WorldWideScience

Sample records for markedly seasonal forests

  1. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient.

    Science.gov (United States)

    Orihuela, Rodrigo L L; Peres, Carlos A; Mendes, Gabriel; Jarenkow, João A; Tabarelli, Marcelo

    2015-01-01

    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.

  2. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient.

    Directory of Open Access Journals (Sweden)

    Rodrigo L L Orihuela

    Full Text Available We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.

  3. Effects of site preparation subsoiling and prescribed burning on survival and growth of shortleaf pine in the Mark Twain National Forest: results after 20 growing seasons

    Science.gov (United States)

    David Gwaze; Ross Melick; Lynn McClure; Charly Studyvin; David Massengele

    2007-01-01

    The objective of this study was to evaluate the effect of subsoiling (ripping) and prescribed burning on height, survival, diameter, volume, and competition of planted shortleaf pine (Pinus echinata Mill.). The study was established at the Salem Ranger District, Mark Twain National Forest. The treatments were subsoil/burn, burn, and control with no...

  4. Seasonal rhythms of seed rain and seedling emergence in two tropical rain forests in southern Brazil.

    Science.gov (United States)

    Marques, M C M; Oliveira, P E A M

    2008-09-01

    Seasonal tropical forests show rhythms in reproductive activities due to water stress during dry seasons. If both seed dispersal and seed germination occur in the best environmental conditions, mortality will be minimised and forest regeneration will occur. To evaluate whether non-seasonal forests also show rhythms, for 2 years we studied the seed rain and seedling emergence in two sandy coastal forests (flooded and unflooded) in southern Brazil. In each forest, one 100 x 30-m grid was marked and inside it 30 stations comprising two seed traps (0.5 x 0.5 m each) and one plot (2 x 2 m) were established for monthly monitoring of seed rain and a seedling emergence study, respectively. Despite differences in soil moisture and incident light on the understorey, flooded and unflooded forests had similar dispersal and germination patterns. Seed rain was seasonal and bimodal (peaks at the end of the wetter season and in the less wet season) and seedling emergence was seasonal and unimodal (peaking in the wetter season). Approximately 57% of the total species number had seedling emergence 4 or more months after dispersal. Therefore, both seed dormancy and the timing of seed dispersal drive the rhythm of seedling emergence in these forests. The peak in germination occurs in the wetter season, when soil fertility is higher and other phenological events also occur. The strong seasonality in these plant communities, even in this weakly seasonal climate, suggests that factors such as daylength, plant sensitivity to small changes in the environment (e.g. water and nutrient availability) or phylogenetic constraints cause seasonal rhythms in the plants.

  5. Marked seasonal variation in the wild mouse gut microbiota.

    Science.gov (United States)

    Maurice, Corinne F; Knowles, Sarah C L; Ladau, Joshua; Pollard, Katherine S; Fenton, Andy; Pedersen, Amy B; Turnbaugh, Peter J

    2015-11-01

    Recent studies have provided an unprecedented view of the microbial communities colonizing captive mice; yet the host and environmental factors that shape the rodent gut microbiota in their natural habitat remain largely unexplored. Here, we present results from a 2-year 16 S ribosomal RNA gene sequencing-based survey of wild wood mice (Apodemus sylvaticus) in two nearby woodlands. Similar to other mammals, wild mice were colonized by 10 bacterial phyla and dominated by the Firmicutes, Bacteroidetes and Proteobacteria. Within the Firmicutes, the Lactobacillus genus was most abundant. Putative bacterial pathogens were widespread and often abundant members of the wild mouse gut microbiota. Among a suite of extrinsic (environmental) and intrinsic (host-related) factors examined, seasonal changes dominated in driving qualitative and quantitative differences in the gut microbiota. In both years examined, we observed a strong seasonal shift in gut microbial community structure, potentially due to the transition from an insect- to a seed-based diet. This involved decreased levels of Lactobacillus, and increased levels of Alistipes (Bacteroidetes phylum) and Helicobacter. We also detected more subtle but statistically significant associations between the gut microbiota and biogeography, sex, reproductive status and co-colonization with enteric nematodes. These results suggest that environmental factors have a major role in shaping temporal variations in microbial community structure within natural populations.

  6. Season-modulated responses of Neotropical bats to forest fragmentation.

    Science.gov (United States)

    Ferreira, Diogo F; Rocha, Ricardo; López-Baucells, Adrià; Farneda, Fábio Z; Carreiras, João M B; Palmeirim, Jorge M; Meyer, Christoph F J

    2017-06-01

    Seasonality causes fluctuations in resource availability, affecting the presence and abundance of animal species. The impacts of these oscillations on wildlife populations can be exacerbated by habitat fragmentation. We assessed differences in bat species abundance between the wet and dry season in a fragmented landscape in the Central Amazon characterized by primary forest fragments embedded in a secondary forest matrix. We also evaluated whether the relative importance of local vegetation structure versus landscape characteristics (composition and configuration) in shaping bat abundance patterns varied between seasons. Our working hypotheses were that abundance responses are species as well as season specific, and that in the wet season, local vegetation structure is a stronger determinant of bat abundance than landscape-scale attributes. Generalized linear mixed-effects models in combination with hierarchical partitioning revealed that relationships between species abundances and local vegetation structure and landscape characteristics were both season specific and scale dependent. Overall, landscape characteristics were more important than local vegetation characteristics, suggesting that landscape structure is likely to play an even more important role in landscapes with higher fragment-matrix contrast. Responses varied between frugivores and animalivores. In the dry season, frugivores responded more to compositional metrics, whereas during the wet season, local and configurational metrics were more important. Animalivores showed similar patterns in both seasons, responding to the same group of metrics in both seasons. Differences in responses likely reflect seasonal differences in the phenology of flowering and fruiting between primary and secondary forests, which affected the foraging behavior and habitat use of bats. Management actions should encompass multiscale approaches to account for the idiosyncratic responses of species to seasonal variation in

  7. Marking behavior of Andean bears in an Ecuadorian cloud forest

    NARCIS (Netherlands)

    Filipczyková, Eva; Heitkonig, Ignas; Castellanos, Armando; Hantson, Wouter; Steyaert, Sam M.J.G.

    2017-01-01

    Very little is known about marking behavior of the endangered Andean bear (Tremarctos ornatus). Here, we present a first detailed description of Andean bear marking behavior obtained using camera traps. From November 2012 to April 2013, we inspected 16 bear trails in the Napo province of eastern

  8. 75 FR 55736 - Mark Twain National Forest; Missouri; Integrated Non-Native Invasive Plant Project

    Science.gov (United States)

    2010-09-14

    ... DEPARTMENT OF AGRICULTURE Forest Service Mark Twain National Forest; Missouri; Integrated Non... notice of intent initiates the scoping process, which guides the development of the environmental impact... information to MTNF world wide Web site. Four comment letters were received in response to that solicitation...

  9. Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest

    NARCIS (Netherlands)

    Cai, Z.Q.; Schnitzer, S.A.; Bongers, F.

    2009-01-01

    Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in aseasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage

  10. Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest.

    Science.gov (United States)

    Cai, Zhi-Quan; Schnitzer, Stefan A; Bongers, Frans

    2009-08-01

    Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in seasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO(2) assimilation per unit mass (A(mass)), nitrogen concentration (N(mass)), and delta(13)C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO(2) assimilation per unit area (A(area)), phosphorus concentration per unit mass (P(mass)), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree A(area) decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana delta(13)C increased four times more than tree delta(13)C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher A(mass) than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests.

  11. Seasonality and microhabitat selection in a forest-dwelling salamander

    Science.gov (United States)

    Basile, Marco; Romano, Antonio; Costa, Andrea; Posillico, Mario; Scinti Roger, Daniele; Crisci, Aldo; Raimondi, Ranieri; Altea, Tiziana; Garfì, Vittorio; Santopuoli, Giovanni; Marchetti, Marco; Salvidio, Sebastiano; De Cinti, Bruno; Matteucci, Giorgio

    2017-10-01

    Many small terrestrial vertebrates exhibit limited spatial movement and are considerably exposed to changes in local environmental variables. Among such vertebrates, amphibians at present experience a dramatic decline due to their limited resilience to environmental change. Since the local survival and abundance of amphibians is intrinsically related to the availability of shelters, conservation plans need to take microhabitat requirements into account. In order to gain insight into the terrestrial ecology of the spectacled salamander Salamandrina perspicillata and to identify appropriate forest management strategies, we investigated the salamander's seasonal variability in habitat use of trees as shelters in relation to tree features (size, buttresses, basal holes) and environmental variables in a beech forest in Italy. We used the occupancy approach to assess tree suitability on a non-conventional spatial scale. Our approach provides fine-grained parameters of microhabitat suitability and elucidates many aspects of the salamander's terrestrial ecology . Occupancy changed with the annual life cycle and was higher in autumn than in spring, when females were found closer to the stream in the study area. Salamanders showed a seasonal pattern regarding the trees they occupied and a clear preference for trees with a larger diameter and more burrows. With respect to forest management, we suggest maintaining a suitable number of trees with a trunk diameter exceeding 30 cm. A practice of selective logging along the banks of streams could help maintain an adequate quantity of the appropriate microhabitat. Furthermore, in areas with a presence of salamanders, a good forest management plan requires leaving an adequate buffer zone around streams, which should be wider in autumn than in spring.

  12. Modeling seasonal surface temperature variations in secondary tropical dry forests

    Science.gov (United States)

    Cao, Sen; Sanchez-Azofeifa, Arturo

    2017-10-01

    Secondary tropical dry forests (TDFs) provide important ecosystem services such as carbon sequestration, biodiversity conservation, and nutrient cycle regulation. However, their biogeophysical processes at the canopy-atmosphere interface remain unknown, limiting our understanding of how this endangered ecosystem influences, and responds to the ongoing global warming. To facilitate future development of conservation policies, this study characterized the seasonal land surface temperature (LST) behavior of three successional stages (early, intermediate, and late) of a TDF, at the Santa Rosa National Park (SRNP), Costa Rica. A total of 38 Landsat-8 Thermal Infrared Sensor (TIRS) data and the Surface Reflectance (SR) product were utilized to model LST time series from July 2013 to July 2016 using a radiative transfer equation (RTE) algorithm. We further related the LST time series to seven vegetation indices which reflect different properties of TDFs, and soil moisture data obtained from a Wireless Sensor Network (WSN). Results showed that the LST in the dry season was 15-20 K higher than in the wet season at SRNP. We found that the early successional stages were about 6-8 K warmer than the intermediate successional stages and were 9-10 K warmer than the late successional stages in the middle of the dry season; meanwhile, a minimum LST difference (0-1 K) was observed at the end of the wet season. Leaf phenology and canopy architecture explained most LST variations in both dry and wet seasons. However, our analysis revealed that it is precipitation that ultimately determines the LST variations through both biogeochemical (leaf phenology) and biogeophysical processes (evapotranspiration) of the plants. Results of this study could help physiological modeling studies in secondary TDFs.

  13. Factors affecting the abundance of leaf-litter arthropods in unburned and thrice-burned seasonally-dry Amazonian forests.

    Science.gov (United States)

    Silveira, Juliana M; Barlow, Jos; Louzada, Julio; Moutinho, Paulo

    2010-09-21

    Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance.

  14. Seasonal pattern of anthropogenic salinization in temperate forested headwater streams.

    Science.gov (United States)

    Timpano, Anthony J; Zipper, Carl E; Soucek, David J; Schoenholtz, Stephen H

    2018-04-15

    Salinization of freshwaters by human activities is of growing concern globally. Consequences of salt pollution include adverse effects to aquatic biodiversity, ecosystem function, human health, and ecosystem services. In headwater streams of the temperate forests of eastern USA, elevated specific conductance (SC), a surrogate measurement for the major dissolved ions composing salinity, has been linked to decreased diversity of aquatic insects. However, such linkages have typically been based on limited numbers of SC measurements that do not quantify intra-annual variation. Effective management of salinization requires tools to accurately monitor and predict salinity while accounting for temporal variability. Toward that end, high-frequency SC data were collected within the central Appalachian coalfield over 4 years at 25 forested headwater streams spanning a gradient of salinity. A sinusoidal periodic function was used to model the annual cycle of SC, averaged across years and streams. The resultant model revealed that, on average, salinity deviated approximately ±20% from annual mean levels across all years and streams, with minimum SC occurring in late winter and peak SC occurring in late summer. The pattern was evident in headwater streams influenced by surface coal mining, unmined headwater reference streams with low salinity, and larger-order salinized rivers draining the study area. The pattern was strongly responsive to varying seasonal dilution as driven by catchment evapotranspiration, an effect that was amplified slightly in unmined catchments with greater relative forest cover. Evaluation of alternative sampling intervals indicated that discrete sampling can approximate the model performance afforded by high-frequency data but model error increases rapidly as discrete sampling intervals exceed 30 days. This study demonstrates that intra-annual variation of salinity in temperate forested headwater streams of Appalachia USA follows a natural seasonal

  15. Seasonal and spatial variation in broadleaf forest model parameters

    Science.gov (United States)

    Groenendijk, M.; van der Molen, M. K.; Dolman, A. J.

    2009-04-01

    Process based, coupled ecosystem carbon, energy and water cycle models are used with the ultimate goal to project the effect of future climate change on the terrestrial carbon cycle. A typical dilemma in such exercises is how much detail the model must be given to describe the observations reasonably realistic while also be general. We use a simple vegetation model (5PM) with five model parameters to study the variability of the parameters. These parameters are derived from the observed carbon and water fluxes from the FLUXNET database. For 15 broadleaf forests the model parameters were derived for different time resolutions. It appears that in general for all forests, the correlation coefficient between observed and simulated carbon and water fluxes improves with a higher parameter time resolution. The quality of the simulations is thus always better when a higher time resolution is used. These results show that annual parameters are not capable of properly describing weather effects on ecosystem fluxes, and that two day time resolution yields the best results. A first indication of the climate constraints can be found by the seasonal variation of the covariance between Jm, which describes the maximum electron transport for photosynthesis, and climate variables. A general seasonality we found is that during winter the covariance with all climate variables is zero. Jm increases rapidly after initial spring warming, resulting in a large covariance with air temperature and global radiation. During summer Jm is less variable, but co-varies negatively with air temperature and vapour pressure deficit and positively with soil water content. A temperature response appears during spring and autumn for broadleaf forests. This shows that an annual model parameter cannot be representative for the entire year. And relations with mean annual temperature are not possible. During summer the photosynthesis parameters are constrained by water availability, soil water content and

  16. Effects of Forest Gaps on Litter Lignin and Cellulose Dynamics Vary Seasonally in an Alpine Forest

    Directory of Open Access Journals (Sweden)

    Han Li

    2016-01-01

    Full Text Available To understand how forest gaps and the associated canopy control litter lignin and cellulose dynamics by redistributing the winter snow coverage and hydrothermal conditions in the growing season, a field litterbag trial was conducted in the alpine Minjiang fir (Abies faxoniana Rehder and E.H. Wilson forest in a transitional area located in the upper reaches of the Yangtze River and the eastern Tibetan Plateau. Over the first year of litter decomposition, the litter exhibited absolute cellulose loss and absolute lignin accumulation except for the red birch litter. The changes in litter cellulose and lignin were significantly affected by the interactions among gap position, period and species. Litter cellulose exhibited a greater loss in the winter with the highest daily loss rate observed during the snow cover period. Both cellulose and lignin exhibited greater changes under the deep snow cover at the gap center in the winter, but the opposite pattern occurred under the closed canopy in the growing season. The results suggest that decreased snowpack seasonality due to winter warming may limit litter cellulose and lignin degradation in alpine forest ecosystems, which could further inhibit litter decomposition. As a result, the ongoing winter warming and gap vanishing would slow soil carbon sequestration from foliar litter in cold biomes.

  17. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    Science.gov (United States)

    Fabien H. Wagner; Bruno Herault; Damien Bonal; Clement Stahl; Liana O. Anderson; Timothy R. Baker; Gabriel Sebastian Becker; Hans Beeckman; Danilo Boanerges Souza; Paulo Cesar Botosso; David M. J. S. Bowman; Achim Brauning; Benjamin Brede; Foster Irving Brown; Jesus Julio Camarero; Plinio Barbosa Camargo; Fernanda C. G. Cardoso; Fabricio Alvim Carvalho; Wendeson Castro; Rubens Koloski Chagas; Jerome Chave; Emmanuel N. Chidumayo; Deborah A. Clark; Flavia Regina Capellotto Costa; Camille Couralet; Paulo Henrique da Silva Mauricio; Helmut Dalitz; Vinicius Resende de Castro; Jacanan Eloisa de Freitas Milani; Edilson Consuelo de Oliveira; Luciano de Souza Arruda; Jean-Louis Devineau; David M. Drew; Oliver Dunisch; Giselda Durigan; Elisha Elifuraha; Marcio Fedele; Ligia Ferreira Fedele; Afonso Figueiredo Filho; Cesar Augusto Guimaraes Finger; Augusto Cesar Franco; Joao Lima Freitas Junior; Franklin Galvao; Aster Gebrekirstos; Robert Gliniars; Paulo Mauricio Lima de Alencastro Graca; Anthony D. Griffiths; James Grogan; Kaiyu Guan; Jurgen Homeier; Maria Raquel Kanieski; Lip Khoon Kho; Jennifer Koenig; Sintia Valerio Kohler; Julia Krepkowski; Jose Pires Lemos-Filho; Diana Lieberman; Milton Eugene Lieberman; Claudio Sergio Lisi; Tomaz Longhi Santos; Jose Luis Lopez Ayala; Eduardo Eijji Maeda; Yadvinder Malhi; Vivian R. B. Maria; Marcia C. M. Marques; Renato Marques; Hector Maza Chamba; Lawrence Mbwambo; Karina Liana Lisboa Melgaco; Hooz Angela Mendivelso; Brett P. Murphy; Joseph O' Brien; Steven F. Oberbauer; Naoki Okada; Raphael Pelissier; Lynda D. Prior; Fidel Alejandro Roig; Michael Ross; Davi Rodrigo Rossatto; Vivien Rossi; Lucy Rowland; Ervan Rutishauser; Hellen Santana; Mark Schulze; Diogo Selhorst; Williamar Rodrigues Silva; Marcos Silveira; Susanne Spannl; Michael D. Swaine; Jose Julio Toledo; Marcos Miranda Toledo; Marisol Toledo; Takeshi Toma; Mario Tomazello Filho; Juan Ignacio Valdez Hernandez; Jan Verbesselt; Simone Aparecida Vieira; Gregoire Vincent; Carolina Volkmer de Castilho; Franziska Volland; Martin Worbes; Magda Lea Bolzan Zanon; Luiz E. O. C. Aragao

    2016-01-01

    The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter...

  18. Reptile and amphibian response to season of burn in an upland hardwood forest

    Science.gov (United States)

    Cathryn H. Greenberg; Tyler Seiboldt; Tara L. Keyser; W. Henry McNab; Patrick Scott; Janis Bush; Christopher E. Moorman

    2018-01-01

    Growing-season burns are increasingly used in upland hardwood forest for multiple forest management goals. Many species of reptiles and amphibians are ground-dwelling, potentially increasing their vulnerability to prescribed fire, especially during the growing-season when they are most active. We used drift fences with pitfall traps to experimentally assess how...

  19. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    NARCIS (Netherlands)

    Wagner, Fabien H.; Hérault, Bruno; Bonal, Damien; Stahl, Clément; Anderson, Liana O.; Baker, Timothy R.; Becker, Gabriel Sebastian; Beeckman, Hans; Boanerges Souza, Danilo; Botosso, Paulo Cesar; Bowman, David M.J.S.; Bräuning, Achim; Brede, Benjamin; Brown, Foster Irving; Camarero, Jesus Julio; Camargo, Plínio Barbosa; Cardoso, Fernanda C.G.; Carvalho, Fabrício Alvim; Castro, Wendeson; Chagas, Rubens Koloski; Chave, Jérome; Chidumayo, Emmanuel N.; Clark, Deborah A.; Costa, Flavia Regina Capellotto; Couralet, Camille; Silva Mauricio, Da Paulo Henrique; Dalitz, Helmut; Castro, De Vinicius Resende; Freitas Milani, De Jaçanan Eloisa; Oliveira, De Edilson Consuelo; Souza Arruda, De Luciano; Devineau, Jean-Louis; Drew, David M.; Dünisch, Oliver; Durigan, Giselda; Elifuraha, Elisha; Fedele, Marcio; Ferreira Fedele, Ligia; Figueiredo Filho, Afonso; Finger, César Augusto Guimarães; Franco, Augusto César; Freitas Júnior, João Lima; Galvão, Franklin; Gebrekirstos, Aster; Gliniars, Robert; Lima De Alencastro Graça, Paulo Maurício; Griffiths, Anthony D.; Grogan, James; Guan, Kaiyu; Homeier, Jürgen; Kanieski, Maria Raquel; Kho, Lip Khoon; Koenig, Jennifer; Kohler, Sintia Valerio; Krepkowski, Julia; Lemos-filho, José Pires; Lieberman, Diana; Lieberman, Milton Eugene; Lisi, Claudio Sergio; Longhi Santos, Tomaz; López Ayala, José Luis; Maeda, Eduardo Eijji; Malhi, Yadvinder; Maria, Vivian R.B.; Marques, Marcia C.M.; Marques, Renato; Maza Chamba, Hector; Mbwambo, Lawrence; Melgaço, Karina Liana Lisboa; Mendivelso, Hooz Angela; Murphy, Brett P.; O'Brien, Joseph J.; Oberbauer, Steven F.; Okada, Naoki; Pélissier, Raphaël; Prior, Lynda D.; Roig, Fidel Alejandro; Ross, Michael; Rossatto, Davi Rodrigo; Rossi, Vivien; Rowland, Lucy; Rutishauser, Ervan; Santana, Hellen; Schulze, Mark; Selhorst, Diogo; Silva, Williamar Rodrigues; Silveira, Marcos; Spannl, Susanne; Swaine, Michael D.; Toledo, José Julio; Toledo, Marcos Miranda; Toledo, Marisol; Toma, Takeshi; Tomazello Filho, Mario; Valdez Hernández, Juan Ignacio; Verbesselt, Jan; Vieira, Simone Aparecida; Vincent, Grégoire; Volkmer De Castilho, Carolina; Volland, Franziska; Worbes, Martin; Zanon, Magda Lea Bolzan; Aragão, Luiz E.O.C.

    2016-01-01

    The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68

  20. ABOVE GROUND BIOMASS MICRONUTRIENTS IN A SEASONAL SUBTROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Hamilton Luiz Munari Vogel

    2015-06-01

    Full Text Available In the above ground biomass of a native forest or plantation are stored large quantities of nutrients, with few studies in the literature, especially concerning micronutrients. The present work aimed to quantify the micronutrients in above ground biomass in a Seasonal Subtropical forest in Itaara-RS, Brazil. For the above ground biomass evaluation, 20 trees of five different diameter classes were felled. The above ground biomass was separated in the following compartments: stem wood, stem bark, branches and leaves. The contents of B, Cu, Fe, Mn and Zn in the biomass samples were determined. The stock of micronutrients in the biomass for each component was obtained based on the estimated dry biomass, multiplied by the nutrient content. The total production of above ground biomass was estimated at 210.0 Mg.ha-1. The branches, stem wood, stem bark and leaves corresponded to 48.8, 43.3, 5.4 and 2.4% of the above ground biomass. The lower levels of B, Cu, Fe and Mn are in stem wood, except for Zn; in the branches and trunk wood are the largest stocks of B, Cu, Fe and Mn. In the branches, leaves and trunk bark are stored most micronutrients, pointing to the importance of these to remain on the soil.

  1. Seasonality of temperate forest photosynthesis and daytime respiration.

    Science.gov (United States)

    Wehr, R; Munger, J W; McManus, J B; Nelson, D D; Zahniser, M S; Davidson, E A; Wofsy, S C; Saleska, S R

    2016-06-30

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.

  2. Contrasting Seasonal Survivorship of Two Migratory Songbirds Wintering in Threatened Mangrove Forests

    Directory of Open Access Journals (Sweden)

    Anna M. Calvert

    2010-06-01

    Full Text Available Long-distance migrants wintering in tropical regions face a number of critical conservation threats throughout their lives, but seasonal estimates of key demographic parameters such as winter survival are rare. Using mist-netting-based mark-recapture data collected in coastal Costa Rica over a six-year period, we examined variation in within- and between-winter survivorship of the Prothonotary Warbler (Protonotaria citrea; 753 young and 376 adults banded, a declining neotropical habitat specialist that depends on threatened mangrove forests during the nonbreeding season. We derived parallel seasonal survivorship estimates for the Northern Waterthrush (Seiurus noveboracensis; 564 young and 93 adults banded, a cohabitant mangrove specialist that has not shown the same population decline in North America, to assess whether contrasting survivorship might contribute to the observed differences in the species’ population trajectories. Although average annual survival probability was relatively similar between the two species for both young and adult birds, monthly estimates indicated that relative to Northern Waterthrush, Prothonotary Warblers exhibited: greater interannual variation in survivorship, especially within winters; greater variation in survivorship among the three study sites; lower average between-winter survivorship, particularly among females, and; a sharp decline in between-winter survivorship from 2003 to 2009 for both age groups and both sexes. Rather than identifying one seasonal vital rate as a causal factor of Prothonotary Warbler population declines, our species comparison suggests that the combination of variable within-winter survival with decreasing between-winter survival demands a multi-seasonal approach to the conservation of this and other tropical-wintering migrants.

  3. Amazon Forests Maintain Consistent Canopy Structure and Greenness During the Dry Season

    Science.gov (United States)

    Morton, Douglas C.; Nagol, Jyoteshwar; Carabajal, Claudia C.; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D.; Vermote, Eric F.; Harding, David J.; North, Peter R. J.

    2014-01-01

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data.We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.

  4. Seasonal Effects of Habitat on Sources and Rates of Snowshoe Hare Predation in Alaskan Boreal Forests.

    Directory of Open Access Journals (Sweden)

    Dashiell Feierabend

    Full Text Available Survival and predation of snowshoe hares (Lepus americanus has been widely studied, yet there has been little quantification of the changes in vulnerability of hares to specific predators that may result from seasonal changes in vegetation and cover. We investigated survival and causes of mortalities of snowshoe hares during the late increase, peak, and decline of a population in interior Alaska. From June 2008 to May 2012, we radio-tagged 288 adult and older juvenile hares in early successional and black spruce (Picea mariana forests and, using known-fate methods in program MARK, evaluated 85 survival models that included variables for sex, age, and body condition of hares, as well as trapping site, month, season, year, snowfall, snow depth, and air temperature. We compared the models using Akaike's information criterion with correction for small sample size. Model results indicated that month, capture site, and body condition were the most important variables in explaining survival rates. Survival was highest in July, and more generally during summer, when alternative prey was available to predators of hares. Low survival rates coincided with molting periods, breeding activity in the spring, and the introduction of juveniles to the sample population in the fall. We identified predation as the cause of mortality in 86% of hare deaths. When the source of predation could be determined, hares were killed more often by goshawks (Accipiter gentilis than other predators in early successional forest (30%, and more often by lynx (Lynx canadensis than other predators in black spruce forest (31%. Great horned owls (Bubo virginianus and coyotes (Canis latrans represented smaller proportions of hare predation, and non-predatory causes were a minor source (3% of mortality. Because hares rely on vegetative cover for concealment from predators, we measured cover in predation sites and habitats that the hares occupied and concluded that habitat type had a

  5. Do the seasonal forests in northeastern Brazil represent a single floristic unit?

    OpenAIRE

    Rodal,MJN.; Barbosa,MRV.; Thomas,WW.

    2008-01-01

    Floristic analyses (Principal Component Analysis and Analysis of Group Indicators) at the genus level were employed to characterize and compare seasonal forest formations in northeastern Brazil. The presence - absence of 248 genera of woody plants occurring in 24 floristic surveys was correlated with geomorphology and climatic variables. The analyses were consistent and point to the existence of two floristic groups of seasonal forests in the region, one more closely related to the Atlantic C...

  6. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests

    Science.gov (United States)

    Wu, Jin; Albert, Lauren; Lopes, Aline; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T.; Guan, Kaiyu; Stark, Scott C.; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V.; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Maurocio L.; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M.; Dye, Dennis G.; Huxman, Travis E.; Huete, Alfredo; Nelson, Bruce; Saleska, Scott

    2016-01-01

    In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.

  7. Lidar observed seasonal variation of vertical canopy structure in the Amazon evergreen forests

    Science.gov (United States)

    Tang, H.; Dubayah, R.

    2017-12-01

    Both light and water are important environmental factors governing tree growth. Responses of tropical forests to their changes are complicated and can vary substantially across different spatial and temporal scales. Of particular interest is the dry-season greening-up of Amazon forests, a phenomenon undergoing considerable debates whether it is real or a "light illusion" caused by artifacts of passive optical remote sensing techniques. Here we analyze seasonal dynamic patterns of vertical canopy structure in the Amazon forests using lidar observations from NASA's Ice, Cloud, and and land Elevation Satellite (ICESat). We found that the net greening of canopy layer coincides with the wet-to-dry transition period, and its net browning occurs mostly at the late dry season. The understory also shows a seasonal cycle, but with an opposite variation to canopy and minimal correlation to seasonal variations in rainfall or radiation. Our results further suggest a potential interaction between canopy layers in the light regime that can optimize the growth of Amazon forests during the dry season. This light regime variability that exists in both spatial and temporal domains can better reveal the dry-season greening-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.

  8. Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest

    NARCIS (Netherlands)

    Markesteijn, L.; Iraipi, J.; Bongers, F.; Poorter, L.

    2010-01-01

    We determined seasonal variation in soil matric potentials (¿soil) along a topographical gradient and with soil depth in a Bolivian tropical dry (1160 mm y-1 rain) and moist forest (1580 mm y-1). In each forest we analysed the effect of drought on predawn leaf water potentials (¿pd) and drought

  9. Curve Numbers for Nine Mountainous Eastern United States Watersheds: Seasonal Variation and Forest Cutting

    Science.gov (United States)

    Many engineers and hydrologists use the curve number method to estimate runoff from ungaged watersheds; however, the method does not explicitly account for the influence of season or forest cutting on runoff. This study of observed rainfall and runoff for small, forested watershe...

  10. Upland Forest Linkages to Seasonal Wetlands: Litter Flux, Processing, and Food Quality

    Science.gov (United States)

    Brian J. Palik; Darold P. Batzer; Christel Kern

    2005-01-01

    The flux of materials across ecosystem boundaries has significant effects on recipient systems. Because of edge effects, seasonal wetlands in upland forest are good systems to explore these linkages. The purpose of this study was to examine flux of coarse particulate organic matter as litter fall into seasonal wetlands in Minnesota, and the relationship of this flux to...

  11. Effects of seasonal variation of photosynthetic capacity on the carbon fluxes of a temperate deciduous forest

    Science.gov (United States)

    David Medvigy; Su-Jong Jeong; Kenneth L. Clark; Nicholas S. Skowronski; Karina V. R. Schäfer

    2013-01-01

    Seasonal variation in photosynthetic capacity is an important part of the overall seasonal variability of temperate deciduous forests. However, it has only recently been introduced in a few terrestrial biosphere models, and many models still do not include it. The biases that result from this omission are not well understood. In this study, we use the Ecosystem...

  12. Vegetation and Lepidoptera in Seasonally Dry Tropical Forests. Community structure along climate zones, forest succession and seasonality in the Southern Yucatán, Mexico

    NARCIS (Netherlands)

    Essens, T.; Leyequien, E.; Pozo, C.

    2010-01-01

    Seasonally dry tropical forests are worldwide recognized as important ecosystems for biodiversity conservation. Increasing agricultural activities (e.g., slash-and-burn agriculture) leads to a heterogeneous landscape matrix; and as ecological succession takes over in abandoned fields, plant and

  13. Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses.

    Science.gov (United States)

    S. R. Saleska; S. D. Miller; D. M. Matross; M. L. Goulden; S. C. Wofsy; H. R. da Rocha; P. B. de Camargo; P. Crill; B. C. Daube; H. C. de Freitas; L. Hutyra; M. Keller; V. Kirchhoff; M. Menton; J. W. Munger; H. E. Pyle; A. H. Rice; H. Silva

    2003-01-01

    The net ecosystem exchange of carbon dioxide was measured by eddy covariance methods for 3 years in two old-growth forest sites near Santarém, Brazil. Carbon was lost in the wet season and gained in the dry season, which was opposite to the seasonal cycles of both tree growth and model predictions. The 3-year average carbon loss was 1.3 (confidence...

  14. Soil emissions of nitric oxide in a seasonally dry tropical forest of Mexico

    Science.gov (United States)

    Davidson, Eric A.; Vitousek, Peter M.; Riley, Ralph; Matson, Pamela A.; Garcia-Mendez, Georgina; Maass, J. M.

    1991-01-01

    Soil emissions of NO were measured at the Chamela Biological Station, Mexico, using soil covers and a field apparatus of NO detection based on CrO3 conversion of NO to NO2 and detection of NO2 by chemiluminescence with Luminol. Mean NO fluxes from forest soils ranged from 0.14 to 0.52 ng NO-N/sq cm/hr during the dry season and from 0.73 to 1.27 ng NO-N/sq cm/hr during the wet season. A fertilized floodplain pasture exhibited higher fluxes, but an unfertilized upland pasture, which represents the fastest growing land use in the region, had flux rates similar to the forest sites. Wetting experiments at the end of the dry season caused large pulses of NO flux, equaling 10 percent to 20 percent of the estimated annual NO emissions of 0.5-1.0 kg N/ha from the forest sites. Absence of a forest canopy during the dry season and the first wet season rain probably results in substantial NO(x) export from the forest system that may be important to regional atmospheric chemical processes. Wetting experiments during the wet season and a natural rain event had little or no stimulatory effect on NO flux rates.

  15. Do the seasonal forests in northeastern Brazil represent a single floristic unit?

    Science.gov (United States)

    Rodal, M J N; Barbosa, M R V; Thomas, W W

    2008-08-01

    Floristic analyses (Principal Component Analysis and Analysis of Group Indicators) at the genus level were employed to characterize and compare seasonal forest formations in northeastern Brazil. The presence--absence of 248 genera of woody plants occurring in 24 floristic surveys was correlated with geomorphology and climatic variables. The analyses were consistent and point to the existence of two floristic groups of seasonal forests in the region, one more closely related to the Atlantic Coastal Forest (mata atlântica) and the other to the xerophytic formations (caatinga) of the region. The driest seasonal forest group experiences more than 8 dry months per year and/or a total annual rainfall of <1000 mm, and is found on the ancient eroded peaks in the semi-arid core and on the western slopes of the Borborema Plateau.

  16. Do the seasonal forests in northeastern Brazil represent a single floristic unit?

    Directory of Open Access Journals (Sweden)

    MJN. Rodal

    Full Text Available Floristic analyses (Principal Component Analysis and Analysis of Group Indicators at the genus level were employed to characterize and compare seasonal forest formations in northeastern Brazil. The presence - absence of 248 genera of woody plants occurring in 24 floristic surveys was correlated with geomorphology and climatic variables. The analyses were consistent and point to the existence of two floristic groups of seasonal forests in the region, one more closely related to the Atlantic Coastal Forest (mata atlântica and the other to the xerophytic formations (caatinga of the region. The driest seasonal forest group experiences more than 8 dry months per year and/or a total annual rainfall of <1000 mm, and is found on the ancient eroded peaks in the semi-arid core and on the western slopes of the Borborema Plateau.

  17. Seasonality and structure of the arthropod community in a forested ...

    African Journals Online (AJOL)

    The structure of an arthropod community in the forest floor vegetation was studied in a low altitude (about 700 m a.s.l.) forest valley in the Uluguru Mountains near Morogoro, Tanzania, by monthly sweep net sampling during one year (December 1996-November 1997). The community structure of arthropods changed ...

  18. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology.

    Science.gov (United States)

    Choat, Brendan; Ball, Marilyn C; Luly, Jon G; Donnelly, Christine F; Holtum, Joseph A M

    2006-05-01

    Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.

  19. Marked seasonality of Cyclospora cayetanensis infections: ten-year observation of hospital cases, Honduras.

    Science.gov (United States)

    Kaminsky, Rina Girard; Lagos, Javier; Raudales Santos, Gabriela; Urrutia, Samuel

    2016-02-04

    Document seasonality occurrence and epidemiologic characteristics of Cyclospora cayetanensis infections during a 10-year period from patients consulting at the University Hospital, Honduras. Retrospective non interventional hospital-based study analyzed laboratory results from the period 2002 to 2011 of fresh and Ziehl-Nielsen carbolfuchsin stained routine stool samples received for parasitologic examination. Sporadically a sample with numerous oocysts was allowed to sporulate in 2.5 % potassium dichromate confirming the presence of bi-cystic bi-zoic oocysts. A total of 35,157 fecal samples were examined during a ten-year span, of which a third (28.4 %) was stained by the Ziehl-Neelsen carbolfuchsin method diagnosing a total of 125 (1.3 %) C.cayetanensis infections. A statistically significant apparent seasonality was observed most years during May to August (range p < 0.036-0.001), with 83.3 % of 125 cases occurring in those rainy months. All C. cayetanensis cases came from urban poor neighborhoods; male/female relation was 1:1 except in 2006, when all patients were females (p = 0.05; r(2) = 22,448). Forty four point eight percent of the stool samples were diarrheic or liquid and 65.6 % infections were identified in children 10 years old or less. Enteric helminths and protozoa co-infected Cyclospora positive patients in 52 instances.: 8 % Ascaris lumbricoides, 8 % Giardia duodenalis, 23.2 % Blastocystis spp. and less frequently Entamoeba histolytica/E. dispar, Strongyloides stercoralis, and Trichuris trichiura. Results suggest a seasonal pattern for Cyclospora infections diagnosed in a clinical setting during the rainy months in Tegucigalpa and surrounding areas. Community studies should be conducted to support or dispute these observations.

  20. Analyzing the edge effects in a Brazilian seasonally dry tropical forest.

    Science.gov (United States)

    Arruda, D M; Eisenlohr, P V

    2016-02-01

    Due to the deciduous nature of dry forests (widely known as seasonally dry tropical forests) they are subject to microclimatic conditions not experienced in other forest formations. Close examinations of the theory of edge effects in dry forests are still rare and a number of questions arise in terms of this topic. In light of this situation we examined a fragment of the dry forest to respond to the following questions: (I) Are there differences in canopy cover along the edge-interior gradient during the dry season? (II) How does the microclimate (air temperature, soil temperature, and relative humidity) vary along that gradient? (III) How does the microclimate influence tree species richness, evenness and abundance along that gradient? (IV) Are certain tree species more dominant closer to the forest edges? Regressions were performed to address these questions. Their coefficients did not significantly vary from zero. Apparently, the uniform openness of the forest canopy caused a homogeneous internal microclimate, without significant differentiation in habitats that would allow modifications in biotic variables tested. We conclude that the processes of edge effect commonly seen in humid forests, not was shared with the dry forest assessed.

  1. The seasonality of butterflies in a semi-evergreen forest: Gibbon Wildlife Sanctuary, Assam, northeastern India

    Directory of Open Access Journals (Sweden)

    Arun P. Singh

    2015-01-01

    Full Text Available A study spanning 3.7 years on the butterflies of Gibbon Wildlife Sanctuary GWS (21km2, a semi-evergreen forest, in Jorhat District of Assam, northeastern India revealed 211 species of butterflies belonging to 115 genera including 19 papilionids and seven ‘rare’ and ‘very rare’ species as per Evans list of the Indian sub-continent (Great Blue Mime Papilio paradoxa telearchus; Brown Forest BobScobura woolletti; Snowy Angle Darpa pteria dealbatahas; Constable Dichorragia nesimachus; Grey Baron Euthalia anosia anosia; Sylhet Oakblue Arhopala silhetensis; Branded Yamfly Yasoda tripunctata. The butterflies showed a strong seasonality pattern in this forest with only one significant peak during the post monsoon (September-October when 118 species were in flight inside the forest which slowly declined to 92 species in November-December. Another peak (102 species was visible after winter from March to April. Species composition showed least similarity between pre-monsoon (March-May and post-monsoon (October-November seasons. The number of papilionid species were greater from July to December as compared from January to June. The findings of this study suggest that the pattern of seasonality in a semi-evergreen forest in northeastern India is distinct from that of the sub-tropical lowland forest in the Himalaya. Favourable logistics and rich diversity in GWS points to its rich potential in promoting ‘butterfly inclusive ecotourism’ in this remnant forest.

  2. Phenological synchrony and seasonality of understory Rubiaceae in the Atlantic Forest, Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Heitor Scarpati Liuth

    2013-03-01

    Full Text Available In tropical forests with low seasonality, climatic variables generally exert a weak influence on the phenology of species. The seasonality of phenophases in closely related taxa can be controlled by phylogenetic constraints in such environments. In this study, our aim was to describe the phenology of Rubiaceae in the understory of the Atlantic Forest in the southern part of Bahia, Brazil, as well as to evaluate the seasonality and phenological synchrony of this family. For two years, we observed 90 individuals belonging to 13 species, in an area of 0.2 ha. Leaf flushing and leaf fall did not demonstrate any seasonality, were continuous for most species and correlated with few of the climatic variables. Flowering was seasonal and correlated positively with all climatic variables. Species exhibited seasonality for this phenophase with high flowering overlap among species of Psychotria, indicating an aggregated pattern for this genus. Fruiting was also seasonal and correlated with all the climatic variables, unripe fruit development peaking at the beginning of the season during which humidity is highest and fruit ripening peaking in the season during which humidity is slightly lower. The vegetative and flowering patterns observed in the study area are commonly seen in other tropical forests. The reproductive seasonality of this family can facilitate the attraction of biotic agents, as postulated in the facilitation hypothesis. Our results demonstrate that climatic variables influenced the phenological patterns observed here, although the high reproductive seasonality and interspecific synchrony, especially in congeneric species, raises the possibility that phylogenetic proximity plays a role in the pattern of the family Rubiaceae.

  3. Heterogeneity in fire severity within early season and late season prescribed burns in a mixed-conifer forest

    Science.gov (United States)

    Knapp, E.E.; Keeley, J.E.

    2006-01-01

    Structural heterogeneity in forests of the Sierra Nevada was historically produced through variation in fire regimes and local environmental factors. The amount of heterogeneity that prescription burning can achieve might now be more limited owing to high fuel loads and increased fuel continuity. Topography, woody fuel loading, and vegetative composition were quantified in plots within replicated early and late season burn units. Two indices of fire severity were evaluated in the same plots after the burns. Scorch height ranged from 2.8 to 25.4 m in early season plots and 3.1 to 38.5 m in late season plots, whereas percentage of ground surface burned ranged from 24 to 96% in early season plots and from 47 to 100% in late season plots. Scorch height was greatest in areas with steeper slopes, higher basal area of live trees, high percentage of basal area composed of pine, and more small woody fuel. Percentage of area burned was greatest in areas with less bare ground and rock cover (more fuel continuity), steeper slopes, and units burned in the fall (lower fuel moisture). Thus topographic and biotic factors still contribute to the abundant heterogeneity in fire severity with prescribed burning, even under the current high fuel loading conditions. Burning areas with high fuel loads in early season when fuels are moister may lead to patterns of heterogeneity in fire effects that more closely approximate the expected patchiness of historical fires.

  4. Effects of seasonality on drosophilids (Insecta, Diptera) in the northern part of the Atlantic Forest, Brazil.

    Science.gov (United States)

    Coutinho-Silva, R D; Montes, M A; Oliveira, G F; de Carvalho-Neto, F G; Rohde, C; Garcia, A C L

    2017-10-01

    Seasonality is an important aspect associated with population dynamic and structure of tropical insect assemblages. This study evaluated the effects of seasonality on abundance, richness, diversity and composition of an insect group, drosophilids, including species native to the Neotropical region and exotic ones. Three preserved fragments of the northern Atlantic Forest were surveyed, where temperatures are above 20 °C throughout the year and rainfall regimes define two seasons (dry and rainy). As opposed to other studies about arthropods in tropical regions, we observed that abundance of drosophilids was significantly higher in the dry season, possibly due to biological aspects and the colonization strategy adopted by the exotic species in these environments. Contrarily to abundance, we did not observe a seasonal pattern for richness. As for other parts of the Atlantic Forest, the most representative Neotropical species (Drosophila willistoni, D. sturtevanti, D. paulistorum and D. prosaltans) were significantly more abundant in the rainy season. Among the most abundant exotic species, D. malerkotliana, Zaprionus indianus and Scaptodrosophila latifasciaeformis were more importantly represented the dry season, while D. simulans was more abundant in the rainy period. The seasonality patterns exhibited by the most abundant species were compared to findings published in other studies. Our results indicate that exotic species were significantly more abundant in the dry season, while native ones exhibited an opposite pattern.

  5. CO2 efflux from subterranean nests of ant communities in a seasonal tropical forest, Thailand

    OpenAIRE

    Hasin, Sasitorn; Ohashi, Mizue; Yamada, Akinori; Hashimoto, Yoshiaki; Tasen, Wattanachai; Kume, Tomonori; Yamane, Seiki

    2014-01-01

    Many ant species construct subterranean nests. The presence of their nests may explain soil respiration “hot spots”, an important factor in the high CO2 efflux from tropical forests. However, no studies have directly measured CO2 efflux from ant nests. We established 61 experimental plots containing 13 subterranean ant species to evaluate the CO2 efflux from subterranean ant nests in a tropical seasonal forest, Thailand. We examined differences in nest CO2 efflux among ant species. We determi...

  6. Diverse patterns of stored water use among saplings in seasonally dry tropical forests.

    Science.gov (United States)

    Wolfe, Brett T; Kursar, Thomas A

    2015-12-01

    Tree species in seasonally dry tropical forests likely vary in their drought-survival mechanisms. Drought-deciduousness, which reduces water loss, and low wood density, which may permit dependence on stored water, are considered key traits. For saplings of six species at two distinct sites, we studied these and two associated traits: the seasonal amount of water released per stem volume ("water released") and the hydraulic capacitance of the stem (C). Two deciduous species with low stem density, Cavanillesia platanifolia and Bursera simaruba, had high C and high dry-season stem water potential (Ψ(stem)), but differed in dry-season water released. C. platanifolia did not use stored water during the dry season whereas B. simaruba, in a drier forest, released stored water. In both, water released was highest while flushing leaves, suggesting that stored water supports leaf flushing. In contrast, two deciduous species with intermediate stem density, Annona hayesii and Genipa americana, had intermediate C, low dry-season Ψ(stem), and high seasonal change in water released. Meanwhile, two evergreen species with intermediate stem density, Cojoba rufescens and Astronium graveolens, had relatively low C, low dry-season Ψ(stem), and intermediate seasonal change in water released. Thus, at least three, distinct stored-water-use strategies were observed. Additionally, bark relative water content (RWC) decreased along with Ψ(stem) during the dry season while xylem RWC did not change, suggesting that bark-stored water buffers Ψ(stem) seasonally. Together these results suggest that seasonal use of stored water and change in Ψ(stem) are associated with functional groups that are characterized by combinations of deciduousness and stem density.

  7. Seasonal snow accumulation in the mid-latitude forested catchment

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav; Tesař, Miroslav

    2014-01-01

    Roč. 69, č. 11 (2014), s. 1562-1569 ISSN 0006-3088 R&D Projects: GA TA ČR TA02021451 Institutional support: RVO:67985874 Keywords : snow depth * snow water equivalent * forested catchment Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.827, year: 2014

  8. Detecting leaf phenology of seasonally moist tropical forests in South America with multi-temporal MODIS images.

    Science.gov (United States)

    Xiangming Xiao; Stephen Hagen; Qingyuan Zhang; Michael Keller; Berrien Moore III

    2006-01-01

    Leaf phenology of tropical evergreen forests affects carbon and water fluxes. In an earlier study of a seasonally moist evergreen tropical forest site in the Amazon basin, time series data of Enhanced Vegetation Index (EVI) from the VEGETATION and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors showed an unexpected seasonal pattern, with higher EVI in the...

  9. Estimating seasonal variations in cloud droplet number concentration over the boreal forest from satellite observations

    NARCIS (Netherlands)

    Janssen, R.; Ganzeveld, L.N.; Kabat, P.; Kulmala, M.; Nieminen, T.; Roebeling, R.A.

    2011-01-01

    Seasonal variations in cloud droplet number concentration (NCD) in low-level stratiform clouds over the boreal forest are estimated from MODIS observations of cloud optical and microphysical properties, using a sub-adiabatic cloud model to interpret vertical profiles of cloud properties. An

  10. Water-use advantage for lianas over trees in tropical seasonal forests

    NARCIS (Netherlands)

    Chen, Y.J.; Cao, K.F.; Schnitzer, S.A.; Fan, Z.X.; Zhang, J.L.; Bongers, F.

    2015-01-01

    •Lianas exhibit peak abundance in tropical forests with strong seasonal droughts, the eco-physiological mechanisms associated with lianas coping with water deficits are poorly understood. •We examined soil water partitioning, sap flow, and canopy eco-physiological properties for 99 individuals of 15

  11. Preliminary assessment of mercury accumulation in Massachusetts and Minnesota seasonal forest pools

    Science.gov (United States)

    Robert T. Brooks; Susan L. Eggert; Keith H. Nislow; Randall K. Kolka; Celia Y. Chen; Darren M. Ward

    2012-01-01

    Seasonal forest pools (SFPs) are common, widespread, and provide critical habitat for amphibians and invertebrates. The ephemeral hydrology of SFPs has been identified as an important factor in the production of biologically active methylmercury (MeHg). To investigate mercury (Hg) in SFPs, we collected water, fine benthic organic matter (FBOM), detrital materials, and...

  12. Northern California redwood forests provide important seasonal habitat for migrant bats

    Science.gov (United States)

    Theodore J. Weller; Craig A. Stricker

    2012-01-01

    Bats are known to roost in redwood forests year-round, but their activities outside the summer season are poorly understood. To improve understanding of the use of redwoods by resident and migrant bats, we conducted 74 mist net surveys between February 2008 and October 2010. Captures were dominated by Yuma myotis (M. yumanensis) in the summer and...

  13. Amazon forest structure generates diurnal and seasonal variability in light utilization

    Science.gov (United States)

    Douglas C. Morton; Jeremy Rubio; Bruce D. Cook; Jean-Philippe Gastellu-Etchegorry; Marcos Longo; Hyeungu Choi; Maria Hunter; Michael Keller

    2016-01-01

    The complex three-dimensional (3-D) structure of tropical forests generates a diversity of light environments for canopy and understory trees. Understanding diurnal and seasonal changes in light availability is critical for interpreting measurements of net ecosystem exchange and improving ecosystem models. Here, we used the Discrete Anisotropic Radiative Transfer (DART...

  14. Pennsylvanian coniferopsid forests in sabkha facies reveal the nature of seasonal tropical biome

    Science.gov (United States)

    Falcon-Lang, H. J.; Jud, N.A.; John, Nelson W.; DiMichele, W.A.; Chaney, D.S.; Lucas, S.G.

    2011-01-01

    Pennsylvanian fossil forests are known from hundreds of sites across tropical Pangea, but nearly all comprise remains of humid Coal Forests. Here we report a unique occurrence of seasonally dry vegetation, preserved in growth position along >5 km of strike, in the Pennsylvanian (early Kasimovian, Missourian) of New Mexico (United States). Analyses of stump anatomy, diameter, and spatial density, coupled with observations of vascular traces and associated megaflora, show that this was a deciduous, mixed-age, coniferopsid woodland (~100 trees per hectare) with an open canopy. The coniferopsids colonized coastal sabkha facies and show tree rings, confirming growth under seasonally dry conditions. Such woodlands probably served as the source of coniferopsids that replaced Coal Forests farther east in central Pangea during drier climate phases. Thus, the newly discovered woodland helps unravel biome-scale vegetation dynamics and allows calibration of climate models. ?? 2011 Geological Society of America.

  15. Floristic structure and biomass distribution of a tropical seasonal rain forest in Xishuangbanna, southwest China

    Energy Technology Data Exchange (ETDEWEB)

    Shanmughavel, P.; Zheng Zheng; Sha Liqing; Cao Min [Chinese Academy of Sciences, Kunming (China). Dept. of Forest Ecology

    2001-07-01

    The aim of this research was to study the forest community structure, tree species diversity and biomass production of a tropical seasonal rain forest in Xishuangbanna, southwest China. The community structure showed a diversified species composition and supported many species of economic significance. This tropical rain forest in closely related to Malaysian forests. The biomass and its distribution were studied using standard regression analysis and the clear-cut method for shrubs and herbs. The total biomass was 360.9 t/ha and its allocation in different layers was: tree layer 352.5 t/ha, shrub layer 4.7 t/ha, liana 3.1 t/ha and herb layer 0.5 t/ha. Most of the biomass was concentrated in the trees: stem 241.2 t/ha, root 69.6 t/ha, branch 37.2 t/ha and leaves 4.3 t/ha. The DBH class allocation of the tree biomass was concentrated in the middle DBH class. The biomass of six DBH classes from 20 to 80 cm was 255.4 t/ha. There are twenty-six species with biomass over 0.5% of the total biomass of the tree layer, and three species with biomass over 5%, i.e., Pometia tomentosa, Barringtonia macrostachya (5.4%) and Terminalia myriocarpa (5.2%). Data on stem, branch, leaves and root of the individual tree species were used to develop regression models. D{sup 2}H was found to be the best estimator of the biomass in this tropical rain forest. However, higher biomass figures have been reported from tropical forests elsewhere e.g., 415-520 t/ha in the tropical forests of Cambodia, the tropical moist mixed dipterocarp forests, and the tropical moist logged moist evergreen-high, medium, and low yield forests of Sri Lanka. In some forests, lower accumulation of biomass was reported, e.g., 10-295 t/ha in the tropical moist forests of Bangladesh, the tropical moist dense forest of Cambodia, the tropical dry forests of India, the tropical moist forests of Peninsular-Malaysia, the tropical moist mixed dipterocarp forests of Sarawak-Malaysia, the tropical evergreen forests of

  16. Diversity and aboveground biomass of lianas in the tropical seasonal rain forests of Xishuangbanna, SW China.

    Science.gov (United States)

    Lü, Xiao-Tao; Tang, Jian-Wei; Feng, Zhi-Li; Li, Mai-He

    2009-01-01

    Lianas are important components of tropical forests and have significant impacts on the diversity, structure and dynamics of tropical forests. The present study documented the liana flora in a Chinese tropical region. Species richness, abundance, size-class distribution and spatial patterns of lianas were investigated in three 1-ha plots in tropical seasonal rain forests in Xishuangbanna, SW China. All lianas with > or = 2 cm diameter at breast height (dbh) were measured, tagged and identified. A total of 458 liana stems belonging to 95 species (ranging from 38 to 50 species/ha), 59 genera and 32 families were recorded in the three plots. The most well-represented families were Loganiaceae, Annonceae, Papilionaceae, Apocynaceae and Rhamnaceae. Papilionaceae (14 species recorded) was the most important family in the study forests. The population density, basal area and importance value index (IVI) varied greatly across the three plots. Strychnos cathayensis, Byttneria grandifolia and Bousigonia mekongensis were the dominant species in terms of IVI across the three plots. The mean aboveground biomass of lianas (3 396 kg/ha) accounted for 1.4% of the total community above-ground biomass. The abundance, diversity and biomass of lianas in Xishuangbanna tropical seasonal rain forests are lower than those in tropical moist and wet forests, but higher than those in tropical dry forests. This study provides new data on lianas from a geographical region that has been little-studied. Our findings emphasize that other factors beyond the amount and seasonality of precipitation should be included when considering the liana abundance patterns across scales.

  17. Seasonality, diaspore traits and the structure of plant-frugivore networks in Neotropical savanna forest

    Science.gov (United States)

    Darosci, Adriano Antonio Brito; Bruna, Emilio M.; Motta-Junior, José Carlos; Ferreira, Cristiane da Silva; Blake, John Gilman; Munhoz, Cássia Beatriz Rodrigues

    2017-10-01

    Complex frugivory networks are common in heterogeneous environments, but how the structure of those networks varies due to seasonality and other environmental factors remains unclear. For example, seasonal variation in rainfall can influence fruit production and diaspore characteristics, which could alter the quantity and quality of resources available to different animals in the network and, hence, network structure. We investigated how a frugivory network varied seasonally in Brazilian savanna (Cerrado), where there are well-defined dry and wet seasons and fructification mainly during the rainy season for most tree species. We recorded fruit consumption by animals during the dry and wet seasons in two different gallery forests and used these data to test the hypotheses that connectance, links per species and nestedness would be higher in the dry season than rainy season due to low available food in the former that would be consumed by various species of frugivores. Concomitantly, we also measured seed width and lipid content from diaspores of the fruiting trees to determine if these characteristics influenced interaction properties between fruiting trees and frugivores. Among the measured network parameters, connectance, links per species and specialization varied between seasons in one site but not in the other, indicating that seasonal variation in networks is not necessarily consistent over time or space. The number of tree species with small diaspores with high lipid content differed between seasons, and those characteristics were key factors increasing the interaction parameter of fruiting trees. We suggest that network stability between seasons may be related to local frugivore diversity, resource availability, and fruit quality.

  18. Fast changes in seasonal forest communities due to soil moisture increase after damming

    Directory of Open Access Journals (Sweden)

    Vagner Santiago do Vale

    2013-12-01

    Full Text Available Local changes caused by dams can have drastic consequences for ecosystems, not only because they change the water regime but also the modification on lakeshore areas. Thus, this work aimed to determine the changes in soil moisture after damming, to understand the consequences of this modification on the arboreal community of dry forests, some of the most endangered systems on the planet. We studied these changes in soil moisture and the arboreal community in three dry forests in the Araguari River Basin, after two dams construction in 2005 and 2006, and the potential effects on these forests. For this, plots of 20m x10m were distributed close to the impoundment margin and perpendicular to the dam margin in two deciduous dry forests and one semi-deciduous dry forest located in Southeastern Brazil, totaling 3.6ha sampled. Besides, soil analysis were undertaken before and after impoundment at three different depths 0-10, 20-30 and 40-50cm. A tree minimum DBH of 4.77cm community inventory was made before T0 and at two T2 and four T4 years after damming. Annual dynamic rates of all communities were calculated, and statistical tests were used to determine changes in soil moisture and tree communities. The analyses confirmed soil moisture increases in all forests, especially during the dry season and at sites closer to the reservoir; besides, an increase in basal area due to the fast growth of many trees was observed. The highest turnover occurred in the first two years after impoundment, mainly due to the higher tree mortality especially of those closer to the dam margin. All forests showed reductions in dynamic rates for subsequent years T2-T4, indicating that these forests tended to stabilize after a strong initial impact. The modifications were more extensive in the deciduous forests, probably because the dry period resulted more rigorous in these forests when compared to semideciduous forest. The new shorelines created by damming increased soil

  19. Seasonal variation of ozone deposition to a tropical rain forest in southwest Amazonia

    Directory of Open Access Journals (Sweden)

    U. Rummel

    2007-10-01

    Full Text Available Within the project EUropean Studies on Trace gases and Atmospheric CHemistry as a contribution to Large-scale Biosphere-atmosphere experiment in Amazonia (LBA-EUSTACH, we performed tower-based eddy covariance measurements of O3 flux above an Amazonian primary rain forest at the end of the wet and dry season. Ozone deposition revealed distinct seasonal differences in the magnitude and diel variation. In the wet season, the rain forest was an effective O3 sink with a mean daytime (midday maximum deposition velocity of 2.3 cm s−1, and a corresponding O3 flux of −11 nmol m−2 s−1. At the end of the dry season, the ozone mixing ratio was about four times higher (up to maximum values of 80 ppb than in the wet season, as a consequence of strong regional biomass burning activity. However, the typical maximum daytime deposition flux was very similar to the wet season. This results from a strong limitation of daytime O3 deposition due to reduced plant stomatal aperture as a response to large values of the specific humidity deficit. As a result, the average midday deposition velocity in the dry burning season was only 0.5 cm s−1. The large diel ozone variation caused large canopy storage effects that masked the true diel variation of ozone deposition mechanisms in the measured eddy covariance flux, and for which corrections had to be made. In general, stomatal aperture was sufficient to explain the largest part of daytime ozone deposition. However, during nighttime, chemical reaction with nitrogen monoxide (NO was found to contribute substantially to the O3 sink in the rain forest canopy. Further contributions were from non-stomatal plant uptake and other processes that could not be clearly identified.

    Measurements, made simultaneously on a 22 years old cattle pasture enabled the spatially and temporally direct comparison of O3

  20. Analysis of Seasonal Soil Organic Carbon Content at Bukit Jeriau Forest, Fraser Hill, Pahang

    International Nuclear Information System (INIS)

    Ahmad Adnan Mohamed; Ahmad Adnan Mohamed; Sahibin Abd Rahim; David Allan Aitman; Mohd Khairul Amri Kamarudin; Mohd Khairul Amri Kamarudin

    2016-01-01

    Soil carbon is the carbon held within the soil, primarily in association with its organic content. The total soil organic carbon study was determined in a plot at Bukit Jeriau forest in Bukit Fraser, Pahang, Malaysia. The aim of this study is to determine the changing of soil organic carbon between wet season and dry season. Soil organic carbon was fined out using titrimetric determination. The soil organic carbon content in wet season is 223.24 t/ ha while dry season is 217.90 t/ ha. The soil pH range in wet season is between 4.32 to 4.45 and in dry season in 3.95 to 4.08 which is considered acidic. Correlation analysis showed that soil organic carbon value is influenced by pH value and climate. Correlation analysis between clay and soil organic carbon with depth showed positively significant differences and clay are very much influenced soil organic carbon content. Correlation analysis between electrical conductivity and soil organic carbon content showed negative significantly difference on wet season and positively significant different in dry season. (author)

  1. Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests.

    Science.gov (United States)

    Turcios, Maryory M; Jaramillo, Margarita M A; do Vale, José F; Fearnside, Philip M; Barbosa, Reinaldo Imbrozio

    2016-01-01

    Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical profile in Amazonia. This forest compartment is a long-term carbon reservoir with an important role in global carbon balance. Estimates of stocks remain uncertain in forests that have not been altered by deforestation but that have been impacted by understory fires and selective logging. We estimated the stock of pyrogenic carbon derived from charcoal accumulated in the soil profile of seasonal forest fragments impacted by fire and selective logging in the northern portion of Brazilian Amazonia. Sixty-nine soil cores to 1-m depth were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45 ± 2.17 Mg ha(-1) (2.24 ± 1.41 Mg C ha(-1) ). Pyrogenic carbon was not directly related to the size of the forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic carbon indicates an exponential model, where the 0-30 cm depth range has 60% of the total stored. The total area of Brazil's Amazonian seasonal forests and ecotones not altered by deforestation implies 65-286 Tg of pyrogenic carbon accumulated along the soil vertical profile. This is 1.2-2.3 times the total amount of residual pyrogenic carbon formed by biomass burning worldwide in 1 year. Our analysis suggests that the accumulated charcoal in the soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to be considered in global carbon models. © 2015 John Wiley & Sons Ltd.

  2. Earlier Snowmelt Changes the Ratio Between Early and Late Season Forest Productivity

    Science.gov (United States)

    Knowles, J. F.; Molotch, N. P.; Trujillo, E.; Litvak, M. E.

    2017-12-01

    Future projections of declining snowpack and increasing potential evaporation associated with climate warming are predicted to advance the timing of snowmelt in mountain ecosystems globally. This scenario has direct implications for snowmelt-driven forest productivity, but the net effect of temporally shifting moisture dynamics is unknown with respect to the annual carbon balance. Accordingly, this study uses both satellite- and tower-based observations to document the forest productivity response to snowpack and potential evaporation variability between 1989 and 2012 throughout the southern Rocky Mountain ecoregion, USA. These results show that a combination of low snow accumulation and record high potential evaporation in 2012 resulted in the 34-year minimum ecosystem productivity that could be indicative of future conditions. Moreover, early and late season productivity were significantly and inversely related, suggesting that future shifts toward earlier or reduced snowmelt could increase late-season moisture stress to vegetation and thus restrict productivity despite a longer growing season. This relationship was further subject to modification by summer precipitation, and the controls on the early/late season productivity ratio are explored within the context of ecosystem carbon storage in the future. Any perturbation to the carbon cycle at this scale represents a potential feedback to climate change since snow-covered forests represent an important global carbon sink.

  3. Phenology of two Ficus species in seasonal semi-deciduous forest in Southern Brazil

    Directory of Open Access Journals (Sweden)

    E. Bianchini

    Full Text Available Abstract We analyzed the phenology of Ficus adhatodifolia Schott ex Spreng. (23 fig tree and F. eximia Schott (12 fig tree for 74 months in a remnant of seasonal semi-deciduous forest (23°27’S and 51°15’W, Southern Brazil and discussed their importance to frugivorous. Leaf drop, leaf flush, syconia production and dispersal were recorded. These phenophases occurred year-round, but seasonal peaks were recorded in both leaf phenophases for F. eximia and leaf flushing for F. adhatodifolia. Climatic variables analyzed were positively correlated with reproductive phenophases of F. adhatodifolia and negatively correlated with the vegetative phenophases of F. eximia. In despite of environmental seasonality, little seasonality in the phenology of two species was observed, especially in the reproductive phenology. Both species were important to frugivorous, but F. adhatodifolia can play a relevant role in the remnant.

  4. Habitat degradation and seasonality affect physiological stress levels of Eulemur collaris in littoral forest fragments.

    Directory of Open Access Journals (Sweden)

    Michela Balestri

    Full Text Available The littoral forest on sandy soil is among the most threatened habitats in Madagascar and, as such, it represents a hot-spot within a conservation hot-spot. Assessing the health of the resident lemur fauna is not only critical for the long-term viability of these populations, but also necessary for the future re-habilitation of this unique habitat. Since the Endangered collared brown lemur, Eulemur collaris, is the largest seed disperser of the Malagasy south-eastern littoral forest its survival in this habitat is crucial. In this study we compared fecal glucocorticoid metabolite (fGCM levels, a measure of physiological stress and potential early indicator of population health, between groups of collared brown lemurs living in a degraded forest fragment and groups occurring in a more preserved area. For this, we analysed 279 fecal samples collected year-round from 4 groups of collared brown lemurs using a validated 11-oxoetiocholanolone enzyme immunoassay and tested if fGCM levels were influenced by reproductive stages, phenological seasons, sex, and habitat degradation. The lemurs living in the degraded forest had significantly higher fGCM levels than those living in the more preserved area. In particular, the highest fGCM levels were found during the mating season in all animals and in females during gestation in the degraded forest. Since mating and gestation are both occurring during the lean season in the littoral forest, these results likely reflect a combination of ecological and reproductive pressures. Our findings provide a clear indication that habitat degradation has additive effects to the challenges found in the natural habitat. Since increased stress hormone output may have long-term negative effects on population health and reproduction, our data emphasize the need for and may add to the development of effective conservation plans for the species.

  5. Habitat degradation and seasonality affect physiological stress levels of Eulemur collaris in littoral forest fragments.

    Science.gov (United States)

    Balestri, Michela; Barresi, Marta; Campera, Marco; Serra, Valentina; Ramanamanjato, Jean Baptiste; Heistermann, Michael; Donati, Giuseppe

    2014-01-01

    The littoral forest on sandy soil is among the most threatened habitats in Madagascar and, as such, it represents a hot-spot within a conservation hot-spot. Assessing the health of the resident lemur fauna is not only critical for the long-term viability of these populations, but also necessary for the future re-habilitation of this unique habitat. Since the Endangered collared brown lemur, Eulemur collaris, is the largest seed disperser of the Malagasy south-eastern littoral forest its survival in this habitat is crucial. In this study we compared fecal glucocorticoid metabolite (fGCM) levels, a measure of physiological stress and potential early indicator of population health, between groups of collared brown lemurs living in a degraded forest fragment and groups occurring in a more preserved area. For this, we analysed 279 fecal samples collected year-round from 4 groups of collared brown lemurs using a validated 11-oxoetiocholanolone enzyme immunoassay and tested if fGCM levels were influenced by reproductive stages, phenological seasons, sex, and habitat degradation. The lemurs living in the degraded forest had significantly higher fGCM levels than those living in the more preserved area. In particular, the highest fGCM levels were found during the mating season in all animals and in females during gestation in the degraded forest. Since mating and gestation are both occurring during the lean season in the littoral forest, these results likely reflect a combination of ecological and reproductive pressures. Our findings provide a clear indication that habitat degradation has additive effects to the challenges found in the natural habitat. Since increased stress hormone output may have long-term negative effects on population health and reproduction, our data emphasize the need for and may add to the development of effective conservation plans for the species.

  6. Seasonal dynamics of water use efficiency of typical forest and grassland ecosystems in China

    CERN Document Server

    Zhu, Xianjin; Wang, Qiufeng; Hu, Zhongmin; Han, Shijie; Yan, Junhua; Wang, Yanfen; Zhao, Liang

    2014-01-01

    We selected four sites of ChinaFLUX representing four major ecosystem types in China-Changbaishan temperate broad-leaved Korean pine mixed forest (CBS), Dinghushan subtropical evergreen broadleaved forest (DHS), Inner Mongolia temperate steppe (NM), and Haibei alpine shrub-meadow (HBGC)-to study the seasonal dynamics of ecosystem water use efficiency (WUE = GPP/ET, where GPP is gross primary productivity and ET is evapotranspiration) and factors affecting it. Our seasonal dynamics results indicated single-peak variation of WUE in CBS, NM, and HBGC, which were affected by air temperature (Ta) and leaf area index (LAI), through their effects on the partitioning of evapotranspiration (ET) into transpiration (T) (i.e., T/ET). In DHS, WUE was higher at the beginning and the end of the year, and minimum in summer. Ta and soil water content affected the seasonal dynamics of WUE through their effects on GPP/T. Our results indicate that seasonal dynamics of WUE were different because factors affecting the seasonal dyn...

  7. [Diversity, structure and regeneration of the seasonally dry tropical forest of Yucatán Peninsula, Mexico].

