and 63 BACs were mined for functional annotation and classification. The 337 ESTs/genes related to fiber quality traits were integrated with 132 previously reported cotton fiber quality quantitative trait loci, which demonstrated the important roles in fiber quality of these genes. Higher-level sequence conservation between different cotton species and between the A- and D-subgenomes in tetraploid cotton was found, indicating a common evolutionary origin for orthologous and paralogous loci in Gossypium. Conclusion This study will serve as a valuable genomic resource

  9. Linkage mapping of candidate genes for induce resistance and growth promotion by trichoderma koningiopsis (th003) in tomato solanum lycopersicum

    International Nuclear Information System (INIS)

    Simbaqueba, Jaime; Cotes, Alba Marina; Barrero, Luz Stella

    2011-01-01

    Induced systemic resistance (ISR) is a mechanism by which plants enhance defenses against any stress condition. ISR and growth promotion are enhanced when tomato (Solanum lycopersicum) is inoculated with several strains of Trichoderma ssp. this study aims to genetically map tomato candidate genes involved in ISR and growth promotion induced by the Colombian native isolate Trichoderma koningiopsis th003. Forty-nine candidate genes previously identified on tomato plants treated with th003 and T. hamatum T382 strains were evaluated for polymorphisms and 16 of them were integrated on the highly saturated genetic linkage map named TOMATO EXPEN 2000. The location of six unigenes was similar to the location of resistance gene analogs (RGAS), defense related ests and resistance QTLs previously reported, suggesting new possible candidates for these quantitative trait loci (QTL) regions. The candidate gene-markers may be used for future ISR or growth promotion assisted selection in tomato.

  10. Linkage Mapping of Stem Saccharification Digestibility in Rice.

    Directory of Open Access Journals (Sweden)

    Bohan Liu

    Full Text Available Rice is the staple food of almost half of the world population, and in excess 90% of it is grown and consumed in Asia, but the disposal of rice straw poses a problem for farmers, who often burn it in the fields, causing health and environmental problems. However, with increased focus on the development of sustainable biofuel production, rice straw has been recognized as a potential feedstock for non-food derived biofuel production. Currently, the commercial realization of rice as a biofuel feedstock is constrained by the high cost of industrial saccharification processes needed to release sugar for fermentation. This study is focused on the alteration of lignin content, and cell wall chemotypes and structures, and their effects on the saccharification potential of rice lignocellulosic biomass. A recombinant inbred lines (RILs population derived from a cross between the lowland rice variety IR1552 and the upland rice variety Azucena with 271 molecular markers for quantitative trait SNP (QTS analyses was used. After association analysis of 271 markers for saccharification potential, 1 locus and 4 pairs of epistatic loci were found to contribute to the enzymatic digestibility phenotype, and an inverse relationship between reducing sugar and lignin content in these recombinant inbred lines was identified. As a result of QTS analyses, several cell-wall associated candidate genes are proposed that may be useful for marker-assisted breeding and may aid breeders to produce potential high saccharification rice varieties.

  11. Combining powers of linkage and association mapping for precise dissection of QTL controlling resistance to gray leaf spot disease in maize (Zea mays L.).

    Science.gov (United States)

    Mammadov, Jafar; Sun, Xiaochun; Gao, Yanxin; Ochsenfeld, Cherie; Bakker, Erica; Ren, Ruihua; Flora, Jonathan; Wang, Xiujuan; Kumpatla, Siva; Meyer, David; Thompson, Steve

    2015-11-10

    Gray Leaf Spot (GLS causal agents Cercospora zeae-maydis and Cercospora zeina) is one of the most important foliar diseases of maize in all areas where the crop is being cultivated. Although in the USA the situation with GLS severity is not as critical as in sub-Saharan Africa or Brazil, the evidence of climate change, increasing corn monoculture as well as the narrow genetic base of North American resistant germplasm can turn the disease into a serious threat to US corn production. The development of GLS resistant cultivars is one way to control the disease. In this study we combined the high QTL detection power of genetic linkage mapping with the high resolution power of genome-wide association study (GWAS) to precisely dissect QTL controlling GLS resistance and identify closely linked molecular markers for robust marker-assisted selection and trait introgression. Using genetic linkage analysis with a small bi-parental mapping population, we identified four GLS resistance QTL on chromosomes 1, 6, 7, and 8, which were validated by GWAS. GWAS enabled us to dramatically increase the resolution within the confidence intervals of the above-mentioned QTL. Particularly, GWAS revealed that QTLGLSchr8, detected by genetic linkage mapping as a locus with major effect, was likely represented by two QTL with smaller effects. Conducted in parallel, GWAS of days-to-silking demonstrated the co-localization of flowering time QTL with GLS resistance QTL on chromosome 7 indicating that either QTLGLSchr7 is a flowering time QTL or it is a GLS resistance QTL that co-segregates with the latter. As a result, this genetic linkage - GWAS hybrid mapping system enabled us to identify one novel GLS resistance QTL (QTLGLSchr8a) and confirm with more refined positions four more previously mapped QTL (QTLGLSchr1, QTLGLSchr6, QTLGLSchr7, and QTLGLSchr8b). Through the novel Single Donor vs. Elite Panel method we were able to identify within QTL confidence intervals SNP markers that would be

  12. Genetic linkage map of cowpea (Vigna unguiculata (L.) Walp) using ...

    African Journals Online (AJOL)

    DR.ADETUNMBI

    2016-05-18

    May 18, 2016 ... Constructed map provides basic information that could assist in genetic improvement of .... mix contains two universal (FRET) fluorescent resonance energy transfer cassettes. (FAM and HEX), ROX™ passive reference dye, Taq polymerase, free nucleotides and MgCl2 in an optimized buffer solution, while ...

  13. SSR-enriched genetic linkage maps of bermudagrass (Cynodon dactylon × transvaalensis), and their comparison with allied plant genomes.

    Science.gov (United States)

    Khanal, Sameer; Kim, Changsoo; Auckland, Susan A; Rainville, Lisa K; Adhikari, Jeevan; Schwartz, Brian M; Paterson, Andrew H

    2017-04-01

    We report SSR-enriched genetic maps of bermudagrass that: (1) reveal partial residual polysomic inheritance in the tetraploid species, and (2) provide insights into the evolution of chloridoid genomes. This study describes genetic linkage maps of two bermudagrass species, Cynodon dactylon (T89) and Cynodon transvaalensis (T574), that integrate heterologous microsatellite markers from sugarcane into frameworks built with single-dose restriction fragments (SDRFs). A maximum likelihood approach was used to construct two separate parental maps from a population of 110 F 1 progeny of a cross between the two parents. The T89 map is based on 291 loci on 34 cosegregating groups (CGs), with an average marker spacing of 12.5 cM. The T574 map is based on 125 loci on 14 CGs, with an average marker spacing of 10.7 cM. Six T89 and one T574 CG(s) deviated from disomic inheritance. Furthermore, marker segregation data and linkage phase analysis revealed partial residual polysomic inheritance in T89, suggesting that common bermudagrass is undergoing diploidization following whole genome duplication (WGD). Twenty-six T89 CGs were coalesced into 9 homo(eo)logous linkage groups (LGs), while 12 T574 CGs were assembled into 9 LGs, both putatively representing the basic chromosome complement (x = 9) of the species. Eight T89 and two T574 CGs remain unassigned. The marker composition of bermudagrass ancestral chromosomes was inferred by aligning T89 and T574 homologs, and used in comparisons to sorghum and rice genome sequences based on 108 and 91 significant blast hits, respectively. Two nested chromosome fusions (NCFs) shared by two other chloridoids (i.e., zoysiagrass and finger millet) and at least three independent translocation events were evident during chromosome number reduction from 14 in the polyploid common ancestor of Poaceae to 9 in Cynodon.

  14. Linkage and mapping analyses of the no glue egg gene Ng in the ...

    African Journals Online (AJOL)

    In the silkworm, Bombyx mori, no glue egg is mainly controlled by Ng (No glue) gene, which is located on the 12th chromosome. Owning to a lack of crossing over in females, reciprocal backcrossed F1 (BC1) progenies were used for linkage analysis and mapping of the Ng gene based on the simple sequence repeats ...

  15. Partial clonning cytogenetic and linkage mapping of the porcine resistin (RSTN) gene

    Czech Academy of Sciences Publication Activity Database

    Čepica, Stanislav; Rohrer, G. A.; Masopust, m.; Kubíčková, S.; Musilová, P.; Rubeš, J.

    2002-01-01

    Roč. 33, - (2002), s. 381-383 ISSN 0268-9146 R&D Projects: GA ČR GA523/99/0842; GA AV ČR KSK5052113 Keywords : cytogenetic and linkage mapping Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.443, year: 2002

  16. An integrated linkage map reveals candidate genes underlying adaptive variation in Chinook salmon (Oncorhynchus tshawytscha)

    DEFF Research Database (Denmark)

    Mckinney, G. J.; Seeb, L. W.; Larson, W. A.

    2016-01-01

    Salmonids are an important cultural and ecological resource exhibiting near worldwide distribution between their native and introduced range. Previous research has generated linkage maps and genomic resources for several species as well as genome assemblies for two species. We first leveraged...

  17. Some AFLP amplicons are highly conserved DNA sequences mapping to the same linkage groups in two F2 populations of carrot

    Directory of Open Access Journals (Sweden)

    Santos Carlos A.F.

    2002-01-01

    Full Text Available Amplified fragment length polymorphism (AFLP is a fast and reliable tool to generate a large number of DNA markers. In two unrelated F2 populations of carrot (Daucus carota L., Brasilia x HCM and B493 x QAL (wild carrot, it was hypothesized that DNA 1 digested with the same restriction endonuclease enzymes and amplified with the same primer combination and 2 sharing the same position in polyacrylamide gels should be conserved sequences. To test this hypothesis AFLP fragments from polyacrylamide gels were eluted, reamplified, separated in agarose gels, purified, cloned and sequenced. Among thirty-one paired fragments from each F2 population, twenty-six had identity greater than 91% and five presented identity of 24% to 44%. Among the twenty-six conserved AFLPs only one mapped to different linkage groups in the two populations while four of the five less-conserved bands mapped to different linkage groups. Of eight SCAR (sequence characterized amplified regions primers tested, one conserved AFLP resulted in co-dominant markers in both populations. Screening among 14 carrot inbreds or cultivars with three AFLP-SCAR primers revealed clear and polymorphic PCR products, with similar molecular sizes on agarose gels. The development of co-dominant markers based on conserved AFLP fragments will be useful to detect seed mixtures among hybrids, to improve and to merge linkage maps and to study diversity and phylogenetic relationships.

  18. High Density Linkage Map Construction and Mapping of Yield Trait QTLs in Maize (Zea mays) Using the Genotyping-by-Sequencing (GBS) Technology

    Science.gov (United States)

    Su, Chengfu; Wang, Wei; Gong, Shunliang; Zuo, Jinghui; Li, Shujiang; Xu, Shizhong

    2017-01-01

    Increasing grain yield is the ultimate goal for maize breeding. High resolution quantitative trait loci (QTL) mapping can help us understand the molecular basis of phenotypic variation of yield and thus facilitate marker assisted breeding. The aim of this study is to use genotyping-by-sequencing (GBS) for large-scale SNP discovery and simultaneous genotyping of all F2 individuals from a cross between two varieties of maize that are in clear contrast in yield and related traits. A set of 199 F2 progeny derived from the cross of varieties SG-5 and SG-7 were generated and genotyped by GBS. A total of 1,046,524,604 reads with an average of 5,258,918 reads per F2 individual were generated. This number of reads represents an approximately 0.36-fold coverage of the maize reference genome Zea_mays.AGPv3.29 for each F2 individual. A total of 68,882 raw SNPs were discovered in the F2 population, which, after stringent filtering, led to a total of 29,927 high quality SNPs. Comparative analysis using these physically mapped marker loci revealed a higher degree of synteny with the reference genome. The SNP genotype data were utilized to construct an intra-specific genetic linkage map of maize consisting of 3,305 bins on 10 linkage groups spanning 2,236.66 cM at an average distance of 0.68 cM between consecutive markers. From this map, we identified 28 QTLs associated with yield traits (100-kernel weight, ear length, ear diameter, cob diameter, kernel row number, corn grains per row, ear weight, and grain weight per plant) using the composite interval mapping (CIM) method and 29 QTLs using the least absolute shrinkage selection operator (LASSO) method. QTLs identified by the CIM method account for 6.4% to 19.7% of the phenotypic variation. Small intervals of three QTLs (qCGR-1, qKW-2, and qGWP-4) contain several genes, including one gene (GRMZM2G139872) encoding the F-box protein, three genes (GRMZM2G180811, GRMZM5G828139, and GRMZM5G873194) encoding the WD40-repeat protein, and

  19. Linkage map of the fragments of herpesvirus papio DNA.

    Science.gov (United States)

    Lee, Y S; Tanaka, A; Lau, R Y; Nonoyama, M; Rabin, H

    1981-01-01

    Herpesvirus papio (HVP), an Epstein-Barr-like virus, causes lymphoblastoid disease in baboons. The physical map of HVP DNA was constructed for the fragments produced by cleavage of HVP DNA with restriction endonucleases EcoRI, HindIII, SalI, and PvuI, which produced 12, 12, 10, and 4 fragments, respectively. The total molecular size of HVP DNA was calculated as close to 110 megadaltons. The following methods were used for construction of the map; (i) fragments near the ends of HVP DNA were identified by treating viral DNA with lambda exonuclease before restriction enzyme digestion; (ii) fragments containing nucleotide sequences in common with fragments from the second enzyme digest of HVP DNA were examined by Southern blot hybridization; and (iii) the location of some fragments was determined by isolating individual fragments from agarose gels and redigesting the isolated fragments with a second restriction enzyme. Terminal heterogeneity and internal repeats were found to be unique features of HVP DNA molecule. One to five repeats of 0.8 megadaltons were found at both terminal ends. Although the repeats of both ends shared a certain degree of homology, it was not determined whether they were identical repeats. The internal repeat sequence of HVP DNA was found in the EcoRI-C region, which extended from 8.4 to 23 megadaltons from the left end of the molecule. The average number of the repeats was calculated to be seven, and the molecular size was determined to be 1.8 megadaltons. Similar unique features have been reported in EBV DNA (D. Given and E. Kieff, J. Virol. 28:524-542, 1978). Images PMID:6261015

  20. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers.

    Science.gov (United States)

    Hao, Chenyang; Wang, Lanfen; Ge, Hongmei; Dong, Yuchen; Zhang, Xueyong

    2011-02-18

    Two hundred and fifty bread wheat lines, mainly Chinese mini core accessions, were assayed for polymorphism and linkage disequilibrium (LD) based on 512 whole-genome microsatellite loci representing a mean marker density of 5.1 cM. A total of 6,724 alleles ranging from 1 to 49 per locus were identified in all collections. The mean PIC value was 0.650, ranging from 0 to 0.965. Population structure and principal coordinate analysis revealed that landraces and modern varieties were two relatively independent genetic sub-groups. Landraces had a higher allelic diversity than modern varieties with respect to both genomes and chromosomes in terms of total number of alleles and allelic richness. 3,833 (57.0%) and 2,788 (41.5%) rare alleles with frequencies of varieties displayed a wider average LD decay across the whole genome for locus pairs with r(2)>0.05 (Pvarieties. LD decay distances were also somewhat different for each of the 21 chromosomes, being higher for most of the chromosomes in modern varieties (<5 ∼ 25 cM) compared to landraces (<5 ∼ 15 cM), presumably indicating the influences of domestication and breeding. This study facilitates predicting the marker density required to effectively associate genotypes with traits in Chinese wheat genetic resources.

  1. Species discrimination, population structure and linkage disequilibrium in Eucalyptus camaldulensis and Eucalyptus tereticornis using SSR markers.

    Directory of Open Access Journals (Sweden)

    Shanmugapriya Arumugasundaram

    Full Text Available Eucalyptus camaldulensis and E. tereticornis are closely related species commonly cultivated for pulp wood in many tropical countries including India. Understanding the genetic structure and linkage disequilibrium (LD existing in these species is essential for the improvement of industrially important traits. Our goal was to evaluate the use of simple sequence repeat (SSR loci for species discrimination, population structure and LD analysis in these species. Investigations were carried out with the most common alleles in 93 accessions belonging to these two species using 62 SSR markers through cross amplification. The polymorphic information content (PIC ranged from 0.44 to 0.93 and 0.36 to 0.93 in E. camaldulensis and E. tereticornis respectively. A clear delineation between the two species was evident based on the analysis of population structure and species-specific alleles. Significant genotypic LD was found in E. camaldulensis, wherein out of 135 significant pairs, 17 pairs showed r(2≥0.1. Similarly, in E. tereticornis, out of 136 significant pairs, 18 pairs showed r(2≥0.1. The extent of LD decayed rapidly showing the significance of association analyses in eucalypts with higher resolution markers. The availability of whole genome sequence for E. grandis and the synteny and co-linearity in the genome of eucalypts, will allow genome-wide genotyping using microsatellites or single nucleotide polymorphims.

  2. Incorporation of conventional genetic markers and RAPD markers into an RFLP based map in maize

    International Nuclear Information System (INIS)

    Coe, E.H. Jr.; McMullen, M.D.; Polacco, M.; Davis, G.L.; Chao, S.

    1998-01-01

    Integration of classical genetic markers, in particular mutants, onto the maize Restriction Fragment Length Polymorphism (RFLP) map will provide the tools necessary to further our understanding of plant development and of complex traits. Initially integration was accomplished by visual alignment of common markers and sometimes involved the use of information from several different molecular maps to determine the relative placement of a single mutant. The maize core marker set was designed to provide a common set of markers which could be used for integration of map data. We have completed the mapping, of 56 mutants on chromosome one relative to the core marker set. Phenotypes included whole plant, seedling, and kernel effects and represented a variety of biological processes. Since these mutants were previously located to chromosome arm, mapping required the use of only seven markers per mutant to define the correct bin location. Two mistakes in marker order relative to the classical map were identified, as well as, six groups of mutants which require allelism testing. Placement of mutants and cDNAs into bins using, the core markers provides a necessary resource for identification of gene function in maize. (author)

  3. Single Nucleotide Polymorphism Markers for Genetic Mapping in Drosophila melanogaster

    OpenAIRE

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-01-01

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that recently have revolutionized human, mouse, and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila by using a sequence tagged site-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that sp...

  4. GLIDERS - A web-based search engine for genome-wide linkage disequilibrium between HapMap SNPs

    Directory of Open Access Journals (Sweden)

    Broxholme John

    2009-10-01

    Full Text Available Abstract Background A number of tools for the examination of linkage disequilibrium (LD patterns between nearby alleles exist, but none are available for quickly and easily investigating LD at longer ranges (>500 kb. We have developed a web-based query tool (GLIDERS: Genome-wide LInkage DisEquilibrium Repository and Search engine that enables the retrieval of pairwise associations with r2 ≥ 0.3 across the human genome for any SNP genotyped within HapMap phase 2 and 3, regardless of distance between the markers. Description GLIDERS is an easy to use web tool that only requires the user to enter rs numbers of SNPs they want to retrieve genome-wide LD for (both nearby and long-range. The intuitive web interface handles both manual entry of SNP IDs as well as allowing users to upload files of SNP IDs. The user can limit the resulting inter SNP associations with easy to use menu options. These include MAF limit (5-45%, distance limits between SNPs (minimum and maximum, r2 (0.3 to 1, HapMap population sample (CEU, YRI and JPT+CHB combined and HapMap build/release. All resulting genome-wide inter-SNP associations are displayed on a single output page, which has a link to a downloadable tab delimited text file. Conclusion GLIDERS is a quick and easy way to retrieve genome-wide inter-SNP associations and to explore LD patterns for any number of SNPs of interest. GLIDERS can be useful in identifying SNPs with long-range LD. This can highlight mis-mapping or other potential association signal localisation problems.

  5. The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera.

    Science.gov (United States)

    Sargent, D J; Rys, A; Nier, S; Simpson, D W; Tobutt, K R

    2007-01-01

    We have developed 46 primer pairs from exon sequences flanking polymorphic introns of 23 Fragaria gene sequences and one Malus sequence deposited in the EMBL database. Sequencing of a set of the PCR products amplified with the novel primer pairs in diploid Fragaria showed the products to be homologous to the sequences from which the primers were originally designed. By scoring the segregation of the 24 genes in two diploid Fragaria progenies FV x FN (F. vesca x F. nubicola F(2)) and 815 x 903BC (F. vesca x F. viridis BC(1)) 29 genetic loci at discrete positions on the seven linkage groups previously characterised could be mapped, bringing to 35 the total number of known function genes mapped in Fragaria. Twenty primer pairs, representing 14 genes, amplified a product of the expected size in both Malus and Prunus. To demonstrate the applicability of these gene-specific loci to comparative mapping in Rosaceae, five markers that displayed clear polymorphism between the parents of a Malus and a Prunus mapping population were selected. The markers were then scored and mapped in at least one of the two additional progenies.

  6. A hybrid genetic linkage map of two ecologically and morphologically divergent Midas cichlid fishes (Amphilophus spp.) obtained by massively parallel DNA sequencing (ddRADSeq).

    Science.gov (United States)

    Recknagel, Hans; Elmer, Kathryn R; Meyer, Axel

    2013-01-01

    Cichlid fishes are an excellent model system for studying speciation and the formation of adaptive radiations because of their tremendous species richness and astonishing phenotypic diversity. Most research has focused on African rift lake fishes, although Neotropical cichlid species display much variability as well. Almost one dozen species of the Midas cichlid species complex (Amphilophus spp.) have been described so far and have formed repeated adaptive radiations in several Nicaraguan crater lakes. Here we apply double-digest restriction-site associated DNA sequencing to obtain a high-density linkage map of an interspecific cross between the benthic Amphilophus astorquii and the limnetic Amphilophus zaliosus, which are sympatric species endemic to Crater Lake Apoyo, Nicaragua. A total of 755 RAD markers were genotyped in 343 F(2) hybrids. The map resolved 25 linkage groups and spans a total distance of 1427 cM with an average marker spacing distance of 1.95 cM, almost matching the total number of chromosomes (n = 24) in these species. Regions of segregation distortion were identified in five linkage groups. Based on the pedigree of parents to F(2) offspring, we calculated a genome-wide mutation rate of 6.6 × 10(-8) mutations per nucleotide per generation. This genetic map will facilitate the mapping of ecomorphologically relevant adaptive traits in the repeated phenotypes that evolved within the Midas cichlid lineage and, as the first linkage map of a Neotropical cichlid, facilitate comparative genomic analyses between African cichlids, Neotropical cichlids and other teleost fishes.

  7. Development and mapping of SSR markers linked to resistance-gene homologue clusters in common bean

    Institute of Scientific and Technical Information of China (English)

    Luz; Nayibe; Garzon; Matthew; Wohlgemuth; Blair

    2014-01-01

    Common bean is an important but often a disease-susceptible legume crop of temperate,subtropical and tropical regions worldwide. The crop is affected by bacterial, fungal and viral pathogens. The strategy of resistance-gene homologue(RGH) cloning has proven to be an efficient tool for identifying markers and R(resistance) genes associated with resistances to diseases. Microsatellite or SSR markers can be identified by physical association with RGH clones on large-insert DNA clones such as bacterial artificial chromosomes(BACs). Our objectives in this work were to identify RGH-SSR in a BAC library from the Andean genotype G19833 and to test and map any polymorphic markers to identify associations with known positions of disease resistance genes. We developed a set of specific probes designed for clades of common bean RGH genes and then identified positive BAC clones and developed microsatellites from BACs having SSR loci in their end sequences. A total of 629 new RGH-SSRs were identified and named BMr(bean microsatellite RGH-associated markers). A subset of these markers was screened for detecting polymorphism in the genetic mapping population DOR364 × G19833. A genetic map was constructed with a total of 264 markers,among which were 80 RGH loci anchored to single-copy RFLP and SSR markers. Clusters of RGH-SSRs were observed on most of the linkage groups of common bean and in positions associated with R-genes and QTL. The use of these new markers to select for disease resistance is discussed.

  8. Genetic Linkage Map Construction and QTL Analysis of Two Interspecific Reproductive Isolation Traits in Sponge Gourd

    OpenAIRE

    Wu, Haibin; He, Xiaoli; Gong, Hao; Luo, Shaobo; Li, Mingzhu; Chen, Junqiu; Zhang, Changyuan; Yu, Ting; Huang, Wangping; Luo, Jianning

    2016-01-01

    The hybrids between Luffa acutangula (L.) Roxb. and L.cylindrica (L.) Roem. have strong heterosis effects. However, some reproductive isolation traits hindered their normal hybridization and fructification, which was mainly caused by the flowering time and hybrid pollen sterility. In order to study the genetic basis of two interspecific reproductive isolation traits, we constructed a genetic linkage map using an F2 population derived from a cross between S1174 [L. acutangula (L.) Roxb.] and 9...

  9. Construction of the first genetic linkage map of Japanese gentian (Gentianaceae)

    OpenAIRE

    Nakatsuka, Takashi; Yamada, Eri; Saito, Misa; Hikage, Takashi; Ushiku, Yuka; Nishihara, Masahiro

    2012-01-01

    Abstract Background Japanese gentians (Gentiana triflora and Gentiana scabra) are amongst the most popular floricultural plants in Japan. However, genomic resources for Japanese gentians have not yet been developed, mainly because of the heterozygous genome structure conserved by outcrossing, the long juvenile period, and limited knowledge about the inheritance of important traits. In this study, we developed a genetic linkage map to improve breeding programs of Japanese gentians. Results Enr...

  10. A consensus microsatellite-based linkage map for the hermaphroditic bay scallop (Argopecten irradians and its application in size-related QTL analysis.

    Directory of Open Access Journals (Sweden)

    Hongjun Li

    Full Text Available Bay scallop (Argopecten irradians is one of the most economically important aquaculture species in China. In this study, we constructed a consensus microsatellite-based genetic linkage map with a mapping panel containing two hybrid backcross-like families involving two subspecies of bay scallop, A. i. irradians and A. i. concentricus. One hundred sixty-one microsatellite and one phenotypic (shell color markers were mapped to 16 linkage groups (LGs, which corresponds to the haploid chromosome number of bay scallop. The sex-specific map was 779.2 cM and 781.6 cM long in female and male, respectively, whereas the sex-averaged map spanned 849.3 cM. The average resolution of integrated map was 5.9 cM/locus and the estimated coverage was 81.3%. The proportion of distorted markers occurred more in the hybrid parents, suggesting that the segregation distortion was possibly resulted from heterospecific interaction between genomes of two subspecies of bay scallop. The overall female-to-male recombination rate was 1.13:1 across all linked markers in common to both parents, and considerable differences in recombination also existed among different parents in both families. Four size-related traits, including shell length (SL, shell height (SH, shell width (SW and total weight (TW were measured for quantitative trait loci (QTL analysis. Three significant and six suggestive QTL were detected on five LGs. Among the three significant QTL, two (qSW-10 and qTW-10, controlling SW and TW, respectively were mapped on the same region near marker AiAD121 on LG10 and explained 20.5% and 27.7% of the phenotypic variance, while the third (qSH-7, controlling SH was located on LG7 and accounted for 15.8% of the phenotypic variance. Six suggestive QTL were detected on four different LGs. The linkage map and size-related QTL obtained in this study may facilitate marker-assisted selection (MAS in bay scallop.

  11. Genetic studies and a search for molecular markers that are linked ...

    African Journals Online (AJOL)

    SERVER

    Instead, linkage analysis resulted in the construction of a molecular marker linkage map consisting of 45 ..... This limits the application of this marker type, particularly in ... primer design when one uses RAPDs. .... Concepts of Genetics. Fourth.

  12. Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L.

    Science.gov (United States)

    Gong, L.; Stift, G.; Kofler, R.; Pachner, M.

    2008-01-01

    Until recently, only a few microsatellites have been available for Cucurbita, thus their development is highly desirable. The Austrian oil-pumpkin variety Gleisdorfer Ölkürbis (C. pepo subsp. pepo) and the C. moschata cultivar Soler (Puerto Rico) were used for SSR development. SSR-enriched partial genomic libraries were established and 2,400 clones were sequenced. Of these 1,058 (44%) contained an SSR at least four repeats long. Primers were designed for 532 SSRs; 500 primer pairs produced fragments of expected size. Of these, 405 (81%) amplified polymorphic fragments in a set of 12 genotypes: three C. moschata, one C. ecuadorensis, and eight C. pepo representing all eight cultivar groups. On an average, C. pepo and C. moschata produced 3.3 alleles per primer pair, showing high inter-species transferability. There were 187 SSR markers detecting polymorphism between the USA oil-pumpkin variety “Lady Godiva” (O5) and the Italian crookneck variety “Bianco Friulano” (CN), which are the parents of our previous F2 mapping population. It has been used to construct the first published C. pepo map, containing mainly RAPD and AFLP markers. Now the updated map comprises 178 SSRs, 244 AFLPs, 230 RAPDs, five SCARs, and two morphological traits (h and B). It contains 20 linkage groups with a map density of 2.9 cM. The observed genome coverage (Co) is 86.8%. Electronic supplementary material The online version of this article (doi:10.1007/s00122-008-0750-2) contains supplementary material, which is available to authorized users. PMID:18379753

  13. Genetic variation, population structure and linkage disequilibrium in Switchgrass with ISSR, SCoT and EST-SSR markers.

    Science.gov (United States)

    Zhang, Yu; Yan, Haidong; Jiang, Xiaomei; Wang, Xiaoli; Huang, Linkai; Xu, Bin; Zhang, Xinquan; Zhang, Lexin

    2016-01-01

    To evaluate genetic variation, population structure, and the extent of linkage disequilibrium (LD), 134 switchgrass ( Panicum virgatum L.) samples were analyzed with 51 markers, including 16 ISSRs, 20 SCoTs, and 15 EST-SSRs. In this study, a high level of genetic variation was observed in the switchgrass samples and they had an average Nei's gene diversity index (H) of 0.311. A total of 793 bands were obtained, of which 708 (89.28 %) were polymorphic. Using a parameter marker index (MI), the efficiency of the three types of markers (ISSR, SCoT, and EST-SSR) in the study were compared and we found that SCoT had a higher marker efficiency than the other two markers. The 134 switchgrass samples could be divided into two sub-populations based on STRUCTURE, UPGMA clustering, and principal coordinate analyses (PCA), and upland and lowland ecotypes could be separated by UPGMA clustering and PCA analyses. Linkage disequilibrium analysis revealed an average r 2 of 0.035 across all 51 markers, indicating a trend of higher LD in sub-population 2 than that in sub-population 1 ( P  < 0.01). The population structure revealed in this study will guide the design of future association studies using these switchgrass samples.

  14. Map-based molecular diversity, linkage disequilibrium and association mapping of fruit traits in melon

    Science.gov (United States)

    The wide phenotypic diversity, in melon fruits, is the result of consumer preferences combined with genotype fitness to the different agro-climatic zones. There is no sufficient information with respect to the extent of genetic divergence, population structure and linkage disequilibrium (LD) in mel...

  15. A high-density transcript linkage map with 1,845 expressed genes positioned by microarray-based Single Feature Polymorphisms (SFP) in Eucalyptus

    Science.gov (United States)

    2011-01-01

    Background Technological advances are progressively increasing the application of genomics to a wider array of economically and ecologically important species. High-density maps enriched for transcribed genes facilitate the discovery of connections between genes and phenotypes. We report the construction of a high-density linkage map of expressed genes for the heterozygous genome of Eucalyptus using Single Feature Polymorphism (SFP) markers. Results SFP discovery and mapping was achieved using pseudo-testcross screening and selective mapping to simultaneously optimize linkage mapping and microarray costs. SFP genotyping was carried out by hybridizing complementary RNA prepared from 4.5 year-old trees xylem to an SFP array containing 103,000 25-mer oligonucleotide probes representing 20,726 unigenes derived from a modest size expressed sequence tags collection. An SFP-mapping microarray with 43,777 selected candidate SFP probes representing 15,698 genes was subsequently designed and used to genotype SFPs in a larger subset of the segregating population drawn by selective mapping. A total of 1,845 genes were mapped, with 884 of them ordered with high likelihood support on a framework map anchored to 180 microsatellites with average density of 1.2 cM. Using more probes per unigene increased by two-fold the likelihood of detecting segregating SFPs eventually resulting in more genes mapped. In silico validation showed that 87% of the SFPs map to the expected location on the 4.5X draft sequence of the Eucalyptus grandis genome. Conclusions The Eucalyptus 1,845 gene map is the most highly enriched map for transcriptional information for any forest tree species to date. It represents a major improvement on the number of genes previously positioned on Eucalyptus maps and provides an initial glimpse at the gene space for this global tree genome. A general protocol is proposed to build high-density transcript linkage maps in less characterized plant species by SFP genotyping

  16. Lod scores for gene mapping in the presence of marker map uncertainty.

    Science.gov (United States)

    Stringham, H M; Boehnke, M

    2001-07-01

    Multipoint lod scores are typically calculated for a grid of locus positions, moving the putative disease locus across a fixed map of genetic markers. Changing the order of a set of markers and/or the distances between the markers can make a substantial difference in the resulting lod score curve and the location and height of its maximum. The typical approach of using the best maximum likelihood marker map is not easily justified if other marker orders are nearly as likely and give substantially different lod score curves. To deal with this problem, we propose three weighted multipoint lod score statistics that make use of information from all plausible marker orders. In each of these statistics, the information conditional on a particular marker order is included in a weighted sum, with weight equal to the posterior probability of that order. We evaluate the type 1 error rate and power of these three statistics on the basis of results from simulated data, and compare these results to those obtained using the best maximum likelihood map and the map with the true marker order. We find that the lod score based on a weighted sum of maximum likelihoods improves on using only the best maximum likelihood map, having a type 1 error rate and power closest to that of using the true marker order in the simulation scenarios we considered. Copyright 2001 Wiley-Liss, Inc.

  17. Fine mapping of the rice bacterial blight resistance gene Xa-4 and its co-segregation marker

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An F2 population developed from the Xa-4 near isogenic lines,IR24 and IRBB4,was used for fine mapping of the rice bacterial blight resistance gene,Xa-4.Some restriction fragment length polymorphism (RFLP) markers on the high-density map constructed by Harushima et al.and the amplified DNA fragments homologous to the conserved domains of plant disease resistance (R) genes were used to construct the genetic linkage map around the gene Xa-4 by scoring susceptible individuals in the population.Xa-4 was mapped between the RFLP marker G181 and the polymerase chain reaction (PCR) marker M55.The R gene homologous fragment marker RS13 was found co-segregating with Xa-4 by analyzing all the plants in the population.This result opened an approach to map-based cloning of this gene,and marker RS13 can be applied to molecular marker-assisted selection of Xa-4 in rice breeding programs.

  18. Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers.

    Science.gov (United States)

    Cabrera, Antonio; Kozik, Alex; Howad, Werner; Arus, Pere; Iezzoni, Amy F; van der Knaap, Esther

    2009-11-29

    Detailed comparative genome analyses within the economically important Rosaceae family have not been conducted. This is largely due to the lack of conserved gene-based molecular markers that are transferable among the important crop genera within the family [e.g. Malus (apple), Fragaria (strawberry), and Prunus (peach, cherry, apricot and almond)]. The lack of molecular markers and comparative whole genome sequence analysis for this family severely hampers crop improvement efforts as well as QTL confirmation and validation studies. We identified a set of 3,818 rosaceaous unigenes comprised of two or more ESTs that correspond to single copy Arabidopsis genes. From this Rosaceae Conserved Orthologous Set (RosCOS), 1039 were selected from which 857 were used for the development of intron-flanking primers and allele amplification. This led to successful amplification and subsequent mapping of 613 RosCOS onto the Prunus TxE reference map resulting in a genome-wide coverage of 0.67 to 1.06 gene-based markers per cM per linkage group. Furthermore, the RosCOS primers showed amplification success rates from 23 to 100% across the family indicating that a substantial part of the RosCOS primers can be directly employed in other less studied rosaceaous crops. Comparisons of the genetic map positions of the RosCOS with the physical locations of the orthologs in the Populus trichocarpa genome identified regions of colinearity between the genomes of Prunus-Rosaceae and Populus-Salicaceae. Conserved orthologous genes are extremely useful for the analysis of genome evolution among closely and distantly related species. The results presented in this study demonstrate the considerable potential of the mapped Prunus RosCOS for genome-wide marker employment and comparative whole genome studies within the Rosaceae family. Moreover, these markers will also function as useful anchor points for the genome sequencing efforts currently ongoing in this family as well as for comparative QTL

  19. Multiple Linkage Disequilibrium Mapping Methods to Validate Additive Quantitative Trait Loci in Korean Native Cattle (Hanwoo

    Directory of Open Access Journals (Sweden)

    Yi Li

    2015-07-01

    Full Text Available The efficiency of genome-wide association analysis (GWAS depends on power of detection for quantitative trait loci (QTL and precision for QTL mapping. In this study, three different strategies for GWAS were applied to detect QTL for carcass quality traits in the Korean cattle, Hanwoo; a linkage disequilibrium single locus regression method (LDRM, a combined linkage and linkage disequilibrium analysis (LDLA and a BayesCπ approach. The phenotypes of 486 steers were collected for weaning weight (WWT, yearling weight (YWT, carcass weight (CWT, backfat thickness (BFT, longissimus dorsi muscle area, and marbling score (Marb. Also the genotype data for the steers and their sires were scored with the Illumina bovine 50K single nucleotide polymorphism (SNP chips. For the two former GWAS methods, threshold values were set at false discovery rate <0.01 on a chromosome-wide level, while a cut-off threshold value was set in the latter model, such that the top five windows, each of which comprised 10 adjacent SNPs, were chosen with significant variation for the phenotype. Four major additive QTL from these three methods had high concordance found in 64.1 to 64.9Mb for Bos taurus autosome (BTA 7 for WWT, 24.3 to 25.4Mb for BTA14 for CWT, 0.5 to 1.5Mb for BTA6 for BFT and 26.3 to 33.4Mb for BTA29 for BFT. Several candidate genes (i.e. glutamate receptor, ionotropic, ampa 1 [GRIA1], family with sequence similarity 110, member B [FAM110B], and thymocyte selection-associated high mobility group box [TOX] may be identified close to these QTL. Our result suggests that the use of different linkage disequilibrium mapping approaches can provide more reliable chromosome regions to further pinpoint DNA makers or causative genes in these regions.

  20. A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study

    Directory of Open Access Journals (Sweden)

    Cherubini Marcello

    2010-10-01

    Full Text Available Abstract Background Expressed Sequence Tags (ESTs are a source of simple sequence repeats (SSRs that can be used to develop molecular markers for genetic studies. The availability of ESTs for Quercus robur and Quercus petraea provided a unique opportunity to develop microsatellite markers to accelerate research aimed at studying adaptation of these long-lived species to their environment. As a first step toward the construction of a SSR-based linkage map of oak for quantitative trait locus (QTL mapping, we describe the mining and survey of EST-SSRs as well as a fast and cost-effective approach (bin mapping to assign these markers to an approximate map position. We also compared the level of polymorphism between genomic and EST-derived SSRs and address the transferability of EST-SSRs in Castanea sativa (chestnut. Results A catalogue of 103,000 Sanger ESTs was assembled into 28,024 unigenes from which 18.6% presented one or more SSR motifs. More than 42% of these SSRs corresponded to trinucleotides. Primer pairs were designed for 748 putative unigenes. Overall 37.7% (283 were found to amplify a single polymorphic locus in a reference full-sib pedigree of Quercus robur. The usefulness of these loci for establishing a genetic map was assessed using a bin mapping approach. Bin maps were constructed for the male and female parental tree for which framework linkage maps based on AFLP markers were available. The bin set consisting of 14 highly informative offspring selected based on the number and position of crossover sites. The female and male maps comprised 44 and 37 bins, with an average bin length of 16.5 cM and 20.99 cM, respectively. A total of 256 EST-SSRs were assigned to bins and their map position was further validated by linkage mapping. EST-SSRs were found to be less polymorphic than genomic SSRs, but their transferability rate to chestnut, a phylogenetically related species to oak, was higher. Conclusion We have generated a bin map for oak

  1. The first genetic map of a synthesized allohexaploid Brassica with A, B and C genomes based on simple sequence repeat markers.

    Science.gov (United States)

    Yang, S; Chen, S; Geng, X X; Yan, G; Li, Z Y; Meng, J L; Cowling, W A; Zhou, W J

    2016-04-01

    We present the first genetic map of an allohexaploid Brassica species, based on segregating microsatellite markers in a doubled haploid mapping population generated from a hybrid between two hexaploid parents. This study reports the first genetic map of trigenomic Brassica. A doubled haploid mapping population consisting of 189 lines was obtained via microspore culture from a hybrid H16-1 derived from a cross between two allohexaploid Brassica lines (7H170-1 and Y54-2). Simple sequence repeat primer pairs specific to the A genome (107), B genome (44) and C genome (109) were used to construct a genetic linkage map of the population. Twenty-seven linkage groups were resolved from 274 polymorphic loci on the A genome (109), B genome (49) and C genome (116) covering a total genetic distance of 3178.8 cM with an average distance between markers of 11.60 cM. This is the first genetic framework map for the artificially synthesized Brassica allohexaploids. The linkage groups represent the expected complement of chromosomes in the A, B and C genomes from the original diploid and tetraploid parents. This framework linkage map will be valuable for QTL analysis and future genetic improvement of a new allohexaploid Brassica species, and in improving our understanding of the genetic control of meiosis in new polyploids.

  2. Using SNP markers to dissect linkage disequilibrium at a major quantitative trait locus for resistance to the potato cyst nematode Globodera pallida on potato chromosome V.

    Science.gov (United States)

    Achenbach, Ute; Paulo, Joao; Ilarionova, Evgenyia; Lübeck, Jens; Strahwald, Josef; Tacke, Eckhard; Hofferbert, Hans-Reinhard; Gebhardt, Christiane

    2009-02-01

    The damage caused by the parasitic root cyst nematode Globodera pallida is a major yield-limiting factor in potato cultivation . Breeding for resistance is facilitated by the PCR-based marker 'HC', which is diagnostic for an allele conferring high resistance against G. pallida pathotype Pa2/3 that has been introgressed from the wild potato species Solanum vernei into the Solanum tuberosum tetraploid breeding pool. The major quantitative trait locus (QTL) controlling this nematode resistance maps on potato chromosome V in a hot spot for resistance to various pathogens including nematodes and the oomycete Phytophthora infestans. An unstructured sample of 79 tetraploid, highly heterozygous varieties and breeding clones was selected based on presence (41 genotypes) or absence (38 genotypes) of the HC marker. Testing the clones for resistance to G. pallida confirmed the diagnostic power of the HC marker. The 79 individuals were genotyped for 100 single nucleotide polymorphisms (SNPs) at 10 loci distributed over 38 cM on chromosome V. Forty-five SNPs at six loci spanning 2 cM in the interval between markers GP21-GP179 were associated with resistance to G. pallida. Based on linkage disequilibrium (LD) between SNP markers, six LD groups comprising between 2 and 18 SNPs were identified. The LD groups indicated the existence of multiple alleles at a single resistance locus or at several, physically linked resistance loci. LD group C comprising 18 SNPs corresponded to the 'HC' marker. LD group E included 16 SNPs and showed an association peak, which positioned one nematode resistance locus physically close to the R1 gene family.

  3. Genetic mapping, marker assisted selection and allelic relationships for the Pu 6 gene conferring rust resistance in sunflower.

    Science.gov (United States)

    Bulos, Mariano; Vergani, Pablo Nicolas; Altieri, Emiliano

    2014-09-01

    Rust resistance in the sunflower line P386 is controlled by Pu 6 , a gene which was reported to segregate independently from other rust resistant genes, such as R 4 . The objectives of this work were to map Pu 6 , to provide and validate molecular tools for its identification, and to determine the linkage relationship of Pu 6 and R 4 . Genetic mapping of Pu 6 with six markers covered 24.8 cM of genetic distance on the lower end of linkage Group 13 of the sunflower consensus map. The marker most closely linked to Pu 6 was ORS316 at 2.5 cM in the distal position. ORS316 presented five alleles when was assayed with a representative set of resistant and susceptible lines. Allelism test between Pu 6 and R 4 indicated that both genes are linked at a genetic distance of 6.25 cM. This is the first confirmation based on an allelism test that at least two members of the R adv /R 4 /R 11 / R 13a /R 13b /Pu 6 cluster of genes are at different loci. A fine elucidation of the architecture of this complex locus will allow designing and constructing completely new genomic regions combining genes from different resistant sources and the elimination of the linkage drag around each resistant gene.

  4. Genotyping-by-Sequencing derived High-Density Linkage Map and its Application to QTL Mapping of Flag Leaf Traits in Bread Wheat

    Science.gov (United States)

    Hard red winter wheat parents ‘Harry’ (drought tolerant) and ‘Wesley’ (drought susceptible) was used to develop a recombinant inbred population to identify genomic regions associated with drought and adaptation. To precisely map genomic regions high-density linkage maps are a prerequisite. In this s...

  5. Development of Insertion and Deletion Markers based on Biparental Resequencing for Fine Mapping Seed Weight in Soybean

    Directory of Open Access Journals (Sweden)

    Ying-hui Li

    2014-11-01

    Full Text Available As a complement to single nucleotide polymorphisms (SNPs and simple sequence repeats (SSRs, biallelic insertions and deletions (InDels represent powerful molecular markers with desirable features for filling the gap in current genetic linkage maps. In this study, 28,908 small InDel polymorphisms (1–5 base pair, bp distributed genome-wide were identified and annotated by comparison of a whole-genome resequencing data set from two soybean [ (L. Merr.] genotypes, cultivar Zhonghunag13 (ZH and line Zhongpin03-5373 (ZP. The physical distribution of InDel polymorphisms in soybean genome was uneven, and matched closely with the distribution of previously annotated genes. The average density of InDel in the arm region was significantly higher than that in the pericentromeric region. The genomic regions that were fixed between the two elites were elucidated. With this information, five InDel markers within a putative quantitative trait locus (QTL for seed weight (SW, , were developed and used to genotype 254 recombinant inbred lines (RILs derived from the cross of ZP × ZH. Adding these five InDel markers to previously used SNP and SSR markers facilitated the discovery of further recombination events allowing fine-mapping the QTL to a 0.5 Mbp region. Our study clearly underlines the high value of InDel markers for map-based cloning and marker-assisted selection in soybean.

  6. Exclusion of linkage between cleft lip with or without cleft palate and markers on chromosomes 4 and 6

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, S.H. [Univ. of Virginia, Charlottesville, VA (United States); Malcolm, S.; Winter, R. [Institute of Child Health, London (United Kingdom)] [and others

    1996-01-01

    Nonsyndromic cleft lip with or without associate cleft palate (CLP) is a common craniofacial defect, occurring in {approximately}1/1,000 live births. While the defect generally occurs sporadically, multiplex families have been reported. Segregation analyses have demonstrated that, in some families, CLP is inherited as an autosomal dominant/codominant disorder with low penetrance. Several clefting loci have been proposed on multiple chromosomes, including 6p24, 4q, and 19q13.1. Association studies and linkage studies suggested a locus that mapped to 6p24. We were unable to confirm this in a linkage study of 12 multigenerational families. A subsequent linkage study by Carinci et al., however, found evidence for linkage to this region in 14 of 21 clefting families. Additionally, Davies et al. studied the chromosomes of three individuals with cleft lip and palate, all of whom had a rearrangement involving 6p24. Their investigation supported a locus at 6p24. Carinci et al. reported that the most likely position for a clefting locus was at D6S89, which is centromeric to EDN1. This is in contrast to the findings of Davies et al., who suggested a placement telomeric to EDN1. F13A, which had been implicated in the initial association studies, is telomeric to EDN1. Thus, the region between F13A and D6S89 encompasses the regions proposed by both Davies et al. and Carinci et al. A second clefting locus, at 4q, was proposed by Beiraghi et al., who studied a single multigenerational family by linkage analysis. Their data suggested a locus near D4S175 and D4S192. 10 refs., 1 tab.

  7. A first linkage map and downy mildew resistance QTL discovery for sweet basil (Ocimum basilicum) facilitated by double digestion restriction site associated DNA sequencing (ddRADseq).

    Science.gov (United States)

    Pyne, Robert; Honig, Josh; Vaiciunas, Jennifer; Koroch, Adolfina; Wyenandt, Christian; Bonos, Stacy; Simon, James

    2017-01-01

    Limited understanding of sweet basil (Ocimum basilicum L.) genetics and genome structure has reduced efficiency of breeding strategies. This is evidenced by the rapid, worldwide dissemination of basil downy mildew (Peronospora belbahrii) in the absence of resistant cultivars. In an effort to improve available genetic resources, expressed sequence tag simple sequence repeat (EST-SSR) and single nucleotide polymorphism (SNP) markers were developed and used to genotype the MRI x SB22 F2 mapping population, which segregates for response to downy mildew. SNP markers were generated from genomic sequences derived from double digestion restriction site associated DNA sequencing (ddRADseq). Disomic segregation was observed in both SNP and EST-SSR markers providing evidence of an O. basilicum allotetraploid genome structure and allowing for subsequent analysis of the mapping population as a diploid intercross. A dense linkage map was constructed using 42 EST-SSR and 1,847 SNP markers spanning 3,030.9 cM. Multiple quantitative trait loci (QTL) model (MQM) analysis identified three QTL that explained 37-55% of phenotypic variance associated with downy mildew response across three environments. A single major QTL, dm11.1 explained 21-28% of phenotypic variance and demonstrated dominant gene action. Two minor QTL dm9.1 and dm14.1 explained 5-16% and 4-18% of phenotypic variance, respectively. Evidence is provided for an additive effect between the two minor QTL and the major QTL dm11.1 increasing downy mildew susceptibility. Results indicate that ddRADseq-facilitated SNP and SSR marker genotyping is an effective approach for mapping the sweet basil genome.

  8. Genetic linkage of hereditary motor and sensory neuropathy type I (Charcot-Marie-Tooth disease) to markers of chromosomes 1 and 17

    NARCIS (Netherlands)

    Defesche, J. C.; Hoogendijk, J. E.; de Visser, M.; de Visser, O.; Bolhuis, P. A.

    1990-01-01

    Hereditary motor and sensory neuropathy type 1 (HMSN I) is an autosomal dominant disorder genetically localized on chromosome 1 in a few families and on chromosome 17 in other families. We analyzed linkage between 6 markers of chromosome 1, 2 markers of chromosome 17, and the HMSN I locus using

  9. Genotyping by Sequencing for SNP-Based Linkage Map Construction and QTL Analysis of Chilling Requirement and Bloom Date in Peach [Prunus persica (L. Batsch].

    Directory of Open Access Journals (Sweden)

    Douglas Gary Bielenberg

    Full Text Available Low-cost, high throughput genotyping methods are crucial to marker discovery and marker-assisted breeding efforts, but have not been available for many 'specialty crops' such as fruit and nut trees. Here we apply the Genotyping-By-Sequencing (GBS method developed for cereals to the discovery of single nucleotide polymorphisms (SNPs in a peach F2 mapping population. Peach is a genetic and genomic model within the Rosaceae and will provide a template for the use of this method with other members of this family. Our F2 mapping population of 57 genotypes segregates for bloom time (BD and chilling requirement (CR and we have extensively phenotyped this population. The population derives from a selfed F1 progeny of a cross between 'Hakuho' (high CR and 'UFGold' (low CR. We were able to successfully employ GBS and the TASSEL GBS pipeline without modification of the original methodology using the ApeKI restriction enzyme and multiplexing at an equivalent of 96 samples per Illumina HiSeq 2000 lane. We obtained hundreds of SNP markers which were then used to construct a genetic linkage map and identify quantitative trait loci (QTL for BD and CR.

  10. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice.

    Science.gov (United States)

    Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Wei, Haibin; Feng, Fangjun; Wang, Pei; Xia, Hui; Li, Tiemei; Luo, Lijun

    2015-08-01

    Deep rooting is a very important trait for plants' drought avoidance, and it is usually represented by the ratio of deep rooting (RDR). Three sets of rice populations were used to determine the genetic base for RDR. A linkage mapping population with 180 recombinant inbred lines and an association mapping population containing 237 rice varieties were used to identify genes linked to RDR. Six quantitative trait loci (QTLs) of RDR were identified as being located on chromosomes 1, 2, 4, 7, and 10. Using 1 019 883 single-nucleotide polymorphisms (SNPs), a genome-wide association study of the RDR was performed. Forty-eight significant SNPs of the RDR were identified and formed a clear peak on the short arm of chromosome 1 in a Manhattan plot. Compared with the shallow-rooting group and the whole collection, the deep-rooting group had selective sweep regions on chromosomes 1 and 2, especially in the major QTL region on chromosome 2. Seven of the nine candidate SNPs identified by association mapping were verified in two RDR extreme groups. The findings from this study will be beneficial to rice drought-resistance research and breeding. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. A High-Density SNP Genetic Linkage Map and QTL Analysis of Growth-Related Traits in a Hybrid Family of Oysters (Crassostrea gigas × Crassostrea angulata Using Genotyping-by-Sequencing

    Directory of Open Access Journals (Sweden)

    Jinpeng Wang

    2016-05-01

    Full Text Available Oysters are among the most important species in global aquaculture. Crassostrea gigas, and its subspecies C. angulata, are the major cultured species. To determine the genetic basis of growth-related traits in oysters, we constructed a second-generation linkage map from 3367 single-nucleotide polymorphisms (SNPs based on genotyping-by-sequencing, genotyped from a C. gigas × C. angulata hybrid family. These 3367 SNPs were distributed on 1695 markers, which were assigned to 10 linkage groups. The genetic linkage map had a total length of 1084.3 cM, with an average of 0.8 cM between markers; it thus represents the densest genetic map constructed for oysters to date. Twenty-seven quantitative trait loci (QTL for five growth-related traits were detected. These QTL could explain 4.2–7.7% (mean = 5.4% of the phenotypic variation. In total, 50.8% of phenotypic variance for shell width, 7.7% for mass weight, and 34.1% for soft tissue weight were explained. The detected QTL were distributed among eight linkage groups, and more than half (16 were concentrated within narrow regions in their respective linkage groups. Thirty-eight annotated genes were identified within the QTL regions, two of which are key genes for carbohydrate metabolism. Other genes were found to participate in assembly and regulation of the actin cytoskeleton, signal transduction, and regulation of cell differentiation and development. The newly developed high-density genetic map, and the QTL and candidate genes identified provide a valuable genetic resource and a basis for marker-assisted selection for C. gigas and C. angulata.

  12. A gene-based linkage map for Bicyclus anynana butterflies allows for a comprehensive analysis of synteny with the lepidopteran reference genome.

    Directory of Open Access Journals (Sweden)

    Patrícia Beldade

    2009-02-01

    Full Text Available Lepidopterans (butterflies and moths are a rich and diverse order of insects, which, despite their economic impact and unusual biological properties, are relatively underrepresented in terms of genomic resources. The genome of the silkworm Bombyx mori has been fully sequenced, but comparative lepidopteran genomics has been hampered by the scarcity of information for other species. This is especially striking for butterflies, even though they have diverse and derived phenotypes (such as color vision and wing color patterns and are considered prime models for the evolutionary and developmental analysis of ecologically relevant, complex traits. We focus on Bicyclus anynana butterflies, a laboratory system for studying the diversification of novelties and serially repeated traits. With a panel of 12 small families and a biphasic mapping approach, we first assigned 508 expressed genes to segregation groups and then ordered 297 of them within individual linkage groups. We also coarsely mapped seven color pattern loci. This is the richest gene-based map available for any butterfly species and allowed for a broad-coverage analysis of synteny with the lepidopteran reference genome. Based on 462 pairs of mapped orthologous markers in Bi. anynana and Bo. mori, we observed strong conservation of gene assignment to chromosomes, but also evidence for numerous large- and small-scale chromosomal rearrangements. With gene collections growing for a variety of target organisms, the ability to place those genes in their proper genomic context is paramount. Methods to map expressed genes and to compare maps with relevant model systems are crucial to extend genomic-level analysis outside classical model species. Maps with gene-based markers are useful for comparative genomics and to resolve mapped genomic regions to a tractable number of candidate genes, especially if there is synteny with related model species. This is discussed in relation to the identification of

  13. A case against bio markers as they are currently used in radioecological risk analyses: a problem of linkage

    International Nuclear Information System (INIS)

    Hinton, T.G.; Brechignac, F.

    2005-01-01

    Bio-markers are successfully used in human risk analyses as early indicators of contaminant exposure and predictors of deleterious effects. This has boosted the search for bio-markers in determining ecological risks to non-human biota, and particularly for assessments related to radioactive contaminants. There are difficulties, however, that prevent an easy transfer of the bio-marker concept from humans to non-human biota, as there are significant differences in endpoints of concern, units of observation and dose response relationships between human and ecological risk analyses. The use of bio-markers in ecological risk analyses currently lacks a linkage between molecular-level effects and quantifiable impacts observed in individuals and populations. This is important because ecological risk analyses generally target the population level of biological organisation. We highlight various examples that demonstrate the difficulties of linking individual responses to population-level impacts, such as indirect effects and compensatory interactions. Eco-toxicologists cope with such difficulties through the use of uncertainty or extrapolation factors. Extrapolation factors (EF) typically range from 1 to 1000 when linking effects observed in individuals to those predicted to occur in populations. We question what magnitude of EF will be required when going from a molecular level effect, measured by a bio-marker, all the way up to the population level of biological organisation. Particularly, we stress that a successful application of bio-markers to radioecological risk assessment can only be achieved once the connection has been made between changes in individual resource allocation-based life histories and population dynamics. This clearly emphasises the need to quantify the propagation of molecular and cellular level effects to higher levels of biological organisation, especially in the long-term via several generations of exposure. Finally, we identify pertinent research

  14. Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS of markers

    Directory of Open Access Journals (Sweden)

    Kozik Alex

    2009-01-01

    Full Text Available Abstract Background Detailed comparative genome analyses within the economically important Rosaceae family have not been conducted. This is largely due to the lack of conserved gene-based molecular markers that are transferable among the important crop genera within the family [e.g. Malus (apple, Fragaria (strawberry, and Prunus (peach, cherry, apricot and almond]. The lack of molecular markers and comparative whole genome sequence analysis for this family severely hampers crop improvement efforts as well as QTL confirmation and validation studies. Results We identified a set of 3,818 rosaceaous unigenes comprised of two or more ESTs that correspond to single copy Arabidopsis genes. From this Rosaceae Conserved Orthologous Set (RosCOS, 1039 were selected from which 857 were used for the development of intron-flanking primers and allele amplification. This led to successful amplification and subsequent mapping of 613 RosCOS onto the Prunus TxE reference map resulting in a genome-wide coverage of 0.67 to 1.06 gene-based markers per cM per linkage group. Furthermore, the RosCOS primers showed amplification success rates from 23 to 100% across the family indicating that a substantial part of the RosCOS primers can be directly employed in other less studied rosaceaous crops. Comparisons of the genetic map positions of the RosCOS with the physical locations of the orthologs in the Populus trichocarpa genome identified regions of colinearity between the genomes of Prunus-Rosaceae and Populus-Salicaceae. Conclusion Conserved orthologous genes are extremely useful for the analysis of genome evolution among closely and distantly related species. The results presented in this study demonstrate the considerable potential of the mapped Prunus RosCOS for genome-wide marker employment and comparative whole genome studies within the Rosaceae family. Moreover, these markers will also function as useful anchor points for the genome sequencing efforts currently

  15. Cytogenetic characterization and AFLP-based genetic linkage mapping for the butterfly Bicyclus anynana, covering all 28 karyotyped chromosomes

    Czech Academy of Sciences Publication Activity Database

    Van´t Hof, A. E.; Marec, František; Saccheri, I. J.; Brakefield, P. M.; Zwaan, B. J.

    2008-01-01

    Roč. 3, č. 12 (2008), e3882 E-ISSN 1932-6203 R&D Projects: GA ČR GA206/06/1860 Institutional research plan: CEZ:AV0Z50070508 Keywords : Bicyclus anynana * cytogenetic characterization * AFLP-based genetic linkage mapping Subject RIV: EB - Genetics ; Molecular Biology

  16. The Identification of Two Head Smut Resistance-Related QTL in Maize by the Joint Approach of Linkage Mapping and Association Analysis.

    Directory of Open Access Journals (Sweden)

    Yong-xiang Li

    Full Text Available Head smut, caused by the fungus Sphacelotheca reiliana (Kühn Clint, is a devastating threat to maize production. In this study, QTL mapping of head smut resistance was performed using a recombinant inbred line (RIL population from a cross between a resistant line "QI319" and a susceptible line "Huangzaosi" (HZS with a genetic map constructed from genotyping-by-sequencing (GBS data and composed of 1638 bin markers. Two head smut resistance QTL were identified, located on Chromosome 2 (q2.09HR and Chromosome 5 (q5.03HR, q2.09HR is co-localized with a previously reported QTL for head smut resistance, and the effect of q5.03HR has been validated in backcross populations. It was also observed that pyramiding the resistant alleles of both QTL enhanced the level of resistance to head smut. A genome-wide association study (GWAS using 277 diverse inbred lines was processed to validate the mapped QTL and to identify additional head smut resistance associations. A total of 58 associated SNPs were detected, which were distributed in 31 independent regions. SNPs with significant association to head smut resistance were detected within the q2.09HR and q5.03HR regions, confirming the linkage mapping results. It was also observed that both additive and epistastic effects determine the genetic architecture of head smut resistance in maize. As shown in this study, the combined strategy of linkage mapping and association analysis is a powerful approach in QTL dissection for disease resistance in maize.

  17. Construction of a high-density genetic map using specific length amplified fragment markers and identification of a quantitative trait locus for anthracnose resistance in walnut (Juglans regia L.).

    Science.gov (United States)

    Zhu, Yufeng; Yin, Yanfei; Yang, Keqiang; Li, Jihong; Sang, Yalin; Huang, Long; Fan, Shu

    2015-08-18

    Walnut (Juglans regia, 2n = 32, approximately 606 Mb per 1C genome) is an economically important tree crop. Resistance to anthracnose, caused by Colletotrichum gloeosporioides, is a major objective of walnut genetic improvement in China. The recently developed specific length amplified fragment sequencing (SLAF-seq) is an efficient strategy that can obtain large numbers of markers with sufficient sequence information to construct high-density genetic maps and permits detection of quantitative trait loci (QTLs) for molecular breeding. SLAF-seq generated 161.64 M paired-end reads. 153,820 SLAF markers were obtained, of which 49,174 were polymorphic. 13,635 polymorphic markers were sorted into five segregation types and 2,577 markers of them were used to construct genetic linkage maps: 2,395 of these fell into 16 linkage groups (LGs) for the female map, 448 markers for the male map, and 2,577 markers for the integrated map. Taking into account the size of all LGs, the marker coverage was 2,664.36 cM for the female map, 1,305.58 cM for the male map, and 2,457.82 cM for the integrated map. The average intervals between two adjacent mapped markers were 1.11 cM, 2.91 cM and 0.95 cM for three maps, respectively. 'SNP_only' markers accounted for 89.25% of the markers on the integrated map. Mapping markers contained 5,043 single nucleotide polymorphisms (SNPs) loci, which corresponded to two SNP loci per SLAF marker. According to the integrated map, we used interval mapping (Logarithm of odds, LOD > 3.0) to detect our quantitative trait. One QTL was detected for anthracnose resistance. The interval of this QTL ranged from 165.51 cM to 176.33 cM on LG14, and ten markers in this interval that were above the threshold value were considered to be linked markers to the anthracnose resistance trait. The phenotypic variance explained by each marker ranged from 16.2 to 19.9%, and their LOD scores varied from 3.22 to 4.04. High-density genetic maps for walnut containing 16

  18. Testing for linkage disequilibrium in the New Zealand radiata pine breeding population

    Science.gov (United States)

    S. Kumar; Craig Echt; P.L. Wilcox; T.E. Richardson

    2004-01-01

    Linkage analysis is commonly uscd to find marker-trait associations within the full-sib families of forest tree and other species. Study of marker-trait associations at the population level is termed linkage-disequilibrium (LD) mapping. A female-tester design comprising 200 full-sib families generated by crossing 40 pollen parents with five female parents was used to...

  19. Polymorphic human (CTAT)n microsatellite provides a conserved linkage marker for mouse mutants causing cleft palate, vestibular defects, obesity and ataxia

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, A.J.; Burgess, D.L.; Kohrman, D. [Univ. of MIchigan, Ann Arbor, MI (United States)] [and others

    1994-09-01

    The Twirler mutation (Tw) causing cleft palate {plus_minus} cleft lip, vestibular defects and obesity is located within 0.5 cM of an ataxia locus (ax) on mouse chromosome 18. We identified a transgene-induced insertional mutation with vestibular and craniofacial defects that appears to be a new allele of Twirler. Mouse DNA flanking the transgene insertion site was isolated from a cosmid library. An evolutionarily conserved, zoo blot positive cosmid subclone was used to probe a human {lambda} genomic library. From the sequence of a highly homologous human {lambda} clone, we designed STS primers and screened a human P1 library. DNA from two positive P1 clones was hybridized with simple sequence probes, and a (CTAT){sub 12} repeat was detected. Analysis of 62 CEPH parents with primers flanking the repeat identified six alleles containing 9 to 14 copies of the repeat, at frequencies of 0.17, 0.17, 0.17, 0.27, 0.15 and 0.07, respectively. The observed heterozygosity was 49/62 with a calculated PIC value of 0.76. This polymorphic microsatellite marker, designated Umi3, was mapped to the predicted conserved human linkage group by analysis of somatic cell hybrid panels. The anticipated short distance between Umi3 and the disease genes will facilitate detection of linkage in small families. We would like to type appropriate human pedigrees with Umi3 in order to identify patients with inherited disorders homologous to the mouse mutations Twirler and ataxia.

  20. QTL mapping of soybean oil content for marker-assisted selection in plant breeding program.

    Science.gov (United States)

    Leite, D C; Pinheiro, J B; Campos, J B; Di Mauro, A O; Unêda-Trevisoli, S H

    2016-03-18

    The present study was undertaken to detect and map the quantitative trait loci (QTL) related to soybean oil content. We used 244 progenies derived from a bi-parental cross of the Lineage 69 (from Universidade Estadual Paulista "Júlio de Mesquita Filho"/Faculdade de Ciências Agrárias e Veterinárias - Breeding Program) and Tucunaré cultivar. A total of 358 simple sequence repeat (SSR; microsatellite) markers were used to investigate the polymorphism between the parental lines, and for the polymorphic lines all the F2 individuals were tested. Evaluation of the oil content and phenotype was performed with the aid of a Tango equipment by near infra-red reflectance spectroscopy, using single F2 seeds and F2:3 progenies, in triplicate. The data were analyzed by QTL Cartographer program for 56 SSR polymorphic markers. Two oil-content related QTLs were detected on K and H linkage groups. The total phenotypic variation explained by QTLs ranged from 7.8 to 46.75% for oil content. New QTLs were identified for the oil content in addition to those previously identified in other studies. The results reported in this study show that regions different from those already known could be involved in the genetic control of soybean oil content.

  1. Linkage of familial Alzheimer disease to chromosome 14 in two large early-onset pedigrees: effects of marker allele frequencies on lod scores.

    Science.gov (United States)

    Nechiporuk, A; Fain, P; Kort, E; Nee, L E; Frommelt, E; Polinsky, R J; Korenberg, J R; Pulst, S M

    1993-05-01

    Alzheimer disease (AD) is a devastating neurodegenerative disease leading to global dementia. In addition to sporadic forms of AD, familial forms (FAD) have been recognized. Mutations in the amyloid precursor protein (APP) gene on chromosome (CHR) 21 have been shown to cause early-onset AD in a small number of pedigrees. Recently, linkage to markers on CHR 14 has been established in several early-onset FAD pedigrees. We now report lod scores for CHR 14 markers in two large early-onset FAD pedigrees. Pairwise linkage analysis suggested that in these pedigrees the mutation is tightly linked to the loci D14S43 and D14S53. However, assumptions regarding marker allele frequencies had a major and often unpredictable effect on calculated lod scores. Therefore, caution needs to be exercised when single pedigrees are analyzed with marker allele frequencies determined from the literature or from a pool of spouses.

  2. Mapping of A1 conferring resistance to the aphid Amphorophora idaei and dw (dwarfing habit in red raspberry (Rubus idaeus L. using AFLP and microsatellite markers

    Directory of Open Access Journals (Sweden)

    Knight Victoria H

    2007-03-01

    Full Text Available Abstract Background Raspberry breeding programmes worldwide aim to produce improved cultivars to satisfy market demands and within these programmes there are many targets, including increased fruit quality, yield and season, and improved pest and disease resistance and plant habit. The large raspberry aphid, Amphorophora idaei, transmits four viruses and vector resistance is an objective in raspberry breeding. The development of molecular tools that discriminate between aphid resistance genes from different sources will allow the pyramiding of such genes and the development of raspberry varieties with superior pest resistance. We have raised a red raspberry (Rubus idaeus F1 progeny from the cross 'Malling Jewel' × 'Malling Orion' (MJ × MO, which segregates for resistance to biotype 1 of the aphid Amphorophora idaei and for a second phenotypic trait, dwarf habit. These traits are controlled by single genes, denoted (A1 and (dw respectively. Results The progeny of 94 seedlings was scored for the segregation of 95 AFLP and 22 SSR markers and a linkage map was constructed that covers a total genetic distance of 505 cM over seven linkage groups. The average linkage group length was 72.2 cM and there was an average of 17 markers per linkage group, of which at least two were codominant SSRs, allowing comparisons with previously published maps of raspberry. The two phenotypic traits, A1 and dw, mapped to linkage groups 3 and 6 respectively. Conclusion The mapping of A1 will facilitate the discrimination of resistance genes from different sources and the pyramiding of aphid resistance genes in new raspberry cultivars; the mapping of dw will allow further investigations into the genetics of dwarfing habit in Rubus.

  3. Linkage mapping of the gene for Type III collagen (COL3A1) to human chromosome 2q using a VNTR polymorphism

    Energy Technology Data Exchange (ETDEWEB)

    Tiller, G.E.; Polumbo, P.A.; Summar, M.L. (Vanderbilt Univ. Medical Center, Nashville, TN (United States))

    1994-03-15

    The gene for the [alpha]1(III) chain of type III collagen, COL3A1, has been previously mapped to human chromosome 2q24.3-q31 by in situ hybridization. Physical mapping by pulsed-field gel electrophoresis has demonstrated that COL3A1 lies within 35 kb of COL5A2. The authors genotyped the CEPH families at the COL3A2 locus using a pentanucleotide repeat polymorphism within intron 25. They demonstrated significant linkage to 18 anonymous markers as well as the gene for carbamyl phosphate synthetase (CPSI), which had been previously mapped to this region. No recombination was seen between COL3A1 and COL5A2 (Z = 9.93 at [theta] = 0) or D2S24 (Z = 10.55 at [theta] = 0). The locus order is (D2S32-D2S138-D2S148)-(D2S24-COL5A2-COL3A1)-(D2S118-D2S161), with odds of 1:2300 for the next most likely order. These relationships are consistent with the physical mapping of COL3A1 to the distal portion of 2q and place it proximal to CPSI by means of multipoint analysis. These linkage relationships should prove useful in further studies of Ehlers-Danlos syndrome type IV and carbamyl phosphate synthetase I deficiency and provide an additional framework for localizing other genes in this region. 13 refs., 2 figs., 1 tab.

  4. UV-induced mitotic co-segregation of genetic markers in Candida albicans: Evidence for linkage

    International Nuclear Information System (INIS)

    Crandall, M.

    1983-01-01

    Parasexual genetic studies of the medically important yeast Candida albicans were performed using the method of UV-induced mitotic segregation. UV-irradiation of the Hoffmann-La Roche type culture of C. albicans yielded a limited spectrum of mutants at a relatively high fequency. This observation suggested natural heterozygosity. Canavanine-sensitive (CanS) segregants were induced at a frequency of 7.6 . 10 -3 . Double mutants that were both CanS and methionine (Met - ) auxotrophs were induced at a frequency of 7.4 . 10 -3 . The single Met - segregant class was missing indicating linkage. UV-induced CanS or Met - CanS segregants occurred occasionally in twin-sectored colonies. Analyses of the sectors as well as the observed and missing classes of segregants indicated that genes met and can are linked in the cis configuration. The proposed gene order is: centromere - met - can. Thus, it is concluded that the Hoffmann-La Roche strain of C. albicans is naturally heterozygous at two linked loci. These findings are consistent with diploidy. (orig.)

  5. Use of molecular markers in plant breeding = [Het gebruik van moleculaire merkers in de plantenveredeling

    NARCIS (Netherlands)

    Berloo, van R.

    2000-01-01

    Molecular markers provide plant breeding with an important and valuable new source of information. Linkage between molecular markers can be translated to genetic linkage maps, which have become an important tool in plant and animal genetics. Linkage between (quantitative) trait-data and

  6. New generation pharmacogenomic tools: a SNP linkage disequilibrium Map, validated SNP assay resource, and high-throughput instrumentation system for large-scale genetic studies.