    Science.gov (United States)

    Hernández-Ramírez, Angélica María; García-Méndez, Socorro

    2015-09-01

    Seasonally dry tropical forests are considered as the most endangered ecosystem in lowland tropics. The aim of this study was to characterize the floristic composition, richness, diversity, structure and regeneration of a seasonally dry tropical forest landscape constituted by mature forest, secondary forest and seasonally inundated forest located in the Northeastern part of the Yucatán Peninsula, Mexico. We used the Gentry's standard inventory plot methodology (0.1 ha per forest type in 2007) for facilitating comparison with other Mesoamerican seasonally dry tropical forests. A total of 77 species belonging to 32 families were observed in the study area. Fabaceae and Euphorbiaceae were the families with the largest taxonomic richness in the three forest types. Low levels of β diversity were observed among forest types (0.19-0.40), suggesting a high turnover of species at landscape level. The non-regenerative species were dominant (50-51 %), followed by regenerative species (30- 28 %), and colonizer species (14-21 %) in the three forest types. Zoochory was the most common dispersal type in the study area. The 88 % of the observed species in the study area were distributed in Central America. Some floristic attributes of the seasonally dry tropical forest of the Yucatán Peninsula, fall into the values reported for Mesoamerican seasonally dry tropical forests. Natural disturbances contributed to explain the high number of individuals, the low number of liana species, as well as the low values of basal area observed in this study. Our results suggested that the seasonally dry tropical forest of Yucatán Peninsula seems to be resilient to natural disturbances (hurricane) in terms of the observed number of species and families, when compared with the reported values in Mesoamerican seasonally dry tropical forests. Nonetheless, the recovery and regeneration of vegetation in long-term depends on animal-dispersed species. This study highlights the importance of

  8. Water, energy and CO2 exchange over a seasonally flooded forest in the Sahel.

    Science.gov (United States)

    Kergoat, L.; Le Dantec, V.; Timouk, F.; Hiernaux, P.; Mougin, E.; Manuela, G.; Diawara, M.

    2014-12-01

    In semi-arid areas like the Sahel, perennial water bodies and temporary-flooded lowlands are critical for a number of activities. In some cases, their existence is simply a necessary condition for human societies to establish. They also play an important role in the water and carbon cycle and have strong ecological values. As a result of the strong multi-decadal drought that impacted the Sahel in the 70' to 90', a paradoxical increase of ponds and surface runoff has been observed ("Less rain, more water in the ponds", Gardelle 2010). In spite of this, there are excessively few data documenting the consequence of such a paradox on the water and carbon cycle. Here we present 2 years of eddy covariance data collected over the Kelma flooded Acacia forest in the Sahel (15.50 °N), in the frame of the AMMA project. The flooded forest is compared to the other major component of this Sahelian landscape: a grassland and a rocky outcrop sites. All sites are involved in the ALMIP2 data/LSM model comparison. The seasonal cycle of the flooded forest strongly departs from the surroundings grassland and bare soil sites. Before the rain season, the forest displays the strongest net radiation and sensible heat flux. Air temperature within the canopy reaches extremely high values. During the flood, it turns to the lowest sensible heat flux. In fact, due to an oasis effect, this flux is negative during the late flood. Water fluxes turn from almost zero in the dry season to strong evaporation during the flood, since it uses additional energy provided by negative sensible heat flux. The eddy covariance fluxes are consistent with sap flow data, showing that the flood greatly increases the length of the growing season. CO2 fluxes over the forest were twice as large as over the grassland, and the growing season was also longer, giving a much larger annual photosynthesis. In view of these data and data over surroundings grasslands and bare soil, as well as data from a long-term ecological

  9. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites

    NARCIS (Netherlands)

    Mitchard, Edward T. A.; Feldpausch, Ted R.; Brienen, Roel J. W.; Lopez-Gonzalez, Gabriela; Monteagudo, Abel; Baker, Timothy R.; Lewis, Simon L.; Lloyd, Jon; Quesada, Carlos A.; Gloor, Manuel; ter Steege, Hans|info:eu-repo/dai/nl/075217120; Meir, Patrick; Alvarez, Esteban; Araujo-Murakami, Alejandro; Aragao, Luiz E. O. C.; Arroyo, Luzmila; Aymard, Gerardo; Banki, Olaf; Bonal, Damien; Brown, Sandra; Brown, Foster I.; Ceron, Carlos E.; Chama Moscoso, Victor; Chave, Jerome; Comiskey, James A.; Cornejo, Fernando; Corrales Medina, Massiel; Da Costa, Lola; Costa, Flavia R. C.; Di Fiore, Anthony; Domingues, Tomas F.; Erwin, Terry L.; Frederickson, Todd; Higuchi, Niro; Honorio Coronado, Euridice N.; Levis, Carolina; Killeen, Tim J.; Laurance, William F.; Magnusson, William E.; Marimon, Beatriz S.; Marimon Junior, Ben Hur; Mendoza Polo, Irina; Mishra, Piyush; Nascimento, Marcelo T.; Neill, David; Nunez Vargas, Mario P.; Palacios, Walter A.; Parada, Alexander; Pardo Molina, Guido; Pena-Claros, Marielos; Pitman, Nigel; Peres, Carlos A.; Prieto, Adriana; Poorter, Lourens; Ramirez-Angulo, Hirma; Restrepo Correa, Zorayda; Roopsind, Anand; Roucoux, Katherine H.; Rudas, Agustin; Salomao, Rafael P.; Schietti, Juliana; Silveira, Marcos; de Souza, Priscila F.; Steininger, Marc K.; Stropp, Juliana; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van Andel, Tinde R.|info:eu-repo/dai/nl/205284868; van der Heijden, Geertje M. F.; Vieira, Ima C. G.; Vieira, Simone; Vilanova-Torre, Emilio; Vos, Vincent A.; Wang, Ophelia; Zartman, Charles E.; Malhi, Yadvinder; Phillips, Oliver L.; Cruz, A.P.; Cuenca, W.P.; Espejo, J.E.; Ferreira, L.; Germaine, A.; Penuela, M.C.; Silva, N.; Valenzuela Gamarra, L.

    Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass

  10. Seasonal Variability of Ground Water Levels in the Puszcza Zielonka Forest

    Directory of Open Access Journals (Sweden)

    Grajewski Sylwester

    2014-07-01

    Full Text Available The paper presents results of studies on seasonal variability of ground water tables recorded in long-term observations of water levels in the Puszcza Zielonka forest complex. The Puszcza Zielonka Forest is located in the middle part of the Warta basin in the central part of the Wielkopolska region. Its western boundary is located approx. 6 km north-east of Poznań. The area is situated in the western part of the Wielkopolska-Mazovian climatic region. The natural landscape is of young glacial type of Pleistocene and Holocene formation. For this reason parent materials for soils in this area were mainly postglacial drifts, deposits coming from the Poznań stage of the Würm glaciation. In terms of granulometric composition these were mainly low clayey sands deposited on loose sands with an admixture of gravel and eroded sandy clay. Scots pine is the dominant species. Oaks, alders, larches and scarce spruces are also found in this area. Predominant sites include fresh mixed forest, fresh mixed coniferous forest, fresh broadleaved forest and alder swamp forest.

  11. From leaf longevity to canopy seasonality: a carbon optimality phenology model for tropical evergreen forests

    Science.gov (United States)

    Xu, X.; Medvigy, D.; Wu, J.; Wright, S. J.; Kitajima, K.; Pacala, S. W.

    2016-12-01

    Tropical evergreen forests play a key role in the global carbon, water and energy cycles. Despite apparent evergreenness, this biome shows strong seasonality in leaf litter and photosynthesis. Recent studies have suggested that this seasonality is not directly related to environmental variability but is dominated by seasonal changes of leaf development and senescence. Meanwhile, current terrestrial biosphere models (TBMs) can not capture this pattern because leaf life cycle is highly underrepresented. One challenge to model this leaf life cycle is the remarkable diversity in leaf longevity, ranging from several weeks to multiple years. Ecologists have proposed models where leaf longevity is regarded as a strategy to optimize carbon gain. However previous optimality models can not be readily integrated into TBMs because (i) there are still large biases in predicted leaf longevity and (ii) it is never tested whether the carbon optimality model can capture the observed seasonality in leaf demography and canopy photosynthesis. In this study, we develop a new carbon optimality model for leaf demography. The novelty of our approach is two-fold. First, we incorporate a mechanistic photosynthesis model that can better estimate leaf carbon gain. Second, we consider the interspecific variations in leaf senescence rate, which strongly influence the modelled optimal carbon gain. We test our model with a leaf trait database for Panamanian evergreen forests. Then, we apply the model at seasonal scale and compare simulated seasonality of leaf litter and canopy photosynthesis with in-situ observations from several Amazonian forest sites. We find that (i) compared with original optimality model, the regression slope between observed and predicted leaf longevity increases from 0.15 to 1.04 in our new model and (ii) that our new model can capture the observed seasonal variations of leaf demography and canopy photosynthesis. Our results suggest that the phenology in tropical evergreen

  12. Seasonal dynamics of soil CO2 emission in the boreal forests in Central Siberia

    Science.gov (United States)

    Makhnykina, A. V.; Prokishkin, A. S.; Zyryanov, V.; Verkhovets, S. V.

    2016-12-01

    A large amount of carbon in soil is released to the atmosphere through soil respiration, which is the main pathway of transferring carbon from terrestrial ecosystems (Comstedt et al., 2011). Considering that boreal forests is a large terrestrial sink (Tans et al., 1990) and represent approximately 11 % of the Earth's total land area (Gower et al., 2001), even a small change in soil respiration could significantly intensify - or mitigate - current atmospheric increases of CO2, with potential feedbacks to climate change. The objectives of the present study are: (a) to study the dynamic of CO2emission from the soil surface during summer season (from May to October); (b) to identify the reaction of soil respiration to different amount of precipitation as the main limiting factor in the region. The research was carried out in the pine forests in Central Siberia (60°N, 90°E), Russia. Sample plots were represented by the lichen pine forest, moss pine forest, mixed forest and anthropogenic destroyed area. We used the automated soil CO2 flux system based on the infrared gas analyzer LI-8100 for measuring the soil efflux. Soil temperature was measured with Soil Temperature Probe Type E in three depths 5, 10, 15 cm. Volumetric soil moisture was measured with Theta Probe Model ML2. The presence and type of ground cover substantially affects the value of soil respiration fluxes. The carbon dioxide emission from the soil surface averaged was 5.4 ±2.3 μmol CO2 m-2 s-1. The destroyed area without plant cover demonstrated the lowest soil respiration (0.1-5.6 μmol CO2 m-2 s-1). The lowest soil respiration among forested areas was observed in the feathermoss pine forest. The lichen pine forest soil respiration was characterized by averages values. The maximum soil respiration values and seasonal fluctuations were obtained in the mixed forest (2.3-29.3 μmol CO2 m-2 s-1). The analysis of relation between soil CO2 efflux and amount of precipitation showed that the site without any

  13. Growing season length as a key factor of cumulative net ecosystem exchange over the pine forest ecosystems in Europe

    Czech Academy of Sciences Publication Activity Database

    Danielewska, A.; Urbaniak, M.; Olejnik, Janusz

    2015-01-01

    Roč. 29, č. 2 (2015), s. 129-135 ISSN 0236-8722 Institutional support: RVO:67179843 Keywords : forest * carbon dioxide * eddy covariance * growing season length Subject RIV: EH - Ecology, Behaviour Impact factor: 1.067, year: 2015

  14. Comparison of Ant Community Diversity and Functional Group Composition Associated to Land Use Change in a Seasonally Dry Oak Forest.

    Science.gov (United States)

    Cuautle, M; Vergara, C H; Badano, E I

    2016-04-01

    Ants have been used to assess land use conversion, because they reflect environmental change, and their response to these changes have been useful in the identification of bioindicators. We evaluated ant diversity and composition associated to different land use change in a temperate forest (above 2000 m asl) in Mexico. The study was carried out in "Flor del Bosque" Park a vegetation mosaic of native Oak Forests and introduced Eucalyptus and grasslands. Species richness, dominance and diversity rarefaction curves, based on ant morphospecies and functional groups, were constructed and compared among the three vegetation types, for the rainy and the dry seasons of 2008-2009. Jaccard and Sorensen incidence-based indices were calculated to obtain similarity values among all the habitats. The Oak Forest was a rich dominant community, both in species and functional groups; the Eucalyptus plantation was diverse with low dominance. The most seasonality habitat was the grassland, with low species and high functional group diversity during the dry seasons, but the reverse pattern during the wet season. The Oak Forest was more similar to the Eucalyptus plantation than to the grassland, particularly during the dry season. Oak Forests are dominated by Cold Climate Specialists, specifically Prenolepis imparis (Say). The Eucalyptus and the grassland are characterized by generalized Myrmicinae, as Pheidole spp. and Monomorium ebenium (Forel). The conservation of the native Oak Forest is primordial for the maintenance of Cold Climate Specialist ant communities. The microclimatic conditions in this forest, probably, prevented the invasion by opportunistic species.

  15. Seasonal abundance and development of the Asian longhorned beetle and natural enemy prevalence in different forest types in China

    Science.gov (United States)

    Houping Liu; Leah S. Bauer; Tonghai Zhao; Ruitong Gao; Therese M. Poland

    2016-01-01

    Seasonal abundance and population development of the Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), and prevalence of its natural enemies were studied on Hankow willow (Salix matsudana Koidz.) at an urban forest site (Anci) and a rural forest site (Tangerli) in Hebei province...

  16. Ecological consequences of alternative fuel reduction treatments in seasonally dry forests: the national fire and fire surrogate study

    Science.gov (United States)

    J.D. McIver; C.J. Fettig

    2010-01-01

    This special issue of Forest Science features the national Fire and Fire Surrogate study (FFS), a niultisite, multivariate research project that evaluates the ecological consequences of prescribed fire and its mechanical surrogates in seasonally dry forests of the United States. The need for a comprehensive national FFS study stemmed from concern that information on...

  17. Seasonal dynamics of ant community structure in the Moroccan Argan Forest.

    Science.gov (United States)

    El Keroumi, Abderrahim; Naamani, Khalid; Soummane, Hassna; Dahbi, Abdallah

    2012-01-01

    In this study we describe the structure and composition of ant communities in the endemic Moroccan Argan forest, using pitfall traps sampling technique throughout the four seasons between May 2006 and February 2007. The study focused on two distinct climatic habitats within the Essaouira Argan forest, a semi-continental site at Lahssinate, and a coastal site at Boutazarte. Thirteen different ant species were identified, belonging to seven genera. Monomorium subopacum Smith and Tapinoma simrothi Krausse-Heldrungen (Hymenoptera: Formicidae) were the most abundant and behaviorally dominant ant species in the arganeraie. In addition, more specimens were captured in the semi-continental site than in the coastal area. However, no significant difference was observed in species richness, evenness, or diversity between both sites. Composition and community structure showed clear seasonal dynamics. The number of species, their abundance, their diversity, and their evenness per Argan tree were significantly dissimilar among seasons. The richness (except between summer and autumn), and the abundance and the evenness of ant species among communities, showed a significant difference between the dry period (summer and spring) and the rainy period (winter and autumn). Higher abundance and richness values occurred in the dry period of the year. Ant species dominance and seasonal climatic variations in the arganeraie might be among the main factors affecting the composition, structure, and foraging activity of ant communities. This study, together with recent findings on ant predation behavior below Argan trees, highlights the promising use of dominant ant species as potential agents of Mediterranean fruit fly bio-control in the Argan forest and surrounding ecosystems.

  18. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient.

    Science.gov (United States)

    Mondal, Nandita; Sukumar, Raman

    2016-01-01

    The "varying constraints hypothesis" of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels-the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)-using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied-early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia.

  19. CO2 efflux from subterranean nests of ant communities in a seasonal tropical forest, Thailand.

    Science.gov (United States)

    Hasin, Sasitorn; Ohashi, Mizue; Yamada, Akinori; Hashimoto, Yoshiaki; Tasen, Wattanachai; Kume, Tomonori; Yamane, Seiki

    2014-10-01

    Many ant species construct subterranean nests. The presence of their nests may explain soil respiration "hot spots", an important factor in the high CO2 efflux from tropical forests. However, no studies have directly measured CO2 efflux from ant nests. We established 61 experimental plots containing 13 subterranean ant species to evaluate the CO2 efflux from subterranean ant nests in a tropical seasonal forest, Thailand. We examined differences in nest CO2 efflux among ant species. We determined the effects of environmental factors on nest CO2 efflux and calculated an index of nest structure. The mean CO2 efflux from nests was significantly higher than those from the surrounding soil in the wet and dry seasons. The CO2 efflux was species-specific, showing significant differences among the 13 ant species. The soil moisture content significantly affected nest CO2 efflux, but there was no clear relationship between nest CO2 efflux and nest soil temperature. The diameter of the nest entrance hole affected CO2 efflux. However, there was no significant difference in CO2 efflux rates between single-hole and multiple-hole nests. Our results suggest that in a tropical forest ecosystem the increase in CO2 efflux from subterranean ant nests is caused by species-specific activity of ants, the nest soil environment, and nest structure.

  20. SEASONAL AND TOPOGRAPHYCAL VARIATION OF THE LITTER NUTRIENT CONTENTS OF A ATLANTIC FOREST FRAGMENT

    Directory of Open Access Journals (Sweden)

    Rosângela A. Tristão Borém

    2002-01-01

    Full Text Available ABSTRACT: The objective of this work was to study the effects of forest degradation on the supplyand contents of nutrients in the litter of two toposequences. The study area is located in a fragment ofthe Atlantic Forest, in Silva Jardim, State of Rio de Janeiro, Brazil (42°31'W and 22°31'S. The twotoposequences are under low and high degrees of human intervention. They were divided in lower,middle and upper slope, and the vegetation sampled with plots of 600m2. The litter was collected forquantitative and qualitative characterisation using a wood frame of 0,25m2 randomly distributedwithin the sample plots. Litter collection was carried out in two distinct dates in order to capture seasonalpatterns. The average litter production did not differ significantly between the toposequences.The total litter production was higher at the end of the dry season, and lower at the end of the rainyseason, indicating the seasonal pattern of the forest. The chemical analyses showed that the nutrientscontents varied widely between the toposequences. The lower and middle slope of the toposequenceunder high degree of human intervention presented the highest nutrient contents in the litter.

  1. Does the reproductive season account for more records of birds in a marked seasonal climate landscape in the state of São Paulo, Brazil?

    Directory of Open Access Journals (Sweden)

    Vagner Cavarzere

    2013-01-01

    Full Text Available Investigators have reported that birds from temperate regions are more detectable during their breeding seasons, which should be used to adequately survey avifaunas. In the state of São Paulo, southeastern Brazil, the rainiest months of the year are usually associated with a peak in the reproduction of birds. To test the hypothesis that birds are equally detectable throughout the year, I conducted transect counts of birds in a predominantly open Cerrado landscape in São Paulo during 2005 and 2006. There was no significant difference in the number of species or individuals between breeding (rainy and nonbreeding (dry seasons; 24% of the species with > 50 contacts was likely to be recorded more often in a particular season. Unlike temperate regions, where vocal behavior plays an important role in detections of birds during and after reproductive seasons, my results suggest that Cerrado birds may be evenly detected throughout the year.

  2. The importance of forest disturbance for the recruitment of the large arborescent palm Attalea maripa in a seasonally-dry Amazonian forest

    OpenAIRE

    Salm,Rodolfo

    2005-01-01

    The hypothesis that forest disturbance is important for the recruitment of the large arborescent palms Attalea maripa was tested with a natural experiment in the Pinkaití site (7º 46'S; 51º 57'W), a seasonally-dry Amazonian forest. A 8,000 m long trail, that crosses, in its lower half, an open forest along the Pinkaití stream bottomlands and, on its upper half, a dense forest on a hill, was divided in 160 0.15 ha (50x30 m) sampling units. At each unit, adult palms were counted and percentage ...

  3. Phytosociology analysis of a fragment of Seasonal Deciduous Forest: Parque Estadual do Turvo, RS, Brazil

    Directory of Open Access Journals (Sweden)

    Rafaelo Balbinot

    2016-06-01

    Full Text Available The ecosystem formed by the Seasonal Deciduous Forest (SDF predominates in the region of Alto Uruguay in Rio Grande do Sul State, Brazil. This study aimed to analyze descriptively the floristic composition and the phytosociology of trees from a fragment of SDF present in Parque Estadual do Turvo (PET located in the Municipality of Derrubadas, Rio Grande do Sul State (Yucumã forest. We used the method of fixed area, based on 18 sample units with 1,000 m2 installed randomly oriented by the main road of the park. All wood species with diameter at 1.3 m above ground level (DBH greater than 10 cm were measured and identified. It was observed the presence of 842 individuals belonging to 32 families, 67 genera and 83 species (12% were not identified. The families with the highest number of species were Fabaceae, Euphorbiaceae, Meliaceae, Myrtaceae and Sapindaceae. Shannon index estimated was 3.72.

  4. Seasonal changes in the radiation balance of subarctic forest and tundra

    International Nuclear Information System (INIS)

    Lafleur, P.M.; Renzetti, A.V.; Bello, R.

    1993-01-01

    This paper examines the seasonal behavior of the components of the radiation budget of subarctic tundra and open forest near Churchill, Manitoba. Data were collected between late February and August 1990. The presence of the winter snowpack is the most important factor which affects the difference in radiation balances of tundra and forest. Overall, net radiation was about four to five times larger over the forest when snow covered the ground. Albedo differences were primarily responsible for this difference in net radiation; however, somewhat smaller net longwave losses were experienced at the tundra site. The step decrease in albedo from winter to summer (i.e. snow-covered to snow-free conditions) was significant at both sites. The forest albedo decreased by about three-fold while the tundra experienced a seven-fold decrease. Net radiation at both sites increased in direct response to the albedo change. Transmissivity of the atmosphere near Churchill also appeared to change at about the same time as the loss of the snow cover and may be related to changing air masses which bring about the final snow melt

  5. Post-fire regeneration in seasonally dry tropical forest fragments in southeastern Brazil.

    Science.gov (United States)

    Costa, Mayke B; Menezes, Luis Fernando T DE; Nascimento, Marcelo T

    2017-01-01

    Seasonally dry tropical forest is one of the highly threatened biome. However, studies on the effect of fire on these tree communities are still scarce. In this context, a floristic and structural survey in three forest areas in the southeast of Brazil that were affected by fire between 14 and 25 years ago was performed with the objective of evaluating post-fire regeneration. In each site, five systematically placed plots (25 m x 25 m each) were established. The more recently burnt site had significantly lower values of richness and diversity than the other two sites. However, the sites did not differ in density and basal area. Annona dolabripetala, Astronium concinnum, Joannesia princeps and Polyandrococos caudescens were within the 10 most important species for the three sites. Comparing these data with adjacent mature forests, the results indicated differences both in structural and floristic aspects, suggesting that the time after fire was not sufficient for recuperation of these areas. The recovery process indicate at least 190 years for areas return to basal area values close to those observed in mature forests nearby.

  6. Spatial and seasonal variations of leaf area index (LAI) in subtropical secondary forests related to floristic composition and stand characters

    Science.gov (United States)

    Zhu, Wenjuan; Xiang, Wenhua; Pan, Qiong; Zeng, Yelin; Ouyang, Shuai; Lei, Pifeng; Deng, Xiangwen; Fang, Xi; Peng, Changhui

    2016-07-01

    Leaf area index (LAI) is an important parameter related to carbon, water, and energy exchange between canopy and atmosphere and is widely applied in process models that simulate production and hydrological cycles in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have yet to be fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (Pinus massoniana-Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber-Cyclobalanopsis glauca evergreen broadleaved forests) from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs) respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for the three forests measured in January and for the L. glaber-C. glauca forest in April, July, and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stem number, crown coverage, proportion of evergreen conifer species on basal area basis, proportion of deciduous species on basal area basis, and forest types affected the spatial variations in LAI values in January, while stem number and proportion of deciduous species on basal area basis affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity, and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.

  7. Caatinga Revisited: Ecology and Conservation of an Important Seasonal Dry Forest

    Science.gov (United States)

    de Albuquerque, Ulysses Paulino; de Lima Araújo, Elcida; El-Deir, Ana Carla Asfora; de Lima, André Luiz Alves; Souto, Antonio; Bezerra, Bruna Martins; Ferraz, Elba Maria Nogueira; Maria Xavier Freire, Eliza; Sampaio, Everardo Valadares de Sá Barreto; Las-Casas, Flor Maria Guedes; de Moura, Geraldo Jorge Barbosa; Pereira, Glauco Alves; de Melo, Joabe Gomes; Alves Ramos, Marcelo; Rodal, Maria Jesus Nogueira; Schiel, Nicola; de Lyra-Neves, Rachel Maria; Alves, Rômulo Romeu Nóbrega; de Azevedo-Júnior, Severino Mendes; Telino Júnior, Wallace Rodrigues; Severi, William

    2012-01-01

    Besides its extreme climate conditions, the Caatinga (a type of tropical seasonal forest) hosts an impressive faunal and floristic biodiversity. In the last 50 years there has been a considerable increase in the number of studies in the area. Here we aimed to present a review of these studies, focusing on four main fields: vertebrate ecology, plant ecology, human ecology, and ethnobiology. Furthermore, we identify directions for future research. We hope that the present paper will help defining actions and strategies for the conservation of the biological diversity of the Caatinga. PMID:22919296

  8. An Ecological Comparison of Floristic Composition in Seasonal Semideciduous Forest in Southeast Brazil: Implications for Conservation

    OpenAIRE

    Lopes, Sérgio de Faria; Schiavini, Ivan; Oliveira, Ana Paula; Vale, Vagner Santiago

    2012-01-01

    We examined floristic patterns of ten seasonal semideciduous forest sites in southeastern Brazil and conducted a central sampling of one hectare for each site, where we took samples and identified all individual living trees with DBH (diameter at breast height, 1.30 m) ≥4.8 cm. Arboreal flora totaled 242 species, 163 genera, and 58 families. Fabaceae (38 species) and Myrtaceae (20 species) were families with the largest number of species. Only Copaifera langsdorffii and Hymenaea courbaril occ...

  9. Caatinga Revisited: Ecology and Conservation of an Important Seasonal Dry Forest

    Directory of Open Access Journals (Sweden)

    Ulysses Paulino de Albuquerque

    2012-01-01

    Full Text Available Besides its extreme climate conditions, the Caatinga (a type of tropical seasonal forest hosts an impressive faunal and floristic biodiversity. In the last 50 years there has been a considerable increase in the number of studies in the area. Here we aimed to present a review of these studies, focusing on four main fields: vertebrate ecology, plant ecology, human ecology, and ethnobiology. Furthermore, we identify directions for future research. We hope that the present paper will help defining actions and strategies for the conservation of the biological diversity of the Caatinga.

  10. Species biogeography predicts drought responses in a seasonally dry tropical forest

    Science.gov (United States)

    Schwartz, N.; Powers, J. S.; Vargas, G.; Xu, X.; Smith, C. M.; Brodribb, T.; Werden, L. K.; Becknell, J.; Medvigy, D.

    2017-12-01

    The timing, distribution, and amount of rainfall in the seasonal tropics have shifted in recent years, with consequences for seasonally dry tropical forests (SDTF). SDTF are sensitive to changing rainfall regimes and drought conditions, but sensitivity to drought varies substantially across species. One potential explanation of species differences is that species that experience dry conditions more frequently throughout their range will be better able to cope with drought than species from wetter climates, because species from drier climates will be better adapted to drought. An El-Niño induced drought in 2015 presented an opportunity to assess species-level differences in mortality in SDTF, and to ask whether the ranges of rainfall conditions species experience and the average rainfall regimes in species' ranges predict differences in mortality rates in Costa Rican SDTF. We used field plot data from northwest Costa Rica to determine species' level mortality rates. Mortality rates ranged substantially across species, with some species having no dead individuals to as high as 50% mortality. To quantify rainfall conditions across species' ranges, we used species occurrence data from the Global Biodiversity Information Facility, and rainfall data from the Chelsa climate dataset. We found that while the average and range of mean annual rainfall across species ranges did not predict drought-induced mortality in the field plots, across-range averages of the seasonality index, a measure of rainfall seasonality, was strongly correlated with species-level drought mortality (r = -0.62, p < 0.05), with species from more strongly seasonal climates experiencing less severe drought mortality. Furthermore, we found that the seasonality index was a stronger predictor of mortality than any individual functional trait we considered. This result shows that species' biogeography may be an important factor for how species will respond to future drought, and may be a more integrative

  11. Seasonal energetic stress in a tropical forest primate: proximate causes and evolutionary implications.

    Directory of Open Access Journals (Sweden)

    Steffen Foerster

    Full Text Available Animals facing seasonal variation in food availability experience selective pressures that favor behavioral adjustments such as migration, changes in activity, or shifts in diet. Eclectic omnivores such as many primates can process low-quality fallback food when preferred food is unavailable. Such dietary flexibility, however, may be insufficient to eliminate constraints on reproduction even for species that live in relatively permissive environments, such as moist tropical forests. Focusing on a forest-dwelling primate with a flexible diet (Cercopithecus mitis we investigated whether females experience seasonal energetic stress and how it may relate to reproductive seasonality. We used fecal glucocorticoids (fGCs as an indicator of energetic stress, controlling for the potentially confounding effects of social interactions and reproductive state. We modeled within-female fGC variation with General Linear Mixed Models, evaluating changes in feeding behavior and food availability as main effects. Regardless of reproductive state, fGCs increased when females shifted their diet towards fallback foods (mature leaves and other non-preferred items and when they spent more time feeding, while fGCs decreased with feeding time on preferred items (insects, fruits, young leaves and with the availability of young leaves. Changes in fruit availability had no general effects on fGCs, likely because fruits were sought out regardless of availability. As predicted, females in the energetically demanding stages of late pregnancy and early lactation showed greater increases in fGCs between periods of low versus high availability of fruits and young leaves than females in other reproductive states. Potential social stressors had no measurable effects on fGCs. Preliminary evidence suggests that seasonal energetic stress may affect the timing of infant independence from mothers and contribute to unusually long inter-birth intervals compared to closely related species

  12. Seasonal energetic stress in a tropical forest primate: proximate causes and evolutionary implications.

    Science.gov (United States)

    Foerster, Steffen; Cords, Marina; Monfort, Steven L

    2012-01-01

    Animals facing seasonal variation in food availability experience selective pressures that favor behavioral adjustments such as migration, changes in activity, or shifts in diet. Eclectic omnivores such as many primates can process low-quality fallback food when preferred food is unavailable. Such dietary flexibility, however, may be insufficient to eliminate constraints on reproduction even for species that live in relatively permissive environments, such as moist tropical forests. Focusing on a forest-dwelling primate with a flexible diet (Cercopithecus mitis) we investigated whether females experience seasonal energetic stress and how it may relate to reproductive seasonality. We used fecal glucocorticoids (fGCs) as an indicator of energetic stress, controlling for the potentially confounding effects of social interactions and reproductive state. We modeled within-female fGC variation with General Linear Mixed Models, evaluating changes in feeding behavior and food availability as main effects. Regardless of reproductive state, fGCs increased when females shifted their diet towards fallback foods (mature leaves and other non-preferred items) and when they spent more time feeding, while fGCs decreased with feeding time on preferred items (insects, fruits, young leaves) and with the availability of young leaves. Changes in fruit availability had no general effects on fGCs, likely because fruits were sought out regardless of availability. As predicted, females in the energetically demanding stages of late pregnancy and early lactation showed greater increases in fGCs between periods of low versus high availability of fruits and young leaves than females in other reproductive states. Potential social stressors had no measurable effects on fGCs. Preliminary evidence suggests that seasonal energetic stress may affect the timing of infant independence from mothers and contribute to unusually long inter-birth intervals compared to closely related species of similar body

  13. Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest.

    Science.gov (United States)

    Yang, Hualei; Yang, Xi; Zhang, Yongguang; Heskel, Mary A; Lu, Xiaoliang; Munger, J William; Sun, Shucun; Tang, Jianwu

    2017-07-01

    Accurate estimation of terrestrial gross primary productivity (GPP) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales and explored how leaf-level ChlF was linked with canopy-scale solar-induced chlorophyll fluorescence (SIF) in a temperate deciduous forest at Harvard Forest, Massachusetts, USA. Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R 2  = 0.73, 0.77, and 0.86 at leaf, canopy, and satellite scales, respectively; P chlorophyll content (R 2  = 0.65 for canopy GPP SIF and chlorophyll content; P < 0.0001), leaf area index (LAI) (R 2  = 0.35 for canopy GPP SIF and LAI; P < 0.0001), and normalized difference vegetation index (NDVI) (R 2  = 0.36 for canopy GPP SIF and NDVI; P < 0.0001). Our results suggest that ChlF can be a powerful tool to track photosynthetic rates at leaf, canopy, and ecosystem scales. © 2016 John Wiley & Sons Ltd.

  14. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests.

    Science.gov (United States)

    Xu, Xiangtao; Medvigy, David; Powers, Jennifer S; Becknell, Justin M; Guan, Kaiyu

    2016-10-01

    We assessed whether diversity in plant hydraulic traits can explain the observed diversity in plant responses to water stress in seasonally dry tropical forests (SDTFs). The Ecosystem Demography model 2 (ED2) was updated with a trait-driven mechanistic plant hydraulic module, as well as novel drought-phenology and plant water stress schemes. Four plant functional types were parameterized on the basis of meta-analysis of plant hydraulic traits. Simulations from both the original and the updated ED2 were evaluated against 5 yr of field data from a Costa Rican SDTF site and remote-sensing data over Central America. The updated model generated realistic plant hydraulic dynamics, such as leaf water potential and stem sap flow. Compared with the original ED2, predictions from our novel trait-driven model matched better with observed growth, phenology and their variations among functional groups. Most notably, the original ED2 produced unrealistically small leaf area index (LAI) and underestimated cumulative leaf litter. Both of these biases were corrected by the updated model. The updated model was also better able to simulate spatial patterns of LAI dynamics in Central America. Plant hydraulic traits are intercorrelated in SDTFs. Mechanistic incorporation of plant hydraulic traits is necessary for the simulation of spatiotemporal patterns of vegetation dynamics in SDTFs in vegetation models. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. Annual and Seasonal Changes in the Structure of Litter-Dwelling Ant Assemblages (Hymenoptera: Formicidae in Atlantic Semideciduous Forests

    Directory of Open Access Journals (Sweden)

    Flávio Siqueira de Castro

    2012-01-01

    Full Text Available We surveyed ant fauna in the leaf litter in an Atlantic Semideciduous forest in the State Park of Rio Doce (PERD. The work aimed to produce basic information about habitat effects on diversity, as well as about how the ant fauna in a such buffered forest habitat, as the litter layer, could respond the climate variation in a short and long term. We sampled two years in two distinct forest physiognomies, which respond to different geomorphologic backgrounds, in dry and rainy seasons. Species composition, richness and abundance of these forests were distinct. However, both forests hosted similar numbers of rare and specialized, habitat demanding species, thus suggesting both are similarly well preserved, despite distinct physiognomies. However, the lower and more open forest was, more susceptible to dry season effects, showing a steeper decline in species numbers in such season, but similar numbers in the wet seasons. The pattern varied between years, which corroborates the hypothesis of a strongly variable community in response to subtle climatic variation among years. The present results are baselines for future long term monitoring projects, and could support protocols for early warnings of global climatic changes effects on biodiversity.

  16. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests.

    Science.gov (United States)

    Richardson, Andrew D; Hollinger, David Y; Dail, D Bryan; Lee, John T; Munger, J William; O'keefe, John

    2009-03-01

    Spring phenology is thought to exert a major influence on the carbon (C) balance of temperate and boreal ecosystems. We investigated this hypothesis using four spring onset phenological indicators in conjunction with surface-atmosphere CO(2) exchange data from the conifer-dominated Howland Forest and deciduous-dominated Harvard Forest AmeriFlux sites. All phenological measures, including CO(2) source-sink transition dates, could be well predicted on the basis of a simple two-parameter spring warming model, indicating good potential for improving the representation of phenological transitions and their dynamic responsiveness to climate variability in land surface models. The date at which canopy-scale photosynthetic capacity reached a threshold value of 12 micromol m(-2) s(-1) was better correlated with spring and annual flux integrals than were either deciduous or coniferous bud burst dates. For all phenological indicators, earlier spring onset consistently, but not always significantly, resulted in higher gross primary productivity (GPP) and ecosystem respiration (RE) for both seasonal (spring months, April-June) and annual flux integrals. The increase in RE was less than that in GPP; depending on the phenological indicator used, a one-day advance in spring onset increased springtime net ecosystem productivity (NEP) by 2-4 g C m(-2) day(-1). In general, we could not detect significant differences between the two forest types in response to earlier spring, although the response to earlier spring was generally more pronounced for Harvard Forest than for Howland Forest, suggesting that future climate warming may favor deciduous species over coniferous species, at least in this region. The effect of earlier spring tended to be about twice as large when annual rather than springtime flux integrals were considered. This result is suggestive of both immediate and lagged effects of earlier spring onset on ecosystem C cycling, perhaps as a result of accelerated N cycling

  17. Seasonal photochemical transformations of nitrogen species in a forest stream and lake.

    Directory of Open Access Journals (Sweden)

    Petr Porcal

    Full Text Available The photochemical release of inorganic nitrogen from dissolved organic matter is an important source of bio-available nitrogen (N in N-limited aquatic ecosystems. We conducted photochemical experiments and used mathematical models based on pseudo-first-order reaction kinetics to quantify the photochemical transformations of individual N species and their seasonal effects on N cycling in a mountain forest stream and lake (Plešné Lake, Czech Republic. Results from laboratory experiments on photochemical changes in N speciation were compared to measured lake N budgets. Concentrations of organic nitrogen (Norg; 40-58 µmol L-1 decreased from 3 to 26% during 48-hour laboratory irradiation (an equivalent of 4-5 days of natural solar insolation due to photochemical mineralization to ammonium (NH4+ and other N forms (Nx; possibly N oxides and N2. In addition to Norg mineralization, Nx also originated from photochemical nitrate (NO3- reduction. Laboratory exposure of a first-order forest stream water samples showed a high amount of seasonality, with the maximum rates of Norg mineralization and NH4+ production in winter and spring, and the maximum NO3- reduction occurring in summer. These photochemical changes could have an ecologically significant effect on NH4+ concentrations in streams (doubling their terrestrial fluxes from soils and on concentrations of dissolved Norg in the lake. In contrast, photochemical reactions reduced NO3- fluxes by a negligible (<1% amount and had a negligible effect on the aquatic cycle of this N form.

  18. Phytossociology of wood community in Seasonal Dry Montane Forest in Paraiba, Brazil

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Learth Cunha

    2013-06-01

    Full Text Available The Pico do Jabre Seasonally Dry Montane Forest in Paraiba state, Brazil, the highest regional elevation, 1197 m, distant 360 km the sea was assessed aiming to survey its phytosociology and woody structure. In 36 systematic sampling plots, 10x50m, individuals, Dbh > 4.8cm, had their diameters and height measured. Botanical samples were collected during five years and vouchers were deposited at the Paraiba Federal University Herbaria (JPB. It was found 2050 trees distributed in 64 species of 51 genera of 31 families, which accounted for 1138 ind.ha-1 and 22.45 m2.ha -1. Diversity and equability were assessed as H' = 3.17 nats.ind-1 and J' = 0.76 similar to some others regional seasonally dry montane forest communities. Malpighiaceae, Myrtaceae, Erythroxylaceae, Vochysiaceae, Celastraceae, Rutaceae, Sapindaceae e Fabaceae-Faboideae stood out and summed 66.72% of the total VI. Byrsonima nitidifolia, Eugenia ligustrina, Calisthene microphylla, Maytenus distichophylla and Erythroxylum mucronatum species accounted for 120.79 (40.3% of the total VI. B. nitidifolia ecological dominance is firstly reported in the Brazilian northeast region.

  19. Fire, climate and vegetation linkages in the Bolivian Chiquitano seasonally dry tropical forest.

    Science.gov (United States)

    Power, M J; Whitney, B S; Mayle, F E; Neves, D M; de Boer, E J; Maclean, K S

    2016-06-05

    South American seasonally dry tropical forests (SDTFs) are critically endangered, with only a small proportion of their original distribution remaining. This paper presents a 12 000 year reconstruction of climate change, fire and vegetation dynamics in the Bolivian Chiquitano SDTF, based upon pollen and charcoal analysis, to examine the resilience of this ecosystem to drought and fire. Our analysis demonstrates a complex relationship between climate, fire and floristic composition over multi-millennial time scales, and reveals that moisture variability is the dominant control upon community turnover in this ecosystem. Maximum drought during the Early Holocene, consistent with regional drought reconstructions, correlates with a period of significant fire activity between 8000 and 7000 cal yr BP which resulted in a decrease in SDTF diversity. As fire activity declined but severe regional droughts persisted through the Middle Holocene, SDTFs, including Anadenanthera and Astronium, became firmly established in the Bolivian lowlands. The trend of decreasing fire activity during the last two millennia promotes the idea among forest ecologists that SDTFs are threatened by fire. Our analysis shows that the Chiquitano seasonally dry biome has been more resilient to Holocene changes in climate and fire regime than previously assumed, but raises questions over whether this resilience will continue in the future under increased temperatures and drought coupled with a higher frequency anthropogenic fire regime.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  20. Strong carbon sink of monsoon tropical seasonal forest in Southern Vietnam

    Science.gov (United States)

    Deshcherevskaya, Olga; Anichkin, Alexandr; Avilov, Vitaly; Duy Dinh, Ba; Luu Do, Phong; Huan Tran, Cong; Kurbatova, Julia

    2014-05-01

    EC procedures were applied to the raw 10-Hz data, including time-lag compensation, block average, WPL-correction, planar fit, low- and high-frequency corrections etc. in EddyPro software (LI-COR Inc., USA). Calculated fluxes with bad quality flags (more than 6 of 9) were excluded. Spikes due to rains, instrument malfunction were removed too. Storage of CO2 from the surface to the measurement level which is very significant in tall tropical forest was added to the flux. Then low-turbulence correction was applied with u*-threshold of 0.178 m s-1. After these steps only 43 % of 30-min data of 2012 still presented, so the rate of gaps was 57 % (mainly at night and in rains). Data were gapfilled using on-line tool at the web-site of Max-Plank Institute, Germany and Flux-Analysis Tool, Japan. Different gap-filling procedures (non-linear regressions, look-up tables, model evaluation, artificial gaps-method) as well as u*-threshold shifting from 0 to 0.25 resulted in drift of 2012 net carbon exchange total from -296 to -612 g C m-2 (strong carbon sink still remain). Unfortunately, the situation of more then 50 % of gaps in CO2 flux is usual for tropical EC stations because of frequent calm nights. So, a gap-filling algorithm is extremely important for evaluation of long-term totals. We found for Vietnamese data that even few spikes which were not removed before gap-filling can change all-year total by up to 20-50 g m-2 year-1. Especially 'powerful' are big positive values at night in rare-occurred good turbulence. Possibly these values are physical. But they influence regressions in look-up table method dramatically because amount of data in peak of rainy season in night-time is too small. So, the gap-filling algorithm happened to be very sensitive to spikes. Additionally, striking was the fact that storage of CO2 appeared to be the main factor influencing 1-year totals after gap-filling procedure. Taking storage into account shifted the 2012 sum from +182 to -402 g m-2 year

  1. Seasonal Snowpack Dynamics and Runoff in a Maritime Forested Basin, Niigata, Japan

    Science.gov (United States)

    Whitaker, A. C.; Sugiyama, H.

    2005-12-01

    Seasonal snowpack dynamics are described through field measurements under contrasting canopy conditions for a mountainous catchment in the Japan Sea region. Microclimatic data, snow accumulation, albedo and lysimeter runoff is given through three complete winter seasons 2002-05 in: (1) mature cedar stand, (2) larch stand, and (3) regenerating cedar stand or opening. The accumulation and melt of seasonal snowpack strongly influences streamflow runoff during December to May, including winter base-flow, mid-winter melt, rain-on-snow, and diurnal peaks driven by radiation melt in spring. Lysimeter runoff at all sites is characterised by constant ground melt of 0.8-1.0 mm/day. Rapid response to mid-winter melt or rainfall shows that the snowpack remains in a ripe or near-ripe condition throughout the snowcover season. Hourly and daily lysimeter discharge was greatest during rain-on-snow with the majority of runoff due to rainfall passing through the snowpack as opposed to snowmelt. For both rain-on-snow and radiation melt events lysimeter discharge was generally greatest at the open site, although there were exceptions such as during interception melt events. During radiation melt instantaneous discharge was up to 4.0 times greater in the opening compared to the mature cedar, and 48-hour discharge was up to 2.5 times greater. Perhaps characteristic of maritime climates, forest interception melt is shown to be important in addition to sublimation in reducing snow accumulation beneath dense canopies. While sublimation represents a loss from the catchment water balance, interception melt percolates through the snowpack and contributes to soil moisture during the winter season. Strong differences in microclimate and snowpack albedo persisted between cedar, larch and open sites, and it is suggested further work is needed to account for this in hydrological simulation models.

  2. Seasonal Precipitation Variability Effects on Carbon Exchange in a Tropical Dry Forest of Northwest Mexico

    Science.gov (United States)

    Verduzco, V.; Garatuza-Payan, J.; Yépez, E. A.; Watts, C. J.; Rodriguez, J. C.; Robles-Morua, A.; Vivoni, E. R.

    2015-12-01

    The Tropical Dry Forest (TDF) cover a large area in tropical and subtropical regions in the Americas and its productivity is thought to have an important contribution to the atmospheric carbon fluxes. However, due to this ecosystem complex dynamics, our understanding about the mechanisms controlling net ecosystem exchange is limited. In this study, five years of continue water and carbon fluxes measurements from eddy covariance complemented with remotely sensed vegetation greenness were used to investigate the ecosystem carbon balance of a TDF in the North American Monsoon region under different hydro climatic conditions. We identified a large CO2 efflux at the start of the summer season that is strongly related to the preceding winter precipitation and greenness. Since this CO2 efflux occurs prior to vegetation green-up, we infer a predominant heterotrophic control owed to high decomposition of accumulated labile soil organic matter from prior growing season. Overall, ecosystem respiration has an important effect on the net ecosystem production over the year, but can be overwhelmed by the strength of the primary productivity during the monsoon season. Precipitation characteristics during the monsoon have significant controls on sustaining carbon fixation in the TDF ecosystem into the fall season. A threshold of ~350 to 400 mm of summer precipitation was identify to switch the annual carbon balance in the TDF ecosystem from a net source (+102 g C/m2/yr) to a net sink (-249 g C/m2/yr). This research points at the needs for understanding the potential effects of changing seasonal precipitation patterns on ecosystem dynamics and carbon sequestration in subtropical regions.

  3. Constructing seasonal LAI trajectory by data-model fusion for global evergreen needle-leaf forests

    Science.gov (United States)

    Wang, R.; Chen, J.; Mo, G.

    2010-12-01

    For decades, advancements in optical remote sensors made it possible to produce maps of a biophysical parameter--the Leaf Area Index (LAI), which is critically necessary in regional and global modeling of exchanges of carbon, water, energy and other substances, across large areas in a fast way. Quite a few global LAI products have been generated since 2000, e.g. GLOBCARBON (Deng et al., 2006), MODIS Collection 5 (Shabanov et al., 2007), CYCLOPES (Baret et al., 2007), etc. Albeit these progresses, the basic physics behind the technology restrains it from accurate estimation of LAI in winter, especially for northern high-latitude evergreen needle-leaf forests. Underestimation of winter LAI in these regions has been reported in literature (Yang et al., 2000; Cohen et al., 2003; Tian et al., 2004; Weiss et al., 2007; Pisek et al., 2007), and the distortion is usually attributed to the variations of canopy reflectance caused by understory change (Weiss et al., 2007) as well as by the presence of ice and snow on leaves and ground (Cohen, 2003; Tian et al., 2004). Seasonal changes in leaf pigments can also be another reason for low LAI retrieved in winter. Low conifer LAI values in winter retrieved from remote sensing make them unusable for surface energy budget calculations. To avoid these drawbacks of remote sensing approaches, we attempt to reconstruct the seasonal LAI trajectory through model-data fusion. A 1-degree LAI map of global evergreen needle-leaf forests at 10-day interval is produced based on the carbon allocation principle in trees. With net primary productivity (NPP) calculated by the Boreal Ecosystems Productivity Simulator (BEPS) (Chen et al., 1999), carbon allocated to needles is quantitatively evaluated and then can be further transformed into LAI using the specific leaf area (SLA). A leaf-fall scheme is developed to mimic the carbon loss caused by falling needles throughout the year. The seasonally maximum LAI from remote sensing data for each pixel

  4. Diversity and aboveground biomass of lianas in the tropical seasonal rain forests of Xishuangbanna, SW China

    Directory of Open Access Journals (Sweden)

    Xiao-Tao Lü

    2009-06-01

    Full Text Available Lianas are important components of tropical forests and have significant impacts on the diversity, structure and dynamics of tropical forests. The present study documented the liana flora in a Chinese tropical region. Species richness, abundance, size-class distribution and spatial patterns of lianas were investigated in three 1-ha plots in tropical seasonal rain forests in Xishuangbanna, SW China. All lianas with = 2 cm diameter at breast height (dbh were measured, tagged and identified. A total of 458 liana stems belonging to 95 species (ranging from 38 to 50 species/ha, 59 genera and 32 families were recorded in the three plots. The most well-represented families were Loganiaceae, Annonceae, Papilionaceae, Apocynaceae and Rhamnaceae. Papilionaceae (14 species recorded was the most important family in the study forests. The population density, basal area and importance value index (IVI varied greatly across the three plots. Strychnos cathayensis, Byttneria grandifolia and Bousigonia mekongensis were the dominant species in terms of IVI across the three plots. The mean aboveground biomass of lianas (3 396 kg/ha accounted for 1.4% of the total community aboveground biomass. The abundance, diversity and biomass of lianas in Xishuangbanna tropical seasonal rain forests are lower than those in tropical moist and wet forests, but higher than those in tropical dry forests. This study provides new data on lianas from a geographical region that has been little-studied. Our findings emphasize that other factors beyond the amount and seasonality of precipitation should be included when considering the liana abundance patterns across scales. Rev. Biol. Trop. 57 (1-2: 211-222. Epub 2009 June 30.Las lianas son componentes importantes de los bosques tropicales y tienen importantes impactos en la diversidad, la estructura y la dinámica de los bosques tropicales. El presente estudio documenta la flora de lianas en una región tropical estacional china. La

  5. Seasonal and depth effects on some parameters of a forest soil

    Directory of Open Access Journals (Sweden)

    Dimas Augusto Morozin Zaia

    2009-03-01

    Full Text Available The main goal of this paper is to study the effect of wet/dry season and the depth on several parameters of the forest soil. This work has shown that the concentration of Al3+ increases and that the concentration of exchangeable cations (Ca2+, Mg2+ and pHs (distilled water and CaCl2 decreases with the increase in depth and that these results are correlated. The concentrations of exchangeable cations (Al3+, Ca2+, Mg2+ and organic matter (OM are affected by dry/wet season. Rain increases the solubility of organic carbon, thus decreasing OM and releasing exchangeable cations (Al3+, Ca2+, Mg2+. P (available shows an increase in its concentration with an increase in depth. The low concentration of P (available in the soil samples could be due to the low pH of the soils. The value of pHpzc is influenced by exchangeable cations (Al3+, Ca2+, Mg2+, and the pHs (CaCl2 and distilled water are higher than pHpzc. This means that the net charge of these soils is negative. CEC and CECpotential decrease with the increase in depth in most soil samples. For mostly of the samples, the season (wet/dry does not affect CEC, CECpotential, K+, or Na+.

  6. Understanding the Response of Photosynthetic Metabolism in Tropical Forests to Seasonal Climate Variations. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dye, Dennis [U.S. Geological Survey, Menlo Park, CA (United States); Ivanov, Valeriy [Univ. of Michigan, Ann Arbor, MI (United States); Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Huete, Alfredo [Univ. of Arizona, Tucson, AZ (United States); Univ. of Technology, Sydney NSW (Australia)

    2017-03-31

    This U.S-Brazil collaboration for GOAmazon has investigated a deceptively simple question: what controls the response of photosynthesis in Amazon tropical forests to seasonal variations in climate? In the past this question has been difficult to answer with modern earth system process models. We hypothesized that observed dry season increases in photosynthetic capacity are controlled by the phenology of leaf flush and litter fall, from which the seasonal pattern of LAI emerges. Our results confirm this hypothesis (Wu et al., 2016). Synthesis of data collected throughout the 3-year project period continues through December 31, 2017 under no-cost extensions granted to the project teams at University of Michigan and University of Arizona (Award 2). The USGS component (Award 1) ceased on the final date of the project performance period, December 31, 2016. This report summarizes the overall activities and achievements of the project, and constitutes the final project report for the USGS component. The University of Michigan will submit a separate final report that includes additional results and deliverables achieved during the period of their and the University of Arizona’s no-cost extension, which will end on December 31, 2017.

  7. Seasonality in the dung beetle community in a Brazilian tropical dry forest: Do small changes make a difference?

    Science.gov (United States)

    Medina, Anderson Matos; Lopes, Priscila Paixão

    2014-01-01

    Dung beetle (Coleoptera: Scarabaeoidea: Scarabaeinae) activity is influenced by rainfall seasonality. We hypothesized that rainfall might also play a major role in regulating the community structure of this group. In this study, we describe seasonal changes in the richness, composition, and structure of the Scarabaeinae community in a Brazilian tropical dry forest. A fragment of arboreal Caatinga was sampled using baited pitfall traps during the early dry season (EDS), late dry season (LDS), early wet season (EWS), and middle wet season (MWS). We compared the dung beetle community in each season in relationship to species richness, rank-dominance, curves, and composition. We collected 1352 Scarabaeinae individuals , belonging to 15 species. Dichotomius aff. laevicollis Felsche (Coleoptera: Scarabaeidae) was the dominant species, representing 73.89% of the individuals. There were no seasonal changes in the rank dominance curves; all had a single dominant species and a few species with low abundance, typical for arid areas. Estimated richness was highest in MWS, followed by EWS. Dry-season samples (EDS and LDS) had lower richness, with no significant difference between the dry seasons. Although species richness increased as the habitat became wetter, the difference between the wet and dry seasons was small, which differs completely from the findings of other studies in Neotropical dry forests, where almost all species cease activities in the dry season. Species composition changes were found in non-metric multidimensional scaling and sustained by analysis of similarity. All the seasons had pairwise differences in composition, with the exception of EDS and MWS, which indicates that the dung beetle community in this fragment requires more than three months of drought to trigger changes in species composition; this is probably due to small changes in the forest canopy. There was no difference in composition between EDS and MWS. As in other tropical dry forests, although

  8. Evaporation components of a boreal forest: variations during the growing season

    Science.gov (United States)

    Grelle, A.; Lundberg, A.; Lindroth, A.; Morén, A.-S.; Cienciala, E.

    1997-10-01

    To improve the understanding of interactions between the boreal forest and the climate system as a key issue for global climate change, the water budget of a mixed pine and spruce forest in central Sweden was estimated by measurements of the water flux components and the total evaporation flux during the period 16 May-31 October 1995. Total evaporation was measured using eddy correlation and the components were obtained using measurements of precipitation, throughfall, tree transpiration, and forest floor evaporation. On a daily basis, tree transpiration was the dominant evaporation component during the vegetation period. However, it could be efficiently blocked by a wet canopy associated with large interception evaporation. The accumulated total evaporation was 399 mm, transpiration was 243 mm, forest floor evaporation was 56 mm and interception evaporation was 74 mm. The accumulated sum of interception, transpiration, and floor evaporation was 51 mm larger than the actual measured total evaporation. This difference was mainly attributed to the fact that transpiration was measured in a rather dense 50-year-old stand while total evaporation represented the average conditions of older, roughly 100-year-old stands. To compare eddy-correlation measurements with small-scale measurements of evaporation components, a source area analysis was made to select the flux data that give the best representation of the investigated stand. Especially under stable atmospheric conditions the requirements for surface homogeneity were very high and extreme care had to be taken to be aware of the flux source areas. Canopy water storage was determined by two methods: by the water balance of the canopy, which gave a result of 3.3 mm; and by the so-called minimum method based on plots of throughfall versus precipitation, which gave a much lower value of 1.5 mm. Seasonal interception evaporation constituted 30% of the precipitation.

  9. Interactions between fleshy fruits and frugivores in a tropical seasonal forest in Thailand.

    Science.gov (United States)

    Kitamura, Shumpei; Yumoto, Takakazu; Poonswad, Pilai; Chuailua, Phitaya; Plongmai, Kamol; Maruhashi, Tamaki; Noma, Naohiko

    2002-12-01

    Large frugivores are considered to be important seed dispersers for many tropical plant species. Their roles as seed dispersers are not well known in Southeast Asia, where degraded landscapes typically lack these animals. Interactions between 259 (65 families) vertebrate-dispersed fruits and frugivorous animals (including 7 species of bulbul, 1 species of pigeon, 4 species of hornbill, 2 species of squirrel, 3 species of civet, 2 species of gibbon, 1 species of macaque, 2 species of bear, 2 species of deer, and 1 species of elephant) were studied for 3 years in a tropical seasonal forest in Khao Yai National Park, Thailand. The purpose was to examine the dietary overlaps among the large frugivores and the characteristics of fruits they consumed. Most fruit species are eaten by various kinds of frugivores; no close relationship between a particular fruit and a frugivore was found. The number of frugivore groups that served a given plant species was negatively correlated with seed size. Additionally, the fruit/seed diameters consumed by bulbuls were significantly smaller than consumed by the other nine groups. These trends of fruit characteristics were consistent with those observed elsewhere in Southeast Asia: small fruits and large, soft fruits with many small seeds are consumed by a wide spectrum of frugivores while larger fruits with a single large seed are consumed by relatively few potential dispersers. Importantly, these large, single-seed fruits are not consumed by the small frugivores that thrive in small forest fragments and degraded areas in Southeast Asia. To insure the natural seed dispersal process in the forest, an evaluation of all frugivore groups in the forest is urgently needed in Southeast Asia.

  10. Seasonality of Central Amazon Forest Leaf Flush Using Tower-Mounted RGB Camera

    Science.gov (United States)

    Wu, J.; Nelson, B. W.; Tavares, J. V.; Valeriano, D. M.; Lopes, A. P.; Marostica, S. F.; Martins, G.; Prohaska, N.; Albert, L.; De Araujo, A. C.; Manzi, A. O.; Saleska, S. R.; Huete, A. R.

    2014-12-01

    Tower-mounted RGB cameras can contribute data to the debate on seasonality of photosynthesis in Amazon upland forests and to improved modelling of forest response to climate change. In late 2010 we began monitoring upper crown surfaces of ~65 living trees or vines from a 54m tall eddy-flux tower on a well-drained clay-soil plateau. This Central Amazon site (60.2091 W, 2.6092 S) is in a large forest reserve. We deployed a Stardot Netcam XL RGB camera with a 1024 x 768 resolution CMOS sensor, 66o HFOV lens, fixed oblique south view, fixed iris, fixed white balance and auto-exposure. Images were logged every 15 seconds to a passively cooled FitPC2i with heat-tolerant SSD drive. Camera and PC automatically rebooted after power outages. Here we report results for two full years, from 1 Dec 2011 through 30 Nov 2013. Images in six day intervals were selected near local noon for homogeneous diffuse lighting under cloudy sky and for a standard reflected radiance (± 10%). Crowns showing two easily recognized phenophases were tallied: (1) massive flushing of new light-green leaves and (2) complete or nearly complete leaf loss. On average, 60% of live crowns flushed a massive amount of new leaves each year. Each crown flush was completed within 30 days. During the five driest months (Jun-Oct), 44% of all live crowns, on average, exhibited such massive leaf flush. In the five wettest months (Dec-Apr) only 11% of live crowns mass-flushed new leaves. In each year 23% of all live crowns became deciduous, usually a brief (1-2 week) preamble to flushing. Additional crowns lost old dark-green leaves partially and more gradually, becoming semi-deciduous prior to flushing. From these two years of camera data we infer that highly efficient leaves of 2-6 months age (high maximum carboxylation rate) are most abundant from the late dry season (October) through the mid wet season (March). This coincides with peak annual photosynthesis (Gross Ecosystem Productivity) reported for this same

  11. Quantifying responses of dung beetles to fire disturbance in tropical forests: the importance of trapping method and seasonality.

    Science.gov (United States)

    de Andrade, Rafael Barreto; Barlow, Jos; Louzada, Julio; Vaz-de-Mello, Fernando Zagury; Souza, Mateus; Silveira, Juliana M; Cochrane, Mark A

    2011-01-01

    Understanding how biodiversity responds to environmental changes is essential to provide the evidence-base that underpins conservation initiatives. The present study provides a standardized comparison between unbaited flight intercept traps (FIT) and baited pitfall traps (BPT) for sampling dung beetles. We examine the effectiveness of the two to assess fire disturbance effects and how trap performance is affected by seasonality. The study was carried out in a transitional forest between Cerrado (Brazilian Savanna) and Amazon Forest. Dung beetles were collected during one wet and one dry sampling season. The two methods sampled different portions of the local beetle assemblage. Both FIT and BPT were sensitive to fire disturbance during the wet season, but only BPT detected community differences during the dry season. Both traps showed similar correlation with environmental factors. Our results indicate that seasonality had a stronger effect than trap type, with BPT more effective and robust under low population numbers, and FIT more sensitive to fine scale heterogeneity patterns. This study shows the strengths and weaknesses of two commonly used methodologies for sampling dung beetles in tropical forests, as well as highlighting the importance of seasonality in shaping the results obtained by both sampling strategies.

  12. Seasonal measurements of organic acid fluxes over a ponderosa pine forest

    Science.gov (United States)

    Fulgham, S. R.; Brophy, P.; Link, M.; Ortega, J. V.; Farmer, D.

    2016-12-01

    The biosphere acts as both a source and a sink of oxidized organic compounds. Ignoring dry deposition leads to overestimation of secondary organic aerosols by aerosol models, while ignoring emission sources underestimates the budget of organic acids. Developing parameterizations for oxidized organic dry deposition and emission requires observational constraints. Although biosphere parameters are impacted by seasonal variability, most reactive, trace-gas exchange measurements are made for only short periods of time in the main growing season. Here we make fast (5 - 10 Hz) and sensitive (e.g. 0.73 ppt mean limit of detection for formic acid with 10 s averaging) eddy covariance measurements of gas-phase organic acids and other oxidized organic species with a high resolution Time-of-Flight Chemical Ionization Mass Spectrometer with acetate and iodide reagent ions. Measurements were made in 4 - 6 week campaigns over five seasons from summer 2015 to fall 2016 as part of the Seasonal Particles in Forests Flux studY (SPIFFY) at the Manitou Experimental Forest Observatory near Woodland Park, Colorado. Permeation tubes were used for online calibration of carboxylic acids including formic (C1), propionic (C3), butyric (C4), methacrylic (CH2C(CH3)COOH), valeric (C5), and heptanoic (C7) acids. Average daytime mixing ratios for formic acid were 100 ± 100 ppt in winter and 1500 ± 1000 ppt in summer 2016. Upward fluxes of formic acid were observed throughout the experiment, daytime averages and standard deviations ranging from 1900 ± 1000 ppt cm s-1 in winter to 170 ± 130 ppt cm s-1 in spring. Propionic (22 ± 22 ppt cm s-1), butyric (17 ± 16 ppt cm s-1), and methacrylic (3.5 ± 6.1 ppt cm s-1) acids exhibit a mix of upward, near-zero, and downward fluxes. Fluxes were exponentially correlated to temperature, suggesting an ecosystem-scale source of these acids. We also measure exchange velocities of a broad suite of other oxidized organic compounds (31.99 m/z to 311.523 m/z in

  13. [Seasonal variation of soil respiration and its components in tropical rain forest and rubber plantation in Xishuangbanna, Yunnan].

    Science.gov (United States)

    Lu, Hua-Zheng; Sha, Li-Qing; Wang, Jun; Hu, Wen-Yan; Wu, Bing-Xia

    2009-10-01

    By using trenching method and infrared gas analyzer, this paper studied the seasonal variation of soil respiration (SR), including root respiration (RR) and heterotrophic respiration (HR), in tropical seasonal rain forest (RF) and rubber (Hevea brasiliensis) plantation (RP) in Xishuangbanna of Yunnan, China. The results showed that the SR and HR rates were significantly higher in RF than in RP (P dry-hot season > foggy season, but the RR rate was rainy season > foggy season > dry-hot season in RF, and foggy season > rainy season > dry-hot season in RP. The contribution of RR to SR in RF (29%) was much lower than that in RP (42%, P < 0.01), while the contribution of HR to SR was 71% in RF and 58% in RP. When the soil temperature at 5 cm depth varied from 12 degrees C to 32 degrees C, the Q10 values for SR, HR, and RR rates were higher in RF than in RP. HR had the highest Q10 value, while RR had the lowest one.

  14. Hydrologic response to and recovery from differing silvicultural systems in a deciduous forest landscape with seasonal snow cover

    Science.gov (United States)

    Buttle, J. M.; Beall, F. D.; Webster, K. L.; Hazlett, P. W.; Creed, I. F.; Semkin, R. G.; Jeffries, D. S.

    2018-02-01

    Hydrological consequences of alternative harvesting strategies in deciduous forest landscapes with seasonal snow cover have received relatively little attention. Most forest harvesting experiments in landscapes with seasonal snow cover have focused on clearcutting in coniferous forests. Few have examined alternative strategies such as selection or shelterwood cutting in deciduous stands whose hydrologic responses to harvesting may differ from those of conifers. This study presents results from a 31-year examination of hydrological response to and recovery from alternative harvesting strategies in a deciduous forest landscape with seasonal snow cover in central Ontario, Canada. A quantitative means of assessing hydrologic recovery to harvesting is also developed. Clearcutting resulted in increased water year (WY) runoff. This was accompanied by increased runoff in all seasons, with greatest relative increases in Summer. Direct runoff and baseflow from treatment catchments generally increased following harvesting, although annual peak streamflow did not. Largest increases in WY runoff and seasonal runoff as well as direct runoff and baseflow generally occurred in the selection harvest catchment, likely as a result of interception of hillslope runoff by a forest access road and redirection to the stream channel. Hydrologic recovery appeared to begin towards the end of the experimental period for several streamflow metrics but was incomplete for all harvesting strategies 15 years after harvesting. Geochemical tracing indicated that harvesting enhanced the relative importance of surface and near-surface water pathways on catchment slopes for all treatments, with the clearcut catchment showing the most pronounced and prolonged response. Such insights into water partitioning between flow pathways may assist assessments of the ecological and biogeochemical consequences of forest disturbance.

  15. An Ecological Comparison of Floristic Composition in Seasonal Semideciduous Forest in Southeast Brazil: Implications for Conservation

    Directory of Open Access Journals (Sweden)

    Sérgio de Faria Lopes

    2012-01-01

    Full Text Available We examined floristic patterns of ten seasonal semideciduous forest sites in southeastern Brazil and conducted a central sampling of one hectare for each site, where we took samples and identified all individual living trees with DBH (diameter at breast height, 1.30 m ≥4.8 cm. Arboreal flora totaled 242 species, 163 genera, and 58 families. Fabaceae (38 species and Myrtaceae (20 species were families with the largest number of species. Only Copaifera langsdorffii and Hymenaea courbaril occurred at all sites. Multivariate analysis (detrended correspondence analysis and cluster analysis using two-way indicator species analysis (TWINSPAN indicated the formation of a group containing seven fragments in which Siparuna guianensis was the indicator species. This analysis revealed that similarities between studied fragments were due mainly to the successional stage of the community.

  16. Energy balance and evaporation of a short-rotation willow forest. Variation with season and stand development

    Energy Technology Data Exchange (ETDEWEB)

    Iritz, Z.

    1996-10-01

    Energy balance and evaporation of a short-rotation willow (Salix viminalis L.) forest was studied in relation to season and stand development. The developmental stage of the forest stand considerably influenced how the energy, received as net radiation, was partitioned between the connective fluxes and the storage components. The main part of the available energy was utilised for evaporation during most of the season. Only at the beginning of the season did the willow forest supply heat to the atmosphere. Later in the season, energy was taken from air and utilised for evaporation, which resulted in negative sensible heat fluxes. Soil heat storage was also a significant term in the energy balance and also strongly depended on canopy development. Changes in energy partitioning relative to leaf area indices indicated the existence of a threshold value for leaf area index of the developing canopy. The analysis suggested that the canopy of the willow forest could be considered as closed at a leaf area index of 2. It was further found that evaporation from well-irrigated willow forest occurred also during night-time, particularly in windy and dry weather conditions. The sources of nocturnal evaporation were both the canopy, i.e. indicating non-closed stomata, and the soil surface. Partitioning of the total evaporation into components was investigated using a physically-based model with a two-layer aboveground representation and a two-layer soil module. The model estimates evaporation with respect to developmental stage of the willow stand and also takes into account the interaction between the fluxes from the canopy and the soil surface. Good performance of the model indicated that, after further testing in drier conditions, it could be used as a tool for analysing the prerequisites for energy-forest establishment, and practical management of energy forest stands. 37 refs, 9 figs

  17. Seasonal variation of CO{sub 2} flux between air and temperate forest

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Susumo; Murayama, Shohei; Kondo, Hiroaki [National Inst. for Resources and Environment, Ibaraki (Japan)

    1995-12-31

    Carbon dioxide, which is a very important greenhouse gas, contributes approximately 55 % to the problem of global warming. The knowledge to the sources and sinks of carbon on a global basis is very poor. IPCC (1994) suggested that unknown 1.5-2.0 GtC/year may be sunk in terrestrial ecosystem, in particular, in the Northern Hemisphere. As can be seen from a recent estimation of the carbon fluxes in the terrestrial biosphere, there is a high degree of uncertainty in the magnitude. The clear evidence for it has not been shown yet by IPCC (1994). However, based on the gradient of CO{sub 2}, as a function of latitude, main CO{sub 2} sink can be thought to be in the terrestrial biosphere, in the middle to high latitude of the Northern Hemisphere. As can be seen from a recent estimation of the carbon fluxes in the terrestrial biosphere, there is a high degree of uncertainty in the magnitude. From this view, more investigation of the role of the temperate forest on the CO{sub 2} balance is inevitable. In this presentation, the seasonal variation of CO{sub 2} flux between air and biosphere in temperate deciduous forest in Japan is intended to be elucidated. (author)

  18. Seasonal variation of CO{sub 2} flux between air and temperate forest

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Susumo; Murayama, Shohei; Kondo, Hiroaki [National Inst. for Resources and Environment, Ibaraki (Japan)

    1996-12-31

    Carbon dioxide, which is a very important greenhouse gas, contributes approximately 55 % to the problem of global warming. The knowledge to the sources and sinks of carbon on a global basis is very poor. IPCC (1994) suggested that unknown 1.5-2.0 GtC/year may be sunk in terrestrial ecosystem, in particular, in the Northern Hemisphere. As can be seen from a recent estimation of the carbon fluxes in the terrestrial biosphere, there is a high degree of uncertainty in the magnitude. The clear evidence for it has not been shown yet by IPCC (1994). However, based on the gradient of CO{sub 2}, as a function of latitude, main CO{sub 2} sink can be thought to be in the terrestrial biosphere, in the middle to high latitude of the Northern Hemisphere. As can be seen from a recent estimation of the carbon fluxes in the terrestrial biosphere, there is a high degree of uncertainty in the magnitude. From this view, more investigation of the role of the temperate forest on the CO{sub 2} balance is inevitable. In this presentation, the seasonal variation of CO{sub 2} flux between air and biosphere in temperate deciduous forest in Japan is intended to be elucidated. (author)

  19. Stratification and seasonal stability of diverse bacterial communities in a Pinus merkusii (pine) forest soil in central Java, Indonesia.