    Science.gov (United States)

    De La Vega, Francisco M; Dailey, David; Ziegle, Janet; Williams, Julie; Madden, Dawn; Gilbert, Dennis A

    2002-06-01

    Since public and private efforts announced the first draft of the human genome last year, researchers have reported great numbers of single nucleotide polymorphisms (SNPs). We believe that the availability of well-mapped, quality SNP markers constitutes the gateway to a revolution in genetics and personalized medicine that will lead to better diagnosis and treatment of common complex disorders. A new generation of tools and public SNP resources for pharmacogenomic and genetic studies--specifically for candidate-gene, candidate-region, and whole-genome association studies--will form part of the new scientific landscape. This will only be possible through the greater accessibility of SNP resources and superior high-throughput instrumentation-assay systems that enable affordable, highly productive large-scale genetic studies. We are contributing to this effort by developing a high-quality linkage disequilibrium SNP marker map and an accompanying set of ready-to-use, validated SNP assays across every gene in the human genome. This effort incorporates both the public sequence and SNP data sources, and Celera Genomics' human genome assembly and enormous resource ofphysically mapped SNPs (approximately 4,000,000 unique records). This article discusses our approach and methodology for designing the map, choosing quality SNPs, designing and validating these assays, and obtaining population frequency ofthe polymorphisms. We also discuss an advanced, high-performance SNP assay chemisty--a new generation of the TaqMan probe-based, 5' nuclease assay-and high-throughput instrumentation-software system for large-scale genotyping. We provide the new SNP map and validation information, validated SNP assays and reagents, and instrumentation systems as a novel resource for genetic discoveries.

  7. Selection and validation of potato candidate genes for maturity corrected resistance to Phytophthora infestans based on differential expression combined with SNP association and linkage mapping

    Directory of Open Access Journals (Sweden)

    Meki Shehabu Muktar

    2015-09-01

    Full Text Available Late blight of potato (Solanum tuberosum L. caused by the oomycete Phytophthora infestans (Mont. de Bary, is one of the most important bottlenecks of potato production worldwide. Cultivars with high levels of durable, race unspecific, quantitative resistance are part of a solution to this problem. However, breeding for quantitative resistance is hampered by the correlation between resistance and late plant maturity, which is an undesirable agricultural attribute. The objectives of our research are (i the identification of genes that condition quantitative resistance to P. infestans not compromised by late plant maturity and (ii the discovery of diagnostic single nucleotide polymorphism (SNP markers to be used as molecular tools to increase efficiency and precision of resistance breeding. Twenty two novel candidate genes were selected based on comparative transcript profiling by SuperSAGE (serial analysis of gene expression in groups of plants with contrasting levels of maturity corrected resistance (MCR. Reproducibility of differential expression was tested by quantitative real time PCR and allele specific pyrosequencing in four new sets of genotype pools with contrasting late blight resistance levels, at three infection time points and in three independent infection experiments. Reproducibility of expression patterns ranged from 28% to 97%. Association mapping in a panel of 184 tetraploid cultivars identified SNPs in five candidate genes that were associated with MCR. These SNPs can be used in marker-assisted resistance breeding. Linkage mapping in two half-sib families (n = 111 identified SNPs in three candidate genes that were linked with MCR. The differentially expressed genes that showed association and/or linkage with MCR putatively function in phytosterol synthesis, fatty acid synthesis, asparagine synthesis, chlorophyll synthesis, cell wall modification and in the response to pathogen elicitors.

  8. Association mapping to discover significant marker-trait associations for resistance against fusarium wilt variant 2 in pigeonpea [Cajanus cajan (L.) Millspaugh] using SSR markers.

    Science.gov (United States)

    Patil, Prakash G; Dubey, Jyotirmay; Bohra, Abhishek; Mishra, R K; Saabale, P R; Das, Alok; Rathore, Meenal; Singh, N P

    2017-08-01

    Pigeonpea production is severely constrained by wilt disease caused by Fusarium udum. In the current study, we discover the putative genomic regions that control resistance response to variant 2 of fusarium wilt using association mapping approach. The association panel comprised of 89 diverse pigeonpea genotypes including seven varieties, three landraces and 79 germplasm lines. The panel was screened rigorously for 3 consecutive years (2013-14, 2014-15 and 2015-2016) against variant 2 in a wilt-sick field. A total of 65 pigeonpea specific hypervariable SSR markers (HASSRs) were screened representing seven linkage groups and 29 scaffolds of the pigeonpea genome. A total of 181 alleles were detected, with average values of gene diversity and polymorphism information content (PIC) of 0.55 and 0.47, respectively. Further analysis using model based (STRUCTURE) and distance based (clustering) approaches separated the entire pigeonpea collection into two distinct subgroups (K = 2). The marker trait associations (MTAs) were established based on three-year wilt incidence data and SSR dataset using a unified mixed linear model. Consequently, six SSR markers were identified, which were significantly associated with wilt resistance and explained up to 6% phenotypic variance (PV) across the years. Among these SSRs, HASSR18 was found to be the most stable and significant, accounting for 5-6% PV across the years. To the best of our knowledge, this is the first report of identification of favourable alleles for resistance to variant 2 of Fusarium udum in pigeonpea using association mapping. The SSR markers identified here will greatly facilitate marker assisted resistance breeding against fusarium wilt in pigeonpea.

  9. A second-generation anchored genetic linkage map of the tammar wallaby (Macropus eugenii)

    OpenAIRE

    Patel Hardip R; Wakefield Matthew J; Wei Ke-jun; Webley Lee; Wang Chenwei; Deakin Janine E; Alsop Amber; Marshall Graves Jennifer A; Cooper Desmond W; Nicholas Frank W; Zenger Kyall R

    2011-01-01

    Abstract Background The tammar wallaby, Macropus eugenii, a small kangaroo used for decades for studies of reproduction and metabolism, is the model Australian marsupial for genome sequencing and genetic investigations. The production of a more comprehensive cytogenetically-anchored genetic linkage map will significantly contribute to the deciphering of the tammar wallaby genome. It has great value as a resource to identify novel genes and for comparative studies, and is vital for the ongoing...

  10. +2.71 LOD score at zero recombination is not sufficient for establishing linkage between X-linked mental retardation and X-chromosome markers

    Energy Technology Data Exchange (ETDEWEB)

    Robledo, R.; Melis, P.; Siniscalco, M. [and others

    1996-07-12

    Nonspecific X-linked mental retardation (MRX) is the denomination attributed to the familial type of mental retardation compatible with X-linked inheritance but lacking specific phenotypic manifestations. It is thus to be expected that families falling under such broad definition are genetically heterogeneous in the sense that they may be due to different types of mutations occurring, most probably, at distinct X-chromosome loci. To facilitate a genetic classification of these conditions, the Nomenclature Committee of the Eleventh Human Gene Mapping Workshop proposed to assign a unique MRX-serial number to each family where evidence of linkage with one or more X-chromosome markers had been established with a LOD score of at least +2 at zero recombination. This letter is meant to emphasize the inadequacy of this criterion for a large pedigree where the segregation of the disease has been evaluated against the haplotype constitution of the entire X-chromosome carrying the mutation in question. 12 refs., 2 figs., 1 tab.

  11. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    Science.gov (United States)

    Previous loblolly pine (Pinus taeda L.) genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats), also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective o...

  12. High-resolution mapping reveals linkage between genes in common bean cultivar Ouro Negro conferring resistance to the rust, anthracnose, and angular leaf spot diseases.

    Science.gov (United States)

    Valentini, Giseli; Gonçalves-Vidigal, Maria Celeste; Hurtado-Gonzales, Oscar P; de Lima Castro, Sandra Aparecida; Cregan, Perry B; Song, Qijian; Pastor-Corrales, Marcial A

    2017-08-01

    Co-segregation analysis and high-throughput genotyping using SNP, SSR, and KASP markers demonstrated genetic linkage between Ur-14 and Co-3 4 /Phg-3 loci conferring resistance to the rust, anthracnose and angular leaf spot diseases of common bean. Rust, anthracnose, and angular leaf spot are major diseases of common bean in the Americas and Africa. The cultivar Ouro Negro has the Ur-14 gene that confers broad spectrum resistance to rust and the gene cluster Co-3 4 /Phg-3 containing two tightly linked genes conferring resistance to anthracnose and angular leaf spot, respectively. We used co-segregation analysis and high-throughput genotyping of 179 F 2:3 families from the Rudá (susceptible) × Ouro Negro (resistant) cross-phenotyped separately with races of the rust and anthracnose pathogens. The results confirmed that Ur-14 and Co-3 4 /Phg-3 cluster in Ouro Negro conferred resistance to rust and anthracnose, respectively, and that Ur-14 and the Co-3 4 /Phg-3 cluster were closely linked. Genotyping the F 2:3 families, first with 5398 SNPs on the Illumina BeadChip BARCBEAN6K_3 and with 15 SSR, and eight KASP markers, specifically designed for the candidate region containing Ur-14 and Co-3 4 /Phg-3, permitted the creation of a high-resolution genetic linkage map which revealed that Ur-14 was positioned at 2.2 cM from Co-3 4 /Phg-3 on the short arm of chromosome Pv04 of the common bean genome. Five flanking SSR markers were tightly linked at 0.1 and 0.2 cM from Ur-14, and two flanking KASP markers were tightly linked at 0.1 and 0.3 cM from Co-3 4 /Phg-3. Many other SSR, SNP, and KASP markers were also linked to these genes. These markers will be useful for the development of common bean cultivars combining the important Ur-14 and Co-3 4 /Phg-3 genes conferring resistance to three of the most destructive diseases of common bean.

  13. Linkage and association mapping reveals the genetic basis of brown fibre (Gossypium hirsutum).

    Science.gov (United States)

    Wen, Tianwang; Wu, Mi; Shen, Chao; Gao, Bin; Zhu, De; Zhang, Xianlong; You, Chunyuan; Lin, Zhongxu

    2018-02-24

    Brown fibre cotton is an environmental-friendly resource that plays a key role in the textile industry. However, the fibre quality and yield of natural brown cotton are poor, and fundamental research on brown cotton is relatively scarce. To understand the genetic basis of brown fibre cotton, we constructed linkage and association populations to systematically examine brown fibre accessions. We fine-mapped the brown fibre region, Lc 1 , and dissected it into 2 loci, qBF-A07-1 and qBF-A07-2. The qBF-A07-1 locus mediates the initiation of brown fibre production, whereas the shade of the brown fibre is affected by the interaction between qBF-A07-1 and qBF-A07-2. Gh_A07G2341 and Gh_A07G0100 were identified as candidate genes for qBF-A07-1 and qBF-A07-2, respectively. Haploid analysis of the signals significantly associated with these two loci showed that most tetraploid modern brown cotton accessions exhibit the introgression signature of Gossypium barbadense. We identified 10 quantitative trait loci (QTLs) for fibre yield and 19 QTLs for fibre quality through a genome-wide association study (GWAS) and found that qBF-A07-2 negatively affects fibre yield and quality through an epistatic interaction with qBF-A07-1. This study sheds light on the genetics of fibre colour and lint-related traits in brown fibre cotton, which will guide the elite cultivars breeding of brown fibre cotton. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Admixture mapping of end stage kidney disease genetic susceptibility using estimated mutual information ancestry informative markers

    Directory of Open Access Journals (Sweden)

    Geiger Dan

    2010-10-01

    Full Text Available Abstract Background The question of a genetic contribution to the higher prevalence and incidence of end stage kidney disease (ESKD among African Americans (AA remained unresolved, until recent findings using admixture mapping pointed to the association of a genomic locus on chromosome 22 with this disease phenotype. In the current study we utilize this example to demonstrate the utility of applying a multi-step admixture mapping approach. Methods A multi-step case only admixture mapping study, consisted of the following steps was designed: 1 Assembly of the sample dataset (ESKD AA; 2 Design of the estimated mutual information ancestry informative markers (n = 2016 screening panel 3; Genotyping the sample set whose size was determined by a power analysis (n = 576 appropriate for the initial screening panel; 4 Inference of local ancestry for each individual and identification of regions with increased AA ancestry using two different ancestry inference statistical approaches; 5 Enrichment of the initial screening panel; 6 Power analysis of the enriched panel 7 Genotyping of additional samples. 8 Re-analysis of the genotyping results to identify a genetic risk locus. Results The initial screening phase yielded a significant peak using the ADMIXMAP ancestry inference program applying case only statistics. Subgroup analysis of 299 ESKD patients with no history of diabetes yielded peaks using both the ANCESTRYMAP and ADMIXMAP ancestry inference programs. The significant peak was found on chromosome 22. Genotyping of additional ancestry informative markers on chromosome 22 that took into account linkage disequilibrium in the ancestral populations, and the addition of samples increased the statistical significance of the finding. Conclusions A multi-step admixture mapping analysis of AA ESKD patients replicated the finding of a candidate risk locus on chromosome 22, contributing to the heightened susceptibility of African Americans to develop non

  15. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, S.V.; Nadeau, J.H.; Tanzi, R.E.; Watkins, P.C.; Jagadesh, J.; Taylor, B.A.; Haines, J.L.; Sacchi, N.; Gusella, J.F. (Harvard Medical School, Boston, MA (USA))

    1988-08-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid {beta} precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS.

  16. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17

    International Nuclear Information System (INIS)

    Cheng, S.V.; Nadeau, J.H.; Tanzi, R.E.; Watkins, P.C.; Jagadesh, J.; Taylor, B.A.; Haines, J.L.; Sacchi, N.; Gusella, J.F.

    1988-01-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid β precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS

  17. Fine mapping of a linkage peak with integration of lipid traits identifies novel coronary artery disease genes on chromosome 5

    Directory of Open Access Journals (Sweden)

    Nolan Daniel K

    2012-02-01

    Full Text Available Abstract Background Coronary artery disease (CAD, and one of its intermediate risk factors, dyslipidemia, possess a demonstrable genetic component, although the genetic architecture is incompletely defined. We previously reported a linkage peak on chromosome 5q31-33 for early-onset CAD where the strength of evidence for linkage was increased in families with higher mean low density lipoprotein-cholesterol (LDL-C. Therefore, we sought to fine-map the peak using association mapping of LDL-C as an intermediate disease-related trait to further define the etiology of this linkage peak. The study populations consisted of 1908 individuals from the CATHGEN biorepository of patients undergoing cardiac catheterization; 254 families (N = 827 individuals from the GENECARD familial study of early-onset CAD; and 162 aorta samples harvested from deceased donors. Linkage disequilibrium-tagged SNPs were selected with an average of one SNP per 20 kb for 126.6-160.2 MB (region of highest linkage and less dense spacing (one SNP per 50 kb for the flanking regions (117.7-126.6 and 160.2-167.5 MB and genotyped on all samples using a custom Illumina array. Association analysis of each SNP with LDL-C was performed using multivariable linear regression (CATHGEN and the quantitative trait transmission disequilibrium test (QTDT; GENECARD. SNPs associated with the intermediate quantitative trait, LDL-C, were then assessed for association with CAD (i.e., a qualitative phenotype using linkage and association in the presence of linkage (APL; GENECARD and logistic regression (CATHGEN and aortas. Results We identified four genes with SNPs that showed the strongest and most consistent associations with LDL-C and CAD: EBF1, PPP2R2B, SPOCK1, and PRELID2. The most significant results for association of SNPs with LDL-C were: EBF1, rs6865969, p = 0.01; PPP2R2B, rs2125443, p = 0.005; SPOCK1, rs17600115, p = 0.003; and PRELID2, rs10074645, p = 0.0002. The most significant results for

  18. Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers.

    Science.gov (United States)

    Luo, Meijie; Zhao, Yanxin; Zhang, Ruyang; Xing, Jinfeng; Duan, Minxiao; Li, Jingna; Wang, Naishun; Wang, Wenguang; Zhang, Shasha; Chen, Zhihui; Zhang, Huasheng; Shi, Zi; Song, Wei; Zhao, Jiuran

    2017-08-15

    Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification of the genetic architecture controlling salt tolerance facilitates breeders to select salt tolerant lines. However, the critical quantitative trait loci (QTLs) responsible for the salt tolerance of field-grown maize plants are still unknown. To map the main genetic factors contributing to salt tolerance in mature maize, a double haploid population (240 individuals) and 1317 single nucleotide polymorphism (SNP) markers were employed to produce a genetic linkage map covering 1462.05 cM. Plant height of mature maize cultivated in the saline field (SPH) and plant height-based salt tolerance index (ratio of plant height between saline and control fields, PHI) were used to evaluate salt tolerance of mature maize plants. A major QTL for SPH was detected on Chromosome 1 with the LOD score of 22.4, which explained 31.2% of the phenotypic variation. In addition, the major QTL conditioning PHI was also mapped at the same position on Chromosome 1, and two candidate genes involving in ion homeostasis were identified within the confidence interval of this QTL. The detection of the major QTL in adult maize plant establishes the basis for the map-based cloning of genes associated with salt tolerance and provides a potential target for marker assisted selection in developing maize varieties with salt tolerance.

  19. Identification of Major Quantitative Trait Loci for Seed Oil Content in Soybeans by Combining Linkage and Genome-Wide Association Mapping.

    Science.gov (United States)

    Cao, Yongce; Li, Shuguang; Wang, Zili; Chang, Fangguo; Kong, Jiejie; Gai, Junyi; Zhao, Tuanjie

    2017-01-01

    Soybean oil is the most widely produced vegetable oil in the world and its content in soybean seed is an important quality trait in breeding programs. More than 100 quantitative trait loci (QTLs) for soybean oil content have been identified. However, most of them are genotype specific and/or environment sensitive. Here, we used both a linkage and association mapping methodology to dissect the genetic basis of seed oil content of Chinese soybean cultivars in various environments in the Jiang-Huai River Valley. One recombinant inbred line (RIL) population (NJMN-RIL), with 104 lines developed from a cross between M8108 and NN1138-2 , was planted in five environments to investigate phenotypic data, and a new genetic map with 2,062 specific-locus amplified fragment markers was constructed to map oil content QTLs. A derived F 2 population between MN-5 (a line of NJMN-RIL) and NN1138-2 was also developed to confirm one major QTL. A soybean breeding germplasm population (279 lines) was established to perform a genome-wide association study (GWAS) using 59,845 high-quality single nucleotide polymorphism markers. In the NJMN-RIL population, 8 QTLs were found that explained a range of phenotypic variance from 6.3 to 26.3% in certain planting environments. Among them, qOil-5-1, qOil-10-1 , and qOil-14-1 were detected in different environments, and qOil-5-1 was further confirmed using the secondary F 2 population. Three loci located on chromosomes 5 and 20 were detected in a 2-year long GWAS, and one locus that overlapped with qOil-5-1 was found repeatedly and treated as the same locus. qOil-5-1 was further localized to a linkage disequilibrium block region of approximately 440 kb. These results will not only increase our understanding of the genetic control of seed oil content in soybean, but will also be helpful in marker-assisted selection for breeding high seed oil content soybean and gene cloning to elucidate the mechanisms of seed oil content.

  20. New Hypervariable SSR Markers for Diversity Analysis, Hybrid Purity Testing and Trait Mapping in Pigeonpea [Cajanus cajan (L.) Millspaugh].

    Science.gov (United States)

    Bohra, Abhishek; Jha, Rintu; Pandey, Gaurav; Patil, Prakash G; Saxena, Rachit K; Singh, Indra P; Singh, D; Mishra, R K; Mishra, Ankita; Singh, F; Varshney, Rajeev K; Singh, N P

    2017-01-01

    Draft genome sequence in pigeonpea offers unprecedented opportunities for genomics assisted crop improvement via enabling access to genome-wide genetic markers. In the present study, 421 hypervariable simple sequence repeat (SSR) markers from the pigeonpea genome were screened on a panel of eight pigeonpea genotypes yielding marker validation and polymorphism percentages of 95.24 and 54.11%, respectively. The SSR marker assay uncovered a total of 570 alleles with three as an average number of alleles per marker. Similarly, the mean values for gene diversity and PIC were 0.44 and 0.37, respectively. The number of polymorphic markers ranged from 39 to 89 for different parental combinations. Further, 60 of these SSRs were assayed on 94 genotypes, and model based clustering using STRUCTURE resulted in the identification of the two subpopulations ( K = 2). This remained in close agreement with the clustering patterns inferred from genetic distance (GD)-based approaches i.e., dendrogram, factorial and principal coordinate analysis (PCoA). The AMOVA accounted majority of the genetic variation within groups (89%) in comparison to the variation existing between the groups (11%). A subset of these markers was implicated for hybrid purity testing. We also demonstrated utility of these SSR markers in trait mapping through association and bi-parental linkage analyses. The general linear (GLM) and mixed linear (MLM) models both detected a single SSR marker (CcGM03681) with R 2 = 16.4 as associated with the resistance to Fusarium wilt variant 2. Similarly, by using SSR data in a segregating backcross population, the corresponding restorer-of-fertility ( Rf ) locus was putatively mapped at 39 cM with the marker CcGM08896. However, The marker-trait associations (MTAs) detected here represent a very preliminary type and hence demand deeper investigations for conclusive evidence. Given their ability to reveal polymorphism in simple agarose gels, the hypervariable SSRs are valuable

  1. Development and mapping of a public reference set of SSR markers in Lolium perenne L.

    NARCIS (Netherlands)

    Bach, J.L.; Muylle, H.; Arens, P.F.P.; Andersen, C.H.; Bach Holm, P.; Ghesquiere, M.; Julier, B.; Lubberstedt, T.; Nielsen, K.K.; Riek, de J.; Roldán-Ruiz, I.; Roulund, N.; Taylor, C.; Vosman, B.J.; Barre, P.

    2005-01-01

    We report on the characterization and mapping of 76 simple sequence repeat (SSR) markers for Lolium perenne. These markers are publicly available or obtained either from genomic libraries enriched for SSR motifs or L. perenne expressed sequence tag (EST) clones. Four L. perenne mapping populations

  2. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars

    NARCIS (Netherlands)

    Kraakman, A.T.W.; Niks, R.E.; Berg, van den P.M.M.M.; Stam, P.; Eeuwijk, van F.A.

    2004-01-01

    Associations between markers and complex quantitative traits were investigated in a collection of 146 modern two-row spring barley cultivars, representing the current commercial germ plasm in Europe. Using 236 AFLP markers, associations between markets were found for markers as far apart as 10 cM.

  3. Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality

    Directory of Open Access Journals (Sweden)

    Wobus Ulrich

    2011-01-01

    Full Text Available Abstract Background The increasingly narrow genetic background characteristic of modern crop germplasm presents a challenge for the breeding of cultivars that require adaptation to the anticipated change in climate. Thus, high priority research aims at the identification of relevant allelic variation present both in the crop itself as well as in its progenitors. This study is based on the characterization of genetic variation in barley, with a view to enhancing its response to terminal drought stress. Results The expression patterns of drought regulated genes were monitored during plant ontogeny, mapped and the location of these genes was incorporated into a comprehensive barley SNP linkage map. Haplotypes within a set of 17 starch biosynthesis/degradation genes were defined, and a particularly high level of haplotype variation was uncovered in the genes encoding sucrose synthase (types I and II and starch synthase. The ability of a panel of 50 barley accessions to maintain grain starch content under terminal drought conditions was explored. Conclusion The linkage/expression map is an informative resource in the context of characterizing the response of barley to drought stress. The high level of haplotype variation among starch biosynthesis/degradation genes in the progenitors of cultivated barley shows that domestication and breeding have greatly eroded their allelic diversity in current elite cultivars. Prospective association analysis based on core drought-regulated genes may simplify the process of identifying favourable alleles, and help to understand the genetic basis of the response to terminal drought.

  4. Detection of Sequence Polymorphism in Rubus Occidentalis L. Monomorphic Microsatellite Markers by High Resolution Melting

    Science.gov (United States)

    Microsatellite, or simple sequence repeat (SSR) markers, are valuable as co-dominant genetic markers with a variety of applications such as DNA fingerprinting, linkage mapping, and population structure analysis. Development of microsatellite primers through the identification of appropriate repeate...

  5. Fine mapping analysis confirms and strengthens linkage of four chromosomal regions in familial hypospadias

    NARCIS (Netherlands)

    Soderhall, C.; Korberg, I.B.; Thai, H.T.; Cao, J.; Chen, Y; Zhang, X.; Shulu, Z.; Zanden, L.F.M. van der; Rooij, I.A.L.M. van; Frisen, L.; Roeleveld, N.; Markljung, E.; Kockum, I.; Nordenskjold, A.

    2015-01-01

    Hypospadias is a common male genital malformation and is regarded as a complex disease affected by multiple genetic as well as environmental factors. In a previous genome-wide scan for familial hypospadias, we reported suggestive linkage in nine chromosomal regions. We have extended this analysis by

  6. Linkage disequilibrium mapping of a breast cancer susceptibility locus near RAI/PPPIRI3L/iASPP

    DEFF Research Database (Denmark)

    Nexø, Bjørn A.; Vogel, Ulla Birgitte; Olsen, Anja

    2008-01-01

    mapping. The study groups included 434 postmenopausal breast cancer cases and an identical number of individually matched controls. Methods and Results: Studying one marker at a time, we found a region spanning the gene RAI ( alias PPP1R13L or iASPP) and the 5' portion of XPD to be associated...

  7. Identification and Verification of QTL Associated with Frost Tolerance Using Linkage Mapping and GWAS in Winter Faba Bean.

    Science.gov (United States)

    Sallam, Ahmed; Arbaoui, Mustapha; El-Esawi, Mohamed; Abshire, Nathan; Martsch, Regina

    2016-01-01

    Frost stress is one of the abiotic stresses that causes a significant reduction in winter faba bean yield in Europe. The main objective of this work is to genetically improve frost tolerance in winter faba bean by identifying and validating QTL associated with frost tolerance to be used in marker-assisted selection (MAS). Two different genetic backgrounds were used: a biparental population (BPP) consisting of 101 inbred lines, and 189 genotypes from single seed descent (SSD) from the Gottingen Winter bean Population (GWBP). All experiments were conducted in a frost growth chamber under controlled conditions. Both populations were genotyped using the same set of 189 SNP markers. Visual scoring for frost stress symptoms was used to define frost tolerance in both populations. In addition, leaf fatty acid composition (FAC) and proline content were analyzed in BPP as physiological traits. QTL mapping (for BPP) and genome wide association studies (for GWBP) were performed to detect QTL associated with frost tolerance. High genetic variation between genotypes, and repeatability estimates, were found for all traits. QTL mapping and GWAS identified new putative QTL associated with promising frost tolerance and related traits. A set of 54 SNP markers common in both genetic backgrounds showed a high genetic diversity with polymorphic information content (PIC) ranging from 0.31 to 0.37 and gene diversity ranging from 0.39 to 0.50. This indicates that these markers may be polymorphic for many faba bean populations. Five SNP markers showed a significant marker-trait association with frost tolerance and related traits in both populations. Moreover, synteny analysis between Medicago truncatula (a model legume) and faba bean genomes was performed to identify candidate genes for these markers. Collinearity was evaluated between the faba bean genetic map constructed in this study and the faba bean consensus map, resulting in identifying possible genomic regions in faba bean which may

  8. Identification and Verification of QTL Associated with Frost Tolerance Using Linkage Mapping and GWAS in Winter Faba Bean

    Science.gov (United States)

    Sallam, Ahmed; Arbaoui, Mustapha; El-Esawi, Mohamed; Abshire, Nathan; Martsch, Regina

    2016-01-01

    Frost stress is one of the abiotic stresses that causes a significant reduction in winter faba bean yield in Europe. The main objective of this work is to genetically improve frost tolerance in winter faba bean by identifying and validating QTL associated with frost tolerance to be used in marker-assisted selection (MAS). Two different genetic backgrounds were used: a biparental population (BPP) consisting of 101 inbred lines, and 189 genotypes from single seed descent (SSD) from the Gottingen Winter bean Population (GWBP). All experiments were conducted in a frost growth chamber under controlled conditions. Both populations were genotyped using the same set of 189 SNP markers. Visual scoring for frost stress symptoms was used to define frost tolerance in both populations. In addition, leaf fatty acid composition (FAC) and proline content were analyzed in BPP as physiological traits. QTL mapping (for BPP) and genome wide association studies (for GWBP) were performed to detect QTL associated with frost tolerance. High genetic variation between genotypes, and repeatability estimates, were found for all traits. QTL mapping and GWAS identified new putative QTL associated with promising frost tolerance and related traits. A set of 54 SNP markers common in both genetic backgrounds showed a high genetic diversity with polymorphic information content (PIC) ranging from 0.31 to 0.37 and gene diversity ranging from 0.39 to 0.50. This indicates that these markers may be polymorphic for many faba bean populations. Five SNP markers showed a significant marker-trait association with frost tolerance and related traits in both populations. Moreover, synteny analysis between Medicago truncatula (a model legume) and faba bean genomes was performed to identify candidate genes for these markers. Collinearity was evaluated between the faba bean genetic map constructed in this study and the faba bean consensus map, resulting in identifying possible genomic regions in faba bean which may

  9. Admixture analysis of stocked brown trout populations using mapped microsatellite DNA markers: indigenous trout persist in introgressed populations

    DEFF Research Database (Denmark)

    Hansen, Michael Møller; Mensberg, Karen-Lise Dons

    2009-01-01

    , but resolution is low if genetic differentiation is weak. Here, we analyse stocked brown trout populations represented by historical (1943-1956) and contemporary (2000s) samples, where genetic differentiation between wild populations and stocked trout is weak (pair-wise F-ST of 0.047 and 0.053). By analysing...... a high number of microsatellite DNA markers (50) and making use of linkage map information, we achieve clear identification of admixed and non-admixed trout. Moreover, despite strong population-level admixture by hatchery strain trout in one of the populations (70.8%), non-admixed individuals...... nevertheless persist (7 out of 53 individuals). These remnants of the indigenous population are characterized by later spawning time than the majority of the admixed individuals. We hypothesize that isolation by time mediated by spawning time differences between wild and hatchery strain trout is a major factor...

  10. Development of SSR markers and construction of a linkage map in jute

    Indian Academy of Sciences (India)

    2012-04-13

    Apr 13, 2012 ... (a part of these libraries was also used by us earlier; Mir et al. 2009). Transformation .... Polymorphic information content (PIC) was calculated using ... used as a source of 4088 new recombinant clones that were sequenced ...

  11. Diversity arrays technology (DArT) markers in apple for genetic linkage maps

    NARCIS (Netherlands)

    Schouten, H.J.; Weg, van de W.E.; Carling, J.; Khan, S.A.; McKay, S.J.; Kaauwen, van M.P.W.

    2012-01-01

    Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for

  12. A consensus genetic map for Pinus taeda and Pinus elliottii and extent of linkage disequilibrium in two genotype-phenotype discovery populations of Pinua taeda

    Science.gov (United States)

    Jared W. Westbrook; Vikram E. Chhatre; Le-Shin Wu; Srikar Chamala; Leandro Gomide Neves; Patricio Munoz; Pedro J. Martinez-Garcia; David B. Neale; Matias Kirst; Keithanne Mockaitis; C. Dana Nelson; Gary F. Peter; John M. Davis; Craig S. Echt

    2015-01-01

    A consensus genetic map for Pinus taeda (loblolly pine) and Pinus elliottii (slash pine) was constructed by merging three previously published P. taeda maps with a map from a pseudo-backcross between P. elliottii and P. taeda. The consensus map positioned 3856 markers via...

  13. Association Mapping for Important Agronomic Traits in Safflower (Carthamus tinctorius L.) Core Collection Using Microsatellite Markers

    OpenAIRE

    Heena Ambreen; Shivendra Kumar; Amar Kumar; Manu Agarwal; Arun Jagannath; Shailendra Goel

    2018-01-01

    Carthamus tinctorius L. (safflower) is an important oilseed crop producing seed oil rich in unsaturated fatty acids. Scarcity of identified marker-trait associations is a major limitation toward development of successful marker-assisted breeding programs in safflower. In the present study, a safflower panel (CartAP) comprising 124 accessions derived from two core collections was assayed for its suitability for association mapping. Genotyping of CartAP using microsatellite markers revealed sig...

  14. A third-generation microsatellite-based linkage map of the honey bee, Apis mellifera, and its comparison with the sequence-based physical map.

    Science.gov (United States)

    Solignac, Michel; Mougel, Florence; Vautrin, Dominique; Monnerot, Monique; Cornuet, Jean-Marie

    2007-01-01

    The honey bee is a key model for social behavior and this feature led to the selection of the species for genome sequencing. A genetic map is a necessary companion to the sequence. In addition, because there was originally no physical map for the honey bee genome project, a meiotic map was the only resource for organizing the sequence assembly on the chromosomes. We present the genetic (meiotic) map here and describe the main features that emerged from comparison with the sequence-based physical map. The genetic map of the honey bee is saturated and the chromosomes are oriented from the centromeric to the telomeric regions. The map is based on 2,008 markers and is about 40 Morgans (M) long, resulting in a marker density of one every 2.05 centiMorgans (cM). For the 186 megabases (Mb) of the genome mapped and assembled, this corresponds to a very high average recombination rate of 22.04 cM/Mb. Honey bee meiosis shows a relatively homogeneous recombination rate along and across chromosomes, as well as within and between individuals. Interference is higher than inferred from the Kosambi function of distance. In addition, numerous recombination hotspots are dispersed over the genome. The very large genetic length of the honey bee genome, its small physical size and an almost complete genome sequence with a relatively low number of genes suggest a very promising future for association mapping in the honey bee, particularly as the existence of haploid males allows easy bulk segregant analysis.

  15. Family-based linkage and association mapping reveals novel genes affecting Plum pox virus infection in Arabidopsis thaliana.

    Science.gov (United States)

    Pagny, Gaëlle; Paulstephenraj, Pauline S; Poque, Sylvain; Sicard, Ophélie; Cosson, Patrick; Eyquard, Jean-Philippe; Caballero, Mélodie; Chague, Aurélie; Gourdon, Germain; Negrel, Lise; Candresse, Thierry; Mariette, Stéphanie; Decroocq, Véronique

    2012-11-01

    Sharka is a devastating viral disease caused by the Plum pox virus (PPV) in stone fruit trees and few sources of resistance are known in its natural hosts. Since any knowledge gained from Arabidopsis on plant virus susceptibility factors is likely to be transferable to crop species, Arabidopsis's natural variation was searched for host factors essential for PPV infection. To locate regions of the genome associated with susceptibility to PPV, linkage analysis was performed on six biparental populations as well as on multiparental lines. To refine quantitative trait locus (QTL) mapping, a genome-wide association analysis was carried out using 147 Arabidopsis accessions. Evidence was found for linkage on chromosomes 1, 3 and 5 with restriction of PPV long-distance movement. The most relevant signals occurred within a region at the bottom of chromosome 3, which comprises seven RTM3-like TRAF domain-containing genes. Since the resistance mechanism analyzed here is recessive and the rtm3 knockout mutant is susceptible to PPV infection, it suggests that other gene(s) present in the small identified region encompassing RTM3 are necessary for PPV long-distance movement. In consequence, we report here the occurrence of host factor(s) that are indispensable for virus long-distance movement. © 2012 INRA. New Phytologist © 2012 New Phytologist Trust.

  16. The linkage of Zlib to Teapot for auto-differentiation map extraction and nonlinear analysis

    International Nuclear Information System (INIS)

    Sun, N.; Yan, Y.T.; Pilat, F.; Bourianoff, G.

    1993-05-01

    The differential Lie algebraic numerical library, Zlib has been linked to Teapot, the accelerator simulator code. This makes possible the use of the operational correction features of Teapot to produce a corrected lattice, and then choose either map or thin element-by-element tracking for tracking studies. Thin-element tracking is more accurate but slower than map tracking; therefore, the option of choosing one or the other is very desirable

  17. Development and mapping of DArT markers within the Festuca-Lolium complex

    Czech Academy of Sciences Publication Activity Database

    Kopecký, David; Bartoš, Jan; Lukaszewski, A.; Baird, J. H.; Černoch, V.; Koelliker, R.; Rognli, O. A.; Blois, H.; Caig, V.; Luebberstedt, T.; Studer, B.; Shaw, P.; Doležel, Jaroslav; Kilian, A.

    2009-01-01

    Roč. 10, Art_No_473 (2009), s. 1-11 ISSN 1471-2164 R&D Projects: GA MZe QH71267; GA ČR GP521/07/P479 Institutional research plan: CEZ:AV0Z50380511 Keywords : DIVERSITY ARRAYS TECHNOLOGY * GENETIC-LINKAGE MAP * PERENNIAL RYEGRASS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.759, year: 2009

  18. Identification and reproducibility of diagnostic DNA markers for tuber starch and yield optimization in a novel association mapping population of potato (Solanum tuberosum L.).