    NARCIS (Netherlands)

    Krave, A.S.; Lin, B.; Braster, M.; Laverman, A.M.; van Straalen, N.M.; Roling, W.F.M.; van Verseveld, H.W.

    2002-01-01

    In Java, Indonesia, many nutrient-poor soils are intensively reforested with Pinus merkusii (pine). Information on nutrient cycles and microorganisms involved in these cycles will benefit the management of these important forests. Here, seasonal effects on the stratification of bacterial community

  20. Feeding patterns of red deer along altitudinal gradient in the Bohemian Forest: the effect of habitat and season

    Czech Academy of Sciences Publication Activity Database

    Krojerová-Prokešová, Jarmila; Barančeková, Miroslava; Šustr, P.; Heurich, M.

    2010-01-01

    Roč. 16, č. 2 (2010), s. 173-184 ISSN 0909-6396 R&D Projects: GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60930519 Keywords : Bavarian Forest National Park * red deer * PCA * seasonal and spatial variation * Šumava National Park Subject RIV: EG - Zoology Impact factor: 0.697, year: 2010

  1. Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest.

    Science.gov (United States)

    José Luis Andrade; Frederick C. Meinzer; Guillermo Goldstein; Stefan A. Schnitzer

    2005-01-01

    Water uptake and transport were studied in eight liana species in a seasonally dry tropical forest on Barro Colorado Island, Panama. Stable hydrogen isotope composition (δD) of xylem and soil water, soil volumetric water content (θv), and basal sap flow were measured during the 1997 and...

  2. Influence of physiological phenology on the seasonal pattern of ecosystem respiration in deciduous forests.

    Science.gov (United States)

    Migliavacca, Mirco; Reichstein, Markus; Richardson, Andrew D; Mahecha, Miguel D; Cremonese, Edoardo; Delpierre, Nicolas; Galvagno, Marta; Law, Beverly E; Wohlfahrt, Georg; Black, T Andrew; Carvalhais, Nuno; Ceccherini, Guido; Chen, Jiquan; Gobron, Nadine; Koffi, Ernest; Munger, J William; Perez-Priego, Oscar; Robustelli, Monica; Tomelleri, Enrico; Cescatti, Alessandro

    2015-01-01

    Understanding the environmental and biotic drivers of respiration at the ecosystem level is a prerequisite to further improve scenarios of the global carbon cycle. In this study we investigated the relevance of physiological phenology, defined as seasonal changes in plant physiological properties, for explaining the temporal dynamics of ecosystem respiration (RECO) in deciduous forests. Previous studies showed that empirical RECO models can be substantially improved by considering the biotic dependency of RECO on the short-term productivity (e.g., daily gross primary production, GPP) in addition to the well-known environmental controls of temperature and water availability. Here, we use a model-data integration approach to investigate the added value of physiological phenology, represented by the first temporal derivative of GPP, or alternatively of the fraction of absorbed photosynthetically active radiation, for modeling RECO at 19 deciduous broadleaved forests in the FLUXNET La Thuile database. The new data-oriented semiempirical model leads to an 8% decrease in root mean square error (RMSE) and a 6% increase in the modeling efficiency (EF) of modeled RECO when compared to a version of the model that does not consider the physiological phenology. The reduction of the model-observation bias occurred mainly at the monthly time scale, and in spring and summer, while a smaller reduction was observed at the annual time scale. The proposed approach did not improve the model performance at several sites, and we identified as potential causes the plant canopy heterogeneity and the use of air temperature as a driver of ecosystem respiration instead of soil temperature. However, in the majority of sites the model-error remained unchanged regardless of the driving temperature. Overall, our results point toward the potential for improving current approaches for modeling RECO in deciduous forests by including the phenological cycle of the canopy. © 2014 John Wiley & Sons

  3. Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils

    Science.gov (United States)

    Brzostek, Edward R.; Finzi, Adrien C.

    2012-03-01

    Increasing soil temperature has the potential to alter the activity of the extracellular enzymes that mobilize nitrogen (N) from soil organic matter (SOM) and ultimately the availability of N for primary production. Proteolytic enzymes depolymerize N from proteinaceous components of SOM into amino acids, and their activity is a principal driver of the within-system cycle of soil N. The objectives of this study were to investigate whether the soils of temperate forest tree species differ in the temperature sensitivity of proteolytic enzyme activity over the growing season and the role of substrate limitation in regulating temperature sensitivity. Across species and sampling dates, proteolytic enzyme activity had relatively low sensitivity to temperature with a mean activation energy (Ea) of 33.5 kJ mol-1. Ea declined in white ash, American beech, and eastern hemlock soils across the growing season as soils warmed. By contrast, Eain sugar maple soil increased across the growing season. We used these data to develop a species-specific empirical model of proteolytic enzyme activity for the 2009 calendar year and studied the interactive effects of soil temperature (ambient or +5°C) and substrate limitation (ambient or elevated protein) on enzyme activity. Declines in substrate limitation had a larger single-factor effect on proteolytic enzyme activity than temperature, particularly in the spring. There was, however, a large synergistic effect of increasing temperature and substrate supply on proteolytic enzyme activity. Our results suggest limited increases in N availability with climate warming unless there is a parallel increase in the availability of protein substrates.

  4. Assessing seasonality of biochemical CO2 exchange model parameters from micrometeorological flux observations at boreal coniferous forest

    Directory of Open Access Journals (Sweden)

    T. Vesala

    2008-12-01

    Full Text Available The seasonality of the NEE of the northern boreal coniferous forests was investigated by means of inversion modelling using eddy covariance data. Eddy covariance data was used to optimize the biochemical model parameters. Our study sites consisted of three Scots pine (l. Pinus sylvestris forests and one Norway spruce (l. Picea abies forest that were located in Finland and Sweden. We obtained temperature and seasonal dependence for the biochemical model parameters: the maximum rate of carboxylation (Vc(max and the maximum rate of electron transport (Jmax. Both of the parameters were optimized without assumptions about their mutual magnitude. The values obtained for the biochemical model parameters were similar at all the sites during summer time. To describe seasonality, different temperature fits were made for the spring, summer and autumn periods. During summer, average Jmax across the sites was 54.0 μmol m−2 s−1 (variance 31.2 μmol m−2 s−1 and Vc(max was 12.0 μmol m−2 s−1 (variance 6.6 μmol m−2 s−1 at 17°C. The sensitivity of the model to LAI and atmospheric soil water stress was also studied. The impact of seasonality on annual GPP was 17% when only summertime parameterization was used throughout the year compared to seasonally changing parameterizations.

  5. Mobbing call experiment suggests the enhancement of forest bird movement by tree cover in urban landscapes across seasons

    Directory of Open Access Journals (Sweden)

    Atsushi Shimazaki

    2017-06-01

    Full Text Available Local scale movement behavior is an important basis to predict large-scale bird movements in heterogeneous landscapes. Here we conducted playback experiments using mobbing calls to estimate the probability that forest birds would cross a 50-m urban area during three seasons (breeding, dispersal, and wintering seasons with varying amounts of tree cover, building area, and electric wire density. We examined the responses of four forest resident species: Marsh Tit (Poecile palustris, Varied Tit (Sittiparus varius, Japanese Tit (P. minor, and Eurasian Nuthatch (Sitta europaea in central Hokkaido, northern Japan. We carried out and analyzed 250 playback experiments that attracted 618 individuals. Our results showed that tree cover increased the crossing probability of three species other than Varied Tit. Building area and electric wire density had no detectable effect on crossing probability for four species. Seasonal difference in the crossing probability was found only for Varied Tit, and the probability was the highest in the breeding season. These results suggest that the positive effect of tree cover on the crossing probability would be consistent across seasons. We therefore conclude that planting trees would be an effective way to promote forest bird movement within an urban landscape.

  6. Stand-level gas-exchange responses to seasonal drought in very young versus old Douglas-fir forests of the Pacific Northwest, USA

    Science.gov (United States)

    Sonia Wharton; Matt Schroeder; Ken Bible; Matthias Falk; Kyaw Tha Paw U

    2009-01-01

    This study examines how stand age affects ecosystem mass and energy exchange response to seasonal drought in three adjacent Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests. The sites include two early seral (ES) stands (0 to 15 years old) and an old-growth (OG) (~450 to 500 years old) forest in the Wind River Experimental Forest,...

  7. Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems.

    Science.gov (United States)

    Campo, Julio; Merino, Agustín

    2016-05-01

    The effect of precipitation regime on the C cycle of tropical forests is poorly understood, despite the existence of models that suggest a drier climate may substantially alter the source-sink function of these ecosystems. Along a precipitation regime gradient containing 12 mature seasonally dry tropical forests growing under otherwise similar conditions (similar annual temperature, rainfall seasonality, and geological substrate), we analyzed the influence of variation in annual precipitation (1240 to 642 mm) and duration of seasonal drought on soil C. We investigated litterfall, decomposition in the forest floor, and C storage in the mineral soil, and analyzed the dependence of these processes and pools on precipitation. Litterfall decreased slightly - about 10% - from stands with 1240 mm yr(-1) to those with 642 mm yr(-1), while the decomposition decreased by 56%. Reduced precipitation strongly affected C storage and basal respiration in the mineral soil. Higher soil C storage at the drier sites was also related to the higher chemical recalcitrance of litter (fine roots and forest floor) and the presence of charcoal across sites, suggesting an important indirect influence of climate on C sequestration. Basal respiration was controlled by the amount of recalcitrant organic matter in the mineral soil. We conclude that in these forest ecosystems, the long-term consequences of decreased precipitation would be an increase in organic layer and mineral soil C storage, mainly due to lower decomposition and higher chemical recalcitrance of organic matter, resulting from changes in litter composition and, likely also, wildfire patterns. This could turn these seasonally dry tropical forests into significant soil C sinks under the predicted longer drought periods if primary productivity is maintained. © 2016 John Wiley & Sons Ltd.

  8. Asynchronous response of tropical forest leaf phenology to seasonal and el Niño-driven drought.

    Directory of Open Access Journals (Sweden)

    Stephanie Pau

    2010-06-01

    Full Text Available The Hawaiian Islands are an ideal location to study the response of tropical forests to climate variability because of their extreme isolation in the middle of the Pacific, which makes them especially sensitive to El Niño-Southern Oscillation (ENSO. Most research examining the response of tropical forests to drought or El Niño have focused on rainforests, however, tropical dry forests cover a large area of the tropics and may respond very differently than rainforests. We use satellite-derived Normalized Difference Vegetation Index (NDVI from February 2000-February 2009 to show that rainforests and dry forests in the Hawaiian Islands exhibit asynchronous responses in leaf phenology to seasonal and El Niño-driven drought. Dry forest NDVI was more tightly coupled with precipitation compared to rainforest NDVI. Rainforest cloud frequency was negatively correlated with the degree of asynchronicity (Delta(NDVI between forest types, most strongly at a 1-month lag. Rainforest green-up and dry forest brown-down was particularly apparent during the 2002-003 El Niño. The spatial pattern of NDVI response to the NINO 3.4 Sea Surface Temperature (SST index during 2002-2003 showed that the leeward side exhibited significant negative correlations to increased SSTs, whereas the windward side exhibited significant positive correlations to increased SSTs, most evident at an 8 to 9-month lag. This study demonstrates that different tropical forest types exhibit asynchronous responses to seasonal and El Niño-driven drought, and suggests that mechanisms controlling dry forest leaf phenology are related to water-limitation, whereas rainforests are more light-limited.

  9. Modelled seasonal influenza mortality shows marked differences in risk by age, sex, ethnicity and socioeconomic position in New Zealand.

    Science.gov (United States)

    Khieu, Trang Q T; Pierse, Nevil; Telfar-Barnard, Lucy Frances; Zhang, Jane; Huang, Q Sue; Baker, Michael G

    2017-09-01

    Influenza is responsible for a large number of deaths which can only be estimated using modelling methods. Such methods have rarely been applied to describe the major socio-demographic characteristics of this disease burden. We used quasi Poisson regression models with weekly counts of deaths and isolates of influenza A, B and respiratory syncytial virus for the period 1994 to 2008. The estimated average mortality rate was 13.5 per 100,000 people which was 1.8% of all deaths in New Zealand. Influenza mortality differed markedly by age, sex, ethnicity and socioeconomic position. Relatively vulnerable groups were males aged 65-79 years (Rate ratio (RR) = 1.9, 95% CI: 1.9, 1.9 compared with females), Māori (RR = 3.6, 95% CI: 3.6, 3.7 compared with European/Others aged 65-79 years), Pacific (RR = 2.4, 95% CI: 2.4, 2.4 compared with European/Others aged 65-79 years) and those living in the most deprived areas (RR = 1.8, 95% CI: 1.3, 2.4) for New Zealand Deprivation (NZDep) 9&10 (the most deprived) compared with NZDep 1&2 (the least deprived). These results support targeting influenza vaccination and other interventions to the most vulnerable groups, in particular Māori and Pacific people and men aged 65-79 years and those living in the most deprived areas. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  10. Role of burning season on initial understory vegetation response to prescribed fire in a mixed conifer forest

    Science.gov (United States)

    Knapp, E.E.; Schwilk, D.W.; Kane, J.M.; Keeley, J.E.

    2007-01-01

    Although the majority of fires in the western United States historically occurred during the late summer or early fall when fuels were dry and plants were dormant or nearly so, early-season prescribed burns are often ignited when fuels are still moist and plants are actively growing. The purpose of this study was to determine if burn season influences postfire vegetation recovery. Replicated early-season burn, late-season burn, and unburned control units were established in a mixed conifer forest, and understory vegetation was evaluated before and after treatment. Vegetation generally recovered rapidly after prescribed burning. However, late-season burns resulted in a temporary but significant drop in cover and a decline in species richness at the 1 m 2 scale in the following year. For two of the several taxa that were negatively affected by burning, the reduction in frequency was greater after late-season than early-season burns. Early-season burns may have moderated the effect of fire by consuming less fuel and lessening the amount of soil heating. Our results suggest that, when burned under high fuel loading conditions, many plant species respond more strongly to differences in fire intensity and severity than to timing of the burn relative to stage of plant growth. ?? 2007 NRC.

  11. Seasonal changes in photosynthesis and growth of Zizyphus attopensis seedlings in three contrasting microhabitats in a tropical seasonal rain forest

    NARCIS (Netherlands)

    Cai, Z.Q.; Chen, Y.J.; Bongers, F.J.J.M.

    2007-01-01

    We hypothesized that photosynthesis and growth of tropical vegetation at its most northern distribution in Asia (Xishuangbanna, SW China) is adversely affected by seasonal drought and chilling temperatures. To test this hypothesis, we measured photosynthetic and growth characteristics of Zizyphus

  12. How Does Dung Beetle (Coleoptera: Scarabaeidae) Diversity Vary Along a Rainy Season in a Tropical Dry Forest?

    Science.gov (United States)

    Novais, Samuel M A; Evangelista, Lucas A; Reis-Júnior, Ronaldo; Neves, Frederico S

    2016-01-01

    Dung beetle community dynamics are determined by regional rainfall patterns. However, little is known about the temporal dynamics of these communities in tropical dry forests (TDFs). This study was designed to test the following predictions: 1) Peak diversity of dung beetle species occurs early in the wet season, with a decrease in diversity (α and β) and abundance throughout the season; 2) Nestedness is the primary process determining β-diversity, with species sampled in the middle and the end of the wet season representing subsets of the early wet season community. Dung beetles were collected in a TDF in the northern Minas Gerais state, Brazil over three sampling events (December 2009, February and April 2010). We sampled 2,018 dung beetles belonging to 39 species and distributed among 15 genera. Scarabaeinae α-diversity and abundance were highest in December and equivalent between February and April, while β-diversity among plots increased along the wet season. The importance of nestedness and species turnover varies between pairs of sample periods as the main process of temporal β-diversity. Most species collected in the middle and end of the wet season were found in greater abundance in early wet season. Thus, the dung beetle community becomes more homogeneous at the beginning of the wet season, and as the season advances, higher resource scarcity limits population size, which likely results in a smaller foraging range, increasing β-diversity. Our results demonstrate high synchronism between the dung beetle life cycle and seasonality of environmental conditions throughout the wet season in a TDF, where the onset of rains determines adult emergence for most species. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  13. Seasonal changes in camera-based indices from an open canopy black spruce forest in Alaska, and comparison with indices from a closed canopy evergreen coniferous forest in Japan

    Science.gov (United States)

    Nagai, Shin; Nakai, Taro; Saitoh, Taku M.; Busey, Robert C.; Kobayashi, Hideki; Suzuki, Rikie; Muraoka, Hiroyuki; Kim, Yongwon

    2013-06-01

    Evaluation of the carbon, water, and energy balances in evergreen coniferous forests requires accurate in situ and satellite data regarding their spatio-temporal dynamics. Daily digital camera images can be used to determine the relationships among phenology, gross primary productivity (GPP), and meteorological parameters, and to ground-truth satellite observations. In this study, we examine the relationship between seasonal variations in camera-based canopy surface indices and eddy-covariance-based GPP derived from field studies in an Alaskan open canopy black spruce forest and in a Japanese closed canopy cedar forest. The ratio of the green digital number to the total digital number, hue, and GPP showed a bell-shaped seasonal profile at both sites. Canopy surface images for the black spruce forest and cedar forest mainly detected seasonal changes in vegetation on the floor of the forest and in the tree canopy, respectively. In contrast, the seasonal cycles of the ratios of the red and blue digital numbers to the total digital numbers differed between the two sites, possibly due to differences in forest structure and leaf color. These results suggest that forest structural characteristics, such as canopy openness and seasonal forest-floor changes, should be considered during continuous observations of phenology in evergreen coniferous forests.

  14. Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest

    Science.gov (United States)

    Sfair, Julia C.; de Bello, Francesco; de França, Thaysa Q.; Baldauf, Cristina; Tabarelli, Marcelo

    2018-02-01

    The effects of human disturbance on biodiversity can be mediated by environmental conditions, such as water availability, climate and nutrients. In general, disturbed, dry or nutrient-depleted soils areas tend to have lower taxonomic diversity. However, little is known about how these environmental conditions affect functional composition and intraspecific variability in tropical dry forests. We studied a seasonally dry tropical forest (SDTF) under chronic anthropogenic disturbance (CAD) along rainfall and soil nutrient gradients to understand how these factors influence the taxonomic and functional composition. Specifically we evaluated two aspects of CAD, wood extraction and livestock pressure (goat and cattle grazing), along soil fertility and rainfall gradients on shrub and tree traits, considering species turnover and intraspecific variability. In addition, we also tested how the traits of eight populations of the most frequent species are affected by wood extraction, livestock pressure, rainfall and soil fertility. In general, although CAD and environmental gradients affected each trait of the most widespread species differently, the most abundant species also had a greater variation of traits. Considering species turnover, wood extraction is associated with species with a smaller leaf area and lower investment in leaf mass, probably due to the indirect effects of this disturbance type on the vegetation, i.e. the removal of branches and woody debris clears the vegetation, favouring species that minimize water loss. Livestock pressure, on the other hand, affected intraspecific variation: the herbivory caused by goats and cattle promoted individuals which invest more in wood density and leaf mass. In this case, the change of functional composition observed is a direct effect of the disturbance, such as the decrease of palatable plant abundance by goat and cattle herbivory. In synthesis, CAD, rainfall and soil fertility can affect trait distribution at community

  15. A preliminary early-season flower-visitation web for the Kirindy Forest, Madagascar

    Directory of Open Access Journals (Sweden)

    Mary V. Price

    2010-08-01

    Full Text Available Tropical dry deciduous forest is an endangered ecosystem whose plant-pollinator relationships are little known. We characterised a portion of the web of interactions between flowering plants and flower visitors in the Kirindy Forest of the Menabe region of west-central Madagascar. Taking a plant-centered approach, we observed individuals of the 5 most abundant native plant species that were coming into flower at the end of the annual dry season, and recorded all identifiable flower-visitors. Taking a visitor-centered approach, we walked a network of established trails and listened for distinctive calls of a common flower-visiting bird, noting the plant species visited. The former approach revealed connections among the early-flowering species via birds and insects, whereas the latter confirmed these connections and added an additional plant species. Flowers of the 6 plant species were visited on average by 5.5 animal species, while 10 visitor species for which we had reasonable samples frequented on average the flowers of 3.3 plant species. These qualitative results resemble those reported from other temperate and tropical webs, in that interactions appeared to be relatively generalised by pollinator species and body plan (e.g., birds vs. bees. Also in agreement, the visitation web was significantly nested, with more-specialised species tending to interact with mutualistic partners that were themselves more generalised. In addition to documenting previously-unreported interactions, therefore, this preliminary web conforms to more widespread patterns emerging for pollination systems at the community level.

  16. Spatial distribution and interspecific associations of tree species in a tropical seasonal rain forest of China.

    Directory of Open Access Journals (Sweden)

    Guoyu Lan

    Full Text Available Studying the spatial pattern and interspecific associations of plant species may provide valuable insights into processes and mechanisms that maintain species coexistence. Point pattern analysis was used to analyze the spatial distribution patterns of twenty dominant tree species, their interspecific spatial associations and changes across life stages in a 20-ha permanent plot of seasonal tropical rainforest in Xishuangbanna, China, to test mechanisms maintaining species coexistence. Torus-translation tests were used to quantify positive or negative associations of the species to topographic habitats. The results showed: (1 fourteen of the twenty tree species were negatively (or positively associated with one or two of the topographic variables, which evidences that the niche contributes to the spatial pattern of these species. (2 Most saplings of the study species showed a significantly clumped distribution at small scales (0-10 m which was lost at larger scales (10-30 m. (3 The degree of spatial clumping deceases from saplings, to poles, to adults indicates that density-dependent mortality of the offspring is ubiquitous in species. (4 It is notable that a high number of positive small-scale interactions were found among the twenty species. For saplings, 42.6% of all combinations of species pairs showed positive associations at neighborhood scales up to five meters, but only 38.4% were negative. For poles and adults, positive associations at these distances still made up 45.5% and 29.5%, respectively. In conclusion, there is considerable evidence for the presence of positive interactions among the tree species, which suggests that species herd protection may occur in our plot. In addition, niche assembly and limited dispersal (likely contribute to the spatial patterns of tree species in the tropical seasonal rain forest in Xishuangbanna, China.

  17. Soil respiration in tropical seasonal rain forest in Xishuangbanna, SW China

    Institute of Scientific and Technical Information of China (English)

    SHA; Liqing; ZHENG; Zheng; TANG; Jianwei; WANG; Yinghong

    2005-01-01

    With the static opaque chamber and gas chromatography technique, from January 2003 to January 2004 soil respiration was investigated in a tropical seasonal rain forest in Xishuangbanna, SW China. In this study three treatments were applied, each with three replicates: A (bare soil), B (soil+litter), and C (soil+litter+seedling). The results showed that soil respiration varied seasonally, low from December 2003 to February 2004, and high from June to July 2004. The annual average values of CO2 efflux from soil respiration differed among the treatments at 1% level, with the rank of C (14642 mgCO2· m-2. h-1)>B (12807 mgCO2· m-2. h-1)>A (9532 mgCO2· m-2. h-1). Diurnal variation in soil respiration was not apparent due to little diurnal temperate change in Xishuangbanna. There was a parabola relationship between soil respiration and soil moisture at 1% level. Soil respiration rates were higher when soil moisture ranged from 35% to 45%. There was an exponential relationship between soil respiration and soil temperature (at a depth of 5cm in mineral soil) at 1% level. The calculated Q1o values in this study,ranging from 2.03 to 2.36, were very near to those of tropical soil reported. The CO2 efflux in 2003was 5.34 kgCO2· m-2. a-1 from soil plus litter plus seedling, of them 3.48 kgCO2· m-2. a-1 from soil (accounting for 62.5%), 1.19 kgCO2· m-2. a-1 from litter (22.3%) and 0.67 kgCO2·m-2. a-1 from seedling (12.5%).

  18. Investigating the role of evergreen and deciduous forests in the increasing trend in atmospheric CO2 seasonal amplitude

    Science.gov (United States)

    Welp, L.; Calle, L.; Graven, H. D.; Poulter, B.

    2017-12-01

    The seasonal amplitude of Northern Hemisphere atmospheric CO2 concentrations has systematically increased over the last several decades, indicating that the timing and amplitude of net CO2 uptake and release by northern terrestrial ecosystems has changed substantially. Remote sensing, dynamic vegetation modeling, and in-situ studies have explored how changes in phenology, expansion of woody vegetation, and changes in species composition and disturbance regimes, among others, are driven by changes in climate and CO2. Despite these efforts, ecosystem models have not been able to reproduce observed atmospheric CO2 changes. Furthermore, the implications for the source/sink balance of northern ecosystems remains unclear. Changing proportions of evergreen and deciduous tree cover in response to climate change could be one of the key mechanisms that have given rise to amplified atmospheric CO2 seasonality. These two different plant functional types (PFTs) have different carbon uptake seasonal patterns and also different sensitivities to climate change, but are often lumped together as one forest type in global ecosystem models. We will demonstrate the potential that shifting distributions of evergreen and deciduous forests can have on the amplitude of atmospheric CO2. We will show phase differences in the net CO2 seasonal uptake using CO2 flux data from paired evergreen/deciduous eddy covariance towers. We will use simulations of evergreen and deciduous PFTs from the LPJ dynamic vegetation model to explore how climate change may influence the abundance and CO2 fluxes of each. Model results show that the area of deciduous forests is predicted to have increased, and the seasonal amplitude of CO2 fluxes has increased as well. The impact of surface flux seasonal variability on atmospheric CO2 amplitude is examined by transporting fluxes from each forest PFT through the TM3 transport model. The timing of the most intense CO2 uptake leads to an enhanced effect of deciduous

  19. Forest fires and lightning activity during the outstanding 2003 and 2005 fire seasons

    Science.gov (United States)

    Russo, Ana; Ramos, Alexandre; Trigo, Ricardo

    2013-04-01

    discharges location which were extracted from the Portuguese Lightning Location System that has been in service since June of 2002 and is operated by the national weather service - Instituto de Meteorologia (IM). The main objective of this work is to analyze for possible relations between the PRFD and the Portuguese lightning database for the 2003 and 2005 extreme fire seasons. In particularly we were able to verify the forest fires labeled as "ignited by lightning" by comparing its location to the lightning discharges location database. Furthermore we have also investigated possible fire ignition by lightning discharges that have not yet been labeled in the PRFD by comparing daily data from both datasets.

  20. Habitat selection by owls in a seasonal semi-deciduous forest in southern Brazil

    Directory of Open Access Journals (Sweden)

    W. Menq

    Full Text Available Abstract This paper tested the hypothesis that the structural components of vegetation have impact over the distribution of owl species in a fragment of a semi-deciduous seasonal forest. This paper also determined which vegetation variables contributed to the spatial distribution of owl species. It was developed in the Perobas Biological Reserve (PBR between September and December 2011. To conduct the owl census, a playback technique was applied at hearing points distributed to cover different vegetation types in the study area. A total of 56 individual owls of six species were recorded: Tropical Screech-Owl (Megascops choliba, Black-capped Screech-Owl (Megascops atricapilla, Tawny-browed Owl (Pulsatrix koeniswaldiana, Ferruginous Pygmy-Owl (Glaucidium brasilianum, Mottled Owl (Strix virgata and Stygian Owl (Asio stygius. The results suggest that the variables of vegetation structure have impact on the occurrence of owls. The canopy height, the presence of hollow trees, fallen trees and glades are the most important structural components influencing owl distribution in the sampled area.

  1. Estimation of Aboveground Biomass Using Manual Stereo Viewing of Digital Aerial Photographs in Tropical Seasonal Forest

    Directory of Open Access Journals (Sweden)

    Katsuto Shimizu

    2014-11-01

    Full Text Available The objectives of this study are to: (1 evaluate accuracy of tree height measurements of manual stereo viewing on a computer display using digital aerial photographs compared with airborne LiDAR height measurements; and (2 develop an empirical model to estimate stand-level aboveground biomass with variables derived from manual stereo viewing on the computer display in a Cambodian tropical seasonal forest. We evaluate observation error of tree height measured from the manual stereo viewing, based on field measurements. RMSEs of tree height measurement with manual stereo viewing and LiDAR were 1.96 m and 1.72 m, respectively. Then, stand-level aboveground biomass is regressed against tree height indices derived from the manual stereo viewing. We determined the best model to estimate aboveground biomass in terms of the Akaike’s information criterion. This was a model of mean tree height of the tallest five trees in each plot (R2 = 0.78; RMSE = 58.18 Mg/ha. In conclusion, manual stereo viewing on the computer display can measure tree height accurately and is useful to estimate aboveground stand biomass.

  2. TRAP-NESTING BEES AND WASPS (HYMENOPTERA, ACULEATA IN A SEMIDECIDUAL SEASONAL FOREST FRAGMENT, SOUTHERN BRAZIL

    Directory of Open Access Journals (Sweden)

    PRISCILA S. OLIVEIRA

    Full Text Available ABSTRACT Trap-nesting bee and wasp inventories are common in Brazil but many phytophysiognomies are still poorly studied. The main objective of this study is to survey trap-nesting bees and wasps in a Semidecidual Seasonal Forest fragment. Also, we test the differences on nesting between interior and edge transects. A sum of 1,500 trap nests was made with bamboo cane internodes and two consecutive years were monitored. In the first year 46 nests were occupied by Pachodynerus grandis (19 nests, Pachodynerus guadulpensis (19, Centris analis (two, and Centris tarsata, Megachile fiebrigi, Megachile guaranitica, Megachile susurrans, Trypoxylon sp and Zethus smithii with one nest each. No statistical differences were found between interior and edge transects for richness and occupation rate, but the species composition was different. In the second year 39 nests were occupied by four species, three previously recorded, C. analis (seven nests, P. guadulpensis and P. grandis (six nests each, plus Monobia angulosa with 15 nests. Parasitoids from four families and one cleptoparasite were recorded and the mortality rate was higher in bees than in wasps. These findings reinforce the notion that trap nests assemblages from different studies are not directly comparable for richness and composition.

  3. Synchrony, compensatory dynamics, and the functional trait basis of phenological diversity in a tropical dry forest tree community: effects of rainfall seasonality

    Science.gov (United States)

    Lasky, Jesse R.; Uriarte, María; Muscarella, Robert

    2016-11-01

    Interspecific variation in phenology is a key axis of functional diversity, potentially mediating how communities respond to climate change. The diverse drivers of phenology act across multiple temporal scales. For example, abiotic constraints favor synchronous reproduction (positive covariance among species), while biotic interactions can favor synchrony or compensatory dynamics (negative covariance). We used wavelet analyses to examine phenology of community flower and seed production for 45 tree species across multiple temporal scales in a tropical dry forest in Puerto Rico with marked rainfall seasonality. We asked three questions: (1) do species exhibit synchronous or compensatory temporal dynamics in reproduction, (2) do interspecific differences in phenology reflect variable responses to rainfall, and (3) is interspecific variation in phenology and response to a major drought associated with functional traits that mediate responses to moisture? Community-level flowering was synchronized at seasonal scales (˜5-6 mo) and at short scales (˜1 mo, following rainfall). However, seed rain exhibited significant compensatory dynamics at intraseasonal scales (˜3 mo), suggesting interspecific variation in temporal niches. Species with large leaves (associated with sensitivity to water deficit) peaked in reproduction synchronously with the peak of seasonal rainfall (˜5 mo scale). By contrast, species with high wood specific gravity (associated with drought resistance) tended to flower in drier periods. Flowering of tall species and those with large leaves was most tightly linked to intraseasonal (˜2 mo scale) rainfall fluctuations. Although the 2015 drought dramatically reduced community-wide reproduction, functional traits were not associated with the magnitude of species-specific declines. Our results suggest opposing drivers of synchronous versus compensatory dynamics at different temporal scales. Phenology associations with functional traits indicated that

  4. Forgotten forests - issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study

    Science.gov (United States)

    2011-01-01

    Background South America is one of the most species diverse continents in the world. Within South America diversity is not distributed evenly at both local and continental scales and this has led to the recognition of various areas with unique species assemblages. Several schemes currently exist which divide the continental-level diversity into large species assemblages referred to as biomes. Here we review five currently available biome maps for South America, including the WWF Ecoregions, the Americas basemap, the Land Cover Map of South America, Morrone's Biogeographic regions of Latin America, and the Ecological Systems Map. The comparison is performed through a case study on the Seasonally Dry Tropical Forest (SDTF) biome using herbarium data of habitat specialist species. Results Current biome maps of South America perform poorly in depicting SDTF distribution. The poor performance of the maps can be attributed to two main factors: (1) poor spatial resolution, and (2) poor biome delimitation. Poor spatial resolution strongly limits the use of some of the maps in GIS applications, especially for areas with heterogeneous landscape such as the Andes. Whilst the Land Cover Map did not suffer from poor spatial resolution, it showed poor delimitation of biomes. The results highlight that delimiting structurally heterogeneous vegetation is difficult based on remote sensed data alone. A new refined working map of South American SDTF biome is proposed, derived using the Biome Distribution Modelling (BDM) approach where georeferenced herbarium data is used in conjunction with bioclimatic data. Conclusions Georeferenced specimen data play potentially an important role in biome mapping. Our study shows that herbarium data could be used as a way of ground-truthing biome maps in silico. The results also illustrate that herbarium data can be used to model vegetation maps through predictive modelling. The BDM approach is a promising new method in biome mapping, and could be

  5. Forgotten forests--issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study.

    Science.gov (United States)

    Särkinen, Tiina; Iganci, João R V; Linares-Palomino, Reynaldo; Simon, Marcelo F; Prado, Darién E

    2011-11-24

    South America is one of the most species diverse continents in the world. Within South America diversity is not distributed evenly at both local and continental scales and this has led to the recognition of various areas with unique species assemblages. Several schemes currently exist which divide the continental-level diversity into large species assemblages referred to as biomes. Here we review five currently available biome maps for South America, including the WWF Ecoregions, the Americas basemap, the Land Cover Map of South America, Morrone's Biogeographic regions of Latin America, and the Ecological Systems Map. The comparison is performed through a case study on the Seasonally Dry Tropical Forest (SDTF) biome using herbarium data of habitat specialist species. Current biome maps of South America perform poorly in depicting SDTF distribution. The poor performance of the maps can be attributed to two main factors: (1) poor spatial resolution, and (2) poor biome delimitation. Poor spatial resolution strongly limits the use of some of the maps in GIS applications, especially for areas with heterogeneous landscape such as the Andes. Whilst the Land Cover Map did not suffer from poor spatial resolution, it showed poor delimitation of biomes. The results highlight that delimiting structurally heterogeneous vegetation is difficult based on remote sensed data alone. A new refined working map of South American SDTF biome is proposed, derived using the Biome Distribution Modelling (BDM) approach where georeferenced herbarium data is used in conjunction with bioclimatic data. Georeferenced specimen data play potentially an important role in biome mapping. Our study shows that herbarium data could be used as a way of ground-truthing biome maps in silico. The results also illustrate that herbarium data can be used to model vegetation maps through predictive modelling. The BDM approach is a promising new method in biome mapping, and could be particularly useful for mapping

  6. Forgotten forests - issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study

    Directory of Open Access Journals (Sweden)

    Särkinen Tiina

    2011-11-01

    Full Text Available Abstract Background South America is one of the most species diverse continents in the world. Within South America diversity is not distributed evenly at both local and continental scales and this has led to the recognition of various areas with unique species assemblages. Several schemes currently exist which divide the continental-level diversity into large species assemblages referred to as biomes. Here we review five currently available biome maps for South America, including the WWF Ecoregions, the Americas basemap, the Land Cover Map of South America, Morrone's Biogeographic regions of Latin America, and the Ecological Systems Map. The comparison is performed through a case study on the Seasonally Dry Tropical Forest (SDTF biome using herbarium data of habitat specialist species. Results Current biome maps of South America perform poorly in depicting SDTF distribution. The poor performance of the maps can be attributed to two main factors: (1 poor spatial resolution, and (2 poor biome delimitation. Poor spatial resolution strongly limits the use of some of the maps in GIS applications, especially for areas with heterogeneous landscape such as the Andes. Whilst the Land Cover Map did not suffer from poor spatial resolution, it showed poor delimitation of biomes. The results highlight that delimiting structurally heterogeneous vegetation is difficult based on remote sensed data alone. A new refined working map of South American SDTF biome is proposed, derived using the Biome Distribution Modelling (BDM approach where georeferenced herbarium data is used in conjunction with bioclimatic data. Conclusions Georeferenced specimen data play potentially an important role in biome mapping. Our study shows that herbarium data could be used as a way of ground-truthing biome maps in silico. The results also illustrate that herbarium data can be used to model vegetation maps through predictive modelling. The BDM approach is a promising new method in

  7. SHIFTS OF START AND END OF SEASON IN RESPONSE TO AIR TEMPERATURE VARIATION BASED ON GIMMS DATASET IN HYRCANIAN FORESTS

    Directory of Open Access Journals (Sweden)

    K. H. Kiapasha

    2017-09-01

    Full Text Available Climate change is one of the most important environmental challenges in the world and forest as a dynamic phenomenon is influenced by environmental changes. The Hyrcanian forests is a unique natural heritage of global importance and we need monitoring this region. The objective of this study was to detect start and end of season trends in Hyrcanian forests of Iran based on biweekly GIMMS (Global Inventory Modeling and Mapping Studies NDVI3g in the period 1981-2012. In order to find response of vegetation activity to local temperature variations, we used air temperature provided from I.R. Iran Meteorological Organization (IRIMO. At the first step in order to remove the existing gap from the original time series, the iterative Interpolation for Data Reconstruction (IDR model was applied to GIMMS and temperature dataset. Then we applied significant Mann Kendall test to determine significant trend for each pixel of GIMMS and temperature datasets over the Hyrcanian forests. The results demonstrated that start and end of season (SOS & EOS respectively derived from GIMMS3g NDVI time series increased by -0.16 and +0.41 days per year respectively. The trends derived from temperature time series indicated increasing trend in the whole of this region. Results of this study showed that global warming and its effect on growth and photosynthetic activity can increased the vegetation activity in our study area. Otherwise extension of the growing season, including an earlier start of the growing season, later autumn and higher rate of production increased NDVI value during the study period.

  8. Breeding season concerns and response to forest management: Can forest management produce more breeding birds? Ornitologia Neotropical

    Science.gov (United States)

    J.L. Larkin; P.B. Wood; T.J. Boves; J. Sheehan; D.A. Buehler

    2012-01-01

    Cerulean Warblers (Setophaga cerulea), one of the fastest declining avian species in North America, are associated with heterogeneous canopies in mature hardwood forests. However, the age of most second and third-growth forests in eastern North American is not sufficient for natural tree mortality to maintain structurally diverse canopies. Previous research suggests...

  9. Evaluating the utility and seasonality of NDVI values for assessing post-disturbance recovery in a subalpine forest.

    Science.gov (United States)

    Buma, Brian

    2012-06-01

    Forest disturbances around the world have the potential to alter forest type and cover, with impacts on diversity, carbon storage, and landscape composition. These disturbances, especially fire, are common and often large, making ground investigation of forest recovery difficult. Remote sensing offers a means to monitor forest recovery in real time, over the entire landscape. Typically, recovery monitoring via remote sensing consists of measuring vegetation indices (e.g., NDVI) or index-derived metrics, with the assumption that recovery in NDVI (for example) is a meaningful measure of ecosystem recovery. This study tests that assumption using MODIS 16-day imagery from 2000 to 2010 in the area of the Colorado's Routt National Forest Hinman burn (2002) and seedling density counts taken in the same area. Results indicate that NDVI is rarely correlated with forest recovery, and is dominated by annual and perennial forb cover, although topography complicates analysis. Utility of NDVI as a means to delineate areas of recovery or non-recovery are in doubt, as bootstrapped analysis indicates distinguishing power only slightly better than random. NDVI in revegetation analyses should carefully consider the ecology and seasonal patterns of the system in question.

  10. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest.

    Science.gov (United States)

    Yang, Hualei; Yang, Xi; Heskel, Mary; Sun, Shucun; Tang, Jianwu

    2017-04-28

    Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporal resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). We found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.

  11. [Effect of seasonal high temperature and drought on carbon flux of bamboo forest ecosystem in subtropical region].

    Science.gov (United States)

    Chen, Xiao-feng; Jiang, Hong; Niu, Xiao-dong; Zhang, Jin-meng; Liu, Yu-li; Fang, Cheng-yuan

    2016-02-01

    The carbon flux of subtropical bamboo forest ecosystem was continuously measured using eddy covariance technique in Anji County of Zhejiang Province, China. The monthly net ecosystem productivity (NEP), ecosystem respiration (Re) and gross ecosystem productivity (GEP) data from 2011 to 2013 were selected to analyze the impacts of seasonal high temperature and drought on the carbon flux of bamboo forest ecosystem. The results showed that there were big differences among annual NEP of bamboo forest from 2011 to 2013. Because of the asynchronization of precipitation and heat, the seasonal high temperature and drought in July and August of 2013 caused significant decline in NEP by 59.9% and 80.0% when compared with the same months in 2011. Correlation analysis of the NEP, Re, GEP and environmental factors suggested that the atmosphere temperatures were significantly correlated with Re and GEP in 2011 and 2013 (P<0.05). However, to air and soil moisture, Re and GEP had different responses, that was, GEP was more vulnerable by the decrease of the soil moisture compared with Re. Besides, the raising of saturation vapour pressure promoted the Re modestly but inhibited the GEP, which was supposed to be the main reason for NEP decrease of bamboo forest ecosystem in Anji, from July to August in 2013.

  12. Control of dry season evapotranspiration over the Amazonian forest as inferred from observations at a southern Amazon forest site

    NARCIS (Netherlands)

    Negrón Juárez, R.I.; Hodnett, M.G.; Fu, R.; Goulden, M.L.; Randow, von C.

    2007-01-01

    The extent to which soil water storage can support an average dry season evapotranspiration (ET) is investigated using observations from the Rebio Jarú site for the period of 2000 to 2002. During the dry season, when total rainfall is less than 100 mm, the soil moisture storage available to root

  13. Seasonal variability in physiological and anatomical traits contributes to invasion success of Prosopis juliflora in tropical dry forest.

    Science.gov (United States)

    Oliveira, Marciel T; Souza, Gustavo M; Pereira, Silvia; Oliveira, Deborah A S; Figueiredo-Lima, Karla V; Arruda, Emília; Santos, Mauro G

    2017-03-01

    We investigated whether there were consistent differences in the physiological and anatomical traits and phenotypic variability of an invasive (Prosopis juliflora (Sw.) DC.) and native species (Anadenanthera colubrina (Vell.) Brenan) in response to seasonality in a tropical dry forest. The water potential, organic solutes, gas exchange, enzymes of the antioxidant system, products of oxidative stress and anatomical parameters were evaluated in both species in response to seasonality. An analysis of physiological responses indicated that the invasive P. juliflora exhibited higher response in net photosynthetic rate to that of the native species between seasons. Higher values of water potential of the invasive species than those of the native species in the dry season indicate a more efficient mechanism for water regulation in the invasive species. The invasive species exhibits a thicker cuticle and trichomes, which can reduce transpiration. In combination, the increased epidermal thickness and the decreased thickness of the parenchyma in the dry season may contribute to water saving. Our data suggest a higher variability in anatomical traits in the invasive species as a response to seasonality, whereas physiological traits did not present a clear pattern of response. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Evaluation of physical quality indices of a soil under a seasonal semideciduous forest

    Directory of Open Access Journals (Sweden)

    Thalita Campos Oliveira

    2014-04-01

    Full Text Available The concept of soil quality is currently the subject of great discussion due to the interaction of soil with the environment (soil-plant-atmosphere and practices of human intervention. However, concepts of soil quality relate quality to agricultural productivity, but assessment of soil quality in an agronomic context may be different from its assessment in natural areas. The aim of this study was to assess physical quality indices, the S index, soil aeration capacity (ACt/Pt, and water storage capacity (FC/Pt of the soil from a permanent plot in the Caetetus Ecological Reserve (Galia, São Paulo, Brazil under a seasonal semideciduous forest and compare them with the reference values for soil physical quality found in the literature. Water retention curves were used for that purpose. The S values found were higher than the proposed limit for soil physical quality (0.035. The A and E horizons showed the highest values because their sandy texture leads to a high slope of the water retention curve. The B horizons showed the lowest S values because their natural density leads to a lower slope of the water retention curve. The values found for ACt/Pt and FC/Pt were higher and lower than the idealized limits. The values obtained from these indices under natural vegetation can provide reference values for soils with similar properties that undergo changes due to anthropic activities. All the indices evaluated were effective in differentiating the effects of soil horizons in the natural hydro-physical functioning of the soils under study.

  15. Climatic potential for tourism in the Black Forest, Germany — winter season

    Science.gov (United States)

    Endler, Christina; Matzarakis, Andreas

    2011-05-01

    Climate change, whether natural or human-caused, will have an impact on human life, including recreation and tourism among other things. In this study, methods from biometeorology and tourism climatology are used to assess the effect of a changed climate on tourism and recreation in particular. The study area is the Black Forest mountainous region of south-west Germany, which is well known for its tourist and recreational assets. Climate model projections for the 2021-2050 period based on REMO-UBA simulations with a high spatial resolution of 10 km are compared to a 30-year reference period (1971-2000) using the IPCC emission scenarios A1B and B1. The results show that the mean winter air temperature will increase by up to 1.8°C, which is the most pronounced warming compared to the other seasons. The annual precipitation amount will increase marginally by 5% in the A1B scenario and 10% in the B1 scenario. Winter precipitation contributes about 10% (A1B) and 30% (B1) to variations in annual precipitation. Although the results show that winter precipitation will increase slightly, snow days affecting skiing will be reduced on average by approximately 40% due to regional warming. Cold stress will be reduced on average by up to 25%. The result is that the thermal environment will be advanced, and warmer winters are likely to lead to an upward altitudinal shift of ski resorts and winter sport activities, thus displacing land-use currently dedicated to nature conservation.

  16. The Tetramerium lineage (Acanthaceae: Justicieae) does not support the Pleistocene Arc hypothesis for South American seasonally dry forests.

    Science.gov (United States)

    Côrtes, Ana Luiza A; Rapini, Alessandro; Daniel, Thomas F

    2015-06-01

    The Tetramerium lineage (Acanthaceae) presents a striking ecological structuring in South America, with groups concentrated in moist forests or in seasonally dry forests. In this study, we investigate the circumscription and relationships of the South American genera as a basis for better understanding historic interactions between dry and moist biomes in the Neotropics. We dated the ancestral distribution of the Tetramerium lineage based on one nuclear and four plastid DNA regions. Maximum parsimony, maximum likelihood, and Bayesian inference analyses were performed for this study using 104 terminals. Phylogenetic divergences were dated using a relaxed molecular clock approach and ancestral distributions obtained from dispersal-vicariance analyses. The genera Pachystachys, Schaueria, and Thyrsacanthus are nonmonophyletic. A dry forest lineage dispersed from North America to South America and reached the southwestern part of the continent between the end of the Miocene and beginning of the Pleistocene. This period coincides with the segregation between Amazonian and Atlantic moist forests that established the geographic structure currently found in the group. The South American genera Pachystachys, Schaueria, and Thyrsacanthus need to be recircumscribed. The congruence among biogeographical events found for the Tetramerium lineage suggests that the dry forest centers currently dispersed throughout South America are relatively old remnants, probably isolated since the Neogene, much earlier than the Last Glacial Maximum postulated by the Pleistocene Arc hypothesis. In addition to exploring the Pleistocene Arc hypothesis, this research also informs evolution in a lineage with numerous geographically restricted and threatened species. © 2015 Botanical Society of America, Inc.

  17. WET AND DRY SEASON ECOSYSTEM LEVEL FLUXES OF ISOPRENE AND MONOTERPENES FROM A SOUTHEAST ASIAN SECONDARY FOREST AND RUBBER TREE PLANTATION

    Science.gov (United States)

    Canopy scale fluxes of isoprene and monoterpenes were investigated in both wet and dry seasons above a rubber tree (Hevea brasiliensis)/secondary tropical forest in the Yunnan province of southwestern China. Drought conditions were unusually high during the dry season experiment....

  18. The role of climate and environmental variables in structuring bird assemblages in the Seasonally Dry Tropical Forests (SDTFs.

    Directory of Open Access Journals (Sweden)

    Gabriela Silva Ribeiro Gonçalves

    Full Text Available Understanding the processes that influence species diversity is still a challenge in ecological studies. However, there are two main theories to discuss this topic, the niche theory and the neutral theory. Our objective was to understand the importance of environmental and spatial processes in structuring bird communities within the hydrological seasons in dry forest areas in northeastern Brazil. The study was conducted in two National Parks, the Serra da Capivara and Serra das Confusões National Parks, where 36 areas were sampled in different seasons (dry, dry/rainy transition, rainy, rainy/dry transition, in 2012 and 2013. We found with our results that bird species richness is higher in the rainy season and lower during the dry season, indicating a strong influence of seasonality, a pattern also found for environmental heterogeneity. Richness was explained by local environmental factors, while species composition was explained by environmental and spatial factors. The environmental factors were more important in explaining variations in composition. Climate change predictions have currently pointed out frequent drought events and a rise in global temperature by 2050, which would lead to changes in species behavior and to increasing desertification in some regions, including the Caatinga. In addition, the high deforestation rates and the low level of representativeness of the Caatinga in the conservation units negatively affects bird communities. This scenario has demonstrated how climatic factors affect individuals, and, therefore, should be the starting point for conservation initiatives to be developed in xeric environments.

  19. The role of climate and environmental variables in structuring bird assemblages in the Seasonally Dry Tropical Forests (SDTFs).

    Science.gov (United States)

    Gonçalves, Gabriela Silva Ribeiro; Cerqueira, Pablo Vieira; Brasil, Leandro Schlemmer; Santos, Marcos Pérsio Dantas

    2017-01-01

    Understanding the processes that influence species diversity is still a challenge in ecological studies. However, there are two main theories to discuss this topic, the niche theory and the neutral theory. Our objective was to understand the importance of environmental and spatial processes in structuring bird communities within the hydrological seasons in dry forest areas in northeastern Brazil. The study was conducted in two National Parks, the Serra da Capivara and Serra das Confusões National Parks, where 36 areas were sampled in different seasons (dry, dry/rainy transition, rainy, rainy/dry transition), in 2012 and 2013. We found with our results that bird species richness is higher in the rainy season and lower during the dry season, indicating a strong influence of seasonality, a pattern also found for environmental heterogeneity. Richness was explained by local environmental factors, while species composition was explained by environmental and spatial factors. The environmental factors were more important in explaining variations in composition. Climate change predictions have currently pointed out frequent drought events and a rise in global temperature by 2050, which would lead to changes in species behavior and to increasing desertification in some regions, including the Caatinga. In addition, the high deforestation rates and the low level of representativeness of the Caatinga in the conservation units negatively affects bird communities. This scenario has demonstrated how climatic factors affect individuals, and, therefore, should be the starting point for conservation initiatives to be developed in xeric environments.

  20. High NDVI and Potential Canopy Photosynthesis of South American Subtropical Forests despite Seasonal Changes in Leaf Area Index and Air Temperature

    Directory of Open Access Journals (Sweden)

    Piedad M. Cristiano

    2014-02-01

    Full Text Available The canopy photosynthesis and carbon balance of the subtropical forests are not well studied compared to temperate and tropical forest ecosystems. The main objective of this study was to assess the seasonal dynamics of Normalized Difference Vegetation Index (NDVI and potential canopy photosynthesis in relation to seasonal changes in leaf area index (LAI, chlorophyll concentration, and air temperatures of NE Argentina subtropical forests throughout the year. We included in the analysis several tree plantations (Pinus, Eucalyptus and Araucaria species that are known to have high productivity. Field studies in native forests and tree plantations were conducted; stem growth rates, LAI and leaf chlorophyll concentration were measured. MODIS satellite-derived LAI (1 km SIN Grid and NDVI (250m SIN Grid from February 2000 to 2012 were used as a proxy of seasonal dynamics of potential photosynthetic activity at the stand level. The remote sensing LAI of the subtropical forests decreased every year from 6 to 5 during the cold season, similar to field LAI measurements, when temperatures were 10 °C lower than during the summer. The yearly maximum NDVI values were observed during a few months in autumn and spring (March through May and November, respectively because high and low air temperatures may have a small detrimental effect on photosynthetic activity during both the warm and the cold seasons. Leaf chlorophyll concentration was higher during the cold season than the warm season which may have a compensatory effect on the seasonal variation of the NDVI values. The NDVI of the subtropical forest stands remained high and fairly constant throughout the year (the intra-annual coefficient of variation was 1.9%, and were comparable to the values of high-yield tree plantations. These results suggest that the humid subtropical forests in NE Argentina potentially could maintain high canopy photosynthetic activity throughout the year and thus this ecosystem may

  1. Assessing the Impact of Forest Change and Climate Variability on Dry Season Runoff by an Improved Single Watershed Approach: A Comparative Study in Two Large Watersheds, China

    Directory of Open Access Journals (Sweden)

    Yiping Hou

    2018-01-01

    Full Text Available Extensive studies on hydrological responses to forest change have been published for centuries, yet partitioning the hydrological effects of forest change, climate variability and other factors in a large watershed remains a challenge. In this study, we developed a single watershed approach combining the modified double mass curve (MDMC and the time series multivariate autoregressive integrated moving average model (ARIMAX to separate the impact of forest change, climate variability and other factors on dry season runoff variation in two large watersheds in China. The Zagunao watershed was examined for the deforestation effect, while the Meijiang watershed was examined to study the hydrological impact of reforestation. The key findings are: (1 both deforestation and reforestation led to significant reductions in dry season runoff, while climate variability yielded positive effects in the studied watersheds; (2 the hydrological response to forest change varied over time due to changes in soil infiltration and evapotranspiration after vegetation regeneration; (3 changes of subalpine natural forests produced greater impact on dry season runoff than alteration of planted forests. These findings are beneficial to water resource and forest management under climate change and highlight a better planning of forest operations and management incorporated trade-off between carbon and water in different forests.

  2. Mechanistic spatio-temporal point process models for marked point processes, with a view to forest stand data

    DEFF Research Database (Denmark)

    Møller, Jesper; Ghorbani, Mohammad; Rubak, Ege Holger

    We show how a spatial point process, where to each point there is associated a random quantitative mark, can be identified with a spatio-temporal point process specified by a conditional intensity function. For instance, the points can be tree locations, the marks can express the size of trees......, and the conditional intensity function can describe the distribution of a tree (i.e., its location and size) conditionally on the larger trees. This enable us to construct parametric statistical models which are easily interpretable and where likelihood-based inference is tractable. In particular, we consider maximum...

  3. Seasonal abundance and activity of pill millipedes ( Arthrosphaera magna) in mixed plantation and semi-evergreen forest of southern India

    Science.gov (United States)

    Ashwini, Krishna M.; Sridhar, Kandikere R.

    2006-01-01

    Seasonal occurrence and activity of endemic pill millipedes ( Arthrosphaera magna) were examined in organically managed mixed plantation and semi-evergreen forest reserve in southwest India between November 1996 and September 1998. Abundance and biomass of millipedes were highest in both habitats during monsoon season. Soil moisture, conductivity, organic carbon, phosphate, potassium, calcium and magnesium were higher in plantation than in forest. Millipede abundance and biomass were about 12 and 7 times higher in plantation than in forest, respectively ( P 0.05). Millipede abundance and biomass were positively correlated with rainfall ( P = 0.01). Besides rainfall, millipedes in plantation were positively correlated with soil moisture as well as temperature ( P = 0.001). Among the associated fauna with pill millipedes, earthworms rank first followed by soil bugs in both habitats. Since pill millipedes are sensitive to narrow ecological changes, the organic farming strategies followed in mixed plantation and commonly practiced in South India seem not deleterious for the endangered pill millipedes Arthrosphaera and reduce the risk of local extinctions.

  4. Seasonal variation in the atmospheric deposition of inorganic constituents and canopy interactions in a Japanese cedar forest

    International Nuclear Information System (INIS)

    Sase, Hiroyuki; Takahashi, Akiomi; Sato, Masahiko; Kobayashi, Hiroyasu; Nakata, Makoto; Totsuka, Tsumugu

    2008-01-01

    The seasonal changes in throughfall (TF) and stemflow (SF) chemistry and the canopy interactions of K + and N compounds were studied in a Japanese cedar forest near the Sea of Japan. The fluxes of most ions, including non-sea-salt SO 4 2- , from TF, SF, and rainfall showed distinct seasonal trends, increasing from autumn to winter, owing to the seasonal west wind, while the fluxes of NH 4 + and K + ions from TF + SF might have a large effect of canopy interactions. The contact angle (CA) of water droplets on leaves decreased with leaf aging, suggesting that surface wettability increases with leaf age. The K + concentration in TF was negatively correlated with the CA of 1-year-old leaves, while the NH 4 + concentration was positively correlated with the CA. The net fluxes of NH 4 + and NO 3 - from TF were positively correlated with the CA. The increase in wettability may accelerate leaching of K + or uptake of NH 4 + . - Leaf surface properties may contribute to the ion transport process of the forest canopy

  5. Simulation of the Unexpected Photosynthetic Seasonality in Amazonian Evergreen Forests by Using an Improved Diffuse Fraction-Based Light Use Efficiency Model

    Science.gov (United States)

    Yan, Hao; Wang, Shao-Qiang; da Rocha, Humberto R.; Rap, Alexandru; Bonal, Damien; Butt, Nathalie; Coupe, Natalia Restrepo; Shugart, Herman H.

    2017-11-01

    Understanding the mechanism of photosynthetic seasonality in Amazonian evergreen forests is critical for its formulation in global climate and carbon cycle models. However, the control of the unexpected photosynthetic seasonality is highly uncertain. Here we use eddy-covariance data across a network of Amazonian research sites and a novel evapotranspiration (E) and two-leaf-photosynthesis-coupled model to investigate links between photosynthetic seasonality and climate factors on monthly scales. It reproduces the GPP seasonality (R2 = 0.45-0.69) with a root-mean-square error (RMSE) of 0.67-1.25 g C m-2 d-1 and a Bias of -0.03-1.04 g C m-2 d-1 for four evergreen forest sites. We find that the proportion of diffuse and direct sunlight governs the photosynthetic seasonality via their interaction with sunlit and shaded leaves, supported by a proof that canopy light use efficiency (LUE) has a strong linear relationship with the fraction of diffuse sunlight for Amazonian evergreen forests. In the transition from dry season to rainy season, incident total radiation (Q) decreased while LUE and diffuse fraction increased, which produced the large seasonal increase ( 34%) in GPP of evergreen forests. We conclude that diffuse radiation is an important environmental driver of the photosynthetic seasonality in tropical Amazon forests yet depending on light utilization by sunlit and shaded leaves. Besides, the GPP model simulates the precipitation-dominated GPP seasonality (R2 = 0.40-0.69) at pasture and savanna sites. These findings present an improved physiological method to relate light components with GPP in tropical Amazon.

  6. Seasonality of weather and tree phenology in a tropical evergreen mountain rain forest.

    Science.gov (United States)

    Bendix, J; Homeier, J; Cueva, E Ortiz; Emck, P; Breckle, S-W; Richter, M; Beck, E

    2006-07-01

    Flowering and fruiting as phenological events of 12 tree species in an evergreen tropical mountain rain forest in southern Ecuador were examined over a period of 3-4 years. Leaf shedding of two species was observed for 12 months. Parallel to the phenological recordings, meteorological parameters were monitored in detail and related to the flowering and fruiting activity of the trees. In spite of the perhumid climate of that area, a high degree of intra- and inter-specific synchronisation of phenological traits was apparent. With the exception of one species that flowered more or less continuously, two groups of trees could be observed, one of which flowered during the less humid months (September to October) while the second group started to initiate flowers towards the end of that phase and flowered during the heavy rains (April to July). As reflected by correlation coefficients, the all-time series of meteorological parameters showed a distinct seasonality of 8-12 months, apparently following the quasi-periodic oscillation of precipitation and related cloudiness. As revealed by power spectrum analysis and Markov persistence, rainfall and minimum temperature appear to be the only parameters with a periodicity free of long-term variations. The phenological events of most of the plant species showed a similar periodicity of 8-12 months, which followed the annual oscillation of relatively less and more humid periods and thus was in phase or in counter-phase with the oscillations of the meteorological parameters. Periods of unusual cold or dryness, presumably resulting from underlying longer-term trends or oscillations (such as ENSO), affected the homogeneity of quasi-12-month flowering events, fruit maturation and also the production of germinable seeds. Some species show underlying quasi-2-year-oscillations, for example that synchronise with the development of air temperature; others reveal an underlying decrease or increase in flowering activity over the

  7. Seasonal dynamics of Boletus edulis and Lactarius deliciosus extraradical mycelium in pine forests of central Spain.

    Science.gov (United States)

    De la Varga, Herminia; Águeda, Beatriz; Ágreda, Teresa; Martínez-Peña, Fernando; Parladé, Javier; Pera, Joan

    2013-07-01

    The annual belowground dynamics of extraradical soil mycelium and sporocarp production of two ectomycorrhizal fungi, Boletus edulis and Lactarius deliciosus, have been studied in two different pine forests (Pinar Grande and Pinares Llanos, respectively) in Soria (central Spain). Soil samples (five per plot) were taken monthly (from September 2009 to August 2010 in Pinar Grande and from September 2010 to September 2011 in Pinares Llanos) in eight permanent plots (four for each site). B. edulis and L. deliciosus extraradical soil mycelium was quantified by real-time polymerase chain reaction, with DNA extracted from soil samples, using specific primers and TaqMan® probes. The quantities of B. edulis soil mycelium did not differ significantly between plots, but there was a significant difference over time with a maximum in February (0.1576 mg mycelium/g soil) and a minimum in October (0.0170 mg mycelium/g soil). For L. deliciosus, significant differences were detected between plots and over time. The highest amount of mycelium was found in December (1.84 mg mycelium/g soil) and the minimum in February (0.0332 mg mycelium/g soil). B. edulis mycelium quantities were positively correlated with precipitation of the current month and negatively correlated with the mean temperature of the previous month. Mycelium biomass of L. deliciosus was positively correlated with relative humidity and negatively correlated with mean temperature and radiation. No significant correlation between productivity of the plots with the soil mycelium biomass was observed for any of the two species. No correlations were found between B. edulis sporocarp production and weather parameters. Sporocarp production of L. deliciosus was positively correlated with precipitation and relative humidity and negatively correlated with maximum and minimum temperatures. Both species have similar distribution over time, presenting an annual dynamics characterized by a seasonal variability, with a clear increase

  8. Mapping Clearances in Tropical Dry Forests Using Breakpoints, Trend, and Seasonal Components from MODIS Time Series: Does Forest Type Matter?

    NARCIS (Netherlands)

    Grogan, Kenneth; Pflugmacher, Dirk; Hostert, Patrick; Verbesselt, Jan; Fensholt, Rasmus

    2016-01-01

    Tropical environments present a unique challenge for optical time series analysis, primarily owing to fragmented data availability, persistent cloud cover and atmospheric aerosols. Additionally, little is known of whether the performance of time series change detection is affected by diverse forest

  9. Effects of land use change and seasonality of precipitation on soil nitrogen in a dry tropical forest area in the Western Llanos of Venezuela.

    Science.gov (United States)

    González-Pedraza, Ana Francisca; Dezzeo, Nelda

    2014-01-01

    We evaluated changes of different soil nitrogen forms (total N, available ammonium and nitrate, total N in microbial biomass, and soil N mineralization) after conversion of semideciduous dry tropical forest in 5- and 18-year-old pastures (YP and OP, resp.) in the western Llanos of Venezuela. This evaluation was made at early rainy season, at end rainy season, and during dry season. With few exceptions, no significant differences were detected in the total N in the three study sites. Compared to forest soils, YP showed ammonium losses from 4.2 to 62.9% and nitrate losses from 20.0 to 77.8%, depending on the season of the year. In OP, the ammonium content increased from 50.0 to 69.0% at the end of the rainy season and decreased during the dry season between 25.0 and 55.5%, whereas the nitrate content increased significantly at early rainy season. The net mineralization and the potentially mineralizable N were significantly higher (P forest and YP, which would indicate a better quality of the substrate in OP for mineralization. The mineralization rate constant was higher in YP than in forest and OP. This could be associated with a reduced capacity of these soils to preserve the available nitrogen.

  10. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests

    Science.gov (United States)

    Andrew D. Richardson; David Y. Hollinger; D. Bryan Dail; John T. Lee; J. William Munger; John O' Keefe

    2009-01-01

    Spring phenology is thought to exert a major influence on the carbon (C) balance of temperate and boreal ecosystems. We investigated this hypothesis using four spring onset phenological indicators in conjunction with surface-atmosphere CO2 exchange data from the conifer-dominated Howland Forest and deciduous-dominated Harvard Forest AmeriFlux...

  11. The Prefrontal Cortex Activity and Psychological Effects of Viewing Forest Landscapes in Autumn Season.

    Science.gov (United States)

    Joung, Dawou; Kim, Geonwoo; Choi, Yoonho; Lim, HyoJin; Park, Soonjoo; Woo, Jong-Min; Park, Bum-Jin

    2015-06-26

    Recently reported research indicate that forest environments have physiological and psychological relaxing effects compared to urban environments. However, some researchers claim that the stress of the subjects from being watched by others during measurements can affect the measurement result in urban experiments conducted in the center of a street. The present study was conducted to determine whether forest environments have physiological and psychological relaxing effects, using comparison of viewing a forest area with viewing an urban area from the roof of an urban building without being watched by others. Near-infrared spectroscopy (NIRS) measurement was performed on subjects while they viewed scenery for 15 min at each experimental site (urban and forest areas). Subjective assessments were performed after the NIRS measurement was complete. Total hemoglobin and oxyhemoglobin concentrations were significantly lower in the forest area than in the urban area. For semantic differential in subjective assessments, feelings of "comfortable", "natural", and "soothed" were significantly higher in the forest area than in the urban area, and for profile of mood states, negative emotions were significantly lower in the forest area than in the urban area. The results of physiological and psychological measurements show that viewing the forest enabled effective relaxation.

  12. Arthropod abundance and seasonal bird use of bottomland forest harvest gaps

    Science.gov (United States)

    Christopher E. Moorman; Liessa T. Woen; John C. Kilgo; James L. Hanula; Scott Horn; Michael D. Ulyshen

    2012-01-01

    We investigated the influence of arthropod abundance and vegetation structure on shifts in avian use of canopy gap, gap edge, and surrounding forest understory in a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. We compared captures of foliage-gleaning birds among locations during four periods (spring migration, breeding, post-breeding, and...

  13. The role of arbuscular mycorrhizal fungi on the early-stage restoration of seasonally dry tropical forest in Chamela, Mexico

    Directory of Open Access Journals (Sweden)

    Pilar Huante

    2012-04-01

    Full Text Available It was evaluated the effect of two different sources of local inocula from two contrasting sites (mature forest, pasture of arbuscular mycorrhizae fungi (AMF and a non-mycorrhizal control on the plant growth of six woody species differing in functional characteristics (slow-, intermediate- and fast-growth, when introduced in a seasonally tropical dry forest (STDF converted into abandoned pasture. Six plots (12 X 12m were set as AMF inoculum source. Six replicates of six different species arranged in a Latin Square design were set in each plot. Plant height, cover area and the number of leaves produced by individual plant was measured monthly during the first growing season in each treatment. Species differed in their ability to benefit from AMF and the largest responsiveness in plant height and leaf production was exhibited by the slow-growing species Swietenia humilis, Hintonia latiflora and Cordia alliodora. At the end of the growing season (November, the plant height of the fast growing species Tabebuia donnel-smithii, Ceiba pentandra and Guazuma ulmifolia were not influenced by AMF. However, inocula of AMF increased leaf production of all plant species regardless the functional characteristics of the species, suggesting a better exploitation of above-ground space and generating a light limited environment under the canopy, which contributed to pasture suppression. Inoculation of seedlings planted in abandoned pasture areas is recommended for ecological restoration due to the high responsiveness of seedling growth in most of species. Use of forest inoculum with its higher diversity of AMF could accelerate the ecological restoration of the above and below-ground comunities.