    Science.gov (United States)

    Schönhals, E M; Ortega, F; Barandalla, L; Aragones, A; Ruiz de Galarreta, J I; Liao, J-C; Sanetomo, R; Walkemeier, B; Tacke, E; Ritter, E; Gebhardt, C

    2016-04-01

    SNPs in candidate genes Pain - 1, InvCD141 (invertases), SSIV (starch synthase), StCDF1 (transcription factor), LapN (leucine aminopeptidase), and cytoplasm type are associated with potato tuber yield, starch content and/or starch yield. Tuber yield (TY), starch content (TSC), and starch yield (TSY) are complex characters of high importance for the potato crop in general and for industrial starch production in particular. DNA markers associated with superior alleles of genes that control the natural variation of TY, TSC, and TSY could increase precision and speed of breeding new cultivars optimized for potato starch production. Diagnostic DNA markers are identified by association mapping in populations of tetraploid potato varieties and advanced breeding clones. A novel association mapping population of 282 genotypes including varieties, breeding clones and Andean landraces was assembled and field evaluated in Northern Spain for TY, TSC, TSY, tuber number (TN) and tuber weight (TW). The landraces had lower mean values of TY, TW, TN, and TSY. The population was genotyped for 183 microsatellite alleles, 221 single nucleotide polymorphisms (SNPs) in fourteen candidate genes and eight known diagnostic markers for TSC and TSY. Association test statistics including kinship and population structure reproduced five known marker-trait associations of candidate genes and discovered new ones, particularly for tuber yield and starch yield. The inclusion of landraces increased the number of detected marker-trait associations. Integration of the present association mapping results with previous QTL linkage mapping studies for TY, TSC, TSY, TW, TN, and tuberization revealed some hot spots of QTL for these traits in the potato genome. The genomic positions of markers linked or associated with QTL for complex tuber traits suggest high multiplicity and genome wide distribution of the underlying genes.

  19. Fine-scale linkage mapping reveals a small set of candidate genes influencing honey bee grooming behavior in response to Varroa mites.

    Directory of Open Access Journals (Sweden)

    Miguel E Arechavaleta-Velasco

    Full Text Available Populations of honey bees in North America have been experiencing high annual colony mortality for 15-20 years. Many apicultural researchers believe that introduced parasites called Varroa mites (V. destructor are the most important factor in colony deaths. One important resistance mechanism that limits mite population growth in colonies is the ability of some lines of honey bees to groom mites from their bodies. To search for genes influencing this trait, we used an Illumina Bead Station genotyping array to determine the genotypes of several hundred worker bees at over a thousand single-nucleotide polymorphisms in a family that was apparently segregating for alleles influencing this behavior. Linkage analyses provided a genetic map with 1,313 markers anchored to genome sequence. Genotypes were analyzed for association with grooming behavior, measured as the time that individual bees took to initiate grooming after mites were placed on their thoraces. Quantitative-trait-locus interval mapping identified a single chromosomal region that was significant at the chromosome-wide level (p<0.05 on chromosome 5 with a LOD score of 2.72. The 95% confidence interval for quantitative trait locus location contained only 27 genes (honey bee official gene annotation set 2 including Atlastin, Ataxin and Neurexin-1 (AmNrx1, which have potential neurodevelopmental and behavioral effects. Atlastin and Ataxin homologs are associated with neurological diseases in humans. AmNrx1 codes for a presynaptic protein with many alternatively spliced isoforms. Neurexin-1 influences the growth, maintenance and maturation of synapses in the brain, as well as the type of receptors most prominent within synapses. Neurexin-1 has also been associated with autism spectrum disorder and schizophrenia in humans, and self-grooming behavior in mice.

  20. An Efficient Strategy Combining SSR Markers- and Advanced QTL-seq-driven QTL Mapping Unravels Candidate Genes Regulating Grain Weight in Rice.

    Science.gov (United States)

    Daware, Anurag; Das, Sweta; Srivastava, Rishi; Badoni, Saurabh; Singh, Ashok K; Agarwal, Pinky; Parida, Swarup K; Tyagi, Akhilesh K

    2016-01-01

    Development and use of genome-wide informative simple sequence repeat (SSR) markers and novel integrated genomic strategies are vital to drive genomics-assisted breeding applications and for efficient dissection of quantitative trait loci (QTLs) underlying complex traits in rice. The present study developed 6244 genome-wide informative SSR markers exhibiting in silico fragment length polymorphism based on repeat-unit variations among genomic sequences of 11 indica, japonica, aus , and wild rice accessions. These markers were mapped on diverse coding and non-coding sequence components of known cloned/candidate genes annotated from 12 chromosomes and revealed a much higher amplification (97%) and polymorphic potential (88%) along with wider genetic/functional diversity level (16-74% with a mean 53%) especially among accessions belonging to indica cultivar group, suggesting their utility in large-scale genomics-assisted breeding applications in rice. A high-density 3791 SSR markers-anchored genetic linkage map (IR 64 × Sonasal) spanning 2060 cM total map-length with an average inter-marker distance of 0.54 cM was generated. This reference genetic map identified six major genomic regions harboring robust QTLs (31% combined phenotypic variation explained with a 5.7-8.7 LOD) governing grain weight on six rice chromosomes. One strong grain weight major QTL region ( OsqGW5.1 ) was narrowed-down by integrating traditional QTL mapping with high-resolution QTL region-specific integrated SSR and single nucleotide polymorphism markers-based QTL-seq analysis and differential expression profiling. This led us to delineate two natural allelic variants in two known cis -regulatory elements (RAV1AAT and CARGCW8GAT) of glycosyl hydrolase and serine carboxypeptidase genes exhibiting pronounced seed-specific differential regulation in low (Sonasal) and high (IR 64) grain weight mapping parental accessions. Our genome-wide SSR marker resource (polymorphic within/between diverse

  1. Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Gómez Marcela

    2009-12-01

    Full Text Available Abstract Background Expressed sequence tags (ESTs are an important source of gene-based markers such as those based on insertion-deletions (Indels or single-nucleotide polymorphisms (SNPs. Several gel based methods have been reported for the detection of sequence variants, however they have not been widely exploited in common bean, an important legume crop of the developing world. The objectives of this project were to develop and map EST based markers using analysis of single strand conformation polymorphisms (SSCPs, to create a transcript map for common bean and to compare synteny of the common bean map with sequenced chromosomes of other legumes. Results A set of 418 EST based amplicons were evaluated for parental polymorphisms using the SSCP technique and 26% of these presented a clear conformational or size polymorphism between Andean and Mesoamerican genotypes. The amplicon based markers were then used for genetic mapping with segregation analysis performed in the DOR364 × G19833 recombinant inbred line (RIL population. A total of 118 new marker loci were placed into an integrated molecular map for common bean consisting of 288 markers. Of these, 218 were used for synteny analysis and 186 presented homology with segments of the soybean genome with an e-value lower than 7 × 10-12. The synteny analysis with soybean showed a mosaic pattern of syntenic blocks with most segments of any one common bean linkage group associated with two soybean chromosomes. The analysis with Medicago truncatula and Lotus japonicus presented fewer syntenic regions consistent with the more distant phylogenetic relationship between the galegoid and phaseoloid legumes. Conclusion The SSCP technique is a useful and inexpensive alternative to other SNP or Indel detection techniques for saturating the common bean genetic map with functional markers that may be useful in marker assisted selection. In addition, the genetic markers based on ESTs allowed the construction

  2. Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.).

    Science.gov (United States)

    Galeano, Carlos H; Fernández, Andrea C; Gómez, Marcela; Blair, Matthew W

    2009-12-23

    Expressed sequence tags (ESTs) are an important source of gene-based markers such as those based on insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). Several gel based methods have been reported for the detection of sequence variants, however they have not been widely exploited in common bean, an important legume crop of the developing world. The objectives of this project were to develop and map EST based markers using analysis of single strand conformation polymorphisms (SSCPs), to create a transcript map for common bean and to compare synteny of the common bean map with sequenced chromosomes of other legumes. A set of 418 EST based amplicons were evaluated for parental polymorphisms using the SSCP technique and 26% of these presented a clear conformational or size polymorphism between Andean and Mesoamerican genotypes. The amplicon based markers were then used for genetic mapping with segregation analysis performed in the DOR364 x G19833 recombinant inbred line (RIL) population. A total of 118 new marker loci were placed into an integrated molecular map for common bean consisting of 288 markers. Of these, 218 were used for synteny analysis and 186 presented homology with segments of the soybean genome with an e-value lower than 7 x 10-12. The synteny analysis with soybean showed a mosaic pattern of syntenic blocks with most segments of any one common bean linkage group associated with two soybean chromosomes. The analysis with Medicago truncatula and Lotus japonicus presented fewer syntenic regions consistent with the more distant phylogenetic relationship between the galegoid and phaseoloid legumes. The SSCP technique is a useful and inexpensive alternative to other SNP or Indel detection techniques for saturating the common bean genetic map with functional markers that may be useful in marker assisted selection. In addition, the genetic markers based on ESTs allowed the construction of a transcript map and given their high conservation

  3. [Studies of marker screening efficiency and corresponding influencing factors in QTL composite interval mapping].

    Science.gov (United States)

    Gao, Yong-Ming; Wan, Ping

    2002-06-01

    Screening markers efficiently is the foundation of mapping QTLs by composite interval mapping. Main and interaction markers distinguished, besides using background control for genetic variation, could also be used to construct intervals of two-way searching for mapping QTLs with epistasis, which can save a lot of calculation time. Therefore, the efficiency of marker screening would affect power and precision of QTL mapping. A doubled haploid population with 200 individuals and 5 chromosomes was constructed, with 50 markers evenly distributed at 10 cM space. Among a total of 6 QTLs, one was placed on chromosome I, two linked on chromosome II, and the other three linked on chromosome IV. QTL setting included additive effects and epistatic effects of additive x additive, the corresponding QTL interaction effects were set if data were collected under multiple environments. The heritability was assumed to be 0.5 if no special declaration. The power of marker screening by stepwise regression, forward regression, and three methods for random effect prediction, e.g. best linear unbiased prediction (BLUP), linear unbiased prediction (LUP) and adjusted unbiased prediction (AUP), was studied and compared through 100 Monte Carlo simulations. The results indicated that the marker screening power by stepwise regression at 0.1, 0.05 and 0.01 significant level changed from 2% to 68%, the power changed from 2% to 72% by forward regression. The larger the QTL effects, the higher the marker screening power. While the power of marker screening by three random effect prediction was very low, the maximum was only 13%. That suggested that regression methods were much better than those by using the approaches of random effect prediction to identify efficient markers flanking QTLs, and forward selection method was more simple and efficient. The results of simulation study on heritability showed that heightening of both general heritability and interaction heritability of genotype x

  4. MAP17 and SGLT1 protein expression levels as prognostic markers for cervical tumor patient survival.

    Directory of Open Access Journals (Sweden)

    Marco Perez

    Full Text Available MAP17 is a membrane-associated protein that is overexpressed in human tumors. Because the expression of MAP17 increases reactive oxygen species (ROS generation through SGLT1 in cancer cells, in the present work, we investigated whether MAP17 and/or SGLT1 might be markers for the activity of treatments involving oxidative stress, such as cisplatin or radiotherapy. First, we confirmed transcriptional alterations in genes involved in the oxidative stress induced by MAP17 expression in HeLa cervical tumor cells and found that Hela cells expressing MAP17 were more sensitive to therapies that induce ROS than were parental cells. Furthermore, MAP17 increased glucose uptake through SGLT receptors. We then analyzed MAP17 and SGLT1 expression levels in cervical tumors treated with cisplatin plus radiotherapy and correlated the expression levels with patient survival. MAP17 and SGLT1 were expressed in approximately 70% and 50% of cervical tumors of different types, respectively, but they were not expressed in adenoma tumors. Furthermore, there was a significant correlation between MAP17 and SGLT1 expression levels. High levels of either MAP17 or SGLT1 correlated with improved patient survival after treatment. However, the patients with high levels of both MAP17 and SGLT1 survived through the end of this study. Therefore, the combination of high MAP17 and SGLT1 levels is a marker for good prognosis in patients with cervical tumors after cisplatin plus radiotherapy treatment. These results also suggest that the use of MAP17 and SGLT1 markers may identify patients who are likely to exhibit a better response to treatments that boost oxidative stress in other cancer types.

  5. Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): a model of industrial melanism

    Czech Academy of Sciences Publication Activity Database

    Van’t Hof, A. E.; Nguyen, Petr; Dalíková, Martina; Edmonds, N.; Marec, František; Saccheri, I. J.

    2013-01-01

    Roč. 110, č. 3 (2013), s. 283-295 ISSN 0018-067X R&D Projects: GA AV ČR IAA600960925 Grant - others:GA JU(CZ) 137/2010/P Institutional research plan: CEZ:AV0Z50070508 Keywords : synteny mapping * Biston betularia * Bombyx mori Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.804, year: 2013

  6. PCR-RFLPs, linkage and RH mapping of the porcine TGFB1 and TGFBR1 genes

    Czech Academy of Sciences Publication Activity Database

    Kopečný, Michal; Stratil, Antonín; Van Poucke, M.; Bartenschlager, H.; Geldermann, H.; Peelman, L. J.

    2004-01-01

    Roč. 35, - (2004), s. 253-255 ISSN 0268-9146 R&D Projects: GA ČR GP523/01/P124; GA ČR GA523/03/0858; GA AV ČR KSK5052113 Institutional research plan: CEZ:AV0Z5045916 Keywords : gene mapping Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.108, year: 2004

  7. Use of a human chromosome 11 radiation hybrid panel to map markers at 11q13

    International Nuclear Information System (INIS)

    Withers, D.; Richard, C. III; Meeker, T.C.; Maurer, S.; Evans, G.; Myers, R.M.; Cox, D.R.

    1990-01-01

    A human/hamster hybrid cell line containing human chromosome 11 was X-irradiated and 102-independent derivative lines were recovered. These 'radiation hybrids' contain random fragments of human chromosome 11. This radiation hybrid panel was used to score the retention of markers at band 11q13. Statistical analysis of marker co-retention patterns in the radiation hybrid panel permits a preliminary ordering and mapping of the markers used. The best order for six scored markers is: proximal - CD5 - CD20 - PGA - HST - BCL1 - SEA - distal. Additional markers are currently being scored. The six 11q13 markers above are spread over approximately 10-12 mB of DNA. The mapping data has implications for the identification of the bcl-1 gene. bcl-1 is the site of chromosome breakage in translocations associated with B lymphocytic malignancy. bcl-1 markers map at least 4 Mb away from any of four genes previously hypothesized to be activated by such translocations, thereby making them unlikely candidates for activation

  8. Power of non-parametric linkage analysis in mapping genes contributing to human longevity in long-lived sib-pairs

    DEFF Research Database (Denmark)

    Tan, Qihua; Zhao, J H; Iachine, I

    2004-01-01

    This report investigates the power issue in applying the non-parametric linkage analysis of affected sib-pairs (ASP) [Kruglyak and Lander, 1995: Am J Hum Genet 57:439-454] to localize genes that contribute to human longevity using long-lived sib-pairs. Data were simulated by introducing a recently...... developed statistical model for measuring marker-longevity associations [Yashin et al., 1999: Am J Hum Genet 65:1178-1193], enabling direct power comparison between linkage and association approaches. The non-parametric linkage (NPL) scores estimated in the region harboring the causal allele are evaluated...... in case of a dominant effect. Although the power issue may depend heavily on the true genetic nature in maintaining survival, our study suggests that results from small-scale sib-pair investigations should be referred with caution, given the complexity of human longevity....

  9. Linkage of Operational Needs for Spent Nuclear Fuel Disposition to Technology Development Maps

    International Nuclear Information System (INIS)

    Dahl, C. A.

    2002-01-01

    The Department of Energy is preparing spent nuclear fuel (SNF) for interim storage at the major SNF sites. At the same time, work is proceeding to analyze the requirements for disposal of the SNF in a geologic repository, currently proposed to be located at Yucca Mountain in Nevada. To assist with the placement of SNF in either interim storage or the repository, certain technologies must be developed and implemented to assure that the storage can be safely and efficiently achieved. Technology development funding is diffused through a variety of resources within the DOE complex. A tool is required to show the integration of technology development activities with each of the funding sources, show the entities performing the development work, and demonstrate how the technology development assists with the interim storage and final disposition of SNF. A series of requirements for this tool were defined and a tool developed to assist with showing the required information. The tool has taken the form of Technology Development Maps that link development information, funding sources, entities performing development activities, and the material disposition path for each SNF type. These maps will be maintained as living documents to assist with integrating development activities for the SNF program

  10. GeneRecon Users' Manual — A coalescent based tool for fine-scale association mapping

    DEFF Research Database (Denmark)

    Mailund, T

    2006-01-01

    GeneRecon is a software package for linkage disequilibrium mapping using coalescent theory. It is based on Bayesian Markov-chain Monte Carlo (MCMC) method for fine-scale linkage-disequilibrium gene mapping using high-density marker maps. GeneRecon explicitly models the genealogy of a sample of th...

  11. A Larger Chocolate Chip—Development of a 15K Theobroma cacao L. SNP Array to Create High-Density Linkage Maps

    Directory of Open Access Journals (Sweden)

    Donald Livingstone

    2017-12-01

    Full Text Available Cacao (Theobroma cacao L. is an important cash crop in tropical regions around the world and has a rich agronomic history in South America. As a key component in the cosmetic and confectionary industries, millions of people worldwide use products made from cacao, ranging from shampoo to chocolate. An Illumina Infinity II array was created using 13,530 SNPs identified within a small diversity panel of cacao. Of these SNPs, 12,643 derive from variation within annotated cacao genes. The genotypes of 3,072 trees were obtained, including two mapping populations from Ecuador. High-density linkage maps for these two populations were generated and compared to the cacao genome assembly. Phenotypic data from these populations were combined with the linkage maps to identify the QTLs for yield and disease resistance.

  12. A Larger Chocolate Chip-Development of a 15K Theobroma cacao L. SNP Array to Create High-Density Linkage Maps.

    Science.gov (United States)

    Livingstone, Donald; Stack, Conrad; Mustiga, Guiliana M; Rodezno, Dayana C; Suarez, Carmen; Amores, Freddy; Feltus, Frank A; Mockaitis, Keithanne; Cornejo, Omar E; Motamayor, Juan C

    2017-01-01

    Cacao ( Theobroma cacao L.) is an important cash crop in tropical regions around the world and has a rich agronomic history in South America. As a key component in the cosmetic and confectionary industries, millions of people worldwide use products made from cacao, ranging from shampoo to chocolate. An Illumina Infinity II array was created using 13,530 SNPs identified within a small diversity panel of cacao. Of these SNPs, 12,643 derive from variation within annotated cacao genes. The genotypes of 3,072 trees were obtained, including two mapping populations from Ecuador. High-density linkage maps for these two populations were generated and compared to the cacao genome assembly. Phenotypic data from these populations were combined with the linkage maps to identify the QTLs for yield and disease resistance.

  13. Towards a unified genetic map of diploid roses

    NARCIS (Netherlands)

    Spiller, M.; Hibrand-Saint Oyant, L.; Tsai, C.; Byrne, D.H.; Smulders, M.J.M.; Foucher, A.L.J.L.; Debener, T.

    2011-01-01

    We have constructed the first integrated consensus map (ICM) for rose, based on the information of four diploid populations and more than 1,000 initial markers. The single population maps are linked via 59 bridge markers, on average 8.4 per linkage group (LG). The integrated map comprises 597

  14. Development and mapping of DArT markers within the Festuca - Lolium complex

    Science.gov (United States)

    Kopecký, David; Bartoš, Jan; Lukaszewski, Adam J; Baird, James H; Černoch, Vladimír; Kölliker, Roland; Rognli, Odd Arne; Blois, Helene; Caig, Vanessa; Lübberstedt, Thomas; Studer, Bruno; Shaw, Paul; Doležel, Jaroslav; Kilian, Andrzej

    2009-01-01

    Background Grasses are among the most important and widely cultivated plants on Earth. They provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Among cultivated grasses, species within the Festuca-Lolium complex predominate, especially in temperate regions. To facilitate high-throughput genome profiling and genetic mapping within the complex, we have developed a Diversity Arrays Technology (DArT) array for five grass species: F. pratensis, F. arundinacea, F. glaucescens, L. perenne and L. multiflorum. Results The DArTFest array contains 7680 probes derived from methyl-filtered genomic representations. In a first marker discovery experiment performed on 40 genotypes from each species (with the exception of F. glaucescens for which only 7 genotypes were used), we identified 3884 polymorphic markers. The number of DArT markers identified in every single genotype varied from 821 to 1852. To test the usefulness of DArTFest array for physical mapping, DArT markers were assigned to each of the seven chromosomes of F. pratensis using single chromosome substitution lines while recombinants of F. pratensis chromosome 3 were used to allocate the markers to seven chromosome bins. Conclusion The resources developed in this project will facilitate the development of genetic maps in Festuca and Lolium, the analysis on genetic diversity, and the monitoring of the genomic constitution of the Festuca × Lolium hybrids. They will also enable marker-assisted selection for multiple traits or for specific genome regions. PMID:19832973

  15. Molecular mapping of the Pinus monticola Cr2 gene using AFLP and SCAR markers

    Directory of Open Access Journals (Sweden)

    A.K.M. Ekramoddoullah

    2013-12-01

    Full Text Available White pine blister rust (WPBR, caused by Cronartium ribicola, is a devastating disease in five-needle pines. Genetic resistance is an important component of integrated strategies to control WPBR. The major resistance gene Cr2, discovered by Kinloch etal.(1999, is also effective against British Columbia (BC isolates of WPBR (Hunt et al. 2004. Pyramiding Cr2 gene with other resistancegenes is being pursued as a strategy in BC white pine breeding. To facilitate this strategy, we have recently identified a few RAPD markerslinked to Cr2 at one side (Liu et al. 2006. The objective of the present study was to identify amplified fragment length polymorphism(AFLP markers linked to both sides of Cr2 for its more precise apping. Use of the AFLP technique combined with bulked segregant analysis (BSA and haploid segregation analysis allowed the identification of five AFLP markers. Of these five AFLP markers in the Cr2 linkage, markers EacccMccgat-365, EactgMcccac- 290, and EacagEacag-750 werelinked in coupling and EacagMcccag-160r and EacccMccgat-180r in repulsion. Following cloning and sequencing of the AFLP andRAPD markers, specific PCR primers were designed and used in the amplification of sequence characterized amplified region(SCAR markers at both sides of Cr2. EacccMccgat- 365 and RAPD marker U570-843 reported previously were converted into SCARmarkers. These two SCARs segregated in a 1:1 (presence:absence ratio and the scoring cosegregated with their respective AFLP orRAPD marker. The SCAR marker EacccMccgat- 365-scar was positioned at 3.1 Kosambi cM from one side of Cr2 and U570-843-scarlocalized at 1.4 Kosambi cM from other side. Both SCAR markers can be useful in breeding programs with marker-assisted selection procedureto screen for resistance. This study represents the first report of the development of PCR-based sequence-specific markers linkedto blister rust resistance in five-needle pines. These findings may

  16. High-Resolution Genome-Wide Linkage Mapping Identifies Susceptibility Loci for BMI in the Chinese Population

    DEFF Research Database (Denmark)

    Zhang, Dong Feng; Pang, Zengchang; Li, Shuxia

    2012-01-01

    The genetic loci affecting the commonly used BMI have been intensively investigated using linkage approaches in multiple populations. This study aims at performing the first genome-wide linkage scan on BMI in the Chinese population in mainland China with hypothesis that heterogeneity in genetic...... linkage could exist in different ethnic populations. BMI was measured from 126 dizygotic twins in Qingdao municipality who were genotyped using high-resolution Affymetrix Genome-Wide Human SNP arrays containing about 1 million single-nucleotide polymorphisms (SNPs). Nonparametric linkage analysis...... in western countries. Multiple loci showing suggestive linkage were found on chromosome 1 (lod score 2.38 at 242 cM), chromosome 8 (2.48 at 95 cM), and chromosome 14 (2.2 at 89.4 cM). The strong linkage identified in the Chinese subjects that is consistent with that found in populations of European origin...

  17. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers.

    Directory of Open Access Journals (Sweden)

    Huihui Yu

    Full Text Available Huge efforts have been invested in the last two decades to dissect the genetic bases of complex traits including yields of many crop plants, through quantitative trait locus (QTL analyses. However, almost all the studies were based on linkage maps constructed using low-throughput molecular markers, e.g. restriction fragment length polymorphisms (RFLPs and simple sequence repeats (SSRs, thus are mostly of low density and not able to provide precise and complete information about the numbers and locations of the genes or QTLs controlling the traits. In this study, we constructed an ultra-high density genetic map based on high quality single nucleotide polymorphisms (SNPs from low-coverage sequences of a recombinant inbred line (RIL population of rice, generated using new sequencing technology. The quality of the map was assessed by validating the positions of several cloned genes including GS3 and GW5/qSW5, two major QTLs for grain length and grain width respectively, and OsC1, a qualitative trait locus for pigmentation. In all the cases the loci could be precisely resolved to the bins where the genes are located, indicating high quality and accuracy of the map. The SNP map was used to perform QTL analysis for yield and three yield-component traits, number of tillers per plant, number of grains per panicle and grain weight, using data from field trials conducted over years, in comparison to QTL mapping based on RFLPs/SSRs. The SNP map detected more QTLs especially for grain weight, with precise map locations, demonstrating advantages in detecting power and resolution relative to the RFLP/SSR map. Thus this study provided an example for ultra-high density map construction using sequencing technology. Moreover, the results obtained are helpful for understanding the genetic bases of the yield traits and for fine mapping and cloning of QTLs.

  18. Isolation and characterization of polymorphic microsatellite markers ...

    African Journals Online (AJOL)

    Flax (Linum usitatissimum L.) is the third largest natural fiber crop and one of the five major oil crops in the world. ... These novel polymorphic microsatellite loci will be useful in genetic linkage map construction, germplasm classification and identification, gene identification and QTL mapping, and marker-assisted selection ...

  19. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping.

    Science.gov (United States)

    Patil, Gunvant; Vuong, Tri D; Kale, Sandip; Valliyodan, Babu; Deshmukh, Rupesh; Zhu, Chengsong; Wu, Xiaolei; Bai, Yonghe; Yungbluth, Dennis; Lu, Fang; Kumpatla, Siva; Grover Shannon, J; Varshney, Rajeev K; Nguyen, Henry T

    2018-04-04

    The cultivated [Glycine max (L) Merr.] and wild [Glycine soja Siebold & Zucc.] soybean species comprise wide variation in seed composition traits. Compared to wild soybean, cultivated soybean contains low protein, high oil and high sucrose. In this study, an inter-specific population was derived from a cross between G. max (Williams 82) and G. soja (PI 483460B). This recombinant inbred line (RIL) population of 188 lines was sequenced at 0.3x depth. Based on 91,342 single nucleotide polymorphisms (SNPs), recombination events in RILs were defined, and a high-resolution bin map was developed (4,070 bins). In addition to bin mapping, QTL analysis for protein, oil and sucrose was performed using 3,343 polymorphic SNPs (3K-SNP), derived from Illumina Infinium BeadChip sequencing platform. The QTL regions from both platforms were compared and a significant concordance was observed between bin and 3K-SNP markers. Importantly, the bin map derived from next generation sequencing technology enhanced mapping resolution (from 1325 Kb to 50 Kb). A total of 5, 9 and 4 QTLs were identified for protein, oil and sucrose content, respectively and some of the QTLs coincided with soybean domestication related genomic loci. The major QTL for protein and oil was mapped on Chr. 20 (qPro_20) and suggested negative correlation between oil and protein. In terms of sucrose content, a novel and major QTL was identified on Chr. 8 (qSuc_08) and harbors putative genes involved in sugar transport. In addition, genome-wide association (GWAS) using 91,342 SNPs confirmed the genomic loci derived from QTL mapping. A QTL based haplotype using whole genome resequencing of 106 diverse soybean lines identified unique allelic variation in wild soybean that could be utilized to widen the genetic base in cultivated soybean. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. A dense SNP-based linkage map for Atlantic salmon (Salmo salar reveals extended chromosome homeologies and striking differences in sex-specific recombination patterns

    Directory of Open Access Journals (Sweden)

    Lien Sigbjørn

    2011-12-01

    Full Text Available Abstract Background The Atlantic salmon genome is in the process of returning to a diploid state after undergoing a whole genome duplication (WGD event between 25 and100 million years ago. Existing data on the proportion of paralogous sequence variants (PSVs, multisite variants (MSVs and other types of complex sequence variation suggest that the rediplodization phase is far from over. The aims of this study were to construct a high density linkage map for Atlantic salmon, to characterize the extent of rediploidization and to improve our understanding of genetic differences between sexes in this species. Results A linkage map for Atlantic salmon comprising 29 chromosomes and 5650 single nucleotide polymorphisms (SNPs was constructed using genotyping data from 3297 fish belonging to 143 families. Of these, 2696 SNPs were generated from ESTs or other gene associated sequences. Homeologous chromosomal regions were identified through the mapping of duplicated SNPs and through the investigation of syntenic relationships between Atlantic salmon and the reference genome sequence of the threespine stickleback (Gasterosteus aculeatus. The sex-specific linkage maps spanned a total of 2402.3 cM in females and 1746.2 cM in males, highlighting a difference in sex specific recombination rate (1.38:1 which is much lower than previously reported in Atlantic salmon. The sexes, however, displayed striking differences in the distribution of recombination sites within linkage groups, with males showing recombination strongly localized to telomeres. Conclusion The map presented here represents a valuable resource for addressing important questions of interest to evolution (the process of re-diploidization, aquaculture and salmonid life history biology and not least as a resource to aid the assembly of the forthcoming Atlantic salmon reference genome sequence.

  1. A general mixture model for mapping quantitative trait loci by using molecular markers

    NARCIS (Netherlands)

    Jansen, R.C.

    1992-01-01

    In a segregating population a quantitative trait may be considered to follow a mixture of (normal) distributions, the mixing proportions being based on Mendelian segregation rules. A general and flexible mixture model is proposed for mapping quantitative trait loci (QTLs) by using molecular markers.

  2. Towards mapping the Dioscorea genome

    International Nuclear Information System (INIS)

    Terauchi, R.; Kahl, G.

    1998-01-01

    Yams are important starchy tuber crops in (sub-) tropical countries of the world. Despite their importance in the regional economy, no serious attempt has been made toward their improvement. In order to obtain basic knowledge of the genetics of yams, we are trying to establish a linkage map of a wild yam species, Dioscorea tokoro. So far, six allozyme markers, six STMS markers and twenty AFLP markers have been identified. They will be used for linkage mapping of a population comprising 80 progeny obtained from a controlled cross. (author)

  3. Mapping Late Leaf Spot Resistance in Peanut (Arachis hypogaea Using QTL-seq Reveals Markers for Marker-Assisted Selection

    Directory of Open Access Journals (Sweden)

    Josh Clevenger

    2018-02-01

    Full Text Available Late leaf spot (LLS; Cercosporidium personatum is a major fungal disease of cultivated peanut (Arachis hypogaea. A recombinant inbred line population segregating for quantitative field resistance was used to identify quantitative trait loci (QTL using QTL-seq. High rates of false positive SNP calls using established methods in this allotetraploid crop obscured significant QTLs. To resolve this problem, robust parental SNPs were first identified using polyploid-specific SNP identification pipelines, leading to discovery of significant QTLs for LLS resistance. These QTLs were confirmed over 4 years of field data. Selection with markers linked to these QTLs resulted in a significant increase in resistance, showing that these markers can be immediately applied in breeding programs. This study demonstrates that QTL-seq can be used to rapidly identify QTLs controlling highly quantitative traits in polyploid crops with complex genomes. Markers identified can then be deployed in breeding programs, increasing the efficiency of selection using molecular tools.Key Message: Field resistance to late leaf spot is a quantitative trait controlled by many QTLs. Using polyploid-specific methods, QTL-seq is faster and more cost effective than QTL mapping.

  4. Establishment of a molecular genetic map of distal mouse chromosome 1: further definition of a conserved linkage group syntenic with human chromosome 1q.

    Science.gov (United States)

    Seldin, M F; Morse, H C; LeBoeuf, R C; Steinberg, A D

    1988-01-01

    A linkage map of distal mouse chromosome 1 was constructed by restriction fragment length polymorphism analysis of DNAs from seven sets of recombinant inbred (RI) strains. The data obtained with seven probes on Southern hybridization combined with data from previous studies suggest the gene order Cfh, Pep-3/Ren-1,2, Ly-5, Lamb-2, At-3, Apoa-2/Ly-17,Spna-1. These results confirm and extend analyses of a large linkage group which includes genes present on a 20-30 cM span of mouse chromosome 1 and those localized to human chromosome 1q21-32. Moreover, the data indicate similar relative positions of human and mouse complement receptor-related genes REN, CD45, LAMB2, AT3, APOA2, and SPTA. These results suggest that mouse gene analyses may help in detailed mapping of human genes within such a syntenic group.

  5. Genetic characterization and linkage disequilibrium mapping of resistance to gray leaf spot in maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Liyu Shi

    2014-04-01

    Full Text Available Gray leaf spot (GLS, caused by Cercospora zeae-maydis, is an important foliar disease of maize (Zea mays L. worldwide, resistance to which is controlled by multiple quantitative trait loci (QTL. To gain insights into the genetic architecture underlying the resistance to this disease, an association mapping population consisting of 161 inbred lines was evaluated for resistance to GLS in a plant pathology nursery at Shenyang in 2010 and 2011. Subsequently, a genome-wide association study, using 41,101 single-nucleotide polymorphisms (SNPs, identified 51 SNPs significantly (P < 0.001 associated with GLS resistance, which could be converted into 31 QTL. In addition, three candidate genes related to plant defense were identified, including nucleotide-binding-site/leucine-rich repeat, receptor-like kinase genes similar to those involved in basal defense. Two genic SNPs, PZE-103142893 and PZE-109119001, associated with GLS resistance in chromosome bins 3.07 and 9.07, can be used for marker-assisted selection (MAS of GLS resistance. These results provide an important resource for developing molecular markers closely linked with the target trait, enhancing breeding efficiency.

  6. Mapping and marker-assisted selection of a brown planthopper resistance gene bph2 in rice (Oryza sativa L.).

    Science.gov (United States)

    Sun, Li-Hong; Wang, Chun-Ming; Su, Chang-Chao; Liu, Yu-Qiang; Zhai, Hu-Qu; Wan, Jian-Min

    2006-08-01

    Nilaparvata lugens Stål (brown planthopper, BPH), is one of the major insect pests of rice (Oryza sativa L.) in the temperate rice-growing region. In this study, ASD7 harboring a BPH resistance gene bph2 was crossed to a susceptible cultivar C418, a japonica restorer line. BPH resistance was evaluated using 134 F2:3 lines derived from the cross between "ASD7" and "C418". SSR assay and linkage analysis were carried out to detect bph2. As a result, the resistant gene bph2 in ASD7 was successfully mapped between RM7102 and RM463 on the long arm of chromosome 12, with distances of 7.6 cM and 7.2 cM, respectively. Meanwhile, both phenotypic selection and marker-assisted selection (MAS) were conducted in the BC1F1 and BC2F1 populations. Selection efficiencies of RM7102 and RM463 were determined to be 89.9% and 91.2%, respectively. It would be very beneficial for BPH resistance improvement by using MAS of this gene.

  7. Development and mapping of DArT markers within the Festuca - Lolium complex

    Directory of Open Access Journals (Sweden)

    Studer Bruno

    2009-10-01

    Full Text Available Abstract Background Grasses are among the most important and widely cultivated plants on Earth. They provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Among cultivated grasses, species within the Festuca-Lolium complex predominate, especially in temperate regions. To facilitate high-throughput genome profiling and genetic mapping within the complex, we have developed a Diversity Arrays Technology (DArT array for five grass species: F. pratensis, F. arundinacea, F. glaucescens, L. perenne and L. multiflorum. Results The DArTFest array contains 7680 probes derived from methyl-filtered genomic representations. In a first marker discovery experiment performed on 40 genotypes from each species (with the exception of F. glaucescens for which only 7 genotypes were used, we identified 3884 polymorphic markers. The number of DArT markers identified in every single genotype varied from 821 to 1852. To test the usefulness of DArTFest array for physical mapping, DArT markers were assigned to each of the seven chromosomes of F. pratensis using single chromosome substitution lines while recombinants of F. pratensis chromosome 3 were used to allocate the markers to seven chromosome bins. Conclusion The resources developed in this project will facilitate the development of genetic maps in Festuca and Lolium, the analysis on genetic diversity, and the monitoring of the genomic constitution of the Festuca × Lolium hybrids. They will also enable marker-assisted selection for multiple traits or for specific genome regions.

  8. Construction of barley consensus map showing chromosomal ...

    African Journals Online (AJOL)

    In the past, it has been difficult to accurately determine the location of many types of barley molecular markers due to the lack of commonality between international barley linkage maps. In this study, a consensus map of barley was constructed from five different maps (OWB, VxHs, KxM, barley consensus 2 and barley ...