  14. Seasonal Patterns of Sporophyte Growth, Fertility, Fouling, and Mortality of Saccharina latissima in Skagerrak, Norway: Implications for Forest Recovery

    Directory of Open Access Journals (Sweden)

    Guri Sogn Andersen

    2011-01-01

    Full Text Available On the Skagerrak coast the kelp Saccharina latissima has suffered severe stand reductions over the last decade, resulting in loss of important habitats. In the present study, healthy kelp plants were transplanted into four deforested areas and their patterns of growth, reproduction, and survival were monitored through subsequent seasons. Our main objective was to establish whether the kelp plants were able to grow and mature in deforested areas. We observed normal patterns of growth and maturation at all study sites. However, heavy fouling by epiphytes occurred each summer, followed by high kelp mortality. The study shows that the seasonal variations and the life stage timing of S. latissima make formation of self-sustainable populations impossible in the present environment. Most noteworthy, we suggest that fouling by epiphytes is involved in the lack of kelp forest recovery in Skagerrak, Norway.

  15. Seasonal Belowground Ecosystem and Eco-enzymatic Responses to Soil pH and Phosphorus Availability in Temperate Hardwood Forests

    Science.gov (United States)

    Smemo, K. A.; Deforest, J. L.; Petersen, S. L.; Burke, D.; Hewins, C.; Kluber, L. A.; Kyker, S. R.

    2013-12-01

    Atmospheric acid deposition can increase phosphorus (P) limitation in temperate hardwood forests by increasing N availability, and therefore P demand, and/or by decreasing pH and occluding inorganic P. However, only recently have studies demonstrated that P limitation can occur in temperate forests and very little is known about the temporal aspects of P dynamics in acidic forest soils and how seasonal shifts in nutrient availability and demand influence microbial investment in extracellular enzymes. The objectives of this study were to investigate how P availability and soil pH influence seasonal patterns of nutrient cycling and soil microbial activity in hardwood forests that experience chronic acid deposition. We experimentally manipulated soil pH, P, or both for three years and examined soil treatment responses in fall, winter, spring, early summer, and late summer. We found that site (glaciated versus unglaciated) and treatment had the most significant influence on nutrient pools and cycling. In general, nutrient pools were higher in glaciated soils than unglaciated for measured nutrients, including total C and N (2-3 times higher), extractable inorganic nitrogen, and readily available P. Treatment had no impact on total C and N pools in either region, but did affect other measured nutrients such as ammonium, which was greatest in the elevated pH treatment for both sites. As expected, readily available P pools were highest in the elevated P treatments (3 fold increase in both sites), but raising pH decreased available P pools in the glaciated site. Raising soil pH increased both net N mineralization rates and net P mineralization rates, regardless of site. Nitrification responses were complex, but we observed an overall significant nitrification increase under elevated pH, particularly in the growing season. Extracellular enzyme activity showed more seasonal patterns than site and treatment effects, exhibiting significant growing season activity reductions for

  16. Successional and seasonal variations in soil and litter microbial community structure and function during tropical postagricultural forest regeneration: a multiyear study.

    Science.gov (United States)

    Smith, A Peyton; Marín-Spiotta, Erika; Balser, Teri

    2015-09-01

    Soil microorganisms regulate fundamental biochemical processes in plant litter decomposition and soil organic matter (SOM) transformations. Understanding how microbial communities respond to changes in vegetation is critical for improving predictions of how land-cover change affects belowground carbon storage and nutrient availability. We measured intra- and interannual variability in soil and forest litter microbial community composition and activity via phospholipid fatty acid analysis (PLFA) and extracellular enzyme activity across a well-replicated, long-term chronosequence of secondary forests growing on abandoned pastures in the wet subtropical forest life zone of Puerto Rico. Microbial community PLFA structure differed between young secondary forests and older secondary and primary forests, following successional shifts in tree species composition. These successional patterns held across seasons, but the microbial groups driving these patterns differed over time. Microbial community composition from the forest litter differed greatly from those in the soil, but did not show the same successional trends. Extracellular enzyme activity did not differ with forest succession, but varied by season with greater rates of potential activity in the dry seasons. We found few robust significant relationships among microbial community parameters and soil pH, moisture, carbon, and nitrogen concentrations. Observed inter- and intrannual variability in microbial community structure and activity reveal the importance of a multiple, temporal sampling strategy when investigating microbial community dynamics with land-use change. Successional control over microbial composition with forest recovery suggests strong links between above and belowground communities. © 2015 John Wiley & Sons Ltd.

  17. Black carbon content in a ponderosa pine forest of eastern Oregon with varying seasons and intervals of prescribed burns

    Science.gov (United States)

    Matosziuk, L.; Hatten, J. A.

    2016-12-01

    Soil carbon represents a significant component of the global carbon cycle. While fire-based disturbance of forest ecosystems acts as a carbon source, the increased temperatures can initiate molecular changes to forest biomass that convert fast cycling organic carbon into more stable forms such as black carbon (BC), a product of incomplete combustion that contains highly-condensed aromatic structures and very low hydrogen and oxygen content. Such forms of carbon can remain in the soil for hundred to thousands of years, effectively creating a long-term carbon sink. The goal of this project is to understand how specific characteristics of prescribed burns, specifically the season of burn and the interval between burns, affect the formation, structure, and retention of these slowly degrading forms of carbon in the soil. Both O-horizon (forest floor) and mineral soil (0-15 cm cores) samples were collected from a season and interval of burn study in Malheur National Forest. The study area is divided into six replicate units, each of which is sub-divided into four treatment areas and a control. Beginning in 1997, each treatment area was subjected to: i) spring burns at five-year intervals, ii) fall burns at five-year intervals, iii) spring burns at 15-year intervals, or iv) fall burns at 15-year intervals. The bulk density, pH, and C/N content of each soil were measured to assess the effect of the burn treatments on the soil. Additionally, the amount and molecular structure of BC in each sample was quantified using the distribution of specific molecular markers (benzene polycarboxylic acids or BPCAs) that are present in the soil following acid digestion.

  18. Seasonal dynamics, age structure and reproduction of four Carabus species (Coleoptera: Carabidae) living in forested landscapes in Hungary

    DEFF Research Database (Denmark)

    Kádár, Ferenc; Fazekas, Judit P.; Sárospataki, Miklós

    2015-01-01

    Seasonal dynamics and reproductive phenological parameters of four Carabus species (C. convexus, C. coriaceus, C. germarii and C. hortensis) common in Hungary were studied by pitfall trapping and dissection. Beetles were collected in an abandoned apple orchard and in the bordering oak forest near...... Budapest (Central Hungary), in 1988–1991. The sex ratio was male-dominated, but this was significant only for C. coriaceus. The catch of C. germarii adults showed relatively short activity period with unimodal curve, but activity was longer and bimodal for the other three species. Adults of C. germarii...

  19. Foggy days and dry nights determine crown-level water balance in a seasonal tropical Montane cloud forest.

    Science.gov (United States)

    Gotsch, Sybil G; Asbjornsen, Heidi; Holwerda, Friso; Goldsmith, Gregory R; Weintraub, Alexis E; Dawson, Todd E

    2014-01-01

    The ecophysiology of tropical montane cloud forest (TMCF) trees is influenced by crown-level microclimate factors including regular mist/fog water inputs, and large variations in evaporative demand, which in turn can significantly impact water balance. We investigated the effect of such microclimatic factors on canopy ecophysiology and branch-level water balance in the dry season of a seasonal TMCF in Veracruz, Mexico, by quantifying both water inputs (via foliar uptake, FU) and outputs (day- and night-time transpiration, NT). Measurements of sap flow, stomatal conductance, leaf water potential and pressure-volume relations were obtained in Quercus lanceifolia, a canopy-dominant tree species. Our results indicate that FU occurred 34% of the time and led to the recovery of 9% (24 ± 9.1 L) of all the dry-season water transpired from individual branches. Capacity for FU was independently verified for seven additional common tree species. NT accounted for approximately 17% (46 L) of dry-season water loss. There was a strong correlation between FU and the duration of leaf wetness events (fog and/or rain), as well as between NT and the night-time vapour pressure deficit. Our results show the clear importance of fog and NT for the canopy water relations of Q. lanceifolia. © 2013 John Wiley & Sons Ltd.

  20. Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US

    Directory of Open Access Journals (Sweden)

    S. P. Urbanski

    2013-07-01

    Full Text Available In the US, wildfires and prescribed burning present significant challenges to air regulatory agencies attempting to achieve and maintain compliance with air quality regulations. Fire emission factors (EF are essential input for the emission models used to develop wildland fire emission inventories. Most previous studies quantifying wildland fire EF of temperate ecosystems have focused on emissions from prescribed burning conducted outside of the wildfire season. Little information is available on EF for wildfires in temperate forests of the conterminous US. The goal of this work is to provide information on emissions from wildfire-season forest fires in the northern Rocky Mountains, US. In August 2011, we deployed airborne chemistry instruments and sampled emissions over eight days from three wildfires and a prescribed fire that occurred in mixed conifer forests of the northern Rocky Mountains. We measured the combustion efficiency, quantified as the modified combustion efficiency (MCE, and EF for CO2, CO, and CH4. Our study average values for MCE, EFCO2, EFCO, and EFCH4 were 0.883, 1596 g kg−1, 135 g kg−1, 7.30 g kg−1, respectively. Compared with previous field studies of prescribed fires in temperate forests, the fires sampled in our study had significantly lower MCE and EFCO2 and significantly higher EFCO and EFCH4. The fires sampled in this study burned in areas reported to have moderate to heavy components of standing dead trees and down dead wood due to insect activity and previous fire, but fuel consumption data was not available. However, an analysis of MCE and fuel consumption data from 18 prescribed fires reported in the literature indicates that the availability of coarse fuels and conditions favorable for the combustion of these fuels favors low MCE fires. This analysis suggests that fuel composition was an important factor contributing to the low MCE of the fires measured in this study. This study only measured EF for CO2, CO

  1. Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils

    Czech Academy of Sciences Publication Activity Database

    Siles, J. A.; Cajthaml, Tomáš; Minerbi, S.; Margesin, R.

    2016-01-01

    Roč. 92, č. 3 (2016), fiw008 ISSN 0168-6496 Institutional support: RVO:61388971 Keywords : Alpine soil s * forest * altitude Subject RIV: EE - Microbiology, Virology Impact factor: 3.720, year: 2016

  2. The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics

    Czech Academy of Sciences Publication Activity Database

    López-Mondéjar, Rubén; Voříšková, Jana; Větrovský, Tomáš; Baldrian, Petr

    2015-01-01

    Roč. 87, č. 1 (2015), s. 43-50 ISSN 0038-0717 R&D Projects: GA MŠk(CZ) EE2.3.30.0003; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk LD12048; GA MŠk LD12050 Institutional support: RVO:61388971 Keywords : Bacterial community * Deciduous forest * Forest soil Subject RIV: EE - Microbiology, Virology Impact factor: 4.152, year: 2015

  3. Mapping Spatial Distribution of Larch Plantations from Multi-Seasonal Landsat-8 OLI Imagery and Multi-Scale Textures Using Random Forests

    Directory of Open Access Journals (Sweden)

    Tian Gao

    2015-02-01

    Full Text Available The knowledge about spatial distribution of plantation forests is critical for forest management, monitoring programs and functional assessment. This study demonstrates the potential of multi-seasonal (spring, summer, autumn and winter Landsat-8 Operational Land Imager imageries with random forests (RF modeling to map larch plantations (LP in a typical plantation forest landscape in North China. The spectral bands and two types of textures were applied for creating 675 input variables of RF. An accuracy of 92.7% for LP, with a Kappa coefficient of 0.834, was attained using the RF model. A RF-based importance assessment reveals that the spectral bands and bivariate textural features calculated by pseudo-cross variogram (PC strongly promoted forest class-separability, whereas the univariate textural features influenced weakly. A feature selection strategy eliminated 93% of variables, and then a subset of the 47 most essential variables was generated. In this subset, PC texture derived from summer and winter appeared the most frequently, suggesting that this variability in growing peak season and non-growing season can effectively enhance forest class-separability. A RF classifier applied to the subset led to 91.9% accuracy for LP, with a Kappa coefficient of 0.829. This study provides an insight into approaches for discriminating plantation forests with phenological behaviors.

  4. Temporal variability of the NPP-GPP ratio at seasonal and interannual time scales in a temperate beech forest

    Directory of Open Access Journals (Sweden)

    M. Campioli

    2011-09-01

    Full Text Available The allocation of carbon (C taken up by the tree canopy for respiration and production of tree organs with different construction and maintenance costs, life span and decomposition rate, crucially affects the residence time of C in forests and their C cycling rate. The carbon-use efficiency, or ratio between net primary production (NPP and gross primary production (GPP, represents a convenient way to analyse the C allocation at the stand level. In this study, we extend the current knowledge on the NPP-GPP ratio in forests by assessing the temporal variability of the NPP-GPP ratio at interannual (for 8 years and seasonal (for 1 year scales for a young temperate beech stand, reporting dynamics for both leaves and woody organs, in particular stems. NPP was determined with biometric methods/litter traps, whereas the GPP was estimated via the eddy covariance micrometeorological technique.

    The interannual variability of the proportion of C allocated to leaf NPP, wood NPP and leaf plus wood NPP (on average 11% yr−1, 29% yr−1 and 39% yr−1, respectively was significant among years with up to 12% yr−1 variation in NPP-GPP ratio. Studies focusing on the comparison of NPP-GPP ratio among forests and models using fixed allocation schemes should take into account the possibility of such relevant interannual variability. Multiple linear regressions indicated that the NPP-GPP ratio of leaves and wood significantly correlated with environmental conditions. Previous year drought and air temperature explained about half of the NPP-GPP variability of leaves and wood, respectively, whereas the NPP-GPP ratio was not decreased by severe drought, with large NPP-GPP ratio on 2003 due mainly to low GPP. During the period between early May and mid June, the majority of GPP was allocated to leaf and stem NPP, whereas these sinks were of little importance later on. Improved estimation of seasonal GPP and of the

  5. Seasonal variations of gas exchange and water relations in deciduous and evergreen trees in monsoonal dry forests of Thailand.

    Science.gov (United States)

    Ishida, Atsushi; Harayama, Hisanori; Yazaki, Kenichi; Ladpala, Phanumard; Sasrisang, Amornrat; Kaewpakasit, Kanokwan; Panuthai, Samreong; Staporn, Duriya; Maeda, Takahisa; Gamo, Minoru; Diloksumpun, Sapit; Puangchit, Ladawan; Ishizuka, Moriyoshi

    2010-08-01

    This study compared leaf gas exchange, leaf hydraulic conductance, twig hydraulic conductivity and leaf osmotic potential at full turgor between two drought-deciduous trees, Vitex peduncularis Wall. and Xylia xylocarpa (Roxb.) W. Theob., and two evergreen trees, Hopea ferrea Lanessan and Syzygium cumini (L.) Skeels, at the uppermost canopies in tropical dry forests in Thailand. The aims were to examine (i) whether leaf and twig hydraulic properties differ in relation to leaf phenology and (ii) whether xylem cavitation is a determinant of leaf shedding during the dry season. The variations in almost all hydraulic traits were more dependent on species than on leaf phenology. Evergreen Hopea exhibited the lowest leaf-area-specific twig hydraulic conductivity (leaf-area-specific K(twig)), lamina hydraulic conductance (K(lamina)) and leaf osmotic potential at full turgor (Ψ(o)) among species, whereas evergreen Syzygium exhibited the highest leaf-area-specific K(twig), K(lamina) and Ψ(o). Deciduous Xylia had the highest sapwood-area-specific K(twig), along with the lowest Huber value (sapwood area/leaf area). More negative osmotic Ψ(o) and leaf osmotic adjustment during the dry season were found in deciduous Vitex and evergreen Hopea, accompanied by low sapwood-area-specific K(twig). Regarding seasonal changes in hydraulics, no remarkable decrease in K(lamina) and K(twig) was found during the dry season in any species. Results suggest that leaf shedding during the dry season is not always associated with extensive xylem cavitation.

  6. Snowmelt timing, phenology, and growing season length in conifer forests of Crater Lake National Park, USA

    Science.gov (United States)

    O'Leary, Donal S.; Kellermann, Jherime L.; Wayne, Chris

    2018-02-01

    Anthropogenic climate change is having significant impacts on montane and high-elevation areas globally. Warmer winter temperatures are driving reduced snowpack in the western USA with broad potential impacts on ecosystem dynamics of particular concern for protected areas. Vegetation phenology is a sensitive indicator of ecological response to climate change and is associated with snowmelt timing. Human monitoring of climate impacts can be resource prohibitive for land management agencies, whereas remotely sensed phenology observations are freely available at a range of spatiotemporal scales. Little work has been done in regions dominated by evergreen conifer cover, which represents many mountain regions at temperate latitudes. We used moderate resolution imaging spectroradiometer (MODIS) data to assess the influence of snowmelt timing and elevation on five phenology metrics (green up, maximum greenness, senescence, dormancy, and growing season length) within Crater Lake National Park, Oregon, USA from 2001 to 2012. Earlier annual mean snowmelt timing was significantly correlated with earlier onset of green up at the landscape scale. Snowmelt timing and elevation have significant explanatory power for phenology, though with high variability. Elevation has a moderate control on early season indicators such as snowmelt timing and green up and less on late-season variables such as senescence and growing season length. PCA results show that early season indicators and late season indicators vary independently. These results have important implications for ecosystem dynamics, management, and conservation, particularly of species such as whitebark pine ( Pinus albicaulis) in alpine and subalpine areas.

  7. Boreal forest fires in 1997 and 1998: a seasonal comparison using transport model simulations and measurement data

    Directory of Open Access Journals (Sweden)

    N. Spichtinger

    2004-01-01

    Full Text Available Forest fire emissions have a strong impact on the concentrations of trace gases and aerosols in the atmosphere. In order to quantify the influence of boreal forest fire emissions on the atmospheric composition, the fire seasons of 1997 and 1998 are compared in this paper. Fire activity in 1998 was very strong, especially over Canada and Eastern Siberia, whereas it was much weaker in 1997. According to burned area estimates the burning in 1998 was more than six times as intense as in 1997. Based on hot spot locations derived from ATSR (Along Track Scanning Radiometer data and official burned area data, fire emissions were estimated and their transport was simulated with a Lagrangian tracer transport model. Siberian and Canadian forest fire tracers were distinguished to investigate the transport of both separately. The fire emissions were transported even over intercontinental distances. Due to the El Niño induced meteorological situation, transport from Siberia to Canada was enhanced in 1998. Siberian fire emissions were transported towards Canada and contributed concentrations more than twice as high as those due to Canada's own CO emissions by fires. In 1998 both tracers arrive at higher latitudes over Europe, which is due to a higher North Atlantic Oscillation (NAO index in 1998. The simulated emission plumes are compared to CMDL (Climate Monitoring and Diagnostics Laboratory CO2 and CO data, Total Ozone Mapping Spectrometer (TOMS aerosol index (AI data and Global Ozone Monitoring Experiment (GOME tropospheric NO2 and HCHO columns. All the data show clearly enhanced signals during the burning season of 1998 compared to 1997. The results of the model simulation are in good agreement with ground-based as well as satellite-based measurements.

  8. Forests

    Science.gov (United States)

    Louis R. Iverson; Mark W. Schwartz

    1994-01-01

    Originally diminished by development, forests are coming back: forest biomass is accumulating. Forests are repositories for many threatened species. Even with increased standing timber, however, biodiversity is threatened by increased forest fragmentation and by exotic species.

  9. Do Reductions in Dry Season Transpiration Allow Shallow Soil Water Uptake to Persist in a Tropical Lower Montane Cloud Forest?

    Science.gov (United States)

    Munoz Villers, L. E.; Holwerda, F.; Alvarado-Barrientos, M. S.; Goldsmith, G. R.; Geissert Kientz, D. R.; González Martínez, T. M.; Dawson, T. E.

    2016-12-01

    Tropical montane cloud forests (TMCF) are ecosystems particularly sensitive to climate change; however, the effects of warmer and drier conditions on TMCF water cycling remain poorly understood. To investigate the plant functional response to reduced water availability, we conducted a study during the mid to late dry season (2014) in the lower limit (1,325 m asl) of the TMCF belt (1200-2500 m asl) in central Veracruz, Mexico. The temporal variation of transpiration rates of dominant upper canopy and mid-story tree species, depth of water uptake, as well as tree water sources were examined using micrometeorological, sapflow and soil moisture measurements, in combination with data on stable isotope (δ18O and δ2H) composition of rain, tree xylem, soil (bulk and low suction-lysimeter) and stream water. The sapflow data suggest that crown conductances decreased as temperature and vapor pressure deficit increased, and soil moisture decreased from the mid to late dry season. Across all samplings (January 21, April 12 and 26), upper canopy species (Quercus spp.) showed more depleted (negative) isotope values compared to mid-story trees (Carpinus tropicalis). Overall, we found that the evaporated soil water pool was the main source for the trees. Furthermore, our MixSIAR Bayesian mixing model results showed that the depth of tree water uptake changed over the course of the dry season. Unexpectedly, a shift in water uptake from deeper (60-120 cm depth) to shallower soil water (0-30 cm) sources was observed, coinciding with the decreases in transpiration rates towards the end of the dry season. A larger reduction in deep soil water contributions was observed for upper canopy trees (from 70±14 to 22±15%) than for mid-story species (from 10±13 to 7±10%). The use of shallow soil water by trees during the dry season seems consistent with the greater root biomass and higher macronutrient concentrations found in the first 10 cm of the soil profiles. These findings are an

  10. Vascular species composition of a contact zone between Seasonal and Araucaria forests in Guaraciaba, Far West of Santa Catarina state, southern Brazil

    OpenAIRE

    Gnigler, Luciana; Caddah, Mayara

    2015-01-01

    A floristic survey was carried out in a contact area between Araucaria Forest and Seasonal Forest areas, in the municipality of Guaraciaba, Far West of Santa Catarina state, southern Brazil. We provide a checklist containing 108 species and 42 plant families for the area. Families with the most encountered number of species were Myrtaceae (eight species), Solanaceae (eight), Euphorbiaceae (seven) and Poaceae (six). Two species are classified as endangered of extinction, following IUCN criteri...

  11. Seasonal household income dependency on forest and environmental resources in rural Mozambique

    DEFF Research Database (Denmark)

    Walelign, Solomon Zena; Nielsen, Øystein Juul

    2013-01-01

    Households in agrarian societies engage in variety of income generating activities. These activities are often seasonal and the associated income generated is volatile. Based on an income survey from 2006 in rural Mozambique, this study assesses the seasonal contribution of different income sources....... The volatility did vary across income sources; crop income seems the most volatile income component. Volatility in crop income is likely to have severe negative implications for rural households as poverty is widespread and other income opportunities are few. Therefore, the government and other developments...

  12. Spatial and seasonal dynamics of surface soil carbon in the Luquillo Experimental Forest, Puerto Rico.

    Science.gov (United States)

    Hongqing Wang; Joseph D. Cornell; Charles A.S. Hall; David P. Marley

    2002-01-01

    We developed a spatially-explicit version of the CENTURY soil model to characterize the storage and flux of soil organic carbon (SOC, 0–30 cm depth) in the Luquillo Experimental Forest (LEF), Puerto Rico as a function of climate, vegetation, and soils. The model was driven by monthly estimates of average air temperature, precipitation, and potential evapotranspiration...

  13. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests

    Science.gov (United States)

    Jorge Durán; Jennifer L. Morse; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer

    2014-01-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity...

  14. Fluctuations in daily energy intake do not cause physiological stress in a Neotropical primate living in a seasonal forest.

    Science.gov (United States)

    Martínez-Mota, Rodolfo; Righini, Nicoletta; Palme, Rupert

    2016-12-01

    Animals may face periods of nutritional stress due to short-term food shortage and/or low energy consumption associated with seasonal fluctuations in resource availability. We tested the hypothesis that periods of restricted macronutrient and energy intake result in energy deficits and physiological stress in wild black howler monkeys (Alouatta pigra) inhabiting seasonal tropical semi-deciduous forests. We conducted full-day follows of focal animals recording feeding rates, time spent feeding, and total amount of food ingested. We carried out nutritional analysis of foods collected from feeding trees and calculated the daily nutrient and energy intake of each focal individual. Fecal glucocorticoid metabolites (fGCM) of focal animals were used as an indicator of physiological stress. We found that fluctuations in daily energy intake across seasons did not have significant effects on fGCM of individuals. However, protein intake was negatively associated with fGCM, highlighting the interplay among macronutrients, metabolism, and the endocrine system. Fecal glucocorticoid metabolites were also positively related to fruit availability, but this relationship was most likely due to social stress associated with intergroup encounters and resource defense that occurred when preferred trees were fruiting. Behavioral strategies such as dietary shifts and nutrient mixing, and metabolic adaptations such as low energy expenditure allowed individuals to fulfill their minimum energy requirements even during periods of decreased resource availability and intake. The present study suggests that seasonal variations in food, macronutrient, and energy acquisition may have limited physiological costs for animals that exploit different types of plant resources such as howler monkeys.

  15. Variations of net ecosystem production due to seasonal precipitation differences in a tropical dry forest of northwest Mexico

    Science.gov (United States)

    Verduzco, Vivian S.; Garatuza-Payán, Jaime; Yépez, Enrico A.; Watts, Christopher J.; Rodríguez, Julio C.; Robles-Morua, Agustin; Vivoni, Enrique R.

    2015-10-01

    Due to their large extent and high primary productivity, tropical dry forests (TDF) are important contributors to atmospheric carbon exchanges in subtropical and tropical regions. In northwest Mexico, a bimodal precipitation regime that includes winter precipitation derived from Pacific storms and summer precipitation from the North American monsoon (NAM) couples water availability with ecosystem processes. We investigated the net ecosystem production of a TDF ecosystem using a 4.5 year record of water and carbon fluxes obtained from the eddy covariance method complemented with remotely sensed data. We identified a large CO2 efflux at the start of the summer season that is strongly related to the preceding winter precipitation and greenness. Since this CO2 efflux occurs prior to vegetation green-up, we infer that respiration is mainly due to decomposition of soil organic matter accumulated from the prior growing season. Overall, ecosystem respiration has an important effect on the net ecosystem production but can be overwhelmed by the strength of the primary productivity during the NAM. Precipitation characteristics during NAM have significant controls on sustaining carbon fixation in the TDF into the fall season. We identified that a threshold of ~350 to 400 mm of monsoon precipitation leads to a switch in the annual carbon balance in the TDF ecosystem from a net source (+102 g C/m2/yr) to a net sink (-249 g C/m2/yr). This monsoonal precipitation threshold is typically exceeded one out of every 2 years. The close coupling of winter and summer periods with respect to carbon fluxes suggests that the annual carbon balance is dependent on precipitation amounts in both seasons in TDF ecosystems.

  16. Water availability not fruitfall modulates the dry season distribution of frugivorous terrestrial vertebrates in a lowland Amazon forest.

    Directory of Open Access Journals (Sweden)

    Omar Stalin Landázuri Paredes

    Full Text Available Terrestrial vertebrate frugivores constitute one of the major guilds in tropical forests. Previous studies show that the meso-scale distribution of this group is only weakly explained by variables such as altitude and tree basal area in lowland Amazon forests. For the first time we test whether seasonally limiting resources (water and fallen fruit affect the dry season distribution in 25 species of terrestrial vertebrates. To examine the effects of the spatial availability of fruit and water on terrestrial vertebrates we used a standardized, regularly spaced arrangement of camera-traps within 25km2 of lowland Amazon forest. Generalized linear models (GLMs were then used to examine the influence of four variables (altitude, distance to large rivers, distance to nearest water, and presence vs absence of fruits on the number of photos on five functional groups (all frugivores, small, medium, large and very large frugivores and on seven of the most abundant frugivore species (Cuniculus paca, Dasyprocta leporina, Mazama americana, Mazama nemorivaga, Myoprocta acouchy, Pecari tajacu and Psophia crepitans. A total of 279 independent photos of 25 species were obtained from 900 camera-trap days. For most species and three functional groups, the variation in the number of photos per camera was significantly but weakly explained by the GLMs (deviance explained ranging from 6.2 to 48.8%. Generally, we found that the presence of water availability was more important than the presence of fallen fruit for the groups and species studied. Medium frugivores, large-bodied frugivores, and two of the more abundant species (C. paca and P. crepitans were recorded more frequently closer to water bodies; while none of the functional groups nor the most abundant species showed any significant relationship with the presence of fallen fruit. Two functional groups and two of the seven most common frugivore species assessed in the GLMs showed significant results with species

  17. Water availability not fruitfall modulates the dry season distribution of frugivorous terrestrial vertebrates in a lowland Amazon forest.

    Science.gov (United States)

    Paredes, Omar Stalin Landázuri; Norris, Darren; Oliveira, Tadeu Gomes de; Michalski, Fernanda

    2017-01-01

    Terrestrial vertebrate frugivores constitute one of the major guilds in tropical forests. Previous studies show that the meso-scale distribution of this group is only weakly explained by variables such as altitude and tree basal area in lowland Amazon forests. For the first time we test whether seasonally limiting resources (water and fallen fruit) affect the dry season distribution in 25 species of terrestrial vertebrates. To examine the effects of the spatial availability of fruit and water on terrestrial vertebrates we used a standardized, regularly spaced arrangement of camera-traps within 25km2 of lowland Amazon forest. Generalized linear models (GLMs) were then used to examine the influence of four variables (altitude, distance to large rivers, distance to nearest water, and presence vs absence of fruits) on the number of photos on five functional groups (all frugivores, small, medium, large and very large frugivores) and on seven of the most abundant frugivore species (Cuniculus paca, Dasyprocta leporina, Mazama americana, Mazama nemorivaga, Myoprocta acouchy, Pecari tajacu and Psophia crepitans). A total of 279 independent photos of 25 species were obtained from 900 camera-trap days. For most species and three functional groups, the variation in the number of photos per camera was significantly but weakly explained by the GLMs (deviance explained ranging from 6.2 to 48.8%). Generally, we found that the presence of water availability was more important than the presence of fallen fruit for the groups and species studied. Medium frugivores, large-bodied frugivores, and two of the more abundant species (C. paca and P. crepitans) were recorded more frequently closer to water bodies; while none of the functional groups nor the most abundant species showed any significant relationship with the presence of fallen fruit. Two functional groups and two of the seven most common frugivore species assessed in the GLMs showed significant results with species

  18. Seasonal rainfall-runoff relationships in a lowland forested watershed in the southeastern USA

    Science.gov (United States)

    Ileana La Torre Torres; Devendra Amatya; Ge Sun; Timothy Callahan

    2011-01-01

    Hydrological processes of lowland watersheds of the southern USA are not well understood compared to a hilly landscape due to their unique topography, soil compositions, and climate. This study describes the seasonal relationships between rainfall patterns and runoff (sum of storm flow and base flow) using 13 years (1964–1976) of rainfall and stream flow data for a low...

  19. Season of prescribed burn in ponderosa pine forests in eastern Oregon: impact on pine mortality.

    Science.gov (United States)

    Walter G. Thies; Douglas J. Westlind; Mark. Loewen

    2005-01-01

    A study of the effects of season of prescribed burn on tree mortality was established in mixed-age ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at the south end of the Blue Mountains near Burns, Oregon. Each of six previously thinned stands was subdivided into three experimental units and one of three treatments was randomly assigned to each:...

  20. Climate change in winter versus the growing-season leads to different effects on soil microbial activity in northern hardwood forests

    Science.gov (United States)

    Sorensen, P. O.; Templer, P. H.; Finzi, A.

    2014-12-01

    Mean winter air temperatures have risen by approximately 2.5˚ C per decade over the last fifty years in the northeastern U.S., reducing the maximum depth of winter snowpack by approximately 26 cm over this period and the duration of winter snow cover by 3.6 to 4.2 days per decade. Forest soils in this region are projected to experience a greater number of freeze-thaw cycles and lower minimum winter soil temperatures as the depth and duration of winter snow cover declines in the next century. Climate change is likely to result not only in lower soil temperatures during winter, but also higher soil temperatures during the growing-season. We conducted two complementary experiments to determine how colder soils in winter and warmer soils in the growing-season affect microbial activity in hardwood forests at Harvard Forest, MA and Hubbard Brook Experimental Forest, NH. A combination of removing snow via shoveling and buried heating cables were used to induce freeze-thaw events during winter and to warm soils 5˚C above ambient temperatures during the growing-season. Increasing the depth and duration of soil frost via snow-removal resulted in short-term reductions in soil nitrogen (N) production via microbial proteolytic enzyme activity and net N mineralization following snowmelt, prior to tree leaf-out. Declining mass specific rates of carbon (C) and N mineralization associated with five years of snow removal at Hubbard Brook Experimental Forest may be an indication of microbial physiological adaptation to winter climate change. Freeze-thaw cycles during winter reduced microbial extracellular enzyme activity and the temperature sensitivity of microbial C and N mineralization during the growing-season, potentially offsetting nutrient and soil C losses due to soil warming in the growing-season. Our multiple experimental approaches show that winter climate change is likely to contribute to reduced microbial activity in northern hardwood forests.

  1. AFLP diversity and spatial structure of Calycophyllum candidissimum (Rubiaceae), a dominant tree species of Nicaragua's critically endangered seasonally dry forest.

    Science.gov (United States)

    Dávila-Lara, A; Affenzeller, M; Tribsch, A; Díaz, V; Comes, H P

    2017-10-01

    The Central American seasonally dry tropical (SDT) forest biome is one of the worlds' most endangered ecosystems, yet little is known about the genetic consequences of its recent fragmentation. A prominent constituent of this biome is Calycophyllum candidissimum, an insect-pollinated and wind-dispersed canopy tree of high socio-economic importance, particularly in Nicaragua. Here, we surveyed amplified fragment length polymorphisms across 13 populations of this species in Nicaragua to elucidate the relative roles of contemporary vs historical factors in shaping its genetic variation. Genetic diversity was low in all investigated populations (mean H E =0.125), and negatively correlated with latitude. Overall population differentiation was moderate (Φ ST =0.109, Pforest regions may be genetically resilient to habitat fragmentation due to species-typical dispersal characteristics, the necessity of broad-scale measures for their conservation notwithstanding.

  2. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production.

    Science.gov (United States)

    Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Hertel, Dietrich

    2016-02-01

    Tropical landscapes are not only rapidly transformed by ongoing land-use change, but are additionally confronted by increasing seasonal climate variation. There is an increasing demand for studies analyzing the effects and feedbacks on ecosystem functioning of large-scale conversions of tropical natural forest into intensively managed cash crop agriculture. We analyzed the seasonality of aboveground litterfall, fine root litter production, and aboveground woody biomass production (ANPP(woody)) in natural lowland forests, rubber agroforests under natural tree cover ("jungle rubber"), rubber and oil palm monocultures along a forest-to-agriculture transformation gradient in Sumatra. We hypothesized that the temporal fluctuation of litter production increases with increasing land-use intensity, while the associated nutrient fluxes and nutrient use efficiency (NUE) decrease. Indeed, the seasonal variation of aboveground litter production and ANPP(woody) increased from the natural forest to the plantations, while aboveground litterfall generally decreased. Nutrient return through aboveground litter was mostly highest in the natural forest; however, it was significantly lower only in rubber plantations. NUE of N, P and K was lowest in the oil palm plantations, with natural forest and the rubber systems showing comparably high values. Root litter production was generally lower than leaf litter production in all systems, while the root-to-leaf ratio of litter C flux increased along the land-use intensity gradient. Our results suggest that nutrient and C cycles are more directly affected by climate seasonality in species-poor agricultural systems than in species-rich forests, and therefore might be more susceptible to inter-annual climate fluctuation and climate change.

  3. Resilience to seasonal heat wave episodes in a Mediterranean pine forest.

    Science.gov (United States)

    Tatarinov, Fedor; Rotenberg, Eyal; Maseyk, Kadmiel; Ogée, Jérôme; Klein, Tamir; Yakir, Dan

    2016-04-01

    Short-term, intense heat waves (hamsins) are common in the eastern Mediterranean region and provide an opportunity to study the resilience of forests to such events that are predicted to increase in frequency and intensity. The response of a 50-yr-old Aleppo pine (Pinus halepensis) forest to hamsin events lasting 1-7 d was studied using 10 yr of eddy covariance and sap flow measurements. The highest frequency of heat waves was c. four per month, coinciding with the peak productivity period (March-April). During these events, net ecosystem carbon exchange (NEE) and canopy conductance (gc ) decreased by c. 60%, but evapotranspiration (ET) showed little change. Fast recovery was also observed with fluxes reaching pre-stress values within a day following the event. NEE and gc showed a strong response to vapor pressure deficit that weakened as soil moisture decreased, while sap flow was primarily responding to changes in soil moisture. On an annual scale, heat waves reduced NEE and gross primary productivity by c. 15% and 4%, respectively. Forest resilience to short-term extreme events such as heat waves is probably a key to its survival and must be accounted for to better predict the increasing impact on productivity and survival of such events in future climates. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. SEASONAL VARIATION IN LIGHT TRANSMISSION AND CANOPY GAPS OF DECIDUOUS ROADSIDE VEGETATION: ASSESSMENT WITHIN FOREST LANDSCAPE

    OpenAIRE

    Öztürk, Melih; Gökyer, Ercan

    2015-01-01

    Deciduous roadside vegetation exhibits seasonal patterns of foliage with varying colors and numbers. Hence the alternating percentage of the gaps within the roadside canopy allows changing percentages of light transmission throughout the year. The leafless roadside vegetation in winter is sequentially subject to budburst, flushing, and development stages until the summer, when the leaves are fully developed both in size and number. Then, defoliation follows senescence, and fading and fall sta...

  5. Seasonal variability of foliar photosynthetic and morphological traits and drought impacts in a Mediterranean mixed forest.

    Science.gov (United States)

    Sperlich, D; Chang, C T; Peñuelas, J; Gracia, C; Sabaté, S

    2015-05-01

    The Mediterranean region is a hot spot of climate change vulnerable to increased droughts and heat waves. Scaling carbon fluxes from leaf to landscape levels is particularly challenging under drought conditions. We aimed to improve the mechanistic understanding of the seasonal acclimation of photosynthesis and morphology in sunlit and shaded leaves of four Mediterranean trees (Quercus ilex L., Pinus halepensis Mill., Arbutus unedo L. and Quercus pubescens Willd.) under natural conditions. Vc,max and Jmax were not constant, and mesophyll conductance was not infinite, as assumed in most terrestrial biosphere models, but varied significantly between seasons, tree species and leaf position. Favourable conditions in winter led to photosynthetic recovery and growth in the evergreens. Under moderate drought, adjustments in the photo/biochemistry and stomatal/mesophyllic diffusion behaviour effectively protected the photosynthetic machineries. Severe drought, however, induced early leaf senescence mostly in A. unedo and Q. pubescens, and significantly increased leaf mass per area in Q. ilex and P. halepensis. Shaded leaves had lower photosynthetic potentials but cushioned negative effects during stress periods. Species-specificity, seasonal variations and leaf position are key factors to explain vegetation responses to abiotic stress and hold great potential to reduce uncertainties in terrestrial biosphere models especially under drought conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Seasonal variations of dissolved organic carbon in precipitation over urban and forest sites in central Poland.

    Science.gov (United States)

    Siudek, Patrycja; Frankowski, Marcin; Siepak, Jerzy

    2015-07-01

    Spatial and temporal variability of carbon species in rainwater (bulk deposition) was studied for the first time at two sites located in urban area of Poznań City and protected woodland area (Jeziory), in central Poland, between April and December 2013. The mean concentration of total carbon (TC) for the first site was 5.86 mg L(-1), whereas for the second, 5.21 mg L(-1). Dissolved organic carbon (DOC) concentration accounted for, on average, 87 and 91 % of total carbon in precipitation at urban and non-urban sites, respectively. Significant changes in TC concentrations in rainwater were observed at both sites, indicating that atmospheric transformation, transport, and removal mechanisms of carbonaceous particles were affected by seasonal fluctuations in biogenic/anthropogenic emission and meteorological conditions (i.e., precipitation height and type, atmospheric transport). During the warm season, the DOC concentration in rainwater was mostly influenced by mixed natural and anthropogenic sources. In contrast, during the cold season, the DOC concentration significantly increased mainly as a result of anthropogenic activities, i.e., intensive coal combustion, domestic wood burning, high-temperature processes, etc. In addition, during the winter measurements, significant differences in mean DOC concentration (Kruskal-Wallis test, p urban and non-urban sites. These data imply that carbonaceous compounds are of crucial importance in atmospheric chemistry and should be considered as an important parameter while considering wet deposition, reactions with different substances, especially over polluted environments.

  7. SEASONAL PATTERNS AND VERTICAL PROFILE OF SOIL WATER UPTAKE AND UTILIZATION BY YOUNG AND OLD DOUGLAS-FIR AND PONDEROSA PINE FORESTS

    Science.gov (United States)

    Water availability has a strong influence on the distribution of forest tree species across the landscape. However, we do not understand how seasonal patterns of water utilization by tree species are related to their drought tolerance. In the Pacific Northwest, Douglas-fir occu...

  8. Composition and seasonal phenology of a nonindigenous root-feeding weevil (Coleoptera: Curculionidae) complex in northern hardwood forests in the Great Lakes Region

    Science.gov (United States)

    R. A. Pinski; W. J. Mattson; K. F. Raffa

    2005-01-01

    Phyllobius oblongus (L.), Polydrusus sericeus (Schaller), and Sciaphilus asperatus (Bonsdorff) comprise a complex of nonindigenous root-feeding weevils in northern hardwood forests of the Great Lakes region. Little is known about their detailed biology, seasonality, relative abundance, and distribution patterns....

  9. Effects of fire disturbance on soil respiration in the non-growing season in a Larix gmelinii forest in the Daxing'an Mountains, China.

    Directory of Open Access Journals (Sweden)

    Tongxin Hu

    Full Text Available In boreal forests, fire is an important part of the ecosystem that greatly influences soil respiration, which in turn affects the carbon balance. Wildfire can have a significant effect on soil respiration and it depends on the fire severity and environmental factors (soil temperature and snow water equivalent after fire disturbance. In this study, we quantified post-fire soil respiration during the non-growing season (from November to April in a Larix gmelinii forest in Daxing'an Mountains of China. Soil respiration was measured in the snow-covered and snow-free conditions with varying degrees of natural burn severity forests. We found that soil respiration decreases as burn severity increases. The estimated annual C efflux also decreased with increased burn severity. Soil respiration during the non-growing season approximately accounted for 4%-5% of the annual C efflux in all site types. Soil temperature (at 5 cm depth was the predominant determinant of non-growing season soil respiration change in this area. Soil temperature and snow water equivalent could explain 73%-79% of the soil respiration variability in winter snow-covering period (November to March. Mean spring freeze-thaw cycle (FTC period (April soil respiration contributed 63% of the non-growing season C efflux. Our finding is key for understanding and predicting the potential change in the response of boreal forest ecosystems to fire disturbance under future climate change.

  10. Effects of fire disturbance on soil respiration in the non-growing season in a Larix gmelinii forest in the Daxing'an Mountains, China.

    Science.gov (United States)

    Hu, Tongxin; Sun, Long; Hu, Haiqing; Guo, Futao

    2017-01-01

    In boreal forests, fire is an important part of the ecosystem that greatly influences soil respiration, which in turn affects the carbon balance. Wildfire can have a significant effect on soil respiration and it depends on the fire severity and environmental factors (soil temperature and snow water equivalent) after fire disturbance. In this study, we quantified post-fire soil respiration during the non-growing season (from November to April) in a Larix gmelinii forest in Daxing'an Mountains of China. Soil respiration was measured in the snow-covered and snow-free conditions with varying degrees of natural burn severity forests. We found that soil respiration decreases as burn severity increases. The estimated annual C efflux also decreased with increased burn severity. Soil respiration during the non-growing season approximately accounted for 4%-5% of the annual C efflux in all site types. Soil temperature (at 5 cm depth) was the predominant determinant of non-growing season soil respiration change in this area. Soil temperature and snow water equivalent could explain 73%-79% of the soil respiration variability in winter snow-covering period (November to March). Mean spring freeze-thaw cycle (FTC) period (April) soil respiration contributed 63% of the non-growing season C efflux. Our finding is key for understanding and predicting the potential change in the response of boreal forest ecosystems to fire disturbance under future climate change.

  11. High but not dry: diverse epiphytic bromeliad adaptations to exposure within a seasonally dry tropical forest community.

    Science.gov (United States)

    Reyes-García, C; Mejia-Chang, M; Griffiths, H

    2012-02-01

    • Vascular epiphytes have developed distinct lifeforms to maximize water uptake and storage, particularly when delivered as pulses of precipitation, dewfall or fog. The seasonally dry forest of Chamela, Mexico, has a community of epiphytic bromeliads with Crassulacean acid metabolism showing diverse morphologies and stratification within the canopy. We hypothesize that niche differentiation may be related to the capacity to use fog and dew effectively to perform photosynthesis and to maintain water status. • Four Tillandsia species with either 'tank' or 'atmospheric' lifeforms were studied using seasonal field data and glasshouse experimentation, and compared on the basis of water use, leaf water δ(18) O, photosynthetic and morphological traits. • The atmospheric species, Tillandsia eistetteri, with narrow leaves and the lowest succulence, was restricted to the upper canopy, but displayed the widest range of physiological responses to pulses of precipitation and fog, and was a fog-catching 'nebulophyte'. The other atmospheric species, Tillandsia intermedia, was highly succulent, restricted to the lower canopy and with a narrower range of physiological responses. Both upper canopy tank species relied on tank water and stomatal closure to avoid desiccation. • Niche differentiation was related to capacity for water storage, dependence on fog or dewfall and physiological plasticity. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  12. Mast fruiting of large ectomycorrhizal African rain forest trees: importance of dry season intensity, and the resource-limitation hypothesis.

    Science.gov (United States)

    Newbery, David M; Chuyong, George B; Zimmermann, Lukas

    2006-01-01

    Mast fruiting is a distinctive reproductive trait in trees. This rain forest study, at a nutrient-poor site with a seasonal climate in tropical Africa, provides new insights into the causes of this mode of phenological patterning. At Korup, Cameroon, 150 trees of the large, ectomycorrhizal caesalp, Microberlinia bisulcata, were recorded almost monthly for leafing, flowering and fruiting during 1995-2000. The series was extended to 1988-2004 with less detailed data. Individual transitions in phenology were analysed. Masting occurred when the dry season before fruiting was drier, and the one before that was wetter, than average. Intervals between events were usually 2 or 3 yr. Masting was associated with early leaf exchange, followed by mass flowering, and was highly synchronous in the population. Trees at higher elevation showed more fruiting. Output declined between 1995 and 2000. Mast fruiting in M. bisulcata appears to be driven by climate variation and is regulated by internal tree processes. The resource-limitation hypothesis was supported. An 'alternative bearing' system seems to underlie masting. That ectomycorrhizal habit facilitates masting in trees is strongly implied.

  13. Stress tolerance and ecophysiological ability of an invader and a native species in a seasonally dry tropical forest.

    Science.gov (United States)

    Oliveira, Marciel Teixeira; Matzek, Virginia; Dias Medeiros, Camila; Rivas, Rebeca; Falcão, Hiram Marinho; Santos, Mauro Guida

    2014-01-01

    Ecophysiological traits of Prosopis juliflora (Sw.) DC. and a phylogenetically and ecologically similar native species, Anadenanthera colubrina (Vell.) Brenan, were studied to understand the invasive species' success in caatinga, a seasonally dry tropical forest ecosystem of the Brazilian Northeast. To determine if the invader exhibited a superior resource-capture or a resource-conservative strategy, we measured biophysical and biochemical parameters in both species during dry and wet months over the course of two years. The results show that P. juliflora benefits from a flexible strategy in which it frequently outperforms the native species in resource capture traits under favorable conditions (e.g., photosynthesis), while also showing better stress tolerance (e.g., antioxidant activity) and water-use efficiency in unfavorable conditions. In addition, across both seasons the invasive has the advantage over the native with higher chlorophyll/carotenoids and chlorophyll a/b ratios, percent N, and leaf protein. We conclude that Prosopis juliflora utilizes light, water and nutrients more efficiently than Anadenanthera colubrina, and suffers lower intensity oxidative stress in environments with reduced water availability and high light radiation.

  14. Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests

    Science.gov (United States)

    Elmore, A.J.; Guinn, S.M.; Minsley, B.J.; Richardson, A.D.

    2012-01-01

    The timing of spring leaf development, trajectories of summer leaf area, and the timing of autumn senescence have profound impacts to the water, carbon, and energy balance of ecosystems, and are likely influenced by global climate change. Limited field-based and remote-sensing observations have suggested complex spatial patterns related to geographic features that influence climate. However, much of this variability occurs at spatial scales that inhibit a detailed understanding of even the dominant drivers. Recognizing these limitations, we used nonlinear inverse modeling of medium-resolution remote sensing data, organized by day of year, to explore the influence of climate-related landscape factors on the timing of spring and autumn leaf-area trajectories in mid-Atlantic, USA forests. We also examined the extent to which declining summer greenness (greendown) degrades the precision and accuracy of observations of autumn offset of greenness. Of the dominant drivers of landscape phenology, elevation was the strongest, explaining up to 70% of the spatial variation in the onset of greenness. Urban land cover was second in importance, influencing spring onset and autumn offset to a distance of 32 km from large cities. Distance to tidal water also influenced phenological timing, but only within ~5 km of shorelines. Additionally, we observed that (i) growing season length unexpectedly increases with increasing elevation at elevations below 275 m; (ii) along gradients in urban land cover, timing of autumn offset has a stronger effect on growing season length than does timing of spring onset; and (iii) summer greendown introduces bias and uncertainty into observations of the autumn offset of greenness. These results demonstrate the power of medium grain analyses of landscape-scale phenology for understanding environmental controls on growing season length, and predicting how these might be affected by climate change.

  15. Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen forest.

    Science.gov (United States)

    Albert, Loren P; Wu, Jin; Prohaska, Neill; de Camargo, Plinio Barbosa; Huxman, Travis E; Tribuzy, Edgard S; Ivanov, Valeriy Y; Oliveira, Rafael S; Garcia, Sabrina; Smith, Marielle N; Oliveira Junior, Raimundo Cosme; Restrepo-Coupe, Natalia; da Silva, Rodrigo; Stark, Scott C; Martins, Giordane A; Penha, Deliane V; Saleska, Scott R

    2018-03-04

    Satellite and tower-based metrics of forest-scale photosynthesis generally increase with dry season progression across central Amazônia, but the underlying mechanisms lack consensus. We conducted demographic surveys of leaf age composition, and measured the age dependence of leaf physiology in broadleaf canopy trees of abundant species at a central eastern Amazon site. Using a novel leaf-to-branch scaling approach, we used these data to independently test the much-debated hypothesis - arising from satellite and tower-based observations - that leaf phenology could explain the forest-scale pattern of dry season photosynthesis. Stomatal conductance and biochemical parameters of photosynthesis were higher for recently mature leaves than for old leaves. Most branches had multiple leaf age categories simultaneously present, and the number of recently mature leaves increased as the dry season progressed because old leaves were exchanged for new leaves. These findings provide the first direct field evidence that branch-scale photosynthetic capacity increases during the dry season, with a magnitude consistent with increases in ecosystem-scale photosynthetic capacity derived from flux towers. Interactions between leaf age-dependent physiology and shifting leaf age-demographic composition are sufficient to explain the dry season photosynthetic capacity pattern at this site, and should be considered in vegetation models of tropical evergreen forests. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  16. CLIMATE-TREE GROWTH RELATIONSHIPS OF Mimosa tenuiflora IN SEASONALLY DRY TROPICAL FOREST, BRAZIL

    Directory of Open Access Journals (Sweden)

    Patrícia Póvoa Mattos

    2015-03-01

    Full Text Available Mimosa tenuiflora is a native pioneer tree from the Caatinga used commercially as firewood due to its high calorific value. It is deciduous, its trunk does not reach large diameters and it has good regrowth capacity. This study intended to determine the annual increment in diameter of M. tenuiflora and its correlation with rainfall, as basis for fuel wood management. Disks from the stem base of M. tenuiflora trees were collected in 2008 in Sertânia and Serra Talhada, Pernambuco State, from regrowth of trees coppiced in 2003 and in Limoeiro do Norte, Ceará State, from a plantation established in 2002. The trees have well-defined annual growth rings, highly correlated with annual precipitation and are well-suited for dendrochronological investigations. Forest managers must consider the influence of previous drier years in the wood production when predicting fuel wood harvesting. The high growth correlation with the previous year’s rainfall in regions where the rains start after photoperiodic stimulation indicate the necessity of understanding the growth dynamics of the species under dry forest conditions through additional ecophysiology studies.

  17. Hydrological and seasonal export mechanisms for nitrate transport from a forested catchment

    International Nuclear Information System (INIS)

    Rusjan, S; Mikos, M; Brilly, M

    2008-01-01

    Understanding of interactions between hydrological and biogeochemical responses of catchments on rainfall events is usually unclear from periodic measurements and requires tracing of the temporal dynamics of the processes. Smaller streams reflect strong connections between hydrological processes of the rainfall runoff formation and biogeochemical processes in the catchment; consequently, the responsiveness of the streamwater chemistry to changed hydrological states is very high. The study was carried out in 2007, within the 42 km 2 forested Padez catchment in the southwestern part of Slovenia, which is characterized by distinctive flushing, an almost torrential hydrological regime influenced by impermeable flysch geological settings. Recorded hydrographs which, in the hydrological and biogeochemical sense, differed substantially, disclosed a highly variable, but at the same time a strong linkage between hydrological, biogeochemical and particular topographic controls of nitrate exports from the spatial perspective of a studied catchment. The role of specific hydrological events on the nitrate mobilization proved to be important as the size of the accumulated nitrate pool available for mobilization was large throughout the observed hydrographs. The biogeochemical environment of the forest soils presumably significantly affects the size of the available nitrate pool in the studied catchment.

  18. Ecology and social system of northern gibbons living in cold seasonal forests.

    Science.gov (United States)

    Guan, Zhen-Hua; Ma, Chang-Yong; Fei, Han-Lan; Huang, Bei; Ning, Wen-He; Ni, Qing-Yong; Jiang, Xue-Long; Fan, Peng-Fei

    2018-07-18

    Gibbons in China represent the northernmost margin of present day gibbon species distribution (around N25°). Compared to tropical habitats, northern gibbon habitats are characterized by low temperatures and remarkable seasonal variation in fruit abundance. How gibbons adapt to their cold and seasonal habitats and what ecological factors affect their sociality are key questions for understanding their ecology and social system evolution, the elucidation of which will contribute to the conservation of these special populations/species. According to preliminary short-term studies, northern gibbons consume more leaves and use larger home ranges than tropical gibbons. Interestingly, some Nomascus groups consist of more than one adult female. However, these preliminary results are not well understood or incorporated into current socio-ecological theories regarding gibbon species. To better understand northern gibbons, our team has systematically studied three habituated groups of Nomascus concolor, three groups of N. nasutus, and two habituated groups of Hoolock tianxing since 2002. In this paper, we stress the challenges facing gibbons living in northern habitats and summarize their behavioral adaptations to their harsh environments. We also describe the northern gibbon social system and discuss the potential relationships between their ecology and sociality. Finally, we highlight future research questions related to northern gibbons in China.

  19. Ecology and social system of northern gibbons living in cold seasonal forests

    Directory of Open Access Journals (Sweden)

    Zhen-Hua Guan

    2018-07-01

    Full Text Available Gibbons in China represent the northernmost margin of present day gibbon species distribution (around N25°. Compared to tropical habitats, northern gibbon habitats are characterized by low temperatures and remarkable seasonal variation in fruit abundance. How gibbons adapt to their cold and seasonal habitats and what ecological factors affect their sociality are key questions for understanding their ecology and social system evolution, the elucidation of which will contribute to the conservation of these special populations/species. According to preliminary short-term studies, northern gibbons consume more leaves and use larger home ranges than tropical gibbons. Interestingly, some Nomascus groups consist of more than one adult female. However, these preliminary results are not well understood or incorporated into current socio-ecological theories regarding gibbon species. To better understand northern gibbons, our team has systematically studied three habituated groups of Nomascus concolor, three groups of N. nasutus, and two habituated groups of Hoolock tianxing since 2002. In this paper, we stress the challenges facing gibbons living in northern habitats and summarize their behavioral adaptations to their harsh environments. We also describe the northern gibbon social system and discuss the potential relationships between their ecology and sociality. Finally, we highlight future research questions related to northern gibbons in China.

  20. Tree mortality from fire and bark beetles following early and late season prescribed fires in a Sierra Nevada mixed-conifer forest

    Science.gov (United States)

    Schwilk, Dylan W.; Knapp, Eric E.; Ferrenberg, Scott; Keeley, Jon E.; Caprio, Anthony C.

    2006-01-01

    Over the last century, fire exclusion in the forests of the Sierra Nevada has allowed surface fuels to accumulate and has led to increased tree density. Stand composition has also been altered as shade tolerant tree species crowd out shade intolerant species. To restore forest structure and reduce the risk of large, intense fires, managers have increasingly used prescription burning. Most fires prior to EuroAmerican settlement occurred during the late summer and early fall and most prescribed burning has taken place during the latter part of this period. Poor air quality and lack of suitable burn windows during the fall, however, have resulted in a need to conduct more prescription burning earlier in the season. Previous reports have suggested that burning during the time when trees are actively growing may increase mortality rates due to fine root damage and/or bark beetle activity. This study examines the effects of fire on tree mortality and bark beetle attacks under prescription burning during early and late season. Replicated early season burn, late season burn and unburned control plots were established in an old-growth mixed conifer forest in the Sierra Nevada that had not experienced a fire in over 120 years. Although prescribed burns resulted in significant mortality of particularly the smallest tree size classes, no difference between early and late season burns was detected. Direct mortality due to fire was associated with fire intensity. Secondary mortality due to bark beetles was not significantly correlated with fire intensity. The probability of bark beetle attack on pines did not differ between early and late season burns, while the probability of bark beetle attack on firs was greater following early season burns. Overall tree mortality appeared to be primarily the result of fire intensity rather than tree phenology at the time of the burns. Early season burns are generally conducted under higher fuel moisture conditions, leading to less fuel

  1. Fire decreases arthropod abundance but increases diversity: Early and late season prescribed fire effects in a Sierra Nevada mixed-conifer forest

    Science.gov (United States)

    Ferrenberg, Scott; Schwilk, Dylan W.; Knapp, Eric E.; Groth, Eric; Keeley, Jon E.

    2006-01-01

    Prior to fire suppression in the 20th century, the mixed-conifer forests of the Sierra Nevada, California, U.S.A., historically burned in frequent fires that typically occurred during the late summer and early fall. Fire managers have been attempting to restore natural ecosystem processes through prescription burning, and have often favored burning during the fall in order to mimic historical fire regimes. Increasingly, however, prescription burning is also being done during the late spring and early summer in order to expand the window of opportunity for needed fuel reduction burning. The effect of prescribed fires outside of the historical fire season on forest arthropods is not known. The objective of this study was to compare the short-term effects of prescribed fires ignited in the early and late fire season on forest floor arthropods. Arthropod abundance and diversity were assessed using pitfall trapping in replicated burn units in Sequoia National Park, California. Overall, abundance of arthropods was lower in the burn treatments than in the unburned control. However, diversity tended to be greater in the burn treatments. Fire also altered the relative abundances of arthropod feeding guilds. No significant differences in arthropod community structure were found between early and late season burn treatments. Instead, changes in the arthropod community appeared to be driven largely by changes in fuel loading, vegetation, and habitat heterogeneity, all of which differed more between the burned and unburned treatments than between early and late season burn treatments.

  2. Climate and tourism in the Black Forest during the warm season.

    Science.gov (United States)

    Endler, Christina; Matzarakis, Andreas

    2011-03-01

    Climate, climate change and tourism all interact. Part of the public discussion about climate change focusses on the tourism sector, with direct and indirect impacts being of equally high relevance. Climate and tourism are closely linked. Thus, climate is a very decisive factor in choices both of destination and of type of journey (active holidays, wellness, and city tours) in the tourism sector. However, whether choices about destinations or types of trip will alter with climate change is difficult to predict. Future climates can be simulated and projected, and the tendencies of climate parameters can be estimated using global and regional climate models. In this paper, the focus is on climate change in the mountainous regions of southwest Germany - the Black Forest. The Black Forest is one of the low mountain ranges where both winter and summer tourism are vulnerable to climate change due to its southern location; the strongest climatic changes are expected in areas covering the south and southwest of Germany. Moreover, as the choice of destination is highly dependent on good weather, a climatic assessment for tourism is essential. Thus, the aim of this study was to estimate climatic changes in mountainous regions during summer, especially for tourism and recreation. The assessment method was based on human-biometeorology as well as tourism-climatologic approaches. Regional climate simulations based on the regional climate model REMO were used for tourism-related climatic analyses. Emission scenarios A1B and B1 were considered for the time period 2021 to 2050, compared to the 30-year base period of 1971-2000, particularly for the warm period of the year, defined here as the months of March-November. In this study, we quantified the frequency, but not the means, of climate parameters. The study results show that global and regional warming is reflected in an increase in annual mean air temperature, especially in autumn. Changes in the spring show a slight negative

  3. Using interviews and biological sign surveys to infer seasonal use of forested and agricultural portions of a human-dominated landscape by Asian elephants in Nepal

    Science.gov (United States)

    Lamichhane, Babu Ram; Subedi, Naresh; Pokheral, Chiranjibi Prasad; Dhakal, Maheshwar; Acharya, Krishna Prasad; Pradhan, Narendra Man Babu; Smith, James L. David; Malla, Sabita; Thakuri, Bishnu Singh; Yackulic, Charles B.

    2018-01-01

    Understanding how wide-ranging animals use landscapes in which human use is highly heterogeneous is important for determining patterns of human–wildlife conflict and designing mitigation strategies. Here, we show how biological sign surveys in forested components of a human-dominated landscape can be combined with human interviews in agricultural portions of a landscape to provide a full picture of seasonal use of different landscape components by wide-ranging animals and resulting human–wildlife conflict. We selected Asian elephants (Elephas maximus) in Nepal to illustrate this approach. Asian elephants are threatened throughout their geographic range, and there are large gaps in our understanding of their landscape-scale habitat use. We identified all potential elephant habitat in Nepal and divided the potential habitat into sampling units based on a 10 km by 10 km grid. Forested areas within grids were surveyed for signs of elephant use, and local villagers were interviewed regarding elephant use of agricultural areas and instances of conflict. Data were analyzed using single-season and multi-season (dynamic) occupancy models. A single-season occupancy model applied to data from 139 partially or wholly forested grid cells estimated that 0.57 of grid cells were used by elephants. Dynamic occupancy models fit to data from interviews across 158 grid cells estimated that monthly use of non-forested, human-dominated areas over the preceding year varied between 0.43 and 0.82 with a minimum in February and maximum in October. Seasonal patterns of crop raiding by elephants coincided with monthly elephant use of human-dominated areas, and serious instances of human–wildlife conflict were common. Efforts to mitigate human–elephant conflict in Nepal are likely to be most effective if they are concentrated during August through December when elephant use of human-dominated landscapes and human–elephant conflict are most common.

  4. Parameterization of Leaf-Level Gas Exchange for Plant Functional Groups From Amazonian Seasonal Tropical Rain Forest

    Science.gov (United States)

    Domingues, T. F.; Berry, J. A.; Ometto, J. P.; Martinelli, L. A.; Ehleringer, J. R.

    2004-12-01

    Plant communities exert strong influence over the magnitude of carbon and water cycling through ecosystems by controlling photosynthetic gas exchange and respiratory processes. Leaf-level gas exchange fluxes result from a combination of physiological properties, such as carboxylation capacity, respiration rates and hydraulic conductivity, interacting with environmental drivers such as water and light availability, leaf-to-air vapor pressure deficit, and temperature. Carbon balance models concerned with ecosystem-scale responses have as a common feature the description of eco-physiological properties of vegetation. Here we focus on the parameterization of ecophysiological gas-exchange properties of plant functional groups from a pristine Amazonian seasonally dry tropical rain forest ecosystem (FLONA-Tapajós, Santarém, PA, Brazil). The parameters were specific leaf weight, leaf nitrogen content, leaf carbon isotope ratio, maximum photosynthetic assimilation rate, photosynthetic carboxylation capacity, dark respiration rates, and stomatal conductance to water vapor. Our plant functional groupings were lianas at the top of the canopy, trees at the top of the canopy, mid-canopy trees and undestory trees. Within the functional groups, we found no evidence that leaves acclimated to seasonal changes in precipitation. However, there were life-form dependent distinctions when a combination of parameters was included. Top-canopy lianas were statistically different from top-canopy trees for leaf carbon isotope ratio, maximum photosynthetic assimilation rate, and stomatal conductance to water vapor, suggesting that lianas are more conservative in the use of water, causing a stomatal limitation on photosynthetic assimilation. Top-canopy, mid canopy and understory groupings were distinct for specific leaf weight, leaf nitrogen content, leaf carbon isotope ratio, maximum photosynthetic assimilation rate, and photosynthetic carboxylation capacity. The recognition that plant

  5. Antioxidant content in two CAM bromeliad species as a response to seasonal light changes in a tropical dry deciduous forest.

    Science.gov (United States)

    González-Salvatierra, Claudia; Luis Andrade, José; Escalante-Erosa, Fabiola; García-Sosa, Karlina; Manuel Peña-Rodríguez, Luis

    2010-07-01

    Plants have evolved photoprotective mechanisms to limit photodamage; one of these mechanisms involves the biosynthesis of antioxidant metabolites to neutralize reactive oxygen species generated when plants are exposed to excess light. However, it is known that exposure of plants to conditions of extreme water stress and high light intensity results in their enhanced susceptibility to over-excitation of photosystem II and to photooxidative stress. In this investigation we used the 2,2-diphenyl-1-picrylhydrazyl reduction assay to conduct a broad survey of the effect of water availability and light exposure conditions on the antioxidant activity of the leaf extracts of two bromeliad species showing crassulacean acid metabolism. One of these was an epiphyte, Tillandsia brachycaulos, and the other a terrestrial species, Bromelia karatas. Both species were found growing wild in the tropical dry deciduous forest of Dzibilchaltún National Park, México. The microenvironment of T. brachycaulos and B. karatas experiences significant diurnal and seasonal light variations as well as changes in temperature and water availability. The results obtained showed that, for both bromeliads, increases in antioxidant activity occurred during the dry season, as a consequence of water stress and higher light conditions. Additionally, in T. brachycaulos there was a clear correlation between high light intensity conditions and the content of anthocyanins which accumulated below the leaf epidermis. This result suggests that the role of these pigments is as photoprotective screens in the leaves. The red coloration below the leaf epidermis of B. karatas was not due to anthocyanins but to other unidentified pigments. 2010 Elsevier GmbH. All rights reserved.

  6. Seed germination of three species of Fabaceae typical of seasonally dry forest

    Directory of Open Access Journals (Sweden)

    Daniel Meira Arruda

    2015-06-01

    Full Text Available This study evaluates seeds germination of Anadenanthera colubrina, Acacia polyphylla and Bauhinia cheilantha, typical species of deciduous forests. Seeds were submitted to pre-germination treatments and attack of native insects. The seeds of each species were grouped in: seeds scarified with sandpaper; seeds immersed in water heated to 70 °C, seeds with signs of attack by herbivore insects and the control group. The largest proportion of germinated seeds occurred in the first week of incubation and germination peak, ranged from first to third day. All groups of A. polyphylla and B.cheilantha showed high germination rate (> 90%, being reduced only when seeds were attacked by insects (< 25%. Mechanic scarification was efficient in A. polyphylla by enhancing germination to maximum (100% and accelerating germination. A. colubrina showed no difference among groups, and germination rate was lower (< 50%, which was attributed to infestation by fungi, commonly reported in this species and apparently independent of usual hygiene procedures. Finally, except the fungi infestation in A. colubrina, evaluated species were independent of pre-germination treatment to obtain a high rate of germination.

  7. Linking seasonal surface water dynamics with methane emissions and export from small, forested wetlands

    Science.gov (United States)

    Hondula, K. L.; Palmer, M.

    2017-12-01

    One of the biggest uncertainties about global methane sources and sinks is attributed to uncertainties regarding wetland area and its dynamics. This is exacerbated by confusion over the role of small, shallow water bodies like Delmarva bay wetlands that could be categorized as both wetlands and ponds. These small inland water bodies are often poorly quantified due to their size, closed forest canopies, and inter- and intra-annual variability in surface water extent. We are studying wetland-rich areas on the Delmarva Peninsula in the U.S. mid-Atlantic to address this uncertainty at the scale of individual wetland ecosystems ( 1m depth). We estimated the size and temporal variability of the methane emissions source area by combining these measurements with daily estimates of the extent of surface water inundation derived from water level monitoring and a high-resolution digital elevation model. This knowledge is critical for informing land use decisions (e.g. restoring wetlands specifically for climate mitigation), the jurisdiction of environmental policies in the US, and for resolving major outstanding discrepancies in our understanding of the global methane budget.

  8. Seasonal and inter-annual dynamics of growth, non-structural carbohydrates and C stable isotopes in a Mediterranean beech forest.

    Science.gov (United States)

    Scartazza, Andrea; Moscatello, Stefano; Matteucci, Giorgio; Battistelli, Alberto; Brugnoli, Enrico

    2013-07-01

    Seasonal and inter-annual dynamics of growth, non-structural carbohydrates (NSC) and carbon isotope composition (δ(13)C) of NSC were studied in a beech forest of Central Italy over a 2-year period characterized by different environmental conditions. The net C assimilated by forest trees was mainly used to sustain growth early in the season and to accumulate storage carbohydrates in trunk and root wood in the later part of the season, before leaf shedding. Growth and NSC concentration dynamics were only slightly affected by the reduced soil water content (SWC) during the drier year. Conversely, the carbon isotope analysis on NSC revealed seasonal and inter-annual variations of photosynthetic and post-carboxylation fractionation processes, with a significant increase in δ(13)C of wood and leaf soluble sugars in the drier summer year than in the wetter one. The highly significant correlation between δ(13)C of leaf soluble sugars and SWC suggests a decrease of the canopy C isotope discrimination and, hence, an increased water-use efficiency with decreasing soil water availability. This may be a relevant trait for maintaining an acceptable plant water status and a relatively high C sink capacity during dry seasonal periods. Our results suggest a short- to medium-term homeostatic response of the Collelongo beech stand to variations in water availability and solar radiation, indicating that this Mediterranean forest was able to adjust carbon-water balance in order to prevent C depletion and to sustain plant growth and reserve accumulation during relatively dry seasons.