  9. New algorithm improves fine structure of the barley consensus SNP map

    Directory of Open Access Journals (Sweden)

    Endelman Jeffrey B

    2011-08-01

    Full Text Available Abstract Background The need to integrate information from multiple linkage maps is a long-standing problem in genetics. One way to visualize the complex ordinal relationships is with a directed graph, where each vertex in the graph is a bin of markers. When there are no ordering conflicts between the linkage maps, the result is a directed acyclic graph, or DAG, which can then be linearized to produce a consensus map. Results New algorithms for the simplification and linearization of consensus graphs have been implemented as a package for the R computing environment called DAGGER. The simplified consensus graphs produced by DAGGER exactly capture the ordinal relationships present in a series of linkage maps. Using either linear or quadratic programming, DAGGER generates a consensus map with minimum error relative to the linkage maps while remaining ordinally consistent with them. Both linearization methods produce consensus maps that are compressed relative to the mean of the linkage maps. After rescaling, however, the consensus maps had higher accuracy (and higher marker density than the individual linkage maps in genetic simulations. When applied to four barley linkage maps genotyped at nearly 3000 SNP markers, DAGGER produced a consensus map with improved fine structure compared to the existing barley consensus SNP map. The root-mean-squared error between the linkage maps and the DAGGER map was 0.82 cM per marker interval compared to 2.28 cM for the existing consensus map. Examination of the barley hardness locus at the 5HS telomere, for which there is a physical map, confirmed that the DAGGER output was more accurate for fine structure analysis. Conclusions The R package DAGGER is an effective, freely available resource for integrating the information from a set of consistent linkage maps.

  10. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America.

    Science.gov (United States)

    Carroll, Carlos; McRae, Brad H; Brookes, Allen

    2012-02-01

    Centrality metrics evaluate paths between all possible pairwise combinations of sites on a landscape to rank the contribution of each site to facilitating ecological flows across the network of sites. Computational advances now allow application of centrality metrics to landscapes represented as continuous gradients of habitat quality. This avoids the binary classification of landscapes into patch and matrix required by patch-based graph analyses of connectivity. It also avoids the focus on delineating paths between individual pairs of core areas characteristic of most corridor- or linkage-mapping methods of connectivity analysis. Conservation of regional habitat connectivity has the potential to facilitate recovery of the gray wolf (Canis lupus), a species currently recolonizing portions of its historic range in the western United States. We applied 3 contrasting linkage-mapping methods (shortest path, current flow, and minimum-cost-maximum-flow) to spatial data representing wolf habitat to analyze connectivity between wolf populations in central Idaho and Yellowstone National Park (Wyoming). We then applied 3 analogous betweenness centrality metrics to analyze connectivity of wolf habitat throughout the northwestern United States and southwestern Canada to determine where it might be possible to facilitate range expansion and interpopulation dispersal. We developed software to facilitate application of centrality metrics. Shortest-path betweenness centrality identified a minimal network of linkages analogous to those identified by least-cost-path corridor mapping. Current flow and minimum-cost-maximum-flow betweenness centrality identified diffuse networks that included alternative linkages, which will allow greater flexibility in planning. Minimum-cost-maximum-flow betweenness centrality, by integrating both land cost and habitat capacity, allows connectivity to be considered within planning processes that seek to maximize species protection at minimum cost

  11. Fine mapping of breast cancer genome-wide association studies loci in women of African ancestry identifies novel susceptibility markers.

    Science.gov (United States)

    Zheng, Yonglan; Ogundiran, Temidayo O; Falusi, Adeyinka G; Nathanson, Katherine L; John, Esther M; Hennis, Anselm J M; Ambs, Stefan; Domchek, Susan M; Rebbeck, Timothy R; Simon, Michael S; Nemesure, Barbara; Wu, Suh-Yuh; Leske, Maria Cristina; Odetunde, Abayomi; Niu, Qun; Zhang, Jing; Afolabi, Chibuzor; Gamazon, Eric R; Cox, Nancy J; Olopade, Christopher O; Olopade, Olufunmilayo I; Huo, Dezheng

    2013-07-01

    Numerous single nucleotide polymorphisms (SNPs) associated with breast cancer susceptibility have been identified by genome-wide association studies (GWAS). However, these SNPs were primarily discovered and validated in women of European and Asian ancestry. Because linkage disequilibrium is ancestry-dependent and heterogeneous among racial/ethnic populations, we evaluated common genetic variants at 22 GWAS-identified breast cancer susceptibility loci in a pooled sample of 1502 breast cancer cases and 1378 controls of African ancestry. None of the 22 GWAS index SNPs could be validated, challenging the direct generalizability of breast cancer risk variants identified in Caucasians or Asians to other populations. Novel breast cancer risk variants for women of African ancestry were identified in regions including 5p12 (odds ratio [OR] = 1.40, 95% confidence interval [CI] = 1.11-1.76; P = 0.004), 5q11.2 (OR = 1.22, 95% CI = 1.09-1.36; P = 0.00053) and 10p15.1 (OR = 1.22, 95% CI = 1.08-1.38; P = 0.0015). We also found positive association signals in three regions (6q25.1, 10q26.13 and 16q12.1-q12.2) previously confirmed by fine mapping in women of African ancestry. In addition, polygenic model indicated that eight best markers in this study, compared with 22 GWAS-identified SNPs, could better predict breast cancer risk in women of African ancestry (per-allele OR = 1.21, 95% CI = 1.16-1.27; P = 9.7 × 10(-16)). Our results demonstrate that fine mapping is a powerful approach to better characterize the breast cancer risk alleles in diverse populations. Future studies and new GWAS in women of African ancestry hold promise to discover additional variants for breast cancer susceptibility with clinical implications throughout the African diaspora.

  12. Testing association and linkage using affected-sib-parent study designs.

    Science.gov (United States)

    Millstein, Joshua; Siegmund, Kimberly D; Conti, David V; Gauderman, W James

    2005-11-01

    We have developed a method for jointly testing linkage and association using data from affected sib pairs and their parents. We specify a conditional logistic regression model with two covariates, one that quantifies association (either direct association or indirect association via linkage disequilibrium), and a second that quantifies linkage. The latter covariate is computed based on expected identity-by-descend (ibd) sharing of marker alleles between siblings. In addition to a joint test of linkage and association, our general framework can be used to obtain a linkage test comparable to the mean test (Blackwelder and Elston [1985] Genet. Epidemiol. 2:85-97), and an association test comparable to the Family-Based Association Test (FBAT; Rabinowitz and Laird [2000] Hum. Hered. 50:211-223). We present simulation results demonstrating that our joint test can be more powerful than some standard tests of linkage or association. For example, with a relative risk of 2.7 per variant allele at a disease locus, the estimated power to detect a nearby marker with a modest level of LD was 58.1% by the mean test (linkage only), 69.8% by FBAT, and 82.5% by our joint test of linkage and association. Our model can also be used to obtain tests of linkage conditional on association and association conditional on linkage, which can be helpful in fine mapping. Copyright 2005 Wiley-Liss, Inc.

  13. Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci

    Directory of Open Access Journals (Sweden)

    Sehgal Deepmala

    2012-01-01

    Full Text Available Abstract Background Identification of genes underlying drought tolerance (DT quantitative trait loci (QTLs will facilitate understanding of molecular mechanisms of drought tolerance, and also will accelerate genetic improvement of pearl millet through marker-assisted selection. We report a map based on genes with assigned functional roles in plant adaptation to drought and other abiotic stresses and demonstrate its use in identifying candidate genes underlying a major DT-QTL. Results Seventy five single nucleotide polymorphism (SNP and conserved intron spanning primer (CISP markers were developed from available expressed sequence tags (ESTs using four genotypes, H 77/833-2, PRLT 2/89-33, ICMR 01029 and ICMR 01004, representing parents of two mapping populations. A total of 228 SNPs were obtained from 30.5 kb sequenced region resulting in a SNP frequency of 1/134 bp. The positions of major pearl millet linkage group (LG 2 DT-QTLs (reported from crosses H 77/833-2 × PRLT 2/89-33 and 841B × 863B were added to the present consensus function map which identified 18 genes, coding for PSI reaction center subunit III, PHYC, actin, alanine glyoxylate aminotransferase, uridylate kinase, acyl-CoA oxidase, dipeptidyl peptidase IV, MADS-box, serine/threonine protein kinase, ubiquitin conjugating enzyme, zinc finger C- × 8-C × 5-C × 3-H type, Hd3, acetyl CoA carboxylase, chlorophyll a/b binding protein, photolyase, protein phosphatase1 regulatory subunit SDS22 and two hypothetical proteins, co-mapping in this DT-QTL interval. Many of these candidate genes were found to have significant association with QTLs of grain yield, flowering time and leaf rolling under drought stress conditions. Conclusions We have exploited available pearl millet EST sequences to generate a mapped resource of seventy five new gene-based markers for pearl millet and demonstrated its use in identifying candidate genes underlying a major DT-QTL in this species. The reported gene

  14. Identification of Sex-determining Loci in Pacific White Shrimp Litopeneaus vannamei Using Linkage and Association Analysis.

    Science.gov (United States)

    Yu, Yang; Zhang, Xiaojun; Yuan, Jianbo; Wang, Quanchao; Li, Shihao; Huang, Hao; Li, Fuhua; Xiang, Jianhai

    2017-06-01

    The Pacific white shrimp Litopenaeus vannamei is a predominant aquaculture shrimp species in the world. Like other animals, the L. vannamei exhibited sexual dimorphism in growth trait. Mapping of the sex-determining locus will be very helpful to clarify the sex determination system and further benefit the shrimp aquaculture industry towards the production of mono-sex stocks. Based on the data used for high-density linkage map construction, linkage-mapping analysis was conducted. The sex determination region was mapped in linkage group (LG) 18. A large region from 0 to 21.205 cM in LG18 showed significant association with sex. However, none of the markers in this region showed complete association with sex in the other populations. So an association analysis was designed using the female parent, pool of female progenies, male parent, and pool of male progenies. Markers were de novo developed and those showing significant differences between female and male pools were identified. Among them, three sex-associated markers including one fully associated marker were identified. Integration of linkage and association analysis showed that the sex determination region was fine-mapped in a small region along LG18. The identified sex-associated marker can be used for the sex detection of this species at genetic level. The fine-mapped sex-determining region will contribute to the mapping of sex-determining gene and help to clarify sex determination system for L. vannamei.

  15. Transferability of Rubus Microsatellite Markers for use in Black Raspberry

    Science.gov (United States)

    Microsatellites or simple sequence repeats (SSRs) are valuable as co-dominant genetic markers with a variety of applications such as DNA fingerprinting, linkage mapping, and population structure analysis. To date, SSR marker development in Rubus has focused on red raspberry (Rubus idaeus L., subgenu...

  16. Markers

    Science.gov (United States)

    Healthy Schools Network, Inc., 2011

    2011-01-01

    Dry erase whiteboards come with toxic dry erase markers and toxic cleaning products. Dry erase markers labeled "nontoxic" are not free of toxic chemicals and can cause health problems. Children are especially vulnerable to environmental health hazards; moreover, schools commonly have problems with indoor air pollution, as they are more densely…

  17. Construction of high-quality recombination maps with low-coverage genomic sequencing for joint linkage analysis in maize

    Science.gov (United States)

    A genome-wide association study (GWAS) is the foremost strategy used for finding genes that control human diseases and agriculturally important traits, but it often reports false positives. In contrast, its complementary method, linkage analysis, provides direct genetic confirmation, but with limite...

  18. Association Mapping for Important Agronomic Traits in Safflower (Carthamus tinctorius L. Core Collection Using Microsatellite Markers

    Directory of Open Access Journals (Sweden)

    Heena Ambreen

    2018-03-01

    Full Text Available Carthamus tinctorius L. (safflower is an important oilseed crop producing seed oil rich in unsaturated fatty acids. Scarcity of identified marker-trait associations is a major limitation toward development of successful marker-assisted breeding programs in safflower. In the present study, a safflower panel (CartAP comprising 124 accessions derived from two core collections was assayed for its suitability for association mapping. Genotyping of CartAP using microsatellite markers revealed significant genetic diversity indicated by Shannon information index (H = 0.7537 and Nei's expected heterozygosity (I = 0.4432. In Principal Coordinate Analysis, the CartAP accessions were distributed homogeneously in all quadrants indicating their diverse nature. Distance-based Neighbor Joining analysis did not delineate the CartAP accessions in consonance with their geographical origin. Bayesian analysis of population structure of CartAP demonstrated the unstructured nature of the association panel. Kinship analysis at population (Gij and individual level (Fij revealed absence of or weak relatedness between the CartAP accessions. The above parameters established the suitability of CartAP for association mapping. We performed association mapping using phenotypic data for eight traits of agronomic value (viz., seed oil content, oleic acid, linoleic acid, plant height, number of primary branches, number of capitula per plant, 100-seed weight and days to 50% flowering available for two growing seasons (2011–2012 and 2012–2013 through General Linear Model and Mixed Linear Model. Our study identified ninety-six significant marker-trait associations (MTAs; P < 0.05 of which, several MTAs with correlation coefficient (R2 > 10% were consistently represented in both models and in both seasons for traits viz., oil content, oleic acid content, linoleic acid content and number of primary branches. Several MTAs with high R2-values were detected either in a majority or in

  19. Association Mapping for Important Agronomic Traits in Safflower (Carthamus tinctorius L.) Core Collection Using Microsatellite Markers.

    Science.gov (United States)

    Ambreen, Heena; Kumar, Shivendra; Kumar, Amar; Agarwal, Manu; Jagannath, Arun; Goel, Shailendra

    2018-01-01

    Carthamus tinctorius L. (safflower) is an important oilseed crop producing seed oil rich in unsaturated fatty acids. Scarcity of identified marker-trait associations is a major limitation toward development of successful marker-assisted breeding programs in safflower. In the present study, a safflower panel (CartAP) comprising 124 accessions derived from two core collections was assayed for its suitability for association mapping. Genotyping of CartAP using microsatellite markers revealed significant genetic diversity indicated by Shannon information index ( H = 0.7537) and Nei's expected heterozygosity ( I = 0.4432). In Principal Coordinate Analysis, the CartAP accessions were distributed homogeneously in all quadrants indicating their diverse nature. Distance-based Neighbor Joining analysis did not delineate the CartAP accessions in consonance with their geographical origin. Bayesian analysis of population structure of CartAP demonstrated the unstructured nature of the association panel. Kinship analysis at population ( G ij ) and individual level ( F ij ) revealed absence of or weak relatedness between the CartAP accessions. The above parameters established the suitability of CartAP for association mapping. We performed association mapping using phenotypic data for eight traits of agronomic value ( viz ., seed oil content, oleic acid, linoleic acid, plant height, number of primary branches, number of capitula per plant, 100-seed weight and days to 50% flowering) available for two growing seasons (2011-2012 and 2012-2013) through General Linear Model and Mixed Linear Model. Our study identified ninety-six significant marker-trait associations (MTAs; P 10% were consistently represented in both models and in both seasons for traits viz ., oil content, oleic acid content, linoleic acid content and number of primary branches. Several MTAs with high R 2 -values were detected either in a majority or in some environments (models and/or seasons). Many MTAs were also

  20. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa

    NARCIS (Netherlands)

    Choi, H.K.; Kim, D.; Uhm, T.; Limpens, E.H.M.; Lim, H.; Mun, J.H.; Kalo, P.; Penmetsa, R.V.; Seres, A.; Kulikova, O.; Roe, B.A.; Bisseling, T.; Kiss, G.B.; Cook, D.R.

    2004-01-01

    A core genetic map of the legume Medicago truncatula has been established by analyzing the segregation of 288 sequence-characterized genetic markers in an E, population composed of 93 individuals. These molecular markers correspond to 141 ESTs, 80 BAC end sequence tags, and 67 resistance gene

  1. Simple Sequence Repeat (SSR Genetic Linkage Map of D Genome Diploid Cotton Derived from an Interspecific Cross between Gossypium davidsonii and Gossypium klotzschianum

    Directory of Open Access Journals (Sweden)

    Joy Nyangasi Kirungu

    2018-01-01

    Full Text Available The challenge in tetraploid cotton cultivars is the narrow genetic base and therefore, the bottleneck is how to obtain interspecific hybrids and introduce the germplasm directly from wild cotton to elite cultivars. Construction of genetic maps has provided insight into understanding the genome structure, interrelationships between organisms in relation to evolution, and discovery of genes that carry important agronomic traits in plants. In this study, we generated an interspecific hybrid between two wild diploid cottons, Gossypium davidsonii and Gossypium klotzschianum, and genotyped 188 F2:3 populations in order to develop a genetic map. We screened 12,560 SWU Simple Sequence Repeat (SSR primers and obtained 1000 polymorphic markers which accounted for only 8%. A total of 928 polymorphic primers were successfully scored and only 728 were effectively linked across the 13 chromosomes, but with an asymmetrical distribution. The map length was 1480.23 cM, with an average length of 2.182 cM between adjacent markers. A high percentage of the markers on the map developed, and for the physical map of G. raimondii, exhibited highly significant collinearity, with two types of duplication. High level of segregation distortion was observed. A total of 27 key genes were identified with diverse roles in plant hormone signaling, development, and defense reactions. The achievement of developing the F2:3 population and its genetic map constructions may be a landmark in establishing a new tool for the genetic improvement of cultivars from wild plants in cotton. Our map had an increased recombination length compared to other maps developed from other D genome cotton species.

  2. A multifaceted comparison of ArcGIS and MapMarker for automated geocoding

    Directory of Open Access Journals (Sweden)

    Sanjaya Kumar

    2012-11-01

    Full Text Available Geocoding is increasingly being used for public health surveillance and spatial epidemiology studies. Public health departments in the United States of America (USA often use this approach to investigate disease outbreaks and clusters or assign health records to appropriate geographic units. We evaluated two commonly used geocoding software packages, ArcGIS and MapMarker, for automated geocoding of a large number of residential addresses from health administrative data in New York State, USA to better understand their features, performance and limitations. The comparison was based on three metrics of evaluation: completeness (or match rate, geocode similarity and positional accuracy. Of the 551,798 input addresses, 318,302 (57.7% were geocoded by MapMarker and 420,813 (76.3% by the ArcGIS composite address locator. High similarity between the geocodes assigned by the two methods was found, especially in suburban and urban areas. Among addresses with a distance of greater than 100 m between the geocodes assigned by the two packages, the point assigned by ArcGIS was closer to the associated parcel centroid (“true” location compared with that assigned by MapMarker. In addition, the composite address locator in ArcGIS allows users to fully utilise available reference data, which consequently results in better geocoding results. However, the positional differences found were minimal, and a large majority of addresses were placed on the same locations by both geocoding packages. Using both methods and combining the results can maximise match rates and save the time needed for manual geocoding.

  3. A multifaceted comparison of ArcGIS and MapMarker for automated geocoding.

    Science.gov (United States)

    Kumar, Sanjaya; Liu, Ming; Hwang, Syni-An

    2012-11-01

    Geocoding is increasingly being used for public health surveillance and spatial epidemiology studies. Public health departments in the United States of America (USA) often use this approach to investigate disease outbreaks and clusters or assign health records to appropriate geographic units. We evaluated two commonly used geocoding software packages, ArcGIS and MapMarker, for automated geocoding of a large number of residential addresses from health administrative data in New York State, USA to better understand their features, performance and limitations. The comparison was based on three metrics of evaluation: completeness (or match rate), geocode similarity and positional accuracy. Of the 551,798 input addresses, 318,302 (57.7%) were geocoded by MapMarker and 420,813 (76.3%) by the ArcGIS composite address locator. High similarity between the geocodes assigned by the two methods was found, especially in suburban and urban areas. Among addresses with a distance of greater than 100 m between the geocodes assigned by the two packages, the point assigned by ArcGIS was closer to the associated parcel centroid ("true" location) compared with that assigned by MapMarker. In addition, the composite address locator in ArcGIS allows users to fully utilise available reference data, which consequently results in better geocoding results. However, the positional differences found were minimal, and a large majority of addresses were placed on the same locations by both geocoding packages. Using both methods and combining the results can maximise match rates and save the time needed for manual geocoding.

  4. Transcriptome-enabled marker discovery and mapping of plastochron-related genes in Petunia spp.

    Science.gov (United States)

    Guo, Yufang; Wiegert-Rininger, Krystle E; Vallejo, Veronica A; Barry, Cornelius S; Warner, Ryan M

    2015-09-24

    Petunia (Petunia × hybrida), derived from a hybrid between P. axillaris and P. integrifolia, is one of the most economically important bedding plant crops and Petunia spp. serve as model systems for investigating the mechanisms underlying diverse mating systems and pollination syndromes. In addition, we have previously described genetic variation and quantitative trait loci (QTL) related to petunia development rate and morphology, which represent important breeding targets for the floriculture industry to improve crop production and performance. Despite the importance of petunia as a crop, the floriculture industry has been slow to adopt marker assisted selection to facilitate breeding strategies and there remains a limited availability of sequences and molecular markers from the genus compared to other economically important members of the Solanaceae family such as tomato, potato and pepper. Here we report the de novo assembly, annotation and characterization of transcriptomes from P. axillaris, P. exserta and P. integrifolia. Each transcriptome assembly was derived from five tissue libraries (callus, 3-week old seedlings, shoot apices, flowers of mixed developmental stages, and trichomes). A total of 74,573, 54,913, and 104,739 assembled transcripts were recovered from P. axillaris, P. exserta and P. integrifolia, respectively and following removal of multiple isoforms, 32,994 P. axillaris, 30,225 P. exserta, and 33,540 P. integrifolia high quality representative transcripts were extracted for annotation and expression analysis. The transcriptome data was mined for single nucleotide polymorphisms (SNP) and simple sequence repeat (SSR) markers, yielding 89,007 high quality SNPs and 2949 SSRs, respectively. 15,701 SNPs were computationally converted into user-friendly cleaved amplified polymorphic sequence (CAPS) markers and a subset of SNP and CAPS markers were experimentally verified. CAPS markers developed from plastochron-related homologous transcripts

  5. Broad scan linkage analysis in a large Tourette family pedigree

    Energy Technology Data Exchange (ETDEWEB)

    Peiffer, A.; Leppert, M. [Univ. of Utah Health Sciences Center, Salt Lake City, UT (United States); Wetering, B.J.M. van der [Univ. Hospital Rotterdam (Netherlands)

    1994-09-01

    Attempts to find a gene causing Tourette syndrome (TS) using linkage analysis have been unsuccessful even though as much as 65% of the autosomal genetic map has been excluded by the pooled results from several laboratories collaborating worldwide. One reason for this failure may be the misclassification of affection status of marry-in spouses. Specifically, we have found that six unrelated spouses in our Utah TS pedigree suffer from TS, obsessive-compulsive disorder or chronic motor tics. In light of these findings we decided to conduct a complete genomic scan from this Utah kindred with polymorphic markers in three related sibships in which there was no assortative mating. A linkage study assuming autosomal dominant inheritance was done using tetranucleotide repeat markers developed at the University of Utah. We selected markers that were less than 300 bp in size and that gave a heterozygosity of over 70% upon analysis in 4 CEPH families. Results to date with 95 markers run at an interval of 30 cM (covering 61% of the genome) show no evidence of linkage. We intend to extend the coverage to 100% of the genome. Pending completion of this scan, failure to provide evidence of linkage in our TS pedigree might then be attributed to phenotypic misclassification or erroneous assumptions regarding the genetic model of transmission.

  6. Pheno2Geno - High-throughput generation of genetic markers and maps from molecular phenotypes for crosses between inbred strains.

    Science.gov (United States)

    Zych, Konrad; Li, Yang; van der Velde, Joeri K; Joosen, Ronny V L; Ligterink, Wilco; Jansen, Ritsert C; Arends, Danny

    2015-02-19

    Genetic markers and maps are instrumental in quantitative trait locus (QTL) mapping in segregating populations. The resolution of QTL localization depends on the number of informative recombinations in the population and how well they are tagged by markers. Larger populations and denser marker maps are better for detecting and locating QTLs. Marker maps that are initially too sparse can be saturated or derived de novo from high-throughput omics data, (e.g. gene expression, protein or metabolite abundance). If these molecular phenotypes are affected by genetic variation due to a major QTL they will show a clear multimodal distribution. Using this information, phenotypes can be converted into genetic markers. The Pheno2Geno tool uses mixture modeling to select phenotypes and transform them into genetic markers suitable for construction and/or saturation of a genetic map. Pheno2Geno excludes candidate genetic markers that show evidence for multiple possibly epistatically interacting QTL and/or interaction with the environment, in order to provide a set of robust markers for follow-up QTL mapping. We demonstrate the use of Pheno2Geno on gene expression data of 370,000 probes in 148 A. thaliana recombinant inbred lines. Pheno2Geno is able to saturate the existing genetic map, decreasing the average distance between markers from 7.1 cM to 0.89 cM, close to the theoretical limit of 0.68 cM (with 148 individuals we expect a recombination every 100/148=0.68 cM); this pinpointed almost all of the informative recombinations in the population. The Pheno2Geno package makes use of genome-wide molecular profiling and provides a tool for high-throughput de novo map construction and saturation of existing genetic maps. Processing of the showcase dataset takes less than 30 minutes on an average desktop PC. Pheno2Geno improves QTL mapping results at no additional laboratory cost and with minimum computational effort. Its results are formatted for direct use in R/qtl, the leading R

  7. Photo guided sentinel node mapping in breast cancer using marker free photo gamma fusion lymphoscintigraphy

    International Nuclear Information System (INIS)

    Lee, Eun Seong; Chun, In Kook; Ha, Seungn Gyun; Yoon, Hai Jeon; Jung, So Youn; Lee, See Youn; Kim, Seok Won; Lee, Eun Sook; Kim, Tae Yoon; Kim, Kwang Gi; Kim, Tae Sung; Kim, Seok Ki; Lee, Byung Il

    2012-01-01

    Photo gamma fusion lymphoscintigraphy (PGFLS) was developed by overlying a conventional planar gamma image on a photograph for the guidance of sentinel node biopsy. The feasibility and accuracy of PGFLS was assessed in breast cancer patients. A digital camera and a gamma camera were coordinated to obtain photograph and gamma images from the same angle. Using the distance to the object and calibration acquisition with a flat phantom and radioactive markers, PGFLS was performed both in phantom and in patients without fiducial markers. Marker free PGFLS was verified using flat phantom, anthropomorphic phantom with markers simulating sentinel nodes and breast cancer patients. In addition, the depth of the radioactive marker or sentinel node was calculated using two gamma images taken at right angles. The feasibility and accuracy of PGFLS were assessed in terms of mismatch errors of co registration and depth with reference to the data from SPECT/CT. The mismatch error was less than 6mm in the flat phantom image at a distance from 50 to 62cm without misalignment. In the anthropomorphic phantom study, co registration error was 0.42±0.29cm; depth error was 0.51±0.37cm, which was well correlated with the reference value on SPECT/CT (x scale: R'2'=0.99, p<0.01; y scale: R'2'=0.09, p<0.01; depth: R'2'=0.99, p<0.01). In ten patients with breast cancer referred for lympho SPECT/CT, PGFSL enabled photo guided sentinel lymph node mapping with acceptable accuracy (co-registration error, 0.47±0.24cm; depth error, 1.20±0.41cm). The results from PGFSL showed close correlation with those from SPECT/CT (x scale: R'2'=0.99, p<0.01; y scale: R'2'=0.98, p<0/01; depth: R'2'=0.77, p<0.01). The novel and convenient PGFLS technique is clinically feasible, showing acceptable accuracy and providing additional visual and quantitative information for sentinel lymph node mapping. This approach will facilitate photo guided sentinel lymph node dissection in breast cancer

  8. Linkage Map of the Long Arm of Barley Chromosome 3 Using C-Bands and Marker Genes

    DEFF Research Database (Denmark)

    Linde-Laursen, Ib

    1982-01-01

    locations. No recombination was observed between the two proximal C-band locations whereas the two distal locations recombined with a frequency of 12 2 per cent. The three C-band locations were linked with loci cer-zd, uz, and cer-zn, but not with the tightly linked loci Est-1 and Est-4. The order...

  9. Complete physical mapping of IL6 reveals a new marker associated with chronic periodontitis.

    Science.gov (United States)

    Farhat, S B; de Souza, C M; Braosi, A P R; Kim, S H; Tramontina, V A; Papalexiou, V; Olandoski, M; Mira, M T; Luczyszyn, S M; Trevilatto, P C

    2017-04-01

    Interleukin-6 (IL-6) is a powerful stimulator of osteoclast differentiation and bone resorption. Production of IL-6 is modulated by polymorphisms, and higher levels of this cytokine are found locally in patients with chronic periodontitis. In this study we performed a modern approach - Complete physical mapping of the IL6 gene - to identify the polymorphisms associated with chronic periodontitis in a southern Brazilian population sample. One-hundred and nine individuals of both genders (mean age: 41.5 ± 8.5 years) were divided into a study group (56 participants with periodontitis) and a control group (53 individuals without periodontitis). After collection and purification of DNA, nine tag single nucleotide polymorphisms (SNPs; rs1524107, rs2069835, rs2069837, rs2069838, rs2069840, rs2069842, rs2069843, rs2069845 and rs2069849) covering the entire gene were selected according to the information available on the International HapMap Project website and evaluated using real-time PCR. Differences in the distribution of the following parameters were statistically significant between study and control groups: number of teeth (p = 0.030); probing depth (p chronic periodontitis in a Brazilian population in the presence of clinical variables, such as visible plaque, dentist visit frequency and dental floss use, and was suggested for the first time as a marker of susceptibility to chronic periodontitis. Complete physical mapping of IL6 (using tag SNPs) was carried out for the first time, unveiling allele G of polymorphism rs2069837 (located in the second intron of IL6) as a suggestive marker of protection against chronic periodontitis in a Brazilian population. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Transferability of molecular markers from major legumes to Lathyrus spp. for their application in mapping and diversity studies.

    Science.gov (United States)

    Almeida, Nuno Felipe; Trindade Leitão, Susana; Caminero, Constantino; Torres, Ana Maria; Rubiales, Diego; Vaz Patto, Maria Carlota

    2014-01-01

    Lathyrus cicera L. (chickling pea) and L. sativus L. (grass pea) have great potential among grain legumes due to their adaptability to inauspicious environments, high protein content and resistance to serious diseases. Nevertheless, due to its past underused, further activities are required to exploit this potential and to capitalise on the advances in molecular biology that enable improved Lathyrus spp. breeding programmes. In this study we evaluated the transferability of molecular markers developed for closely related legume species to Lathyrus spp. (Medicago truncatula, pea, lentil, faba bean and lupin) and tested the application of those new molecular tools on Lathyrus mapping and diversity studies. Genomic and expressed sequence tag microsatellite, intron-targeted amplified polymorphic, resistance gene analogue and defence-related gene markers were tested. In total 128 (27.7 %) and 132 (28.6 %) molecular markers were successfully cross-amplified, respectively in L. cicera and L. sativus. In total, the efficiency of transferability from genomic microsatellites was 5 %, and from gene-based markers, 55 %. For L. cicera, three cleaved amplified polymorphic sequence markers and one derived cleaved amplified polymorphic sequence marker based on the cross-amplified markers were also developed. Nine of those molecular markers were suitable for mapping in a L. cicera recombinant inbred line population. From the 17 molecular markers tested for diversity analysis, six (35 %) in L. cicera and seven (41 %) in L. sativus were polymorphic and discriminate well all the L. sativus accessions. Additionally, L. cicera accessions were clearly distinguished from L. sativus accessions. This work revealed a high number of transferable molecular markers to be used in current genomic studies in Lathyrus spp. Although their usefulness was higher on diversity studies, they represent the first steps for future comparative mapping involving these species.

  11. A genetic map and germplasm diversity estimation of Mangifera indica (mango) with SNPs

    Science.gov (United States)

    Mango (Mangifera indica) is often referred to as the “King of Fruits”. As the first steps in developing a mango genomics project, we genotyped 582 individuals comprising six mapping populations with 1054 SNP markers. The resulting consensus map had 20 linkage groups defined by 726 SNP markers with...

  12. Identification and Mapping of Simple Sequence Repeat Markers from Common Bean (Phaseolus vulgaris L. Bacterial Artificial Chromosome End Sequences for Genome Characterization and Genetic–Physical Map Integration

    Directory of Open Access Journals (Sweden)

    Juana M. Córdoba

    2010-11-01

    Full Text Available Microsatellite markers or simple sequence repeat (SSR loci are useful for diversity characterization and genetic–physical mapping. Different in silico microsatellite search methods have been developed for mining bacterial artificial chromosome (BAC end sequences for SSRs. The overall goal of this study was genome characterization based on SSRs in 89,017 BAC end sequences (BESs from the G19833 common bean ( L. library. Another objective was to identify new SSR taking into account three tandem motif identification programs (Automated Microsatellite Marker Development [AMMD], Tandem Repeats Finder [TRF], and SSRLocator [SSRL]. Among the microsatellite search engines, SSRL identified the highest number of SSRs; however, when primer design was attempted, the number dropped due to poor primer design regions. Automated Microsatellite Marker Development software identified many SSRs with valuable AT/TA or AG/TC motifs, while TRF found fewer SSRs and produced no primers. A subgroup of 323 AT-rich, di-, and trinucleotide SSRs were selected from the AMMD results and used in a parental survey with DOR364 and G19833, of which 75 could be mapped in the corresponding population; these represented 4052 BAC clones. Together with 92 previously mapped BES- and 114 non-BES-derived markers, a total of 280 SSRs were included in the polymerase chain reaction (PCR-based map, integrating a total of 8232 BAC clones in 162 contigs from the physical map.

  13. BAC-HAPPY mapping (BAP mapping: a new and efficient protocol for physical mapping.

    Directory of Open Access Journals (Sweden)

    Giang T H Vu

    2010-02-01

    Full Text Available Physical and linkage mapping underpin efforts to sequence and characterize the genomes of eukaryotic organisms by providing a skeleton framework for whole genome assembly. Hitherto, linkage and physical "contig" maps were generated independently prior to merging. Here, we develop a new and easy method, BAC HAPPY MAPPING (BAP mapping, that utilizes BAC library pools as a HAPPY mapping panel together with an Mbp-sized DNA panel to integrate the linkage and physical mapping efforts into one pipeline. Using Arabidopsis thaliana as an exemplar, a set of 40 Sequence Tagged Site (STS markers spanning approximately 10% of chromosome 4 were simultaneously assembled onto a BAP map compiled using both a series of BAC pools each comprising 0.7x genome coverage and dilute (0.7x genome samples of sheared genomic DNA. The resultant BAP map overcomes the need for polymorphic loci to separate genetic loci by recombination and allows physical mapping in segments of suppressed recombination that are difficult to analyze using traditional mapping techniques. Even virtual "BAC-HAPPY-mapping" to convert BAC landing data into BAC linkage contigs is possible.

  14. A microsatellite linkage map of striped bass (Morone saxatilis) reveals conserved synteny with the hree-spined stickleback (Gasterosteus aculeatus)

    Science.gov (United States)

    Background: The striped bass (Morone saxatilis) and its relatives (genus Morone) are of great importance to fisheries and aquaculture in North America. As part of a collaborative effort to employ molecular genetic technologies in striped bass breeding programs, nearly 500 microsatellite markers were...

  15. Neuropeptide Y receptor genes on human chromosome 4q31-q32 map to conserved linkage groups on mouse chromosomes 3 and 8

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, C.M.; Frankel, W.N. [Jackson Lab., Bar Harbor, ME (United States); Richards, J.E. [Univ. of Michigan Medical School, Ann Arbor, MI (United States)] [and others

    1997-05-01

    Npy1r and Npy2r, the genes encoding mouse type 1 and type 2 neuropeptide Y receptors, have been mapped by interspecific backcross analysis. Previous studies have localized the human genes encoding these receptors to chromosome 4q31-q32. We have now assigned Npy1r and Npy2r to conserved linkage groups on mouse Chr 8 and Chr 3, respectively, which correspond to the distal region of human chromosome 4q. Using yeast artificial chromosomes, we have estimated the distance between the human genes to be approximately 6 cM. Although ancient tandem duplication events may account for some closely spaced G-protein-coupled receptor genes, the large genetic distance between the human type 1 and type 2 neuropeptide Y receptor genes raises questions about whether this mechanism accounts for their proximity. 20 refs., 1 fig.

  16. Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.)

    OpenAIRE

    Ma, Yu; Coyne, Clarice J; Grusak, Michael A; Mazourek, Michael; Cheng, Peng; Main, Dorrie; McGee, Rebecca J

    2017-01-01

    Background Marker-assisted breeding is now routinely used in major crops to facilitate more efficient cultivar improvement. This has been significantly enabled by the use of next-generation sequencing technology to identify loci and markers associated with traits of interest. While rich in a range of nutritional components, such as protein, mineral nutrients, carbohydrates and several vitamins, pea (Pisum sativum L.), one of the oldest domesticated crops in the world, remains behind many othe...

  17. Reconstructions of human history by mapping dental markers in living Eurasian populations

    Science.gov (United States)

    Kashibadze, Vera F.; Nasonova, Olga G.; Nasonov, Dmitry S.

    2013-01-01

    Using advances in gene geography and anthropophenetics, the phenogeographical method for anthropological research was initiated and developed using dental data. Statistical and cartographical analyses are provided for 498 living Eurasian populations. Mapping principal components supplied evidence for the phene pool structure in Eurasian populations, and for reconstructions of Homo sapiens history on the continent. Longitudinal variability seems to be the most important regularity revealed by principal components analysis (PCA) and mapping, indicating the division of the whole area into western and eastern main provinces. So, the most ancient scenario in the history of Eurasian populations developed from two perspective different groups: a western group related to ancient populations of West Asia and an eastern one rooted in ancestry in South and/or East Asia. In spite of the enormous territory and the revealed divergence, the populations of the continent have undergone wide scale and intensive timeespace interaction. Many details in the revealed landscapes are background to different historical events. Migrations and assimilation are two essential phenomena in Eurasian history: the widespread of the western combination through the whole continent to the Pacific coastline and the movement of the paradoxical combinations of eastern and western markers from South or Central Asia to the east and west. Taking into account that no additional eastern combinations in the total variation in Asian groups have been found, but that mixed or western markers' sets and that eastern dental characteristics are traced in Asia since Homo erectus, the assumption is made in favour of the hetero-level assimilation in the eastern province and of net-like evolution of H. sapiens.

  18. Fine mapping of the rice Bph1 gene, which confers resistance to the brown planthopper (Nilaparvata lugens stal), and development of STS markers for marker-assisted selection.

    Science.gov (United States)

    Cha, Young-Soon; Ji, Hyeonso; Yun, Doh-Won; Ahn, Byoung-Ohg; Lee, Myung Chul; Suh, Seok-Cheol; Lee, Chun Seok; Ahn, Eok Keun; Jeon, Yong-Hee; Jin, Il-Doo; Sohn, Jae-Keun; Koh, Hee-Jong; Eun, Moo-Young

    2008-08-31

    The brown planthopper (BPH) is a major insect pest in rice, and damages these plants by sucking phloem-sap and transmitting viral diseases. Many BPH resistance genes have been identified in indica varieties and wild rice accessions, but none has yet been cloned. In the present study we report fine mapping of the region containing the Bph1 locus, which enabled us to perform marker-aided selection (MAS). We used 273 F8 recombinant inbred lines (RILs) derived from a cross between Cheongcheongbyeo, an indica type variety harboring Bph1 from Mudgo, and Hwayeongbyeo, a BPH susceptible japonica variety. By random amplification of polymorphic DNA (RAPD) analysis using 656 random 10-mer primers, three RAPD markers (OPH09, OPA10 and OPA15) linked to Bph1 were identified and converted to SCAR (sequence characterized amplified region) markers. These markers were found to be contained in two BAC clones derived from chromosome 12: OPH09 on OSJNBa0011B18, and both OPA10 and OPA15 on OSJNBa0040E10. By sequence analysis of ten additional BAC clones evenly distributed between OSJNBa0011B18 and OSJNBa0040E10, we developed 15 STS markers. Of these, pBPH4 and pBPH14 flanked Bph1 at distances of 0.2 cM and 0.8 cM, respectively. The STS markers pBPH9, pBPH19, pBPH20, and pBPH21 co-segregated with Bph1. These markers were shown to be very useful for marker-assisted selection (MAS) in breeding populations of 32 F6 RILs from a cross between Andabyeo and IR71190, and 32 F5 RILs from a cross between Andabyeo and Suwon452.

  19. Prosomeric map of the lamprey forebrain based on calretinin immunocytochemistry, Nissl stain, and ancillary markers.

    Science.gov (United States)

    Pombal, M A; Puelles, L

    1999-11-22

    The structural organization of the lamprey extratelencephalic forebrain is re-examined from the perspective of the prosomeric segmental paradigm. The question asked was whether the prosomeric forebrain model used for gnathostomes is of material advantage for interpreting subdivisions in the lamprey forebrain. To this aim, the main longitudinal and transverse landmarks recognized by the prosomeric model in other vertebrates were identified in Nissl-stained lamprey material. Lines of cytoarchitectural discontinuity and contours of migrated neuronal groups were mapped in a two-dimensional sagittal representation and were also classified according to their radial position. Immunocytochemical mapping of calretinin expression in adjacent sections served to define particular structural units better, in particular, the dorsal thalamus. These data were complemented by numerous other chemoarchitectonic observations obtained with ancillary markers, which identified additional specific formations, subdivisions, or boundaries. Emphasis was placed on studying whether such chemically defined neuronal groups showed boundaries aligned with the postulated inter- or intraprosomeric boundaries. The course of diverse axonal tracts was studied also with regard to their prosomeric topography. This analysis showed that the full prosomeric model applies straightforwardly to the lamprey forebrain. This finding implies that a common segmental and longitudinal organization of the neural tube may be primitive for all vertebrates. Interesting novel aspects appear in the interpretation of the lamprey pretectum, the dorsal and ventral thalami, and the hypothalamus. The topologic continuity of the prosomeric forebrain regions with evaginated or non-evaginated portions of the telencephalon was also examined. Copyright 1999 Wiley-Liss, Inc.

  20. Genome-wide linkage and QTL mapping in porcine F2 families generated from Pietrain, Meishan and Wild Boar crosses

    Czech Academy of Sciences Publication Activity Database

    Geldermann, H.; Müller, E.; Moser, G.; Reiner, G.; Bartenschlager, H.; Čepica, Stanislav; Stratil, Antonín; Kuryl, J.; Moran, C.; Davoli, R.; Brunsch, C.

    2003-01-01

    Roč. 120, č. 6 (2003), s. 363-393 ISSN 0931-2668 R&D Projects: GA AV ČR IA54553; GA ČR GA523/00/0669 Institutional research plan: CEZ:AV0Z5045916 Keywords : QTL mapping Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.634, year: 2003

  1. High resolution melting detects sequence polymorphism in rubus occidentalis L. monomorphic microsatellite markers

    Science.gov (United States)

    Microsatellite, or simple sequence repeat (SSR) markers, are valuable as co-dominant genetic markers with a variety of applications such as DNA fingerprinting, linkage mapping, and population structure analysis. However, primer pairs designed from the regions that flank SSRs often generate fragment...

  2. Linkage disequilibrium in wild mice.

    Directory of Open Access Journals (Sweden)

    Cathy C Laurie

    2007-08-01

    Full Text Available Crosses between laboratory strains of mice provide a powerful way of detecting quantitative trait loci for complex traits related to human disease. Hundreds of these loci have been detected, but only a small number of the underlying causative genes have been identified. The main difficulty is the extensive linkage disequilibrium (LD in intercross progeny and the slow process of fine-scale mapping by traditional methods. Recently, new approaches have been introduced, such as association studies with inbred lines and multigenerational crosses. These approaches are very useful for interval reduction, but generally do not provide single-gene resolution because of strong LD extending over one to several megabases. Here, we investigate the genetic structure of a natural population of mice in Arizona to determine its suitability for fine-scale LD mapping and association studies. There are three main findings: (1 Arizona mice have a high level of genetic variation, which includes a large fraction of the sequence variation present in classical strains of laboratory mice; (2 they show clear evidence of local inbreeding but appear to lack stable population structure across the study area; and (3 LD decays with distance at a rate similar to human populations, which is considerably more rapid than in laboratory populations of mice. Strong associations in Arizona mice are limited primarily to markers less than 100 kb apart, which provides the possibility of fine-scale association mapping at the level of one or a few genes. Although other considerations, such as sample size requirements and marker discovery, are serious issues in the implementation of association studies, the genetic variation and LD results indicate that wild mice could provide a useful tool for identifying genes that cause variation in complex traits.

  3. High Density Linkage Map Construction and QTL Detection for Three Silique-Related Traits in Orychophragmus violaceus Derived Brassica napus Population

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-09-01

    Full Text Available Seeds per silique (SS, seed weight (SW, and silique length (SL are important determinant traits of seed yield potential in rapeseed (Brassica napus L., and are controlled by naturally occurring quantitative trait loci (QTLs. Mapping QTLs to narrow chromosomal regions provides an effective means of characterizing the genetic basis of these complex traits. Orychophragmus violaceus is a crucifer with long siliques, many SS, and heavy seeds. A novel B. napus introgression line with many SS was previously selected from multiple crosses (B. rapa ssp. chinesis × O. violaceus × B. napus. In present study, a doubled haploid (DH population with 167 lines was established from a cross between the introgression line and a line with far fewer SS, in order to detect QTLs for silique-related traits. By screening with a Brassica 60K single nucleotide polymorphism (SNP array, a high-density linkage map consisting of 1,153 bins and spanning a cumulative length of 2,209.1 cM was constructed, using 12,602 high-quality polymorphic SNPs in the DH population. The average recombination bin densities of the A and C subgenomes were 1.7 and 2.4 cM, respectively. 45 QTLs were identified for the three traits in all, which explained 4.0–34.4% of the total phenotypic variation; 20 of them were integrated into three unique QTLs by meta-analysis. These unique QTLs revealed a significant positive correlation between SS and SL and a significant negative correlation between SW and SS, and were mapped onto the linkage groups A05, C08, and C09. A trait-by-trait meta-analysis revealed eight, four, and seven consensus QTLs for SS, SW, and SL, respectively, and five major QTLs (cqSS.A09b, cqSS.C09, cqSW.A05, cqSW.C09, and cqSL.C09 were identified. Five, three, and four QTLs for SS, SW, and SL, respectively, might be novel QTLs because of the existence of alien genetic loci for these traits in the alien introgression. Thirty-eight candidate genes underlying nine QTLs for silique

  4. Candidate Gene Identification with SNP Marker-Based Fine Mapping of Anthracnose Resistance Gene Co-4 in Common Bean.

    Science.gov (United States)

    Burt, Andrew J; William, H Manilal; Perry, Gregory; Khanal, Raja; Pauls, K Peter; Kelly, James D; Navabi, Alireza

    2015-01-01

    Anthracnose, caused by Colletotrichum lindemuthianum, is an important fungal disease of common bean (Phaseolus vulgaris). Alleles at the Co-4 locus confer resistance to a number of races of C. lindemuthianum. A population of 94 F4:5 recombinant inbred lines of a cross between resistant black bean genotype B09197 and susceptible navy bean cultivar Nautica was used to identify markers associated with resistance in bean chromosome 8 (Pv08) where Co-4 is localized. Three SCAR markers with known linkage to Co-4 and a panel of single nucleotide markers were used for genotyping. A refined physical region on Pv08 with significant association with anthracnose resistance identified by markers was used in BLAST searches with the genomic sequence of common bean accession G19833. Thirty two unique annotated candidate genes were identified that spanned a physical region of 936.46 kb. A majority of the annotated genes identified had functional similarity to leucine rich repeats/receptor like kinase domains. Three annotated genes had similarity to 1, 3-β-glucanase domains. There were sequence similarities between some of the annotated genes found in the study and the genes associated with phosphoinositide-specific phosphilipases C associated with Co-x and the COK-4 loci found in previous studies. It is possible that the Co-4 locus is structured as a group of genes with functional domains dominated by protein tyrosine kinase along with leucine rich repeats/nucleotide binding site, phosphilipases C as well as β-glucanases.

  5. PAV markers in Sorghum bicolour

    DEFF Research Database (Denmark)

    Shen, Xin; Liu, Zhiquan; Mocoeur, Anne Raymonde Joelle

    2015-01-01

    Abstract Genic presence/absence variants (PAVs) correlate closely to the phenotypic variation, impacting plant genome sizes and the adaption to the environment. To shed more light on their genome-wide patterns, functions and to test the possibility of using them as molecular markers, we analyzed...... enriched in stress responses and protein modification. We used 325 polymorphic PAVs in two sorghum inbred lines Ji2731 and E-Tian, together with 49 SSR markers, and constructed a genetic map, which consisted of 10 linkage groups corresponding to the 10 chromosomes of sorghum and spanned 1430.3 cM in length...

  6. Population structure revealed by different marker types (SSR or DArT) has an impact on the results of genome-wide association mapping in European barley cultivars

    NARCIS (Netherlands)

    Matthies, I.E.; Hintum, van T.J.L.; Weise, S.; Röder, M.S.

    2012-01-01

    Diversity arrays technology (DArT) and simple sequence repeat (SSR) markers were applied to investigate population structure, extent of linkage disequilibrium and genetic diversity (kinship) on a genome-wide level in European barley (Hordeum vulgare L.) cultivars. A set of 183 varieties could be

  7. Determining the sample size for co-dominant molecular marker-assisted linkage detection for a monogenic qualitative trait by controlling the type-I and type-II errors in a segregating F2 population.

    Science.gov (United States)

    Hühn, M; Piepho, H P

    2003-03-01

    Tests for linkage are usually performed using the lod score method. A critical question in linkage analyses is the choice of sample size. The appropriate sample size depends on the desired type-I error and power of the test. This paper investigates the exact type-I error and power of the lod score method in a segregating F(2) population with co-dominant markers and a qualitative monogenic dominant-recessive trait. For illustration, a disease-resistance trait is considered, where the susceptible allele is recessive. A procedure is suggested for finding the appropriate sample size. It is shown that recessive plants have about twice the information content of dominant plants, so the former should be preferred for linkage detection. In some cases the exact alpha-values for a given nominal alpha may be rather small due to the discrete nature of the sampling distribution in small samples. We show that a gain in power is possible by using exact methods.

  8. Integrated consensus genetic and physical maps of flax (Linum usitatissimum L.).

    Science.gov (United States)

    Cloutier, Sylvie; Ragupathy, Raja; Miranda, Evelyn; Radovanovic, Natasa; Reimer, Elsa; Walichnowski, Andrzej; Ward, Kerry; Rowland, Gordon; Duguid, Scott; Banik, Mitali

    2012-12-01

    Three linkage maps of flax (Linum usitatissimum L.) were constructed from populations CDC Bethune/Macbeth, E1747/Viking and SP2047/UGG5-5 containing between 385 and 469 mapped markers each. The first consensus map of flax was constructed incorporating 770 markers based on 371 shared markers including 114 that were shared by all three populations and 257 shared between any two populations. The 15 linkage group map corresponds to the haploid number of chromosomes of this species. The marker order of the consensus map was largely collinear in all three individual maps but a few local inversions and marker rearrangements spanning short intervals were observed. Segregation distortion was present in all linkage groups which contained 1-52 markers displaying non-Mendelian segregation. The total length of the consensus genetic map is 1,551 cM with a mean marker density of 2.0 cM. A total of 670 markers were anchored to 204 of the 416 fingerprinted contigs of the physical map corresponding to ~274 Mb or 74 % of the estimated flax genome size of 370 Mb. This high resolution consensus map will be a resource for comparative genomics, genome organization, evolution studies and anchoring of the whole genome shotgun sequence.

  9. Towards barcode markers in Fungi: an intron map of Ascomycota mitochondria.

    Science.gov (United States)

    Santamaria, Monica; Vicario, Saverio; Pappadà, Graziano; Scioscia, Gaetano; Scazzocchio, Claudio; Saccone, Cecilia

    2009-06-16

    A standardized and cost-effective molecular identification system is now an urgent need for Fungi owing to their wide involvement in human life quality. In particular the potential use of mitochondrial DNA species markers has been taken in account. Unfortunately, a serious difficulty in the PCR and bioinformatic surveys is due to the presence of mobile introns in almost all the fungal mitochondrial genes. The aim of this work is to verify the incidence of this phenomenon in Ascomycota, testing, at the same time, a new bioinformatic tool for extracting and managing sequence databases annotations, in order to identify the mitochondrial gene regions where introns are missing so as to propose them as species markers. The general trend towards a large occurrence of introns in the mitochondrial genome of Fungi has been confirmed in Ascomycota by an extensive bioinformatic analysis, performed on all the entries concerning 11 mitochondrial protein coding genes and 2 mitochondrial rRNA (ribosomal RNA) specifying genes, belonging to this phylum, available in public nucleotide sequence databases. A new query approach has been developed to retrieve effectively introns information included in these entries. After comparing the new query-based approach with a blast-based procedure, with the aim of designing a faithful Ascomycota mitochondrial intron map, the first method appeared clearly the most accurate. Within this map, despite the large pervasiveness of introns, it is possible to distinguish specific regions comprised in several genes, including the full NADH dehydrogenase subunit 6 (ND6) gene, which could be considered as barcode candidates for Ascomycota due to their paucity of introns and to their length, above 400 bp, comparable to the lower end size of the length range of barcodes successfully used in animals. The development of the new query system described here would answer the pressing requirement to improve drastically the bioinformatics support to the DNA Barcode

  10. Assembly of the Genome of the Disease Vector Aedes aegypti onto a Genetic Linkage Map Allows Mapping of Genes Affecting Disease Transmission

    KAUST Repository

    Juneja, Punita; Osei-Poku, Jewelna; Ho, Yung S.; Ariani, Cristina V.; Palmer, William J.; Pain, Arnab; Jiggins, Francis M.

    2014-01-01

    between two strains of Ae. aegypti, and used these to generate a genetic map. This revealed a high rate of misassemblies in the current genome, where, for example, sequences from different chromosomes were found on the same scaffold. Once these were

  11. Construction of a genetic map using EST-SSR markers and QTL analysis of major agronomic characters in hexaploid sweet potato (Ipomoea batatas (L.) Lam).

    Science.gov (United States)

    Kim, Jin-Hee; Chung, Il Kyung; Kim, Kyung-Min

    2017-01-01

    The Sweet potato, Ipomoea batatas (L.) Lam, is difficult to study in genetics and genomics because it is a hexaploid. The sweet potato study not have been performed domestically or internationally. In this study was performed to construct genetic map and quantitative trait loci (QTL) analysis. A total of 245 EST-SSR markers were developed, and the map was constructed by using 210 of those markers. The total map length was 1508.1 cM, and the mean distance between markers was 7.2 cM. Fifteen characteristics were investigated for QTLs analysis. According to those, the Four QTLs were identified, and The LOD score was 3.0. Further studies need to develop molecular markers in terms of EST-SSR markers for doing to be capable of efficient breeding. The genetic map created here using EST-SSR markers will facilitate planned breeding of sweet potato cultivars with various desirable traits.

  12. Rural food insecurity and poverty mappings and their linkage with water resources in the Limpopo River Basin

    Science.gov (United States)

    Magombeyi, M. S.; Taigbenu, A. E.; Barron, J.

    2016-04-01

    The mappings of poverty and food insecurity were carried out for the rural districts of the four riparian countries (Botswana, Mozambique, South Africa and Zimbabwe) of the Limpopo river basin using the results of national surveys that were conducted between 2003 and 2013. The analysis shows lower range of food insecure persons (0-40%) than poverty stricken persons (0-95%) that is attributable to enhanced government and non-government food safety networks in the basin countries, the dynamic and transitory nature of food insecurity which depends on the timings of the surveys in relation to harvests, markets and food prices, and the limited dimension of food insecurity in relation to poverty which tends to be a more structural and pervasive socio-economic condition. The usefulness of this study in influencing policies and strategies targeted at alleviating poverty and improving rural livelihoods lies with using food insecurity mappings to address short-term socio-economic conditions and poverty mappings to address more structural and long-term deprivations. Using the poverty line of 1.25/day per person (2008-2013) in the basin, Zimbabwe had the highest percentage of 68.7% of its rural population classified as poor, followed by Mozambique with 68.2%, South Africa with 56.1% and Botswana with 20%. While average poverty reduction of 6.4% was observed between 2003 and 2009 in Botswana, its population growth of 20.1% indicated no real poverty reduction. Similar observations are made about Mozambique and Zimbabwe where population growth outstripped poverty reductions. In contrast, both average poverty levels and population increased by 4.3% and 11%, respectively, in South Africa from 2007 to 2010. While areas of high food insecurity and poverty consistently coincide with low water availability, it does not indicate a simple cause-effect relationship between water, poverty and food insecurity. With limited water resources, rural folks in the basin require stronger

  13. Supplementary data: Development of SSR markers and construction ...

    Indian Academy of Sciences (India)

    Supplementary data: Development of SSR markers and construction of a linkage map in jute. Moumita Das, Sumana Banerjee, Raman Dhariwal, Shailendra Vyas, Reyazul R. Mir, Niladri Topdar, Avijit Kundu, Jitendra P. Khurana, Akhilesh K. Tyagi,. Debabrata Sarkar, Mohit K. Sinha, Harindra S. Balyan and Pushpendra K.

  14. Assembly of the Genome of the Disease Vector Aedes aegypti onto a Genetic Linkage Map Allows Mapping of Genes Affecting Disease Transmission

    KAUST Repository

    Juneja, Punita

    2014-01-30

    The mosquito Aedes aegypti transmits some of the most important human arboviruses, including dengue, yellow fever and chikungunya viruses. It has a large genome containing many repetitive sequences, which has resulted in the genome being poorly assembled - there are 4,758 scaffolds, few of which have been assigned to a chromosome. To allow the mapping of genes affecting disease transmission, we have improved the genome assembly by scoring a large number of SNPs in recombinant progeny from a cross between two strains of Ae. aegypti, and used these to generate a genetic map. This revealed a high rate of misassemblies in the current genome, where, for example, sequences from different chromosomes were found on the same scaffold. Once these were corrected, we were able to assign 60% of the genome sequence to chromosomes and approximately order the scaffolds along the chromosome. We found that there are very large regions of suppressed recombination around the centromeres, which can extend to as much as 47% of the chromosome. To illustrate the utility of this new genome assembly, we mapped a gene that makes Ae. aegypti resistant to the human parasite Brugia malayi, and generated a list of candidate genes that could be affecting the trait. © 2014 Juneja et al.

  15. Genetic linkage maps of chicken chromosomes 6, 7, 8, 11 and 13 from a Brazilian resource population Mapas de ligação dos cromossomos 6, 7, 8, 11 e 13 de uma população brasileira de galinha

    Directory of Open Access Journals (Sweden)

    Marcel Ambo

    2008-01-01

    Full Text Available A linkage map is essential not only for quantitative trait loci (QTL mapping, but also for the organization and location of genes along the chromosomes. The present study is part of a project whose major objective is, besides from construction the linkage maps, the whole genome scan for mapping QTL for performance traits in the Brazilian experimental chicken population. Linkage maps of chicken chromosomes 6 to 8, 11 and 13 were constructed based on this population. The population was developed from two generations of crossbreeding between a broiler and a layer line. Fifty-one microsatellite markers were tested, from which 28 were informative: 4, 8, 7, 4 and 5 for chromosomes 6, 7, 8, 11 and 13, respectively. A SNP located in the leptin receptor gene was included for chromosome 8. Ten parental, 8 F1 and 459 F2 chickens from five full-sib families were genotyped with these markers. The number of total informative meioses per locus varied from 232 to 862, and the number of phase-known informative meioses from 0 to 764. Marker orders in the chromosomes coincided with those of the chicken consensus map, except for markers ADL0147 and MCW0213, on chromosome 13, which were inverted. The reduced number of phase-known informative meioses for ADL0147 (150 may be pointed out as a possible cause for this inversion, apart from the relative short distance between the two markers involved in the inversion (10.5 cM.O mapa de ligação além de ser fundamental no mapeamento de locos de características quantitativas (QTLs é importante na organização e localização de genes distribuídos ao longo dos cromossomos. O presente estudo é parte de um trabalho cujo objetivo maior, é a análise de mapeamento de QTLs para características de desempenho no genoma de uma população experimental desenvolvida no Brasil. Com base nesta população foram construídos os mapas de ligação dos cromossomos 6 a 8, 11 e 13 da galinha. A população foi desenvolvida a partir

  16. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes

    Directory of Open Access Journals (Sweden)

    Gupta Vibha

    2008-03-01

    Full Text Available Abstract Background Extensive mapping efforts are currently underway for the establishment of comparative genomics between the model plant, Arabidopsis thaliana and various Brassica species. Most of these studies have deployed RFLP markers, the use of which is a laborious and time-consuming process. We therefore tested the efficacy of PCR-based Intron Polymorphism (IP markers to analyze genome-wide synteny between the oilseed crop, Brassica juncea (AABB genome and A. thaliana and analyzed the arrangement of 24 (previously described genomic block segments in the A, B and C Brassica genomes to study the evolutionary events contributing to karyotype variations in the three diploid Brassica genomes. Results IP markers were highly efficient and generated easily discernable polymorphisms on agarose gels. Comparative analysis of the segmental organization of the A and B genomes of B. juncea (present study with the A and B genomes of B. napus and B. nigra respectively (described earlier, revealed a high degree of colinearity suggesting minimal macro-level changes after polyploidization. The ancestral block arrangements that remained unaltered during evolution and the karyotype rearrangements that originated in the Oleracea lineage after its divergence from Rapa lineage were identified. Genomic rearrangements leading to the gain or loss of one chromosome each between the A-B and A-C lineages were deciphered. Complete homoeology in terms of block organization was found between three linkage groups (LG each for the A-B and A-C genomes. Based on the homoeology shared between the A, B and C genomes, a new nomenclature for the B genome LGs was assigned to establish uniformity in the international Brassica LG nomenclature code. Conclusion IP markers were highly effective in generating comparative relationships between Arabidopsis and various Brassica species. Comparative genomics between the three Brassica lineages established the major rearrangements

  17. Transcriptomic and Proteomic Data Integration and Two-Dimensional Molecular Maps with Regulatory and Functional Linkages: Application to Cell Proliferation and Invasion Networks in Glioblastoma.

    Science.gov (United States)

    Gupta, Manoj Kumar; Jayaram, Savita; Reddy, Divijendra Natha; Polisetty, Ravindra Varma; Sirdeshmukh, Ravi

    2015-12-04

    Glioblastoma multiforme (GBM), the most aggressive primary brain tumor, is characterized by high rates of cell proliferation, migration, and invasion. New therapeutic strategies and targets are being continuously explored with the hope for better outcome. By overlaying transcriptomic and proteomic data from GBM clinical tissues, we identified 317 differentially expressed proteins to be concordant with the messenger RNAs (mRNAs). We used these entities to generate integrated regulatory information at the level of microRNAs (miRNAs) and their mRNA and protein targets using prediction programs or experimentally verified miRNA target mode in the miRWalk database. We observed 60% or even more of the miRNA-target pairs to be consistent with experimentally observed inverse expression of these molecules in GBM. The integrated view of these regulatory cascades in the contexts of cell proliferation and invasion networks revealed two-dimensional molecular interactions with regulatory and functional linkages (miRNAs and their mRNA-protein targets in one dimension; multiple miRNAs associated in a functional network in the second dimension). A total of 28 of the 35 differentially expressed concordant mRNA-protein entities represented in the proliferation network, and 51 of the 59 such entities represented in the invasion network, mapped to altered miRNAs from GBM and conformed to an inverse relationship in their expression. We believe the two-dimensional maps of gene expression changes enhance the strength of the discovery datasets derived from omics-based studies for their applications in GBM as well as tumors in general.

  18. Genetic map of artichoke × wild cardoon: toward a consensus map for Cynara cardunculus.

    Science.gov (United States)

    Sonnante, Gabriella; Gatto, Angela; Morgese, Anita; Montemurro, Francesco; Sarli, Giulio; Blanco, Emanuela; Pignone, Domenico

    2011-11-01

    An integrated consensus linkage map is proposed for globe artichoke. Maternal and paternal genetic maps were constructed on the basis of an F(1) progeny derived from crossing an artichoke genotype (Mola) with its progenitor, the wild cardoon (Tolfa), using EST-derived SSRs, genomic SSRs, AFLPs, ten genes, and two morphological traits. For most genes, mainly belonging to the chlorogenic acid pathway, new markers were developed. Five of these were SNP markers analyzed through high-resolution melt technology. From the maternal (Mola) and paternal (Tolfa) maps, an integrated map was obtained, containing 337 molecular and one morphological markers ordered in 17 linkage groups (LGs), linked between Mola and Tolfa. The integrated map covers 1,488.8 cM, with an average distance of 4.4 cM between markers. The map was aligned with already existing maps for artichoke, and 12 LGs were linked via 31 bridge markers. LG numbering has been proposed. A total of 124 EST-SSRs and two genes were mapped here for the first time, providing a framework for the construction of a functional map in artichoke. The establishment of a consensus map represents a necessary condition to plan a complete sequencing of the globe artichoke genome.

  19. Using Self-Organizing Map (SOM) Clusters of Ozonesonde Profiles to Evaluate Climatologies and Create Linkages between Meteorology and Pollution

    Science.gov (United States)

    Stauffer, R. M.; Thompson, A. M.; Young, G. S.; Oltmans, S. J.; Johnson, B.

    2016-12-01

    Ozone (O3) climatologies are typically created by averaging ozonesonde profiles on a monthly or seasonal basis, either for specific regions or zonally. We demonstrate the advantages of using a statistical clustering technique, self-organizing maps (SOM), over this simple averaging, through analysis of more than 4500 sonde profiles taken from the long-term US sites at Boulder, CO; Huntsville, AL; Trinidad Head, CA; and Wallops Island, VA. First, we apply SOM to O3 mixing ratios from surface to 12 km amsl. At all four sites, profiles in SOM clusters exhibit similar tropopause height, 500 hPa height and temperature, and total and tropospheric column O3. Second, when profiles from each SOM cluster are compared to monthly O3 means, near-tropopause O3 in three of the clusters is double (over +100 ppbv) the climatological O3 mixing ratio. The three clusters include 13-16% of all profiles, mostly from winter and spring. Large mid-tropospheric deviations from monthly means are found in two highly-populated clusters that represent either distinctly polluted (summer) or clean O3 (fall-winter, high tropopause) profiles. Thus, SOM indeed appear to represent US O3 profile statistics better than conventional climatologies. In the case of Trinidad Head, SOM clusters of O3 profile data from the lower troposphere (surface-6 km amsl) can discriminate background vs polluted O3 and the meteorology associated with each. Two of nine O3 clusters exhibit thin layers ( 100s of m thick) of high O3, typically between 1 and 4 km. Comparisons between clusters and downwind, high-altitude surface O3 measurements display a marked impact of the elevated tropospheric O­­3. Days corresponding to the high O3 clusters exhibit hourly surface O3 anomalies at surface sites of +5 -10 ppbv compared to a climatology; the anomalies can last up to four days. We also explore applications of SOM to tropical ozonesonde profiles, where tropospheric O3 variability is generally smaller.

  20. Results of a Musa mapping project

    International Nuclear Information System (INIS)

    Lagoda, P.J.L.; Noyer, J.L.; Baurens, F.C.

    1998-01-01

    A completed map, based on two selfed progenies from two banana cultivars (M53 and SFB5) is presented (roughly 1200 cM). More than three hundred markers are linked in 11 linkage groups representing the genome (2n=22) of Musa acuminata. Roughly one third of the markers are co-dominant restriction fragment polymorphisms (RFLPs; one hundred) or micro satellites (thirty). Two thirds of the markers are dominant amplified fragment length polymorphisms (AFLPs; 10% could be considered to be co-dominant). The mean linkage distance is 3 cM, but marker density still should be increased on a couple of linkage groups. Particularities for a mapping job in banana are discussed. Due to Musa acuminata sub-species specific translocations, up to 36% of all the markers tested show important segregation distortions. The need for a cooperative mapping initiative based on a proposed ''frame-map'' harbouring evenly spaced co-dominant ''anchor'' markers is proposed. CIRAD has published 45 sequence tagged micro satellite sites (STMS) in the EMBL database which are accessible at: ''http://www.ebi.ac.uk/'' using the keywords LAGODA and MICROSATELLITE (EMBL accessions X87258 to X87265, X90740 to X90750 and Z85950 to Z85977). (author)

  1. Generation and application of SSR markers in avocado

    International Nuclear Information System (INIS)

    Sharon, D.; Lavi, U.; Cregan, P.B.; Hillel, J.

    1998-01-01

    Simple Sequence Repeat (SSR) DNA markers were generated and applied to avocado. An SSR marker is based on a pair of primers which are synthesized on the basis of DNA sequences flanking a micro satellite. These markers are PCR based, quite polymorphic and abundant in several species. These are the markers, of choice in the human genome. The number of SSR markers in the avocado genome was calculated to be about 45,000, with the A/T micro satellite being the most frequent (1 in 40 kb). SSR markers are quite expensive to generate due to the required multi-step procedure; Screening a genomic library, about 66% of the positive clones turned out after sequencing to be SSR containing clones. In only about 55% of these, was it possible to synthesize primers and, of this group, only about 50% of the markers were useful for typing a specific family. Typing of five avocado cultivars using 59 SSR markers results in one to eight alleles per locus, mean heterozygosity ranging between 0.51 and 0.66 and gene diversity ranging between 0.42 and 0.66. The SSR markers were used to estimate the genetic relationships between various Persea species. The number of alleles in these species ranged between five and twelve with heterozygosity levels between 0.11-0.78 and gene diversity between 0.69-0.89. A preliminary genetic map, based on these SSR markers together with some DNA fingerprints (DFP) and randomly amplified polymorphic DNA (RAPD) markers, was drawn. The map consists of 12 linkage group having two to five markers each. Linkage analysis with several quantitative trait loci (QTLs) was performed by genetic typing and phenotypic assessment of the progeny of a controlled cross. The results of the interval mapping suggest that the gene(s) coding for the existence of fibers in the flesh, are probably linked to linkage group 3. (author)

  2. Generation and application of SSR markers in avocado

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, D; Lavi, U [Institute of Horticulture, ARO Volcani Center, Bet-Dagan (Israel); Cregan, P B [United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland (United States); Hillel, J [Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot (Israel)

    1998-10-01

    Simple Sequence Repeat (SSR) DNA markers were generated and applied to avocado. An SSR marker is based on a pair of primers which are synthesized on the basis of DNA sequences flanking a micro satellite. These markers are PCR based, quite polymorphic and abundant in several species. These are the markers, of choice in the human genome. The number of SSR markers in the avocado genome was calculated to be about 45,000, with the A/T micro satellite being the most frequent (1 in 40 kb). SSR markers are quite expensive to generate due to the required multi-step procedure; Screening a genomic library, about 66% of the positive clones turned out after sequencing to be SSR containing clones. In only about 55% of these, was it possible to synthesize primers and, of this group, only about 50% of the markers were useful for typing a specific family. Typing of five avocado cultivars using 59 SSR markers results in one to eight alleles per locus, mean heterozygosity ranging between 0.51 and 0.66 and gene diversity ranging between 0.42 and 0.66. The SSR markers were used to estimate the genetic relationships between various Persea species. The number of alleles in these species ranged between five and twelve with heterozygosity levels between 0.11-0.78 and gene diversity between 0.69-0.89. A preliminary genetic map, based on these SSR markers together with some DNA fingerprints (DFP) and randomly amplified polymorphic DNA (RAPD) markers, was drawn. The map consists of 12 linkage group having two to five markers each. Linkage analysis with several quantitative trait loci (QTLs) was performed by genetic typing and phenotypic assessment of the progeny of a controlled cross. The results of the interval mapping suggest that the gene(s) coding for the existence of fibers in the flesh, are probably linked to linkage group 3. (author) 20 refs, 3 figs, 8 tabs

  3. Physical mapping of chromosome 8p22 markers and their homozygous deletion in a metastatic prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bova, G.S.; Pin, S.S.; Isaacs, W.B. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)]|[Brady Urological Institute, Baltimore, MD (United States)] [and others

    1996-07-01

    Numerous studies have implicated the short arm of chromosome 8 as the site of one or more tumor suppressor genes inactivated in carcinogenesis of the prostate, colon, lung, and liver. Previously, we identified a homozygous deletion on chromosome 8p22 in a metastatic prostate cancer. To map this homozygous deletion physically, long-range restriction mapping was performed using yeast artificial chromosomes (YACs) spanning approximately 2 Mb of chromosome band 8p22. Subcloned genomic DNA and cDNA probes isolated by hybrid capture from these YACs were mapped in relation to one another, reinforcing map integrity. Mapped single-copy probes from the region were then applied to DNA isolated from a metastatic prostate cancer containing a chromosome 8p22 homozygous deletion and indicated that its deletion spans 730-970 kb. Candidate genes PRLTS (PDGF-receptor {beta}-like tumor suppressor) and CTSB (cathepsin B) are located outside the region of homozygous deletion. Genethon marker D8S549 is located approximately at the center of this region of homozygous deletion. Two new microsatellite polymorphisms, D8S1991 and D8S1992, also located within the region of homozygous deletion on chromosome 8p22, are described. Physical mapping places cosmid CI8-2644 telomeric to MSR (macrophage scavenger receptor), the reverse of a previously published map, altering the interpretation of published deletion studies. This work should prove helpful in the identification of candidate tumor suppressor genes in this region. 47 refs., 5 figs., 1 tab.