  9. Empirical analysis of the influence of forest extent on annual and seasonal surface temperatures for the Continental United States

    Science.gov (United States)

    James D. Wickham; Timothy G. Wade; Kurt H. Riitters

    2013-01-01

    Aim Because of the low albedo of forests and other biophysical factors, most scenario-based climate modelling studies indicate that removal of temperate forest will promote cooling, indicating that temperate forests are a source of heat relative to other classes of land cover. Our objective was to test the hypothesis that US temperate forests reduce...

  10. Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

    Science.gov (United States)

    Gerson, Jacqueline R.; Driscoll, Charles T.; Demers, Jason D.; Sauer, Amy K.; Blackwell, Bradley D.; Montesdeoca, Mario R.; Shanley, James B.; Ross, Donald S.

    2017-08-01

    Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.

  11. Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical forests: the diversification of Bursera (Burseraceae, Sapindales).

    Science.gov (United States)

    De-Nova, J Arturo; Medina, Rosalinda; Montero, Juan Carlos; Weeks, Andrea; Rosell, Julieta A; Olson, Mark E; Eguiarte, Luis E; Magallón, Susana

    2012-01-01

    • Mesoamerican arid biomes epitomize neotropical rich and complex biodiversity. To document some of the macroevolutionary processes underlying the vast species richness of Mesoamerican seasonally dry tropical forests (SDTFs), and to evaluate specific predictions about the age, geographical structure and niche conservatism of SDTF-centered woody plant lineages, the diversification of Bursera is reconstructed. • Using a nearly complete Bursera species-level phylogeny from nuclear and plastid genomic markers, we estimate divergence times, test for phylogenetic and temporal diversification heterogeneity, test for geographical structure, and reconstruct habitat shifts. • Bursera became differentiated in the earliest Eocene, but diversified during independent early Miocene consecutive radiations that took place in SDTFs. The late Miocene average age of Bursera species, the presence of phylogenetic geographical structure, and its strong conservatism to SDTFs conform to expectations derived from South American SDTF-centered lineages. • The diversification of Bursera suggests that Mesoamerican SDTF richness derives from high speciation from the Miocene onwards uncoupled from habitat shifts, during a period of enhanced aridity resulting mainly from global cooling and regional rain shadows. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  12. Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

    Science.gov (United States)

    Gerson, Jacqueline R.; Driscoll, Charles T.; Demers, Jason D.; Sauer, Amy K.; Blackwell, Bradley D.; Montesdeoca, Mario R.; Shanley, James B.; Ross, Donald S.

    2017-01-01

    Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.

  13. Seasonal Variation in Population Abundance and Chytrid Infection in Stream-Dwelling Frogs of the Brazilian Atlantic Forest.

    Directory of Open Access Journals (Sweden)

    Joice Ruggeri

    Full Text Available Enigmatic amphibian declines were first reported in southern and southeastern Brazil in the late 1980s and included several species of stream-dwelling anurans (families Hylodidae and Cycloramphidae. At that time, we were unaware of the amphibian-killing fungus Batrachochytrium dendrobatidis (Bd; therefore, pollution, habitat loss, fragmentation and unusual climatic events were hypothesized as primary causes of these declines. We now know that multiple lineages of Bd have infected amphibians of the Brazilian Atlantic forest for over a century, yet declines have not been associated specifically with Bd outbreaks. Because stream-dwelling anurans occupy an environmental hotspot ideal for disease transmission, we investigated temporal variation in population and infection dynamics of three stream-adapted species (Hylodes asper, H. phyllodes, and Cycloramphus boraceiensis on the northern coast of São Paulo state, Brazil. We surveyed standardized transects along streams for four years, and show that fluctuations in the number of frogs correlate with specific climatic variables that also increase the likelihood of Bd infections. In addition, we found that Bd infection probability in C. boraceiensis, a nocturnal species, was significantly higher than in Hylodes spp., which are diurnal, suggesting that the nocturnal activity may either facilitate Bd zoospore transmission or increase susceptibility of hosts. Our findings indicate that, despite long-term persistence of Bd in Brazil, some hosts persist with seasonally variable infections, and thus future persistence in the face of climate change will depend on the relative effect of those changes on frog recruitment and pathogen proliferation.

  14. Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico.

    Science.gov (United States)

    Roa-Fuentes, Lilia L; Templer, Pamela H; Campo, Julio

    2015-10-01

    Leaf traits are closely associated with nutrient use by plants and can be utilized as a proxy for nutrient cycling processes. However, open questions remain, in particular regarding the variability of leaf traits within and across seasonally dry tropical forests. To address this, we considered six leaf traits (specific area, thickness, dry matter content, N content, P content and natural abundance (15)N) of four co-occurring tree species (two that are not associated with N2-fixing bacteria and two that are associated with N2-fixing bacteria) and net N mineralization rates and inorganic N concentrations along a precipitation gradient (537-1036 mm per year) in the Yucatan Peninsula, Mexico. Specifically we sought to test the hypothesis that leaf traits of dominant plant species shift along a precipitation gradient, but are affected by soil N cycling. Although variation among different species within each site explains some leaf trait variation, there is also a high level of variability across sites, suggesting that factors other than precipitation regime more strongly influence leaf traits. Principal component analyses indicated that across sites and tree species, covariation in leaf traits is an indicator of soil N availability. Patterns of natural abundance (15)N in foliage and foliage minus soil suggest that variation in precipitation regime drives a shift in plant N acquisition and the openness of the N cycle. Overall, our study shows that both plant species and site are important determinants of leaf traits, and that the leaf trait spectrum is correlated with soil N cycling.

  15. Symbiosis with AMF and leaf Pi supply increases water deficit tolerance of woody species from seasonal dry tropical forest.

    Science.gov (United States)

    Frosi, Gabriella; Barros, Vanessa A; Oliveira, Marciel T; Santos, Mariana; Ramos, Diego G; Maia, Leonor C; Santos, Mauro G

    2016-12-01

    In seasonal dry tropical forests, plants are subjected to severe water deficit, and the arbuscular mycorrhizal fungi (AMF) or inorganic phosphorus supply (P i ) can mitigate the effects of water deficit. This study aimed to assess the physiological performance of Poincianella pyramidalis subjected to water deficit in combination with arbuscular mycorrhizal fungi (AMF) and leaf inorganic phosphorus (P i ) supply. The experiment was conducted in a factorial arrangement of 2 water levels (+H 2 O and -H 2 O), 2 AMF levels (+AMF and -AMF) and 2P i levels (+P i and -P i ). Leaf primary metabolism, dry shoot biomass and leaf mineral nutrients were evaluated. Inoculated AMF plants under well-watered and drought conditions had higher photosynthesis and higher shoot biomass. Under drought, AMF, P i or AMF+P i plants showed metabolic improvements in photosynthesis, leaf biochemistry and higher biomass compared to the plants under water deficit without AMF or P i . After rehydration, those plants submitted to drought with AMF, P i or AMF+P i showed a faster recovery of photosynthesis compared to treatment under water deficit without AMF or P i . However, plants under the drought condition with AMF showed a higher net photosynthesis rate. These findings suggest that AMF, P i or AMF+P i increase the drought tolerance in P. pyramidalis, and AMF associations under well-watered conditions increase shoot biomass and, under drought, promoted faster recovery of photosynthesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Effects of repeated growing season prescribed fire on the structure and composition of pine-hardwood forests in the southeastern Piedmont, USA

    Science.gov (United States)

    Matthew Reilly; Kenneth Outcalt; Joseph O’Brien; Dale Wade

    2016-01-01

    We examined the effects of repeated growing season prescribed fire on the structure and composition of mixed pine–hardwood forests in the southeastern Piedmont region, Georgia, USA. Plots were burned two to four times over an eight-year period with low intensity surface fires during one of four six-week long periods from early April to mid-September. Density...

  17. A SEASONAL COMPARISON OF THE PHYSICAL DAMAGES ON RESIDUAL TREES AND SEEDLINGS DUE TO LOGGING OPERATION USING URUS MIII FOREST SKYLINE IN ARTVIN REGION

    OpenAIRE

    Habip Eroğlu; Ufuk Özcan Öztürk

    2008-01-01

    In this paper, the physical damages of logging activities using Urus MIII forest skylines on residual trees and seedlings were evaluated through comparison between harvesting operations took place in winter and summer seasons in Artvin region. In order to achieve our aims, both in winter and summer, 4 representative plots were taken in the harvesting areas using Urus MIII skyline. Physical damages caused by logging to residual trees and seedling were noted. Damage classes for the residual tr...

  18. Nutrient intake and balancing among female Colobus angolensis palliatus inhabiting structurally distinct forest areas: Effects of group, season, and reproductive state.

    Science.gov (United States)

    Dunham, Noah T; Rodriguez-Saona, Luis E

    2018-06-08

    Understanding intraspecific behavioral and dietary variation is critical for assessing primate populations' abilities to persist in habitats characterized by increasing anthropogenic disturbances. While it is evident that some species exhibit considerable dietary flexibility (in terms of species-specific plant parts) in relation to habitat disturbance, it is unclear if primates are characterized by similar variation and flexibility regarding nutrient intake. This study examined the effects of group, season, and reproductive state on nutrient intake and balancing in adult female Colobus angolensis palliatus in the Diani Forest, Kenya. During July 2014 to December 2015, estimates of nutrient intake were recorded for eight females from three groups inhabiting structurally and ecologically distinct forest areas differing in tree species composition and density. There were differences in metabolizable energy (ME) and macronutrient intakes among groups, seasons, and reproductive states. Most notably, females inhabiting one of the more disturbed forest areas consumed less ME and macronutrients compared to females in the more intact forest area. Contrary to prediction, females in early lactation consumed significantly less ME and macronutrients compared to non-lactating and late lactation females. Despite differences in macronutrient intake, the relative contribution of macronutrients to ME were generally more conservative among groups, seasons, and reproductive states. Average daily intake ratios of non-protein energy to available protein ranged from approximately 3.5:1-4.3:1 among groups. These results indicate that female C. a. palliatus demonstrate a consistent nutrient balancing strategy despite significant intergroup differences in consumption of species-specific plant parts. Data from additional colobine species inhabiting different forest types are required to assess the extent to which nutrient balancing is constrained by phylogeny or is more flexible to local

  19. Seasonal Pattern of Decomposition and N, P, and C Dynamics in Leaf litter in a Mongolian Oak Forest and a Korean Pine Plantation

    Directory of Open Access Journals (Sweden)

    Jaeeun Sohng

    2014-10-01

    Full Text Available Distinct seasons and diverse tree species characterize temperate deciduous forests in NE Asia, but large areas of deciduous forests have been converted to conifer plantations. This study was conducted to understand the effects of seasons and tree species on leaf litter decomposition in a temperate forest. Using the litterbag method, the decomposition rate and nitrogen, phosphorous, and carbon dynamics of Mongolian oak (Quercus mongolica, Korean pine (Pinus koraiensis, and their mixed leaf litter were compared for 24 months in a Mongolian oak stand, an adjacent Korean pine plantation, and a Mongolian oak—Korean pine mixed stand. The decomposition rates of all the leaf litter types followed a pattern of distinct seasonal changes: most leaf litter decomposition occurred during the summer. Tree species was less influential on the leaf litter decomposition. The decomposition rates among different leaf litter types within the same stand were not significantly different, indicating no mixed litter effect. The immobilization of leaf litter N and P lasted for 14 months. Mongolian oak leaf litter and Korean pine leaf litter showed different N and P contents and dynamics during the decomposition, and soil P2O5 was highest in the Korean pine plantation, suggesting effects of plantation on soil nutrient budget.

  20. Reducing the uncertainty of parameters controlling seasonal carbon and water fluxes in Chinese forests and its implication for simulated climate sensitivities

    Science.gov (United States)

    Li, Yue; Yang, Hui; Wang, Tao; MacBean, Natasha; Bacour, Cédric; Ciais, Philippe; Zhang, Yiping; Zhou, Guangsheng; Piao, Shilong

    2017-08-01

    Reducing parameter uncertainty of process-based terrestrial ecosystem models (TEMs) is one of the primary targets for accurately estimating carbon budgets and predicting ecosystem responses to climate change. However, parameters in TEMs are rarely constrained by observations from Chinese forest ecosystems, which are important carbon sink over the northern hemispheric land. In this study, eddy covariance data from six forest sites in China are used to optimize parameters of the ORganizing Carbon and Hydrology In Dynamics EcosystEms TEM. The model-data assimilation through parameter optimization largely reduces the prior model errors and improves the simulated seasonal cycle and summer diurnal cycle of net ecosystem exchange, latent heat fluxes, and gross primary production and ecosystem respiration. Climate change experiments based on the optimized model are deployed to indicate that forest net primary production (NPP) is suppressed in response to warming in the southern China but stimulated in the northeastern China. Altered precipitation has an asymmetric impact on forest NPP at sites in water-limited regions, with the optimization-induced reduction in response of NPP to precipitation decline being as large as 61% at a deciduous broadleaf forest site. We find that seasonal optimization alters forest carbon cycle responses to environmental change, with the parameter optimization consistently reducing the simulated positive response of heterotrophic respiration to warming. Evaluations from independent observations suggest that improving model structure still matters most for long-term carbon stock and its changes, in particular, nutrient- and age-related changes of photosynthetic rates, carbon allocation, and tree mortality.

  1. Forests

    International Nuclear Information System (INIS)

    Melin, J.

    1997-01-01

    Forests have the capacity to trap and retain radionuclides for a substantial period of time. The dynamic behaviour of nutrients, pollution and radionuclides in forests is complex. The rotation period of a forest stand in the Nordic countries is about 100 years, whilst the time for decomposition of organic material in a forest environment can be several hundred years. This means that any countermeasure applied in the forest environment must have an effect for several decades, or be reapplied continuously for long periods of time. To mitigate the detrimental effect of a contaminated forest environment on man, and to minimise the economic loss in trade of contaminated forest products, it is necessary to understand the mechanisms of transfer of radionuclides through the forest environment. It must also be stressed that any countermeasure applied in the forest environment must be evaluated with respect to long, as well as short term, negative effects, before any decision about remedial action is taken. Of the radionuclides studied in forests in the past, radiocaesium has been the main contributor to dose to man. In this document, only radiocaesium will be discussed since data on the impact of other radionuclides on man are too scarce for a proper evaluation. (EG)

  2. Phenology of seed and leaves rain in response to periodic climatic variability in a seasonal wet tropical forest

    Science.gov (United States)

    Matteo, D.; Wright, S. J.; Davies, S. J.; Muller-Landau, H. C.; Wolfe, B.; Detto, M.

    2016-12-01

    Phenology, by controlling the rhythms of plants, plays a fundamental role in regulating access to resources, ecosystem processes, competition among species, interactions with consumers and feedbacks to the climate. In high biodiverse tropical forests, where phenology of flowering and leafing are complex, an adequate representation of phenology must take into account a given set of climatic, edaphic and biotic factors. Climatic factors are particularly important because plants may use them as cues for timing different phenological phases and be influenced by their intensity. Climatic variability can be periodic, if events occur with regular frequency, or aperiodic. One prominent periodic large-scale pattern that causes unusual weather is ENSO event. In general, Central America tends to be dry and warm during a mature phase of an ENSO event, which usually peaks between October and January with a frequency of 2-3 events per decade. Because in many tropical areas the effect of ENSO is highly prominent, it is plausible that plants have adapted their growth and reproduction mechanisms to synchronize ENSO phases, in a similar way that plants do during the seasonal cycle. We used a long dataset (30+ years) of fruits and leaves rains of tropical trees and lianas to determine ecosystem response and species specific response of these phenological events to local climate variability corresponding to the modes of ENSO. Specifically, we tested the hypothesis that phenological responses to ENSO are similar to response to seasonal cycles, i.e., higher litterfall before a warm-dry phase and higher fruiting after such phase, with strong correlation between seeds and leaves. At sub-community level, we evaluated whether evergreen and deciduous, biotic and abiotic dispersers and free and climbing life forms, have the same response to ENSO in terms of leaves and seeds rain. At species level we tested the hypothesis that species with low photosynthetic capacity leaves are more responsive

  3. Seasonal soil VOC exchange rates in a Mediterranean holm oak forest and their responses to drought conditions

    Science.gov (United States)

    Asensio, Dolores; Peñuelas, Josep; Ogaya, Romà; Llusià, Joan

    Available information on soil volatile organic compound (VOC) exchange, emissions and uptake, is very scarce. We here describe the amounts and seasonality of soil VOC exchange during a year in a natural Mediterranean holm oak forest growing in Southern Catalonia. We investigated changes in soil VOC dynamics in drought conditions by decreasing the soil moisture to 30% of ambient conditions by artificially excluding rainfall and water runoff, and predicted the response of VOC exchange to the drought forecasted in the Mediterranean region for the next decades by GCM and ecophysiological models. The annual average of the total (detected) soil VOC and total monoterpene exchange rates were 3.2±3.2 and -0.4±0.3 μg m -2 h -1, respectively, in control plots. These values represent 0.003% of the total C emitted by soil at the study site as CO 2 whereas the annual mean of soil monoterpene exchange represents 0.0004% of total C. Total soil VOC exchange rates in control plots showed seasonal variations following changes in soil moisture and phenology. Maximum values were found in spring (17±8 μg m -2 h -1). Although there was no significant global effect of drought treatment on the total soil VOC exchange rates, annual average of total VOC exchange rates in drought plots resulted in an uptake rate (-0.5±1.8 μg m -2 h -1) instead of positive net emission rates. Larger soil VOC and monoterpene exchanges were measured in drought plots than in control plots in summer, which might be mostly attributable to autotrophic (roots) metabolism. The results show that the diversity and magnitude of monoterpene and VOC soil emissions are low compared with plant emissions, that they are driven by soil moisture, that they represent a very small part of the soil-released carbon and that they may be strongly reduced or even reversed into net uptakes by the predicted decreases of soil water availability in the next decades. In all cases, it seems that VOC fluxes in soil might have greater

  4. Forest Fires Darken Snow for Years following Disturbance: Magnitude, Duration, and Composition of Light Absorbing Impurities in Seasonal Snow across a Chronosequence of Burned Forests in the Colorado River Headwaters

    Science.gov (United States)

    Gleason, K. E.; Arienzo, M. M.; Chellman, N.; McConnell, J.

    2017-12-01

    Charred forests shed black carbon and burned debris, which accumulates and concentrates on winter snowpack, reducing snow surface albedo, and subsequently increasing snowmelt rates, and advancing the date of snow disappearance. Forest fires have occurred across vast areas of the seasonal snow zone in recent decades, however we do not understand the long-term implications of burned forests in montane headwaters to snow hydrology and downstream water resources. Across a chronosequence of nine burned forests in the Colorado River Headwaters, we sampled snow throughout the complete snowpack profile to conserve the composition, properties, and vertical stratigraphy of impurities in the snowpack during maximum snow accumulation. Using state-of-the-art geochemical analyses, we determined the magnitude, composition, and particle size distribution of black carbon, dust, and other impurities in the snowpack relative to years-since fire. Forest fires continue to darken snow for many years following fire, however the magnitude, composition, and particle size distribution of impurities change through time, altering the post-fire radiative forcing on snow as a burned forest ages.

  5. Mating system, population growth, and management scenario for Kalanchoe pinnata in an invaded seasonally dry tropical forest.

    Science.gov (United States)

    González de León, Salvador; Herrera, Ileana; Guevara, Roger

    2016-07-01

    Ecological invasions are a major issue worldwide, where successful invasion depends on traits that facilitate dispersion, establishment, and population growth. The nonnative succulent plant Kalanchoe pinnata, reported as invasive in some countries, is widespread in remnants of seasonally dry tropical forest on a volcanic outcrop with high conservation value in east-central Mexico where we assessed its mating system and demographic growth and identified management strategies. To understand its local mating system, we conducted hand-pollination treatments, germination, and survival experiments. Based on the experimental data, we constructed a life-stage population matrix, identified the key traits for population growth, weighted the contributions of vegetative and sexual reproduction, and evaluated management scenarios. Hand-pollination treatments had slight effects on fruit and seed setting, as well as on germination. With natural pollination treatment, the successful germination of seeds from only 2/39 fruit suggests occasional effective natural cross-pollination. The ratios of the metrics for self- and cross-pollinated flowers suggest that K. pinnata is partially self-compatible. Most of the pollinated flowers developed into fruit, but the seed germination and seedling survival rates were low. Thus, vegetative propagation and juvenile survival are the main drivers of population growth. Simulations of a virtual K. pinnata population suggest that an intense and sustained weeding campaign will reduce the population within at least 10 years. Synthesis and applications. The study population is partially self-compatible, but sexual reproduction by K. pinnata is limited at the study site, and population growth is supported by vegetative propagation and juvenile survival. Demographic modeling provides key insights and realistic forecasts on invasion process and therefore is useful to design management strategies.

  6. Stretch Marks

    Science.gov (United States)

    ... completely without the help of a dermatologist or plastic surgeon. These doctors may use one of many types of treatments — from actual surgery to techniques like microdermabrasion and laser treatment — to reduce the appearance of stretch marks. These techniques are ...

  7. Impact of forest fires on particulate matter and ozone levels during the 2003, 2004 and 2005 fire seasons in Portugal.

    Science.gov (United States)

    Martins, V; Miranda, A I; Carvalho, A; Schaap, M; Borrego, C; Sá, E

    2012-01-01

    The main purpose of this work is to estimate the impact of forest fires on air pollution applying the LOTOS-EUROS air quality modeling system in Portugal for three consecutive years, 2003-2005. Forest fire emissions have been included in the modeling system through the development of a numerical module, which takes into account the most suitable parameters for Portuguese forest fire characteristics and the burnt area by large forest fires. To better evaluate the influence of forest fires on air quality the LOTOS-EUROS system has been applied with and without forest fire emissions. Hourly concentration results have been compared to measure data at several monitoring locations with better modeling quality parameters when forest fire emissions were considered. Moreover, hourly estimates, with and without fire emissions, can reach differences in the order of 20%, showing the importance and the influence of this type of emissions on air quality. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. The Redox Dynamics of Iron in a Seasonally Waterlogged Forest Soil (Chaux Forest, Eastern France) Traced with Rare Earth Element Distribution Patterns

    Science.gov (United States)

    Steinmann, M.; Floch, A. L.; Lucot, E.; Badot, P. M.

    2014-12-01

    The oxyhydroxides of iron are common soil minerals and known to control the availability of various major and trace elements essential for biogeochemical processes. We present a study from acidic natural forest soils, where reducing redox conditions due to seasonal waterlogging lead to the dissolution of Fe-oxyhydroxides, and to the release of Fe to soil water. In order to study in detail the mechanism of redox cycling of Fe, we used Rare Earth Element (REE) distribution patterns, because an earlier study has shown that they are a suitable tool to identify trace metal sources during soil reduction in wetland soils (Davranche et al., 2011). The REE patterns of soil leachates obtained with the modified 3-step BCR extraction scheme of Rauret et al., (1999) were compared with those of natural soil water. The adsorbed fractions (F1 leach), the reducible fraction of the deepest soil horizon H4 (F2 leach, 50-120 cm), and the oxidizable fractions of horizons H2 to H4 (F3 leachs, 24-120 cm) yielded REE patterns almost identical to soil water (see figure), showing that the REE and trace metal content of soil water was mainly derived from the F1 pool, and from the F2 and F3 pools of the clay mineral-rich deep soil horizons. In contrast, the F2 leach mobilized mainly Fe-oxyhydroxides associated with organic matter of the surface soil and yielded REE patterns significantly different from those of soil water. These results suggest that the trace metal content of soil water in hydromorphic soils is primarily controlled by the clay fraction of the deeper soil horizons and not by organic matter and related Fe-oxyhydroxides of the surface soil. Additional analyses are in progress in order to verify whether the REE and trace metals of the deeper soil horizons were directly derived from clay minerals or from associated Fe-oxyhydroxide coatings. Refs cited: Davranche et al. (2011), Chem. Geol. 284; Rauret et al. (1999), J. Environ. Monit. 1.

  9. Effects of Repeated Growing Season Prescribed Fire on the Structure and Composition of Pine–Hardwood Forests in the Southeastern Piedmont, USA

    Directory of Open Access Journals (Sweden)

    Matthew J. Reilly

    2016-12-01

    Full Text Available We examined the effects of repeated growing season prescribed fire on the structure and composition of mixed pine–hardwood forests in the southeastern Piedmont region, Georgia, USA. Plots were burned two to four times over an eight-year period with low intensity surface fires during one of four six-week long periods from early April to mid-September. Density of saplings (0.25–11.6 cm diameter at breast height was significantly reduced after one or two fires during the first four-year period. Sapling density declined with additional burning over the next four years, but density of mesic hardwoods including sweetgum (Liquidambar styraciflua and red maple (Acer rubrum remained relatively high (~865 stems ha−1. Repeated burning had little effect on density or basal area of trees (≥11.7 cm dbh and changes in overstory structure were limited to small increases in the quadratic mean diameter of all trees and pines. We found little evidence to suggest differential effects on structure or composition due to timing of burn within the growing season. Although repeated growing season burning alters midstory structure and composition, burning alone is unlikely to result in immediate shifts in overstory composition or structure in mixed pine–hardwood forests of the southeastern Piedmont region.

  10. Seasonal variability in nitrate and phosphate uptake kinetics in a forested headwater stream using pulse nutrient additions

    Science.gov (United States)

    Griffiths, N. A.; Mulholland, P. J.

    2011-12-01

    We used the Tracer Additions for Spiraling Curve Characterization (TASCC) approach to quantify seasonal variability in ambient nutrient spiraling metrics and nutrient uptake kinetics in the West Fork of Walker Branch, a forested headwater stream in eastern Tennessee, USA. We performed instantaneous additions of nitrate (NO3-) and phosphate (PO4-3) separately with a conservative tracer (chloride, Cl-) during the following biologically-important time periods: autumn (during leaf fall, high organic matter [OM] standing stocks), winter (low OM standing stocks), spring (prior to canopy closure), and summer (closed canopy). We predicted that nutrient demand would be highest during autumn and spring, as OM inputs fuel heterotrophic respiration and high light availability stimulates autotrophic production, respectively. The measured ambient PO4-3 uptake rates (Vf-amb) followed our predictions, with the highest Vf-amb rates in autumn (Vf-amb = 2.8 mm/min) and spring (Vf-amb = 2.9 mm/min), and undetectable uptake in winter. Further, maximum areal PO4-3 uptake rates (Umax) were higher in autumn (Umax = 297 μg/m2/min) than spring (Umax = 106 μg/m2/min), possibly due to greater nutrient demand of heterotrophs on leaf litter accumulations. Contrary to our predictions, ambient NO3- uptake rates were highest in autumn and winter (autumn: Vf-amb = 2.8 mm/min, winter: Vf-amb = 2.4 mm/min), and lowest in spring (Vf-amb = 1.0 mm/min). The higher than expected Vf-amb rate in winter may be due to higher stream metabolism rates and thus greater nitrogen demand; the lower than expected Vf-amb rate in spring may reflect an alleviation of nitrogen demand due to high ammonium concentrations during this time. As the demand for both nitrogen and phosphorus in Walker Branch is greatest in autumn, future work will characterize how nutrient metrics change during this dynamic time period (i.e., before, during, and after leaf fall).

  11. Impact of forest fires on particulate matter and ozone levels during the 2003, 2004 and 2005 fire seasons in portugal

    NARCIS (Netherlands)

    Martins, V.; Miranda, A.I.; Carvalho, A.; Schaap, M.; Borrego, C.; Sá, E.

    2012-01-01

    The main purpose of this work is to estimate the impact of forest fires on air pollution applying the LOTOS-EUROS air quality modeling system in Portugal for three consecutive years, 2003-2005. Forest fire emissions have been included in the modeling system through the development of a numerical

  12. Improved understanding of drought controls on seasonal variation in Mediterranean forest canopy CO2 and water fluxes through combined in situ measurements and ecosystem modelling

    Directory of Open Access Journals (Sweden)

    S. Sabate

    2009-08-01

    Full Text Available Water stress is a defining characteristic of Mediterranean ecosystems, and is likely to become more severe in the coming decades. Simulation models are key tools for making predictions, but our current understanding of how soil moisture controls ecosystem functioning is not sufficient to adequately constrain parameterisations. Canopy-scale flux data from four forest ecosystems with Mediterranean-type climates were used in order to analyse the physiological controls on carbon and water flues through the year. Significant non-stomatal limitations on photosynthesis were detected, along with lesser changes in the conductance-assimilation relationship. New model parameterisations were derived and implemented in two contrasting modelling approaches. The effectiveness of two models, one a dynamic global vegetation model ("ORCHIDEE", and the other a forest growth model particularly developed for Mediterranean simulations ("GOTILWA+", was assessed and modelled canopy responses to seasonal changes in soil moisture were analysed in comparison with in situ flux measurements. In contrast to commonly held assumptions, we find that changing the ratio of conductance to assimilation under natural, seasonally-developing, soil moisture stress is not sufficient to reproduce forest canopy CO2 and water fluxes. However, accurate predictions of both CO2 and water fluxes under all soil moisture levels encountered in the field are obtained if photosynthetic capacity is assumed to vary with soil moisture. This new parameterisation has important consequences for simulated responses of carbon and water fluxes to seasonal soil moisture stress, and should greatly improve our ability to anticipate future impacts of climate changes on the functioning of ecosystems in Mediterranean-type climates.

  13. Different Patterns of Changes in the Dry Season Diameter at Breast Height of Dominant and Evergreen Tree Species in a Mature Subtropical Forest in South China

    Institute of Scientific and Technical Information of China (English)

    Jun-Hua Yan; Guo-Yi Zhou; De-Qiang Zhang; Xu-Li Tang; Xu Wang

    2006-01-01

    Information on changes in diameter at breast height (DBH) is important for net primary production (NPP)estimates, timing of forest inventory, and forest management. In the present study, patterns of DBH change were measured under field conditions during the dry season for three dominant and native tree species in a monsoon evergreen broad-leaved forest in the Dinghushan Biosphere Reserve. For each tree species,different patterns of DBH change were observed. In the case of the fast-growing tree species Castanopsis chinensis Hance, large diurnal fluctuations occur, with a peak DBH in the early morning (around 05:00 h) that decreases to a minimum by about 14:00 h. Both Schima superba Gardn. et Chemp and Cryptocarya chinensis (Hance) Hemsl. exhibited less diurnal swelling and shrinkage. Diurnal fluctuations for these species were observed on a few occasions over the period of observation. Graphical comparisons and statistical analysis of changes in DBH with meteorological variables indicate that for different trees, the different changes in DBH observed responded to different meteorological variables. Large stem changes were found to occur for Ca. chinensis trees that were associated with variations in solar radiation. However, both S. superba and Cr. chinensis were found to be less sensitive to solar radiation. Changes in the DBH of these two species were found to be controlled mainly by soil temperature and soil moisture. During the later dry season, with a lower soil temperature and soil moisture, all three tree species stopped growing and only negligible shrinkage, expansion, or fluctuation occurred, suggesting that the optimum time to measure tree growth in the Dinghushan Biosphere Reserve is the later dry season.

  14. Seasonal and Daily Dynamics of the CO2 Emission from Soils of Pinus koraiensis Forests in the South of the Sikhote-Alin Range

    Science.gov (United States)

    Ivanov, A. V.; Braun, M.; Tataurov, V. A.

    2018-03-01

    The presented study shows the results of measuring soil respiration in typical burozems (Dystric Cambisols) under mixed Korean pine-broadleaved forests in the southern part of the Primorskii (Far East) region of Russia growing under conditions of monsoon climate. The measurements were performed in 2014-2016 by the chamber method with the use of a portable infrared gas analyzer. Relative and total values of the CO2 efflux from the soil surface on four model plots were determined. The intensity of summer emission varied from 2.25 to 10.97 μmol/(m2 s), and the total CO2 efflux from the soils of four plots varied from 18.84 to 25.56 mol/m2. It is shown that a larger part of seasonal variability in the soil respiration is controlled by the soil temperature ( R 2 = 0.5-0.7); the soil water content also has a significant influence on the CO2 emission determining about 10% of its temporal variability. The daily dynamics of soil respiration under the old-age (200 yrs) forest have a significant relationship with the soil temperature ( R 2 = 0.51). The pyrogenic transformation of Pinus koraiensis forests into low-value oak forests is accompanied by an increase in the CO2 efflux from the soil.

  15. Frugivory by the black-eared opossum Didelphis aurita in the Atlantic Forest of southern Brazil: Roles of sex, season and sympatric species

    Directory of Open Access Journals (Sweden)

    Nilton C. Cáceres

    2009-06-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2009v22n3p203 Our objective in this study was to examine the frugivory performed by the black-eared opossum, Didelphis aurita Wied-Neuwied, 1826, in an area of the coastal Atlantic Forest of southern Brazil, including differences between sexes, seasonal variation, and relationships to other sympatric marsupials. We collected 63 fecal samples from a trap grid over a six-month period and analyzed seed presence, seed number and richness,  and diversity of fruit species in feces. Diversity of fruit items was estimated by the Shannon index. Results showed a high variability in fruit consumption along the seasons, but no sexual difference in consumption. Sympatric marsupial species, including D. aurita, showed substantial differences in frugivory which may be related to body size, space use and differences in the foraging behavior of such species.

  16. Wet season water distribution in a tropical Andean cloud forest of Boyacá (Colombia) during the dry climate of El Niño

    Science.gov (United States)

    Garcia-Santos, G.; Berdugo, M. B.

    2010-07-01

    Fog has been demonstrated as the only source of moisture during the dry climate of El Niño in the tropical Andean cloud forest of Boyacá region in Colombia, yet its importance for the forest is virtually unknown. We assessed fog water distribution during the wet season inside the forest and outside in a practically deforested area. Water intercepted by plant was measured at different vertical stratus. Soil moisture in the first centimetres was also measured. During the anomalous drier wet season there was lack of rainfall and the total recorded cloud water was lower compared with the same period during the previous year. Our results indicated that the upper part of the forest mass intercepts most of the fog water compared with lower stratus when the fog event starts. However upper most stratus became rapidly drier after the event, which is explained because water is released to the atmosphere due to high heat atmosphere-leaves interface fluctuations caused by wind and solar radiation, flows towards a different water potential and drips from the leaves. Low amount of fog dripped from tree foliage into the soil, indicating a large water storage capacity of the epiphyte and bryophyte vegetation. Despite the small amount of throughfall, understory vegetation and litter remained wet, which might be explained by the water flowing through the epiphyte vegetation or the high capacity of the understory to absorb moisture from the air. Soil water did not infiltrate in depth, which underlines the importance of fog as water and cool source for seedling growth and shallow rooted understory species, especially during drier conditions.

  17. Are optical indices good proxies of seasonal changes in carbon fluxes and stress-related physiological status in a beech forest?

    Science.gov (United States)

    Nestola, E; Scartazza, A; Di Baccio, D; Castagna, A; Ranieri, A; Cammarano, M; Mazzenga, F; Matteucci, G; Calfapietra, C

    2018-01-15

    This study investigates the functionality of a Mediterranean-mountain beech forest in Central Italy using simultaneous determinations of optical measurements, carbon (C) fluxes, leaf eco-physiological and biochemical traits during two growing seasons (2014-2015). Meteorological variables showed significant differences between the two growing seasons, highlighting a heat stress coupled with a reduced water availability in mid-summer 2015. As a result, a different C sink capacity of the forest was observed between the two years of study, due to the differences in stressful conditions and the related plant physiological status. Spectral indices related to vegetation (VIs, classified in structural, chlorophyll and carotenoid indices) were computed at top canopy level and used to track CO 2 fluxes and physiological changes. Optical indices related to structure (EVI 2, RDVI, DVI and MCARI 1) were found to better track Net Ecosystem Exchange (NEE) variations for 2014, while indices related to chlorophylls (SR red edge, CL red edge, MTCI and DR) provided better results for 2015. This suggests that when environmental conditions are not limiting for forest sink capacity, structural parameters are more strictly connected to C uptake, while under stress conditions indices related to functional features (e.g., chlorophyll content) become more relevant. Chlorophyll indices calculated with red edge bands (SR red edge, NDVI red edge, DR, CL red edge) resulted to be highly correlated with leaf nitrogen content (R 2 >0.70), while weaker, although significant, correlations were found with chlorophyll content. Carotenoid indices (PRI and PSRI) were strongly correlated with both chlorophylls and carotenoids content, suggesting that these indices are good proxies of the shifting pigment composition related to changes in soil moisture, heat stress and senescence. Our work suggests the importance of integrating different methods as a successful approach to understand how changing climatic

  18. Combining stable isotope and carbohydrate analyses in phloem sap and fine roots to study seasonal changes of source-sink relationships in a Mediterranean beech forest.

    Science.gov (United States)

    Scartazza, Andrea; Moscatello, Stefano; Matteucci, Giorgio; Battistelli, Alberto; Brugnoli, Enrico

    2015-08-01

    Carbon isotope composition (δ(13)C) and carbohydrate content of phloem sap and fine roots were measured in a Mediterranean beech (Fagus sylvatica L.) forest throughout the growing season to study seasonal changes of source-sink relationships. Seasonal variations of δ(13)C and content of phloem sap sugars, collected during the daylight period, reflected the changes in soil and plant water status. The correlation between δ(13)C and content of phloem sap sugars, collected from plants belonging to different social classes, was significantly positive only during the driest month of July. In this month, δ(13)C of phloem sap sugars was inversely related to the increment of trunk radial growth and positively related to δ(13)C of fine roots. We conclude that the relationship between δ(13)C and the amount of phloem sap sugars is affected by a combination of causes, such as sink strength, tree social class, changes in phloem anatomy and transport capacity, and phloem loading of sugars to restore sieve tube turgor following the reduced plant water potential under drought conditions. However, δ(13)C and sugar composition of fine roots suggested that phloem transport of leaf sucrose to this belowground component was not impaired by mild drought and that sucrose was in a large part allocated towards fine roots in July, depending on tree social class. Hence, fine roots could represent a functional carbon sink during the dry seasonal periods, when transport and use of assimilates in other sink tissues are reduced. These results indicate a strict link between above- and belowground processes and highlight a rapid response of this Mediterranean forest to changes in environmental drivers to regulate source-sink relationships and carbon sink capacity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Season and severity of prescribed burn in ponderosa pine forests: implications for understory native and exotic plants.

    Science.gov (United States)

    Becky K. Kerns; Walter G. Thies; Christine G. Niwa

    2006-01-01

    We investigated herbaceous richness and cover in relation to fire season and severity, and other variables, five growing seasons following prescribed fires. Data were collected from six stands consisting of three randomly applied treatments: no burn, spring burn, and fall burn. Fall burns had significantly more exotic/native annual/biennial (an/bi) species and greater...

  20. Stand-Level Gas-Exchange Responses to Seasonal Drought in Very Young Versus Old Douglas-fir Forests of the Pacific Northwest, USA

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S; Schroeder, M; Bible, K; Falk, M; Paw U, K T

    2009-02-23

    This study examines how stand age affects ecosystem mass and energy exchange response to seasonal drought in three adjacent Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests. The sites include two early seral stands (ES) (0-15 years old) and an old-growth (OG) ({approx} 450-500) forest in the Wind River Experiment Forest, Washington, USA. We use eddy covariance flux measurements of carbon dioxide (F{sub NEE}), latent energy ({lambda}E) and sensible heat (H) to derive evapotranspiration rate (E{sub T}), bowen ratio ({beta}), water use efficiency (WUE), canopy conductance (G{sub c}), the Priestley-Taylor coefficient ({alpha}) and a canopy decoupling factor ({Omega}). The canopy and bulk parameters are examined to see how ecophysiological responses to water stress, including changes in available soil water ({theta}{sub r}) and vapor pressure deficit ({delta}e) differ among the two forest successional-stages. Despite very different rainfall patterns in 2006 and 2007, we observed distinct successional-stage relationships between E{sub T}, {alpha}, and G{sub c} to {delta}e and {theta}{sub r} during both years. The largest stand differences were (1) higher morning G{sub c} (> 10 mm s{sup -1}) at the OG forest coinciding with higher CO{sub 2} uptake (F{sub NEE} = -9 to -6 {micro}mol m{sup -2} s{sup -1}) but a strong negative response in G{sub c} to moderate {delta}e later in the day and a subsequent reduction in E{sub T}, and (2) higher E{sub T} at the ES stands because midday canopy conductance did not decrease until very low water availability levels (<30%) were reached at the end of the summer. Our results suggest that early seral stands are more likely than mature forests to experience declines in production if the summer drought becomes longer or intensifies because water conserving ecophysiological responses were only observed at the very end of the seasonal drought period in the youngest stands.

  1. Prayer marks.

    Science.gov (United States)

    Abanmi, Abdullah A; Al Zouman, Abdulrahman Y; Al Hussaini, Husa; Al-Asmari, Abdulrahman

    2002-07-01

    Prayer marks (PMs) are asymptomatic, chronic skin changes that consist mainly of thickening, lichenification, and hyperpigmentation, and develop over a long period of time as a consequence of repeated, extended pressure on bony prominences during prayer. Three hundred and forty-nine Muslims and 24 non-Muslims were examined for the appearance of PMs at different body sites. The prospective study of 349 Muslims (both males and females) with regular praying habits showed the occurrence of PMs on specific locations, such as the forehead, knees, ankles, and dorsa of the feet, leading to dermatologic changes consisting of lichenification and hyperpigmentation. The incidence of PMs was significantly higher in males than in females. Older subjects (over 50 years of age) demonstrated a significantly higher frequency of lichenification and hyperpigmentation, suggesting that repeated pressure and friction for prolonged periods are the causative factors for the development of PMs. Histologic examination of skin biopsies from the affected sites showed compact orthokeratosis, hypergranulosis, dermal papillary fibrosis, and dermal vascularization. PMs were not associated with any risk of secondary complications, such as erythema, bullous formation, and infections. PMs are commonly occurring dermatologic changes in Muslims who pray for prolonged periods.

  2. Fog Water Is Important in Maintaining the Water Budgets of Vascular Epiphytes in an Asian Tropical Karst Forests during the Dry Season

    Directory of Open Access Journals (Sweden)

    Yi Wu

    2018-05-01

    Full Text Available Fog may be an important source of water for forest vascular epiphytes on trees, because they lack direct access to sources of soil water, but little is known about the water use proportions from various sources and potential water uptake pathways in epiphytes. Here, we analyzed leaf carbon isotope ratios as a measure of water use efficiency (WUE, proportions of fog, rain, and soil water use, and foliar water uptake (FWU in species of epiphyte and their host trees in a tropical karst dwarf forest in China during the dry season. We found that the WUE, as represented by leaf δ13C, was generally enriched in the epiphyte species compared to their host trees. Epiphytes used substantial proportions of fog water, whereas water use in the host trees was dominated by soil water. The leaves of epiphytes and host trees absorbed water following immersion in water for 3 h and FWU possibly related to foliar epicuticular structures, such as fungal endophytes. Our results show a divergence of water use strategies between epiphytes and their hosts and highlight the importance of fog water for epiphytes during the dry season and under a climate change scenario with a reduced occurrence of fog events.

  3. Reliable effective number of breeders/adult census size ratios in seasonal-breeding species: Opportunity for integrative demographic inferences based on capture-mark-recapture data and multilocus genotypes.

    Science.gov (United States)

    Sánchez-Montes, Gregorio; Wang, Jinliang; Ariño, Arturo H; Vizmanos, José Luis; Martínez-Solano, Iñigo

    2017-12-01

    The ratio of the effective number of breeders ( N b ) to the adult census size ( N a ), N b / N a , approximates the departure from the standard capacity of a population to maintain genetic diversity in one reproductive season. This information is relevant for assessing population status, understanding evolutionary processes operating at local scales, and unraveling how life-history traits affect these processes. However, our knowledge on N b / N a ratios in nature is limited because estimation of both parameters is challenging. The sibship frequency (SF) method is adequate for reliable N b estimation because it is based on sibship and parentage reconstruction from genetic marker data, thereby providing demographic inferences that can be compared with field-based information. In addition, capture-mark-recapture (CMR) robust design methods are well suited for N a estimation in seasonal-breeding species. We used tadpole genotypes of three pond-breeding amphibian species ( Epidalea calamita , Hyla molleri, and Pelophylax perezi , n  =   73-96 single-cohort tadpoles/species genotyped at 15-17 microsatellite loci) and candidate parental genotypes ( n  =   94-300 adults/species) to estimate N b by the SF method. To assess the reliability of N b estimates, we compared sibship and parentage inferences with field-based information and checked for the convergence of results in replicated subsampled analyses. Finally, we used CMR data from a 6-year monitoring program to estimate annual N a in the three species and calculate the N b / N a ratio. Reliable ratios were obtained for E. calamita ( N b / N a  = 0.18-0.28) and P. perezi (0.5), but in H. molleri, N a could not be estimated and genetic information proved insufficient for reliable N b estimation. Integrative demographic studies taking full advantage of SF and CMR methods can provide accurate estimates of the N b / N a ratio in seasonal-breeding species. Importantly, the SF method provides results that can be

  4. The role of fire-return interval and season of burn in snag dynamics in a south Florida slash pine forest

    Science.gov (United States)

    Lloyd, John D.; Slater, Gary L.; Snyder, James R.

    2012-01-01

    Standing dead trees, or snags, are an important habitat element for many animal species. In many ecosystems, fire is a primary driver of snag population dynamics because it can both create and consume snags. The objective of this study was to examine how variation in two key components of the fire regime—fire-return interval and season of burn—affected population dynamics of snags. Using a factorial design, we exposed 1 ha plots, located within larger burn units in a south Florida slash pine (Pinus elliottii var. densa Little and Dorman) forest, to prescribed fire applied at two intervals (approximately 3-year intervals vs. approximately 6-year intervals) and during two seasons (wet season vs. dry season) over a 12- to 13-year period. We found no consistent effect of fire season or frequency on the density of lightly to moderately decayed or heavily decayed snags, suggesting that variation in these elements of the fire regime at the scale we considered is relatively unimportant in the dynamics of snag populations. However, our confidence in these findings is limited by small sample sizes, potentially confounding effects of unmeasured variation in fire behavior and effects (e.g., intensity, severity, synergy with drought cycles) and wide variation in responses within a treatment level. The generalizing of our findings is also limited by the narrow range of treatment levels considered. Future experiments incorporating a wider range of fire regimes and directly quantifying fire intensity would prove useful in identifying more clearly the role of fire in shaping the dynamics of snag populations.

  5. Seasonal Distribution, Biology, and Human Attraction Patterns of Culicine Mosquitoes (Diptera: Culicidae) in a Forest Near Puerto Almendras, Iquitoes, Peru

    National Research Council Canada - National Science Library

    Jones, James

    2004-01-01

    This study was conducted, as part of a field-ecology study of arboviral activity in the Amazon Basin of Peru, to determine the taxonomy, frequency, seasonal, and vertical distributions of potential mosquito vectors...

  6. Seasonal and inter-annual variations in methyl mercury concentrations in zooplankton from boreal lakes impacted by deforestation or natural forest fires.

    Science.gov (United States)

    Garcia, Edenise; Carignan, Richard; Lean, David R S

    2007-08-01

    We compared the effects of natural and anthropogenic watershed disturbances on methyl mercury (MeHg) concentration in bulk zooplankton from boreal Shield lakes. MeHg in zooplankton was monitored for three years in nine lakes impacted by deforestation, in nine lakes impacted by wildfire, and in twenty lakes with undisturbed catchments. Lakes were sampled during spring, mid- and late summer. MeHg in zooplankton showed a seasonal trend: concentrations were the lowest in spring, then peaked in mid-summer and decreased in late summer. Over the three study years, MeHg concentrations observed in mid-summer in zooplankton from forest harvested lakes were significantly higher than in reference and fire-impacted lakes, whereas differences between these two groups of lakes were not significant. The pattern of distribution of MeHg in zooplankton during the different seasons paralleled that of dissolved organic carbon (DOC), which is known as a vector of Hg from watershed soils to lake water. Besides DOC, MeHg in zooplankton also showed a positive significant correlation with epilimnetic temperature and sulfate concentrations. An inter-annual decreasing trend in MeHg was observed in zooplankton from reference and fire-impacted lakes. In forest harvested lakes, however, MeHg concentrations remained higher and nearly constant over three years following the impact. Overall these results indicate that the MeHg pulse observed in zooplankton following deforestation by harvesting is relatively long-lived, and may have repercussions to the accumulation of MeHg along the food chain. Therefore, potential effects of deforestation on the Hg contamination of fish should be taken into account in forest management practices.

  7. Effect of water stress on seedling growth in two species with different abundances: the importance of Stress Resistance Syndrome in seasonally dry tropical forest

    Directory of Open Access Journals (Sweden)

    Wanessa Nepomuceno Ferreira

    2015-09-01

    Full Text Available ABSTRACTIn seasonally dry tropical forests, species carrying attributes of Stress Resistance Syndrome (SRS may have ecological advantages over species demanding high quantities of resources. In such forests, Poincianella bracteosa is abundant, while Libidibia ferrea has low abundance; therefore, we hypothesized that P. bracteosa has characteristics of low-resource species, while L. ferrea has characteristics of high-resource species. To test this hypothesis, we assessed morphological and physiological traits of seedlings of these species under different water regimes (100%, 70%, 40%, and 10% field capacity over 85 days. For most of the studied variables we observed significant decreases with increasing water stress, and these reductions were greater in L. ferrea. As expected, L. ferreamaximized their growth with increased water supply, while P. bracteosa maintained slower growth and had minor adjustments in biomass allocation, characteristics representative of low-resource species that are less sensitive to stress. We observed that specific leaf area, biomass allocation to roots, and root/shoot ratio were higher in L. ferrea, while biomass allocation to leaves and photosynthesis were higher in P. bracteosa. Results suggest that the attributes of SRS can facilitate high abundance of P. bracteosa in dry forest.

  8. The foraging behavior of Japanese macaques Macaca fuscata in a forested enclosure: Effects of nutrient composition, energy and its seasonal variation on the consumption of natural plant foods

    Directory of Open Access Journals (Sweden)

    M. Firoj JAMAN, Michael A. HUFFMAN, Hiroyuki TAKEMOTO

    2010-04-01

    Full Text Available In the wild, primate foraging behaviors are related to the diversity and nutritional properties of food, which are affected by seasonal variation. The goal of environmental enrichment is to stimulate captive animals to exhibit similar foraging behavior of their wild counterparts, e.g. to extend foraging time. We conducted a 12-month study on the foraging behavior of Japanese macaques in a semi-naturally forested enclosure to understand how they use both provisioned foods and naturally available plant foods and what are the nutritional criteria of their consumption of natural plants. We recorded time spent feeding on provisioned and natural plant foods and collected the plant parts ingested of their major plant food species monthly, when available. We conducted nutritional analysis (crude protein, crude lipid, neutral detergent fiber-‘NDF’, ash and calculated total non-structural carbohydrate – ‘TNC’ and total energy of those food items. Monkeys spent 47% of their feeding time foraging on natural plant species. The consumption of plant parts varied significantly across seasons. We found that leaf items were consumed in months when crude protein, crude protein-to-NDF ratio, TNC and total energy were significantly higher and NDF was significantly lower, fruit/nut items in months when crude protein and TNC were significantly higher and crude lipid content was significantly lower, and bark items in months when TNC and total energy were higher and crude lipid content was lower. This preliminary investigation showed that the forested enclosure allowed troop members to more fully express their species typical flexible behavior by challenging them to adjust their foraging behavior to seasonal changes of plant item diversity and nutritional content, also providing the possibility for individuals to nutritionally enhance their diet [Current Zoology 56 (2: 198–208, 2010].

  9. The effect of local and landscape-level characteristics on the abundance of forest birds in early-successional habitats during the post-fledging season in western Massachusetts.

    Directory of Open Access Journals (Sweden)

    Michelle A Labbe

    Full Text Available Many species of mature forest-nesting birds ("forest birds" undergo a pronounced shift in habitat use during the post-fledging period and move from their forest nesting sites into areas of early-successional vegetation. Mortality is high during this period, thus understanding the resource requirements of post-fledging birds has implications for conservation. Efforts to identify predictors of abundance of forest birds in patches of early-successional habitats have so far been equivocal, yet these previous studies have primarily focused on contiguously forested landscapes and the potential for landscape-scale influences in more fragmented and modified landscapes is largely unknown. Landscape composition can have a strong influence on the abundance and productivity of forest birds during the nesting period, and could therefore affect the number of forest birds in the landscape available to colonize early-successional habitats during the post-fledging period. Therefore, the inclusion of landscape characteristics should increase the explanatory power of models of forest bird abundance in early-successional habitat patches during the post-fledging period. We examined forest bird abundance and body condition in relation to landscape and habitat characteristics of 15 early-successional sites during the post-fledging season in Massachusetts. The abundance of forest birds was influenced by within-patch habitat characteristics, however the explanatory power of these models was significantly increased by the inclusion of landscape fragmentation and the abundance of forest birds in adjacent forest during the nesting period for some species and age groups. Our findings show that including factors beyond the patch scale can explain additional variation in the abundance of forest birds in early-successional habitats during the post-fledging period. We conclude that landscape composition should be considered when siting early-successional habitat to maximize its

  10. Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: seasonal patterns, abundances and size distributions

    Science.gov (United States)

    Helin, Aku; Sietiö, Outi-Maaria; Heinonsalo, Jussi; Bäck, Jaana; Riekkola, Marja-Liisa; Parshintsev, Jevgeni

    2017-11-01

    Primary biological aerosol particles (PBAPs) are ubiquitous in the atmosphere and constitute ˜ 30 % of atmospheric aerosol particle mass in sizes > 1 µm. PBAP components, such as bacteria, fungi and pollen, may affect the climate by acting as cloud-active particles, thus having an effect on cloud and precipitation formation processes. In this study, size-segregated aerosol samples ( 10 µm) were collected in boreal forest (Hyytiälä, Finland) during a 9-month period covering all seasons and analysed for free amino acids (FAAs), DNA concentration and microorganism (bacteria, Pseudomonas and fungi). Measurements were performed using tandem mass spectrometry, spectrophotometry and qPCR, respectively. Meteorological parameters and statistical analysis were used to study their atmospheric implication for results. Distinct annual patterns of PBAP components were observed, late spring and autumn being seasons of dominant occurrence. Elevated abundances of FAAs and bacteria were observed during the local pollen season, whereas fungi were observed at the highest level during autumn. Meteorological parameters such as air and soil temperature, radiation and rainfall were observed to possess a close relationship with PBAP abundances on an annual scale.

  11. Altitudinal, seasonal and interannual shifts in microbial communities and chemical composition of soil organic matter in Alpine forest soils

    Czech Academy of Sciences Publication Activity Database

    Siles, J.A.; Cajthaml, Tomáš; Filipová, Alena; Minerbi, S.; Margesin, R.

    2017-01-01

    Roč. 112, SEP 2017 (2017), s. 1-13 ISSN 0038-0717 Institutional support: RVO:61388971 Keywords : Elevational (altitudinal) gradient * Forest * Microbial communit Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.857, year: 2016

  12. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat

    Science.gov (United States)

    Colleen M. Iversen; Joanne Childs; Richard J. Norby; Todd A. Ontl; Randall K. Kolka; Deanne J. Brice; Karis J. McFarlane; Paul J. Hanson

    2017-01-01

    Background and aims. Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. We aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat...

  13. Concentración estacional de micronutrientes en hojas de cuatro especies forestales del Parque Chaqueño, Argentina Seasonal micronutrients concentration in leaves of four forest species from Parque Chaqueño, Argentina

    Directory of Open Access Journals (Sweden)

    Juan Prause

    2012-09-01

    the functioning of forest ecosystems. Leaves of different forest species observe specific chemical composition, and some seasonal differences in biomass production, may be related to climate fluctuations and/or changes in plant phenology and the variation on nutrient contents. The objective of this study was to analyze the seasonal variability of Fe, Mn, Cu and Zn concentrations in leaves of Gleditsia amorphoides (Ga; Patagonula americana (Pa; Maclura tinctoria (Mt and Astronium balansae (Ab from Colonia Benítez Strict Nature Reserve (Chaco, Argentina. The leaves of each forest species were collected monthly, dried at 70ºC and their weight by tree species were recorded. Samples for analytical determinations were prepared by humid oxidation of organic substances from vegetal nets, using oxidant acids such as ternary mixture of HNO3-H2SO4-HClO4. After digestion, total micronutrients leaves concentrations were determined by atomic absortion spectrophotometry. Leaves Fe highest values were detected during fall in Mt (76.1mg/kg, Pa (75.2mg/kg, Ab (59.5mg/kg and Ga (45.3mg/kg. Highest foliar concentrations of Mn were detected in Pa (54.0mg/kg, Ga (50.0mg/kg, Mt (48.0mg/kg, and Ab with the lower Mn concentration (39.7mg/ kg. No significant differences were found for Cu between the different forest species, standing for Pa (11.3mg/ kg, Ga and Mt (11.0mg/kg and Ab (10.4mg/kg. With regard to leaves Zn, highest concentrations were found in Mt (347.4mg/kg, Ga (319.9mg/kg, Pa (280.2mg/kg and Ab (255.7mg/kg. Generally, a marked seasonal variation was observed for Mn and Cu concentrations (except in Ga and Zn (except in Pa, with no statistical differences for Fe. in the species studied, the concentration of micronutrients analyzed showed a marked and erratic seasonal variation, attributed to the relationship established between the native species, and the strong influence of the environment over a long period of time, especially temperature and rainfall.

  14. Seasonal changes in chemical composition and nutritive value of native forages in a spruce-hemlock forest, southeastern Alaska.

    Science.gov (United States)

    Thomas A. Hanley; Jay D. McKendrick

    1983-01-01

    Twenty-two forages from Admiralty Island, southeastern Alaska, were monitored bimonthly for one year to assess seasonal changes in their chemical composition: neutral detergent fiber, acid detergent fiber, cellulose, lignin/cutin, invitro dry-matter digestibility, total nitrogen, phosphorus, potassium, calcium, magnesium, sodium, copper, manganese, iron, and zinc....

  15. Seasonal productivity and nest survival of Golden-cheeked Warblers vary with forest type and edge density

    Science.gov (United States)

    Rebecca G. Peak; Frank R., III Thompson

    2014-01-01

    Knowledge of the demography and habitat requirements of the endangered Golden-cheeked Warbler (Setophaga chrysoparia) is needed for its recovery, including measures of productivity instead of reproductive indices. We report on breeding phenology and demography, calculate model-based estimates of nest survival and seasonal productivity and evaluate...

  16. A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest

    Science.gov (United States)

    E.A. Davidson; A.D. Richardson; K.E. Savage; D.Y. Hollinger

    2006-01-01

    Annual budgets and fitted temperature response curves for soil respiration and ecosystem respiration provide useful information for partitioning annual carbon budgets of ecosystems, but they may not adequately reveal seasonal variation in the ratios of these two fluxes. Soil respiration (Rs) typically contributes 30-80% of...

  17. Comparing resource values at risk from wildfires with Forest Service fire suppression expenditures: Examples from 2003 western Montana wildfire season

    Science.gov (United States)

    David Calkin; Kevin Hyde; Krista Gebert; Greg Jones

    2005-01-01

    Determining the economic effectiveness of wildfire suppression activities is complicated by difficulties in identifying the area that would have burned and the associated resource value changes had suppression resources not been employed. We developed a case study using break-even analysis for two large wildfires from the 2003 fire season in western Montana -- the...

  18. Diet and habitat-niche relationships within an assemblage of large herbivores in a seasonal tropical forest

    NARCIS (Netherlands)

    Ahrestani, F.S.; Heitkonig, I.M.A.; Prins, H.H.T.

    2012-01-01

    There is little understanding of how large mammalian herbivores in Asia partition habitat and forage resources, and vary their diet and habitat selection seasonally in order to coexist. We studied an assemblage of four large herbivores, chital (Axis axis), sambar (Cervus unicolor), gaur (Bos gaurus)

  19. Ammonia-Oxidizing Archaea Are More Resistant Than Denitrifiers to Seasonal Precipitation Changes in an Acidic Subtropical Forest Soil

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2017-07-01

    Full Text Available Seasonal precipitation changes are increasingly severe in subtropical areas. However, the responses of soil nitrogen (N cycle and its associated functional microorganisms to such precipitation changes remain unclear. In this study, two projected precipitation patterns were manipulated: intensifying the dry-season drought (DD and extending the dry-season duration (ED but increasing the wet-season storms following the DD and ED treatment period. The effects of these two contrasting precipitation patterns on soil net N transformation rates and functional gene abundances were quantitatively assessed through a resistance index. Results showed that the resistance index of functional microbial abundance (-0.03 ± 0.08 was much lower than that of the net N transformation rate (0.55 ± 0.02 throughout the experiment, indicating that microbial abundance was more responsive to precipitation changes compared with the N transformation rate. Spring drought under the ED treatment significantly increased the abundances of both nitrifying (amoA and denitrifying genes (nirK, nirS, and nosZ, while changes in these gene abundances overlapped largely with control treatment during droughts in the dry season. Interestingly, the resistance index of the ammonia-oxidizing archaea (AOA amoA abundance was significantly higher than that of the denitrifying gene abundances, suggesting that AOA were more resistant to the precipitation changes. This was attributed to the stronger environmental adaptability and higher resource utilization efficiency of the AOA community, as indicated by the lack of correlations between AOA gene abundance and environmental factors [i.e., soil water content, ammonium (NH4+ and dissolved organic carbon concentrations] during the experiment.

  20. Seasonal variation and distribution of total and active microbial community of beta-glucosidase encoding genes in coniferous forest soil

    Czech Academy of Sciences Publication Activity Database

    Pathan, S.I.; Žifčáková, Lucia; Ceccherini, M.T.; Pantani, O.L.; Větrovský, Tomáš; Baldrian, Petr

    2017-01-01

    Roč. 105, February (2017), s. 71-80 ISSN 0038-0717 R&D Projects: GA ČR(CZ) GA16-08916S Grant - others:Transbiodiverse(CZ) 7. RP Marie Curie ITN FP7/2007e2013 project 289949 Institutional support: RVO:61388971 Keywords : Beta-Glucosidases * Forest soil * Bacteria Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.857, year: 2016

  1. Utilizing LiDAR Datasets From Experimental Watersheds to Advance Ecohydrological Understanding in Seasonally Snow-Covered Forests

    Science.gov (United States)

    Harpold, A. A.; Broxton, P. D.; Guo, Q.; Barlage, M. J.; Gochis, D. J.

    2014-12-01

    The Western U.S. is strongly reliant on snowmelt from forested areas for ecosystem services and downstream populations. The ability to manage water resources from snow-covered forests faces major challenges from drought, disturbance, and regional changes in climate. An exciting avenue for improving ecohydrological process understanding is Light Detection and Ranging (LiDAR) because the technology simultaneously observes topography, forest properties, and snow/ice at high-resolution (100 km2). The availability and quality of LiDAR datasets is increasing rapidly, however they remain under-utilized for process-based ecohydrology investigations. This presentation will illustrate how LiDAR datasets from the Critical Zone Observatory (CZO) network have been applied to advance ecohydrological understanding through direct empirical analysis, as well as model parameterization and verification. Direct analysis of the datasets has proved fruitful for pre- and post-disturbance snow distribution estimates and interpreting in-situ snow depth measurements across sites. In addition, we illustrate the potential value of LiDAR to parameterize and verify of physical models with two examples. First, we use LiDAR to parameterize a land surface model, Noah multi-parameterization (Noah-MP), to investigate the sensitivity of modeled water and energy fluxes to high-resolution forest information. Second, we present a Snow Physics and Laser Mapping (SnowPALM) model that is parameterized with LiDAR information at its native 1-m scale. Both modeling studies demonstrate the value of LiDAR for representing processes with greater fidelity. More importantly, the increased model fidelity led to different estimates of water and energy fluxes at larger, watershed scales. Creating a network of experimental watersheds with LiDAR datasets offers the potential to test theories and models in previously unexplored ways.

  2. Simulated Seasonal Spatio-Temporal Patterns of Soil Moisture, Temperature, and Net Radiation in a Deciduous Forest

    Science.gov (United States)

    Ballard, Jerrell R., Jr.; Howington, Stacy E.; Cinnella, Pasquale; Smith, James A.

    2011-01-01

    The temperature and moisture regimes in a forest are key components in the forest ecosystem dynamics. Observations and studies indicate that the internal temperature distribution and moisture content of the tree influence not only growth and development, but onset and cessation of cambial activity [1], resistance to insect predation[2], and even affect the population dynamics of the insects [3]. Moreover, temperature directly affects the uptake and metabolism of population from the soil into the tree tissue [4]. Additional studies show that soil and atmospheric temperatures are significant parameters that limit the growth of trees and impose treeline elevation limitation [5]. Directional thermal infrared radiance effects have long been observed in natural backgrounds [6]. In earlier work, we illustrated the use of physically-based models to simulate directional effects in thermal imaging [7-8]. In this paper, we illustrated the use of physically-based models to simulate directional effects in thermal, and net radiation in a adeciduous forest using our recently developed three-dimensional, macro-scale computational tool that simulates the heat and mass transfer interaction in a soil-root-stem systems (SRSS). The SRSS model includes the coupling of existing heat and mass transport tools to stimulate the diurnal internal and external temperatures, internal fluid flow and moisture distribution, and heat flow in the system.

  3. Quantifying seasonal fallback on invertebrates, pith, and bromeliad leaves by white-faced capuchin monkeys (Cebus capucinus) in a tropical dry forest.

    Science.gov (United States)

    Mosdossy, Krisztina N; Melin, Amanda D; Fedigan, Linda M

    2015-09-01

    Fallback foods (FBFs) are hypothesized to shape the ecology, morphology, and behavior of primates, including hominins. Identifying FBFs is therefore critical for revealing past and present foraging adaptations. Recent research suggests invertebrates act as seasonal FBFs for many primate species and human populations. Yet, studies measuring the consumption of invertebrates relative to ecological variation are widely lacking. We address this gap by examining food abundance and entomophagy by primates in a seasonal forest. We study foraging behavior of white-faced capuchins (Cebus capucinus)-a species renowned for its intelligence and propensity for extractive foraging-along with the abundance of invertebrates, dietary ripe fruits, pith, and bromeliads. Consumption events and processing time are recorded during focal animal samples. We determine abundance of vegetative foods through phenological and density records. Invertebrates are collected in malaise, pan, and terrestrial traps; caterpillar abundance is inferred from frass traps. Invertebrates are abundant throughout the year and capuchins consume invertebrates-including caterpillars-frequently when fruit is abundant. However, capuchins spend significantly more time processing protected invertebrates when fruit and caterpillars are low in abundance. Invertebrate foraging patterns are not uniform. Caterpillar consumption is consistent with a preferred strategy, whereas capuchins appear to fallback on invertebrates requiring high handling time. Capuchins are convergent with hominins in possessing large brains and high levels of sensorimotor intelligence, thus our research has broad implications for primate evolution, including factors shaping cognitive innovations, brain size, and the role of entomophagy in the human diet. © 2015 Wiley Periodicals, Inc.

  4. Beyond leaf color: Comparing camera-based phenological metrics with leaf biochemical, biophysical, and spectral properties throughout the growing season of a temperate deciduous forest

    Science.gov (United States)

    Yang, Xi; Tang, Jianwu; Mustard, John F.

    2014-03-01

    Plant phenology, a sensitive indicator of climate change, influences vegetation-atmosphere interactions by changing the carbon and water cycles from local to global scales. Camera-based phenological observations of the color changes of the vegetation canopy throughout the growing season have become popular in recent years. However, the linkages between camera phenological metrics and leaf biochemical, biophysical, and spectral properties are elusive. We measured key leaf properties including chlorophyll concentration and leaf reflectance on a weekly basis from June to November 2011 in a white oak forest on the island of Martha's Vineyard, Massachusetts, USA. Concurrently, we used a digital camera to automatically acquire daily pictures of the tree canopies. We found that there was a mismatch between the camera-based phenological metric for the canopy greenness (green chromatic coordinate, gcc) and the total chlorophyll and carotenoids concentration and leaf mass per area during late spring/early summer. The seasonal peak of gcc is approximately 20 days earlier than the peak of the total chlorophyll concentration. During the fall, both canopy and leaf redness were significantly correlated with the vegetation index for anthocyanin concentration, opening a new window to quantify vegetation senescence remotely. Satellite- and camera-based vegetation indices agreed well, suggesting that camera-based observations can be used as the ground validation for satellites. Using the high-temporal resolution dataset of leaf biochemical, biophysical, and spectral properties, our results show the strengths and potential uncertainties to use canopy color as the proxy of ecosystem functioning.

  5. Do seasonal changes in light availability influence the inverse leafing phenology of the neotropical dry forest understory shrub Bonellia nervosa (Theophrastaceae?

    Directory of Open Access Journals (Sweden)

    Oscar M Chaves

    2008-03-01

    Full Text Available In tropical dry forests most plants are deciduous during the dry season and flush leaves with the onset of the rains. In Costa Rica, the only species displaying the opposite pattern is Bonellia nervosa. To determine if seasonal changes in light availability are associated with the leaf and reproductive phenology of this species, we monitored leaf production, survival, and life span, as well as flower and fruit production from April 2000 to October 2001 in Santa Rosa National Park. Leaf flushing and flower bud production took place shortly after the autumnal equinox when day length starts to decrease. Leaves began expansion at the end of the wet season, and plants reached 70 % of their maximum leaf area at the beginning of the dry season, maintaining their foliage throughout the entire dry period. Leaf shedding occurred gradually during the first three months of the wet season. Leaf flushing and shedding showed high synchrony, with leaf numbers being related to light availability. Maximum leaf production coincided with peaks in radiation during the middle of the dry season. Decreasing day length induces highly synchronous flower bud emergence in dry forest species, but this is the first study indicating induction of leaf flushing by declining day length. Rev. Biol. Trop. 56 (1: 257-268. Epub 2008 March 31.En los bosques tropicales secos la mayoría de las plantas pierden sus hojas durante la estación seca y las producen con el inicio de las lluvias. En Costa Rica la única especie que muestra el patrón fenológico inverso es Bonellia nervosa. Para determinar si los cambios estacionales en la disponibilidad de luz estaban asociados con la fenología foliar y reproductiva en esta especie, monitoreamos la producción y sobrevivencia de hojas, así como la producción de flores y frutos de abril del 2000 a octubre del 2001 en el Parque Nacional Santa Rosa. La producción de hojas y botones florales ocurrió poco después del equinoccio de oto

  6. Oak Forest Responses to Episodic-Seasonal-Drought, Chronic Multi-year Precipitation Change and Acute Drought Manipulations in a Region With Deep Soils and High Precipitation

    Science.gov (United States)

    Hanson, Paul J.; Wullschleger, Stan D.; Todd, Donald E.; Auge, Robert M.; Froberg, Mats; Johnson, Dale W.