  4. Interference, heterogeneity and disease gene mapping

    Energy Technology Data Exchange (ETDEWEB)

    Keats, B. [Louisiana State Univ. Medical Center, New Orleans, LA (United States)

    1996-12-31

    The Human Genome Project has had a major impact on genetic research over the past five years. The number of mapped genes is now over 3,000 compared with approximately 1,600 in 1989 and only about 260 ten years before that. The realization that extensive variation could be detected in anonymous DNA segments greatly enhanced the potential for mapping by linkage analysis. Previously, linkage studies had depended on polymorphisms that could be detected in red blood cell antigens, proteins (revealed by electrophoresis and isoelectric focusing), and cytogenetic heteromorphisms. The identification of thousands of polymorphic DNA markers throughout the human genome has led to the construction of high density genetic linkage maps. These maps provide the data necessary to test hypotheses concerning differences in recombination rates and levels of interference. They are also important for disease gene mapping because the existence of these genes must be inferred from the phenotype. Showing linkage of a disease gene to a DNA marker is the first step towards isolating the disease gene, determining its protein product, and developing effective therapies. However, interpretation of results is not always straightforward. Factors such as etiological heterogeneity and undetected irregular segregation can lead to confusing linkage results and incorrect conclusions about the locations of disease genes. This paper will discuss these phenomena and present examples that illustrate the problems, as well as approaches to dealing with them. 23 refs., 3 figs., 3 tabs.

  5. Candidate Gene Identification with SNP Marker-Based Fine Mapping of Anthracnose Resistance Gene Co-4 in Common Bean.

    Directory of Open Access Journals (Sweden)

    Andrew J Burt

    Full Text Available Anthracnose, caused by Colletotrichum lindemuthianum, is an important fungal disease of common bean (Phaseolus vulgaris. Alleles at the Co-4 locus confer resistance to a number of races of C. lindemuthianum. A population of 94 F4:5 recombinant inbred lines of a cross between resistant black bean genotype B09197 and susceptible navy bean cultivar Nautica was used to identify markers associated with resistance in bean chromosome 8 (Pv08 where Co-4 is localized. Three SCAR markers with known linkage to Co-4 and a panel of single nucleotide markers were used for genotyping. A refined physical region on Pv08 with significant association with anthracnose resistance identified by markers was used in BLAST searches with the genomic sequence of common bean accession G19833. Thirty two unique annotated candidate genes were identified that spanned a physical region of 936.46 kb. A majority of the annotated genes identified had functional similarity to leucine rich repeats/receptor like kinase domains. Three annotated genes had similarity to 1, 3-β-glucanase domains. There were sequence similarities between some of the annotated genes found in the study and the genes associated with phosphoinositide-specific phosphilipases C associated with Co-x and the COK-4 loci found in previous studies. It is possible that the Co-4 locus is structured as a group of genes with functional domains dominated by protein tyrosine kinase along with leucine rich repeats/nucleotide binding site, phosphilipases C as well as β-glucanases.

  6. Dissection of Genetic Factors underlying Wheat Kernel Shape and Size in an Elite × Nonadapted Cross using a High Density SNP Linkage Map

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2016-03-01

    Full Text Available Wheat kernel shape and size has been under selection since early domestication. Kernel morphology is a major consideration in wheat breeding, as it impacts grain yield and quality. A population of 160 recombinant inbred lines (RIL, developed using an elite (ND 705 and a nonadapted genotype (PI 414566, was extensively phenotyped in replicated field trials and genotyped using Infinium iSelect 90K assay to gain insight into the genetic architecture of kernel shape and size. A high density genetic map consisting of 10,172 single nucleotide polymorphism (SNP markers, with an average marker density of 0.39 cM/marker, identified a total of 29 genomic regions associated with six grain shape and size traits; ∼80% of these regions were associated with multiple traits. The analyses showed that kernel length (KL and width (KW are genetically independent, while a large number (∼59% of the quantitative trait loci (QTL for kernel shape traits were in common with genomic regions associated with kernel size traits. The most significant QTL was identified on chromosome 4B, and could be an ortholog of major rice grain size and shape gene or . Major and stable loci also were identified on the homeologous regions of Group 5 chromosomes, and in the regions of (6A and (7A genes. Both parental genotypes contributed equivalent positive QTL alleles, suggesting that the nonadapted germplasm has a great potential for enhancing the gene pool for grain shape and size. This study provides new knowledge on the genetic dissection of kernel morphology, with a much higher resolution, which may aid further improvement in wheat yield and quality using genomic tools.

  7. Dissection of Genetic Factors underlying Wheat Kernel Shape and Size in an Elite × Nonadapted Cross using a High Density SNP Linkage Map.

    Science.gov (United States)

    Kumar, Ajay; Mantovani, E E; Seetan, R; Soltani, A; Echeverry-Solarte, M; Jain, S; Simsek, S; Doehlert, D; Alamri, M S; Elias, E M; Kianian, S F; Mergoum, M

    2016-03-01

    Wheat kernel shape and size has been under selection since early domestication. Kernel morphology is a major consideration in wheat breeding, as it impacts grain yield and quality. A population of 160 recombinant inbred lines (RIL), developed using an elite (ND 705) and a nonadapted genotype (PI 414566), was extensively phenotyped in replicated field trials and genotyped using Infinium iSelect 90K assay to gain insight into the genetic architecture of kernel shape and size. A high density genetic map consisting of 10,172 single nucleotide polymorphism (SNP) markers, with an average marker density of 0.39 cM/marker, identified a total of 29 genomic regions associated with six grain shape and size traits; ∼80% of these regions were associated with multiple traits. The analyses showed that kernel length (KL) and width (KW) are genetically independent, while a large number (∼59%) of the quantitative trait loci (QTL) for kernel shape traits were in common with genomic regions associated with kernel size traits. The most significant QTL was identified on chromosome 4B, and could be an ortholog of major rice grain size and shape gene or . Major and stable loci also were identified on the homeologous regions of Group 5 chromosomes, and in the regions of (6A) and (7A) genes. Both parental genotypes contributed equivalent positive QTL alleles, suggesting that the nonadapted germplasm has a great potential for enhancing the gene pool for grain shape and size. This study provides new knowledge on the genetic dissection of kernel morphology, with a much higher resolution, which may aid further improvement in wheat yield and quality using genomic tools. Copyright © 2016 Crop Science Society of America.

  8. Tagging and mapping of SSR marker for rust resistance gene in lentil (Lens culinaris Medikus subsp. culinaris).

    Science.gov (United States)

    Dikshit, H K; Singh, Akanksha; Singh, D; Aski, M; Jain, Neelu; Hegde, V S; Basandrai, A K; Basandrai, D; Sharma, T R

    2016-06-01

    Lentil, as an economical source of protein, minerals and vitamins, plays important role in nutritional security of the common man. Grown mainly in West Asia, North Africa (WANA) region and South Asia, it suffers from several biotic stresses such as wilt, rust, blight and broomrape. Lentil rust caused by autoecious fungus Uromyces viciae fabae (Pers.) Schroet is a serious lentil disease in Algeria, Bangladesh, Ethiopia, India, Italy, Morocco, Pakistan and Nepal. The disease symptoms are observed during flowering and early podding stages. Rust causes severe yield losses in lentil. It can only be effectively controlled by identifying the resistant source, understanding its inheritance and breeding for host resistance. The obligate parasitic nature of pathogen makes it difficult to maintain the pathogen in culture and to apply it to screen segregating progenies under controlled growth conditions. Hence, the use of molecular markers will compliment in identification of resistant types in different breeding programs. Here, we studied the inheritance of resistance to rust in lentil using F₁, F₂ and F₂:₃ from cross PL 8 (susceptible) x L 4149 (resistant) varieties. The phenotyping of lentil population was carried out at Sirmour, India. The result of genetic analysis revealed that a single dominant gene controls rust resistance in lentil genotype L 4149. The F2 population from this cross was used to tag and map the rust resistance gene using SSR and SRAP markers. Markers such as 270 SRAP and 162 SSR were studied for polymorphism and 101 SRAP and 33 SSRs were found to be polymorphic between the parents. Two SRAP and two SSR markers differentiated the resistant and susceptible bulks. SSR marker Gllc 527 was estimated to be linked to rust resistant locus at a distance of 5.9 cM. The Gllc 527 marker can be used for marker assisted selection for rust resistance; however, additional markers closer to rust resistant locus are required. The markers linked to the rust

  9. Genome scan for linkage to asthma using a linkage disequilibrium-lod score test.

    Science.gov (United States)

    Jiang, Y; Slager, S L; Huang, J

    2001-01-01

    We report a genome-wide linkage study of asthma on the German and Collaborative Study on the Genetics of Asthma (CSGA) data. Using a combined linkage and linkage disequilibrium test and the nonparametric linkage score, we identified 13 markers from the German data, 1 marker from the African American (CSGA) data, and 7 markers from the Caucasian (CSGA) data in which the p-values ranged between 0.0001 and 0.0100. From our analysis and taking into account previous published linkage studies of asthma, we suggest that three regions in chromosome 5 (around D5S418, D5S644, and D5S422), one region in chromosome 6 (around three neighboring markers D6S1281, D6S291, and D6S1019), one region in chromosome 11 (around D11S2362), and two regions in chromosome 12 (around D12S351 and D12S324) especially merit further investigation.

  10. Using SNP markers to dissect linkage disequilibrium at a major quantitative trait locus for resistance to the potato cyst nematode Globodera pallida on potato chromosome V

    NARCIS (Netherlands)

    Achenbach, U.; Caldas Paulo, M.J.; Ilarionova, E.; Lübeck, J.; Strahwald, J.; Tacke, E.; Hofferbert, H.R.

    2009-01-01

    The damage caused by the parasitic root cyst nematode Globodera pallida is a major yield-limiting factor in potato cultivation . Breeding for resistance is facilitated by the PCR-based marker 'HC', which is diagnostic for an allele conferring high resistance against G. pallida pathotype Pa2/3 that

  11. Electrocardiographic markers of ischemia during mental stress testing in postinfarction patients. Role of body surface mapping

    International Nuclear Information System (INIS)

    Bosimini, E.; Galli, M.; Guagliumi, G.; Giubbini, R.; Tavazzi, L.

    1991-01-01

    In patients with coronary artery disease, radionuclide investigations have documented a high incidence of mental stress-induced myocardial ischemia in the absence of significant electrocardiographic changes and/or angina. To investigate the causes of the low electrocardiographic sensitivity, we recorded body surface maps during mental arithmetic in 22 normal volunteers and 37 postinfarction patients with residual exercise ischemia. Myocardial perfusion was studied with thallium-201 or technetium-99 (SESTAMIBI) planar scans. In 14 patients, body surface maps were also recorded during atrial pacing at the heart rate values achieved during mental stress. While taking the body surface maps, the area from J point to 80 msec after this point (ST-80) was analyzed by integral maps, difference maps, and departure maps. The body surface mapping criteria for ischemia were a new negative area on the integral maps, a negative potential of more than 2 SD from mean normal values on the difference maps, and a negative departure index of more than 2. Scintigraphy showed asymptomatic myocardial hypoperfusion in 33 patients. Eight patients had significant ST segment depression. The ST-80 integral and difference maps identified 17 ischemic patients. Twenty-four patients presented abnormal departure maps. One patient presented ST depression and abnormal body surface maps without reversible tracer defect. In 14 of 14 patients, atrial pacing did not reproduce the body surface map abnormalities. The analyses of the other electrocardiographic variables showed that in patients with mental stress-induced perfusion defects, only changes of T apex-T offset (aT-eT) interval in Frank leads and changes of maximum negative potential value of aT-eT integral maps significantly differed from those of normal subjects

  12. Application of dissociation curve analysis to radiation hybrid panel marker scoring: generation of a map of river buffalo (B. bubalis chromosome 20

    Directory of Open Access Journals (Sweden)

    Schäffer Alejandro A

    2008-11-01

    Full Text Available Abstract Background Fluorescence of dyes bound to double-stranded PCR products has been utilized extensively in various real-time quantitative PCR applications, including post-amplification dissociation curve analysis, or differentiation of amplicon length or sequence composition. Despite the current era of whole-genome sequencing, mapping tools such as radiation hybrid DNA panels remain useful aids for sequence assembly, focused resequencing efforts, and for building physical maps of species that have not yet been sequenced. For placement of specific, individual genes or markers on a map, low-throughput methods remain commonplace. Typically, PCR amplification of DNA from each panel cell line is followed by gel electrophoresis and scoring of each clone for the presence or absence of PCR product. To improve sensitivity and efficiency of radiation hybrid panel analysis in comparison to gel-based methods, we adapted fluorescence-based real-time PCR and dissociation curve analysis for use as a novel scoring method. Results As proof of principle for this dissociation curve method, we generated new maps of river buffalo (Bubalus bubalis chromosome 20 by both dissociation curve analysis and conventional marker scoring. We also obtained sequence data to augment dissociation curve results. Few genes have been previously mapped to buffalo chromosome 20, and sequence detail is limited, so 65 markers were screened from the orthologous chromosome of domestic cattle. Thirty bovine markers (46% were suitable as cross-species markers for dissociation curve analysis in the buffalo radiation hybrid panel under a standard protocol, compared to 25 markers suitable for conventional typing. Computational analysis placed 27 markers on a chromosome map generated by the new method, while the gel-based approach produced only 20 mapped markers. Among 19 markers common to both maps, the marker order on the map was maintained perfectly. Conclusion Dissociation curve

  13. A method for genotyping elite breeding stocks of leaf chicory (Cichorium intybus L.) by assaying mapped microsatellite marker loci.

    Science.gov (United States)

    Ghedina, Andrea; Galla, Giulio; Cadalen, Thierry; Hilbert, Jean-Louis; Caenazzo, Silvano Tiozzo; Barcaccia, Gianni

    2015-12-30

    Leaf chicory (Cichorium intybus subsp. intybus var. foliosum L.) is a diploid plant species (2n = 18) of the Asteraceae family. The term "chicory" specifies at least two types of cultivated plants: a leafy vegetable, which is highly differentiated with respect to several cultural types, and a root crop, whose current industrial utilization primarily addresses the extraction of inulin or the production of a coffee substitute. The populations grown are generally represented by local varieties (i.e., landraces) with high variation and adaptation to the natural and anthropological environment where they originated, and have been yearly selected and multiplied by farmers. Currently, molecular genetics and biotechnology are widely utilized in marker-assisted breeding programs in this species. In particular, molecular markers are becoming essential tools for developing parental lines with traits of interest and for assessing the specific combining ability of these lines to breed F1 hybrids. The present research deals with the implementation of an efficient method for genotyping elite breeding stocks developed from old landraces of leaf chicory, Radicchio of Chioggia, which are locally dominant in the Veneto region, using 27 microsatellite (SSR) marker loci scattered throughout the linkage groups. Information on the genetic diversity across molecular markers and plant accessions was successfully assessed along with descriptive statistics over all marker loci and inbred lines. Our overall data support an efficient method for assessing a multi-locus genotype of plant individuals and lineages that is useful for the selection of new varieties and the certification of local products derived from Radicchio of Chioggia. This method proved to be useful for assessing the observed degree of homozygosity of the inbred lines as a measure of their genetic stability; plus it allowed an estimate of the specific combining ability (SCA) between maternal and paternal inbred lines on the

  14. LPmerge: an R package for merging genetic maps by linear programming.

    Science.gov (United States)

    Endelman, Jeffrey B; Plomion, Christophe

    2014-06-01

    Consensus genetic maps constructed from multiple populations are an important resource for both basic and applied research, including genome-wide association analysis, genome sequence assembly and studies of evolution. The LPmerge software uses linear programming to efficiently minimize the mean absolute error between the consensus map and the linkage maps from each population. This minimization is performed subject to linear inequality constraints that ensure the ordering of the markers in the linkage maps is preserved. When marker order is inconsistent between linkage maps, a minimum set of ordinal constraints is deleted to resolve the conflicts. LPmerge is on CRAN at http://cran.r-project.org/web/packages/LPmerge. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Evidence for bivariate linkage of obesity and HDL-C levels in the Framingham Heart Study.

    Science.gov (United States)

    Arya, Rector; Lehman, Donna; Hunt, Kelly J; Schneider, Jennifer; Almasy, Laura; Blangero, John; Stern, Michael P; Duggirala, Ravindranath

    2003-12-31

    Epidemiological studies have indicated that obesity and low high-density lipoprotein (HDL) levels are strong cardiovascular risk factors, and that these traits are inversely correlated. Despite the belief that these traits are correlated in part due to pleiotropy, knowledge on specific genes commonly affecting obesity and dyslipidemia is very limited. To address this issue, we first conducted univariate multipoint linkage analysis for body mass index (BMI) and HDL-C to identify loci influencing variation in these phenotypes using Framingham Heart Study data relating to 1702 subjects distributed across 330 pedigrees. Subsequently, we performed bivariate multipoint linkage analysis to detect common loci influencing covariation between these two traits. We scanned the genome and identified a major locus near marker D6S1009 influencing variation in BMI (LOD = 3.9) using the program SOLAR. We also identified a major locus for HDL-C near marker D2S1334 on chromosome 2 (LOD = 3.5) and another region near marker D6S1009 on chromosome 6 with suggestive evidence for linkage (LOD = 2.7). Since these two phenotypes have been independently mapped to the same region on chromosome 6q, we used the bivariate multipoint linkage approach using SOLAR. The bivariate linkage analysis of BMI and HDL-C implicated the genetic region near marker D6S1009 as harboring a major gene commonly influencing these phenotypes (bivariate LOD = 6.2; LODeq = 5.5) and appears to improve power to map the correlated traits to a region, precisely. We found substantial evidence for a quantitative trait locus with pleiotropic effects, which appears to influence both BMI and HDL-C phenotypes in the Framingham data.

  16. Mapping genes by meiotic and UV-induced mitotic recombination in Coprinus cinereus

    International Nuclear Information System (INIS)

    Amirkhanian, J.D.; Cowan, J.W.

    1985-01-01

    Three morphological mutants in Coprinus cinereus—one spontaneous (den-2) and two chemically induced (zigand sta)—were assigned to linkage groups and utilized in meiotic and mitotic mapping. Mutants den-2 and zig belong to linkage group III, den-2 being close to the centromere and about 20 map units (mu) from zig. The mutant sta in linkage group ‘G’ is at a distance of about 37 mu from ade-3. Mitotic mapping confirmed the gene order in linkage group III and provided evidence that trp-2 in linkage group ‘G’ was between the centromere and ade-3. These morphological mutants are compact in colony growth and therefore suited to high-density plating. The rarity of spontaneously occurring mitotic segregants suggests that diploids of Coprinus cinereus, heterozygous for morphoiogical markers in repuision, could serve as useful test systems for rapid screening of chemical mutagen/carcinogens via mitotic recombination studies

  17. Sequence based polymorphic (SBP marker technology for targeted genomic regions: its application in generating a molecular map of the Arabidopsis thaliana genome

    Directory of Open Access Journals (Sweden)

    Sahu Binod B

    2012-01-01

    Full Text Available Abstract Background Molecular markers facilitate both genotype identification, essential for modern animal and plant breeding, and the isolation of genes based on their map positions. Advancements in sequencing technology have made possible the identification of single nucleotide polymorphisms (SNPs for any genomic regions. Here a sequence based polymorphic (SBP marker technology for generating molecular markers for targeted genomic regions in Arabidopsis is described. Results A ~3X genome coverage sequence of the Arabidopsis thaliana ecotype, Niederzenz (Nd-0 was obtained by applying Illumina's sequencing by synthesis (Solexa technology. Comparison of the Nd-0 genome sequence with the assembled Columbia-0 (Col-0 genome sequence identified putative single nucleotide polymorphisms (SNPs throughout the entire genome. Multiple 75 base pair Nd-0 sequence reads containing SNPs and originating from individual genomic DNA molecules were the basis for developing co-dominant SBP markers. SNPs containing Col-0 sequences, supported by transcript sequences or sequences from multiple BAC clones, were compared to the respective Nd-0 sequences to identify possible restriction endonuclease enzyme site variations. Small amplicons, PCR amplified from both ecotypes, were digested with suitable restriction enzymes and resolved on a gel to reveal the sequence based polymorphisms. By applying this technology, 21 SBP markers for the marker poor regions of the Arabidopsis map representing polymorphisms between Col-0 and Nd-0 ecotypes were generated. Conclusions The SBP marker technology described here allowed the development of molecular markers for targeted genomic regions of Arabidopsis. It should facilitate isolation of co-dominant molecular markers for targeted genomic regions of any animal or plant species, whose genomic sequences have been assembled. This technology will particularly facilitate the development of high density molecular marker maps, essential for

  18. Inter-simple sequence repeat (ISSR) loci mapping in the genome of perennial ryegrass

    DEFF Research Database (Denmark)

    Pivorienė, O; Pašakinskienė, I; Brazauskas, G

    2008-01-01

    The aim of this study was to identify and characterize new ISSR markers and their loci in the genome of perennial ryegrass. A subsample of the VrnA F2 mapping family of perennial ryegrass comprising 92 individuals was used to develop a linkage map including inter-simple sequence repeat markers...... demonstrated a 70% similarity to the Hordeum vulgare germin gene GerA. Inter-SSR mapping will provide useful information for gene targeting, quantitative trait loci mapping and marker-assisted selection in perennial ryegrass....

  19. A Microsatellite Genetic Map of the Turbot (Scophthalmus maximus)

    Science.gov (United States)

    Bouza, Carmen; Hermida, Miguel; Pardo, Belén G.; Fernández, Carlos; Fortes, Gloria G.; Castro, Jaime; Sánchez, Laura; Presa, Pablo; Pérez, Montse; Sanjuán, Andrés; de Carlos, Alejandro; Álvarez-Dios, José Antonio; Ezcurra, Susana; Cal, Rosa M.; Piferrer, Francesc; Martínez, Paulino

    2007-01-01

    A consensus microsatellite-based linkage map of the turbot (Scophthalmus maximus) was constructed from two unrelated families. The mapping panel was derived from a gynogenetic family of 96 haploid embryos and a biparental diploid family of 85 full-sib progeny with known linkage phase. A total of 242 microsatellites were mapped in 26 linkage groups, six markers remaining unlinked. The consensus map length was 1343.2 cM, with an average distance between markers of 6.5 ± 0.5 cM. Similar length of female and male maps was evidenced. However, the mean recombination at common intervals throughout the genome revealed significant differences between sexes, ∼1.6 times higher in the female than in the male. The comparison of turbot microsatellite flanking sequences against the Tetraodon nigroviridis genome revealed 55 significant matches, with a mean length of 102 bp and high sequence similarity (81–100%). The comparative mapping revealed significant syntenic regions among fish species. This study represents the first linkage map in the turbot, one of the most important flatfish in European aquaculture. This map will be suitable for QTL identification of productive traits in this species and for further evolutionary studies in fish and vertebrate species. PMID:18073440

  20. Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers.

    Science.gov (United States)

    Filippi, Carla V; Aguirre, Natalia; Rivas, Juan G; Zubrzycki, Jeremias; Puebla, Andrea; Cordes, Diego; Moreno, Maria V; Fusari, Corina M; Alvarez, Daniel; Heinz, Ruth A; Hopp, Horacio E; Paniego, Norma B; Lia, Veronica V

    2015-02-13

    Argentina has a long tradition of sunflower breeding, and its germplasm is a valuable genetic resource worldwide. However, knowledge of the genetic constitution and variability levels of the Argentinean germplasm is still scarce, rendering the global map of cultivated sunflower diversity incomplete. In this study, 42 microsatellite loci and 384 single nucleotide polymorphisms (SNPs) were used to characterize the first association mapping population used for quantitative trait loci mapping in sunflower, along with a selection of allied open-pollinated and composite populations from the germplasm bank of the National Institute of Agricultural Technology of Argentina. The ability of different kinds of markers to assess genetic diversity and population structure was also evaluated. The analysis of polymorphism in the set of sunflower accessions studied here showed that both the microsatellites and SNP markers were informative for germplasm characterization, although to different extents. In general, the estimates of genetic variability were moderate. The average genetic diversity, as quantified by the expected heterozygosity, was 0.52 for SSR loci and 0.29 for SNPs. Within SSR markers, those derived from non-coding regions were able to capture higher levels of diversity than EST-SSR. A significant correlation was found between SSR and SNP- based genetic distances among accessions. Bayesian and multivariate methods were used to infer population structure. Evidence for the existence of three different genetic groups was found consistently across data sets (i.e., SSR, SNP and SSR + SNP), with the maintainer/restorer status being the most prevalent characteristic associated with group delimitation. The present study constitutes the first report comparing the performance of SSR and SNP markers for population genetics analysis in cultivated sunflower. We show that the SSR and SNP panels examined here, either used separately or in conjunction, allowed consistent

  1. HLA region excluded by linkage analyses of early onset periodontitis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, C.; Wang, S.; Lopez, N.

    1994-09-01

    Previous studies suggested that HLA genes may influence susceptibility to early-onset periodontitis (EOP). Segregation analyses indicate that EOP may be due to a single major gene. We conducted linkage analyses to assess possible HLA effects on EOP. Fifty families with two or more close relatives affected by EOP were ascertained in Virginia and Chile. A microsatellite polymorphism within the HLA region (at the tumor necrosis factor beta locus) was typed using PCR. Linkage analyses used a donimant model most strongly supported by previous studies. Assuming locus homogeneity, our results exclude a susceptibility gene within 10 cM on either side of our marker locus. This encompasses all of the HLA region. Analyses assuming alternative models gave qualitatively similar results. Allowing for locus heterogeneity, our data still provide no support for HLA-region involvement. However, our data do not statistically exclude (LOD <-2.0) hypotheses of disease-locus heterogeneity, including models where up to half of our families could contain an EOP disease gene located in the HLA region. This is due to the limited power of even our relatively large collection of families and the inherent difficulties of mapping genes for disorders that have complex and heterogeneous etiologies. Additional statistical analyses, recruitment of families, and typing of flanking DNA markers are planned to more conclusively address these issues with respect to the HLA region and other candidate locations in the human genome. Additional results for markers covering most of the human genome will also be presented.

  2. An integrated physical map of 210 markers assigned to the short arm of human chromosome 11

    NARCIS (Netherlands)

    Redeker, E.; Hoovers, J. M.; Alders, M.; van Moorsel, C. J.; Ivens, A. C.; Gregory, S.; Kalikin, L.; Bliek, J.; de Galan, L.; van den Bogaard, R.; Visser, J.; van der Voort, R.; Feinberg, A. P.; Little, P. F. R.; Westerveld, A.; Mannens, M.

    1994-01-01

    Using a panel of patient cell lines with chromosomal breakpoints, we constructed a physical map for the short arm of human chromosome 11. We focused on 11p15, a chromosome band harboring at least 25 known genes and associated with the Beckwith-Wiedemann syndrome, several childhood tumors, and

  3. Cowpea–Soybean Synteny Clarified through an Improved Genetic Map

    Directory of Open Access Journals (Sweden)

    Mitchell R. Lucas

    2011-11-01

    Full Text Available Linkage mapping is relevant to modern plant biology and provides a framework for downstream analyses including quantitative trait loci identification, map-based cloning, assessment of diversity, association mapping, and molecular breeding. Here, we report a consensus genetic map of cowpea [ (L. Walp.] and synteny to other legumes based on expressed sequence tag (EST-derived single nucleotide polymorphisms (SNPs. In total, 1293 individuals representing 13 mapping populations were genotyped using an Illumina 1536 GoldenGate Assay. A consensus map containing 1107 EST-derived SNP markers (856 bins on 11 linkage groups (680 cM was constructed from 13 population-specific maps. This effort combined six new population-specific maps and seven revised population-specific maps to construct an improved consensus map with 33% more bins, 19% more markers, and improved marker order when compared to the previous cowpea SNP consensus map. Comparative and whole genome visualizations are presented as a framework for discussing map quality and synteny with soybean [ (L. Merr.].

  4. Exploiting linkage disequilibrium in statistical modelling in quantitative genomics

    DEFF Research Database (Denmark)

    Wang, Lei

    Alleles at two loci are said to be in linkage disequilibrium (LD) when they are correlated or statistically dependent. Genomic prediction and gene mapping rely on the existence of LD between gentic markers and causul variants of complex traits. In the first part of the thesis, a novel method...... to quantify and visualize local variation in LD along chromosomes in describet, and applied to characterize LD patters at the local and genome-wide scale in three Danish pig breeds. In the second part, different ways of taking LD into account in genomic prediction models are studied. One approach is to use...... the recently proposed antedependence models, which treat neighbouring marker effects as correlated; another approach involves use of haplotype block information derived using the program Beagle. The overall conclusion is that taking LD information into account in genomic prediction models potentially improves...

  5. Association mapping of agro-morphological characters among the global collection of finger millet genotypes using genomic SSR markers.

    Science.gov (United States)

    Kalyana Babu, B; Agrawal, P K; Pandey, Dinesh; Jaiswal, J P; Kumar, Anil

    2014-08-01

    Identification of alleles responsible for various agro-morphological characters is a major concern to further improve the finger millet germplasm. Forty-six genomic SSRs were used for genetic analysis and population structure analysis of a global collection of 190 finger millet genotypes and fifteen agro-morphological characters were evaluated. The overall results showed that Asian genotypes were smaller in height, smaller flag leaf length, less basal tiller number, early flowering and early maturity nature, small ear head length, and smaller in length of longest finger. The 46 SSRs yielded 90 scorable alleles and the polymorphism information content values varied from 0.292 to 0.703 at an average of 0.442. The gene diversity was in the range of 0.355 to 0.750 with an average value of 0.528. The 46 genomic SSR loci grouped the 190 finger millet genotypes into two major clusters based on their geographical origin by the both phylogenetic clustering and population structure analysis by STRUCTURE software. Association mapping of QTLs for 15 agro-morphological characters with 46 genomic SSRs resulted in identification of five markers were linked to QTLs of four traits at a significant threshold (P) level of ≤ 0.01 and ≤ 0.001. The QTL for basal tiller number was strongly associated with the locus UGEP81 at a P value of 0.001 by explaining the phenotypic variance (R (2)) of 10.8%. The QTL for days to 50% flowering was linked by two SSR loci UGEP77 and UGEP90, explained 10 and 8.7% of R (2) respectively at a P value of 0.01. The SSR marker, FM9 found to have strong association to two agro-morphological traits, flag leaf width (P-0.001, R(2)-14.1 %) and plant height (P-0.001, R(2)-11.2%). The markers linked to the QTLs for above agro-morphological characters found in the present study can be further used for cloning of the full length gene, fine mapping and their further use in the marker assisted breeding programmes for introgression of alleles into locally well

  6. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants

    Science.gov (United States)

    Shirasawa, Kenta; Isobe, Sachiko; Tabata, Satoshi; Hirakawa, Hideki

    2014-01-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10 plant species have been targeted: tomato (Solanum lycopersicum), pepper (Capsicum annuum), strawberry (Fragaria × ananassa), radish (Raphanus sativus), Lotus japonicus, soybean (Glycine max), peanut (Arachis hypogaea), red clover (Trifolium pratense), white clover (Trifolium repens), and eucalyptus (Eucalyptus camaldulensis). In addition, the number of plant species registered in this database will be increased as our research progresses. The Kazusa Marker DataBase will be a useful tool for both basic and applied sciences, such as genomics, genetics, and molecular breeding in crops. PMID:25320561

  7. Selection of discrimination marker from various propolis for mapping and identify anti Candida albicans activity

    Science.gov (United States)

    Mahadewi, Alfiani Guntari; Christina, Daisy; Hermansyah, Heri; Wijanarko, Anondho; Farida, Siti; Adawiyah, Robiatul; Rohmatin, Etin; Sahlan, Muhamad

    2018-02-01

    The increase in fungal resistance against antifungal drugs available in the market will reduce the effectiveness of treatment for Candidiasis. Propolis contains various compounds with antifungal properties Candida albicans, but the content of each type is very diverse. The sample used was Sulawesi propolis type smooth (taken from inside the nest), rough (taken from outside the hive) and mix (a combination of both). Anti-C. albicans molecule marker is a marker compound for selecting propolis with the ability to overcome Candidiasis. The initial step was to test the levels of flavonoids and phenolic by using UV-Vis spectrometry method. It was founded that each sample was not always superior to any substance, so propolis cannot be directly selected. In Phenolic content, mix propolis has the highest value than other 5.109%. In Flavonoid content, propolis smooth has the highest value than other, 16.38%. Furthermore, propolis selected by antifungal activity test with good diffusion method at the concentration propolis 5% either 7%, the inhibitory diameter zone propolis smooth and rough has same value 10 mm. Propolis mix has an advantage while propolis smooth and rough have the same capability range 12 mm and 13 mm. In this study, the phenolic content plays a major role in antifungal cases.

  8. Clinical and linkage study of a large family with simple ectopia lentis linked to FBN1

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, M.J.; Roberts, J.; Partington, M.W. [Newcastle and Northern New South Wales Genetics Service (Australia); Colley, P.W. [John Hunter Hospital, Newcastle (Australia); Hollway, G.E.; Kozman, H.M.; Mulley, J.C. [Adelaide Children`s Hospital, North Adelaide (Australia)

    1994-10-15

    Simple ectopia lentis (EL) was studied in a large family, by clinical examination and analysis of linkage to markers in the region of FBN1, the gene for fibrillin which causes Marfan syndrome on chromosome 15. No patient had clinical or echocardiographic evidence of Marfan syndrome, although there was a trend towards relatively longer measurements of height; lower segment; arm span; middle finger, hand, and foot length in the affected members of the family, compared with unaffected sibs of the same sex. Analysis of linkage to intragenic FBN1 markers was inconclusive because they were relatively uninformative. Construction of a multipoint background map from the CEPH reference families identified microsatellite markers linked closely to FBN1 which could demonstrate linkage of EL in this family to the FBN1 region. LINKMAP analysis detected a multipoint lod score of 5.68 at D15S119, a marker approximately 6 cM distal to FBN1, and a multipoint lod score of 5.04 at FBN1. The EL gene in this family is likely to be allelic to Marfan syndrome, and molecular characterization of the FBN1 mutation should now be possible. 25 refs., 6 figs., 2 tabs.

  9. Simultaneous measurement of 25 inflammatory markers and neurotrophins in neonatal dried blood spots by immunoassay with xMAP technology

    DEFF Research Database (Denmark)

    Skogstrand, Kristin; Thorsen, Poul; Nørgaard-Pedersen, Bent

    2005-01-01

    BACKGROUND: Inflammatory reactions and other events in early life may be part of the etiology of late-onset diseases, including cerebral palsy, autism, and type 1 diabetes. Most neonatal screening programs for congenital disorders are based on analysis of dried blood spot samples (DBSS), and stored...... on flowmetric Luminex xMAP technology to measure inflammatory markers and neutrophins in DBSS. RESULTS: The high-capacity 25-plex multianalyte method measured 23 inflammatory and trophic cytokines, triggering receptor expressed on myeloid cells-1 (TREM-1), and C-reactive protein in two 3.2-mm punches from DBSS...... potential for high-capacity analysis of DBSS in epidemiologic case-control studies and, with further refinements, in neonatal screening....

  10. Gene Expression Profiling Soybean Stem Tissue Early Response to Sclerotinia sclerotiorum and In Silico Mapping in Relation to Resistance Markers

    Directory of Open Access Journals (Sweden)

    Bernarda Calla

    2009-07-01

    Full Text Available White mold, caused by (Lib. de Bary, can be a serious disease of crops grown under cool, moist environments. In many plants, such as soybean [ (L. Merr.], complete genetic resistance does not exist. To identify possible genes involved in defense against this pathogen, and to determine possible physiological changes that occur during infection, a microarray screen was conducted using stem tissue to evaluate changes in gene expression between partially resistant and susceptible soybean genotypes at 8 and 14 hours post inoculation. RNA from 15 day-old inoculated plants was labeled and hybridized to soybean cDNA microarrays. ANOVA identified 1270 significant genes from the comparison between time points and 105 genes from the comparison between genotypes. Selected genes were classified into functional categories. The analyses identified changes in cell-wall composition and signaling pathways, as well as suggesting a role for anthocyanin and anthocyanidin synthesis in the defense against . In-silico mapping of both the differentially expressed transcripts and of public markers associated with partial resistance to white mold, provided evidence of several differentially expressed genes being closely positioned to white mold resistance markers, with the two most promising genes encoding a PR-5 and anthocyanidin synthase.

  11. Download - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods ...t_db_link_en.zip (36.3 KB) - 6 Genome analysis methods pgdbj_dna_marker_linkage_map_genome_analysis_methods_... of This Database Site Policy | Contact Us Download - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  12. Pea Marker Database (PMD) - A new online database combining known pea (Pisum sativum L.) gene-based markers.

    Science.gov (United States)

    Kulaeva, Olga A; Zhernakov, Aleksandr I; Afonin, Alexey M; Boikov, Sergei S; Sulima, Anton S; Tikhonovich, Igor A; Zhukov, Vladimir A

    2017-01-01

    Pea (Pisum sativum L.) is the oldest model object of plant genetics and one of the most agriculturally important legumes in the world. Since the pea genome has not been sequenced yet, identification of genes responsible for mutant phenotypes or desirable agricultural traits is usually performed via genetic mapping followed by candidate gene search. Such mapping is best carried out using gene-based molecular markers, as it opens the possibility for exploiting genome synteny between pea and its close relative Medicago truncatula Gaertn., possessing sequenced and annotated genome. In the last 5 years, a large number of pea gene-based molecular markers have been designed and mapped owing to the rapid evolution of "next-generation sequencing" technologies. However, the access to the complete set of markers designed worldwide is limited because the data are not uniformed and therefore hard to use. The Pea Marker Database was designed to combine the information about pea markers in a form of user-friendly and practical online tool. Version 1 (PMD1) comprises information about 2484 genic markers, including their locations in linkage groups, the sequences of corresponding pea transcripts and the names of related genes in M. truncatula. Version 2 (PMD2) is an updated version comprising 15944 pea markers in the same format with several advanced features. To test the performance of the PMD, fine mapping of pea symbiotic genes Sym13 and Sym27 in linkage groups VII and V, respectively, was carried out. The results of mapping allowed us to propose the Sen1 gene (a homologue of SEN1 gene of Lotus japonicus (Regel) K. Larsen) as the best candidate gene for Sym13, and to narrow the list of possible candidate genes for Sym27 to ten, thus proving PMD to be useful for pea gene mapping and cloning. All information contained in PMD1 and PMD2 is available at www.peamarker.arriam.ru.

  13. Genetic Map of Mango: A Tool for Mango Breeding

    Directory of Open Access Journals (Sweden)

    David N. Kuhn

    2017-04-01

    Full Text Available Mango (Mangifera indica is an economically and nutritionally important tropical/subtropical tree fruit crop. Most of the current commercial cultivars are selections rather than the products of breeding programs. To improve the efficiency of mango breeding, molecular markers have been used to create a consensus genetic map that identifies all 20 linkage groups in seven mapping populations. Polyembryony is an important mango trait, used for clonal propagation of cultivars and rootstocks. In polyembryonic mango cultivars, in addition to a zygotic embryo, several apomictic embryos develop from maternal tissue surrounding the fertilized egg cell. This trait has been associated with linkage group 8 in our consensus genetic map and has been validated in two of the seven mapping populations. In addition, we have observed a significant association between trait and single nucleotide polymorphism (SNP markers for the vegetative trait of branch habit and the fruit traits of bloom, ground skin color, blush intensity, beak shape, and pulp color.

  14. Linkage of congenital isolated adrenocorticotropic hormone deficiency to the corticotropin releasing hormone locus using simple sequence repeat polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Kyllo, J.H.; Collins, M.M.; Vetter, K.L. [Univ. of Iowa College of Medicine, Iowa City, IA (United States)] [and others

    1996-03-29

    Genetic screening techniques using simple sequence repeat polymorphisms were applied to investigate the molecular nature of congenital isolated adrenocorticotropic hormone (ACTH) deficiency. We hypothesize that this rare cause of hypocortisolism shared by a brother and sister with two unaffected sibs and unaffected parents is inherited as an autosomal recessive single gene mutation. Genes involved in the hypothalamic-pituitary axis controlling cortisol sufficiency were investigated for a causal role in this disorder. Southern blotting showed no detectable mutations of the gene encoding pro-opiomelanocortin (POMC), the ACTH precursor. Other candidate genes subsequently considered were those encoding neuroendocrine convertase-1, and neuroendocrine convertase-2 (NEC-1, NEC-2), and corticotropin releasing hormone (CRH). Tests for linkage were performed using polymorphic di- and tetranucleotide simple sequence repeat markers flanking the reported map locations for POMC, NEC-1, NEC-2, and CRH. The chromosomal haplotypes determined by the markers flanking the loci for POMC, NEC-1, and NEC-2 were not compatible with linkage. However, 22 individual markers defining the chromosomal haplotypes flanking CRH were compatible with linkage of the disorder to the immediate area of this gene of chromosome 8. Based on these data, we hypothesize that the ACTH deficiency in this family is due to an abnormality of CRH gene structure or expression. These results illustrate the useful application of high density genetic maps constructed with simple sequence repeat markers for inclusion/exclusion studies of candidate genes in even very small nuclear families segregating for unusual phenotypes. 25 refs., 5 figs., 2 tabs.

  15. Dissecting Genetic Network of Fruit Branch Traits in Upland Cotton by Association Mapping Using SSR Markers.

    Directory of Open Access Journals (Sweden)

    Yongjun Mei

    Full Text Available Genetic architecture of branch traits has large influences on the morphological structure, photosynthetic capacity, planting density, and yield of Upland cotton (Gossypium hirsutum L.. This research aims to reveal the genetic effects of six branch traits, including bottom fruit branch node number (BFBNN, bottom fruit branch length (BFBL, middle fruit branch node number (MFBNN, middle fruit branch length (MFBL, upper fruit branch node number (UFBNN, and upper fruit branch length (UFBL. Association mapping was conducted for these traits of 39 lines and their 178 F1 hybrids in three environments. There were 20 highly significant Quantitative Trait SSRs (QTSs detected by mixed linear model approach analyzing a full genetic model with genetic effects of additive, dominance, epistasis and their environment interaction. The phenotypic variation explained by genetic effects ranged from 32.64 ~ 91.61%, suggesting these branch traits largely influenced by genetic factors.

  16. Identification of QTLs for resistance to powdery mildew and SSR markers diagnostic for powdery mildew resistance genes in melon (Cucumis melo L.).

    Science.gov (United States)

    Fukino, Nobuko; Ohara, Takayoshi; Monforte, Antonio J; Sugiyama, Mitsuhiro; Sakata, Yoshiteru; Kunihisa, Miyuki; Matsumoto, Satoru

    2008-12-01

    Powdery mildew caused by Podosphaera xanthii is an important foliar disease in melon. To find molecular markers for marker-assisted selection, we constructed a genetic linkage map of melon based on a population of 93 recombinant inbred lines derived from crosses between highly resistant AR 5 and susceptible 'Earl's Favourite (Harukei 3)'. The map spans 877 cM and consists of 167 markers, comprising 157 simple sequence repeats (SSRs), 7 sequence characterized amplified region/cleavage amplified polymorphic sequence markers and 3 phenotypic markers segregating into 20 linkage groups. Among them, 37 SSRs and 6 other markers were common to previous maps. Quantitative trait locus (QTL) analysis identified two loci for resistance to powdery mildew. The effects of these QTLs varied depending on strain and plant stage. The percentage of phenotypic variance explained for resistance to the pxA strain was similar between QTLs (R (2) = 22-28%). For resistance to pxB strain, the QTL on linkage group (LG) XII was responsible for much more of the variance (41-46%) than that on LG IIA (12-13%). The QTL on LG IIA was located between two SSR markers. Using an independent population, we demonstrated the effectiveness of these markers. This is the first report of universal and effective markers linked to a gene for powdery mildew resistance in melon.

  17. A comparative map viewer integrating genetic maps for Brassica and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Erwin Timothy A

    2007-07-01

    Full Text Available Abstract Background Molecular genetic maps provide a means to link heritable traits with underlying genome sequence variation. Several genetic maps have been constructed for Brassica species, yet to date, there has been no simple means to compare this information or to associate mapped traits with the genome sequence of the related model plant, Arabidopsis. Description We have developed a comparative genetic map database for the viewing, comparison and analysis of Brassica and Arabidopsis genetic, physical and trait map information. This web-based tool allows users to view and compare genetic and physical maps, search for traits and markers, and compare genetic linkage groups within and between the amphidiploid and diploid Brassica genomes. The inclusion of Arabidopsis data enables comparison between Brassica maps that share no common markers. Analysis of conserved syntenic blocks between Arabidopsis and collated Brassica genetic maps validates the application of this system. This tool is freely available over the internet on http://bioinformatics.pbcbasc.latrobe.edu.au/cmap. Conclusion This database enables users to interrogate the relationship between Brassica genetic maps and the sequenced genome of A. thaliana, permitting the comparison of genetic linkage groups and mapped traits and the rapid identification of candidate genes.

  18. Development of CACTA transposon derived SCAR markers and their use in population structure analysis in Zea mays.

    Science.gov (United States)

    Roy, Neha Samir; Park, Kyong-Cheul; Lee, Sung-Il; Im, Min-Ji; Ramekar, Rahul Vasudeo; Kim, Nam-Soo

    2018-02-01

    Molecular marker technologies have proven to be an important breakthrough for genetic studies, construction of linkage maps and population genetics analysis. Transposable elements (TEs) constitute major fractions of repetitive sequences in plants and offer a wide range of possible areas to be explored as molecular markers. Sequence characterized amplified region (SCAR) marker development provides us with a simple and time saving alternative approach for marker development. We employed the CACTA-TD to develop SCARs and then integrated them into linkage map and used them for population structure and genetic diversity analysis of corn inbred population. A total of 108 dominant SCAR markers were designed out of which, 32 were successfully integrated in to the linkage map of maize RIL population and the remaining were added to a physical map for references to check the distribution throughout all chromosomes. Moreover, 76 polymorphic SCARs were used for diversity analysis of corn accessions being used in Korean corn breeding program. The overall average polymorphic information content (PIC) was 0.34, expected heterozygosity was 0.324 and Shannon's information index was 0.491 with a percentage of polymorphism of 98.67%. Further analysis by associating with desirable traits may also provide some accurate trait specific tagged SCAR markers. TE linked SCARs can provide an added level of polymorphism as well as improved discriminating ability and therefore can be useful in further breeding programs to develop high yielding germplasm.

  19. VT Wildlife Linkage Habitat

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Wildlife Linkage Habitat Analysis uses landscape scale data to identify or predict the location of potentially significant wildlife linkage...

  20. Pendred syndrome: evidence for genetic homogeneity and further refinement of linkage.

    Science.gov (United States)

    Gausden, E; Coyle, B; Armour, J A; Coffey, R; Grossman, A; Fraser, G R; Winter, R M; Pembrey, M E; Kendall-Taylor, P; Stephens, D; Luxon, L M; Phelps, P D; Reardon, W; Trembath, R

    1997-02-01

    Pendred syndrome is the association between congenital sensorineural deafness and goitre. The disorder is characterised by the incomplete discharge of radioiodide from a primed thyroid following perchlorate challenge. However, the molecular basis of the association between hearing loss and a defect in organification of iodide remains unclear. Pendred syndrome is inherited as an autosomal recessive trait and has recently been mapped to 7q31 coincident with the non-syndromic deafness locus DFNB4. To define the critical linkage interval for Pendred syndrome we have studied five kindreds, each with members affected by Pendred syndrome. All families support linkage to the chromosome 7 region, defined by the microsatellite markers D7S501-D7S523. Detailed haplotype analysis refines the Pendred syndrome linkage interval to a region flanked by the marker loci D7S501 and D7S525, separated by a genetic distance estimated to be 2.5 cM. As potential candidate genes have as yet not been mapped to this interval, these data will contribute to a positional cloning approach for the identification of the Pendred syndrome gene.

  1. Subsidiary Linkage Patterns

    DEFF Research Database (Denmark)

    Andersson, Ulf; Perri, Alessandra; Nell, Phillip C.

    2012-01-01

    channels for spillovers to competitors. We find a curvilinear relationship between the extent of competitive pressure and the quality of a subsidiary's set of local linkages. Furthermore, the extent to which a subsidiary possesses capabilities moderates this relationship: Very capable subsidiaries...... in strongly competitive environments tend to shy away from high quality linkages. We discuss our findings in light of the literature on spillovers and inter-organizational linkages.......This paper investigates the pattern of subsidiaries' local vertical linkages under varying levels of competition and subsidiary capabilities. Contrary to most previous literature, we explicitly account for the double role of such linkages as conduits of learning prospects as well as potential...

  2. Using genotyping-by-sequencing to develop broccoli markers for construction of a high-density linkage map and to identify quantitative trait loci associated with heat tolerance

    Science.gov (United States)

    Heat stress reduces the yield and quality of broccoli heads imposing seasonal and geographic limits to broccoli production. For the most part, the risk of producing broccoli with head defects (uneven beads, bracts in heads, etc.) induced by high temperatures has restricted commercial production in t...

  3. Polymorphism, linkage mapping, and association analysis with carcass traits of four porcine candidate genes selected from gene-expression profiles of Czech Large White and Wild Boar muscles

    Czech Academy of Sciences Publication Activity Database

    Chalupová, P.; Dvořáková, Věra; Knoll, A.; Stratil, Antonín; Bartenschlager, H.; Stupka, R.; Čítek, J.; Šprysl, M.; Palánová, Anna; Horák, Pavel; Geldermann, H.

    2014-01-01

    Roč. 59, č. 3 (2014), s. 116-127 ISSN 1212-1819 R&D Projects: GA ČR GA523/09/0844 Institutional support: RVO:67985904 Keywords : pig * single nucleotide polymorphism * DNA markers Subject RIV: GI - Animal Husbandry ; Breeding Impact factor: 1.183, year: 2014

  4. The application of GBS markers for extending the dense genetic map of rye (Secale cereale L.) and the localization of the Rfc1 gene restoring male fertility in plants with the C source of sterility-inducing cytoplasm.

    Science.gov (United States)

    Milczarski, Paweł; Hanek, Monika; Tyrka, Mirosław; Stojałowski, Stefan

    2016-11-01

    Genotyping by sequencing (GBS) is an efficient method of genotyping in numerous plant species. One of the crucial steps toward the application of GBS markers in crop improvement is anchoring them on particular chromosomes. In rye (Secale cereale L.), chromosomal localization of GBS markers has not yet been reported. In this paper, the application of GBS markers generated by the DArTseq platform for extending the high-density map of rye is presented. Additionally, their application is used for the localization of the Rfc1 gene that restores male fertility in plants with the C source of sterility-inducing cytoplasm. The total number of markers anchored on the current version of the map is 19,081, of which 18,132 were obtained from the DArTseq platform. Numerous markers co-segregated within the studied mapping population, so, finally, only 3397 unique positions were located on the map of all seven rye chromosomes. The total length of the map is 1593 cM and the average distance between markers is 0.47 cM. In spite of the resolution of the map being not very high, it should be a useful tool for further studies of the Secale cereale genome because of the presence on this map of numerous GBS markers anchored for the first time on rye chromosomes. The Rfc1 gene was located on high-density maps of the long arm of the 4R chromosome obtained for two mapping populations. Genetic maps were composed of DArT, DArTseq, and PCR-based markers. Consistent mapping results were obtained and DArTs tightly linked to the Rfc1 gene were successfully applied for the development of six new PCR-based markers useful in marker-assisted selection.

  5. Molecular Mapping of D1, D2 and ms5 Revealed Linkage between the Cotyledon Color Locus D2 and the Male-Sterile Locus ms5 in Soybean

    Directory of Open Access Journals (Sweden)

    Alina Ott

    2013-07-01

    Full Text Available In soybean, genic male sterility can be utilized as a tool to develop hybrid seed. Several male-sterile, female-fertile mutants have been identified in soybean. The male-sterile, female-fertile ms5 mutant was selected after fast neutron irradiation. Male-sterility due to ms5 was associated with the “stay-green” cotyledon color mutation. The cotyledon color trait in soybean is controlled by two loci, D1 and D2. Association between cotyledon color and male-sterility can be instrumental in early phenotypic selection of sterility for hybrid seed production. The use of such selection methods saves time, money, and space, as fewer seeds need to be planted and screened for sterility. The objectives of this study were to compare anther development between male-fertile and male-sterile plants, to investigate the possible linkages among the Ms5, D1 and D2 loci, and to determine if any of the d1 or d2 mutations can be applied in hybrid seed production. The cytological analysis during anther development displayed optically clear, disintegrating microspores and enlarged, engorged pollen in the male-sterile, female-fertile ms5ms5 plants, a common characteristic of male-sterile mutants. The D1 locus was mapped to molecular linkage group (MLG D1a and was flanked by Satt408 and BARCSOYSSR_01_1622. The ms5 and D2 loci were mapped to MLG B1 with a genetic distance ~12.8 cM between them. These results suggest that use of the d2 mutant in the selection of male-sterile line may attenuate the cost hybrid seed production in soybean.

  6. Genomewide high-density SNP linkage analysis of non-BRCA1/2 breast cancer families identifies various candidate regions and has greater power than microsatellite studies

    Directory of Open Access Journals (Sweden)

    Gonzalez-Neira Anna

    2007-08-01

    Full Text Available Abstract Background The recent development of new high-throughput technologies for SNP genotyping has opened the possibility of taking a genome-wide linkage approach to the search for new candidate genes involved in heredity diseases. The two major breast cancer susceptibility genes BRCA1 and BRCA2 are involved in 30% of hereditary breast cancer cases, but the discovery of additional breast cancer predisposition genes for the non-BRCA1/2 breast cancer families has so far been unsuccessful. Results In order to evaluate the power improvement provided by using SNP markers in a real situation, we have performed a whole genome screen of 19 non-BRCA1/2 breast cancer families using 4720 genomewide SNPs with Illumina technology (Illumina's Linkage III Panel, with an average distance of 615 Kb/SNP. We identified six regions on chromosomes 2, 3, 4, 7, 11 and 14 as candidates to contain genes involved in breast cancer susceptibility, and additional fine mapping genotyping using microsatellite markers around linkage peaks confirmed five of them, excluding the region on chromosome 3. These results were consistent in analyses that excluded SNPs in high linkage disequilibrium. The results were compared with those obtained previously using a 10 cM microsatellite scan (STR-GWS and we found lower or not significant linkage signals with STR-GWS data compared to SNP data in all cases. Conclusion Our results show the power increase that SNPs can supply in linkage studies.

  7. Effects of the number of markers per haplotype and clustering of haplotypes on the accuracy of QTL mapping and prediction of genomic breeding values

    Directory of Open Access Journals (Sweden)

    Schrooten Chris

    2009-01-01

    Full Text Available Abstract The aim of this paper was to compare the effect of haplotype definition on the precision of QTL-mapping and on the accuracy of predicted genomic breeding values. In a multiple QTL model using identity-by-descent (IBD probabilities between haplotypes, various haplotype definitions were tested i.e. including 2, 6, 12 or 20 marker alleles and clustering base haplotypes related with an IBD probability of > 0.55, 0.75 or 0.95. Simulated data contained 1100 animals with known genotypes and phenotypes and 1000 animals with known genotypes and unknown phenotypes. Genomes comprising 3 Morgan were simulated and contained 74 polymorphic QTL and 383 polymorphic SNP markers with an average r2 value of 0.14 between adjacent markers. The total number of haplotypes decreased up to 50% when the window size was increased from two to 20 markers and decreased by at least 50% when haplotypes related with an IBD probability of > 0.55 instead of > 0.95 were clustered. An intermediate window size led to more precise QTL mapping. Window size and clustering had a limited effect on the accuracy of predicted total breeding values, ranging from 0.79 to 0.81. Our conclusion is that different optimal window sizes should be used in QTL-mapping versus genome-wide breeding value prediction.

  8. Development and Characterization of 37 Novel EST-SSR Markers in Pisum sativum (Fabaceae

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zhuang

    2013-01-01

    Full Text Available Premise of the study: Simple sequence repeat markers were developed based on expressed sequence tags (EST-SSR and screened for polymorphism among 23 Pisum sativum individuals to assist development and refinement of pea linkage maps. In particular, the SSR markers were developed to assist in mapping of white mold disease resistance quantitative trait loci. Methods and Results: Primer pairs were designed for 46 SSRs identified in EST contiguous sequences assembled from a 454 pyrosequenced transcriptome of the pea cultivar, ‘LIFTER’. Thirty-seven SSR markers amplified PCR products, of which 11 (30% SSR markers produced polymorphism in 23 individuals, including parents of recombinant inbred lines, with two to four alleles. The observed and expected heterozygosities ranged from 0 to 0.43 and from 0.31 to 0.83, respectively. Conclusions: These EST-SSR markers for pea will be useful for refinement of pea linkage maps, and will likely be useful for comparative mapping of pea and as tools for marker-based pea breeding.

  9. QTL mapping for test weight by using F2:3 population in maize

    Indian Academy of Sciences (India)

    Based on the genetic map containing 180 polymorphic SSR markers with an average linkage ... Introduction ... determining the corn market grades for milling, export and ... However, little is known about the importance of additive ... Journal of Genetics, Vol. .... It should be noted in these digenic interactions, a relatively.

  10. Molecular mapping of resistance to blight in an interspecific cross in the genus Castanea

    Science.gov (United States)

    Thomas L. Kubisiak; F.V. Hebard; C. Dana Nelson; Jiansu Zhang; R. Bernatzky; H. Huang; S.L. Anagnostakis; R.L. Doudrick

    1997-01-01

    A three-generation American chestnut x Chinese chestnut pedigree was used to construct a genetic linkage map for chestnut and to investigate the control of resistance to Endothia parasitica (chestnut blight fungus). DNA genotypes for 241 polymorphic markers (eight isozymes, 17 restriction fragment length polymorphisms [RFLPs], and 216 random...

  11. Development, genetic mapping and QTL association of cotton PHYA, PHYB, and HY5-specific CAPS and dCAPS markers

    Science.gov (United States)

    Among SNP markers that become increasingly valuable in molecular breeding of crop plants are the CAP and dCAP markers derived from the genes of interest. To date, the number of such gene-based markers is small in polyploid crop plants such as tetraploid cotton that has A and D subgenomes. The obje...

  12. A molecular recombination map of Antirrhinum majus

    Directory of Open Access Journals (Sweden)

    Hudson Andrew

    2010-12-01

    Full Text Available Abstract Background Genetic recombination maps provide important frameworks for comparative genomics, identifying gene functions, assembling genome sequences and for breeding. The molecular recombination map currently available for the model eudicot Antirrhinum majus is the result of a cross with Antirrhinum molle, limiting its usefulness within A. majus. Results We created a molecular linkage map of A. majus based on segregation of markers in the F2 population of two inbred lab strains of A. majus. The resulting map consisted of over 300 markers in eight linkage groups, which could be aligned with a classical recombination map and the A. majus karyotype. The distribution of recombination frequencies and distorted transmission of parental alleles differed from those of a previous inter-species hybrid. The differences varied in magnitude and direction between chromosomes, suggesting that they had multiple causes. The map, which covered an estimated of 95% of the genome with an average interval of 2 cM, was used to analyze the distribution of a newly discovered family of MITE transposons and tested for its utility in positioning seven mutations that affect aspects of plant size. Conclusions The current map has an estimated interval of 1.28 Mb between markers. It shows a lower level of transmission ratio distortion and a longer length than the previous inter-species map, making it potentially more useful. The molecular recombination map further indicates that the IDLE MITE transposons are distributed throughout the genome and are relatively stable. The map proved effective in mapping classical morphological mutations of A. majus.

  13. The linkage between the lifestyle of knowledge-workers and their intra-metropolitan residential choice: A clustering approach based on self-organizing maps

    DEFF Research Database (Denmark)

    Frenkel, Amnon; Bendit, Edward; Kaplan, Sigal

    2013-01-01

    -Aviv metropolitan area and are analyzed with self-organizing maps for pattern recognition and classification. Five clusters are identified: nest-builders, bon-vivants, careerists, entrepreneurs and laid-back. Bon-vivants and entrepreneurs differ in their dwelling size and home-ownership, although both prefer...

  14. Genomic characterization and linkage mapping of the apple allergen genes Mal d 2 (thaumatin-like protein) and Mal d 4 (profilin)

    NARCIS (Netherlands)

    Gao, Z.S.; Weg, van de W.E.; Schaart, J.G.; Arkel, van G.; Breiteneder, H.; Hoffmann-Sommergruber, K.; Gilissen, L.J.W.J.

    2005-01-01

    Four classes of apple allergens (Mal d 1, ¿2, ¿3 and ¿4) have been reported. By using PCR cloning and sequencing approaches, we obtained genomic sequences of Mal d 2 (thaumatin-like protein) and Mal d 4 (profilin) from the cvs Prima and Fiesta, the two parents of a European reference mapping

  15. Getting Started with GeneRecon — An Introduction to the Association Mapping Tool GeneRecon

    DEFF Research Database (Denmark)

    Mailund, T; Schauser, Leif

    2006-01-01

    GeneRecon is a software package for linkage disequilibrium mapping using coalescent theory. It is based on Bayesian Markov-chain Monte Carlo (MCMC) method for fine-scale linkage-disequilibrium gene mapping using high-density marker maps. GeneRecon explicitly models the genealogy of a sample...... of the case chromosomes in the vicinity of a disease locus. Given case and control data in the form of genotype or haplotype information, it estimates a number of parameters, most importantly, the disease position....

  16. Probabilistic record linkage.

    Science.gov (United States)

    Sayers, Adrian; Ben-Shlomo, Yoav; Blom, Ashley W; Steele, Fiona

    2016-06-01

    Studies involving the use of probabilistic record linkage are becoming increasingly common. However, the methods underpinning probabilistic record linkage are not widely taught or understood, and therefore these studies can appear to be a 'black box' research tool. In this article, we aim to describe the process of probabilistic record linkage through a simple exemplar. We first introduce the concept of deterministic linkage and contrast this with probabilistic linkage. We illustrate each step of the process using a simple exemplar and describe the data structure required to perform a probabilistic linkage. We describe the process of calculating and interpreting matched weights and how to convert matched weights into posterior probabilities of a match using Bayes theorem. We conclude this article with a brief discussion of some of the computational demands of record linkage, how you might assess the quality of your linkage algorithm, and how epidemiologists can maximize the value of their record-linked research using robust record linkage methods. © The Author 2015; Published by Oxford University Press on behalf of the International Epidemiological Association.

  17. Comparação dos algoritmos delineação rápida em cadeia e seriação, para a construção de mapas genéticos Comparison of algorithms rapid chain delineation and seriation, for the construction of genetic linkage maps

    Directory of Open Access Journals (Sweden)

    Marcelo Mollinari

    2008-04-01

    Full Text Available O objetivo deste trabalho foi avaliar a eficiência, na construção de mapas genéticos, dos algoritmos seriação e delineação rápida em cadeia, além dos critérios para avaliação de ordens: produto mínimo das frações de recombinação adjacentes, soma mínima das frações de recombinação adjacentes e soma máxima dos LOD Scores adjacentes, quando usados com o algoritmo de verificação de erros " ripple" . Foi simulado um mapa com 24 marcadores, posicionados aleatoriamente a distâncias variadas, com média 10 cM. Por meio do método Monte Carlo, foram obtidas 1.000 populações de retrocruzamento e 1.000 populações F2, com 200 indivíduos cada, e diferentes combinações de marcadores dominantes e co-dominantes (100% co-dominantes, 100% dominantes e mistura com 50% co-dominantes e 50% dominantes. Foi, também, simulada a perda de 25, 50 e 75% dos dados. Observou-se que os dois algoritmos avaliados tiveram desempenho semelhante e foram sensíveis à presença de dados perdidos e à presença de marcadores dominantes; esta última dificultou a obtenção de estimativas com boa acurácia, tanto da ordem quanto da distância. Além disso, observou-se que o algoritmo " ripple" geralmente aumenta o número de ordens corretas e pode ser combinado com os critérios soma mínima das frações de recombinação adjacentes e produto mínimo das frações de recombinação adjacentes.The objective of this work was to evaluate the efficiency for the construction of genetic linkage maps of the algorithms seriation and rapid chain delineation, as well as the criteria: product of adjacent recombination fractions, sum of adjacent recombination fractions, and sum of adjacent LOD Scores, used with the ripple algorithm. A genetic linkage map was simulated containing 24 markers with random distances between them, with an average of 10 cM. Using the Monte Carlo method, 1,000 backcross populations and 1,000 F2 populations were simulated. The

  18. Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana.

    Science.gov (United States)

    Wittenberg, Alexander H J; van der Lee, Theo; Cayla, Cyril; Kilian, Andrzej; Visser, Richard G F; Schouten, Henk J

    2005-08-01

    Diversity Arrays Technology (DArT) is a microarray-based DNA marker technique for genome-wide discovery and genotyping of genetic variation. DArT allows simultaneous scoring of hundreds of restriction site based polymorphisms between genotypes and does not require DNA sequence information or site-specific oligonucleotides. This paper demonstrates the potential of DArT for genetic mapping by validating the quality and molecular basis of the markers, using the model plant Arabidopsis thaliana. Restriction fragments from a genomic representation of the ecotype Landsberg erecta (Ler) were amplified by PCR, individualized by cloning and spotted onto glass slides. The arrays were then hybridized with labeled genomic representations of the ecotypes Columbia (Col) and Ler and of individuals from an F(2) population obtained from a Col x Ler cross. The scoring of markers with specialized software was highly reproducible and 107 markers could unambiguously be ordered on a genetic linkage map. The marker order on the genetic linkage map coincided with the order on the DNA sequence map. Sequencing of the Ler markers and alignment with the available Col genome sequence confirmed that the polymorphism in DArT markers is largely a result of restriction site polymorphisms.

  19. Development and Molecular Characterization of Novel Polymorphic Genomic DNA SSR Markers in Lentinula edodes.

    Science.gov (United States)

    Moon, Suyun; Lee, Hwa-Yong; Shim, Donghwan; Kim, Myungkil; Ka, Kang-Hyeon; Ryoo, Rhim; Ko, Han-Gyu; Koo, Chang-Duck; Chung, Jong-Wook; Ryu, Hojin

    2017-06-01

    Sixteen genomic DNA simple sequence repeat (SSR) markers of Lentinula edodes were developed from 205 SSR motifs present in 46.1-Mb long L. edodes genome sequences. The number of alleles ranged from 3-14 and the major allele frequency was distributed from 0.17-0.96. The values of observed and expected heterozygosity ranged from 0.00-0.76 and 0.07-0.90, respectively. The polymorphic information content value ranged from 0.07-0.89. A dendrogram, based on 16 SSR markers clustered by the paired hierarchical clustering' method, showed that 33 shiitake cultivars could be divided into three major groups and successfully identified. These SSR markers will contribute to the efficient breeding of this species by providing diversity in shiitake varieties. Furthermore, the genomic information covered by the markers can provide a valuable resource for genetic linkage map construction, molecular mapping, and marker-assisted selection in the shiitake mushroom.

  20. Development and Characterization of Simple Sequence Repeat (SSR) Markers Based on RNA-Sequencing of Medicago sativa and In silico Mapping onto the M. truncatula Genome

    Science.gov (United States)

    Wang, Zan; Yu, Guohui; Shi, Binbin; Wang, Xuemin; Qiang, Haiping; Gao, Hongwen

    2014-01-01

    Sufficient codominant genetic markers are needed for various genetic investigations in alfalfa since the species is an outcrossing autotetraploid. With the newly developed next generation sequencing technology, a large amount of transcribed sequences of alfalfa have been generated and are available for identifying SSR markers by data mining. A total of 54,278 alfalfa non-redundant unigenes were assembled through the Illumina HiSeqTM 2000 sequencing technology. Based on 3,903 unigene sequences, 4,493 SSRs were identified. Tri-nucleotide repeats (56.71%) were the most abundant motif class while AG/CT (21.7%), AGG/CCT (19.8%), AAC/GTT (10.3%), ATC/ATG (8.8%), and ACC/GGT (6.3%) were the subsequent top five nucleotide repeat motifs. Eight hundred and thirty- seven EST-SSR primer pairs were successfully designed. Of these, 527 (63%) primer pairs yielded clear and scored PCR products and 372 (70.6%) exhibited polymorphisms. High transferability was observed for ssp falcata at 99.2% (523) and 71.7% (378) in M. truncatula. In addition, 313 of 527 SSR marker sequences were in silico mapped onto the eight M. truncatula chromosomes. Thirty-six polymorphic SSR primer pairs were used in the genetic relatedness analysis of 30 Chinese alfalfa cultivated accessions generating a total of 199 scored alleles. The mean observed heterozygosity and polymorphic information content were 0.767 and 0.635, respectively. The codominant markers not only enriched the current resources of molecular markers in alfalfa, but also would facilitate targeted investigations in marker-trait association, QTL mapping, and genetic diversity analysis in alfalfa. PMID:24642969

  1. Identification of New Resistance Loci to African Stem Rust Race TTKSK in Tetraploid Wheats Based on Linkage and Genome-Wide Association Mapping.

    Science.gov (United States)

    Laidò, Giovanni; Panio, Giosuè; Marone, Daniela; Russo, Maria A; Ficco, Donatella B M; Giovanniello, Valentina; Cattivelli, Luigi; Steffenson, Brian; de Vita, Pasquale; Mastrangelo, Anna M

    2015-01-01

    Stem rust, caused by Puccinia graminis Pers. f. sp. tritici Eriks. and E. Henn. (Pgt), is one of the most destructive diseases of wheat. Races of the pathogen in the "Ug99 lineage" are of international concern due to their virulence for widely used stem rust resistance genes and their spread throughout Africa. Disease resistant cultivars provide one of the best means for controlling stem rust. To identify quantitative trait loci (QTL) conferring resistance to African stem rust race TTKSK at the seedling stage, we evaluated an association mapping (AM) panel consisting of 230 tetraploid wheat accessions under greenhouse conditions. A high level of phenotypic variation was observed in response to race TTKSK in the AM panel, allowing for genome-wide association mapping of resistance QTL in wild, landrace, and cultivated tetraploid wheats. Thirty-five resistance QTL were identified on all chromosomes, and seventeen are of particular interest as identified by multiple associations. Many of the identified resistance loci were coincident with previously identified rust resistance genes; however, nine on chromosomes 1AL, 2AL, 4AL, 5BL, and 7BS may be novel. To validate AM results, a biparental population of 146 recombinant inbred lines was also considered, which derived from a cross between the resistant cultivar "Cirillo" and susceptible "Neodur." The stem rust resistance of Cirillo was conferred by a single gene on the distal region of chromosome arm 6AL in an interval map coincident with the resistance gene Sr13, and confirmed one of the resistance loci identified by AM. A search for candidate resistance genes was carried out in the regions where QTL were identified, and many of them corresponded to NBS-LRR genes and protein kinases with LRR domains. The results obtained in the present study are of great interest as a high level of genetic variability for resistance to race TTKSK was described in a germplasm panel comprising most of the tetraploid wheat sub-species.

  2. Exploring the genetics of fertility restoration controlled by Rf1 in common wheat (Triticum aestivum L.) using high-density linkage maps.

    Science.gov (United States)

    Geyer, Manuel; Albrecht, Theresa; Hartl, Lorenz; Mohler, Volker

    2018-04-01

    Hybrid wheat breeding has the potential to significantly increase wheat productivity compared to line breeding. The induction of male sterility by the cytoplasm of Triticum timopheevii Zhuk. is a widely discussed approach to ensure cross-pollination between parental inbred lines in hybrid wheat seed production. As fertility restoration in hybrids with this cytoplasm is often incomplete, understanding the underlying genetics is a prerequisite to apply this technology. A promising component for fertility restoration is the restorer locus Rf1, which was first detected on chromosome 1A of the restorer accession R3. In the present study, we performed quantitative trait locus (QTL) analyses to locate Rf1 and estimate its effect in populations involving the restorer lines R3, R113 and L19. Molecular markers linked to Rf1 in these populations were used to analyse the genomic target region in T. timopheevii accessions and common wheat breeding lines. The QTL analyses revealed that Rf1 interacted with a modifier locus on chromosome 1BS and the restorer locus Rf4 on chromosome 6B. The modifier locus significantly influenced both the penetrance and expressivity of Rf1. Whereas Rf1 exhibited expressivity higher than that of Rf4, the effects of these loci were not additive. Evaluating the marker haplotype for the Rf1 region, we propose that the restoring Rf1 allele may be derived exclusively from T. timopheevii. The present study demonstrates that interactions between restorer and modifier loci play a critical role in fertility restoration of common wheat with the cytoplasm of T. timopheevii.

  3. Genetic mapping and QTL analysis for body weight in Jian carp ( Cyprinus carpio var. Jian) compared with mirror carp ( Cyprinus carpio L.)

    Science.gov (United States)

    Gu, Ying; Lu, Cuiyun; Zhang, Xiaofeng; Li, Chao; Yu, Juhua; Sun, Xiaowen

    2015-05-01

    We report the genetic linkage map of Jian carp ( Cyprinus carpio var. Jian). An F1 population comprising 94 Jian carp indi