    2010-05-01

    Implications of episodic-seasonal drought (extremely dry late summers), chronic multi-year precipitation manipulations (±33 percent over 12 years) and acute drought (-100 percent over 3 years) were evaluated for the response of vegetation and biogeochemical cycles for an upland-oak forest. The Quercus-Acer forest is located in eastern Tennessee on deep acidic soils with mean annual temperatures of 14.2 °C and abundant precipitation (1352 mm y-1). The multi-year observations and chronic manipulations were conducted from 1993 through 2005 using understory throughfall collection troughs and redistribution gutters and pipes. Acute manipulations of dominant canopy trees (Quercus prinus; Liriodendron tulipifera) were conducted from 2003 through 2005 using full understory tents. Regional and severe late-summer droughts were produced reduced stand water use and photosynthetic carbon gain as expected. Likewise, seedlings and saplings exhibited reduced survival and cumulative growth reductions. Conversely, multi-year chronic increases or decreases in precipitation and associated soil water deficits did not reduce large tree basal area growth for the tree species present. The resilience of canopy trees to chronic-change was the result of a disconnect between carbon allocation to tree growth (an early-season phenomenon) and late-season drought occurrence. Acute precipitation exclusion from the largest canopy trees also produced limited physiological responses and minimal cumulative growth reductions. Lateral root water sources were removed through trenching and could not explain the lack of response to extreme soil drying. Therefore, deep rooting the primary mechanism for large-tree resilience to severe drought. Extensive trench-based assessments of rooting depth suggested that ‘deep' water supplies were being obtained from limited numbers of deep fine roots. Observations of carbon stocks in organic horizons demonstrated accumulation with precipitation reductions and

  7. Distinct patterns in the diurnal and seasonal variability in four components of soil respiration in a temperate forest under free-air CO2 enrichment

    Directory of Open Access Journals (Sweden)

    M. A. Gonzalez-Meler

    2011-10-01

    Full Text Available Soil respiration (RS is a major flux in the global carbon (C cycle. Responses of RS to changing environmental conditions may exert a strong control on the residence time of C in terrestrial ecosystems and in turn influence the atmospheric concentration of greenhouse gases. Soil respiration consists of several components oxidizing soil C from different pools, age and chemistry. The mechanisms underlying the temporal variability of RS components are poorly understood. In this study, we used the long-term whole-ecosystem 13C tracer at the Duke Forest Free Air CO2 Enrichment site to separate forest RS into its autotrophic (RR and heterotrophic components (RH. The contribution of RH to RS was further partitioned into litter decomposition (RL, and decomposition of soil organic matter (RSOM of two age classes – up to 8 yr old and SOM older than 8 yr. Soil respiration was generally dominated by RSOM during the growing season (44% of daytime RS, especially at night. The contribution of heterotrophic respiration (RSOM and RL to RS was not constant, indicating that the seasonal variability in RR alone cannot explain seasonal variation in RS. Although there was no diurnal variability in RS, there were significant compensatory differences in the contribution of individual RS components to daytime and nighttime rates. The average contribution of RSOM to RS was greater at night (54% than during the day (44%. The average contribution of RR to total RS was ~30% during the day and ~34% during the night. In contrast, RL constituted 26% of RS during the day and only 12% at night. About 95% of the decomposition of soil C older than 8 yr (Rpre-tr originated from RSOM and showed more pronounced and consistent diurnal variability than any other RS component; nighttime rates were on average 29% higher than daytime rates. In contrast, the decomposition of more recent, post-treatment C (Rpre-tr did not vary diurnally. None of the diurnal variations in components of RH

  8. Growing season soil moisture following restoration treatments of varying intensity in semi-arid ponderosa pine forests

    Science.gov (United States)

    O'Donnell, F. C.; Springer, A. E.; Sankey, T.; Masek Lopez, S.

    2014-12-01

    Forest restoration projects are being planned for large areas of overgrown semi-arid ponderosa pine forests of the Southwestern US. Restoration involves the thinning of smaller trees and prescribed or managed fire to reduce tree density, restore a more natural fire regime, and decrease the risk of catastrophic wildfire. The stated goals of these projects generally reduced plant water stress and improvements in hydrologic function. However, little is known about how to design restoration treatments to best meet these goals. As part of a larger project on snow cover, soil moisture, and groundwater recharge, we measured soil moisture, an indicator of plant water status, in four pairs of control and restored sites near Flagstaff, Arizona. The restoration strategies used at the sites range in both amount of open space created and degree of clustering of the remaining trees. We measured soil moisture using 30 cm vertical time domain reflectometry probes installed on 100 m transects at 5 m intervals so it would be possible to analyze the spatial pattern of soil moisture. Soil moisture was higher and more spatially variable in the restored sites than the control sites with differences in spatial pattern among the restoration types. Soil moisture monitoring will continue until the first snow fall, at which point measurements of snow depth and snow water equivalent will be made at the same locations.

  9. Occurrence and gall characterization in a fragment of Seasonal Semideciduous Forest in Telêmaco Borba, Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Patrícia de Oliveira Santos

    2015-12-01

    Full Text Available Galls surveys in Paraná are scarce and most sampling efforts in Brazil have still been concentrated on Cerrado regions. In this context, the present study investigated an area of semideciduous forest of Fazenda Monte Alegre in Telêmaco Borba, in order to contribute to the knowledge of galls in the state. Samples were collected on a 300m long track and 5m width, through active search up to two meters high. Fourty-one morphotypes were found, thirteen of which were identified to the host plant species level, ten according to level of genus, ten to family level and eight morphotypes were not identified. Among the identified families, Solanaceae, Asteraceae, Euphorbiaceae, Bignoniaceae, Melastomataceae and Leguminosae-Fabaceae represented the greatest quantity of morphotypes. Most of them occurred on the leaf (39%, 98.6% are entomogenous. 70.7% are glabrous, and as for the shape, most of them were classified as globular (43.9%. As for the way galls grouping on host plants, 46.3% showed up in isolation, and 53.7% in groupings. This study has contributed to enrich the knowledge on galls in the state of Paraná and for the Atlantic Forest Biome.

  10. Hiding from the moonlight: luminosity and temperature affect activity of Asian nocturnal primates in a highly seasonal forest.

    Directory of Open Access Journals (Sweden)

    Carly Starr

    Full Text Available The effect of moonlight and temperature on activity of slow lorises was previously little known and this knowledge might be useful for understanding many aspects of their behavioural ecology, and developing strategies to monitor and protect populations. In this study we aimed to determine if the activity of the pygmy loris (Nycticebus pygmaeus is affected by ambient temperature and/or moonlight in a mixed deciduous forest. We radio-collared five females and five males in the Seima Protection Forest, Cambodia, in February to May, 2008 and January to March, 2009 and recorded their behaviour at 5 minutes intervals, totalling 2736 observations. We classified each observation as either inactive (sleeping or alert or active behaviour (travel, feeding, grooming, or others. Moon luminosity (bright/dark and ambient temperature were recorded for each observation. The response variable, activity, was binary (active or inactive, and a logit link function was used. Ambient temperature alone did not significantly affect mean activity. Although mean activity was significantly affected by moonlight, the interaction between moonlight and temperature was also significant: on bright nights, studied animals were increasingly more active with higher temperature; and on dark nights they were consistently active regardless of temperature. The most plausible explanation is that on bright cold nights the combined risk of being seen and attacked by predators and heat loss outweigh the benefit of active behaviours.

  11. Seasonality of Leaf Carbon Isotopic Composition and Leaf Water Isotopic Enrichment in a Mixed Evergreen Forest in Southern California

    Science.gov (United States)

    Santiago, L. S.; Sickman, J. O.; Goulden, M.; DeVan, C.; Pasquini, S. C.; Pivovaroff, A. L.

    2011-12-01

    Leaf carbon isotopic composition and leaf water isotopic enrichment reflect physiological processes and are important for linking local and regional scale processes to global patterns. We investigated how seasonality affects the isotopic composition of bulk leaf carbon, leaf sugar carbon, and leaf water hydrogen under a Mediterranean climate. Leaf and stem samples were collected monthly from four tree species (Calocedrus decurrens, Pinus lambertiana, Pinus ponderosa, and Quercus chrysolepis) at the James San Jacinto Mountain Reserve in southern California. Mean monthly bulk leaf carbon isotopic composition varied from -34.5 % in P. ponderosa to -24.7 % in P. lambertiana and became more depleted in 13C from the spring to the summer. Mean monthly leaf sugar varied from -29.3 % in P. ponderosa to -21.8 % in P. lambertiana and was enriched in 13C during the winter, spring and autumn, but depleted during the mid-summer. Leaf water hydrogen isotopic composition was 28.4 to 68.8 % more enriched in deuterium than source water and this enrichment was greater as seasonal drought progressed. These data indicate that leaf carbon and leaf water hydrogen isotopic composition provide sensitive measures that connect plant physiological processes to short-term climatic variability.

  12. Plant diversity patterns in neotropical dry forests and their conservation implications

    Science.gov (United States)

    K. Banda-R; A. Delgado-Salinas; K. G. Dexter; R. Linares-Palomino; A. Oliveira-Filho; D. Prado; M. Pullan; C. Quintana; R. Riina; G. M. Rodriguez M.; J. Weintritt; P. Acevedo-Rodriguez; J. Adarve; E. Alvarez; A. Aranguren B.; J. C. Arteaga; G. Aymard; A. Castano; N. Ceballos-Mago; A. Cogollo; H. Cuadros; F. Delgado; W. Devia; H. Duenas; L. Fajardo; A. Fernandez; M. A. Fernandez; J. Franklin; E. H. Freid; L. A. Galetti; R. Gonto; R. Gonzalez-M.; R. Graveson; E. H. Helmer; A. Idarraga; R. Lopez; H. Marcano-Vega; O. G. Martinez; H. M. Maturo; M. McDonald; K. McLaren; O. Melo; F. Mijares; V. Mogni; D. Molina; N. d. P. Moreno; J. M. Nassar; D. M. Neves; L. J. Oakley; M. Oatham; A. R. Olvera-Luna; F. F. Pezzini; O. J. R. Dominguez; M. E. Rios; O. Rivera; N. Rodriguez; A. Rojas; T. Sarkinen; R. Sanchez; M. Smith; C. Vargas; B. Villanueva; R. T. Pennington

    2016-01-01

    Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than...

  13. The Effect of Local and Landscape-Level Characteristics on the Abundance of Forest Birds in Early-Successional Habitats during the Post-Fledging Season in Western Massachusetts

    Science.gov (United States)

    Labbe, Michelle A.; King, David I.

    2014-01-01

    Many species of mature forest-nesting birds (“forest birds”) undergo a pronounced shift in habitat use during the post-fledging period and move from their forest nesting sites into areas of early-successional vegetation. Mortality is high during this period, thus understanding the resource requirements of post-fledging birds has implications for conservation. Efforts to identify predictors of abundance of forest birds in patches of early-successional habitats have so far been equivocal, yet these previous studies have primarily focused on contiguously forested landscapes and the potential for landscape-scale influences in more fragmented and modified landscapes is largely unknown. Landscape composition can have a strong influence on the abundance and productivity of forest birds during the nesting period, and could therefore affect the number of forest birds in the landscape available to colonize early-successional habitats during the post-fledging period. Therefore, the inclusion of landscape characteristics should increase the explanatory power of models of forest bird abundance in early-successional habitat patches during the post-fledging period. We examined forest bird abundance and body condition in relation to landscape and habitat characteristics of 15 early-successional sites during the post-fledging season in Massachusetts. The abundance of forest birds was influenced by within-patch habitat characteristics, however the explanatory power of these models was significantly increased by the inclusion of landscape fragmentation and the abundance of forest birds in adjacent forest during the nesting period for some species and age groups. Our findings show that including factors beyond the patch scale can explain additional variation in the abundance of forest birds in early-successional habitats during the post-fledging period. We conclude that landscape composition should be considered when siting early-successional habitat to maximize its benefit to

  14. The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest

    Science.gov (United States)

    White; Running; Thornton

    1999-02-01

    Recent research suggests that increases in growing-season length (GSL) in mid-northern latitudes may be partially responsible for increased forest growth and carbon sequestration. We used the BIOME-BGC ecosystem model to investigate the impacts of including a dynamically regulated GSL on simulated carbon and water balance over a historical 88-year record (1900-1987) for 12 sites in the eastern USA deciduous broadleaf forest. For individual sites, the predicted GSL regularly varied by more than 15 days. When grouped into three climatic zones, GSL variability was still large and rapid. There is a recent trend in colder, northern sites toward a longer GSL, but not in moderate and warm climates. The results show that, for all sites, prediction of a long GSL versus using the mean GSL increased net ecosystem production (NEP), gross primary production (GPP), and evapotranspiration (ET); conversely a short GSL is predicted to decrease these parameters. On an absolute basis, differences in GPP between the dynamic and mean GSL simulations were larger than the differences in NEP. As a percentage difference, though, NEP was much more sensitive to changes in GSL than were either GPP or ET. On average, a 1-day change in GSL changed NEP by 1.6%, GPP by 0.5%, and ET by 0.2%. Predictions of NEP and GPP in cold climates were more sensitive to changes in GSL than were predictions in warm climates. ET was not similarly sensitive. First, our results strongly agree with field measurements showing a high correlation between NEP and dates of spring growth, and second they suggest that persistent increases in GSL may lead to long-term increases in carbon storage.

  15. High-resolution LIDAR and ground observations of snow cover in a complex forested terrain in the Sierra Nevada - implications for optical remote sensing of seasonal snow.

    Science.gov (United States)

    Kostadinov, T. S.; Harpold, A.; Hill, R.; McGwire, K.

    2017-12-01

    Seasonal snow cover is a key component of the hydrologic regime in many regions of the world, especially those in temperate latitudes with mountainous terrain and dry summers. Such regions support large human populations which depend on the mountain snowpack for their water supplies. It is thus important to quantify snow cover accurately and continuously in these regions. Optical remote-sensing methods are able to detect snow and leverage space-borne spectroradiometers with global coverage such as MODIS to produce global snow cover maps. However, snow is harder to detect accurately in mountainous forested terrain, where topography influences retrieval algorithms, and importantly - forest canopies complicate radiative transfer and obfuscate the snow. Current satellite snow cover algorithms assume that fractional snow-covered area (fSCA) under the canopy is the same as the fSCA in the visible portion of the pixel. In-situ observations and first principles considerations indicate otherwise, therefore there is a need for improvement of the under-canopy correction of snow cover. Here, we leverage multiple LIDAR overflights and in-situ observations with a distributed fiber-optic temperature sensor (DTS) to quantify snow cover under canopy as opposed to gap areas at the Sagehen Experimental Forest in the Northern Sierra Nevada, California, USA. Snow-off LIDAR overflights from 2014 are used to create a baseline high-resolution digital elevation model and classify pixels at 1 m resolution as canopy-covered or gap. Low canopy pixels are excluded from the analysis. Snow-on LIDAR overflights conducted by the Airborne Snow Observatory in 2016 are then used to classify all pixels as snow-covered or not and quantify fSCA under canopies vs. in gap areas over the Sagehen watershed. DTS observations are classified as snow-covered or not based on diel temperature fluctuations and used as validation for the LIDAR observations. LIDAR- and DTS-derived fSCA is also compared with

  16. Tree species diversity in a seasonally-dry forest: the case of the Pinkaití site, in the Kayapó Indigenous Area, Southeastern limits of the Amazon

    OpenAIRE

    Salm,Rodolfo

    2004-01-01

    This study investigates patterns of forest structure and tree species diversity in an anthropogenic palm grove and undisturbed areas at the seasonally-dry Pinkaití research station, in the Kayapó Indigenous Area. This site, managed by the Conservation International do Brasil, is the most southeastern site floristically surveyed in the Amazon until now. The secondary and a nearby undisturbed forest were sampled in a group of 52 floristic plots of 0.0625-ha (25x25-m) where all trees with DBH > ...

  17. Ungulate browsing maintains shrub diversity in the absence of episodic disturbance in seasonally-arid conifer forest.

    Directory of Open Access Journals (Sweden)

    Burak K Pekin

    Full Text Available Ungulates exert a strong influence on the composition and diversity of vegetation communities. However, little is known about how ungulate browsing pressure interacts with episodic disturbances such as fire and stand thinning. We assessed shrub responses to variable browsing pressure by cattle and elk in fuels treated (mechanical removal of fuels followed by prescribed burning and non-fuels treated forest sites in northeastern Oregon, US. Seven treatment paddocks were established at each site; three with cattle exclusion and low, moderate and high elk browsing pressure, three with elk exclusion and low, moderate and high cattle browsing pressure, and one with both cattle and elk exclusion. The height, cover and number of stems of each shrub species were recorded at multiple plots within each paddock at the time of establishment and six years later. Changes in shrub species composition over the six year period were explored using multivariate analyses. Generalized Linear Mixed Models were used to determine the effect of browsing pressure on the change in shrub diversity and evenness. Vegetation composition in un-browsed paddocks changed more strongly and in different trajectories than in browsed paddocks at sites that were not fuels treated. In fuels treated sites, changes in composition were minimal for un-browsed paddocks. Shrub diversity and evenness decreased strongly in un-browsed paddocks relative to paddocks with low, moderate and high browsing pressure at non-fuels treated sites, but not at fuels treated sites. These results suggest that in the combined absence of fire, mechanical thinning and ungulate browsing, shrub diversity is reduced due to increased dominance by certain shrub species which are otherwise suppressed by ungulates and/or fuels removal. Accordingly, ungulate browsing, even at low intensities, can be used to suppress dominant shrub species and maintain diversity in the absence of episodic disturbance events.

  18. Seasonal variation in the number of captures of Artibeus lituratus (Olfers, 1818 and Sturnira lilium (E. Geoffroy, 1810 (Chiroptera: Phyllostomidae in the upper strata of an Atlantic Forest remnant in southern Brazil

    Directory of Open Access Journals (Sweden)

    Fernando Carvalho

    2014-09-01

    Full Text Available This study aimed to analyze the occurrence of seasonal variations in the number of captures of Artibeus lituratus and Sturnira lilium in the upper strata of an Atlantic Forest remnant in southern Brazil. It was conducted in the town of Pedras Grandes, in the southern end of Santa Catarina. The chiropterans were captured with mist nets installed in the canopy and subcanopy. To check whether there were differences in the number of captures between seasons, we used the chi-square test (χ2, with a significance level of 0.05, and, whenever needed, partial χ2 tests. Artibeus lituratus showed significant differences between seasons, and the largest number of captures occurs in autumn. For S. lilium we did not observe statistically significant differences. The seasonal variation found out for A. lituratus may be related to its diet, which is based on fruits whose availability has seasonal variations. For S. lilium, besides the diet, mainly based on plants that do not have seasonal variations with regard to fruit availability, the altitude of the study area and its variations in temperature also seem to explain the absence of seasonal variation.

  19. Patch-occupancy models indicate human activity as major determinant of forest elephant Loxodonta cyclotis seasonal distribution in an industrial corridor in Gabon

    Science.gov (United States)

    Buij, R.; McShea, W.J.; Campbell, P.; Lee, M.E.; Dallmeier, F.; Guimondou, S.; Mackaga, L.; Guisseougou, N.; Mboumba, S.; Hines, J.E.; Nichols, J.D.; Alonso, A.

    2007-01-01

    The importance of human activity and ecological features in influencing African forest elephant ranging behaviour was investigated in the Rabi-Ndogo corridor of the Gamba Complex of Protected Areas in southwest Gabon. Locations in a wide geographical area with a range of environmental variables were selected for patch-occupancy surveys using elephant dung to assess seasonal presence and absence of elephants. Patch-occupancy procedures allowed for covariate modelling evaluating hypotheses for both occupancy in relation to human activity and ecological features, and detection probability in relation to vegetation density. The best fitting models for old and fresh dung data sets indicate that (1) detection probability for elephant dung is negatively related to the relative density of the vegetation, and (2) human activity, such as presence and infrastructure, are more closely associated with elephant distribution patterns than are ecological features, such as the presence of wetlands and preferred fresh fruit. Our findings emphasize the sensitivity of elephants to human disturbance, in this case infrastructure development associated with gas and oil production. Patch-occupancy methodology offers a viable alternative to current transect protocols for monitoring programs with multiple covariates.

  20. Ant species (Hymenoptera, Formicidae from the seasonally dry tropical forest of northeastern Brazil: a compilation from field surveys in Bahia and literature records

    Directory of Open Access Journals (Sweden)

    Mônica A. Ulysséa

    2013-06-01

    Full Text Available Ant species (Hymenoptera, Formicidae from the seasonally dry tropical forest of northeastern Brazil: a compilation from field surveys in Bahia and literature records. The Caatingas occur predominantly in northeastern Brazil and comparatively it is the biome that received less attention than any other ecosystem in Brazil, representing the region where invertebrate groups are less known. We present here the first list of ant species of the Caatingas, compiling information from the literature, from a study of samples preserved in alcohol in the Laboratory of Entomology (Universidade Estadual de Feira de Santana, and from a field survey conducted in Milagres, Bahia, submitting standardized 1-m² samples of the leaf-litter to Winkler extractors. Summing all information, 11 subfamilies, 61 genera and 173 species (plus one subspecies of ants are recognized in the biome. This species number does not consider morphospecies that could not be named due to the lack of reliable recent taxonomic information for some Neotropical ant genera. The list presented here for ant species of the Caatingas is therefore underestimated, but it is relevant because it allows the identification of areas to be sampled in order to improve our knowledge of the diversity of ants in this biome.

  1. Additional burden of asymptomatic and sub-patent malaria infections during low transmission season in forested tribal villages in Chhattisgarh, India.

    Science.gov (United States)

    Chourasia, Mehul Kumar; Raghavendra, Kamaraju; Bhatt, Rajendra M; Swain, Dipak Kumar; Meshram, Hemraj M; Meshram, Jayant K; Suman, Shrity; Dubey, Vinita; Singh, Gyanendra; Prasad, Kona Madhavinadha; Kleinschmidt, Immo

    2017-08-08

    The burden of sub-patent malaria is difficult to recognize in low endemic areas due to limitation of diagnostic tools, and techniques. Polymerase chain reaction (PCR), a molecular based technique, is one of the key methods for detection of low parasite density infections. The study objective was to assess the additional burden of asymptomatic and sub-patent malaria infection among tribal populations inhabiting three endemic villages in Keshkal sub-district, Chhattisgarh, India. A cross-sectional survey was conducted in March-June 2016, during the low transmission season, to measure and compare prevalence of malaria infection using three diagnostics: rapid diagnostic test, microscopy and nested-PCR. Out of 437 individuals enrolled in the study, 103 (23.6%) were malaria positive by PCR and/or microscopy of whom 89.3% were Plasmodium falciparum cases, 77.7% were afebrile and 35.9% had sub-patent infections. A substantial number of asymptomatic and sub-patent malaria infections were identified in the survey. Hence, strategies for identifying and reducing the hidden burden of asymptomatic and sub-patent infections should focus on forest rural tribal areas using more sensitive molecular diagnostic methods to curtail malaria transmission.

  2. Relationships between structure of the tree component and environmental variables in a subtropical seasonal forest in the upper Uruguay River valley, Brazil

    Directory of Open Access Journals (Sweden)

    Máida Ariane de Mélo

    2013-12-01

    Full Text Available This study aimed to analyze relationships among the structure of the tree component, edaphic variables and canopy discontinuity along a toposequence in a seasonal upland (hillside forest in southern Brazil. Soil and vegetation were sampled in 25 plots of 20 × 20 m each. We described the vegetation in terms of structure, richness and diversity, as well as by species distribution patterns. We evaluated canopy continuity, determined sloping and calculated spatial coordinates. We applied partial canonical correspondence analysis (pCCA to determine whether species distribution correlated with environmental and spatial variables. We identified 1201 individuals belonging to 76 species within 30 families. The species with highest density and frequency were Gymnanthes concolor Spreng., Calyptranthes tricona D.Legrand, Eugenia moraviana O.Berg and Trichilia claussenii DC. The pCCAs indicated significant correlations with environmental and spatial variables. Sand content, boron content and soil density collectively explained 36.17% of the species matrix variation (total inertia, whereas the spatial variables x, y and xy² collectively explained 14.27%. The interaction between environmental and spatial variables explained nearly 4.5%. However, 45.05% remained unexplained, attributed to stochastic variation or unmeasured variables. Terrain morphology and canopy discontinuity had no apparent influence on richness, and changes in species distribution were correlated with sloping, which affects soil features and determines the directional distribution of some species.

  3. Soil respiration fluxes in a temperate mixed forest: seasonality and temperature sensitivities differ among microbial and root-rhizosphere respiration.

    Science.gov (United States)

    Ruehr, Nadine K; Buchmann, Nina

    2010-02-01

    Although soil respiration, a major CO(2) flux in terrestrial ecosystems, is known to be highly variable with time, the response of its component fluxes to temperature and phenology is less clear. Therefore, we partitioned soil respiration (SR) into microbial (MR) and root-rhizosphere respiration (RR) using small root exclusion treatments in a mixed mountain forest in Switzerland. In addition, fine root respiration (FRR) was determined with measurements of excised roots. RR and FRR were strongly related to each other (R(2) = 0.92, n = 7), with RR contributing about 46% and FRR about 32% to total SR. RR rates increased more strongly with temperature (Q(10) = 3.2) than MR rates (Q(10) = 2.3). Since the contribution of RR to SR was found to be higher during growing (50%) than during dormant periods (40%), we separated the 2-year data set into phenophases. During the growing period of 2007, the temperature sensitivity of RR (Q(10) = 2.5, R(2) = 0.62) was similar to that of MR (Q(10) = 2.2, R(2) = 0.57). However, during the dormant period of 2006/2007, RR was not related to soil temperature (R(2) = 0.44, n.s.), in contrast to MR (Q(10) = 7.2; R(2) = 0.92). To better understand the influence of plant activity on root respiration, we related RR and FRR rates to photosynthetic active radiation (both R(2) = 0.67, n = 7, P = 0.025), suggesting increased root respiration rates during times with high photosynthesis. During foliage green-up in spring 2008, i.e., from bud break to full leaf expansion, RR increased by a factor of 5, while soil temperature increased only by about 5 degrees C, leading to an extraordinary high Q(10) of 10.6; meanwhile, the contribution of RR to SR increased from 29 to 47%. This clearly shows that root respiration and its apparent temperature sensitivity highly depend on plant phenology and thus on canopy assimilation and carbon allocation belowground.

  4. Large variations in diurnal and seasonal patterns of sap flux among Aleppo pine trees in semi-arid forest reflect tree-scale hydraulic adjustments

    Science.gov (United States)

    Preisler, Yakir; Tatarinov, Fyodor; Rohatyn, Shani; Rotenberg, Eyal; Grünzweig, José M.; Klein, Tamir; Yakir, Dan

    2015-04-01

    Adjustments and adaptations of trees to drought vary across different biomes, species and habitats, with important implications for tree mortality and forest dieback associated with global climate change. The aim of this study was to investigate possible links between the patterns of variations in water flux dynamics and drought resistance in Aleppo pine (Pinus halepensis) trees in a semi-arid stand (Yatir forest, Israel). We measured sap flow (SF) and variations in stem diameter, complemented with short-term campaigns of leaf-scale measurements of water vapour and CO2 gas exchange, branch water potential and hydraulic conductivity, as well as eddy flux measurements of evapotranspiration (ET) from a permanent flux tower at the site. SF rates were well synchronized with ET, reaching maximum rates during midday in all trees during the rainy season (Dec-Apr). However, during the dry season (May-Nov), the daily trend in the rates of SF greatly varied among trees, allowing classification into three tree classes: 1) trees with SF maximum rate constantly occurring in mid-day (12:00-13:00); 2)trees showing a shift to an early morning SF peak (04:00-06:00); and 3) trees shifting their daily SF peak to the evening (16:00-18:00). This classification did not change during the four years study period, between 2010 and 2014. Checking for correlation of tree parameters as DBH, tree height, crown size, and competition indices with rates of SF, indicated that timing of maximum SF in summer was mainly related to tree size (DBH), when large trees tended to have a later SF maximum. Dendrometer measurements indicated that large trees (high DBH) had maximum daily diameter in the morning during summer and winter, while small trees typically had maximum daily diameter during midday and afternoon in winter and summer, respectively. Leaf-scale transpiration (T) measurements showed typical morning peak in all trees, and another peak in the afternoon in large trees only. Different diurnal

  5. Growing season variability of net ecosystem CO2 exchange and evapotranspiration of a sphagnum mire in the broad-leaved forest zone of European Russia

    International Nuclear Information System (INIS)

    Olchev, A; Volkova, E; Karataeva, T; Novenko, E

    2013-01-01

    The spatial and temporal variability of net ecosystem exchange (NEE) of CO 2 and evapotranspiration (ET) of a karst-hole sphagnum peat mire situated at the boundary between broad-leaved and forest–steppe zones in the central part of European Russia in the Tula region was described using results from field measurements. NEE and ET were measured using a portable measuring system consisting of a transparent ventilated chamber combined with an infrared CO 2 /H 2 O analyzer, LI-840A (Li-Cor, USA) along a transect from the southern peripheral part of the mire to its center under sunny clear-sky weather conditions in the period from May to September of 2012 and in May 2013. The results of the field measurements showed significant spatial and temporal variability of NEE and ET that was mainly influenced by incoming solar radiation and ground water level. The seasonal patterns of NEE and ET within the mire were quite different. During the entire growing season the central part of the mire was a sink of CO 2 for the atmosphere. NEE reached maximal values in June–July (−6.8 ± 4.2 μmol m −2 s −1 ). The southern peripheral part of the mire, due to strong shading by the surrounding forest, was a sink of CO 2 for the atmosphere in June–July only. ET reached maximal values in the well-lighted central parts of the mire in May (0.34 ± 0.20 mm h −1 ) mainly because of high air and surface temperatures and the very wet upper peat horizon and sphagnum moss. Herbaceous species made the maximum contribution to the total gross primary production (GPP) in both the central and the peripheral parts of the mire. The contribution of sphagnum to the total GPP of these plant communities was relatively small and ranged on sunny days of July–August from −1.1 ± 1.1 mgC g −1 of dry weight (DW) per hour in the peripheral zone of the mire to −0.6 ± 0.2 mgC g −1 DW h −1 at the mire center. The sphagnum layer made the maximum contribution to total ET at the mire center (0

  6. A Comparison of the Diel Cycle of Modeled and Measured Latent Heat Flux During the Warm Season in a Colorado Subalpine Forest

    Science.gov (United States)

    Burns, Sean P.; Swenson, Sean C.; Wieder, William R.; Lawrence, David M.; Bonan, Gordon B.; Knowles, John F.; Blanken, Peter D.

    2018-03-01

    Precipitation changes the physiological characteristics of an ecosystem. Because land-surface models are often used to project changes in the hydrological cycle, modeling the effect of precipitation on the latent heat flux λE is an important aspect of land-surface models. Here we contrast conditionally sampled diel composites of the eddy-covariance fluxes from the Niwot Ridge Subalpine Forest AmeriFlux tower with the Community Land Model (CLM, version 4.5). With respect to measured λE during the warm season: for the day following above-average precipitation, λE was enhanced at midday by ≈40 W m-2 (relative to dry conditions), and nocturnal λE increased from ≈10 W m-2 in dry conditions to over 20 W m-2 in wet conditions. With default settings, CLM4.5 did not successfully model these changes. By increasing the amount of time that rainwater was retained by the canopy/needles, CLM was able to match the observed midday increase in λE on a dry day following a wet day. Stable nighttime conditions were problematic for CLM4.5. Nocturnal CLM λE had only a small (≈3 W m-2) increase during wet conditions, CLM nocturnal friction velocity u∗ was smaller than observed u∗, and CLM canopy air temperature was 2°C less than those measured at the site. Using observed u∗ as input to CLM increased λE; however, this caused CLM λE to be increased during both wet and dry periods. We suggest that sloped topography and the ever-present drainage flow enhanced nocturnal u∗ and λE. Such phenomena would not be properly captured by topographically blind land-surface models, such as CLM.

  7. Distribution of tree species in a geomorphological and pedological gradient of submontane semidecidual seasonal forest in the vicinity of Rio Doce state park, Minas Gerais

    Directory of Open Access Journals (Sweden)

    Priscila Bezerra de Souza

    2012-08-01

    Full Text Available The objective of this study was to test the hypothesis that the distribution of tree species in a fragment of submontane seasonal semideciduous forest, a buffer zone in the Parque Estadual do Rio Doce, Minas Gerais, is influenced by geomorphological and weather and soil variables, therefore it can represent a source of information for the restoration of degraded areas where environmental conditions are similar to those of the study area. A detailed soil survey was conducted in the area by sampling three soil profiles per slope segment, totaling 12 profiles. To sample the topsoil, four composite samples were collected from the 10-20 cm layers in each topographic range totaling 16 composite samples. In the low ramp and the lower and upper concave slopes, the texture ranged from clay to sandy-clay. The soil and topographic gradient was characterized by changes in the soil physical-chemical properties. The soil in the 10-20 cm sampled layer was sandier, slightly more fertile and less acid in the low ramp than the clayer soil, nutrient-poor and highly acid soil at the top. The soil conditions in the lower and upper slope of the sampled layers, in turn, were intermediate. The P levels were limiting in all soils. The species distribution along the topographic gradient was associated with variations in chemical fertility, acidity and soil texture. The distribution of Pera leandri, Astronium fraxinifolium, Pouteria torta, Machaerium brasiliense and Myrcia rufipes was correlated with high aluminum levels and to low soil fertility and these species may be indicated for restoration of degraded areas on hillsides and hilltops in regions where environmental conditions are similar. The distribution of Pouteria venosa, Apuleia leiocarpa and Acacia polyphylla was correlated with the less acid and more fertile soil in the environment of the low ramps, indicating the potential for the restoration of similar areas.

  8. "I eat the manofê so it is not forgotten": local perceptions and consumption of native wild edible plants from seasonal dry forests in Brazil.

    Science.gov (United States)

    Cruz, Margarita Paloma; Medeiros, Patrícia Muniz; Sarmiento-Combariza, Iván; Peroni, Nivaldo; Albuquerque, Ulysses Paulino

    2014-05-23

    There is little information available on the factors influencing people's selection of wild plants for consumption. Studies suggest a suitable method of understanding the selection of edible plants is to assess people's perceptions of these resources. The use and knowledge of wild resources is disappearing, as is the opportunity to use them. This study analyzes people's perceptions of native wild edible plants in a rural Caatinga (seasonal dry forest) community in Northeast Brazil and the relationships between the use of these resources and socioeconomic factors. Semi-structured interviews with 39 people were conducted to form a convenience sample to gather information regarding people's perceptions of 12 native wild edible plant species. The relationships between variables were assessed by simple linear regression analysis, Pearson and Spearman correlation analyses, and in the case of nominal variables, contingency tables. The discourse of participants regarding their opinions of the use of wild plants as food was analyzed through the collective subject discourse analysis technique. Perceptions were classified into 18 categories. The most cited category was organoleptic characteristics of the edible part; more specifically, flavor. Flavor was the main positive perception associated with plant use, whereas the negative perception that most limited the use of these plants was cultural acceptance. Perceptions of the use of wild edible plants were directly correlated with both interviewee age and income. Within the studied community, people's perceptions of native wild edible plants are related to their consumption. Moreover, the study found that young people have less interest in these resources. These findings suggest that changing perceptions may affect the conservation of plants, traditional practices and the associated knowledge.

  9. Análise da dinâmica sazonal de fitofisionomias do bioma Mata Atlântica com base em índices de vegetação do sensor MODIS/TERRA / Analysis of the seasonal dynamics of some Atlantic Forest biome physiognomies with basis of vegetation indices derived from MOD

    Directory of Open Access Journals (Sweden)

    Elói Lennon Dalla Nora

    2010-08-01

    and with a climatic database (temperature and precipitation, for each physiognomy. The results showed that the fragments of seasonal deciduous forest and mixed rain forest present a common seasonal pattern, however, with variations of amplitude in relation to each index. The EVI was more sensible and hence, more efficient to annual variations of the vegetation compared to the NDVI. For both forest formations a positive correlation between profile EVI and NDVI with variations of temperature was established. The spectral/temporal dynamic showed a marked contrast under distinct seasonal conditions converging with the pattern presented for the vegetation indices. Data indicate potentialities of the use of MODIS sensor for the continuous monitoring of the south forest formations with moderate space resolution and high temporal resolution.

  10. Forest structure and carbon dynamics in Amazonian tropical rain forests.

    Science.gov (United States)

    Vieira, Simone; de Camargo, Plinio Barbosa; Selhorst, Diogo; da Silva, Roseana; Hutyra, Lucy; Chambers, Jeffrey Q; Brown, I Foster; Higuchi, Niro; dos Santos, Joaquim; Wofsy, Steven C; Trumbore, Susan E; Martinelli, Luiz Antonio

    2004-08-01

    Living trees constitute one of the major stocks of carbon in tropical forests. A better understanding of variations in the dynamics and structure of tropical forests is necessary for predicting the potential for these ecosystems to lose or store carbon, and for understanding how they recover from disturbance. Amazonian tropical forests occur over a vast area that encompasses differences in topography, climate, and geologic substrate. We observed large differences in forest structure, biomass, and tree growth rates in permanent plots situated in the eastern (near Santarém, Pará), central (near Manaus, Amazonas) and southwestern (near Rio Branco, Acre) Amazon, which differed in dry season length, as well as other factors. Forests at the two sites experiencing longer dry seasons, near Rio Branco and Santarém, had lower stem frequencies (460 and 466 ha(-1) respectively), less biodiversity (Shannon-Wiener diversity index), and smaller aboveground C stocks (140.6 and 122.1 Mg C ha(-1)) than the Manaus site (626 trees ha(-1), 180.1 Mg C ha(-1)), which had less seasonal variation in rainfall. The forests experiencing longer dry seasons also stored a greater proportion of the total biomass in trees with >50 cm diameter (41-45 vs 30% in Manaus). Rates of annual addition of C to living trees calculated from monthly dendrometer band measurements were 1.9 (Manaus), 2.8 (Santarém), and 2.6 (Rio Branco) Mg C ha(-1) year(-1). At all sites, trees in the 10-30 cm diameter class accounted for the highest proportion of annual growth (38, 55 and 56% in Manaus, Rio Branco and Santarém, respectively). Growth showed marked seasonality, with largest stem diameter increment in the wet season and smallest in the dry season, though this may be confounded by seasonal variation in wood water content. Year-to-year variations in C allocated to stem growth ranged from nearly zero in Rio Branco, to 0.8 Mg C ha(-1) year(-1) in Manaus (40% of annual mean) and 0.9 Mg C ha(-1) year(-1) (33% of

  11. Reconfiguring trade mark law

    DEFF Research Database (Denmark)

    Elsmore, Matthew James

    2013-01-01

    -border setting, with a particular focus on small business and consumers. The article's overall message is to call for a rethink of received wisdom suggesting that trade marks are effective trade-enabling devices. The case is made for reassessing how we think about European trade mark law.......First, this article argues that trade mark law should be approached in a supplementary way, called reconfiguration. Second, the article investigates such a reconfiguration of trade mark law by exploring the interplay of trade marks and service transactions in the Single Market, in the cross...

  12. Evaluation of Multiple Mechanistic Hypotheses of Leaf Photosynthesis and Stomatal Conductance against Diurnal and Seasonal Data from Two Contrasting Panamanian Tropical Forests

    Science.gov (United States)

    Serbin, S.; Walker, A. P.; Wu, J.; Ely, K.; Rogers, A.; Wolfe, B.

    2017-12-01

    Tropical forests play a key role in regulating the global carbon (C), water, and energy cycles and stores, as well as influence climate through the exchanges of mass and energy with the atmosphere. However, projected changes in temperature and precipitation patterns are expected to impact the tropics and the strength of the tropical C sink, likely resulting in significant climate feedbacks. Moreover, the impact of stronger, longer, and more extensive droughts not well understood. Critical for the accurate modeling of the tropical C and water cycle in Earth System Models (ESMs) is the representation of the coupled photosynthetic and stomatal conductance processes and how these processes are impacted by environmental and other drivers. Moreover, the parameterization and representation of these processes is an important consideration for ESM projections. We use a novel model framework, the Multi-Assumption Architecture and Testbed (MAAT), together with the open-source bioinformatics toolbox, the Predictive Ecosystem Analyzer (PEcAn), to explore the impact of the multiple mechanistic hypotheses of coupled photosynthesis and stomatal conductance as well as the additional uncertainty related to model parameterization. Our goal was to better understand how model choice and parameterization influences diurnal and seasonal modeling of leaf-level photosynthesis and stomatal conductance. We focused on the 2016 ENSO period and starting in February, monthly measurements of diurnal photosynthesis and conductance were made on 7-9 dominant species at the two Smithsonian canopy crane sites. This benchmark dataset was used to test different representations of stomatal conductance and photosynthetic parameterizations with the MAAT model, running within PEcAn. The MAAT model allows for the easy selection of competing hypotheses to test different photosynthetic modeling approaches while PEcAn provides the ability to explore the uncertainties introduced through parameterization. We

  13. Mark Tompkins Canaccord

    OpenAIRE

    Mark Tompkins Canaccord

    2018-01-01

    Mark Tompkins Canaccord is a senior technologist for ecosystem and water resources management in SEC SAID Oakland, California office. In his career which lasts over fifteen years Mark has worked on project involving lake restorations, clean water engineering, ecological engineering and management, hydrology, hydraulics, sediment transport and other projects for environmental planning all over the country. Mark Tompkins Canaccord tries to blend his skills of planning and engineering with s...

  14. Water cycle observations in forest watersheds of Cambodia

    Science.gov (United States)

    Shimizu, A.; Tamai, K.; Kabeya, N.; Shimizu, T.; Iida, S. I.

    2015-12-01

    The Lower Mekong River flows through Cambodia, where forests cover ~60% of the country and are believed to have a marked effect on the water cycle. These tropical seasonal forests in the Cambodian flat lands are very precious in the Indochinese Peninsula as few forests of this type remain. However, few hydrological observations have been conducted in these areas. In Cambodia, deciduous and evergreen forests make up 42% and 33% of the total forest area, respectively. We established experimental watersheds both in deciduous and evergreen forests containing meteorological observation towers in Cambodia and collected various observational data since 2003 (O'Krieng, deciduous forest watershed including a 30-m-high observation tower, 2,245 km2; Stung Chinit, evergreen forest watershed including a 60-m-high observation tower, 3,700 km2 including three small watersheds). The basic data from these sites included various kinds of information related to the composition of vegetation, soil characteristics, etc. Hydrologic data was collected and linked to the above data; the main hydrologic research results follow. The water budget for each watershed was determined using an observational rainfall and runoff dataset. The evapotranspiration rate in an evergreen forest was obtained using various observational methods including the Bowen energy-balance ratio and the bandpass eddy covariance method. The annual evapotranspiration of evergreen forests, estimated using the Bowen energy-balance ratio method and water balance, was about 1100-1200 mm, corresponding to 70-80% of annual rainfall. While considering the importance of the presence of evergreen forest, we conducted sap flow measurements to analyze the transpiration process that maintains water uptake through root systems that reach to depths exceeding 8 m. Characteristics of the evaporation from the forest floor that form an important element of the evaporation system were estimated in both evergreen and deciduous forests.

  15. Calcium addition at the Hubbard Brook Experimental Forest increases the capacity for stress tolerance and carbon capture in red spruce (Picea rubens) trees during the cold season

    Science.gov (United States)

    Paul G. Schaberg; Rakesh Minocha; Stephanie Long; Joshua M. Halman; Gary J. Hawley; Christopher. Eagar

    2011-01-01

    Red spruce (Picea rubens Sarg.) trees are uniquely vulnerable to foliar freezing injury during the cold season (fall and winter), but are also capable of photosynthetic activity if temperatures moderate. To evaluate the influence of calcium (Ca) addition on the physiology of red spruce during the cold season, we measured concentrations of foliar...

  16. Lujan Mark-4

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michael Jeffrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavorka, Lukas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Paul E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-13

    This is a review of Mark-IV target neutronics design. It involved the major redesign of the upper tier, offering harder neutron spectra for upper-tier FPs; a redesign of the high-resolution (HR) moderator; and a preservation of the rest of Mark-III features.

  17. Mark Stock | NREL

    Science.gov (United States)

    Stock Mark Stock Scientific Visualization Specialist Mark.Stock@nrel.gov | 303-275-4174 Dr. Stock , virtual reality, parallel computing, and manipulation of large spatial data sets. As an artist, he creates . Stock built the SUNLIGHT artwork that is installed on the Webb Building in downtown Denver. In addition

  18. Microscopic saw mark analysis: an empirical approach.

    Science.gov (United States)

    Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles

    2015-01-01

    Microscopic saw mark analysis is a well published and generally accepted qualitative analytical method. However, little research has focused on identifying and mitigating potential sources of error associated with the method. The presented study proposes the use of classification trees and random forest classifiers as an optimal, statistically sound approach to mitigate the potential for error of variability and outcome error in microscopic saw mark analysis. The statistical model was applied to 58 experimental saw marks created with four types of saws. The saw marks were made in fresh human femurs obtained through anatomical gift and were analyzed using a Keyence digital microscope. The statistical approach weighed the variables based on discriminatory value and produced decision trees with an associated outcome error rate of 8.62-17.82%. © 2014 American Academy of Forensic Sciences.

  19. Fish movement in an Atlantic Forest stream

    Directory of Open Access Journals (Sweden)

    Rosana Mazzoni

    2018-03-01

    Full Text Available ABSTRACT Given the importance of fish movement to the dynamics and maintenance of stream dwelling fish communities from the Atlantic Forest, we analysed patterns of fish movement in a coastal stream from Southeastern Brazil, using mark-recapture technique. Displacement distance of each species were presented and discussed considering seasonal (rainy and dry and body size patterns. We marked 10 species along the stream and recaptured 440 (34.6% of the 1,270 marked fishes. The species with significant number of upstream moving individuals were Astyanax janeiroensis, Characidium interruptum, Astyanax hastatus, Parotocinclus maculicauda and Awaous tajasica. Only Pimelodella lateristriga presented significant differences between resident and moving individuals. Characidium interruptum and A. tajasica demonstrated greater downstream and upstream movement, respectively, moving up to 2,100 m. Even after controlling for species identity we found no significant correlation between fish length and individual displacement distance. Fishes moved longer distances during the rainy season, in accordance to the breeding season. Patterns of fish movement were in agreement to life-history traits of many of the studied species and can be reflecting specific behaviour and morphologies.

  20. Floristics and biogeography of vegetation in seasonally dry tropical regions

    DEFF Research Database (Denmark)

    Dexter, K.G.; Smart, B.; Baldauf, C.

    2015-01-01

    To provide an inter-continental overview of the floristics and biogeography of drought-adapted tropical vegetation formations, we compiled a dataset of inventory plots in South America (n=93), Africa (n=84), and Asia (n=92) from savannas (subject to fire), seasonally dry tropical forests (not...... similar vegetation formations (e.g. savannas) are floristically highly dissimilar. Neotropical moist forest, savanna and seasonally dry tropical forest are floristically distinct, but elsewhere there is no clear floristic division of savanna and seasonally dry tropical forest, though moist and dry...... of the ecology, biology and conservation of savannas and seasonally dry tropical forests may be difficult....

  1. Plant cover and hydrological response in a seasonally dry tropical forest (SDTF = Cobertura vegetal e as respostas hidrológicas em floresta tropical sazonalmente seca (FTSS

    Directory of Open Access Journals (Sweden)

    Eunice Maia de Andrade

    2017-10-01

    Full Text Available The scarcity of information on the processes of rainfall-flow limits understanding of the hydrology of dry regions of the world. In order to minimise the problem, this study was developed to investigate the influence of the characteristics of rainfall events and plant cover on the effective precipitation (Pe in a seasonally dry tropical forest (SDTF in the Northeast of Brazil. The study was carried out in two paired watersheds, one with SDTF under regeneration for 35 years (CR35 and the other under thinned SDTF for 5 years (TC. A historical series of five years (2009-2013 was analysed, with a total of 203 rainfall events, where only those rainfall events that generated a Pe > 1.0 mm were considered. CR35 had a greater number of Pe events (47 than TC (35. Rainfall depth and intensity were the factors that best explained the effective precipitation under both types of vegetation cover. The influence of herbaceous vegetation on the reduction of surface runoff was demonstrated by the smaller runoff depth and the greater potential for soil water storage in the watershed under thinned Caatinga. This fact leads to the conclusion that the technique of thinning is suitable management for Caatinga vegetation, and is capable of promoting the retention of soil water. = A escassez de informações sobre os processos chuva-deflúvio é uma limitação no entendimento da hidrologia das regiões secas do globo terrestre. Buscando minimizar esta problemática, desenvolveuse este estudo objetivando investigar as influências das características dos eventos pluviométricos e da cobertura vegetal na precipitação efetiva (Pe em floresta tropical sazonalmente seca (FTSS, no nordeste do Brasil. O estudo foi realizado em duas microbacias emparelhadas, uma com FTSS em regeneração há 35 anos (CR35 e outra com FTSS raleada há 5 anos (CR. Foi analisada uma série histórica de cinco anos (2009-2013, com um total de 203 eventos pluviométricos, sendo considerados

  2. Dinâmica sazonal da produção e decomposição de serrapilheira em floresta tropical de transição Seasonal dynamics of the litterfall production and decomposition in tropical transitional forest

    Directory of Open Access Journals (Sweden)

    Luciana Sanches

    2009-04-01

    Full Text Available Em função de se analisar a produção, dinâmica e decomposição de serrapilheira em busca da sazonalidade do microclima em uma floresta tropical de transição Amazônia Cerrado, propõe-se estimar a produção de serrapilheira, por meio de caixas de coleta de 1 m² e o acúmulo de serrapilheira sobre o solo por meio de quadrantes de 25 x 25 cm, distribuídos aleatoriamente. Determinaram-se a constante de decaimento (K, o coeficiente de retorno de serrapilheira (K L e a constante de decomposição (K'. Com o emprego de bolsas de nylon preenchidas com folhas de espécies de relevância na floresta (Tovomita schomburgkki e Brosimium lactescens estudou-se a decomposição de folhas e se monitaram os fatores ambientais por meio de equipamentos instalados em uma torre micrometeorológica. A produção de serrapilheira não só se apresentou de forma sazonal, com significativa influência da umidade relativa do ar e da precipitação, em uma floresta de transição, mas foi majoritariamente composta de folhas seguidas de galhos e miscelânea (flores e frutos. A decomposição de folhas em florestas tropicais foi acelerada em ambas as estações, seca-úmida e úmida-seca, sendo a velocidade de decomposição das folhas maior na estação úmida-seca.The objective of this study was to analyze the production, dynamics and litter decomposition as a function of the seasonality of the microclimate in a transitional tropical forest of Amazonia Cerrado. Estimate of litterfall was carried out with collection boxes of 1 m² and floor forest mass with quadrants of 25 x 25 cm distributed randomly. The decline constant (K, litter turnover rate (K L and litter decomposition rate (K' were determined by estimation of litterfall and forest floor litter mass. Leaf decomposition was studied by litter bags with leaves of species of relevance (Tovomita schomburgkki and Brosimium lactescens in the forest. The analysis of the environmental factors was measured through

  3. Effects of riparian buffers on hydrology of northern seasonal ponds

    Science.gov (United States)

    Randall K. Kolka; Brian J. Palik; Daniel P. Tersteeg; James C. Bell

    2011-01-01

    Although seasonal ponds are common in northern, glaciated, forested landscapes, forest management guidelines are generally lacking for these systems. The objective of this study was to determine the effect of riparian buffer type on seasonal pond hydrology following harvest of the adjacent upland forest. A replicated block design consisting of four buffer treatments...

  4. Mark 1 Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Mark I Test Facility is a state-of-the-art space environment simulation test chamber for full-scale space systems testing. A $1.5M dollar upgrade in fiscal year...

  5. Mark Raidpere portreefotod Kielis

    Index Scriptorium Estoniae

    1999-01-01

    Kieli Linnagaleriis avatud 2. Ars Baltica fototriennaalil 'Can You Hear Me?' esindab Eestit Mark Raidpere seeriaga 'Portreed 1998'. Näituse Eesti-poolne kuraator Anu Liivak, kataloogiteksti kirjutas Anders Härm. Tuntumaid osalejaid triennaalil Wolfgang Tillmans

  6. Marks of Metal Copenhell

    DEFF Research Database (Denmark)

    2015-01-01

    Planchebaseret udendørs udstilling på musikfestivalen Copenhell 18-20/6 2015. En mindre udgave af udstillingen Marks of Metal - Logodesign og visualitet i heavy metal. Udarbejdet i samarbejde med Mediemuseet.......Planchebaseret udendørs udstilling på musikfestivalen Copenhell 18-20/6 2015. En mindre udgave af udstillingen Marks of Metal - Logodesign og visualitet i heavy metal. Udarbejdet i samarbejde med Mediemuseet....

  7. Seasonal ozone uptake by a warm-temperate mixed deciduous and evergreen broadleaf forest in western Japan estimated by the Penman–Monteith approach combined with a photosynthesis-dependent stomatal model

    International Nuclear Information System (INIS)

    Kitao, Mitsutoshi; Komatsu, Masabumi; Hoshika, Yasutomo; Yazaki, Kenichi; Yoshimura, Kenichi; Fujii, Saori; Miyama, Takafumi; Kominami, Yuji

    2014-01-01

    Canopy-level stomatal conductance over a warm-temperate mixed deciduous and evergreen broadleaf forest in Japan was estimated by the Penman–Monteith approach, as compensated by a semi-empirical photosynthesis-dependent stomatal model, where photosynthesis, relative humidity, and CO 2 concentration were assumed to regulate stomatal conductance. This approach, using eddy covariance data and routine meteorological observations at a flux tower site, permits the continuous estimation of canopy-level O 3 uptake, even when the Penman–Monteith approach is unavailable (i.e. in case of direct evaporation from soil or wet leaves). Distortion was observed between the AOT40 exposure index and O 3 uptake through stomata, as AOT40 peaked in April, but with O 3 uptake occurring in July. Thus, leaf pre-maturation in the predominant deciduous broadleaf tree species (Quercus serrata) might suppress O 3 uptake in springtime, even when the highest O 3 concentrations were observed. -- Highlights: • We estimate canopy-level O 3 uptake in a warm-temperate mixed forest in Japan. • The Penman–Monteith approach is compensated by a photosynthesis-dependent model. • Stomatal conductance can be estimated, even in a partly-opened or wet canopy. • The estimated O 3 dose peaks in summer though O 3 exposure peaks in spring. -- Estimation of seasonal O 3 uptake over a mixed-temperate forest compensated by a photosynthesis-dependent stomatal model

  8. COMPUTER HARDWARE MARKING

    CERN Multimedia

    Groupe de protection des biens

    2000-01-01

    As part of the campaign to protect CERN property and for insurance reasons, all computer hardware belonging to the Organization must be marked with the words 'PROPRIETE CERN'.IT Division has recently introduced a new marking system that is both economical and easy to use. From now on all desktop hardware (PCs, Macintoshes, printers) issued by IT Division with a value equal to or exceeding 500 CHF will be marked using this new system.For equipment that is already installed but not yet marked, including UNIX workstations and X terminals, IT Division's Desktop Support Service offers the following services free of charge:Equipment-marking wherever the Service is called out to perform other work (please submit all work requests to the IT Helpdesk on 78888 or helpdesk@cern.ch; for unavoidable operational reasons, the Desktop Support Service will only respond to marking requests when these coincide with requests for other work such as repairs, system upgrades, etc.);Training of personnel designated by Division Leade...

  9. Seasonal Changes in Microbial Community Structure in Freshwater Stream Sediment in a North Carolina River Basin

    Directory of Open Access Journals (Sweden)

    John P. Bucci

    2014-01-01

    Full Text Available This study examined seasonal differences in microbial community structure in the sediment of three streams in North Carolina’s Neuse River Basin. Microbes that reside in sediment are at the base of the food chain and have a profound influence on the health of freshwater stream environments. Terminal-Restriction Fragment Length Polymorphism (T-RFLP, molecular fingerprint analysis of 16S rRNA genes was used to examine the diversity of bacterial species in stream sediment. Sediment was sampled in both wet and dry seasons from an agricultural (Bear, mixed urban (Crabtree and forested (Marks Creek, and the microbiota examined. Gamma, Alpha and Beta proteobacteria were prevalent species of microbial taxa represented among all sites. Actinobacteria was the next most prevalent species observed, with greater occurrence in dry compared to the wet season. Discernable clustering was observed of Marks and Bear Creek samples collected during the wetter period (September–April, which corresponded with a period of higher precipitation and cooler surface water temperatures. Although not statistically significant, microbial community structure appeared different between season (ANOSIM, R = 0.60; p < 0.10. Principal components analysis confirmed this pattern and showed that the bacterial groups were separated by wet and dry seasonal periods. These results suggest seasonal differences among the microbial community structure in sediment of freshwater streams and that these communities may respond to changes in precipitation during wetter periods.

  10. Análise do mosaico silvático em um fragmento de floresta tropical estacional no sudeste do Brasil Silvatic mosaic analysis in a fragment of a tropical seasonal forest in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Eliana Cardoso Leite

    2008-06-01

    Full Text Available Este estudo foi realizado na "Mata da Câmara", um fragmento de floresta estacional semidecídual localizado em São Roque, SP, e teve como objetivos a identificação e análise do mosaico silvático, discutindo-se a arquitetura atual da floresta e inferindo sobre sua dinâmica de construção. Utilizou-se o método de inventário de linhas interceptadas, em que se amostraram três áreas de 50 × 105 m. Os resultados indicaram que as porcentagens de área ocupada por ecounidades em equilíbrio 2A foram de 46,8%, 48,6% e 75,7%, respectivamente nas três áreas estudadas. Pode-se concluir que na área A há uma floresta jovem, na área B uma floresta em fase de pré-maturidade com sinais de perturbações recentes e antigas e na área C uma floresta madura com alguns sinais de perturbações antigas. Comparando os resultados desta análise com aqueles obtidos através de levantamento fitossociológico, realizado na mesma área, a análise silvigenética mostrou ser mais uma importante ferramenta para discussão da dinâmica florestal, mas que em alguns caso tende a superestimar o grau de maturidade das florestas. No contexto dos fragmentos florestais remanescentes do Estado de São Paulo, pode-se dizer que a Mata da Câmara representa uma área de floresta relativamente bem preservada.This study was carried out in "Mata da Câmara", a fragment of a seasonal semideciduous forest, in São Roque - SP, Brazil. The objective of the present work was to identify and analyze the silvatic mosaic, by discussing its current architectural aspects and inferring about its construction dynamics. The line-intercept inventory method was used in three 50 x 105 m areas. The results showed that percentages of the area occupied by 2A steady-state eco-units, were 46.8%, 48.6%, and 75.7% for areas A, B and C respectively. It can be concluded that there is a young forest in area A; a pre-mature forest with signs of both recent and old disturbances in area B, and in

  11. Using Bi-Seasonal WorldView-2 Multi-Spectral Data and Supervised Random Forest Classification to Map Coastal Plant Communities in Everglades National Park

    Directory of Open Access Journals (Sweden)

    Kristie S. Wendelberger

    2018-03-01

    Full Text Available Coastal plant communities are being transformed or lost because of sea level rise (SLR and land-use change. In conjunction with SLR, the Florida Everglades ecosystem has undergone large-scale drainage and restoration, altering coastal vegetation throughout south Florida. To understand how coastal plant communities are changing over time, accurate mapping techniques are needed that can define plant communities at a fine-enough resolution to detect fine-scale changes. We explored using bi-seasonal versus single-season WorldView-2 satellite data to map three mangrove and four adjacent plant communities, including the buttonwood/glycophyte community that harbors the federally-endangered plant Chromolaena frustrata. Bi-seasonal data were more effective than single-season to differentiate all communities of interest. Bi-seasonal data combined with Light Detection and Ranging (LiDAR elevation data were used to map coastal plant communities of a coastal stretch within Everglades National Park (ENP. Overall map accuracy was 86%. Black and red mangroves were the dominant communities and covered 50% of the study site. All the remaining communities had ≤10% cover, including the buttonwood/glycophyte community. ENP harbors 21 rare coastal species threatened by SLR. The spatially explicit, quantitative data provided by our map provides a fine-scale baseline for monitoring future change in these species’ habitats. Our results also offer a method to monitor vegetation change in other threatened habitats.

  12. Using Bi-Seasonal WorldView-2 Multi-Spectral Data and Supervised Random Forest Classification to Map Coastal Plant Communities in Everglades National Park.

    Science.gov (United States)

    Wendelberger, Kristie S; Gann, Daniel; Richards, Jennifer H

    2018-03-09

    Coastal plant communities are being transformed or lost because of sea level rise (SLR) and land-use change. In conjunction with SLR, the Florida Everglades ecosystem has undergone large-scale drainage and restoration, altering coastal vegetation throughout south Florida. To understand how coastal plant communities are changing over time, accurate mapping techniques are needed that can define plant communities at a fine-enough resolution to detect fine-scale changes. We explored using bi-seasonal versus single-season WorldView-2 satellite data to map three mangrove and four adjacent plant communities, including the buttonwood/glycophyte community that harbors the federally-endangered plant Chromolaena frustrata . Bi-seasonal data were more effective than single-season to differentiate all communities of interest. Bi-seasonal data combined with Light Detection and Ranging (LiDAR) elevation data were used to map coastal plant communities of a coastal stretch within Everglades National Park (ENP). Overall map accuracy was 86%. Black and red mangroves were the dominant communities and covered 50% of the study site. All the remaining communities had ≤10% cover, including the buttonwood/glycophyte community. ENP harbors 21 rare coastal species threatened by SLR. The spatially explicit, quantitative data provided by our map provides a fine-scale baseline for monitoring future change in these species' habitats. Our results also offer a method to monitor vegetation change in other threatened habitats.

  13. Identifying spatial clustering properties of the 1997-2003 Liguria (Northern Italy) forest-fire sequence

    International Nuclear Information System (INIS)

    Telesca, Luciano; Amatulli, Giuseppe; Lasaponara, Rosa; Lovallo, Michele; Santulli, Adriano

    2007-01-01

    The spatial clustering of the forest-fire sequence (1997-2003) of Liguria Region (Northern Italy) has been analysed using the correlation dimension D C , calculated by means of the correlation integral method. Studying the variations of this parameter, we recognize the presence of a strong variability of the spatial clusterization, modulated by seasonal cycles. Furthermore, we found that the larger fires (size >400 ha) mark the cyclic behaviour of the correlation dimension

  14. Fitossociologia de uma área de floresta estacional perenifólia na fazenda Amoreiras, Querência, MT Seasonal perennial forest site phytossociology in the amareiras farm, Querência, Mato Grosso state, Brazil

    Directory of Open Access Journals (Sweden)

    Sustanis Horn Kunz

    2010-08-01

    Full Text Available As florestas do sul da Amazônia, onde se encontra a Floresta Estacional Perenifólia, têm grande influência sobre a manutenção do equilíbrio físico regional e são as que mais estão ameaçadas pela ação antrópica, além de serem pouco conhecidas em relação à sua estrutura. Diante disso, objetivou-se estudar a estrutura fitossociológica de um trecho de Floresta Estacional Perenifólia na Bacia do Rio das Pacas em Querência, MT. A amostragem da vegetação consistiu na distribuição de 200 pontos quadrantes, sendo amostrados os indivíduos com diâmetro à altura de 1,30 m do solo (DAP ? 10 cm. A densidade total da área amostrada foi de 736 ind./ha, distribuídos em 58 espécies, 45 gêneros e 31 famílias. As espécies de maior Valor de Importância (VI, Ocotea leucoxylon (Sw. Laness., Trattinickia glaziovii Swart, Ouratea discophora Ducke, Xylopia amazonica R.E. Fr. e Myrcia multiflora (Lam. DC. corresponderam a 28,45% do VI total e também ocorreram em outros trechos de Floresta Estacional Perenifólia em Gaúcha do Norte, MT, porém não com a mesma representatividade. O índice de Shannon (3,51 pode ser considerado baixo por se tratar de Floresta Amazônica, mas a equabilidade de Pielou (0,86 evidenciou que a comunidade arbórea apresentava alta heterogeneidade florística.The Southern Amazon forests, where the Seasonal Perennial Forest occurs, has great influence on the maintenance of the regional physical equilibrium and they are among forests most threatened by anthropic action and are little known in relation to their structure. In this context, the objective of this work was to study phytosociological structure of a Seasonal Perennial Forest area in the Rio das Pacas Basin at Querência, state of Mato Grosso, Brazil. The vegetation sampling was composed of the distribution of 200 center quarter points, all individuals with DAP (diameter to height breast equal or superior to 10 cm were considered. The total density of

  15. Biofuels: on your marks

    International Nuclear Information System (INIS)

    Scheromm, P.

    1993-01-01

    Biomass fuels are in France: ethanol (from wheat, sugar beets, potatoes, jerusalem artichoke, ligno-cellulose wastes or forests) and its derived ETBE (ethyltertiobutylether), methanol (from petroleum) and its derived MTBE (methyltertiobutylether), vegetable oils and its derived DIESTER (methylester of colza or sunflower). Economic and energy balances are given with environmental impacts. (A.B.). 6 refs

  16. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Šnajdr, Jaroslav; Merhautová, Věra; Dobiášová, Petra; Cajthaml, Tomáš; Valášková, Vendula

    2013-01-01

    Roč. 56, JAN 2013 (2013), s. 60-68 ISSN 0038-0717 R&D Projects: GA MŠk(CZ) LA10001; GA MŠk(CZ) ME10152; GA MZe QH72216 Institutional support: RVO:61388971 Keywords : Extracellular enzymes * Forest soil * Lignocellulose Subject RIV: EE - Microbiology, Virology Impact factor: 4.410, year: 2013

  17. Overstory treatment and planting season affect survival of replacement tree species in emerald ash borer threatened Fraxinus nigra forests in Minnesota, USA

    Science.gov (United States)

    Christopher E. Looney; Anthony W. D' Amato; Brian J. Palik; Robert A. Slesak

    2015-01-01

    Fraxinus nigra Marsh. (black ash) wetland forests in northern Minnesota, USA, are threatened by the invasive insect, emerald ash borer (Agrilus planipennis Fairmaire (EAB)). A potential management option is promoting regeneration of tree species that are not EAB hosts to maintain ecosystem functions. Using an operational-scale...

  18. Seasonal changes in methane and carbon dioxide flux in wood ant (.i.Formica aquilonia./i.) nests and the surrounding forest soil

    Czech Academy of Sciences Publication Activity Database

    Jílková, V.; Picek, T.; Frouz, Jan

    2015-01-01

    Roč. 58, č. 1 (2015), s. 7-12 ISSN 0031-4056 Grant - others:GA UK(CZ) 574213 Institutional support: RVO:60077344 Keywords : temperate forest * CH4 * CO2 * temperature * ant activity Subject RIV: DF - Soil Science Impact factor: 1.535, year: 2015

  19. Augmented marked graphs

    CERN Document Server

    Cheung, King Sing

    2014-01-01

    Petri nets are a formal and theoretically rich model for the modelling and analysis of systems. A subclass of Petri nets, augmented marked graphs possess a structure that is especially desirable for the modelling and analysis of systems with concurrent processes and shared resources.This monograph consists of three parts: Part I provides the conceptual background for readers who have no prior knowledge on Petri nets; Part II elaborates the theory of augmented marked graphs; finally, Part III discusses the application to system integration. The book is suitable as a first self-contained volume

  20. Seasonal flight and resource collection patterns of colonies of the stingless bee Melipona bicolor schencki Gribodo (Apidae, Meliponini in an Araucaria forest area in southern Brazil

    Directory of Open Access Journals (Sweden)

    Ney Telles Ferreira Junior

    2010-01-01

    Full Text Available Melipona bicolor schencki occurs in southern Brazil and at high elevations in southeastern Brazil. It has potential for use in meliponiculture but this stingless bee species is vulnerable to extinction and we have little knowledge about its ecology. In order to gather essential information for species conservation and management, we made a study of seasonal flight activities in its natural environment. We sampled bees entering the nests with pollen, nectar/water and resin/mud, in five colonies during each season. In parallel, we analyzed the influence of hour of the day and meteorological factors on flight activity. Flights were most intense during spring and summer, with daily mean estimates of 2,100 and 2,333 flights respectively, while in fall and winter the daily flight estimate was reduced to 612 and 1,104 flights, respectively. Nectar and water were the most frequently-collected resources, followed by pollen and building materials. This preference occurred in all seasons, but with variations in intensity. During spring, daily flight activity lasted over 14 hours; this period was reduced in the other seasons, reaching eight hours in winter. Meteorological factors were associated with 40.2% of the variation in flight and resource collection activity. Apparently, other factors that we did not measure, such as colony needs and availability of floral resources, also strongly influence the intensity of resource collection.

  1. Identification markings for gemstones

    International Nuclear Information System (INIS)

    Dreschhoff, G.A.M.; Zeller, E.J.

    1980-01-01

    A method is described of providing permanent identification markings to gemstones such as diamond crystals by irradiating the cooled gemstone with protons in the desired pattern. The proton bombardment results in a reaction limited to a defined plane and converting the bombarded area of the plane into a different crystal lattice from that of the preirradiated stone. (author)

  2. Inferring Evolution of Habitat Usage and Body Size in Endangered, Seasonal Cynopoeciline Killifishes from the South American Atlantic Forest through an Integrative Approach (Cyprinodontiformes: Rivulidae.

    Directory of Open Access Journals (Sweden)

    Wilson J E M Costa

    Full Text Available Cynopoecilines comprise a diversified clade of small killifishes occurring in the Atlantic Forest, one of the most endangered biodiversity hotspots in the world. They are found in temporary pools of savannah-like and dense forest habitats, and most of them are highly threatened with extinction if not already extinct. The greatest gap in our knowledge of cynopoecilines stems from the absence of an integrative approach incorporating molecular phylogenetic data of species still found in their habitats with phylogenetic data taken from the rare and possibly extinct species without accessible molecular information. An integrative analysis combining 115 morphological characters with a multigene dataset of 2,108 bp comprising three nuclear loci (GLYT1, ENC1, Rho, provided a robust phylogeny of cynopoeciline killifishes, which was herein used to attain an accurate phylogenetic placement of nearly extinct species. The analysis indicates that the most recent common ancestor of the Cynopoecilini lived in open vegetation habitats of the Atlantic Forest of eastern Brazil and was a miniature species, reaching between 25 and 28 mm of standard length. The rare cases of cynopoecilines specialized in inhabiting pools within dense forests are interpreted as derived from four independent evolutionary events. Shifts in habitat usage and biogeographic patterns are tentatively associated to Cenozoic paleogeographic events, but the evolutionary history of cynopoecilines may be partially lost by a combination of poor past sampling and recent habitat decline. A sharp evolutionary shift directed to increased body size in a clade encompassing the genera Campellolebias and Cynopoecilus may be related to a parallel acquisition of an internally-fertilizing reproductive strategy, unique among aplocheiloid killifishes. This study reinforces the importance of adding morphological information to molecular databases as a tool to understand the biological complexity of organisms

  3. Inferring Evolution of Habitat Usage and Body Size in Endangered, Seasonal Cynopoeciline Killifishes from the South American Atlantic Forest through an Integrative Approach (Cyprinodontiformes: Rivulidae).

    Science.gov (United States)

    Costa, Wilson J E M

    2016-01-01

    Cynopoecilines comprise a diversified clade of small killifishes occurring in the Atlantic Forest, one of the most endangered biodiversity hotspots in the world. They are found in temporary pools of savannah-like and dense forest habitats, and most of them are highly threatened with extinction if not already extinct. The greatest gap in our knowledge of cynopoecilines stems from the absence of an integrative approach incorporating molecular phylogenetic data of species still found in their habitats with phylogenetic data taken from the rare and possibly extinct species without accessible molecular information. An integrative analysis combining 115 morphological characters with a multigene dataset of 2,108 bp comprising three nuclear loci (GLYT1, ENC1, Rho), provided a robust phylogeny of cynopoeciline killifishes, which was herein used to attain an accurate phylogenetic placement of nearly extinct species. The analysis indicates that the most recent common ancestor of the Cynopoecilini lived in open vegetation habitats of the Atlantic Forest of eastern Brazil and was a miniature species, reaching between 25 and 28 mm of standard length. The rare cases of cynopoecilines specialized in inhabiting pools within dense forests are interpreted as derived from four independent evolutionary events. Shifts in habitat usage and biogeographic patterns are tentatively associated to Cenozoic paleogeographic events, but the evolutionary history of cynopoecilines may be partially lost by a combination of poor past sampling and recent habitat decline. A sharp evolutionary shift directed to increased body size in a clade encompassing the genera Campellolebias and Cynopoecilus may be related to a parallel acquisition of an internally-fertilizing reproductive strategy, unique among aplocheiloid killifishes. This study reinforces the importance of adding morphological information to molecular databases as a tool to understand the biological complexity of organisms under intense

  4. Detrimental effects of low atmospheric humidity and forest fire on a community of western Himalayan butterflies

    Directory of Open Access Journals (Sweden)

    P. Smetacek

    2011-04-01

    Full Text Available Compared to previous years, the period from October 2008 to March 2009 showed marked reductions in species number and population size in the butterfly community of the Maheshkhan Reserve Forest, Nainital District, Uttarakhand. Desiccation of pupae due to abnormally low atmospheric humidity after the failure of seasonal rains appears to have been a major cause of this reduction. The drop in humidity also appears to be linked to the unusual spread of fires affecting broadleaf forests, one of which in May 2009 wiped out the remaining Maheshkhan butterfly community.

  5. Interview with Mark Watson

    Directory of Open Access Journals (Sweden)

    Katy Shaw

    2016-04-01

    Full Text Available Mark Watson is a British comedian and novelist. His five novels to date – 'Bullet Points' (2004, 'A Light-Hearted Look At Murder' (2007, 'Eleven' (2010, 'The Knot' (2012 and 'Hotel Alpha' (2014 – explore human relationships and communities in contemporary society. His latest novel Hotel Alpha tells the story of an extraordinary hotel in London and two mysterious disappearances that raise questions no one seems willing to answer. External to the novel, readers can also discover more about the hotel and its inhabitants in one hundred extra stories that expand the world of the novel and can be found at http://www.hotelalphastories.com. In conversation here with Dr Katy Shaw, Mark offers some reflections on his writing process, the field of contemporary literature, and the vitality of the novel form in the twenty-first century.

  6. Natural and near natural tropical forest values

    Science.gov (United States)

    Daniel H. Henning

    2011-01-01

    This paper identifies and describes some of the values associated with tropical rain forests in their natural and near-natural conditions. Tropical rain forests are moist forests in the humid tropics where temperature and rainfall are high and the dry season is short. These closed (non-logged) and broad-leaved forests are a global resource. Located almost entirely in...

  7. Temporal dynamics and leaf trait variability in Neotropical dry forests

    Science.gov (United States)

    Hesketh, Michael Sean

    This thesis explores the variability of leaf traits resulting from changes in season, ecosystem successional stage, and site characteristics. In chapter two, I present a review of the use of remote sensing analysis for the evaluation of Neotropical dry forests. Here, I stress the conclusion, drawn from studies on land cover characterization, biodiversity assessment, and evaluation of forest structural characteristics, that addressing temporal variability in spectral properties is an essential element in the monitoring of these ecosystems. Chapter three describes the effect of wet-dry seasonality on spectral classification of tree and liana species. Highly accurate classification (> 80%) was possible using data from either the wet or dry season. However, this accuracy decreased by a factor of ten when data from the wet season was classified using an algorithm trained on the dry, or vice versa. I also address the potential creation of a spectral taxonomy of species, but found that any clustering based on spectral properties resulted in markedly different arrangements in the wet and dry seasons. In chapter 4, I address the variation present in both physical and spectral leaf traits according to changes in forest successional stage at dry forest sites in Mexico and Costa Rica. I found significant differences in leaf traits between successional stages, but more strongly so in Costa Rica. This variability deceased the accuracy of spectral classification of tree species by a factor of four when classifying data using an algorithm trained on a different successional stage. Chapter 5 shows the influence of seasonality and succession on trait variability in Mexico. Differences in leaf traits between successional stages were found to be greater during the dry season, but were sufficient in both seasons to negatively influence spectral classification of tree species. Throughout this thesis, I show clear and unambiguous evidence of the variability of key physical and spectral

  8. Forested wetland habitat

    Science.gov (United States)

    Duberstein, Jamie A.; Krauss, Ken W.; Kennish, Michael J.

    2015-01-01

    A forested wetland (swamp) is a forest where soils are saturated or flooded for at least a portion of the growing season, and vegetation, dominated by trees, is adapted to tolerate flooded conditions. A tidal freshwater forested wetland is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity of soil porewater less than 0.5 g/l. It is known locally as tidal várzea in the Amazon delta, Brazil. A tidal saltwater forested wetland (mangrove forest) is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity often exceeding 3 g/l and reaching levels that can exceed seawater. Mangrove ecosystems are composed of facultative halophytes that generally experience better growth at moderate salinity concentrations.

  9. Comparison of seasonal variations of ozone exposure and fluxes in a Mediterranean Holm oak forest between the exceptionally dry 2003 and the following year

    International Nuclear Information System (INIS)

    Gerosa, Giacomo; Finco, Angelo; Mereu, Simone; Vitale, Marcello; Manes, Fausto; Denti, Antonio Ballarin

    2009-01-01

    Ozone and energy fluxes have been measured using the eddy covariance technique, from June to December 2004 in Castelporziano near Rome (Italy), and compared to similar measurements made in the previous year. The studied ecosystem consisted in a typical Mediterranean Holm oak forest. Stomatal fluxes have been calculated using the resistance analogy and by inverting the Penmann-Monteith equation. Results showed that the average stomatal contribution accounts for 42.6% of the total fluxes. Non-stomatal deposition proved to be enhanced by increasing leaf wetness and air humidity during the autumnal months. From a comparison of the two years, it can be inferred that water supply is the most important limiting factor for ozone uptake and that prolonged droughts alter significantly the stomatal conductance, even 2 months after the soil water content is replenished. Ozone exposure, expressed as AOT40, behaves similarly to the cumulated stomatal flux in dry conditions whereas a different behaviour for the two indices appears in wet autumnal conditions. A difference also occurs between the two years. - Ozone fluxes to a Holm oak coastal forest show inter-annual variations depending on meteorological conditions and water availability.

  10. Isotopic marking and tracers

    International Nuclear Information System (INIS)

    Morel, F.

    1997-01-01

    The use of radioactive isotopes as tracers in biology has been developed thanks to the economic generation of the required isotopes in accelerators and nuclear reactors, and to the multiple applications of tracers in the life domain; the most usual isotopes employed in biology are carbon, hydrogen, phosphorus and sulfur isotopes, because these elements are present in most of organic molecules. Most of the life science knowledge appears to be dependent to the extensive use of nuclear tools and radioactive tracers; the example of the utilization of radioactive phosphorus marked ATP to study the multiple reactions with proteins, nucleic acids, etc., is given

  11. Ceremony marking Einstein Year

    CERN Multimedia

    2005-01-01

    Sunday 13th November at 10:00amat Geneva's St. Peter's Cathedral To mark Einstein Year and the importance of the intercultural dialogue of which it forms a part, a religious service will take place on Sunday 13 November at 10 a.m. in St. Peter's Cathedral, to which CERN members and colleagues are warmly welcomed. Pastor Henry Babel, senior minister at the Cathedral, will speak on the theme: 'God in Einstein's Universe'. Diether Blechschmidt will convey a message on behalf of the scientific community.

  12. Minimal Marking: A Success Story

    Science.gov (United States)

    McNeilly, Anne

    2014-01-01

    The minimal-marking project conducted in Ryerson's School of Journalism throughout 2012 and early 2013 resulted in significantly higher grammar scores in two first-year classes of minimally marked university students when compared to two traditionally marked classes. The "minimal-marking" concept (Haswell, 1983), which requires…

  13. Phylobetadiversity among forest types in the Brazilian Atlantic Forest complex.

    Science.gov (United States)

    Duarte, Leandro Da Silva; Bergamin, Rodrigo Scarton; Marcilio-Silva, Vinícius; Seger, Guilherme Dubal Dos Santos; Marques, Márcia Cristina Mendes

    2014-01-01

    Phylobetadiversity is defined as the phylogenetic resemblance between communities or biomes. Analyzing phylobetadiversity patterns among different vegetation physiognomies within a single biome is crucial to understand the historical affinities between them. Based on the widely accepted idea that different forest physiognomies within the Southern Brazilian Atlantic Forest constitute different facies of a single biome, we hypothesize that more recent phylogenetic nodes should drive phylobetadiversity gradients between the different forest types within the Atlantic Forest, as the phylogenetic divergence among those forest types is biogeographically recent. We compiled information from 206 checklists describing the occurrence of shrub/tree species across three different forest physiognomies within the Southern Brazilian Atlantic Forest (Dense, Mixed and Seasonal forests). We analyzed intra-site phylogenetic structure (phylogenetic diversity, net relatedness index and nearest taxon index) and phylobetadiversity between plots located at different forest types, using five different methods differing in sensitivity to either basal or terminal nodes (phylogenetic fuzzy weighting, COMDIST, COMDISTNT, UniFrac and Rao's H). Mixed forests showed higher phylogenetic diversity and overdispersion than the other forest types. Furthermore, all forest types differed from each other in relation phylobetadiversity patterns, particularly when phylobetadiversity methods more sensitive to terminal nodes were employed. Mixed forests tended to show higher phylogenetic differentiation to Dense and Seasonal forests than these latter from each other. The higher phylogenetic diversity and phylobetadiversity levels found in Mixed forests when compared to the others likely result from the biogeographical origin of several taxa occurring in these forests. On one hand, Mixed forests shelter several temperate taxa, like the conifers Araucaria and Podocarpus. On the other hand, tropical groups, like

  14. Spatial, seasonal and ontogenetic variation in the diet of Astyanax aff. fasciatus (Ostariophysi: Characidae in an Atlantic Forest river, Southern Brazil

    Directory of Open Access Journals (Sweden)

    Luciano Lazzarini Wolff

    Full Text Available This study described the feeding habits of the characin Astyanax aff. fasciatus. The diet compositions of specimens from two sites (A and B on a river in Southern Brazil were compared according to the size of individuals and seasonal period. The collections were performed monthly from March 2005 to February 2006, where the stomach contents of 290 specimens were assessed. Food items for A. aff. fasciatus were basically composed of plants and insects, especially leaf fragments, seeds, fruits, filamentous algae, aquatic and terrestrial insects and insect fragments. At site A, the most common items were insect and plant fragments. Conversely at site B, plant fragments were more representative. In general, all items of animal origin showed the highest feeding index values at site A, whereas at site B detritus and grass items were more abundant. The composition of items varied seasonally, with higher diversity of items being recorded during the spring at both sites. Smaller individuals preferred items of animal origin, while the larger ones consumed mainly items of plant origin. According to its size, A. aff. fasciatus in this study may be considered a species with insectivorous tendencies when immature or herbivorous tendencies when adult. Nevertheless, its feeding habits may be flexible according to resource availability, showing wide ontogenetic, besides spatial and temporal variation.

  15. Species-specific and seasonal differences in chlorophyll fluorescence and photosynthetic light response among three evergreen species in a Madrean sky island mixed conifer forest

    Science.gov (United States)

    Potts, D. L.; Minor, R. L.; Braun, Z.; Barron-Gafford, G. A.

    2012-12-01

    Unlike the snowmelt-dominated hydroclimate of more northern mountainous regions, the hydroclimate of the Madrean sky islands is characterized by snowmelt and convective storms associated with the North American Monsoon. These mid-summer storms trigger biological activity and are important drivers of primary productivity. For example, at the highest elevations where mixed conifer forests occur, ecosystem carbon balance is influenced by monsoon rains. Whereas these storms' significance is increasingly recognized at the ecosystem scale, species-specific physiological responses to the monsoon are poorly known. Prior to and following monsoon onset, we measured pre-dawn and light-adapted chlorophyll fluorescence as well as photosynthetic light response in southwestern white pine (Pinus strobiformis), ponderosa pine (Pinus ponderosa), and Douglas fir (Pseudotsuga menziesii) in a Madrean sky island mixed conifer forest near Tucson, Arizona. Photochemical quenching (qp), an indicator of the proportion of open PSII reaction centers, was greatest in P. strobiformis and least in P. menziesii and increased in response to monsoon rains (repeated-measures ANOVA; species, F2,14 = 6.17, P = 0.012; time, F2,14= 8.17, P = 0.013). In contrast, non-photochemical quenching (qN), an indicator of heat dissipation ability, was greatest in P. ponderosa and least in P. menziesii, but was not influenced by monsoon onset (repeated-measures ANOVA; species, F2,12 = 4.18, P = 0.042). Estimated from leaf area-adjusted photosynthetic light response curves, maximum photosynthetic rate (Amax) was greatest in P. ponderosa and least in P. menziesii (repeated-measures ANOVA; species, F2,8= 40.8, P = 0.001). Surprisingly, while the monsoon positively influenced Amax among P. ponderosa and P. strobiformis, Amax of P. menziesii declined with monsoon onset (repeated-measures ANOVA; species x time, F2,8 = 13.8, P = 0.002). Calculated as the initial slope of the photosynthetic light response curve, light

  16. Seasonal variation of infiltration capacities of soils in western Oregon.

    Science.gov (United States)

    Michael G. Johnson; Robert L. Beschta

    1981-01-01

    Infiltration capacities were 50 percent greater during fall than during summer for forest soils of western Oregon. These results contrast with those measured in other studies. In forested areas, investigators should be aware of potentially large seasonal changes in infiltration capacities. Such seasonal changes may exceed effects due to applied treatments (logging,...

  17. Forest fire situation analysis over forest reserve land in Tomsk petroleum province

    International Nuclear Information System (INIS)

    Pasko, O A; Baranova, A V

    2015-01-01

    The paper delivers the analysis of space-time characteristics of forest fire ignition and spread in the North of Tomsk oblast, i.e. petroleum production area (Kargasok, Parabel and Teguldet districts). It also presents long-term and seasonal forest fire behavior including fire ignition and spread frequency (annual and seasonal), the fire season duration and their zonality. The main driving factors of forest fire ignition both human and natural ones are revealed

  18. SLARette Mark 2 system

    International Nuclear Information System (INIS)

    Burnett, D.J.

    1992-01-01

    The SLAR (Spacer Location and Repositioning) program has developed the technology and tooling necessary to locate and reposition the fuel channel spacers that separate the pressure tube from the calandria tube in a CANDU reactor. The in-channel SLAR tool contains all the inspection probes, and is capable of moving spacers under remote control. The SLAR inspection computer system translates all eddy currents and ultrasonic signals from the in-channel tool into various graphic displays. The in-channel SLAR tool can be delivered and manipulated in a fuel channel by either a SLAR delivery machine or a SLARette delivery machine. The SLAR delivery machine consists of a modified fuelling machine, and is capable of operating under totally remote control in automatic or semi-automatic mode. The SLARette delivery machine is a smaller less automated version, which was designed to be quickly installed, operated, and removed from a limited number of fuel channels during regular annual maintenance outages. This paper describes the design and operation of the SLARette Mark 2 system. 5 figs

  19. Transpiration and water-use efficiency in mixed-species forests versus monocultures: effects of tree size, stand density and season.

    Science.gov (United States)

    Forrester, David I

    2015-03-01

    Mixtures can be more productive than monocultures and may therefore use more water, which may make them more susceptible to droughts. The species interactions that influence growth, transpiration and water-use efficiency (WUE, tree growth per unit transpiration) within a given mixture vary with intra- and inter-annual climatic variability, stand density and tree size, but these effects remain poorly quantified. These relationships were examined in mixtures and monocultures of Eucalyptus globulus Labill. and Acacia mearnsii de Wildeman. Growth and transpiration were measured between ages 14 and 15 years. All E. globulus trees in mixture that were growing faster than similar sized trees in monocultures had higher WUE, while trees with similar growth rates had similar WUE. By the age of 14 years A. mearnsii trees were beginning to senesce and there were no longer any relationships between tree size and growth or WUE. The relationship between transpiration and tree size did not differ between treatments for either species, so stand-level increases in transpiration simply reflected the larger mean tree size in mixtures. Increasing neighbourhood basal area increased the complementarity effect on E. globulus growth and transpiration. The complementarity effect also varied throughout the year, but this was not related to the climatic seasonality. This study shows that stand-level responses can be the net effect of a much wider range of individual tree-level responses, but at both levels, if growth has not increased for a given species, it appears unlikely that there will be differences in transpiration or WUE for that species. Growth data may provide a useful initial indication of whether mixtures have higher transpiration or WUE, and which species and tree sizes contribute to this effect. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Composição florística de florestas estacionais ribeirinhas no estado de Mato Grosso do Sul, Brasil Floristic composition of seasonal riparian forests in Mato Grosso do Sul state, Brazil

    Directory of Open Access Journals (Sweden)

    Vivian Ribeiro Baptista-Maria

    2009-06-01

    Full Text Available O presente estudo teve como objetivos caracterizar a composição florística em dois trechos de floresta estacional semidecidual associada ao rio Formoso, Bonito, MS, e em três trechos de florestas estacionais deciduais e semideciduais associadas aos rios Salobra, Salobrinha e Perdido ocorrentes no Parque Nacional da Serra da Bodoquena (76.481 ha - única unidade de Conservação Federal de Proteção Integral implantada no Estado de Mato Grosso do Sul. O levantamento florístico foi realizado mensalmente entre o período de outubro/2004 a março/2006, onde foram coletadas fanerógamas em fase reprodutiva (flores e frutos, através do método de tempo de avaliação. O levantamento florístico resultou em 56 famílias, 184 gêneros e 307 espécies. Do total das espécies, 68% apresentaram hábito arbóreo, 17% arbustos, 14% foram lianas e apenas 1% palmeiras. A família Fabaceae (Leguminosae, representada por 51 (16,6% espécies, foi a de maior riqueza. Os resultados obtidos neste trabalho contribuíram para o conhecimento da flora sul-mato-grossense e sua distribuição geográfica, reforçando a necessidade de conservação destas matas ribeirinhas e fornecendo subsídios para os planos de restauração das áreas degradadas do entorno da unidade de conservação e das áreas de proteção permanente (APP's dos rios ocorrentes na região.This study aimed to characterize the floristic composition in two stretches of seasonal semideciduous forest associated with the Formoso River, Bonito, Mato Grosso do Sul State, and in three stretches of seasonal deciduous and semideciduous forests associated with the Salobra, Salobrinha and Perdido rivers in Bodoquena Plateau National Park (76,481 ha - the only Federal Conservation unit with Integral Protection in the state of Mato Grosso do Sul. The floristic survey was carried out monthly from October/2004 to March/2006, where flowering and fruiting phanerogams were collected by the method of evaluation

  1. Using Plant Functional Traits and Phylogenies to Understand Patterns of Plant Community Assembly in a Seasonal Tropical Forest in Lao PDR.

    Directory of Open Access Journals (Sweden)

    Manichanh Satdichanh

    Full Text Available Plant functional traits reflect different evolutionary responses to environmental variation, and among extant species determine the outcomes of interactions between plants and their environment, including other plant species. Thus, combining phylogenetic and trait-based information can be a powerful approach for understanding community assembly processes across a range of spatial scales. We used this approach to investigate tree community composition at Phou Khao Khouay National Park (18°14'-18°32'N; 102°38'- 102°59'E, Laos, where several distinct forest types occur in close proximity. The aim of our study was to examine patterns of plant community assembly across the strong environmental gradients evident at our site. We hypothesized that differences in tree community composition were being driven by an underlying gradient in soil conditions. Thus, we predicted that environmental filtering would predominate at the site and that the filtering would be strongest on sandier soil with low pH, as these are the conditions least favorable to plant growth. We surveyed eleven 0.25 ha (50x50 m plots for all trees above 10 cm dbh (1221 individual trees, including 47 families, 70 genera and 123 species and sampled soils in each plot. For each species in the community, we measured 11 commonly studied plant functional traits covering both the leaf and wood economic spectrum traits and we reconstructed a phylogenetic tree for 115 of the species in the community using rbcL and matK sequences downloaded from Genebank (other species were not available. Finally we compared the distribution of trait values and species at two scales (among plots and 10x10m subplots to examine trait and phylogenetic community structures. Although there was strong evidence that an underlying soil gradient was determining patterns of species composition at the site, our results did not support the hypothesis that the environmental filtering dominated community assembly processes

  2. Mark Kostabi soovib muuta inimesi õnnelikumaks / Kalev Mark Kostabi

    Index Scriptorium Estoniae

    Kostabi, Kalev Mark, 1960-

    2008-01-01

    Kalev Mark Kostabi oma sisekujunduslikest eelistustest, ameeriklaste ja itaallaste kodude sisekujunduse erinevustest, kunstist kui ruumikujunduse ühest osast, oma New Yorgi ja Rooma korterite kujundusest

  3. Disentangling the environmental heterogeneity, floristic distinctiveness and current threats of tropical dry forests in Colombia

    Science.gov (United States)

    González-M, Roy; García, Hernando; Isaacs, Paola; Cuadros, Hermes; López-Camacho, René; Rodríguez, Nelly; Pérez, Karen; Mijares, Francisco; Castaño-Naranjo, Alejandro; Jurado, Rubén; Idárraga-Piedrahíta, Álvaro; Rojas, Alicia; Vergara, Hernando; Pizano, Camila

    2018-04-01

    Tropical dry forests (TDFs) have been defined as a single biome occurring mostly in the lowlands where there is a marked period of drought during the year. In the Neotropics, dry forests occur across contrasting biogeographical regions that contain high beta diversity and endemism, but also strong anthropogenic pressures that threaten their biodiversity and ecological integrity. In Colombia, TDFs occur across six regions with contrasting soils, climate, and anthropogenic pressures, therefore being ideal for studying how these variables relate to dry forest species composition, successional stage and conservation status. Here, we explore the variation in climate and soil conditions, floristic composition, forest fragment size and shape, successional stage and anthropogenic pressures in 571 dry forest fragments across Colombia. We found that TDFs should not be classified solely on rainfall seasonality, as high variation in precipitation and temperature were correlated with soil characteristics. In fact, based on environmental factors and floristic composition, the dry forests of Colombia are clustered in three distinctive groups, with high species turnover across and within regions, as reported for other TDF regions of the Neotropics. Widely distributed TDF species were found to be generalists favored by forest disturbance and the early successional stages of dry forests. On the other hand, TDF fragments were not only small in size, but highly irregular in shape in all regions, and comprising mostly early and intermediate successional stages, with very little mature forest left at the national level. At all sites, we detected at least seven anthropogenic disturbances with agriculture, cattle ranching and human infrastructure being the most pressing disturbances throughout the country. Thus, although environmental factors and floristic composition of dry forests vary across regions at the national level, dry forests are equally threatened by deforestation, degradation

  4. Plant diversity patterns in neotropical dry forests and their conservation implications.

    Science.gov (United States)

    Banda-R, Karina; Delgado-Salinas, Alfonso; Dexter, Kyle G; Linares-Palomino, Reynaldo; Oliveira-Filho, Ary; Prado, Darién; Pullan, Martin; Quintana, Catalina; Riina, Ricarda; Rodríguez M, Gina M; Weintritt, Julia; Acevedo-Rodríguez, Pedro; Adarve, Juan; Álvarez, Esteban; Aranguren B, Anairamiz; Arteaga, Julián Camilo; Aymard, Gerardo; Castaño, Alejandro; Ceballos-Mago, Natalia; Cogollo, Álvaro; Cuadros, Hermes; Delgado, Freddy; Devia, Wilson; Dueñas, Hilda; Fajardo, Laurie; Fernández, Ángel; Fernández, Miller Ángel; Franklin, Janet; Freid, Ethan H; Galetti, Luciano A; Gonto, Reina; González-M, Roy; Graveson, Roger; Helmer, Eileen H; Idárraga, Álvaro; López, René; Marcano-Vega, Humfredo; Martínez, Olga G; Maturo, Hernán M; McDonald, Morag; McLaren, Kurt; Melo, Omar; Mijares, Francisco; Mogni, Virginia; Molina, Diego; Moreno, Natalia Del Pilar; Nassar, Jafet M; Neves, Danilo M; Oakley, Luis J; Oatham, Michael; Olvera-Luna, Alma Rosa; Pezzini, Flávia F; Dominguez, Orlando Joel Reyes; Ríos, María Elvira; Rivera, Orlando; Rodríguez, Nelly; Rojas, Alicia; Särkinen, Tiina; Sánchez, Roberto; Smith, Melvin; Vargas, Carlos; Villanueva, Boris; Pennington, R Toby

    2016-09-23

    Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than in other neotropical biomes, such as savanna. Such high floristic turnover indicates that numerous conservation areas across many countries will be needed to protect the full diversity of tropical dry forests. Our results provide a scientific framework within which national decision-makers can contextualize the floristic significance of their dry forest at a regional and continental scale. Copyright © 2016, American Association for the Advancement of Science.

  5. Lidar measurements of boundary layer depolarization and CCSEM-EDX compositional analysis of airborne particles on collocated passive samplers throughout the forest canopy during the 2016 airborne pollen season at UMBS, Pellston, MI

    Science.gov (United States)

    Wozniak, M. C.; Steiner, A.; Ault, A. P.; Kort, E. A.; Lersch, T.; Casuccio, G.

    2017-12-01

    Observations of airborne pollen are typically made with volumetric samplers that obtain a time-averaged pollen concentration at a single point. While spatial variations in surface pollen concentrations may be known with these samplers given multiple sampling sites, real-time boundary layer transport of pollen grains cannot be determined except by particle dispersion or tracer transport models. Recently, light detection and ranging (lidar) techniques, such as depolarization, have been used to measure pollen transport and optical properties throughout the boundary layer over time. Here, we use a ground-based micro-pulse lidar (MPL) to observe boundary layer vertical profiles before, during and after the peak anemophilous (wind-driven) pollen season. The lidar depolarization ratio is measured in tandem with the normalized R-squared backscatter (NRB) intensity to determine the contribution of aspherical particles to the scatterers present throughout the boundary layer. Measurements are taken from April 15 - July 12, 2016 at the University of Michigan Biological Station (UMBS) PROPHET outdoor research lab and tower within a largely forested region. UMBS is dominated by Acer rubrum, Betula papyrifera, Pinus resinosa, Quercus rubra and Pinus strobus, all of which began flowering on 4/19, 5/3, 5/25, 5/25 and 6/14, respectively. Temperature, relative humidity and wind speed measured on site determine daytime conditions conducive to pollen dispersion from flowers. Lidar depolarization ratios between 0.08-0.14 and higher are observed in the daytime boundary layer on days shortly after the flowering dates of the aforementioned species, elevated above the background level of 0.06 or less. Lidar observations are supplemented with aerosol compositional analysis determined by computer-controlled scanning electron microscopy and energy-dispersive X-ray spectroscopy (CCSEM-EDX) on passive sampler data from below, within and above the forest canopy at PROPHET tower. Particles are

  6. NotaMark industrial laser marking system: a new security marking technology

    Science.gov (United States)

    Moreau, Vincent G.

    2004-06-01

    Up until now, the only variable alphanumeric data which could be added to banknotes was the number, applied by means of impact typographical numbering boxes. As an additional process or an alternative to this mechanical method, a non-contact laser marking process can be used offering high quality and greater levels of flexibility. For this purpose KBA-GIORI propose an exclusive laser marking solution called NotaMark. The laser marking process NotaMark is the ideal solution for applying variable data and personalizing banknotes (or any other security documents) with a very high resolution, for extremely large production volumes. A completely integrated solution has been developed comprised of laser light sources, marking head units, and covers and extraction systems. NotaMark allows the marking of variable data by removing locally and selectively, specific printed materials leaving the substrate itself untouched. A wide range of materials has already been tested extensively. NotaMark is a new security feature which is easy to identify and difficult to counterfeit, and which complies with the standard mechanical and chemical resistance tests in the security printing industry as well as with other major soiling tests. The laser marking process opens up a whole new range of design possibilities and can be used to create a primary security feature such as numbering, or to enhance the value of existing features.

  7. Response of frugivorous primates to changes in fruit supply in a northern Amazonian forest.

    Science.gov (United States)

    Mourthé, I

    2014-08-01

    Few attempts have been made to understand how spatiotemporal changes in fruit supply influence frugivores in tropical forests. The marked spatiotemporal variation in fruit supply can affect frugivore abundance and distribution, but studies addressing the effects of this variation on primates are scarce. The present study aimed to investigate how the spatiotemporal distribution of fruits influences the local distribution of three frugivorous primates in the eastern part of the Maracá Ecological Station, a highly seasonal Amazonian rainforest. Specifically, it was hypothesised that primate distribution will track changes in fruit supply, resulting that sites with high fruit availability should be heavily used by primates. During a 1-year study, fruit supply (ground fruit surveys) and primate density (line-transects) were monitored in twelve 2 km-long transects at monthly intervals. Fruit supply varied seasonally, being low during the dry season. The density of Ateles belzebuth was positively related to fruit supply during fruit shortage, but Cebus olivaceus and Alouatta macconnelli did not follow the same pattern. The supply of Sapotaceae fruit was an important component determining local distribution of A. belzebuth during the overall fruit shortage. Highly frugivorous primates such as A. belzebuth respond to seasonal decline in fruit supply by congregating at places with high fruit supply in this forest, particularly, those with many individuals of species of Sapotaceae. This study underscores the importance of small-scale spatiotemporal changes of fruit supply as a key component of frugivorous primate ecology in highly seasonal environments.

  8. Biome-Scale Forest Properties in Amazonia Based on Field and Satellite Observations

    Directory of Open Access Journals (Sweden)

    Liana O. Anderson

    2012-05-01

    Full Text Available Amazonian forests are extremely heterogeneous at different spatial scales. This review intends to present the large-scale patterns of the ecosystem properties of Amazonia, and focuses on two parts of the main components of the net primary production: the long-lived carbon pools (wood and short-lived pools (leaves. First, the focus is on forest biophysical properties, and secondly, on the macro-scale leaf phenological patterns of these forests, looking at field measurements and bringing into discussion the recent findings derived from remote sensing dataset. Finally, I discuss the results of the three major droughts that hit Amazonia in the last 15 years. The panorama that emerges from this review suggests that slow growing forests in central and eastern Amazonia, where soils are poorer, have significantly higher above ground biomass and higher wood density, trees are higher and present lower proportions of large-leaved species than stands in northwest and southwest Amazonia. However, the opposite pattern is observed in relation to forest productivity and dynamism, which is higher in western Amazonia than in central and eastern forests. The spatial patterns on leaf phenology across Amazonia are less marked. Field data from different forest formations showed that new leaf production can be unrelated to climate seasonality, timed with radiation, timed with rainfall and/or river levels. Oppositely, satellite images exhibited a large-scale synchronized peak in new leaf production during the dry season. Satellite data and field measurements bring contrasting results for the 2005 drought. Discussions on data processing and filtering, aerosols effects and a combined analysis with field and satellite images are presented. It is suggested that to improve the understanding of the large-scale patterns on Amazonian forests, integrative analyses that combine new technologies in remote sensing and long-term field ecological data are imperative.

  9. Scope on the Skies: Changing of the Seasons

    Science.gov (United States)

    Riddle, Bob

    2011-01-01

    Learn the astronomy behind the changing of the seasons. Students know that we mark the change of seasons with the position of the Sun over certain parts of the Earth. The specific time and date for the change of seasons is determined by the position of the Sun, not above the horizon necessarily, nor geographically, but rather where the Sun is…

  10. Florística e estrutura da comunidade arbórea de um remanescente de Floresta Estacional Decidual de encosta, Monte Alegre, GO, Brasil Floristic and structure of a seasonal deciduous forest fragment, Monte Alegre, GO, Brazil

    Directory of Open Access Journals (Sweden)

    André R. Terra Nascimento

    2004-09-01

    Full Text Available O presente estudo teve como objetivo descrever a composição de espécies arbóreas e a estrutura de um fragmento de Floresta Estacional Decidual, na região Nordeste de Goiás, Brasil. Foram levantadas 25 unidades amostrais quadradas de 20x20m, totalizando uma amostra de um hectare, sendo incluídos na amostragem todos os indivíduos com diâmetros iguais ou superiores a 5cm. Foram amostrados 663 indivíduos pertencentes a 52 espécies arbóreas, destacando-se pela densidade as espécies Combretum duarteanum Camb., Casearia rupestris Eichl., Myracrodruon urundeuva Fr. Allem., Machaerium acutifolium Vog. e Tabebuia impetiginosa (Mart. ex DC. Standl. Foram encontradas 21 famílias botânicas, com maior representatividade da família Leguminosae (17 espécies e das famílias Bignoniaceae (4 espécies, Anacardiaceae (3 espécies e Bombacaceae (3 espécies. A vegetação estudada apresentou dossel descontínuo e distribuição diamétrica desequilibrada, com valores do quociente de Liocourt "q" variando de q1= 0,66 a q6 = 0,14. Estes remanescentes florestais desempenham papel importante na manutenção da diversidade biológica e possuem espécies arbóreas madeiráveis de importância econômica, que se tornaram raras em outros locais da região Nordeste de Goiás.The objective of this study was to describe the floristic composition and the structure of the tree layer of a fragment of a seasonal deciduous forest in northeastern Goiás state, Brazil. A sample of 25 (20x20 plots was assessed totaling one hectare. All individuals for 5cm dbh were included in the survey. A total of 663 trees in 52 arboreal species was found; the most abundant species were Combretum duarteanum Camb., Casearia rupestris Eichl., Myracrodruon urundeuva Fr. Allem., Machaerium acutifolium Vog. and Tabebuia impetiginosa (Mart. ex DC. Standl. There were 21 families with a higher proportion of Leguminosae (17 species Bignoniaceae (4 species, Anacardiaceae (3 species and

  11. Demography of a forest elephant population

    Science.gov (United States)

    Turkalo, Andrea K.; Wrege, Peter H.

    2018-01-01

    African forest elephants face severe threats from illegal killing for ivory and bushmeat and habitat conversion. Due to their cryptic nature and inaccessible range, little information on the biology of this species has been collected despite its iconic status. Compiling individual based monitoring data collected over 20 years from the Dzanga Bai population in Central African Republic, we summarize sex and age specific survivorship and female age specific fecundity for a cohort of 1625 individually identified elephants. Annual mortality (average = 3.5%) and natality (average = 5.3%) were lower and markedly less variable relative to rates reported for savanna elephant populations. New individuals consistently entered the study system, leading to a 2.5% average annual increase in the registered population. Calf sex ratios among known birth did not differ from parity. A weak seasonal signal in births was detected suggesting increased conceptions during the wet season. Inter-calf intervals and age of primiparity were longer relative to savanna elephant populations. Within the population, females between the ages of 25–39 demonstrated the shortest inter-calf intervals and highest fecundity, and previous calf sex had no influence on the interval. Calf survivorship was high (97%) the first two years after birth and did not differ by sex. Male and female survival began to differ by the age of 13 years, and males demonstrated significantly lower survival relative to females by the age of 20. It is suspected these differences are driven by human selection for ivory. Forest elephants were found to have one of the longest generation times recorded for any species at 31 years. These data provide fundamental understanding of forest elephant demography, providing baseline data for projecting population status and trends. PMID:29447207

  12. Diagnosing the Role of Transpiration in the Transition from Dry to Wet Season Over the Amazon Using Satellite Observations

    Science.gov (United States)

    Wright, J. S.; Fu, R.; Yin, L.; Chae, J.

    2013-12-01

    Reanalysis data indicates that land surface evapotranspiration plays a key role in determining the timing of wet season onset over the Amazon. Here, we use satellite observations of water vapor and its stable isotopes, carbon dioxide, leaf area index, and precipitation together with reanalysis data to explore the importance of transpiration in initiating the transition from dry season to wet season over the Amazon. The growth of vegetation in this region is primarily limited by the availability of sunlight rather than the availability of soil moisture, so that the increase of solar radiation during the dry season coincides with dramatic increases in leaf area index within forested ecosystems. This period of plant growth is accompanied by uptake of carbon dioxide and enrichment of heavy isotopes in water vapor, particularly near the land surface. Reanalysis data indicate that this pre-wet season enrichment of HDO is accompanied by sharp increases in the surface latent heat flux, which eventually triggers sporadic moist convection. The transport of transpiration-enriched near-surface air by this convection causes a dramatic increase in free-tropospheric HDO in late August and September. September also marks transition points in the annual cycles of leaf area index (maximum) and carbon dioxide (minimum). The increase in convective activity during this period creates convergence, enhancing moisture transport into the region and initiating the wet season.

  13. Caribbean dry forest networking: an opportunity for conservation

    Science.gov (United States)

    K. Banda-Rodriguez; J. Weintritt; R.T. Pennington

    2016-01-01

    Seasonally dry tropical forest is the most threatened tropical forest in the world. Though its overall plant species diversity is lower than in neighboring biomes such as rain forest, species endemism can be high, and its conservation has often been neglected. Caribbean dry forests face diverse threats including tourism, agriculture, and climate change. The Latin...

  14. Use of the space by the opossum Didelphis aurita Wied-Newied (Mammalia, Marsupialia in a mixed forest fragment of southern Brazil

    Directory of Open Access Journals (Sweden)

    Cáceres Nilton Carlos

    2003-01-01

    Full Text Available Use of the space by the opossum Didelphis aurita Wied-Newied, 1826 (Mammalia, Marsupialia in a mixed forest fragment of southern Brazil. The space use of the marsupial Didelphis aurita was studied in a forest fragment of southern Brazil from February 1995 to January 1996. The method used was the 'distribution utilization' in which each trap was set in 38 x 38 m quadrats. Captures of each marked individual in each point give information on its habitat use. Food availability was searched and compared to the habitat utilization and to the food consumption of opossums. Distribution patterns of captures (aggregated to random and spatial overlap between individuals were searched. Results showed aggregated distributions of individuals, particularly females, in the fragment. Females used exclusively the fragment during the drier season. Opossums tend to not choose the sites with highest food availability to establish home ranges. Spatial overlap was usually low between forest resident and neighbouring resident females, but much lower during the breeding season (only forest resident females in an apparently pattern of territoriality. Hence, core areas of females decreased in size during the breeding season. Males probably searched primarily for mates during the breeding season being less opportunistic than females in feeding habits, yet their space use did not correlate to food consumption.

  15. Evapotranspiration seasonality across the Amazon Basin

    Science.gov (United States)

    Eiji Maeda, Eduardo; Ma, Xuanlong; Wagner, Fabien Hubert; Kim, Hyungjun; Oki, Taikan; Eamus, Derek; Huete, Alfredo

    2017-06-01

    Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (˜ 1497 mm year-1) and the lowest values in the Solimões River basin (˜ 986 mm year-1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.

  16. Civilsamfundets ABC: M for Marked

    DEFF Research Database (Denmark)

    Lund, Anker Brink; Meyer, Gitte

    2016-01-01

    Bogstaveligt talt: Hvad er civilsamfundet? Anker Brink Lund og Gitte Meyer fra CBS Center for Civil Society Studies gennemgår civilsamfundet bogstav for bogstav. Vi er nået til M for Marked.......Bogstaveligt talt: Hvad er civilsamfundet? Anker Brink Lund og Gitte Meyer fra CBS Center for Civil Society Studies gennemgår civilsamfundet bogstav for bogstav. Vi er nået til M for Marked....

  17. Marks on the petroleum fiscality

    International Nuclear Information System (INIS)

    2007-02-01

    This document offers some marks on the petroleum fiscality in France: the taxes as the 'accises' and the 'TVA', the part of the taxes in the sale price at the service station, the comparison with other countries of Europe, the tax revenues and the Government budget. It provides also marks on the fuels prices formation (margins), the world petroleum markets (supply and demand) and the part of the petroleum companies on the petroleum market. (A.L.B.)

  18. Assessing socioeconomic impacts of climate change on U.S. forests, wood-product markets, and forest recreation

    Science.gov (United States)

    Lloyd C. Irland; Darius Adams; Ralph Alig; Carter J. Betz; Chi-Chung Chen; Mark Hutchins; Bruce A. McCarl; Ken Skog; Brent L. Sohngen

    2001-01-01

    In this paper we discuss the problems of projecting social and economic changes affecting forests and review recent efforts to assess the wood-market impacts of possible climate changes. To illustrate the range of conditions encountered in projecting socioeconomic change linked to forests, we consider two markedly different uses: forest products markets and forest...

  19. Viewing Forests Through a Historical Lens

    Science.gov (United States)

    Noreen Parks; Eric [< em> featured scientist< /em> ]. Knapp

    2009-01-01

    Past records on fire-resilient, biodiverse stands could offer models for the future.  This year marks the centennial of the Forest Service’s nationwide network of 80 experimental forests and ranges, which serve as field laboratories for long-term studies on the science and management of national forests. At the Stanislaus-Tuolumne Experimental Forest in the central...

  20. BWR Mark I pressure suppression study: bench mark experiments

    International Nuclear Information System (INIS)

    Lai, W.; McCauley, E.W.

    1977-01-01

    Computer simulations representative of the wetwell of Mark I BWR's have predicted pressures and related phenomena. However, calculational predictions for purposes of engineering decision will be possible only if the code can be verified, i.e., shown to compute in accord with measured values. Described in the report is a set of single downcomer spherical flask bench mark experiments designed to produce quantitative data to validate various air-water dynamic computations; the experiments were performed since relevant bench mark data were not available from outside sources. Secondary purposes of the study were to provide a test bed for the instrumentation and post-experiment data processing techniques to be used in the Laboratory's reactor safety research program and to provide additional masurements for the air-water scaling study

  1. Chuva de sementes em Floresta Estacional Semidecidual em Viçosa, MG, Brasil Seed rain in a seasonal semideciduous forest at Viçosa, Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    Érica Pereira de Campos

    2009-06-01

    Full Text Available Este estudo objetivou avaliar a composição florística, a densidade e a freqüência de sementes, em 25 coletores, em um trecho de Floresta Estacional Semidecidual. Além disso, classificar os táxons quanto à forma de vida, às síndromes de dispersão e, nas arbóreas, quanto ao estádio sucessional e verificar a similaridade florística entre as espécies identificadas na chuva de sementes e as espécies arbóreas localizadas nas mesmas parcelas dos coletores. O trabalho foi realizado entre dezembro/2004 a novembro/2006. Foram reconhecidos 43 táxons, sendo que Leguminosae foi representada por 11 espécies. A forma de vida dominante foi arbórea (63,1%, as lianas foram representadas por 28,9% das espécies amostradas, as herbáceas por 5,3% e as arbustivas por 2,6%. A densidade média de sementes no primeiro ano foi de 113,92 sementes.m-2 e no segundo de 2.603,84 sementes.m-2. Essas diferenças demonstraram heterogeneidade espacial e temporal da chuva de sementes. A similaridade florística encontrada pelo índice de Sørensen entre as espécies da chuva de sementes e as espécies arbóreas do trecho do fragmento estudado foi de 32%, valor considerado baixo (This study aims to evaluate the floristic composition, density and frequency of seeds in 25 traps in a section of seasonal semideciduous forest, as well as classify taxons as to life form, dispersal syndromes, and succession phase of the tree species, and verify floristic similarities between seed rain species and tree species located in the same plots. The work was carried out from December/2004 to November/2006. Forty three taxons were recognized and Leguminosae was represented by 11 species. The dominant life form was arboreal (63.1%, climbers were represented by 28.9% of the sampled species, herbs by 5.3% and shrubs by 2.6%. Mean seed density in the first year was 113.92 seeds.m-2 and 2603.84 seeds.m-2 in the second year. These differences showed spatial and seasonal heterogeneity

  2. Knowledge of the Yucatec Maya in seasonal tropical forest management: the forage plants El conocimiento de los mayas yucatecos en el manejo del bosque tropical estacional: las plantas forrajeras

    Directory of Open Access Journals (Sweden)

    José Salvador Flores

    2012-06-01

    Full Text Available Indigenous knowledge and the millenary experience in management of natural vegetation on karstic landscapes are important aspects that should be considered in animal production in seasonal tropical environments. The aim of the present work was to make an inventory of native plants associated to soilscapes from seasonal tropical forests from the Yucatán Peninsula that are used as forage by Mayan people. The work was carried out in 27 Mayan communities on karst landscapes in the Yucatán Peninsula as a part of the "Ethnoflora Yucatanense" project of the Universidad Autónoma de Yucatán. Samples were taken of forage plants together with corresponding floristic and ethnobotanical information. Data were processed in EXCEL dynamic tables, grouped by plant family, geoforms and soils, life form and animal consumers. Results indicate that Mayan communities use 196 plant species as forage: 139 herbaceous, 17 shrubs, 35 trees and 2 palms. These plants are fed to cows, pigs, horses, lambs, turkeys, chickens, ducks and pigeons. The use of native forage plants may be an agricultural option both for rural communities and for intensive animal production on silvopastoral systems on karstic tropical landscapes from the Yucatán Peninsula.El conocimiento indígena y la experiencia de milenios de años en el manejo de la vegetación natural en ambientes kársticos tropicales son aspectos importantes que deben ser considerados en la producción animal. El objetivo de este trabajo fue hacer un inventario de las plantas forrajeras nativas de los bosques tropicales estacionales de la península de Yucatán que son utilizadas por los mayas, incluyendo los paisajes edáficos en los que se encuentran las plantas, información que servirá de base para la planeación de las actividades agropecuarias. El trabajo se llevó al cabo en 27 comunidades indígenas mayas, como parte del proyecto "Etnoflora Yucatanense" de la Universidad Autónoma de Yucatán. Las muestras de

  3. Gall inducing arthropods from a seasonally dry tropical forest in Serra do Cipó, Brazil Artrópodes indutores de galhas em Floresta Sazonal Tropical Seca da Serra do Cipó, Brasil

    Directory of Open Access Journals (Sweden)

    Marcel Serra Coelho

    2009-01-01

    Full Text Available Highly diverse forms of galling arthropods can be identified in much of southeastern Brazil's vegetation. Three fragments of a Seasonally Dry Tropical Forest (SDTF located in the southern range of the Espinhaço Mountains were selected for study in the first survey of galling organisms in such tropical vegetation. Investigators found 92 distinct gall morphotypes on several organs of 51 host plant species of 19 families. Cecidomyiidae (Diptera was the most prolific gall-inducing species, responsible for the largest proportion of galls (77% observed. Leaves were the most frequently galled plant organ (63%, while the most common gall morphotype was of a spherical shape (30%. The two plant species, Baccharis dracunculifolia (Asteraceae and Celtis brasiliensis (Cannabaceae, presented the highest number of gall morphtypes, displaying an average of 5 gall morphotypes each. This is the first study of gall-inducing arthropods and their host plant species ever undertaken in a Brazilian SDTF ecosystem. Given the intense human pressure on SDTFs, the high richness of galling arthropods, and implied floral host diversity found in this study indicates the need for an increased effort to catalogue the corresponding flora and fauna, observe their intricate associations and further understand the implications of such rich diversity in these stressed and vulnerable ecosystems.Artrópodes indutores de galhas são muito ricos em espécies nas formações vegetais no sudeste do Brasil. Três fragmentos de Floresta Sazonal Tropical Seca (FSTS foram selecionados nas montanhas do sudeste da cadeia do Espinhaço para a primeira pesquisa de organismos indutores de galhas nesse tipo de vegetação. Encontramos 92 morfotipos distintos de galhas em vários órgãos de 51 espécies de plantas hospedeiras pertencentes à 19 famílias. A maioria das galhas (77% foi induzida pela família Cecidomyiidae (Diptera. A folha foi o órgão mais atacado (63%, enquanto o morfotipo mais

  4. Determining the annual periodicity of growth rings in seven tree species of a tropical moist forest in Santa Cruz, Bolivia

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, L.; Villalba, R.; Pena-Claros, M.

    2012-07-01

    To determine the annual periodicity of growth rings in seven tree species from a tropical moist forest in Santa Cruz, Bolivia, a fire scar was used as a marker point to verify the annual nature of tree rings. The number of tree rings formed between the 1995 fire scar and the collection of the cross sections in 2002 was visually identified. The seven species showed annual growth rings. In most cases, boundaries between rings were marked by the presence of marginal parenchyma and wall-thick ed fibers formed at the end of the growing season. Growth lenses and false rings were recorded in some species. Tree rings can be carefully used in Santa Cruz forests to determine rates of growth. This information is crucial for defining forest management practices in tropical regions. (Author) 21 refs.

  5. Florestas estacionais e áreas de ecótono no estado do Tocantins, Brasil: parâmetros estruturais, classificação das fitofisionomias florestais e subsídios para conservação Seasonal forests and ecotone areas in the state of Tocantins, Brazil: structure, classification and guidelines for conservation

    Directory of Open Access Journals (Sweden)

    Ricardo Flores Haidar

    2013-09-01

    Full Text Available O objetivo deste estudo foi descrever a riqueza, estrutura e diversidade de espécies arbóreas em áreas de Floresta Estacional e ecótono (Floresta Estacional/Floresta Ombrófila no estado do Tocantins, buscando subsídios para a conservação, manejo florestal, compensação de reserva legal e recuperação ambiental, além de discutir as identidades fitogeográficas em comparação com outras florestas do Brasil. Em 18 bacias hidrográficas, conduziu-se amostragem da vegetação arbórea (DAP > 5 cm de 22 áreas (amostras por meio do inventário de 477 parcelas de 400 m². Foram elaboradas análises de classificação pelo método TWINSPAN, em duas escalas distintas. A primeira avaliou a diversidade beta entre as parcelas amostradas no estado do Tocantins e a segunda buscou analisar a similaridade das florestas do Tocantins em relação a outras florestas do bioma Cerrado e suas áreas de tensão ecológica. As florestas amostradas apresentaram ampla variação em termos de riqueza (33 a 243 espécies, densidade (486 a 1.179 ind.ha-1, área basal (14,04 e 37,49 m².ha-1, índices de diversidade (H´ = 2,75 a 4,59 e de equabilidade (J´= 0,72 a 0,86. As análises de classificação convergiram para resultados comuns, identificando quatro ambientes dissimilares em termos florísticos e estruturais no estado do Tocantins: Floresta Estacional Decidual, Floresta Estacional Semidecidual, ecótono Floresta Estacional Semidecidual/Floresta Ombrófila e ecótono Floresta Estacional Decidual/Floresta Ombrófila. A fim de manter a diversidade de plantas e de ambientes na região de transição Floresta Amazônica e Cerrado, sugere-se que o processo de criação de unidades de conservação no estado do Tocantins deva ser intensificado e tenha como base para seleção das áreas critérios biogeográficos.The purpose of this study was to describe the richness, structure and diversity of tree species occurring in seasonally dry forests and some ecotone

  6. Stand, species, and individual traits impact transpiration in historically disturbed forests.

    Science.gov (United States)

    Blakely, B.; Rocha, A. V.; McLachlan, J. S.

    2017-12-01

    Historic logging disturbances have changed the structure and species composition of most Northern temperate forests. These changes impact the process of transpiration - which in turn impacts canopy surface temperature - but the links among structure, composition, and transpiration remain unclear. For this reason, ecosystem models typically use simplified structure and composition to simulate the impact of disturbances on forest transpiration. However, such simplifications ignore real variability among stands, species, and individual trees that may strongly influence transpiration across spatial and temporal scales. To capture this variability, we monitored transpiration in 48 individual trees of multiple species in both undisturbed (400+ yr) and historically logged (80 - 120 yr) forests. Using modern and historic forest surveys, we upscaled our observations to stand and regional scales to identify the key changes impacting transpiration. We extended these inferences by establishing a relationship between transpiration and measured surface temperature, linking disturbance-induced changes in structure and composition to local and regional climate. Despite greater potential evapotranspiration and basal area, undisturbed forest transpired less than disturbed (logged) forest. Transpiration was a strong predictor of surface temperature, and the canopy surface was warmer in undisturbed forest. Transpiration differences among disturbed and undisturbed forests resulted from (1) lesser transpiration and dampened seasonality in evergreen species (2) greater transpiration in younger individuals within a species, and (3) strong transpiration by large individuals. When transpiration was scaled to the stand or regional level in a simplified manner (e.g. a single transpiration rate for all deciduous individuals), the resulting estimates differed markedly from the original. Stand- species- and individual-level traits are therefore essential for understanding how transpiration and

  7. Mark Napier / Mark Napier ; interv. Tilman Baumgärtel

    Index Scriptorium Estoniae

    Napier, Mark

    2006-01-01

    Ameerika kunstnikust Mark Napierist (sünd. 1961) ja tema loomingust, 2001. a. tehtud meiliintervjuu kunstnikuga. Võrguteosest "The Digital Landfill" (1998), koos Andy Deckiga loodud tööst "GrafficJam" (1999), töödest "Shredder" (1998), "Feed", "Riot", "P-Soup" (2000), võrgukunstist ja muust

  8. Minimal Marking: A Success Story

    Directory of Open Access Journals (Sweden)

    Anne McNeilly

    2014-11-01

    Full Text Available The minimal-marking project conducted in Ryerson’s School of Journalism throughout 2012 and early 2013 resulted in significantly higher grammar scores in two first-year classes of minimally marked university students when compared to two traditionally marked classes. The “minimal-marking” concept (Haswell, 1983, which requires dramatically more student engagement, resulted in more successful learning outcomes for surface-level knowledge acquisition than the more traditional approach of “teacher-corrects-all.” Results suggest it would be effective, not just for grammar, punctuation, and word usage, the objective here, but for any material that requires rote-memory learning, such as the Associated Press or Canadian Press style rules used by news publications across North America.

  9. Urban Forests

    Science.gov (United States)

    David Nowak

    2016-01-01

    Urban forests (and trees) constitute the second forest resource considered in this report. We specifically emphasize the fact that agricultural and urban forests exist on a continuum defined by their relationship (and interrelationship) with a given landscape. These two forest types generally serve different purposes, however. Whereas agricultural forests are...

  10. Percentage Retail Mark-Ups

    OpenAIRE

    Thomas von Ungern-Sternberg

    1999-01-01

    A common assumption in the literature on the double marginalization problem is that the retailer can set his mark-up only in the second stage of the game after the producer has moved. To the extent that the sequence of moves is designed to reflect the relative bargaining power of the two parties it is just as plausible to let the retailer move first. Furthermore, retailers frequently calculate their selling prices by adding a percentage mark-up to their wholesale prices. This allows a retaile...

  11. Forest pathology in Hawaii

    Science.gov (United States)

    Gardner, D.E.

    2003-01-01

    Native Hawaiian forests are characterised by a high degree of endemism, including pathogens as well as their hosts. With the exceptions of koa (Acacia koa Gray), possibly maile (Alyxia oliviformis Gaud.), and, in the past, sandalwood (Santalum spp.), forest species are of little commercial value. On the other hand, these forests are immensely important from a cultural, ecological, and evolutionary standpoint. Forest disease research was lacking during the mid-twentieth century, but increased markedly with the recognition of ohia (Metrosideros polymorpha Gaud.) decline in the 1970s. Because many pathogens are themselves endemic, or are assumed to be, having evolved with their hosts, research emphasis in natural areas is on understanding host-parasite interactions and evolutionary influences, rather than disease control. Aside from management of native forests, attempts at establishing a commercial forest industry have included importation of several species of pine, Araucaria, and Eucalyptus as timber crops, and of numerous ornamentals. Diseases of these species have been introduced with their hosts. The attacking of native species by introduced pathogens is problematic - for example, Armillaria mellea (Vahl ex Fr.) Que??l. on koa and mamane (Sophora chrysophylla (Salisb.) Seem.). Much work remains to be done in both native and commercial aspects of Hawaiian forest pathology.

  12. Prosodic Focus Marking in Bai.

    NARCIS (Netherlands)

    Liu, Zenghui; Chen, A.; Van de Velde, Hans

    2014-01-01

    This study investigates prosodic marking of focus in Bai, a Sino-Tibetan language spoken in the Southwest of China, by adopting a semi-spontaneous experimental approach. Our data show that Bai speakers increase the duration of the focused constituent and reduce the duration of the post-focus

  13. Better marking means cheaper pruning.

    Science.gov (United States)

    Kenneth R. Eversole

    1953-01-01

    Careful selection of trees to be pruned can make the difference between profit and loss on the pruning investment, especially in stands where no thinning is contemplated. Expert marking is required to make sure that the pruned trees will grow rapidly. The most important variable influencing the cost of clear wood produced by pruning is growth rate. For example, at 3...

  14. Laser marking method and device

    International Nuclear Information System (INIS)

    Okazaki, Yuki; Aoki, Nobutada; Mukai, Narihiko; Sano, Yuji; Yamamoto, Seiji.

    1997-01-01

    An object is disposed in laser beam permeating liquid or gaseous medium. Laser beams such as CW laser or pulse laser oscillated from a laser device are emitted to the object to apply laser markings with less degradation of identification and excellent corrosion resistance on the surface of the object simply and easily. Upon applying the laser markings, a liquid or gas as a laser beam permeating medium is blown onto the surface of the object, or the liquid or gas in the vicinity of the object is sucked, the laser beam-irradiated portion on the surface can be cooled positively. Accordingly, the laser marking can be formed on the surface of the object with less heat affection to the object. In addition, if the content of a nitrogen gas in the laser beam permeating liquid medium is reduced by degassing to lower than a predetermined value, or the laser beam permeating gaseous medium is formed by an inert gas, a laser marking having high corrosion resistance and reliability can be formed on the surface of the objective member. (N.H.)

  15. Estudo fenológico em três fases sucessionais de uma floresta estacional decidual no município de Santa Tereza, RS, Brasil Phenology study in three successional stages of a seasonal deciduous forest in Santa Tereza, RS, Brazil

    Directory of Open Access Journals (Sweden)

    Cáren Andreis

    2005-02-01

    Full Text Available O presente estudo foi realizado em 40 parcelas de área fixa pertencentes a três estágios sucessionais, denominados: Capoeirão, Floresta Secundária e Floresta Madura, em uma Floresta Estacional Decidual no município de Santa Tereza, RS. Foram realizadas observações fenológicas quinzenais em 53 espécies arbóreas, numa média de 8,4 indivíduos por espécie, durante o período de 16 de novembro de 2001 a 10 de novembro de 2002. As fenofases observadas foram floração, frutificação e mudança foliar. Os resultados indicaram que a atividade reprodutiva manteve uma porcentagem relativamente baixa nos três estágios sucessionais durante o período observado, com tendências em ser menor durante a estação de inverno. A quantidade total de folhas na árvore, não se distinguindo estágio sucessional, diminuiu de aproximadamente 85% no período de maior atividade vegetativa para até 35% no inverno, período de repouso, sendo a Floresta Madura a subsere, que manteve os maiores porcentuais de folhas durante o período estudado.The present study was accomplished in forty permanent plots belonging to three forest successional stages, denominated: Brush Forest, Secondary Forest and Mature Forest, in a seasonal deciduous forest in the municipal district of Santa Tereza, RS, Brazil. Phenologic observations were accomplished fortnightly for 53 arboreal species, in an average of 8,4 individuals per species, during the period of November 2001 to November 2002. The stages observed were flowering, fruiting and foliage change. The results indicate that the reproductive activity remained relatively low for three successional stages during the observed period, with a tendency to be even lower during winter. The total amount of leaves on the trees, regardless of the successional stage, decreased from approximately 85%, in the period of higher vegetative activity, to 35% in the winter, resting season. The Mature Forest maintained the largest percentage

  16. Forest rights

    DEFF Research Database (Denmark)

    Balooni, Kulbhushan; Lund, Jens Friis

    2014-01-01

    One of the proposed strategies for implementation of reducing emissions from deforestation and forest degradation plus (REDD+) is to incentivize conservation of forests managed by communities under decentralized forest management. Yet, we argue that this is a challenging road to REDD+ because...... conservation of forests under existing decentralized management arrangements toward a push for extending the coverage of forests under decentralized management, making forest rights the hard currency of REDD+....

  17. Air contaminants and litter fall decomposition in urban forest areas: The case of São Paulo - SP, Brazil.

    Science.gov (United States)

    Lamano Ferreira, Maurício; Portella Ribeiro, Andreza; Rodrigues Albuquerque, Caroline; Ferreira, Ana Paula do Nascimento Lamano; Figueira, Rubens César Lopes; Lafortezza, Raffaele

    2017-05-01

    factors. Precipitation appeared to be an important factor to disperse air pollutants; one method to better regulate this process is the development and integration of green infrastructure at city level, which might contribute to nature-based solutions. Results suggest that although the Curucutu forest is not very far from the MRSP, which could result in heavy metal levels similar to those observed in the Guarapiranga forest, the weather conditions, geographic location and rainfall rates might act as efficient physical barriers against the dispersion of pollutants in the urban area. However, it is important to highlight that in the period studied (2012-2013), MRSP presented unusual features during the winter period marked by the highest levels of precipitation which was due to several numbers of frontal systems and also due to their permanence for a couple days in the region. Thus, it is recommended to continue this study in order to obtain a database for characterizing the seasonal variation of air pollution levels in the litter fall and their adverse effects on ecosystem processes in these remnants of the Atlantic Forest. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Phyllostomid bat occurrence in successional stages of neotropical dry forests.

    Directory of Open Access Journals (Sweden)

    Luis Daniel Avila-Cabadilla

    Full Text Available Tropical dry forests (TDFs are highly endangered tropical ecosystems being replaced by a complex mosaic of patches of different successional stages, agricultural fields and pasturelands. In this context, it is urgent to understand how taxa playing critical ecosystem roles respond to habitat modification. Because Phyllostomid bats provide important ecosystem services (e.g. facilitate gene flow among plant populations and promote forest regeneration, in this study we aimed to identify potential patterns on their response to TDF transformation in sites representing four different successional stages (initial, early, intermediate and late in three Neotropical regions: México, Venezuela and Brazil. We evaluated bat occurrence at the species, ensemble (abundance and assemblage level (species richness and composition, guild composition. We also evaluated how bat occurrence was modulated by the marked seasonality of TDFs. In general, we found high seasonal and regional specificities in phyllostomid occurrence, driven by specificities at species and guild levels. For example, highest frugivore abundance occurred in the early stage of the moistest TDF, while highest nectarivore abundance occurred in the same stage of the driest TDF. The high regional specificity of phyllostomid responses could arise from: (1 the distinctive environmental conditions of each region, (2 the specific behavior and ecological requirements of the regional bat species, (3 the composition, structure and phenological patterns of plant assemblages in the different stages, and (4 the regional landscape composition and configuration. We conclude that, in tropical seasonal environments, it is imperative to perform long-term studies considering seasonal variations in environmental conditions and plant phenology, as well as the role of landscape attributes. This approach will allow us to identify potential patterns in bat responses to habitat modification, which constitute an invaluable

  19. Phyllostomid Bat Occurrence in Successional Stages of Neotropical Dry Forests

    Science.gov (United States)

    Avila-Cabadilla, Luis Daniel; Stoner, Kathryn Elizabeth; Nassar, Jafet M.; Espírito-Santo, Mario M.; Alvarez-Añorve, Mariana Yolotl; Aranguren, Carla I.; Henry, Mickael; González-Carcacía, José A.; Dolabela Falcão, Luiz A.; Sanchez-Azofeifa, Gerardo Arturo

    2014-01-01

    Tropical dry forests (TDFs) are highly endangered tropical ecosystems being replaced by a complex mosaic of patches of different successional stages, agricultural fields and pasturelands. In this context, it is urgent to understand how taxa playing critical ecosystem roles respond to habitat modification. Because Phyllostomid bats provide important ecosystem services (e.g. facilitate gene flow among plant populations and promote forest regeneration), in this study we aimed to identify potential patterns on their response to TDF transformation in sites representing four different successional stages (initial, early, intermediate and late) in three Neotropical regions: México, Venezuela and Brazil. We evaluated bat occurrence at the species, ensemble (abundance) and assemblage level (species richness and composition, guild composition). We also evaluated how bat occurrence was modulated by the marked seasonality of TDFs. In general, we found high seasonal and regional specificities in phyllostomid occurrence, driven by specificities at species and guild levels. For example, highest frugivore abundance occurred in the early stage of the moistest TDF, while highest nectarivore abundance occurred in the same stage of the driest TDF. The high regional specificity of phyllostomid responses could arise from: (1) the distinctive environmental conditions of each region, (2) the specific behavior and ecological requirements of the regional bat species, (3) the composition, structure and phenological patterns of plant assemblages in the different stages, and (4) the regional landscape composition and configuration. We conclude that, in tropical seasonal environments, it is imperative to perform long-term studies considering seasonal variations in environmental conditions and plant phenology, as well as the role of landscape attributes. This approach will allow us to identify potential patterns in bat responses to habitat modification, which constitute an invaluable tool for

  20. The hydrologic bench-mark program; a standard to evaluate time-series trends in selected water-quality constituents for streams in Georgia

    Science.gov (United States)

    Buell, G.R.; Grams, S.C.

    1985-01-01

    Significant temporal trends in monthly pH, specific conductance, total alkalinity, hardness, total nitrite-plus-nitrite nitrogen, and total phosphorus measurements at five stream sites in Georgia were identified using a rank correlation technique, the seasonal Kendall test and slope estimator. These sites include a U.S. Geological Survey Hydrologic Bench-Mark site, Falling Creek near Juliette, and four periodic water-quality monitoring sites. Comparison of raw data trends with streamflow-residual trends and, where applicable, with chemical-discharge trends (instantaneous fluxes) shws that some of these trends are responses to factors other than changing streamflow. Percentages of forested, agricultural, and urban cover with each basin did not change much during the periods of water-quality record, and therefore these non-flow-related trends are not obviously related to changes in land cover or land use. Flow-residual water-quality trends at the Hydrologic Bench-Mark site and at the Chattooga River site probably indicate basin reponses to changes in the chemical quality of atmospheric deposition. These two basins are predominantly forested and have received little recent human use. Observed trends at the other three sites probably indicate basin responses to various land uses and water uses associated with agricultural and urban land or to changes in specific uses. (USGS)

  1. Seasonal variation in diversity and abundance of understorey birds ...

    African Journals Online (AJOL)

    Our findings suggest that in a situation where there is no natural forest, an exotic plantation with suitable indigenous understorey cover can help in protection of birds, including endemic and near-endemic species. Keywords: birds, conservation, Eastern Arc Mountains, plantation, seasonal altitudinal migration, seasons, ...

  2. Tropical dry forest recovery : processes and causes of change

    NARCIS (Netherlands)

    Lebrija Trejos, E.E.

    2009-01-01

    Seasonally dry areas are one of the preferred zones for human inhabitance in the tropics. Large forest areas are converted to other land uses and many are covered by secondary forests that grow naturally after cessation of disturbance. Surprisingly, secondary succession in these strongly seasonal

  3. Effects of climate change on Forest Service strategic goals

    Science.gov (United States)

    Forest Service U.S. Department of Agriculture

    2010-01-01

    Climate change affects forests and grasslands in many ways. Changes in temperature and precipitation affect plant productivity as well as some species' habitat. Changes in key climate variables affect the length of the fire season and the seasonality of National Forest hydrological regimes. Also, invasive species tend to adapt to climate change more easily and...

  4. Large forest patches promote breeding success of a terrestrial mammal in urban landscapes.

    Directory of Open Access Journals (Sweden)

    Masashi Soga

    Full Text Available Despite a marked increase in the focus toward biodiversity conservation in fragmented landscapes, studies that confirm species breeding success are scarce and limited. In this paper, we asked whether local (area of forest patches and landscape (amount of suitable habitat surrounding of focal patches factors affect the breeding success of raccoon dogs (Nyctereutes procyonoides in Tokyo, Central Japan. The breeding success of raccoon dogs is easy to judge as adults travel with pups during the breeding season. We selected 21 forest patches (3.3-797.8 ha as study sites. In each forest patch, we used infra-red-triggered cameras for a total of 60 camera days per site. We inspected each photo to determine whether it was of an adult or a pup. Although we found adult raccoon dogs in all 21 forest patches, pups were found only in 13 patches. To estimate probability of occurrence and detection for raccoon in 21 forest fragments, we used single season site occupancy models in PRESENCE program. Model selection based on AIC and model averaging showed that the occupancy probability of pups was positively affected by patch area. This result suggests that large forests improve breeding success of raccoon dogs. A major reason for the low habitat value of small, isolated patches may be the low availability of food sources and the high risk of being killed on the roads in such areas. Understanding the effects of local and landscape parameters on species breeding success may help us to devise and implement effective long-term conservation and management plans.

  5. Influenza Seasonal Summary, 2014-2015 Season

    Science.gov (United States)

    2015-08-14

    Influenza Seasonal Summarv 2014-2015 Season EpiData Center Department Communicable Disease Division NMCPHC-EDC-TR-394-2015 REPORT DOCUMENTATION... Influenza Seasonal Summary, 2014-2015 Season Sb. GRANT NUMBER $c. PROGRAM ELEMENT NUMBER 6. AUTHORjS) Sd. PROJECT NUMBER Ashleigh K McCabe, Kristen R...SUPPLEMENTARY NOTES 1<l. ABSTRACT This report summartzes influenza activity among Department of Navy (DON) and Depar1ment of Defense (DOD

  6. Automated road marking recognition system

    Science.gov (United States)

    Ziyatdinov, R. R.; Shigabiev, R. R.; Talipov, D. N.

    2017-09-01

    Development of the automated road marking recognition systems in existing and future vehicles control systems is an urgent task. One way to implement such systems is the use of neural networks. To test the possibility of using neural network software has been developed with the use of a single-layer perceptron. The resulting system based on neural network has successfully coped with the task both when driving in the daytime and at night.

  7. Seasonality, mobility, and livability.

    Science.gov (United States)

    2012-01-31

    Signature project 4a, Seasonality, Mobility, and Livability investigated the effects of weather, season, built environment, community amenities, attitudes, and demographics on mobility and quality of life (QOL). A four season panel survey exami...

  8. Climate controls on forest productivity along the climate gradient of the western Sierra Nevada

    Science.gov (United States)

    Kelly, A. E.; Goulden, M. L.

    2010-12-01

    The broad climate gradient of the slopes of the western Sierra Nevada mountains supports ecosystems spanning extremes of productivity, biomass, and function. We are using this natural environmental gradient to understand how climate controls NPP, aboveground biomass, species' range limits, and phenology. Our experimental approach combines eddy covariance, sap flow, dendrometer, and litterfall measurements in combination with soil and hydrological data from the Southern Sierra Critical Zone Observatory (SSCZO). We have found that above about 2500 m, forest productivity is limited by winter cold, while below 1200 m, productivity is likely limited by summer drought. The sweet spot between these elevations has a nearly year-long growing season despite a snowpack that persists for as long as six months. Our results show that small differences in temperature can markedly alter the water balance and productivity of mixed conifer forests.

  9. Mark Twain: inocente ou pecador? = Mark Twain: innocent or sinner?

    Directory of Open Access Journals (Sweden)

    Heloisa Helou Doca

    2009-01-01

    Full Text Available A leitura cuidadosa do texto do “Tratado de Paris”, em 1900, leva Mark Twain a concluir que a intenção política norte-americana era, claramente, a de subjugação. Declara-se, abertamente, antiimperialista, nesse momento, apesar das inúmeras críticasrecebidas por antagonistas políticos que defendiam o establishment dos Estados Unidos. Após viajar para a Europa e Oriente, em 1867, como correspondente do jornal Daily Alta Califórnia, Mark Twain publica, em 1869, seu relato de viagem, The Innocents Abroad or TheNew Pilgrim’s Progress. Nosso estudo demonstra que o autor, apesar das diversas máscaras usadas em seus relatos, narra histórias, culturas e tradições, tanto da Europa quanto do Oriente, já com os olhos bem abertos pelo viés antiimperialista. Faz uso da paródia, sátira, ironia e humor para dessacralizar impérios, monarcas e a Igreja que subjugavam os mais fracos, iluminando, desde então, os estudos sobre culturas. Nosso estudo, outrossim, faz uma reflexão sobre cultura, tradição e o olhar do viajante, justificando o “olhar inocente” do narrador em seu relato.After carefully reading the Treaty of Paris in 1900, Mark Twain concluded that the goal of U.S. policy was clearly one ofsubjugation. He openly declared himself an anti-imperialist at that time, in spite of the numerous criticisms he received from political opponents who supported the United States status quo. After traveling to Europe and the East in 1867 as a correspondent for The DailyAlta California newspaper, Mark Twain published his travel report, The Innocents Abroad or The New Pilgrim’s Progress in 1869. Our study demonstrates that the author, in spite of using different guises in his reports, narrated histories, cultures and traditions – from both Europe and the East – with a viewpoint already imbued by his anti-imperialistic ideals. Twain made use of parody, satire, irony and humor within his texts in order to desecrate empires,monarchs and

  10. Forest soils

    Science.gov (United States)

    Charles H. (Hobie) Perry; Michael C. Amacher

    2009-01-01

    Productive soils are the foundation of sustainable forests throughout the United States. Forest soils are generally subjected to fewer disturbances than agricultural soils, particularly those that are tilled, so forest soils tend to have better preserved A-horizons than agricultural soils. Another major contrast between forest and agricultural soils is the addition of...

  11. Forest hydrology

    Science.gov (United States)

    Ge Sun; Devendra Amatya; Steve McNulty

    2016-01-01

    Forest hydrology studies the distribution, storage, movement, and quality of water and the hydrological processes in forest-dominated ecosystems. Forest hydrological science is regarded as the foundation of modern integrated water¬shed management. This chapter provides an overview of the history of forest hydrology and basic principles of this unique branch of...

  12. Forest Management

    Science.gov (United States)

    S. Hummel; K. L. O' Hara

    2008-01-01

    Global variation in forests and in human cultures means that a single method for managing forests is not possible. However, forest management everywhere shares some common principles because it is rooted in physical and biological sciences like chemistry and genetics. Ecological forest management is an approach that combines an understanding of universal processes with...

  13. Forest meteorology research within the Oak Ridge site, eastern deciduous forest biome, USIBP

    International Nuclear Information System (INIS)

    Hutchison, B.A.; Matt, D.R.

    1977-01-01

    The data presented here indicate that the diurnal trends in forest microclimate are dominated by the diurnal trend in incident solar radiation amounts and the diurnal changes in solar elevations. Absolute values of these microclimatic variables, on the other hand, reflect strongly, the synoptic climatic conditions present and, to a lesser degree, the interactions among synoptic climatic parameters, forest structure, forest physiology, and soil moisture conditions. The seasonal changes in forest microclimate are the result of changes in incident radiation amounts, earth-sun geometry, and phenological change in forest structure along with seasonal changes in synoptic climatic parameters. The temporal and spatial variations of solar radiation within and above a deciduous forest composed predominately of tulip poplar (biriodendron tulipifera) were documented and on attempt was made to relate the variations to forest structure

  14. DRY DEPOSITION OF POLLUTANTS TO FORESTS

    Science.gov (United States)

    We report on the results of an extensive field campaign to measure dry deposition of ozone and sulfur dioxide to a sample of forest types in the United States. Measurements were made for full growing seasons over a deciduous forest in Pennsylvania and a mixed deciduous-conifer...

  15. Soil fauna as an indicator of soil quality in forest stands, pasture and secondary forest

    Directory of Open Access Journals (Sweden)

    Felipe Vieira da Cunha Neto

    2012-11-01

    Full Text Available The interactions between soil invertebrates and environmental variations are relatively unknown in the assessment of soil quality. The objective of this study was to evaluate soil quality in areas with different soil management systems, based on soil fauna as indicator, in Além Paraíba, Minas Gerais, Brazil. The soil invertebrate community was sampled using pitfall traps, in the dry and rainy seasons, from areas with five vegetation types (acacia, mimosa, eucalyptus, pasture, and secondary forest. The abundance of organisms and the total and average richness, Shannon's diversity index, the Pielou uniformity index, and change index V were determined. The fauna was most abundant in the areas of secondary forest and mimosa plantations in the dry season (111.3 and 31.7 individuals per trap per day, respectively. In the rainy season, the abundance of organisms in the three vegetation types did not differ. The highest values of average and total richness were recorded in the secondary forest in the dry season and in the mimosa stand in the rainy season. Shannon's index ranged from 1.57 in areas with acacia and eucalyptus in the rainy season to 3.19 in the eucalyptus area in the dry season. The uniformity index was highest in forest stands (eucalyptus, acacia and mimosa in the dry season, but higher in the rainy season in the pasture and secondary forest than in the forest stands. The change index V indicated that the percentage of extremely inhibited groups was lowest in the area with mimosa, both in the dry and rainy season (36 and 23 %, respectively. Of all forest stands, the mimosa area had the most abundant soil fauna.

  16. Abiotic factors influencing tropical dry forests regeneration

    Directory of Open Access Journals (Sweden)

    Ceccon Eliane

    2006-01-01

    Full Text Available Tropical dry forests represent nearly half the tropical forests in the world and are the ecosystems registering the greatest deterioration from the anthropogenic exploitation of the land. This paper presents a review on the dynamics of tropical dry forests regeneration and the main abiotic factors influencing this regeneration, such as seasonal nature, soil fertility and humidity, and natural and anthropic disturbances. The main purpose is to clearly understand an important part of TDF succession dynamics.

  17. Seasonality of Lutzomyia fairtigi (Diptera: Psychodidae: Phlebotominae), a species endemic to Eastern Colombia.

    Science.gov (United States)

    Molina, Jorge Alberto; Ortiz, Mario Iván; Guhl, Felipe

    2008-08-01

    The bionomics of sand flies (Diptera: Phlebotominae) was studied monthly for two consecutive years in alluvial gallery forests in the department of Casanare, Northeastern Colombia. A total of 2,365 specimens and 10 species were captured using CDC light traps and Shannon traps, and from diurnal resting places, and human landing collections. Lutzomyia fairtigi Martins (55%), Lutzomyia micropyga (Mangabeira) (20.9%), and Lutzomyia antunesi (Coutinho) (13.5%) were the predominant species in the region. Lutzomyia flaviscutellata and Lutzomyia panamensis, potential vectors of Leishmania in Colombia and neighboring countries, were also collected, but in low numbers. Lu. fairtigi is an endemic species to Colombia, and minimal data are available on its biology and distribution. The present study provides additional information about Lu. fairtigi, such as the diurnal activity displayed by females on cloudy days, the greater density during the rainy season (April to October), marked anthropophilia, and the presence of flagellates in the midgut of one female.

  18. Recent results for Mark III

    International Nuclear Information System (INIS)

    Brient, J.C.

    1987-12-01

    This paper presents recent results from the Mark III detector at SPEAR, in the open charm sector. The first topic discussed is the reanalysis of the direct measurement of the D hadronic branching fractions, where a detailed study has been made of the Cabibbo suppressed and multi-π 0 's D decays backgrounds in the double tag sample. Next, the Dalitz plot analysis of the D decays to Kππ is presented, leading to the relative fractions of three-body versus pseudoscalarvector decays. 7 refs., 5 figs

  19. The Mark III vertex chamber

    International Nuclear Information System (INIS)

    Adler, J.; Bolton, T.; Bunnell, K.

    1987-07-01

    The design and construction of the new Mark III vertex chamber is described. Initial tests with cosmic rays prove the ability of track reconstruction and yield triplet resolutions below 50 μm at 3 atm using argon/ethane (50:50). Also performed are studies using a prototype of a pressurized wire vertex chamber with 8 mm diameter straw geometry. Spatial resolution of 35mm was obtained using dimethyl ether (DME) at 1 atm and 30 μm using argon/ethane (50/50 mixture) at 4 atm. Preliminary studies indicate the DME to adversely affect such materials as aluminized Mylar and Delrin

  20. 46 CFR 185.602 - Hull markings.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Hull markings. 185.602 Section 185.602 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Markings Required § 185.602 Hull markings. (a) Each vessel must be marked as required by part 67...

  1. 27 CFR 28.193 - Export marks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Export marks. 28.193... Drawback Filing of Notice and Removal § 28.193 Export marks. In addition to the marks and brands required... chapter, the exporter shall mark the word “Export” on the Government side of each case or Government head...

  2. 27 CFR 28.103 - Export marks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Export marks. 28.103... Manufacturing Bonded Warehouse § 28.103 Export marks. (a) General. In addition to the marks and brands required... provisions of part 19 of this chapter, the proprietor shall mark the word “Export” on the Government side of...

  3. 27 CFR 28.144 - Export marks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Export marks. 28.144... § 28.144 Export marks. (a) General Requirement. In addition to the marks and brands required to be... brewer shall mark the word “Export” on each container or case of beer, or the words “Beer concentrate for...

  4. 27 CFR 28.154 - Export marks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Export marks. 28.154..., for Exportation or Transfer to a Foreign-Trade Zone § 28.154 Export marks. In addition to the marks... provisions of part 19 of this chapter, the proprietor shall mark the word “Export” on the Government side of...

  5. Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin

    Directory of Open Access Journals (Sweden)

    Y. A. Teh

    2017-08-01

    Full Text Available The Amazon plays a critical role in global atmospheric budgets of methane (CH4 and nitrous oxide (N2O. However, while we have a relatively good understanding of the continental-scale flux of these greenhouse gases (GHGs, one of the key gaps in knowledge is the specific contribution of peatland ecosystems to the regional budgets of these GHGs. Here we report CH4 and N2O fluxes from lowland tropical peatlands in the Pastaza–Marañón foreland basin (PMFB in Peru, one of the largest peatland complexes in the Amazon basin. The goal of this research was to quantify the range and magnitude of CH4 and N2O fluxes from this region, assess seasonal trends in trace gas exchange, and determine the role of different environmental variables in driving GHG flux. Trace gas fluxes were determined from the most numerically dominant peatland vegetation types in the region: forested vegetation, forested (short pole vegetation, Mauritia flexuosa-dominated palm swamp, and mixed palm swamp. Data were collected in both wet and dry seasons over the course of four field campaigns from 2012 to 2014. Diffusive CH4 emissions averaged 36.05 ± 3.09 mg CH4–C m−2 day−1 across the entire dataset, with diffusive CH4 flux varying significantly among vegetation types and between seasons. Net ebullition of CH4 averaged 973.3 ± 161.4 mg CH4–C m−2 day−1 and did not vary significantly among vegetation types or between seasons. Diffusive CH4 flux was greatest for mixed palm swamp (52.0 ± 16.0 mg CH4–C m−2 day−1, followed by M. flexuosa palm swamp (36.7 ± 3.9 mg CH4–C m−2 day−1, forested (short pole vegetation (31.6 ± 6.6 mg CH4–C m−2 day−1, and forested vegetation (29.8 ± 10.0 mg CH4–C m−2 day−1. Diffusive CH4 flux also showed marked seasonality, with divergent seasonal patterns among ecosystems. Forested vegetation and mixed palm swamp showed significantly higher

  6. Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin

    Science.gov (United States)

    Arn Teh, Yit; Murphy, Wayne A.; Berrio, Juan-Carlos; Boom, Arnoud; Page, Susan E.

    2017-08-01

    The Amazon plays a critical role in global atmospheric budgets of methane (CH4) and nitrous oxide (N2O). However, while we have a relatively good understanding of the continental-scale flux of these greenhouse gases (GHGs), one of the key gaps in knowledge is the specific contribution of peatland ecosystems to the regional budgets of these GHGs. Here we report CH4 and N2O fluxes from lowland tropical peatlands in the Pastaza-Marañón foreland basin (PMFB) in Peru, one of the largest peatland complexes in the Amazon basin. The goal of this research was to quantify the range and magnitude of CH4 and N2O fluxes from this region, assess seasonal trends in trace gas exchange, and determine the role of different environmental variables in driving GHG flux. Trace gas fluxes were determined from the most numerically dominant peatland vegetation types in the region: forested vegetation, forested (short pole) vegetation, Mauritia flexuosa-dominated palm swamp, and mixed palm swamp. Data were collected in both wet and dry seasons over the course of four field campaigns from 2012 to 2014. Diffusive CH4 emissions averaged 36.05 ± 3.09 mg CH4-C m-2 day-1 across the entire dataset, with diffusive CH4 flux varying significantly among vegetation types and between seasons. Net ebullition of CH4 averaged 973.3 ± 161.4 mg CH4-C m-2 day-1 and did not vary significantly among vegetation types or between seasons. Diffusive CH4 flux was greatest for mixed palm swamp (52.0 ± 16.0 mg CH4-C m-2 day-1), followed by M. flexuosa palm swamp (36.7 ± 3.9 mg CH4-C m-2 day-1), forested (short pole) vegetation (31.6 ± 6.6 mg CH4-C m-2 day-1), and forested vegetation (29.8 ± 10.0 mg CH4-C m-2 day-1). Diffusive CH4 flux also showed marked seasonality, with divergent seasonal patterns among ecosystems. Forested vegetation and mixed palm swamp showed significantly higher dry season (47.2 ± 5.4 mg CH4-C m-2 day-1 and 85.5 ± 26.4 mg CH4-C m-2 day-1, respectively) compared to wet season emissions

  7. Interview with Professor Mark Wilcox.

    Science.gov (United States)

    Wilcox, Mark

    2016-08-01

    Mark Wilcox speaks to Georgia Patey, Commissioning Editor: Professor Mark Wilcox is a Consultant Microbiologist and Head of Microbiology at the Leeds Teaching Hospitals (Leeds, UK), the Professor of Medical Microbiology at the University of Leeds (Leeds, UK), and is the Lead on Clostridium difficile and the Head of the UK C. difficile Reference Laboratory for Public Health England (PHE). He was the Director of Infection Prevention (4 years), Infection Control Doctor (8 years) and Clinical Director of Pathology (6 years) at the Leeds Teaching Hospitals. He is Chair of PHE's Rapid Review Panel (reviews utility of infection prevention and control products for National Health Service), Deputy Chair of the UK Department of Health's Antimicrobial Resistance and Healthcare Associated Infection Committee and a member of PHE's HCAI/AR Programme Board. He is a member of UK/European/US working groups on C. difficile infection. He has provided clinical advice as part of the FDA/EMA submissions for the approval of multiple novel antimicrobial agents. He heads a healthcare-associated infection research team at University of Leeds, comprising approximately 30 doctors, scientists and nurses; projects include multiple aspects of C. difficile infection, diagnostics, antimicrobial resistance and the clinical development of new antimicrobial agents. He has authored more than 400 publications, and is the coeditor of Antimicrobial Chemotherapy (5th/6th/7th Editions, 15 December 2007).

  8. Forest vegetation of Xishuangbanna, south China

    Institute of Scientific and Technical Information of China (English)

    Zhu Hua

    2006-01-01

    Xishuangbanna of southern Yunnan is biogeographically located at a transitional zone from tropical southeast (SE) Asia to subtropical east Asia and is at the junction of the Indian and Burmese plates of Gondwana and the Eurasian plate of Laurasia. The region, though surprisingly far from the equator and at a relatively high altitude, has a rich tropical flora and a typical tropical rain forest in the lowland areas. Based on physiognomic and ecological characteristics, floristic composition and habitats combined, the primary vegetation in Xishuangbanna can be organized into four main vegetation types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad-leaved forest and tropical monsoon forest. The tropical rain forest can be classified into two subtypes, i.e. a tropical seasonal rain forest in the lowlands and a tropical montane rain forest at higher elevations. The tropical seasonal rain forest has almost the same forest profile and physiognomic characteristics as equatorial lowland rain forests and is a type of truly tropical rain forest. Because of conspicuous similarity on ecological and floristic characteristics, the tropical rain forest in Xishuangbanna is a type of tropical Asian rain forest. However, since the tropical rain forest of Xishuangbanna occurs at the northern edge of tropical SE Asia, it differs from typical lowland rain forests in equatorial areas in having some deciduous trees in the canopy layer, fewer megaphanerophytes and epiphytes but more abundant lianas and more plants with microphyll. It is a type of semi-evergreen rain forest at the northern edge of the tropical zone. The tropical montane rain forest occurs at wet montane habitats and is similar to the lower montane rain forest in equatorial Asia in floristic composition and physiognomy. It is a type of lower montane rain forests within the broader category of tropical rain forests. The tropical seasonal moist forest occurs on middle and upper

  9. Measuring forest and wild product contributions to household welfare

    DEFF Research Database (Denmark)

    Bakkegaard, Riyong Kim; Hogarth, Nicholas J.; Bong, Indah Waty

    2017-01-01

    in the lowest bracket. Consumption of forest products and importance as a coping strategy was higher in the most upstream village, where sale of forest products in times of shock was more marked in the most downstream village (where forest coping strategies were also least important). The Forestry Modules...

  10. Step process for selecting and testing surrogates and indicators of afrotemperate forest invertebrate diversity.

    Directory of Open Access Journals (Sweden)

    Charmaine Uys

    Full Text Available BACKGROUND: The diversity and complexity of invertebrate communities usually result in their exclusion from conservation activities. Here we provide a step process for assessing predominantly ground-dwelling Afrotemperate forest invertebrates' (earthworms, centipedes, millipedes, ants, molluscs potential as surrogates for conservation and indicators for monitoring. We also evaluated sampling methods (soil and litter samples, pitfall traps, active searching quadrats and tree beating and temporal (seasonal effects. METHODOLOGY/PRINCIPAL FINDINGS: Lack of congruence of species richness across taxa indicated poor surrogacy potential for any of the focus taxa. Based on abundance and richness, seasonal stability, and ease of sampling, molluscs were the most appropriate taxon for use in monitoring of disturbance impacts. Mollusc richness was highest in March (Antipodal late summer wet season. The most effective and efficient methods were active searching quadrats and searching litter samples. We tested the effectiveness of molluscs as indicators for monitoring by contrasting species richness and community structure in burned relative to unburned forests. Both species richness and community structure changed significantly with burning. Some mollusc species (e.g. Macroptychia africana showed marked negative responses to burning, and these species have potential for use as indicators. CONCLUSIONS/SIGNIFICANCE: Despite habitat type (i.e., Afrotemperate forest being constant, species richness and community structure varied across forest patches. Therefore, in conservation planning, setting targets for coarse filter features (e.g., habitat type requires fine filter features (e.g., localities for individual species. This is especially true for limited mobility taxa such as those studied here. Molluscs have high potential for indicators for monitoring, and this requires broader study.

  11. Changes of seasonally dry forest in the Colombian Patía Valley during the early and middle Holocene and the development of a dry climatic record for the northernmost Andes

    NARCIS (Netherlands)

    González-Carranza, Z.; Berrío, J.C.; Hooghiemstra, H.; Duivenvoorden, J.F.; Behling, H.

    2008-01-01

    A 450 cm long sediment core was collected from a swamp in the dry forest ecosystem of the Patía Valley in Colombia (02°02′ N, 77° W at 750 m elevation). This core (Potrerillo-2) was analysed using pollen, lithostratigraphy and radiocarbon dates and was correlated with an already existing dataset

  12. Disturbing forest disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Volney, W.J.A.; Hirsch, K.G. [Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB (Canada)

    2005-10-01

    This paper described the role that disturbances play in maintaining the ecological integrity of Canadian boreal forests. Potential adaptation options to address the challenges that these disturbances present were also examined. Many forest ecosystems need fire for regeneration, while other forests rely on a cool, wet disintegration process driven by insects and commensal fungi feeding on trees to effect renewal. While there are characteristic natural, temporal and spatial patterns to these disturbances, recent work has demonstrated that the disturbances are being perturbed by climatic change that has been compounded by anthropogenic disturbances in forests. Fire influences species composition and age structure, regulates forest insects and diseases, affects nutrient cycling and energy fluxes, and maintains the productivity of different habitats. Longer fire seasons as a result of climatic change will lead to higher intensity fires that may more easily evade initial attacks and become problematic. Fire regimes elevated beyond the range of natural variation will have a dramatic effect on the regional distribution and functioning of forest ecosystems and pose a threat to the safety and prosperity of people. While it was acknowledged that if insect outbreaks were to be controlled on the entire forest estate, the productivity represented by dead wood would be lost, it was suggested that insects such as the forest tent caterpillar and the spruce bud worm may also pose a greater threat as the climate gets warmer and drier. Together with fungal associates, saproxylic arthropods are active in nutrient cycling and ultimately determine the fertility of forest sites. It was suggested that the production of an age class structure and forest mosaic would render the forest landscape less vulnerable to the more negative aspects of climate change on vegetation response. It was concluded that novel management design paradigms are needed to successfully reduce the risk from threats

  13. Compilation of woody species occurring in the Brazilian Atlantic Forest complex

    OpenAIRE

    Bergamin, Rodrigo Scarton; Da Silva Duarte, Leandro; Marcilio-Silva, Vinicius; Dos Santos Seger, Guilherme Dubal; Liebsch, Dieter; Marques, Márcia C. M.

    2015-01-01

    The Atlantic Forest is a hotspot for biodiversity conservation because of its high levels of endemism and threatened areas. Three main forest types, differentiated by their floras, compose the Atlantic Forest: ‘Atlantic Forest’ sensu strictu, ‘Araucaria Mixed Forest’ and ‘Seasonal Forest’. The flora comprises taxa from the Amazon forest, Cerrado gallery forests and the Andean region, which makes the Atlantic Forest a relevant study system for ecologists and biogeographers. Here, we present da...

  14. Dialectica Interpretation with Marked Counterexamples

    Directory of Open Access Journals (Sweden)

    Trifon Trifonov

    2011-01-01

    Full Text Available Goedel's functional "Dialectica" interpretation can be used to extract functional programs from non-constructive proofs in arithmetic by employing two sorts of higher-order witnessing terms: positive realisers and negative counterexamples. In the original interpretation decidability of atoms is required to compute the correct counterexample from a set of candidates. When combined with recursion, this choice needs to be made for every step in the extracted program, however, in some special cases the decision on negative witnesses can be calculated only once. We present a variant of the interpretation in which the time complexity of extracted programs can be improved by marking the chosen witness and thus avoiding recomputation. The achieved effect is similar to using an abortive control operator to interpret computational content of non-constructive principles.

  15. Cavernous hemangioma presenting marked hyperostosis

    International Nuclear Information System (INIS)

    Kobata, Hitoshi; Miyake, Hiroji; Kitamura, Junji; Kajikawa, Hiroshi; Ohta, Tomio

    1988-01-01

    The authors report here a case of hemangioma of the left parietal bone which presented headache and papilledema. This patient is a 37-year-old female who had, prior to admission, complained of increasing headache for one year and blurred vision for three months. She had no history of head injury. Local physical examinations revealed a slight bulging in her left parietal region which was insensitive to palpation and not adherent to the overlying scalp. Neurological examinations revealed bilateral papilledema and an incongruous bitemporal upper quadrant defect in the visual field. All the other neurological and laboratory data were normal. A plain skull roentogenogram showed a 9 x 9 cm osteolytic and characteristic honeycomb lesion in the parietal region. Systemic bone survey revealed a similar lesion in the right tibia which was not histologically examined. A marked accumulation of isotopes was detected on the bone scintigrams at both lesions. Selective external carotid angiograms demonstrated a tumor stain fed by the superficial temporal, occipital, and middle meningial arteries. CT scans of the brain and skull clearly showed a local thickening of and structural changes in the skull bone and also a mass effect on the brain and lateral ventricle. The lesioned bone was removed en bloc and replaced by an artificial bone. It was highly vascular, but not adherent to the overlying dura. The post-operative course was uneventful, and the headache and papilledema disappeared. Hemangioma of the skull presenting marked hyperostosis, as reported above, seems to be rare. In addition, in this case, skeletal angioma without any clinical manifestation was detected. Clinical and radiological pictures of the hemangioma of the skull and other bones were briefly discussed. (author)

  16. Forest Type and Tree Characteristics Determine the Vertical Distribution of Epiphytic Lichen Biomass in Subtropical Forests

    Directory of Open Access Journals (Sweden)

    Su Li

    2017-11-01

    Full Text Available Epiphytic lichens are an important component in subtropical forests and contribute greatly to forest biodiversity and biomass. However, information on epiphytic lichens still remains scarce in forest conservation owing to the difficulty of accessing all canopy layers for direct observation. Here, epiphytic lichens were quantified on 73 whole trees in five forest types in Southwest China to clarify the vertical stratification of their biomass in subtropical forests. Lichen biomass was significantly influenced by forest type and host attributes, varying from 187.11 to 8.55 g∙tree−1 among forest types and from 289.81 to <0.01 g∙tree−1 among tree species. The vertical stratification of lichen biomass was also determined by forest type, which peaked at the top in primary Lithocarpus forest and middle-aged oak secondary forest and in the middle upper heights in other forests. Overall, the proportion of lichen biomass accounted for 73.17–100.00% of total lichen biomass on branches and 0.00–26.83% on trunks in five forests, and 64.53–100.00% and 0.00–35.47% on eight host species. Seven functional groups showed marked and various responses to tree height between and among forest types. This information improves our understanding of the distribution of epiphytic lichens in forest ecosystems and the promotion of forest management in subtropical China.

  17. Aspectos florísticos e fitossociológicos de um trecho de Floresta Estacional Perenifólia na Fazenda Trairão, Bacia do rio das Pacas, Querência-MT Floristic and phytosociological aspects of a Seasonal Evergreen Forest area in the Trairão Farm, rio das Pacas Basin, Querência-MT

    Directory of Open Access Journals (Sweden)

    Sustanis Horn Kunz

    2008-01-01

    Full Text Available A borda sul da região amazônica apresenta um tipo peculiar de floresta, denominada de Floresta Estacional Perenifólia, que atualmente vem sofrendo severos impactos ambientais devido à expansão da fronteira agrícola no Norte do Estado de Mato Grosso. Diante da falta de estudos neste tipo florestal, objetivou-se identificar a composição florística e a estrutura fitossociológica do componente arbóreo de um trecho florestal na Fazenda Trairão em Querência-MT. A amostragem da vegetação consistiu na distribuição de 200 pontos-quadrantes, sendo considerados os quatro indivíduos mais próximos de cada ponto que tivessem DAP (diâmetro à altura do peito igual ou superior a 10 cm. A densidade total foi de 728 ind./ha, distribuídos em 49 espécies, 39 gêneros e 24 famílias. A família que apresentou maior riqueza foi Fabaceae (cinco espécies, seguida por Burseraceae e Euphorbiaceae, cada uma com quatro espécies, consideradas também as mais ricas em trechos de Floresta Amazônica. As espécies de maior Valor de Importância (VI foram Ocotea leucoxylon (Sw. Laness., Xylopia amazonica R.E. Fr., Myrcia multiflora (Lam. DC., Chaetocarpus echinocarpus (Baill. Ducke e Protium pilosissimum Engl., mas não tiveram a mesma representatividade em outros trechos de Floresta Estacional Perenifólia, evidenciando diferenças estruturais desta unidade fitogeográfica. A comunidade avaliada possui porte fino, pois a maioria dos indivíduos concentra-se nas classes de diâmetro entre 10 e 14,9 cm e altura entre 10,6 e 16,5 m. O índice de Shannon (3,17 é considerado baixo por se tratar de floresta amazônica, na qual a diversidade é superior a 4,0.The southern border of the Amazon region presents a peculiar type of forest called Seasonal Evergreen Forest, which has currently undergone several environmental impacts due to the agriculture frontier expansion from the Northern state of Mato Grosso. Due to the lack of studies on this type of forest

  18. Contributions of water supply from the weathered bedrock zone to forest soil quality

    Science.gov (United States)

    James H. Witty; Robert C. Graham; Kenneth R. Hubbert; James A. Doolittle; Jonathan A. Wald

    2003-01-01

    One measure of forest soil quality is the ability of the soil to support tree growth. In mediterranean-type ecosystems, such as most of California's forests, there is virtually no rainfall during the summer growing season, so trees must rely on water stored within the substrate. Water is the primary limitation to productivity in these forests. Many forest soils in...

  19. Forest Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Forest biomass is an abundant biomass feedstock that complements the conventional forest use of wood for paper and wood materials. It may be utilized for bioenergy production, such as heat and electricity, as well as for biofuels and a variety of bioproducts, such as industrial chemicals, textiles, and other renewable materials. The resources within the 2016 Billion-Ton Report include primary forest resources, which are taken directly from timberland-only forests, removed from the land, and taken to the roadside.

  20. Influences of Herbivory and Canopy Opening Size on Forest Regeneration in a Southern Bottomland Hardwood Forest

    Science.gov (United States)

    Steven B. Castleberry; W. Mark Ford; Carl V. Miller; Winston P. Smith

    2000-01-01

    We examined the effects of white-tailed deer (Odocoileus virginianus) browsing and canopy opening size on relative abundance and diversity of woody and herbaceous regeneration in various sized forest openings in a southern, bottomland hardwood forest over three growing seasons (1995-1997). We created 36 canopy openings (gaps), ranging from 7 to 40m...

  1. The Forest Fire Problem of Degrading Tain II Forest Reserve in Ghana

    African Journals Online (AJOL)

    Agribotix GCS 068

    2010-01-11

    Jan 11, 2010 ... informal practice was done before the 1982/83 dry season when the country ..... Tain II Forest Reserve forms part of the Dry Semi-Deciduous Fire ...... 2003/08; Forest Resources Development Service Working Paper FFM/2. .... Environment, Resources and Development Thailand. web.idrc.ca/uploads/user-.

  2. Suficiência amostral para coletas de serapilheira acumulada sobre o solo em Pinus elliottii Engelm, Eucalyptus sp. E floresta estacional decidual Adequate sampling for collection of litter accumulated on the soil in Pinus elliottii engelm, Eucalyptus sp. And seasonal deciduous forest

    Directory of Open Access Journals (Sweden)

    Isabel Sandra Kleinpaul

    2005-12-01

    Full Text Available O presente estudo objetivou determinar a suficiência amostral para coletas de serapilheira acumulada sobre o solo em povoamentos de Pinus elliottii, Eucalyptus sp., ambos plantados no Campus da Universidade Federal de Santa Maria e em uma área de Floresta Estacional Decidual (FED localizada no Morro do Elefante, Santa Maria, RS. Para a realização do estudo, foram coletadas 100 amostras de serapilheira por floresta, com o auxílio de uma moldura quadrada de 25 cm de lado, totalizando 300 amostras, as quais foram separadas nas seguintes frações: acículas ou folhas, galhos, estruturas reprodutivas, cascas e resíduos. Com base nos pesos de matéria seca de cada fração, realizou-se a análise estatística dos dados, visando à estabilização dos valores do coeficiente de variação (CV%. Para Pinus elliottii, a maior contribuição na formação da serapilheira foi dada pelas acículas, com 57,2%; em Eucalyptus sp., isso ocorreu com os galhos (38,8% e na FED, novamente com as folhas, que representaram 49,6% da serapilheira. No Pinus elliottii, o maior CV% se deu nos resíduos, seguido de estruturas reprodutivas. Em Eucalyptus sp., o maior CV% foi encontrado em cascas, seguido de galhos. Na FED, as cascas tiveram o maior CV%. A suficiência amostral necessária para Pinus elliottii foi de 40, sendo esse o povoamento que necessitou de menos amostras para estabilizar o CV%. Em Eucalyptus sp., a suficiência amostral foi de 70, enquanto na FED foram necessárias 80 amostras.This study determined the sample sufficiency for the collection of litter accumulated on the soil, in Pinus elliottii and Eucalyptus sp. stands, planted in the Campus of the Federal University of Santa Maria and a Seasonal Deciduous Forest, located at the "Morro do Elefante", Santa Maria - RS. To carry out this study, 100 samples were collected per site, using a square frame (25 cm², totaling 300 samples. The samples were separated in the following fractions: needles or

  3. Effect of fragmentation on the Costa Rican dry forest avifauna

    OpenAIRE

    Barrantes, Gilbert; Ocampo, Diego; Ram?rez-Fern?ndez, Jos? D.; Fuchs, Eric J.

    2016-01-01

    Deforestation and changes in land use have reduced the tropical dry forest to isolated forest patches in northwestern Costa Rica. We examined the effect of patch area and length of the dry season on nestedness of the entire avian community, forest fragment assemblages, and species occupancy across fragments for the entire native avifauna, and for a subset of forest dependent species. Species richness was independent of both fragment area and distance between fragments. Similarity in bird comm...

  4. Cooperative Shark Mark Recapture Database (MRDBS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Shark Mark Recapture Database is a Cooperative Research Program database system used to keep multispecies mark-recapture information in a common format for...

  5. On-road Bicycle Pavement Markings

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — A mile by mile breakdown of the on-street bicycle pavement markings installed within the City of Pittsburgh. These include bike lanes, shared lane markings...

  6. Serviceable pavement marking retroreflectivity levels : technical report.

    Science.gov (United States)

    2009-03-01

    This research addressed an array of issues related to measuring pavement markings retroreflectivity, factors : related to pavement marking performance, subjective evaluation process, best practices for using mobile : retroreflectometers, sampling pav...

  7. [Marked hemosiderosis in myelodysplastic syndrome].

    Science.gov (United States)

    Klinz, C

    1999-01-29

    A 68-year-old man was admitted because of symptoms of lumbar pain. He was known to have chronic anemia with ring sideroblasts and diabetes melitus and to be in heart failure. Three months before he had been given 7 units of red cell concentrate. On admission the outstanding features were brown discoloration of the skin, absent body hair, tachycardia, hepatomegaly and small testicles. He had a normocytic anemia, hyperglycemia and raised transaminases, hypogonadism and vitamin D3 deficiency. The serum levels of iron, transferrin saturation and feritin were markedly elevated. Liver iron content/g dried liver was 4.2 g (by biomagnetometer). Radiology of the lumbar vertebrae showed osteoporosis and sonography confirmed hepatomegaly. The known myelodysplastic syndrome (MDS) had fed to secondary hemosiderosis with heart failure, liver involvement, diabetes mellitus, hypogonadism and osteoporosis. Symptomatic treatment was unsuccessfully complemented by desferoxamine (up to 4 g/12 h) to release iron. But very good iron excretion was then achieved with deferiprone (3 x 1 g/d). The patient later died of the sequelae of hemosiderosis. Even when they have not required transfusions, patients with long-standing MDS should be examined regularly for the possible development of secondary hemosiderosis so that iron-chelating agents can be administered as needed.

  8. EDMS - Reaching the Million Mark

    CERN Multimedia

    2009-01-01

    When Christophe Seith from the company Cegelec sat down to work on 14 May 2009 at 10:09 a.m. to create the EDMS document entitled "Rapport tournée PH semaine 20", little did he know that he would be the proud creator of the millionth EDMS document and the happy prize winner of a celebratory bottle of champagne to mark the occasion. In the run up to the creation of the millionth EDMS document the EDMS team had been closely monitoring the steady rise in the EDMS number generator, so as to ensure the switch from the six figured i.d. to seven figures would run smoothly and of course, to be able to congratulate the creator of the millionth EDMS document. From left to right: Stephan Petit (GS-ASE- EDS Section Leader), Christophe Delamare (GS- ASE Group Leader), Christophe Seith, creator of the millionth EDMS document, David Widegren, (GS-ASE- EPS Section Leader). The millionth EDMS document. For t...

  9. 46 CFR 122.602 - Hull markings.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hull markings. 122.602 Section 122.602 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150....602 Hull markings. (a) Each vessel must be marked as required by part 67, subpart I, of this chapter...

  10. 7 CFR 160.32 - Marking containers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Marking containers. 160.32 Section 160.32 Agriculture... STANDARDS FOR NAVAL STORES Analysis, Inspection, and Grading on Request § 160.32 Marking containers. The interested person shall provide any labor necessary for marking the containers, after the contents have been...

  11. 46 CFR 160.176-23 - Marking.

    Science.gov (United States)

    2010-10-01

    ... of the vessel. (2) The type of vessel. (3) Specific purpose or limitation approved by the Coast Guard...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Inflatable Lifejackets § 160.176-23 Marking. (a) General. Each inflatable lifejacket must be marked with the information required by this section. Each marking must be...

  12. 27 CFR 28.123 - Export marks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Export marks. 28.123..., or Transportation to a Manufacturing Bonded Warehouse § 28.123 Export marks. (a) General. In addition... filled under the provisions of part 24 of this chapter, the proprietor shall mark the word “Export” on...

  13. 27 CFR 28.223 - Export marks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Export marks. 28.223... Export marks. In addition to the marks and brands required to be placed on kegs, barrels, cases, crates... “Export” on each container or case before removal for export, for use on vessels or aircraft, or for...

  14. Physiographic and floristic gradients across topography in transitional seasonally dry evergreen forests of southeast Pará, Brazil Gradientes fisiográficos e florísticos ao longo do relevo em florestas perenifólias sazonalmente secas de transição no Sudeste do Pará, Brasil

    Directory of Open Access Journals (Sweden)

    James Grogan

    2006-12-01

    Full Text Available Seasonally dry evergreen forests in southeast Pará, Brazil are transitional between taller closed forests of the interior Amazon Basin and woodland savannas (cerrados of Brazil's south-central plains. We describe abiotic and biotic gradients in this region near the frontier town of Redenção where forest structure and composition grade subtly across barely undulating topography. Annual precipitation averaged 1859 mm between 1995-2001, with nearly zero rainfall during the dry season months of June August. Annual vertical migrations of deep-soil water caused by seasonal rainfall underlie edaphic and floristic differences between high- and low-ground terrain. Low-ground soils are hydromorphic, shaped by perching water tables during the wet season, pale gray, brown, or white in color, with coarse texture, low moisture retention during the dry season, and relatively high macro-nutrient status in the surface horizons. Forest canopies on low ground are highly irregular, especially along seasonal streams, while overstory community composition differs demonstrably from that on high ground. High-ground soils are dystrophic, well-drained through the wet season, brown or red-yellow in color, with finer texture, higher moisture retention, and low macro-nutrient status in the surface horizons compared to low-ground soils. Forest canopies are, on average, taller, more regular, and more closed on high ground. Low-ground areas can be envisioned as energy and nutrient sinks, where, because of hydrologic cycles, canopy disturbance likely occurs more frequently than at high-ground positions if not necessarily at larger scales.As florestas perenifólias sazonalmente secas no sudeste do Pará, Brasil, são áreas de transição entre as florestas fechadas mais altas do interior da Bacia Amazônica e o cerrado das planícies da região Sul-Central do Brasil. Descrevemos os gradientes abióticos e bióticos nessa região próxima da cidade de Redenção, onde a

  15. Seasonal Variation of Cistus ladanifer L. Diterpenes

    Directory of Open Access Journals (Sweden)

    Juan Carlos Alías

    2012-07-01

    Full Text Available The exudate of Cistus ladanifer L. consists mainly of two families of secondary metabolites: flavonoids and diterpenes. The amount of flavonoids present in the leaves has a marked seasonal variation, being maximum in summer and minimum in winter. In the present study, we demonstrate that the amount of diterpenes varies seasonally, but with a different pattern: maximum concentration in winter and minimum in spring-summer. The experiments under controlled conditions have shown that temperature influences diterpene production, and in particular, low temperatures. Given this pattern, the functions that these compounds perform in C. ladanifer are probably different.

  16. Sorting Out Seasonal Allergies

    Science.gov (United States)

    ... Close ‹ Back to Healthy Living Sorting Out Seasonal Allergies Sneezing, runny nose, nasal congestion. Symptoms of the ... How do I know if I have seasonal allergies? According to Dr. Georgeson, the best way to ...

  17. Factors influencing density of the Northern Mealy Amazon in three forest types of a modified rainforest landscape in Mesoamerica

    Directory of Open Access Journals (Sweden)

    Miguel Ángel. De Labra-Hernández

    2017-06-01

    Full Text Available The high rate of conversion of tropical moist forest to secondary forest makes it imperative to evaluate forest metric relationships of species dependent on primary, old-growth forest. The threatened Northern Mealy Amazon (Amazona guatemalae is the largest mainland parrot, and occurs in tropical moist forests of Mesoamerica that are increasingly being converted to secondary forest. However, the consequences of forest conversion for this recently taxonomically separated parrot species are poorly understood. We measured forest metrics of primary evergreen, riparian, and secondary tropical moist forest in Los Chimalapas, Mexico. We also used point counts to estimate density of Northern Mealy Amazons in each forest type during the nonbreeding (Sept 2013 and breeding (March 2014 seasons. We then examined how parrot density was influenced by forest structure and composition, and how parrots used forest types within tropical moist forest. Overall, parrot density was high in the breeding season, with few parrots present during the nonbreeding season. During the breeding season, primary forest had significantly greater density of 18.9 parrots/km² in evergreen forest and 35.9 parrots/km² in riparian forest, compared with only 3.4 parrots/km² in secondary forest. Secondary forest had significantly lower tree species richness, density, diameter, total height, and major branch ramification height, as well as distinct tree species composition compared with both types of primary forest. The number of parrots recorded at point counts was related to density of large, tall trees, characteristic of primary forest, and parrots used riparian forest more than expected by availability. Hence, the increased conversion of tropical moist forest to secondary forest is likely to lead to reduced densities of forest-dependent species such as the Northern Mealy Amazon. Furthermore, the species' requirement for primary tropical moist forest highlights the need to reevaluate

  18. Seasonal Allergies (Hay Fever)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Seasonal Allergies (Hay Fever) KidsHealth / For Parents / Seasonal Allergies (Hay ... español Alergia estacional (fiebre del heno) About Seasonal Allergies "Achoo!" It's your son's third sneezing fit of ...

  19. Seasonal Variation in Epidemiology

    Science.gov (United States)

    Marrero, Osvaldo

    2013-01-01

    Seasonality analyses are important in medical research. If the incidence of a disease shows a seasonal pattern, then an environmental factor must be considered in its etiology. We discuss a method for the simultaneous analysis of seasonal variation in multiple groups. The nuts and bolts are explained using simple trigonometry, an elementary…

  20. Tropical savannas and dry forests.

    Science.gov (United States)

    Pennington, R Toby; Lehmann, Caroline E R; Rowland, Lucy M

    2018-05-07

    In the tropics, research, conservation and public attention focus on rain forests, but this neglects that half of the global tropics have a seasonally dry climate. These regions are home to dry forests and savannas (Figures 1 and 2), and are the focus of this Primer. The attention given to rain forests is understandable. Their high species diversity, sheer stature and luxuriance thrill biologists today as much as they did the first explorers in the Age of Discovery. Although dry forest and savanna may make less of a first impression, they support a fascinating diversity of plant strategies to cope with stress and disturbance including fire, drought and herbivory. Savannas played a fundamental role in human evolution, and across Africa and India they support iconic megafauna. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Seasonal changes in plant-water relations influence patterns of leaf display in Miombo woodlands: evidence of water conservative strategies.

    Science.gov (United States)

    Vinya, Royd; Malhi, Yadvinder; Brown, Nick D; Fisher, Joshua B; Brodribb, Timothy; Aragão, Luiz E O C

    2018-06-15

    Water availability has frequently been linked to seasonal leaf display in seasonally dry ecosystems, but there have been few ecohydrological investigations of this link. Miombo woodland is a dominant seasonally dry tropical forest ecosystem type in southern Africa; however, there are few data on the relationship between seasonal dynamics in plant-water relations and patterns of leaf display for Miombo woodland. Here we investigate this relationship among nine key Miombo woodland tree species differing in drought tolerance ability and leaf phenology. Results of this study showed that seasonal patterns of leaf phenology varied significantly with seasonal changes in stem water relations among the nine species. Leaf shedding coincided with the attainment of seasonal minimum stem water potential. Leaf flush occurred following xylem rehydration at the peak of the dry season suggesting that endogenous plant factors play a pivotal role in seasonal leaf display in this forest type. Drought-tolerant deciduous species suffered significantly higher seasonal losses in xylem hydraulic conductivity than the drought-intolerant semi-evergreen tree species (P water stress in seasonally dry tropical forests selects for water conservative traits that protect the vulnerable xylem transport system. Therefore, seasonal rhythms in xylem transport dictate patterns of leaf display in seasonally dry tropical forests.

  2. High contrast laser marking of alumina

    International Nuclear Information System (INIS)

    Penide, J.; Quintero, F.; Riveiro, A.; Fernández, A.; Val, J. del; Comesaña, R.; Lusquiños, F.; Pou, J.

    2015-01-01

    Highlights: • Laser marking of alumina using near infrared (NIR) lasers was experimentally analyzed. • Color change produced by NIR lasers is due to thermally induced oxygen vacancies. • Laser marking results obtained using NIR lasers and green laser are compared. • High contrast marks on alumina were achieved. - Abstract: Alumina serves as raw material for a broad range of advanced ceramic products. These elements should usually be identified by some characters or symbols printed directly on them. In this sense, laser marking is an efficient, reliable and widely implemented process in industry. However, laser marking of alumina still leads to poor results since the process is not able to produce a dark mark, yielding bad contrast. In this paper, we present an experimental study on the process of marking alumina by three different lasers working in two wavelengths: 1064 nm (Near-infrared) and 532 nm (visible, green radiation). A colorimetric analysis has been carried out in order to compare the resulting marks and its contrast. The most suitable laser operating conditions were also defined and are reported here. Moreover, the physical process of marking by NIR lasers is discussed in detail. Field Emission Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy were also employed to analyze the results. Finally, we propose an explanation for the differences of the coloration induced under different atmospheres and laser parameters. We concluded that the atmosphere is the key parameter, being the inert one the best choice to produce the darkest marks

  3. Resource defense and monopolization in a marked population of ruby-throated hummingbirds (Archilochus colubris).

    Science.gov (United States)

    Rousseu, François; Charette, Yanick; Bélisle, Marc

    2014-03-01

    Resource defense behavior is often explained by the spatial and temporal distribution of resources. However, factors such as competition, habitat complexity, and individual space use may also affect the capacity of individuals to defend and monopolize resources. Yet, studies frequently focus on one or two factors, overlooking the complexity found in natural settings. Here, we addressed defense and monopolization of nectar feeders in a population of free-ranging ruby-throated hummingbirds marked with passive integrated transponder (PIT tags). Our study system consisted of a 44 ha systematic grid of 45 feeders equipped with PIT tag detectors recording every visit made at feeders. We modeled the number of visits by competitors (NVC) at feeders in response to space use by a focal individual potentially defending a feeder, number of competitors, nectar sucrose concentration, and habitat visibility. Individuals who were more concentrated at certain feeders on a given day and who were more stable in their use of the grid throughout the season gained higher exclusivity in the use of those feeders on that day, especially for males competing against males. The level of spatial concentration at feeders and its negative effect on NVC was, however, highly variable among individuals, suggesting a continuum in resource defense strategies. Although the apparent capacity to defend feeders was not affected by competition or nectar sucrose concentration, the level of monopolization decreased with increasing number of competitors and higher nectar quality. Defense was enhanced by visibility near feeders, but only in forested habitats. The reverse effect of visibility in open habitats was more difficult to interpret as it was probably confounded by perch availability, from which a bird can defend its feeder. Our study is among the first to quantify the joint use of food resource by overlapping individuals unconstrained in their use of space. Our results show the importance of

  4. Forest litter stocks in Korean pine-broad-leaved forests of the southern Sikhote Alin

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2015-10-01

    Full Text Available The article presents the data on the forest litter of the Korean pine-broad-leaved forests of the South of Primorsky krai. The focus of the research is plantations dominated by Korean pine; areas of the main tree species with ages of 50, 80, 130 and 200 years were selected. The dynamics of the forest litter stock in the pine and broadleaved forests of different ages according to the measurement results for the season in 2014 is stated. In the studied plantation, the forest litter stock varies between 9.7–20.3 t ha-1. The greatest value of the forest litter stock is recorded in old-growth cedar forest (200 years. Relatively high power and the stock of litter are typical for young Korean pine forest that can explain the lower speed of the litter properties change against the dynamics of taxation indicators of the forest stand. The difference between the amount of the litter in the 200-year-old and remaining pine trees are statistically significant at p = 0.05. The dependence of the litter power on the age is not revealed. The coefficient of the forest litter decomposition ranges from 2.55–10.60 that characterizes the high speed of its rotting. The highest coefficient of the litter decomposition has an old-growing pine forest. The schedule of seasonal humidity fluctuations of the forest litter on the chosen plot is made; with increasing cedar forest age, the volumetric moisture content of the forest litter increases; volumetric moisture content on the plots remain relatively unchanged during the season. The area of the Korean pine forests of Primorsky State Academy of Agriculture is 6835 ha. The amount of carbon stock in the forest litter is 38.7 thousand tons C. in this area, while the system of regional assessment of the forest carbon balance estimates this index as 24.3 tons С. The data obtained can be used to adjust the coefficients of regional assessment of the forest carbon balance for cedar forests of Primorsky krai.

  5. Florística de lianas em um fragmento de floresta estacional semidecidual, Parque Estadual de Vassununga, Santa Rita do Passa Quatro, SP, Brasil Floristic of lianas in a fragment of seasonal semidecidual forest State Park of Vassununga, Santa Rita do Passa Quatro, São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    Yara Junqueira de Azevedo Tibiriçá

    2006-06-01

    Full Text Available Embora o conhecimento sobre a florística dos fragmentos de florestas estacionais semideciduais tenha crescido nos últimos anos, ainda sabe-se pouco sobre a comunidade de lianas (lenhosas ou herbáceas nesses fragmentos. Assim, foi realizado o levantamento florístico de lianas na gleba Maravilha, pertencente ao Parque Estadual de Vassununga (Santa Rita do Passa Quatro, SP, a fim de colaborar com o conhecimento dessa comunidade e subsidiar futuros trabalhos que envolvam essa forma de vida. A área de estudo compreende 127,08 ha, com inverno seco e temperatura média anual de 22 ºC. Para a coleta do material, percorreu-se mensalmente toda a borda do fragmento e três trilhas no interior da mata, de agosto/2002 a setembro/2003. Foram identificadas 120 espécies de lianas, pertencentes a 30 famílias e 71 gêneros, das quais 51% das espécies são volúveis, 42% apresentam gavinhas e apenas 7% são escandentes. As famílias mais representativas em número de espécies foram: Bignoniaceae (26, Malpighiaceae (14, Sapindaceae (12 e Asteraceae (9. Houve baixa similaridade florística entre as espécies de lianas presentes na gleba Maravilha em relação a outras áreas de florestas estacionais semideciduais do interior paulista.Although the knowledge about the floristic composition of the fragments of seasonal semidecidual forest had grown in the last few years, little is known about the liana communities (woody vines and herbaceous vines in those fragments. To collaborate with the knowledgement of the lianas and subsidize future works involving this life form, a floristic survey of the liana species occurring at the fragment Maravilha of the State Park of Vassununga (Santa Rita do Passa Quatro - SP was carried out. The study area comprised 127.08ha, with average temperature of 22 ºC. The whole border of the forest fragment and three tracks inside the forest were surveyed monthly between August 2002 and September 2003. One hundred and twenty species

  6. Prolonged limitation of tree growth due to warmer spring in semi-arid mountain forests of Tianshan, northwest China

    International Nuclear Information System (INIS)

    Wu Xiuchen; Liu Hongyan; Wang Yufu; Deng Minghua

    2013-01-01

    Based on radial tree growth measurements in nine plots of area 625 m 2 (369 trees in total) and climate data, we explored the possibly changing effects of climate on regional tree growth in the temperate continental semi-arid mountain forests in the Tianshan Mountains in northwest China during 1933–2005. Tree growth in our study region is generally limited by the soil water content of pre- and early growing season (February–July). Remarkably, moving correlation functions identified a clear temporal change in the relationship between tree growth and mean April temperature. Tree growth showed a significant (p < 0.05) and negative relationship to mean April temperature since approximately the beginning of the 1970s, which indicated that the semi-arid mountain forests are suffering a prolonged growth limitation in recent years accompanying spring warming. This prolonged limitation of tree growth was attributed to the effects of soil water limitation in early spring (March–April) caused by the rapid spring warming. Warming-induced prolonged drought stress contributes, to a large part, to the marked reduction of regional basal area increment (BAI) in recent years and a much slower growth rate in young trees. Our results highlight that the increasing water limitation induced by spring warming on tree growth most likely aggravated the marked reduction in tree growth. This work provides a better understanding of the effects of spring warming on tree growth in temperate continental semi-arid forests. (letter)

  7. The specificity of host-bat fly interaction networks across vegetation and seasonal variation.

    Science.gov (United States)

    Zarazúa-Carbajal, Mariana; Saldaña-Vázquez, Romeo A; Sandoval-Ruiz, César A; Stoner, Kathryn E; Benitez-Malvido, Julieta

    2016-10-01

    Vegetation type and seasonality promote changes in the species composition and abundance of parasite hosts. However, it is poorly known how these variables affect host-parasite interaction networks. This information is important to understand the dynamics of parasite-host relationships according to biotic and abiotic changes. We compared the specialization of host-bat fly interaction networks, as well as bat fly and host species composition between upland dry forest and riparian forest and between dry and rainy seasons in a tropical dry forest in Jalisco, Mexico. Bat flies were surveyed by direct collection from bats. Our results showed that host-bat fly interaction networks were more specialized in upland dry forest compared to riparian forest. Bat fly species composition was different between the dry and rainy seasons, while host species composition was different between upland dry forest and riparian forest. The higher specialization in upland dry forest could be related to the differences in bat host species composition and their respective roosting habits. Variation in the composition of bat fly species between dry and rainy seasons coincides with the seasonal shifts in their species richness. Our study confirms the high specialization of host-bat fly interactions and shows the importance of biotic and abiotic factors to understand the dynamics of parasite-host interactions.

  8. Marking behavior of the giant anteater Myrmecophaga tridactyla (Mammalia: Myrmecophagidae in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Fernanda G. Braga

    2010-02-01

    Full Text Available This research presents novel data on tree marking by the giant anteater, a large Neotropical mammal threatened in the state of Paraná and other areas of Brazil, and nearly threatened worldwide. Field work was carried out in the municipality of Jaguariaíva, Paraná (Southern Brazil with the goal of evaluating the pine marking behavior of the giant anteater and ascertaining whether wildfires interfere with it. Anteater marks were searched for on the trunks of pine trees in stands as well as pine trees dispersed throughout the landscape. For each pine tree, the following features were recorded: height, diameter breast height (DBH, height of first branch, presence/absence of scratch marks, geographical location, substrate, and matrix. The total number of scratches, scratch directions, scratch length, and height of top mark were also recorded. The scratches were defined as horizontal or vertical. Tree scratching was directly observed in three instances. Ninety-one trees were measured in the study area. The differences between marked and non-marked pines were significant for DBH and height of first branch. All scratches were found on pines dispersed throughout the landscape. Trees with horizontal and vertical marks were significantly different in terms of DBH, first branch height, and top mark height. After a wildfire that affected part of the study area, 54% of the previously marked trees were marked anew. We suggest that the marking behavior is used for communication between conspecifics with overlapping home ranges, possibly during the mating season. Additionally, we advance the hypothesis that pine marking behavior becomes more frequent with increased population stress due to anthropic interference.

  9. Mark II magnetic detector for SPEAR

    International Nuclear Information System (INIS)

    Larsen, R.R.

    1975-01-01

    The Mark II Detector, presently in the design stage, is a SLAC/LBL detector project to replace the Mark I now in operation at SPEAR. While similar in concept to the Mark I it will have improved momentum resolution, shower detection, solid angle coverage for both triggering and tracking and a magnet design providing easier access to those particles transmitted through the aluminum coil

  10. PHYTOSOCIOLOGY OF THE ARBOREAL AND NATURAL REGENERATION STRATA IN A BLACK-WATTLE (Acacia mearnsii De Wild. PLANTATION IN THE REGION OF SEMIDECIDUIS SEASONAL FORESTS OF RIO GRANDE DO SUL

    Directory of Open Access Journals (Sweden)

    Silas Mochiutti

    2009-10-01

    Full Text Available This study analyzes the structure and floristic composition of the regeneration of native forest species under black-wattle plantation, established 16 years ago in a riparian area, and it verifies the possibility of the black-wattle be considered an invasive species of this environment. The tree stratum (circumference at breast height (CBH ≥15 cm was evaluated in 12 plots of 100 m2, established in four blocks. The natural regeneration stratum (0.3 m height to <15 cm CBH was evaluated in two subplots of 9 m2, established in opposite vertexes of each plot. The tree stratum was composed by 26 species of 14 families and the natural regeneration stratum by 49 species of 23 families. The Shannon diversity index for species, considering all plots, was 2.60 and 3.06 to the tree and natural regeneration strata, respectively. The native species, Casearia sylvestris, Myrsine lorentziana and Zanthoxylum petiolare presented the larger importance value in the tree stratum and Faramea marginata, Myrsine lorentziana and Myrcia glabra the biggest density in the natural regeneration stratum. The ecological characteristics of the species found in several height strata indicated that the forest succession process is in evolution. The black-wattle did not regenerate in this area and the planted trees of this species are in the senescence phase. Only 100 tree/ha of black-wattle were found, which represents 4.5% of the original population. Thus, black-wattle is not an invasive species for this environment.

  11. An analysis of hospital brand mark clusters.

    Science.gov (United States)

    Vollmers, Stacy M; Miller, Darryl W; Kilic, Ozcan

    2010-07-01

    This study analyzed brand mark clusters (i.e., various types of brand marks displayed in combination) used by hospitals in the United States. The brand marks were assessed against several normative criteria for creating brand marks that are memorable and that elicit positive affect. Overall, results show a reasonably high level of adherence to many of these normative criteria. Many of the clusters exhibited pictorial elements that reflected benefits and that were conceptually consistent with the verbal content of the cluster. Also, many clusters featured icons that were balanced and moderately complex. However, only a few contained interactive imagery or taglines communicating benefits.

  12. Ecological and reproductive aspects of Aparasphenodon brunoi (Anura: Hylidae in an ombrophilous forest area of the Atlantic Rainforest Biome, Brazil

    Directory of Open Access Journals (Sweden)

    Laura Gomez-Mesa

    2017-10-01

    Full Text Available ABSTRACT Presented is the first information on the ecological and reproductive aspects of the treefrog, Aparasphenodon brunoi Miranda-Ribeiro, 1920, living in ombrophilous forest areas of the Atlantic Rainforest, Brazil. We recorded the species’ daily activity and over the course of a year, population density during the year, microhabitat usage, diet, and some reproductive features (quantity, diameter and mean mass of oocytes, mean reproductive effort of female. Field sampling was conducted monthly from June 2015 to July 2016. Searches for treefrogs were systematic, using visual encounter surveys along 14 plots RAPELD long term research modules established in the forest. For each captured individual, we recorded the hour, microhabitat used, and perch height. The diet of the population was ascertained based on 15 individuals collected outside the study plot areas. Treefrogs used seven different types of microhabitats in the forest but the preferred microhabitats were tree-trunks and lianas. The amount of accumulated rainfall and air temperature interacted to explain the number of A. brunoi individuals active throughout the year. The reproductive strategy for females of this comparatively large arboreal frog in the ombrophilous forest is to produce clutches with a large number (900.8 ± 358.1 of relatively small-sized eggs. We conclude that in the ombrophious forest of the Vale Natural Reserve, A. brunoi is a nocturnal arboreal treefrog active throughout the year but activity increases during the wet season as a result of increased precipitation. In the forest, treefrogs tend to perch mainly on tree-trunks and lianas about 1 m above ground, where it feeds preferably on relatively large bodied arthropod prey. When living in the ombrophilous forest of the Atlantic rainforest, A. brunoi may change some features of its ecology (e.g. marked difference in the use of bromeliads compared to when living in restinga habitats.

  13. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks

    OpenAIRE

    Zemp, Delphine Clara; Schleussner, Carl Friedrich; Barbosa, Henrique M J; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, L.; Rammig, Anja

    2017-01-01

    Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation–atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complexnetwork approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. ...

  14. Scent-marking by coyotes, Canis latrans: the influence of social and ecological factors

    Science.gov (United States)

    Gese; Ruff

    1997-11-01

    We observed 49 coyotes, Canis latransfrom five resident packs for 2456 h and five transient coyotes for 51 h from January 1991 to June 1993 in the Lamar River Valley, Yellowstone National Park, Wyoming, U.S.A. During these observations we recorded 3042 urinations, 451 defecations, 446 ground scratches and 743 double-marks. The rate of scent-marking (via urination) was influenced by the social organization (resident versus transient) to which the coyote belonged, the social class (alpha, beta or pup) of the animal and the time of the year. Transient coyotes scent-marked at a lower rate than did members of a resident pack. Within the resident packs, alpha coyotes scent-marked at a higher rate than beta coyotes (adults and yearlings subordinant to alphas, but dominant over pups) and pups. Alpha coyotes increased their rate of marking during the breeding season; beta and pup coyotes performed scent-marks at a relatively constant rate throughout the year. There was no influence of social class or time of year on the rate of defecation. The rate of double-marking was highest among alpha coyotes with a peak during the breeding season. Alpha coyotes ground-scratched at a higher rate than did beta and pup coyotes. Alpha and beta coyotes scent-marked more than expected along the periphery of the territory compared to the interior; pups marked in the interior and edge in proportion to expected frequencies. Double-marking and ground-scratching were higher than expected along the periphery of the territory. The distribution of defecations was not different from expected along the edge versus the interior of the territory. Pack size did not influence the rate of scent-marking performed by individuals in the pack or by the alpha pair. We concluded that alpha coyotes were the primary members of the resident pack involved in scent-marking. The large coyote packs and the high rate of marking by the alpha pairs were parallel to the scent-marking behaviour displayed by wolves, C

  15. Northern bobwhite breeding season ecology on a reclaimed surface mine

    Science.gov (United States)

    Brooke, Jarred M.; Tanner, Evan P.; Peters, David C.; Tanner, Ashley M.; Harper, Craig A.; Keyser, Patrick D.; Clark, Joseph D.; Morgan, John J.

    2017-01-01

    Surface coal mining and subsequent reclamation of surface mines have converted large forest areas into early successional vegetative communities in the eastern United States. This reclamation can provide a novel opportunity to conserve northern bobwhite (Colinus virginianus). We evaluated the influence of habitat management activities on nest survival, nest-site selection, and brood resource selection on managed and unmanaged units of a reclaimed surface mine, Peabody Wildlife Management Area (Peabody), in west-central Kentucky, USA, from 2010 to 2013. We compared resource selection, using discrete-choice analysis, and nest survival, using the nest survival model in Program MARK, between managed and unmanaged units of Peabody at 2 spatial scales: the composition and configuration of vegetation types (i.e., macrohabitat) and vegetation characteristics at nest sites and brood locations (i.e., microhabitat). On managed sites, we also investigated resource selection relative to a number of different treatments (e.g., herbicide, disking, prescribed fire). We found no evidence that nest-site selection was influenced by macrohabitat variables, but bobwhite selected nest sites in areas with greater litter depth than was available at random sites. On managed units, bobwhite were more likely to nest where herbicide was applied to reduce sericea lespedeza (Lespedeza cuneata) compared with areas untreated with herbicide. Daily nest survival was not influenced by habitat characteristics or by habitat management but was influenced by nest age and the interaction of nest initiation date and nest age. Daily nest survival was greater for older nests occurring early in the breeding season (0.99, SE < 0.01) but was lower for older nests occurring later in the season (0.08, SE = 0.13). Brood resource selection was not influenced by macrohabitat or microhabitat variables we measured, but broods on managed units selected areas treated with herbicide to control sericea lespedeza

  16. Texas' forests, 2008

    Science.gov (United States)

    James W. Bentley; Consuelo Brandeis; Jason A. Cooper; Christopher M. Oswalt; Sonja N. Oswalt; KaDonna Randolph

    2014-01-01

    This bulletin describes forest resources of the State of Texas at the time of the 2008 forest inventory. This bulletin addresses forest area, volume, growth, removals, mortality, forest health, timber product output, and the economy of the forest sector.

  17. Forest resources of the Lincoln National Forest

    Science.gov (United States)

    John D. Shaw

    2006-01-01

    The Interior West Forest Inventory and Analysis (IWFIA) program of the USDA Forest Service, Rocky Mountain Research Station, as part of its national Forest Inventory and Analysis (FIA) duties, conducted forest resource inventories of the Southwestern Region (Region 3) National Forests. This report presents highlights of the Lincoln National Forest 1997 inventory...

  18. Timing of Seasonal Sales.

    OpenAIRE

    Courty, Pascal; Li, Hao

    1999-01-01

    We present a model of timing of seasonal sales where stores choose several designs at the beginning of the season without knowing wich one, if any, will be fashionable. Fashionable designs have a chance to fetch high prices in fashion markets while non-fashionable ones must be sold in a discount market. In the beginning of the season, stores charge high prices in the hope of capturing their fashion market. As the end of the season approaches with goods still on the shelves, stores adjust down...

  19. 49 CFR 1520.13 - Marking SSI.

    Science.gov (United States)

    2010-10-01

    ... SECURITY INFORMATION § 1520.13 Marking SSI. (a) Marking of paper records. In the case of paper records... back cover, including a binder cover or folder, if the document has a front and back cover; (2) Any.... 552 and 49 CFR parts 15 and 1520. (d) Other types of records. In the case of non-paper records that...

  20. Lessons learned : pavement marking warranty contract.

    Science.gov (United States)

    2013-12-01

    In 2012, UDOT implemented a performance-based warranty on a portion of an I-15 pavement marking : project. The awarded contract requested a contractor warranty on the implemented markings for a total : duration of six years. This is the first time th...